
BEATuxedo®

Creating CORBA Client
Applications

Version 9.0
Document Released: June 28, 2005

Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread, Top End,
Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign Manager for
WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA WebLogic Commerce Server, BEA WebLogic Enterprise,
BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic JRockit, BEA
WebLogic Log Central, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA
WebLogic Server Process Edition, BEA WebLogic WorkGroup Edition, BEA WebLogic Workshop, and Liquid
Computing are trademarks of BEA Systems, Inc. BEA Mission Critical Support is a service mark of BEA Systems, Inc.
All other company and product names may be the subject of intellectual property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Creating CORBA Client Applications iii

Contents

About This Document
What You Need to Know . vii

e-docs Web Site . viii

How to Print the Document . viii

Related Information . viii

Contact Us!. viii

Documentation Conventions . ix

CORBA Client Application Development Concepts
Overview of Client Applications. 1-2

OMG IDL . 1-2

OMG IDL-to-C++ Mapping. 1-2

OMG IDL-to-Java Mapping. 1-3

OMG IDL-to-COM Mapping . 1-3

Static and Dynamic Invocation . 1-3

Client Stubs . 1-5

Interface Repository . 1-6

Domains . 1-6

Environmental Objects . 1-7

Bootstrap Object . 1-9

Factories and the FactoryFinder Object . 1-11

Naming Conventions and BEA Tuxedo Extensions to the FactoryFinder Object 1-12

iv Creating CORBA Client Applications

InterfaceRepository Object. .1-14

SecurityCurrent Object .1-14

TransactionCurrent Object .1-15

NotificationService and Tobj_SimpleEventsService Objects .1-16

NameService Object .1-17

Creating CORBA Client Applications
Summary of the Development Process for CORBA C++ Client Applications2-3

Step 1: Obtaining the OMG IDL File .2-3

Step 2: Selecting the Invocation Type .2-6

Step 3: Compiling the OMG IDL File .2-6

Step 4: Writing the CORBA Client Application. .2-7

Initializing the ORB. .2-7

Establishing Communication with the BEA Tuxedo Domain .2-8

Resolving Initial References to the FactoryFinder Object .2-9

Using the FactoryFinder Object to Get a Factory .2-10

Using a Factory to Get a CORBA Object .2-11

Step 5: Building the CORBA Client Application. .2-11

Server Applications Acting as Client Applications. .2-11

Using Java2 Applets. .2-12

Using the Dynamic Invocation Interface
When to Use DII .3-2

DII Concepts .3-3

Request Objects .3-3

Options for Sending Requests .3-4

Options for Receiving the Results of Requests. .3-4

Summary of the Development Process for DII .3-5

Creating CORBA Client Applications v

Step 1: Loading the CORBA Interfaces into the Interface Repository . 3-6

Step 2: Obtaining the Object Reference for the CORBA Object . 3-7

Step 3: Creating a Request Object . 3-7

Using the CORBA::Object::_request Member Function . 3-7

Using the CORBA::Object::create_request Member Function. 3-8

Setting Arguments for the Request Object . 3-8

Setting Input and Output Arguments with the CORBA::NamedValue Member Function.

3-8

Example of Using CORBA::Object::create_request Member Function 3-8

Step 4: Sending a DII Request and Retrieving the Results . 3-9

Synchronous Requests . 3-9

Deferred Synchronous Requests . 3-10

Oneway Requests . 3-10

Multiple Requests . 3-10

Step 5: Deleting the Request . 3-14

Step 6: Using the Interface Repository with DII . 3-14

Handling Exceptions
CORBA Exception Handling Concepts . 4-1

CORBA System Exceptions . 4-2

CORBA C++ Client Applications . 4-3

Handling System Exceptions . 4-4

User Exceptions . 4-5

Index

vi Creating CORBA Client Applications

Creating CORBA Client Applications vii

About This Document

This document describes how to create CORBA C++ client applications with the CORBA environment
in the BEA Tuxedo® product. This document introduces important product concepts, provides
step-by-step instructions for creating client applications, and includes code examples to illustrate the
development process.

This document includes the following topics:

Chapter 1, “CORBA Client Application Development Concepts,” introduces the concepts you
need to know to develop CORBA client applications using the BEA Tuxedo software.

Chapter 2, “Creating CORBA Client Applications,” provides instructions for creating CORBA
C++client applications.

Chapter 3, “Using the Dynamic Invocation Interface,” explains how to use the Dynamic
Invocation Interface (DII) from CORBA C++ client applications.

Chapter 4, “Handling Exceptions,” explains how CORBA C++ client applications handle CORBA
exceptions.

What You Need to Know
This document is intended for programmers who want to develop CORBA client applications using the
BEA Tuxedo software.

viii Creating CORBA Client Applications

e-docs Web Site
The BEA Tuxedo product documentation is available on the BEA Systems, Inc. corporate Web site.
From the BEA Home page, click the Product Documentation button or go directly to the “e-docs”
Product Documentation page at http://e-docs.bea.com.

How to Print the Document
You can print a copy of this document from a Web browser, one file at a time, by using the File—>Print
option on your Web browser.

A PDF version of this document is available on the BEA Tuxedo documentation Home page on the
e-docs Web site (and also on the documentation CD). You can open the PDF in Adobe Acrobat Reader
and print the entire document (or a portion of it) in book format. To access the PDFs, open the BEA
Tuxedo documentation Home page, click the PDF Files button, and select the document you want to
print.

If you do not have Adobe Acrobat Reader installed, you can download it for free from the Adobe Web
site at http://www.adobe.com/.

Related Information
For more information about CORBA, BEA Tuxedo, distributed object computing, transaction
processing, C++ programming, and Java programming, see the CORBA Bibliography in the BEA
Tuxedo online documentation.

Contact Us!
Your feedback on the BEA Tuxedo documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be reviewed directly
by the BEA professionals who create and update the BEA Tuxedo documentation.

In your e-mail message, please indicate that you are using the documentation for BEA Tuxedo release
9.0.

If you have any questions about this version of BEA Tuxedo, or if you have problems installing and
running BEA Tuxedo, contact BEA Customer Support through BEA WebSUPPORT at www.bea.com.
You can also contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Creating CORBA Client Applications ix

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions
The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and their
members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

x Creating CORBA Client Applications

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should never
be typed.

[] Indicates optional items in a syntax line. The brackets themselves should never
be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself should
never be typed.

... Indicates one of the following in a command line:

• That an argument can be repeated several times in a command line

• That the statement omits additional optional arguments

• That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line. The
vertical ellipsis itself should never be typed.

Convention Item

Creating CORBA Client Applications 1-1

C H A P T E R 1

CORBA Client Application Development
Concepts

This topic reviews the types of client applications supported by the CORBA environment in the
BEA Tuxedo product and introduces the concepts that you need to understand before you develop
CORBA client applications.

Note: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.0. All BEA Tuxedo
CORBA Java client and BEA Tuxedo CORBA Java client ORB text references,
associated code samples, etc. should only be used:

to help implement/run third party Java ORB libraries, and

for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

This topic includes the following sections:

Overview of Client Applications

OMG IDL

Static and Dynamic Invocation

Client Stubs

Interface Repository

Domains

1-2 Creating CORBA Client Applications

Environmental Objects

Overview of Client Applications
The BEA Tuxedo software supports the following types of client applications:

CORBA C++

This type of client application uses C++ environmental objects to access the CORBA
objects in a BEA Tuxedo domain and the CORBA C++ Object Request Broker (ORB) to
process requests to CORBA objects. Use the BEA Tuxedo development commands to
build CORBA C++ client applications.CORBA C++ client applications now support object
by value and the CORBA Interoperable Naming Service (INS).

Note: See Installing the BEA Tuxedo System for the specific versions of supported software.

OMG IDL
With any distributed application, the client/server application needs some basic information to
communicate. For example, the CORBA client application needs to know which operations it can
request, and the arguments to the operations.

You use the Object Management Group (OMG) Interface Definition Language (IDL) to describe
available CORBA interfaces to client applications. An interface definition written in OMG IDL
completely defines the CORBA interface and fully specifies each operation’s arguments. OMG
IDL is a purely declarative language. This means that it contains no implementation details.
Operations specified in OMG IDL can be written in and invoked from any language that provides
CORBA bindings. C++ and Java are two of the supported languages.

Generally, the application designer provides the OMG IDL files for the available CORBA
interfaces and operations to the programmer who creates the client applications.

OMG IDL-to-C++ Mapping
The BEA Tuxedo software conforms to The Common Object Request Broker:Architecture and
Specification, Version 2.3. For complete information about the OMG IDL-to-C++ mapping, see
The Common Object Request Broker:Architecture and Specification, Version 2.3.

Stat i c and Dynamic Invocat i on

Creating CORBA Client Applications 1-3

OMG IDL-to-Java Mapping
The BEA Tuxedo software conforms to The Common Object Request Broker:Architecture and
Specification, Version 2.2. For complete information about the OMG IDL-to-Java mapping, see
The Common Object Request Broker:Architecture and Specification, Version 2.2.

OMG IDL-to-COM Mapping
The BEA Tuxedo software conforms to the OMG IDL to COM mapping as defined in the
Common Object Request Broker:Architecture and Specification, Version 2.3. For complete
information about the OMG IDL to COM mapping, see The Common Object Request
Broker:Architecture and Specification, Version 2.3.

Static and Dynamic Invocation
The CORBA ORB in the BEA Tuxedo product supports two types of client/server invocations:
static and dynamic. In both cases, the CORBA client application performs a request by gaining
access to a reference for a CORBA object and invoking the operation that satisfies the request.
The CORBA server application cannot tell the difference between static and dynamic
invocations.

When using static invocation, the CORBA client application invokes operations directly on the
client stubs. Static invocation is the easiest, most common type of invocation. The stubs are
generated by the IDL compiler. Static invocation is recommended for applications that know at
compile time the particulars of the operations they need to invoke and can process within the
synchronous nature of the invocation. Figure 1-1 illustrates static invocation.

1-4 Creating CORBA Client Applications

Figure 1-1 Static Invocation

While dynamic invocation is more complicated, it enables your CORBA client application to
invoke operations on any CORBA object without having to know the CORBA object’s interfaces
at compile time. Figure 1-2 illustrates dynamic invocation.

