
BEATuxedo ®

Using BEA Jolt

Version 9.0
Document Released: June 28, 2005

Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread, Top End,
Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign Manager for
WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA WebLogic Commerce Server, BEA WebLogic Enterprise,
BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic JRockit, BEA
WebLogic Log Central, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA
WebLogic Server Process Edition, BEA WebLogic WorkGroup Edition, BEA WebLogic Workshop, and Liquid
Computing are trademarks of BEA Systems, Inc. BEA Mission Critical Support is a service mark of BEA Systems, Inc.
All other company and product names may be the subject of intellectual property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Using BEA Jolt iii

Contents

About This Document
What You Need to Know .xii

e-docs Web Site .xii

How to Print the Document .xii

Related Information .xii

Contact Us! . xiii

Documentation Conventions . xiii

Introducing BEA Jolt
BEA Jolt Components . 1-2

Key Features . 1-2

How BEA Jolt Works . 1-5

Jolt Servers . 1-6

Jolt Class Library . 1-7

JoltBeans . 1-9

Jolt Server and Jolt Client Communication . 1-10

Jolt Repository . 1-10

Jolt Internet Relay. 1-11

Creating a Jolt Client to Access BEA Tuxedo Applications . 1-12

Bulk Loading BEA Tuxedo Services
Using the Bulk Loader . 2-1

Activating the Bulk Loader. 2-2

iv Using BEA Jolt

The Bulk Load File . 2-2

Syntax of the Bulk Loader Data Files . 2-3

Guidelines for Using Keywords. 2-3

Keyword Order in the Bulk Loader Data File . 2-4

Using Service-Level Keywords and Values. 2-5

Using Parameter-Level Keywords and Values. 2-6

Troubleshooting . 2-7

Sample Bulk Load Data . 2-8

Configuring the BEA Jolt System
Quick Configuration . 3-2

Editing the UBBCONFIG File. 3-2

Configuring the Jolt Repository . 3-3

Initializing Services That Use BEA Tuxedo and the Repository Editor 3-3

Logging On to the Repository Editor. 3-5

Exiting the Repository Editor . 3-7

Configuring the BEA Tuxedo TMUSREVT Server for Event Subscription 3-9

Configuring Jolt Relay . 3-9

Jolt Background Information . 3-11

Jolt Server . 3-11

Starting the JSL . 3-12

Shutting Down the JSL . 3-12

Restarting the JSL . 3-12

Configuring the JSL . 3-13

JSL Command-line Options. 3-13

Security and Encryption. 3-17

Jolt Relay. 3-17

Jolt Relay Failover . 3-19

Using BEA Jolt v

Jolt Relay Process. 3-19

JRLY Command-line Options for Windows 2003 . 3-20

JRLY Command-line Option for UNIX . 3-23

JRLY Configuration File . 3-23

Jolt Relay Adapter . 3-25

JRAD Configuration. 3-25

Network Address Configurations . 3-27

 Jolt Repository . 3-27

Configuring the Jolt Repository . 3-27

Initializing Services By Using BEA Tuxedo and the Repository Editor 3-29

Event Subscription. 3-30

Configuring for Event Subscription . 3-30

Filtering BEA Tuxedo FML or VIEW Buffers . 3-31

BEA Tuxedo Background Information . 3-32

Configuration File . 3-33

Creating the UBBCONFIG File . 3-33

Sample Applications in BEA Jolt Online Resources. 3-42

Using the Jolt Repository Editor
Introduction to the Repository Editor . 4-2

Repository Editor Window. 4-2

Repository Editor Window Description . 4-4

Getting Started . 4-5

Starting the Repository Editor Using the Java Applet Viewer 4-