Client Application
Static Invocation

Client Stub

Request

Server
Skeleton

Server Application

Object Request Broker

OMG IDL

IDL Compiler

Cl ien t Stubs

Creating CORBA Client Applications 1-5

Figure 1-2 Dynamic Invocation

When using dynamic invocation, the CORBA client application can dynamically build operation
requests for a CORBA object interface that has been stored in the Interface Repository. CORBA
server applications do not require any special design to be able to receive and handle dynamic
invocation requests. Dynamic invocation is generally used when the CORBA client application
requires deferred synchronous communication, or by dynamic client applications when the nature
of the interaction is undefined. For more information about using dynamic invocation, see Using
the Dynamic Invocation Interface.

Client Stubs

Client stubs provide the programming interface to operations that a CORBA object can perform.
A client stub is a local proxy for the CORBA object. Client stubs provide a mechanism for
performing a synchronous invocation on an object reference for a CORBA object. The CORBA
client application does not need special code to deal with the CORBA object or its arguments; the
client application simply treats the stub as a local object.

A CORBA client application must have a stub for each interface it plans to use. You use the idl
command (or your Java ORB product’s equivalent command) to generate a client stub from the

Client Application
Dynamic Invocation

Request

Server
Skeleton

Server Application

Object Request Broker

Interface
Repository

OMG IDL

1-6 Creating CORBA Client Applications

OMG IDL definition of the CORBA interface. The command generates a stub file and a header
file that describe everything that you need if you want to use the client stub from a programming
language, such as C++ or Java. You simply invoke a method from within your CORBA client
application to request an operation on the CORBA object.

Interface Repository
The Interface Repository contains descriptions of a CORBA object’s interfaces and operations.
The information stored in the Interface Repository is equivalent to the information defined in an
OMG IDL file, but the information is accessible programmatically at run time. CORBA client
applications use the Interface Repository for the following reasons:

CORBA client applications that use dynamic invocation use the Interface Repository to
learn about a CORBA object’s interfaces, and to invoke operations on the object.

CORBA client applications that use static invocation do not access the Interface Repository at
run time. The information about the CORBA object’s interfaces is included in the client stub.

You use the following BEA Tuxedo development commands to manage the Interface Repository:

The idl2ir command populates the Interface Repository with CORBA interfaces. This
command creates an Interface Repository if an Interface Repository does not exist. Also
use this command to update the CORBA interfaces in the Interface Repository.

The ir2idl command creates an OMG IDL file from the contents of the Interface
Repository.

The irdel command deletes CORBA interfaces from the Interface Repository.

For a description of the development commands for the Interface Repository, see the BEA Tuxedo
Command Reference.

Domains
A domain is a way of grouping objects and services together as a management entity. A BEA
Tuxedo domain has at least one IIOP Listener/Handler and is identified by a name. One CORBA
client application can connect to multiple BEA Tuxedo domains using different Bootstrap
objects. For each BEA Tuxedo domain, a CORBA client application can get objects which
correspond to the services (for example, transactions, security, naming, events) offered within the
BEA Tuxedo domain. For a description of the Bootstrap object and the CORBA services
available in a BEA Tuxedo domain, see Environmental Objects.

Env i ronmenta l Ob jec ts

Creating CORBA Client Applications 1-7

Note: Only one environmental object per service can exist at the same time and the
environmental objects must be associated with the same Bootstrap object.

Figure 1-3 illustrates how a BEA Tuxedo domain works.

Figure 1-3 How a BEA Tuxedo Domain Works

Environmental Objects
The BEA Tuxedo software provides a set of environmental objects that set up communication
between CORBA client and server applications in a BEA Tuxedo domain and provide access to
the CORBA services provided by the domain. The BEA Tuxedo software provides the following
environmental objects:

Bootstrap

This object establishes communication between a CORBA client application and a BEA
Tuxedo domain. It also obtains object references for the other environmental objects in the
BEA Tuxedo domain.

1-8 Creating CORBA Client Applications

Note: Third-party client ORBs can also use the CORBA Interoperable Naming Service
(INS) to access the services within a BEA Tuxedo domain. For more information, see
the “CORBA Bootstrap Object Programming Reference” topic in the CORBA
Programming Reference.

FactoryFinder

This CORBA object locates a factory, which in turn can create object references for
CORBA objects.

InterfaceRepository

This CORBA object contains interface definitions for all the available CORBA interfaces
and the factories used to create object references to the CORBA interfaces.

SecurityCurrent

This BEA-proprietary object is used to log a CORBA client application into a BEA
Tuxedo domain with the proper security credentials. The BEA Tuxedo software provides
an implementation of the CORBAservices Security Service.

TransactionCurrent

This BEA-proprietary object allows a CORBA client application to participate in a
transaction. The TransactionCurrent object provides an implementation of the
CORBAservices Object Transaction Service (OTS).

NotificationService

This CORBA object allows a CORBA client application to obtain a reference to the event
channel factory (CosNotifyChannelAdmin::EventChannelFactory) in the
CosNotification Service. In turn, the EventChannelFactory is used to locate the
Notification Service channel.

In addition, a Tobj_SimpleEventsService object is provided. This BEA-proprietary
object allows a CORBA client application to obtain a reference to a BEA-proprietary
events interface. The events interface passes standard, structured events as defined by the
CosNotification Service, however, the API has been simplified for easier use.

Env i ronmenta l Ob jec ts

Creating CORBA Client Applications 1-9

NameService

This CORBA object allows a CORBA client application to use a namespace to resolve
object references. The BEA Tuxedo software provides an implementation of the
CORBAservices Name Service.

The BEA Tuxedo software provides environmental objects for the following programming
environments:

C++

Java

Automation

Bootstrap Object
A CORBA client application creates a Bootstrap object which defines the address of an IIOP
Listener/Handler. The IIOP Listener/Handler is the access point to a BEA Tuxedo domain and
the CORBA services provided by the domain. A list of IIOP Listener/Handlers can be supplied
either as a parameter or via the TOBJADDR environmental variable or a Java property. A single
IIOP Listener/Handler is specified as follows:

//host:port

For example, //myserver:4000

Once the Bootstrap object is instantiated, the resolve_initial_references method is
invoked, passing in a string ID, to obtain a reference to an available object. The valid values for
the string ID are FactoryFinder, Interface Repository, SecurityCurrent, TransactionCurrent,
NotificationService, TObj_SimpleEventsService, and NameService.

Figure 1-4 illustrates how the Bootstrap object works in a BEA Tuxedo domain.

1-10 Creating CORBA Client Applications

Figure 1-4 How the Bootstrap Object Works

Third-party client ORBs can also use the CORBA Interoperable Naming Service (INS)
mechanism to gain access to a BEA Tuxedo domain and its services. The Interoperable Naming
Service allows third-party client ORBs to use their ORB’s resolve_initial_references()
function to access CORBA services provided by the BEA Tuxedo domain and use stubs
generated from standard OMG IDL to act on the instances returned from the domain. For more
information about using the Interoperable Naming Service, see the CORBA Programming
Reference.

Env i ronmenta l Ob jec ts

Creating CORBA Client Applications 1-11

Factories and the FactoryFinder Object
CORBA client applications get object references to CORBA objects from a factory. A factory is
any CORBA object that returns an object reference to another CORBA object and registers itself
with the FactoryFinder object.

To use a CORBA object, the CORBA client application must be able to locate the factory that
creates an object reference for the CORBA object. The BEA Tuxedo software offers the
FactoryFinder object for this purpose. The factories available to CORBA client applications are
those that are registered with the FactoryFinder object by CORBA server applications at startup.

The CORBA client application uses the following sequence of steps to obtain a reference to a
CORBA object:

1. Once the Bootstrap object is created, the resolve_initial_references method is invoked
to obtain the reference to the FactoryFinder object.

2. CORBA client applications query the FactoryFinder object for object references to the
desired factory.

3. CORBA client applications then call the factory to obtain an object reference to the
CORBA object.

Figure 1-5 illustrates the CORBA client application interaction with the FactoryFinder object.

1-12 Creating CORBA Client Applications

Figure 1-5 How Client Applications Use the FactoryFinder Object

Naming Conventions and BEA Tuxedo Extensions to the
FactoryFinder Object
The factories available to CORBA client applications are those that are registered with the
FactoryFinder object by the CORBA server applications at startup. Factories are registered using
a key consisting of the following fields:

The Interface Repository ID of the factory’s interface

An object reference to the factory

The FactoryFinder object used by the BEA Tuxedo software is defined in the CORBAservices
Life Cycle Service. The BEA Tuxedo software implements extensions to the
COS::LifeCycle::FactoryFinder interface that make it easier for client applications to locate
a factory using the FactoryFinder object.

The CORBAservices Life Cycle Service specifies the use of names as defined in the
CORBAservices Naming Service to locate factories with the
COS::LifeCycle::FactoryFinder interface. These names consist of a sequence of
NameComponent structures, which consist of ID and kind fields.

Env i ronmenta l Ob jec ts

Creating CORBA Client Applications 1-13

The use of CORBA names to locate factories is cumbersome for client applications; it involves
many calls to build the appropriate name structures and assemble the CORBA Name Service
name that must be passed to the find_factories method of the
COS::LifeCycle::FactoryFinder interface. Also, since the method can return more than one
factory, client applications must manage the selection of an appropriate factory and the disposal
of unwanted object references.

The FactoryFinder object is designed to make it easier for CORBA client applications to locate
factories by extending the interface with simpler method calls.

The extensions are intended to provide the following simplifications for the CORBA client
application:

Let the CORBA client application locate factories by ID, using a simple string parameter
for the ID field. This reduces the work needed by the CORBA client application to build
name structures.

Permit the FactoryFinder object to implement a load balancing scheme by choosing from a
pool of available factories.

Provide methods that return one object reference to a factory, instead of a sequence of
object references. This eliminates the need for CORBA client applications to provide code
to handle the selection of a single factory from a sequence, and then dispose of the
unneeded references.

The most straightforward application design can be achieved by using the
Tobj::FactoryFinder::find_one_factory_by_id method in CORBA client applications.
This method accepts a simple string for factory ID as input and returns one factory to the CORBA
client application. The CORBA client application is freed from the necessity of manipulating
name components and selecting among many factories.

To use the Tobj::FactoryFinder::find_one_factory_by_id method, the application
designer must establish a naming convention for factories that CORBA client applications can
use to easily locate factories for specific CORBA object interfaces. Ideally, this convention
should establish some mnemonic types for factories that supply object references for certain types
of CORBA object interfaces. Factories are then registered using these conventions. For example,
a factory that returns an object reference for Student objects might be called StudentFactory. For
more information about registering factories with the FactoryFinder object, see Creating CORBA
Server Applications.

It is recommended that you either use the actual interface ID of the factory in the OMG IDL file,
or specify the factory ID as a constant in the OMG IDL file. This technique ensures naming
consistency between the CORBA client application and the CORBA server application.

1-14 Creating CORBA Client Applications

InterfaceRepository Object
The InterfaceRepository object returns information about the Interface Repository in a BEA
Tuxedo domain. The InterfaceRepository object is based on the CORBA definition of an
Interface Repository. It offers the proper set of CORBA interfaces as defined by the Common
Request Broker Architecture and Specification Version 2.2.

CORBA client applications that use the Dynamic Invocation Interface (DII) need to access the
Interface Repository programmatically. The exact steps taken to access the Interface Repository
depend on whether the CORBA client application is seeking information about a specific
CORBA interface or browsing the Interface Repository to find an interface. In either case, the
CORBA client application can only read to the Interface Repository, it cannot write to the
Interface Repository.

Before a CORBA client application using DII can browse the Interface Repository in an BEA
Tuxedo domain, the CORBA client application needs to obtain an object reference for the
InterfaceRepository object in that domain. CORBA client applications using DII use the
Bootstrap object to obtain the object reference.

AFor information about using the InterfaceRepository object in CORBA client applications that
use DII, see Using the Dynamic Invocation Interface For a description of the InterfaceRepository
object, see the CORBA Programming Reference.

SecurityCurrent Object
CORBA C++ client applications use security to authenticate themselves to the BEA Tuxedo
domain. Authentication is the process of verifying the identity of a client application. By entering
the correct logon information, the client application authenticates itself to the BEA Tuxedo
domain. The BEA Tuxedo software uses authentication as defined in the CORBAservices
Security Service and provides extensions for ease of use.

CORBA client applications use the SecurityCurrent object to log on to the BEA Tuxedo domain
and pass security credentials to the domain. The SecurityCurrent object is an BEA Tuxedo
implementation of the CORBAservices Security Service. The CORBA security model in the
BEA Tuxedo product is based on authentication.

You use the SecurityCurrent object to specify the appropriate level of security for the domain.
The following levels of authentication are provided:

Env i ronmenta l Ob jec ts

Creating CORBA Client Applications 1-15

TOBJ_NOAUTH

No authentication is needed; however, the CORBA client application may still authenticate
itself, and may specify a username and a client application name, but no password.

TOBJ_SYSAUTH

The CORBA client application must authenticate itself to the BEA Tuxedo domain and
must specify a username, client application name, and application password.

TOBJ_APPAUTH

In addition to the TOBJ_SYSAUTH information, the CORBA client application must
provide application-specific information. If the default BEA Tuxedo authentication service
is used in the application configuration, the CORBA client application must provide a user
password; otherwise, the CORBA client application provides authentication data that is
interpreted by the custom authentication service in the application.

Note: If a CORBA client application is not authenticated and the security level is
TOBJ_NOAUTH, the IIOP Listener/Handler of the BEA Tuxedo domain registers the
CORBA client application with the username and client application name sent to the
IIOP Listener/Handler.

In the BEA Tuxedo software, only the PrincipalAuthenticator and Credentials properties on the
SecurityCurrent object are supported.

For information about using the SecurityCurrent object in client applications, see Using Security
in CORBA Applications. For a description of the SecurityLevel1::Current and
SecurityLevel2::Current interfaces, refer to the CORBA Programming Reference.

TransactionCurrent Object
The TransactionCurrent object is an BEA Tuxedo implementation of the CORBAservices Object
Transaction Service. The TransactionCurrent object maintains a transactional context for the
current session between the CORBA client application and the CORBA server application. Using
the TransactionCurrent object, the CORBA client application can perform transactional
operations, such as initiating and terminating a transaction and getting the status of a transaction.

Transactions are used on a per-interface basis. During design, the application designer decides
which interfaces within a CORBA application will handle transactions. A transaction policy for
each interface is then defined in an Implementation Configuration File (ICF). The transaction
policies are:

1-16 Creating CORBA Client Applications

Never

The interface is not transactional. Objects created for this interface can never be involved
in a transaction. The BEA Tuxedo software generates an exception
(INVALID_TRANSACTION) if an interface with this policy is involved in a transaction.

Optional

The interface may be transactional. Objects can be involved in a transaction if the request
is transactional.

Always

The interface must always be part of a transaction. If the interface is not part of a
transaction, a transaction will be automatically started by the TP framework.

Ignore

The interface is not transactional. The interface can be included in a transaction, however,
the AUTOTRAN policy specified for this interface in the UBBCONFIG file is ignored.

For information about using the TransactionCurrent object in CORBA client applications, see
Using CORBA Transactions. For a description of the TransactionCurrent object, see the CORBA
Programming Reference.

NotificationService and Tobj_SimpleEventsService Objects
The NotificationService and Tobj_SimpleEventsService objects provide access to a
CORBA event service. The event service in the CORBA environment of the BEA Tuxedo
product offers similar capabilities to those of the EventBroker in the ATMI environment.
However, the CORBA event service offers a programming model and interface that is natural for
CORBA programmers.

The event service receives event posting messages, filters them, and distributes them to
subscribers. A poster is a CORBA application that detects when an event of interest has occurred
and reports (posts) it to the event service. A subscriber is a CORBA application that requests
some notification action to be taken when an event of interest is posted.

The CORBA event service provides two sets of interfaces:

The NotificationService object provides a minimal subset of the CORBA-based
Notification Service interfaces (referred to as the CosNotification Service interface).

The Tobj_SimpleEventsService object provides BEA-proprietary interfaces designed to
be easy to use.

Env i ronmenta l Ob jec ts

Creating CORBA Client Applications 1-17

Both sets of interfaces pass standard, structured events as defined by the CORBA Notification
Service specification. The two sets of interfaces are compatible with each other; that is, events
posted using the NotificationService interfaces can be subscribed to by the
Tobj_SimpleEventsService interfaces and vice versa.

For information about using the NotificationServer and Tobj_SimpleEventsService objects, see
Using the CORBA Notification Service.

NameService Object
The NameService object provides access to a CORBA Name Service which allows CORBA
server applications to advertise object references using logical names. CORBA client
applications can then locate an object by asking the CORBA Name Service to look up the name.

The CORBA Name Service provides:

An implementation of the Object Management Group (OMG) Interoperable Name Service
(INS) specification.

Application programming interfaces (APIs) for mapping object references into an
hierarchical naming structure (referred to as a namespace).

Commands for displaying bindings and for binding and unbinding naming context objects
and application objects into the namespace.

For information about using the NameService object in a CORBA client application, see Using
the CORBA Name Service.

1-18 Creating CORBA Client Applications

Creating CORBA Client Applications 2-1

C H A P T E R 2

Creating CORBA Client Applications

This topic includes the following sections:

Summary of the Development Process for CORBA C++ Client Applications

Step 1: Obtaining the OMG IDL File

Step 1: Obtaining the OMG IDL File

Step 2: Selecting the Invocation Type

Step 3: Compiling the OMG IDL File

Step 4: Writing the CORBA Client Application

Step 5: Building the CORBA Client Application

Server Applications Acting as Client Applications

Using Java2 Applets

Note: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.0. All BEA Tuxedo CORBA
Java client and BEA Tuxedo CORBA Java client ORB text references, associated code
samples, etc. should only be used:

to help implement/run third party Java ORB libraries, and

for programmer reference only.

2-2 Creating CORBA Client Applications

Technical support for third party CORBA Java ORBs should be provided by their respective
vendors. BEA Tuxedo does not provide any technical support or documentation for third party
CORBA Java ORBs.

Summary o f the Deve lopment P roces s fo r CORBA C++ Cl i ent App l i cat ions

Creating CORBA Client Applications 2-3

Summary of the Development Process for CORBA C++ Client
Applications

The steps for creating a CORBA C++ client application are as follows:

Each step in the process is explained in detail in the following sections.

The BEA Tuxedo development environment for CORBA C++ client applications includes the
following:

The idl command, which compiles the OMG IDL file and generates the client stubs required
for the CORBA interface.

The buildobjclient command, which constructs a CORBA C++ client application
executable.

The C++ environmental objects, which provide access to CORBA objects in a BEA Tuxedo
domain and to the services provided by the CORBA objects.

Step 1: Obtaining the OMG IDL File
Generally, the OMG IDL files for the available interfaces and operations are provided to the client
programmer by the application designer. This section contains the OMG IDL for the Basic sample
application. Listing 2-1 shows the univb.idl file, which defines the following interfaces:

Step Description

1 Obtain the OMG IDL file for the CORBA interfaces used by the
CORBA C++ client application.

2 Select the invocation type.

3 Use the IDL compiler to compile the OMG IDL file. The client
stubs are generated as a result of compiling the OMG IDL.

4 Write the CORBA C++ client application. This topic describes
creating a basic client application.

5 Build the CORBA C++ client application.

2-4 Creating CORBA Client Applications

Listing 2-1 OMG IDL File for the Basic Sample Application

#pragma prefix "beasys.com"

module UniversityB

{

 typedef unsigned long CourseNumber;

 typedef sequence<CourseNumber> CourseNumberList;

 struct CourseSynopsis

 {

 CourseNumber course_number;

 string title;

 };

 typedef sequence<CourseSynopsis> CourseSynopsisList;

 interface CourseSynopsisEnumerator

 {

 CourseSynopsisList get_next_n(

 in unsigned long number_to_get,

 out unsigned long number_remaining

 };

 void destroy();

 };

Interface Description Operations

Registrar Obtains course information from the
course database.

get_courses_synopsis()

get_courses_details()

RegistrarFactory Creates object references to the Registrar
object.

find_registrar()

CourseSynopsisEnumerator Gets a subset of the information from the
course database, and iteratively returns
portions of that subset to the CORBA
client application.

get_next_n()

destroy()

Step 1 : Obta in ing the OMG IDL F i l e

Creating CORBA Client Applications 2-5

 typedef unsigned short Days;

 const Days MONDAY = 1;

 const Days TUESDAY = 2;

 const Days WEDNESDAY = 4;

 const Days THURSDAY = 8;

 const Days FRIDAY = 16;

 struct ClassSchedule

 {

 Days class_days; // bitmask of days

 unsigned short start_hour; // whole hours in military time

 unsigned short duration; // minutes

 };

 struct CourseDetails

 {

 CourseNumber course_number;

 double cost;

 unsigned short number_of_credits;

 ClassSchedule class_schedule;

 unsigned short number_of_seats;

 string title;

 string professor;

 string description;

 };

 typedef sequence<CourseDetails> CourseDetailsList;

 interface Registrar

 {

 CourseSynopsisList

 get_courses_synopsis(

 in string search_criteria,

 in unsigned long number_to_get, // 0 = all

 out unsigned long number_remaining,

 out CourseSynopsisEnumerator rest

);

 CourseDetailsList get_courses_details(in CourseNumberList

 courses);

2-6 Creating CORBA Client Applications

 interface RegistrarFactory

 {

 Registrar find_registrar(

);

 };

};

Step 2: Selecting the Invocation Type
Select the invocation type (static or dynamic) that you will use in the requests in the CORBA client
application. You can use both types of invocation in a CORBA client application.

For an overview of static and dynamic invocation, see Static and Dynamic Invocation.

The remainder of this topic assumes that you chose to use static invocation in your CORBA client
application. If you chose to use dynamic invocation, see Using the Dynamic Invocation Interface.

Step 3: Compiling the OMG IDL File
When creating CORBA C++ client applications, use the idl command to compile the OMG IDL file
and generate the files required for the interface. The following is the syntax of the idl command:

idl idlfilename(s)

The IDL compiler generates a client stub (idlfilename_c.cpp) and a header file
(idlfilename_c.h) that describe everything you need to have to use the client stub from the C++
programming language. You need to link these files into your CORBA client application.

In addition, the IDL compiler generates skeletons that contain the signatures of the CORBA object’s
operations. The generated skeleton information is placed in the idlfilename_s.cpp and
idlfilename_s.h files. During development of the CORBA client application, it can be useful to
look at the server header files and skeleton file.

Note: Do not modify the generated client stub or the skeleton.

For a complete description of the idl command and options, see the BEA Tuxedo Command
Reference.

When creating CORBA client applications:

If you are using JDK version 1.2, you can use the idltojava command to compile the OMG
IDL file. For more information about the idltojava command, see the documentation for the
JDK version 1.2.

Step 4 : Wr i t ing the CORBA C l i ent App l i cat ion

Creating CORBA Client Applications 2-7

If you are using Netscape version 3.0 and Java Development Kit (JDK) version 1.1.5, you need
to use that product’s IDL compiler to compile the OMG IDL.

The idltojava command or the IDL compiler generates the following:

The client stubs for each interface (_interfaceStub.java).

The CORBA helper class (interfaceHelper.java) and the CORBA holder class
(interfaceHolder.java) that describe everything you need to use the client stub from the
Java programming language.

Note that each OMG IDL defined exception defines an exception class and its helper and holder
classes. The compiled .class files must be in the CLASSPATH of your CORBA client application.

In addition, the idltojava command or the IDL compiler generates skeletons that contain the
signatures of the operations of the CORBA object. The generated skeleton information is placed in the
_interfaceImplBase file.

Step 4: Writing the CORBA Client Application
To participate in a session with a CORBA server application, a CORBA client application must be able
to get an object reference for a CORBA object and invoke operations on the object. To accomplish this,
the CORBA client application code must do the following:

1. Initialize the BEA Tuxedo ORB.

2. Establish communication with the BEA Tuxedo domain.

3. Resolve initial references to the FactoryFinder object.

4. Use a factory to get an object reference for the desired CORBA object.

5. Invoke operations on the CORBA object.

The following sections use portions of the client applications in the Basic sample application to
illustrate the steps. For information about the Basic sample application, see the Guide to the CORBA
University Sample Applications. The Basic sample application is located in the following directory
on the BEA Tuxedo software kit:

drive:\tuxdir\samples\corba\university\basic

Initializing the ORB
All CORBA client applications must first initialize the ORB.

2-8 Creating CORBA Client Applications

Use the following code to initialize the ORB from a CORBA C++ client application:

C++

CORBA::ORB_var orb=CORBA::ORB_init(argc, argv, ORBid);

Typically, no ORBid is specified and the default ORBid specified during installation is used. However,
when a CORBA client application is running on a machine that also has CORBA server applications
running and the CORBA client application wants to access server applications in another BEA Tuxedo
domain, you need to override the default ORBid. This can be done by hard coding the ORBid as
BEA_IIOP or by passing the ORBid in the command line as _ORBid BEA_IIOP.

Establishing Communication with the BEA Tuxedo Domain
The CORBA client application creates a Bootstrap object. A list of IIOP Listener/Handlers can be
supplied either as a parameter, via the TOBJADDR Java property or applet property. A single IIOP
Listener/Handler is specified as follows:

//host:port

When the IIOP Listerner/Handler is provided via TOBJADDR, the second argument of the constructor
can be null.

The host and port combination for the IIOP Listener/Handler is defined in the UBBCONFIG file. The
host and port combination that is specified for the Bootstrap object must exactly match the ISL
parameter in the BEA Tuxedo domain’s UBBCONFIG file. The format of the host and port combination,
as well as the capitalization, must match. If the addresses do not match, the call to the Bootstrap
object will fail and the following message appears in the log file:

Error: Unofficial connection from client at <tcp/ip address>/<portnumber>

For example, if the network address is specified as //TRIXIE::3500 in the ISL parameter in the
UBBCONFIG file, specifying either //192.12.4.6.:3500 or //trixie:3500 in the Bootstrap
object will cause the connection attempt to fail.

On UNIX systems, use the uname -n command on the host system to determine the capitalization
used. On Window 2000, use the Network Control Panel to determine the capitalization.

The following C++ and Java examples show how to use the Bootstrap object:

C++

 Tobj_Bootstrap* bootstrap = new Tobj_Bootstrap(orb, “//host:port”);

Java Applet

Step 4 : Wr i t ing the CORBA C l i ent App l i cat ion

Creating CORBA Client Applications 2-9

 Tobj_Bootstrap bootstrap = new Tobj_Bootstrap(orb, “//host:port”, this);

where this is the name of the Java applet

A BEA Tuxedo domain can have multiple IIOP Listener/Handlers. If you are accessing a BEA Tuxedo
domain with multiple IIOP Listener/Handlers, you supply a list of Host:Port combinations to the
Bootstrap object. If the second parameter of the Bootstrap command is an empty string, the Bootstrap
object walks through the list until it connects to a BEA Tuxedo domain. The list of IIOP
Listener/Handlers can also be specified in TOBJADDR.

If you want to access multiple BEA Tuxedo domains, you must create a Bootstrap object for each BEA
Tuxedo domain you want to access.

Note: Third-party client ORBs can also use the CORBA Interoperable Naming Service (INS)
mechanism to gain access to a BEA Tuxedo domain and its services. CORBA INS allows
third-party client ORBs to use their ORB’s resolve_initial_references() function to
access CORBA services provided by the BEA Tuxedo domain and use stubs generated from
standard OMG IDL to act on the instances returned from the domain. For more information
about using the Interoperable Naming Service, see the CORBA Programming Reference.

Resolving Initial References to the FactoryFinder Object
The CORBA client application must obtain initial references to the environmental objects that provide
services for the CORBA application. The Bootstrap object’s resolve_initial_references
operation can be called to obtain references to the FactoryFinder, InterfaceRepository,
SecurityCurrent, TransactionCurrent, NotificationService, Tobj_SimpleEventsService, and
NameService environmental objects. The argument passed to the operation is a string containing the
name of the desired object reference. You need to get initial references only for the environmental
objects you plan to use in your CORBA client application.

The following C++ and Java examples show how to use the Bootstrap object to resolve initial
references to the FactoryFinder object:

C++

//Resolve Factory Finder
CORBA::Object_var var_factory_finder_oref =
bootstrap.resolve_initial_references
 (“FactoryFinder”);
Tobj::FactoryFinder_var var_factory_finder_ref = Tobj::FactoryFinder::_narrow
 (factory_finder_oref.in());

Java

2-10 Creating CORBA Client Applications

//Resolve Factory Finder
org.omg.CORBA.Object off = bootstrap.resolve_initial_references
 (“FactoryFinder”);
FactoryFinder ff=FactoryFinderHelper.narrow(off);

Using the FactoryFinder Object to Get a Factory
CORBA client applications get object references to CORBA objects from factories. A factory is any
CORBA object that returns an object reference to another CORBA object and registers itself as a
factory. The CORBA client application invokes an operation on a factory to obtain an object reference
to a CORBA object of a specific type. To use factories, the CORBA client application must be able to
locate the factory it needs. The FactoryFinder object serves this purpose. For information about the
function of the FactoryFinder object, see CORBA Client Application Development Concepts.

The FactoryFinder object has the following methods:

find_factories()

Returns a sequence of factories that match the input key exactly.

find_one_factory()

Returns one factory that matches the input key exactly.

find_factories_by_id()

Returns a sequence of factories whose ID field in the name component matches the input
argument.

find_one_factory_by_id()

Returns one factory whose ID field in the factory’s CORBA name component matches the input
argument.

The following C++ and Java examples show how to use the FactoryFinder
find_one_factory_by_id method to get a factory for the Registrar object used in the CORBA
client application for the Basic sample applications:

C++

CORBA::Object_var var_registrar_factory_oref = var_factory_finder_ref->
 find_one_factory_by_id(UniversityB::_tc_RegistrarFactory->id()
);
UniversityB::RegistrarFactory_var var_RegistrarFactory_ref =
 UniversityB::RegistrarFactory::_narrow(
 var_RegistrarFactory_oref.in()
);

Step 5 : Bu i ld ing the CORBA C l i en t App l i cat ion

Creating CORBA Client Applications 2-11

Java

org.omg.CORBA.Object of = FactoryFinder.find_one_factory_by_id
 (UniversityB.RegistrarFactoryHelper.id());
UniversityB.RegistrarFactory F = UniversityB.RegistrarFactoryHelper.narrow(of);

Using a Factory to Get a CORBA Object
CORBA client applications call the factory to get an object reference to a CORBA object. The CORBA
client applications then invoke operations on the CORBA object by passing it a pointer to the factory
and any arguments that the operation requires.

The following C++ and Java examples illustrate getting the factory for the Registrar object and then
invoking the get_courses_details() method on the Registrar object:

C++

UniversityB::Registrar_var var_Registrar = var_RegistrarFactory->
 find_Registrar();
UniversityB::CourseDetailsList_var course_details_list = Registrar_oref->
 get_course_details(CourseNumberList);

Java

UniversityB.Registrar gRegistrarObjRef = F.find_registrar();
gRegistrarObjRef.get_course_details(selected_course_numbers);

Step 5: Building the CORBA Client Application
The final step in the development of the CORBA client application is to produce the executable for the
client application. To do this, you need to compile the code and link against the client stub.

When creating CORBA C++ client applications, use the buildobjclient command to construct a
CORBA client application executable. The command combines the client stubs for interfaces that use
static invocation, and the associated header files with the standard BEA Tuxedo libraries to form a
client executable. For the syntax of the buildobjclient command, see the BEA Tuxedo
Command Reference.

Server Applications Acting as Client Applications
To process a request from a CORBA client application, the CORBA server application may need to
request processing from another server application. In this situation, the CORBA server application is
acting as a CORBA client application.

2-12 Creating CORBA Client Applications

To act as a CORBA client application, the CORBA server application must obtain a Bootstrap object
for the current BEA Tuxedo domain. The Bootstrap object for the CORBA server application is already
available via TP::Bootstrap (for CORBA C++ client applications). The CORBA server application
then uses the FactoryFinder object to locate a factory for the CORBA object that can satisfy the
request from the CORBA client application.

Using Java2 Applets
The CORBA environment in the BEA Tuxedo product supports Java2 applets as clients. To run Java2
applets, you need to install the Java Plug-In product from Sun Microsystems, Inc. The Java Plug-in
runs Java applets in an HTML page using Sun’s Java Virtual Machine (JVM).

Before downloading the Java Plug-in kit from the Sun Web site, verify whether or not the Java Plug-In
is already installed on your machine.

Us ing Java2 App le ts

Creating CORBA Client Applications 2-13

Netscape Navigator

In Netscape Navigator, choose the About Plug-Ins option from the Help menu in the browser window.
The following will appear if the Java Plug-In is installed:

application/x-java-applet;version 1.2

Internet Explorer

From the Start menu in Windows, select the Programs option. If the Java Plug-In is installed, a Java
Plug-In Control Panel option will appear.

If the Java Plug-In is not installed, you need to download and install the JDK1.2 plug-in
(jre12-win32.exe) and the HTML converter tool (htmlconv12.zip). You can obtain both these
products from java.sun.com/products/plugin.

You also need to read the Java Plug-In HTML Specification located at
java.sun.com/products/plugin/1.2/docs. This specification explains the changes Web page
authors need to make to their existing HTML code to have existing JDK 1.2 applets run using the Java
Plug-In rather that the brower’s default Java run-time environment.

Write your Java applet. Use the following command to intialize the ORB from the Java applet:

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init (this,null);

To automatically launch the Java Plug-In when Internet Explorer or Netscape Navigator browses the
HTML page for your applet, use the OBJECT tag and the EMBED tag in the HTML specification. If you
use the HTML Converter tool to convert your applet to HTML, these tags are automatically inserted.
For more information about using the OBJECT and EMBED tags, see
java.sun.com/products/plugin/1.2/docs/tags.html.

2-14 Creating CORBA Client Applications

Creating CORBA Client Applications 3-1

C H A P T E R 3

Using the Dynamic Invocation Interface

This topic includes the following sections:

When to Use DII

DII Concepts

Summary of the Development Process for DII

Step 1: Loading the CORBA Interfaces into the Interface Repository

Step 2: Obtaining the Object Reference for the CORBA Object

Step 3: Creating a Request Object

Step 4: Sending a DII Request and Retrieving the Results

Step 5: Deleting the Request

Step 6: Using the Interface Repository with DII

The information in this topic applies to CORBA C++client applications.

For an overview of the invocation types and DII, see Static and Dynamic Invocation.

For a complete description of the CORBA member functions mentioned in this topic, see the CORBA
Programming Reference.

Note: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.0. All BEA Tuxedo CORBA
Java client and BEA Tuxedo CORBA Java client ORB text references, associated code
samples, etc. should only be used:

3-2 Creating CORBA Client Applications

to help implement/run third party Java ORB libraries, and

for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their respective
vendors. BEA Tuxedo does not provide any technical support or documentation for third party
CORBA Java ORBs.

When to Use DII
There are good reasons to use either static or dynamic invocation to send requests from the CORBA
client application. You may find you want to use both invocation types in the same CORBA client
application. To choose an invocation type, you need to understand the advantages and disadvantages
of DII.

One of the major differences between static invocation and dynamic invocation is that, while both
support synchronous and one-way communication, only dynamic invocation supports deferred
synchronous communication.

In synchronous communication, the CORBA client application sends a request and waits until a
response is retrieved; the CORBA client application cannot do any other work while it is waiting for
the response. In deferred synchronous communication, the CORBA client application sends the
request and is free to do other work. Periodically, the CORBA client application checks to see if the
request has completed; when the request has completed, the CORBA client application makes use of
the result of that request.

In addition, DII enables a CORBA client application to invoke a method on a CORBA object whose type
was unknown at the time the CORBA client application was written. This contrasts with static
invocation, which requires that the CORBA client application include a client stub for each type of
CORBA object the CORBA client application intends to invoke. However, DII is more difficult to
program (your code has to do the work of a client stub).

A CORBA client application can use DII to obtain better performance. For example, the CORBA client
application can send multiple deferred synchronous requests at the same time and can handle the
completions as they occur. If the requests go to different server applications, this work can be done in
parallel. You cannot do this when you are using synchronous client stubs.

Note: The client stubs have optimizations, that allow the client stubs to achieve quicker response
time than is achieved with DII when sending a single request and immediately blocking to get
the response for that request.

DII is purely an interface to the CORBA client application; static and dynamic invocations are
identical from a CORBA server application’s point of view.

DI I Concepts

Creating CORBA Client Applications 3-3

DII Concepts
DII frequently offers more than one way to accomplish a task, the trade-off being programming
simplicity versus performance. This section describes the high-level concepts you need to understand
to use DII. Details, including code examples, are provided later in this topic.

The concepts presented in this section are as follows:

Request objects

Request sending options

Reply receiving options

Request Objects
A request object represents one invocation on one method of a CORBA object. If you want to make two
invocations on the same method, you need to create two request objects.

To invoke a method, you need an object reference to the CORBA object that contains the method. You
use the object reference to create a request object, populate the request object with arguments, send
the request, wait for the reply, and obtain the result from the request.

You can create a request object in the following ways:

Use the CORBA::Object::_request member function.

Use the CORBA::Object::_request member function to create an empty request object
specifying only the interface name you intend to invoke in the request (for example,
get_course_details). Once the request object is created, the arguments, if there are any,
must be added before the request can be sent to the CORBA server application. You invoke the
CORBA::NVList::add_value member function for each argument required by the method
you intend to invoke.

You must also specify the type of the request’s result using the CORBA::Request::result
member function. For performance reasons, the messages exchanged between Object Request
Brokers (ORBs) do not contain type information. By specifying a place holder for the result
type, you give the ORB the information it needs to properly extract the result from the reply.
Similarly, if the method you are invoking can raise user exceptions, you must add a place holder
for exceptions before sending the request object.

Use the CORBA::Object::_create_request member function.

When you use the CORBA::Object:: _create_request member function to create a
request object, you pass all the arguments required to make the request and to specify the

3-4 Creating CORBA Client Applications

types of the result and user exceptions, if there are any, that the request may return. Using this
member function, you create an empty NVList, add arguments to the NVList one at a time, and
create the request object, passing the completed NVList as an argument to the request. The
potential advantage of the CORBA::Object::_create_request member function is
performance. You can reuse the arguments in multiple CORBA::ORB::_create_request
calls if you invoke the same method on multiple target objects.

For a complete description of the CORBA member functions, see the CORBA Programming
Reference.

Options for Sending Requests
Once you have created and populated a request object with arguments, a result type, and exception
types, you send the request to the CORBA object. There are several ways to send a request:

The simplest way is to call the CORBA::Request::invoke member function, which blocks
until the reply message is retrieved.

More complex, but not blocking, is to use the CORBA::Request::send_deferred member
function.

If you want to invoke multiple CORBA requests in parallel, use the
CORBA::ORB::send_multiple_requests_deferred member function. It takes a
sequence of request objects.

Use the CORBA::Request::send_oneway member function if, and only if, the CORBA
method has been defined as oneway in the OMG IDL file.

You can invoke multiple oneway methods in parallel with the ORB’s
CORBA::ORB::send_multiple_requests_oneway member function.

Note: When using the CORBA::Request::send_deferred member function, the invocation on
the request object acts synchronously when the target object is in the same address space as
the CORBA client application issuing the invocation. As a result of this behavior, calling the
CosTransaction::Current::suspend operation does not raise the
CORBA::BAD_IN_ORDER exception, because the transaction has completed.

For a complete description of the CORBA member functions, see the CORBA Programming
Reference.

Options for Receiving the Results of Requests
If you send a request using the invoke method, there is only one way to get the result: use the request
object’s CORBA::Request::env member function to test for an exception; and if there is not

Summary o f the Deve l opment P rocess fo r D I I

Creating CORBA Client Applications 3-5

exception, extract the NVList from the request object using the CORBA::Request::result
member function.

If you send a request using the deferred synchronous method, you can use any of the following member
functions to get the result:

CORBA::ORB::poll_response

This member function determines whether a request has completed and is ready to be
processed. This member function does not block. If the request is ready, the CORBA client
application has to use the get_response() or get_next_response() member functions
to process the response. Use this member function when you don’t care about the order in
which responses are processed, you want the CORBA client application to process other
requests while waiting for a specific response, or you want to impose a timeout.

CORBA::ORB::poll_next_response

This member function indicates whether a response for any outstanding request is ready to be
processed. If the request is ready, the CORBA client application has to use the
get_response() or get_next_response() member functions to process the response. Use
this member function when the order in which requests are processed is not important and you
want the CORBA client application to process other requests while waiting for a specific
response.

CORBA::ORB::get_response

This member function blocks until the response for the specific request is completed and
processed. Use this member function when you want to process the requests for outstanding
requests in a particular order.

CORBA::ORB::get_next_response

This member function blocks until a response for any outstanding requests are completed and
processed. Use this member function when the order in which requests are processed is not
important.

If you used the CORBA::Request::send_oneway member function, there is no result.

For a complete description of the CORBA member functions, see the CORBA Programming
Reference.

Summary of the Development Process for DII
The steps for using DII in client applications are as follows:

3-6 Creating CORBA Client Applications

The following sections describe these steps in detail and provide C++ code examples.

Step 1: Loading the CORBA Interfaces into the Interface
Repository

Before you can create CORBA client applications that use DII, the interfaces of the CORBA object
need to be loaded into the Interface Repository. If the interfaces of a CORBA object are not loaded in
the Interface Repository, they do not appear in the BEA Application Builder. If a desired CORBA
interface does not appear in the Services window, use the idl2ir command to load the OMG IDL
that defines the CORBA object into the Interface Repository. The syntax for the idl2ir command is
as follows:

idl2ir [-f repositoryfile.idl] file.idl

For a complete description of the idl2ir command, see the BEA Tuxedo Command Reference.

Step Description

1 Load the CORBA interfaces into the Interface Repository.

2 Obtain an object reference for the CORBA object on which you
want to invoke methods.

3 Create a request object for the CORBA object.

4 Send the DII request and retrieve the results.

5 Delete the request.

6 Use the Interface Repository with DII.

Option Description

-f repositoryfile Directs the command to load the OMG IDL files for the CORBA
interface into the specified Interface Repository. Specify the name
of the Interface Repository in the BEA Tuxedo domain that the
CORBA client application will access.

file.idl Specifies the OMG IDL file containing definitions for the CORBA
interface.

Step 2 : Obta in ing the Ob jec t Re fe rence fo r the CORBA Ob jec t

Creating CORBA Client Applications 3-7

Step 2: Obtaining the Object Reference for the CORBA Object
Use the Bootstrap object to get a FactoryFinder object. Then use the FactoryFinder object to get a
factory for the CORBA object you want to access from the DII request. For an example of using the
Boostrap and FactoryFinder objects to get a factory, see Step 4: Writing the CORBA Client Application.

Step 3: Creating a Request Object
When your CORBA client application invokes a method on a CORBA object, you create a request for
the method invocation. The request is written to a buffer and sent to the CORBA server application.
When your CORBA client application uses client stubs, this processing occurs transparently. Client
applications that want to use DII must create a request object and must send the request.

Using the CORBA::Object::_request Member Function
The following C++ code example illustrates how to use the CORBA::Object::_request member
function:

Boolean aResult;
CORBA::ULong long1 = 42;
CORBA::Any in_arg1;
CORBA::Any &in_arg1_ref = in_arg1;

in_arg1 <<= long1;

// Create the request using the short form
Request_ptr reqp = anObj->_request(“anOp”);

// Use the argument manipulation helper functions
reqp->add_in_arg() <<= in_arg1_ref;

// We want a boolean result
reqp->set_return_type(_tc_boolean);

// Provide some place for the result
CORBA::Any::from_boolean boolean_return_in(aResult);
reqp->return_value() <<= boolean_return_in;

// Do the invoke
reqp->invoke();

// No error, so get the return value
CORBA::Any::to_boolean boolean_return_out(aResult);
reqp->return_value() >>= boolean_return_out;

3-8 Creating CORBA Client Applications

Using the CORBA::Object::create_request Member Function
When you use the CORBA::Object::create_request member function to create a request object,
you create an empty NVList and you add arguments to the NVList one at a time. You create the request
object, passing the completed NVList as an argument to the request.

Setting Arguments for the Request Object
The arguments for a request object are represented with an NVList object that stores named/value
objects. Methods are provided for adding, removing, and querying the objects in the list. For a
complete description of CORBA::NVList, see the CORBA Programming Reference.

Setting Input and Output Arguments with the CORBA::NamedValue Member
Function
The CORBA::NamedValue member function specifies a named/value object that can be used to
represent both input and output arguments for a request. The named/value objects are used as
arguments to the request object. The CORBA::NamedValue pair is also used to represent the result
of a request that is returned to the CORBA client application. The name property of a named/value
object is a character string, and the value property of a named/value object is represented by a CORBA
Any.

For a complete description of the CORBA::NamedValue member function, see the CORBA
Programming Reference.

Example of Using CORBA::Object::create_request Member Function
The following C++ code example illustrates how to use the CORBA::Object::create_request
member function:

CORBA::Request_ptr reqp;
CORBA::Context_ptr ctx;
CORBA::NamedValue_ptr boolean_resultp = 0;
Boolean boolean_result;
CORBA::Any boolean_result_any(CORBA::_tc_boolean, &
boolean_result);
CORBA::NVList_ptr arg_list = 0;
CORBA::Any arg;

// Get the default context
orbp->get_default_context(ctx);

// Create the named value pair for the result
(void) orbp->create_named_value(boolean_resultp);

Step 4 : Sending a D I I Request and Re t r i ev ing the Resu l ts

Creating CORBA Client Applications 3-9

CORBA::Any *tmpany = boolean_resultp->value();
*tmpany = boolean_result_any;

arg.replace(CORBA::_tc_long, &long_arg, CORBA_FALSE)

// Create the NVList
orbp->create_list(1, arg_list);

// Add an IN argument to the list
arg_list->add_value(“arg1”, arg, CORBA::ARG_IN);

// Create the request using the long form
anObj->_create_request (ctx,
 “anOp”,
 arg_list,
 boolean_resultp,
 reqp,
 CORBA::VALIDATE_REQUEST);
// Do the invoke
reqp->invoke();

CORBA::NamedValue_ptrresult_namedvalue;
Boolean aResult;
CORBA::Any *result_any;
// Get the result
result_namedvalue = reqp->result();
result_any = result_namedvalue->value();

// Extract the Boolean from the any
*result_any >>= aResult;

Step 4: Sending a DII Request and Retrieving the Results
You can invoke a request in several ways, depending on what kind of communication type you want to
use. This section describes how the CORBA member functions are used to send requests and retrieve
the results.

Synchronous Requests
If you want synchronous communication, the CORBA::Request::invoke member function sends
the request and waits for a response before it returns to the CORBA client application. Use the
CORBA::Request::result member function to return a reference to a named/value object that
represents the return value. Once the results are retrieved, you read the values from the NVList stored
in the request.

3-10 Creating CORBA Client Applications

Deferred Synchronous Requests
The nonblocking member function, CORBA::Request::send_deferred, is also provided for
sending requests. It allows the CORBA client application to send a request and then use the
CORBA::Request::poll_response member function to determine when the response is
available. The CORBA::Request::get_response member function blocks until a response is
available.

The following code example illustrates how to use the CORBA::Request::send_deferred,
CORBA::Request::poll_response, and CORBA::Request::get_response member
functions:

request->send_deferred ();

if (poll)
{
 for (int k = 0 ; k < 10 ; k++)
 {
 CORBA::Boolean done = request->poll_response();
 if (done)
 break;

 }
}
request->get_response();

Oneway Requests
Use the CORBA::Request::send_oneway member function to send a oneway request. Oneway
requests do not involve a response from the CORBA server application. For a complete description of
the CORBA::Request::send_oneway member function, see the CORBA Programming Reference.

The following code example illustrates how to use the CORBA::Request::send_oneway member
function:

request->send_oneway();

Multiple Requests
When a sequence of request objects is sent using the
CORBA::Request::send_multiple_requests_deferred member function, the
CORBA::ORB::poll_response, CORBA::ORB::poll_next_response,
CORBA::ORB::get_response, and CORBA::ORB::get_next_response member functions can
be used to retrieve the response the CORBA server application sends for each request.

Step 4 : Sending a D I I Request and Re t r i ev ing the Resu l ts

Creating CORBA Client Applications 3-11

The CORBA::ORB::poll_response and CORBA::ORB::poll_next_response member
functions can be used to determine if a response has been retrieved from the CORBA server
application. These member functions return a 1 if there is at least one response available, and a zero
if there are no responses available.

The CORBA::ORB::get_response and CORBA::ORB::get_next_response member functions
can be used to retrieve a response. If no response is available, these member functions block until a
response is retrieved. If you do not want your CORBA client application to block, use the
CORBA::ORB::poll_next_response member function to first determine when a response is
available, and then use the CORBA::ORB::get_next_response method to retrieve the result.

You can also send multiple oneway requests by using the
CORBA::Request::send_multiple_requests_oneway member function.

The following code example illustrates how to use the
CORBA::Request::send_multiple_requests_deferred,
CORBA::Request::poll_next_response, and CORBA::Request::get_next_response
member functions:

CORBA::Context_ptr ctx;
CORBA::Request_ptr requests[2];
CORBA::Request_ptr request;
CORBA::NVList_ptr arg_list1, arg_list2;
CORBA::ULong i, nreq;
CORBA::Long arg1 = 1;
Boolean aResult1 = CORBA_FALSE;
Boolean expected_aResult1 = CORBA_TRUE;
CORBA::Long arg2 = 3;
Boolean aResult2 = CORBA_FALSE;
Boolean expected_aResult2 = CORBA_TRUE

try
{
 orbp->get_default_context(ctx);

 populate_arg_list (&arg_list1, &arg1, &aResult1);

 nreq = 0;

 anObj->_create_request (ctx,
 “Multiply”,
 arg_list1,
 0,
 requests[nreq++],
 0);

3-12 Creating CORBA Client Applications

 populate_arg_list (&arg_list2, &arg2, &aResult2);

 anObj->_create_request (ctx,
 “Multiply”,
 arg_list2,
 0,
 requests[nreq++],
 0);

// Declare a request sequence variable...
CORBA::ORB::RequestSeq rseq (nreq, nreq, requests, CORBA_FALSE);

orbp->send_multiple_requests_deferred (rseq);
for (i = 0 ; i < nreq ; i++)

{
 requests[i]->get_response();
}

// Now check the results

if (aResult1 != expected_aResult1)
{
 cout << “aResult1=” << aResult1 << “ different than expected: “ <<
expected_aResult1;
}

if (aResult2 != expected_aResult2)
{
 cout << “aResult2=” << aResult2 << “ different than expected: “ <<
expected_aResult2;
}

aResult1 = CORBA_FALSE;
aResult2 = CORBA_FALSE;

// Using the same argument lists, multiply the numbers again.
// This time we intend to poll for response...

orbp->send_multiple_requests_deferred (rseq);

// Now poll for response...

for (i = 0 ; i < nreq ; i++)
{

// We will randomly poll maximum 10 times...
 for (int j = 0 ; j < 10 ; j++)
 {
 CORBA::Boolean done = requests[i]->poll_response();

Step 4 : Sending a D I I Request and Re t r i ev ing the Resu l ts

Creating CORBA Client Applications 3-13

 if (done) break;
 }
}
// Now actually get the response...
for (i = 0 ; i < nreq ; i++)
{
 requests[i]->get_response();
}

// Now check the results
if (aResult1 != expected_aResult1)
{
 cout << “aResult1=” << aResult1 << “ different than expected: “ <<
expected_aResult1
}
if (aResult2 != expected_aResult2)
{
 cout << “aResult2=” << aResult2 << “ different than expected: “ <<
expected_aResult2;
}

aResult1 = CORBA_FALSE;
aResult2 = CORBA_FALSE;

// Using the same argument lists, multiply the numbers again.
// Call get_next_response, and WAIT for a response.
orbp->send_multiple_requests_deferred (rseq);

// Poll until we get a response and then use get_next_response get it...
for (i = 0 ; i < nreq ; i++)
 {
 CORBA::Boolean res = 0;

 while (! res)
 {
 res = orbp->poll_next_response();
 }
 orbp->get_next_response(request);
 CORBA::release(request);
 }
// Now check the results
if (aResult1 != expected_aResult1)
{
 cout << “aResult1=” << aResult1 << “ different than expected: “ <<
expected_aResult1;
}
if (aResult2 != expected_aResult2)
{

3-14 Creating CORBA Client Applications

 cout << “aResult2=” << aResult2 << “ different than expected: “ <<
expected_aResult2;
}

static void populate_arg_list (
CORBA::NVList_ptr ArgList,
CORBA::Long * Arg1,
CORBA::Long * Result)
{
CORBA::Any any_arg1;
CORBA::Any any_result;

(* ArgList) = 0;
orbp->create_list(3, *ArgList);

any_arg1 <<= *Arg1;
any_result.replace(CORBA::_tc_boolean, Result, CORBA_FALSE);

(*ArgList)->add_value(“arg1”, any_arg1, CORBA::ARG_IN);
(*ArgList)->add_value(“result”, any_result, CORBA::ARG_OUT);

return;

}

Step 5: Deleting the Request
Once you have been notified that the request has successfully completed, you need to decide if you
want to delete the existing request, or reuse portions of the request in the next invocation.

To delete the entire request, use the CORBA::Release(request) member function on the request
to be deleted. This operation releases all memory associated with the request. Deleting a request that
was issued using the deferred synchronous communication type causes that request to be canceled if
it has not completed.

Step 6: Using the Interface Repository with DII
A CORBA client application can create, populate, and send requests for objects that were not known
to the CORBA client application when it was built. To do this, the CORBA client application uses the
Interface Repository to retrieve information needed to create and populate the requests. The CORBA
client application uses DII to send the requests, since it does not have client stubs for the interfaces.

Although this technique is useful for invoking operations on a CORBA object whose type is unknown,
performance becomes an issue because of the overhead interaction with the Interface Repository. You

Step 6 : Us ing the In te r face Repos i to r y w i th D I I

Creating CORBA Client Applications 3-15

might consider using this type of DII request when creating a CORBA client application that browses
for objects, or when creating a CORBA client application that is an administration tool.

The steps for using the Interface Repository in a DII request are as follows:

1. Set ORB_INCLUDE_REPOSITORY in CORBA.h to the location of the Interface Repository file in
your BEA Tuxedo system.

2. Use the Bootstrap object to obtain the InterfaceRepository object, which contains a reference to
the Interface Repository in a particular BEA Tuxedo domain. Once the reference to the Interface
Repository is obtained, you can navigate the Interface Repository from the root.

3. Use the CORBA::Object::_get_interface member function to communicate with the
CORBA server application that implements the desired CORBA object.

4. Use CORBA::InterfaceDef_ptr to get the definition of the CORBA interface that is stored
in the Interface Repository.

5. Locate the OperationDescription for the desired operation in the
FullInterfaceDescription operations.

6. Retrieve the repository ID from the OperationDescription.

7. Call CORBA::Repository::lookup_id using the repository ID returned in the
OperationDescription to look up the OperationDef in the Interface Repository. This call
returns the contained object.

8. Narrow the contained object to an OperationDef.

9. Use the CORBA::ORB::create_operation_list member function, using the
OperationDef argument, to build an argument list for the operation.

10. Set the argument value within the operation list.

11. Send the request and retrieve the results as you would any other request. You can use any of the
options described in this topic to send a request and to retrieve the results.

3-16 Creating CORBA Client Applications

Creating CORBA Client Applications 4-1

C H A P T E R 4

Handling Exceptions

This topic describes how CORBA C++ client applications handle CORBA exceptions.

Note: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.0. All BEA Tuxedo CORBA
Java client and BEA Tuxedo CORBA Java client ORB text references, associated code
samples, etc. should only be used:

to help implement/run third party Java ORB libraries, and

for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their respective
vendors. BEA Tuxedo does not provide any technical support or documentation for third party
CORBA Java ORBs.

CORBA Exception Handling Concepts
CORBA defines the following types of exceptions:

System exceptions, which are general errors, such as running out of memory and
communication failures. System exceptions include exceptions raised by the Object Request
Broker (ORB). The CORBA specification defines a set of system exceptions that can be raised
when errors occur in the processing of a request from a CORBA client application.

User exceptions, which are exceptions triggered by an object, where the exception contains
user-defined data. When you define your CORBA object’s interface in OMG IDL, you can specify
the user exceptions that the object may raise.

The following sections describe how each type of CORBA client application handles exceptions.

4-2 Creating CORBA Client Applications

CORBA System Exceptions
Table 4-1 lists the CORBA system exceptions.

Table 4-1 CORBA System Exceptions

Exception Name Description

BAD_CONTEXT An error occurred while processing context objects.

BAD_INV_ORDER Routine invocations are out of order.

BAD_OPERATION Invalid operation.

BAD_PARAM An invalid parameter was passed.

BAD_TYPECODE Invalid typecode.

COMM_FAILURE Communication failure.

DATA_CONVERSION Data conversion error.

FREE_MEM Unable to free memory.

IMP_LIMIT Implementation limit violated.

INITIALIZE ORB initialization failure.

INTERNAL ORB internal error.

INTF_REPOS An error occurred while accessing the Interface
Repository.

INV_FLAG Invalid flag was specified.

INV_IDENT Invalid identifier syntax.

INV_OBJREF Invalid object reference was specified.

MARSHAL Error marshaling parameter or result.

NO_IMPLEMENT Operation implementation not available.

NO_MEMORY Dynamic memory allocation failure.

NO_PERMISSION No permission for attempted operation.

NO_RESOURCES Insufficient resources to process request.

CORBA C++ Cl ient App l i cat ions

Creating CORBA Client Applications 4-3

CORBA C++ Client Applications
Since both system and user exceptions require similar functionality, the SystemException and
UserException classes are derived from the common Exception class. When an exception is
raised, your CORBA client application can narrow from the Exception class to a specific
SystemException or UserException class. The C++ Exception inheritance hierarchy is shown
in Figure 4-1.

Figure 4-1 C++ Exception Inheritance Hierarchy

The Exception class provides the following public operations:

NO_RESPONSE Response to request not yet available.

OBJ_ADAPTER Failure detected by object adapter.

OBJECT_NOT_EXIST Object is not available.

PERSIST_STORE Persistent storage failure.

TRANSIENT Transient failure.

UNKNOWN Unknown result.

Table 4-1 CORBA System Exceptions (Continued)

Exception Name Description

Exception

UserException SystemException

User-Defined
Exceptions Standard Exceptions

4-4 Creating CORBA Client Applications

copy constructor

destructor

_narrow

The copy constructor and destructor operations automatically manage the storage associated
with the exception.

The _narrow operation allows your CORBA client application to catch any type of exception and then
determine its type. The exception argument passed to the _narrow operation is a pointer to the
base class Exception. The _narrow operation accepts a pointer to any Exception object. If the
pointer is of type SystemException, the narrow() operation returns a pointer to the exception.
If the pointer is not of type SystemException, the narrow() operation returns a Null pointer.

Unlike the _narrow operation on object references, the _narrow operation on exceptions returns
a suitably typed pointer to the same exception argument, not a pointer to a new exception. Therefore,
you do not free a pointer returned by the _narrow operation. If the original exception goes out of
scope or is destroyed, the pointer returned by the _narrow operation is no longer valid.

Note: The BEA Tuxedo CORBA sample applications do not use the _narrow operation.

Handling System Exceptions
The CORBA C++ client applications in the BEA Tuxedo sample applications use the standard C++
try-catch exception handling mechanism to raise and catch exceptions when error conditions occur,
rather than testing status values to detect errors. This exception-handling mechanism is also used to
integrate CORBA exceptions into CORBA client applications. In C++, catch clauses are attempted
in the order specified, and the first matching handler is called.

The following example from the CORBA C++ client application in the Basic sample application shows
printing an exception using the << operator.

Note: Throughout this topic, bold text is used to highlight the exception code within the example.

try{

//Initialize the ORB
CORBA::ORB* orb=CORBA::ORB_init(argc, argv, ORBid);

//Get a Bootstrap Object
Tobj_Bootstrap* bs= new Tobj_Bootstrap(orb, “//host:port”);

//Resolve Factory Finder
CORBA::Object_var var_factory_finder_oref = bs->
 resolve_initial_reference(“FactoryFinder”);

CORBA C++ Cl ient App l i cat ions

Creating CORBA Client Applications 4-5

Tobj::FactoryFinder_var var_factory_finder_ref = Tobj::FactoryFinder::_narrow
 (var_factory_finder_oref.in());

catch(CORBA::Exception& e) {
 cerr <<e.get_id() <<end1;
}

User Exceptions
User exceptions are generated from the user-written OMG IDL file in which they are defined. When
handling exceptions, the code should first check for system exceptions. System exceptions are
predefined by CORBA, and often the application cannot recover from a system exception. For
example, system exceptions may signal problems in the network transport or signal internal problems
in the ORB. Once you have tested for the system exceptions, test for specific user exceptions.

The following C++ example shows the OMG IDL file that declares the TooManyCredits user
exception inside the Registar interface. Note that exceptions can be declared either within a
module or within an interface.

exception TooManyCredits
{
 unsigned short maximum_credits;
};

interface Registrar

NotRegisteredList register_for_courses(
 in StudentId student,
 in CourseNumberList courses
) raises (
 TooManyCredits
);

The following C++ code example shows how a TooManyCredits user exception would work within
the scope of a transaction for registering for classes:

//Register a student for some course

try {
 pointer_registrar_reference->register_for_courses
 (student_id, course_number_list);

catch (UniversityT::TooManyCredits& e) {
 cout <<"You cannot register for more than"<< e.maximum_credits
 <<"credits."<<end1;
}

4-6 Creating CORBA Client Applications

Creating CORBA Client Applications Index-1

Index

A
ActiveX client applications

description 1-2
using the Interface Repository 1-6

authentication levels
supported in the BEA Tuxedo software 1-14
TOBJ_APPAUTH 1-14
TOBJ_NOAUTH 1-14
TOBJ_SYSAUTH 1-14

B
Bootstrap object

description 1-9
resolving initial references

C++ 2-9
Java 2-9

using in server applications 2-11
using with DII 3-7

building
CORBA C++ client applications 2-11
CORBA Java client applications 2-11

buildobjclient command 2-3

C
C++

code examples
Bootstrap object 2-9
factories 2-11
FactoryFinder object 2-10
initializing the ORB 2-8
system exceptions 4-4

user exceptions 4-5
using the Bootstrap object 2-8

handling exceptions 4-3
catching exceptions

C++ 4-4
client 2-11
client applications

choosing to use DII 3-2
supported 1-2

client stubs
defined 1-3
description 1-5
generating 1-5, 2-6

code examples
Bootstrap object

C++ 2-9
Java 2-9

factories
C++ 2-11
Java 2-11

FactoryFinder object
C++ 2-10
Java 2-10

invoking operations
C++ 2-11
Java 2-11

OMG IDL 2-3
ORB

initializing
C++ 2-8
Java 2-8

system exceptions
C++ 4-4

Index-2 Creating CORBA Client Applications

user exceptions
C++ 4-5

compiling
OMG IDL 2-6

CORBA C++ client applications 2-3
building 2-11
description 1-2
development process 2-3
handling exceptions 4-3
invocation type 2-6
invoking operations on objects 2-11
resolving initial references to objects 2-9
system exceptions 4-3
user exceptions 4-5
using DII 3-5
using factories 2-10
using static invocation 2-6
using the Interface Repository 1-6
writing 2-7

CORBA Java client applications
building 2-11
description 1-2
invocation type 2-6
invoking operations on objects 2-11
required files 2-11
resolving initial references to objects 2-9
using DII 3-5
using factories 2-10
using static invocation 2-6
using the Interface Repository 1-6
writing 2-7

CORBA system exceptions
description 4-2

CORBAServices Security service 1-14
CourseSynposisEnumerator interface

OMG IDL 2-3
customer support contact information viii

D
deferred synchronous communication

using DII 3-2
development commands

buildobjclient 2-3
idl 2-3
idl2ir 1-6
ir2idl 1-6
irdel 1-6

development process
CORBA C++ client applications 2-3
DII 3-5

DII
choosing 3-2
concepts

receiving options 3-3
Request objects 3-3
sending requests 3-3

creating a request 3-7
deferred synchronous communication 3-2
deleting requests 3-14
Interface Reposity, using with 3-14
loading CORBA interfaces into Interface

Repository 3-6
sending requests

deferred synchronous 3-10
multiple 3-10
oneway 3-10
synchronous 3-9

using NVList 3-8
using the Bootstrap object 3-7
using the FactoryFinder object 3-7

documentation, where to find it viii
domains

description 1-6
establishing communication with 2-7
figure 1-6

dynamic invocation
description 1-3
how it works 1-3
illustrated 1-3

Creating CORBA Client Applications Index-3

E
environmental objects 1-7

Automation 1-7
Bootstrap 1-7
C++ 1-7, 2-3
description 1-7
FactoryFinder 1-7
Interface Repository 1-7
Java 1-7
NameService 1-9
NotificationService 1-8
SecurityCurrent 1-7
Tobj_SimpleEventsService 1-8
TransactionCurrent 1-7

exceptions
concepts 4-1
CORBA system exceptions 4-2
system 4-1
user 4-1

F
factories

code examples
C++ 2-11
Java 2-11

creating CORBA objects 1-11
description 1-11
naming conventions 1-12

FactoryFinder object 2-10
code examples

C++ 2-10
Java 2-10

description 1-11
illustrated 1-11
methods 2-10
using in server applications 2-11
using with DII 3-7

H
handling exceptions

C++ 4-3

I
idl command 2-3

compiling OMG IDL 2-6
CORBA C++ client applications 2-6
description 2-3
format 2-6
generating

client stubs 2-6
skeletons 2-6

IDL compiler
generated files 2-6

idl2ir command
description 1-6
populating the Interface Repository 1-6

Interface Repository
commands

idl2ir 1-6
ir2idl 1-6
irdel 1-6

description 1-6
information stored in 1-6
using with DII 3-14

InterfaceRepository object
description 1-14

invocation types
dynamic 1-3
static 1-3
using with CORBA client applications 2-6

ir2idl command
creating an OMG IDL file 1-6
description 1-6

irdel command
deleting CORBA interfaces from the Interface

Repository 1-6
description 1-6

ISL parameter

Index-4 Creating CORBA Client Applications

using in CORBA client applications 2-8

J
JAR file 2-11
Java

code examples
Bootstrap object 2-9
factories 2-11
FactoryFinder object 2-10
initializing the ORB 2-8
using the Bootstrap object 2-8

Java Archive file 2-11

M
methods

FactoryFinder object 2-10

N
NameService object

description 1-17
naming conventions

factories 1-12
NotificationService object

description 1-16
NVList

using with DII 3-8

O
OMG IDL

code example 2-3
compiling 2-6
CourseSynopsisEnumerator interface 2-3
defining user exceptions 4-1
description 1-2
for Basic sample application 2-4
mapping to C++ 1-2
mapping to COM 1-3
mapping to Java 1-3

Registrar interface 2-3
RegistrarFactory interface 2-3

ORB
initializing

C++ code example 2-8
Java code example 2-8

ORBid 2-8

P
printing product documentation viii

R
Registrar interface

OMG IDL 2-3
RegistrarFactory interface

OMG IDL 2-3
related information viii
relationship to BEA Tuxedo domains 1-7
request object

creating 3-7
Request objects

description 3-3
setting arguments 3-8

S
sample applications

Basic 2-7
security

supported authentication levels 1-14
SecurityCurrent object

description 1-14
properties

Credentials 1-14
PrincipalAuthenticator 1-14

server applications
acting as client applications 2-11
using Bootstrap object 2-11
using FactoryFinder object 2-11

skeletons

Creating CORBA Client Applications Index-5

generating 2-6
static invocation 1-3

description 1-3
how it works 1-3
in client applications 2-6
using client stubs 1-3

support
technical viii

system exceptions
description 4-1

T
TOBJ_APPAUTH

description 1-14
TOBJ_NOAUTH

description 1-14
Tobj_SimpleEventsService object

description 1-16
TOBJ_SYSAUTH

description 1-14
transaction policies

description 1-15
TransactionCurrent object

transaction policies 1-15

U
user exceptions

description 4-1

Index-6 Creating CORBA Client Applications

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	CORBA Client Application Development Concepts
	Overview of Client Applications
	OMG IDL
	OMG IDL-to-C++ Mapping
	OMG IDL-to-Java Mapping
	OMG IDL-to-COM Mapping

	Static and Dynamic Invocation
	Client Stubs
	Interface Repository
	Domains
	Environmental Objects
	Bootstrap Object
	Factories and the FactoryFinder Object
	Naming Conventions and BEA Tuxedo Extensions to the FactoryFinder Object
	InterfaceRepository Object
	SecurityCurrent Object
	TransactionCurrent Object
	NotificationService and Tobj_SimpleEventsService Objects
	NameService Object

	Creating CORBA Client Applications
	Summary of the Development Process for CORBA C++ Client Applications
	Step 1: Obtaining the OMG IDL File
	Step 2: Selecting the Invocation Type
	Step 3: Compiling the OMG IDL File
	Step 4: Writing the CORBA Client Application
	Initializing the ORB
	Establishing Communication with the BEA Tuxedo Domain
	Resolving Initial References to the FactoryFinder Object
	Using the FactoryFinder Object to Get a Factory
	Using a Factory to Get a CORBA Object

	Step 5: Building the CORBA Client Application
	Server Applications Acting as Client Applications
	Using Java2 Applets

	Using the Dynamic Invocation Interface
	When to Use DII
	DII Concepts
	Request Objects
	Options for Sending Requests
	Options for Receiving the Results of Requests

	Summary of the Development Process for DII
	Step 1: Loading the CORBA Interfaces into the Interface Repository
	Step 2: Obtaining the Object Reference for the CORBA Object
	Step 3: Creating a Request Object
	Using the CORBA::Object::_request Member Function
	Using the CORBA::Object::create_request Member Function
	Setting Arguments for the Request Object
	Setting Input and Output Arguments with the CORBA::NamedValue Member Function
	Example of Using CORBA::Object::create_request Member Function

	Step 4: Sending a DII Request and Retrieving the Results
	Synchronous Requests
	Deferred Synchronous Requests
	Oneway Requests
	Multiple Requests

	Step 5: Deleting the Request
	Step 6: Using the Interface Repository with DII

	Handling Exceptions
	CORBA Exception Handling Concepts
	CORBA System Exceptions
	CORBA C++ Client Applications
	Handling System Exceptions
	User Exceptions

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

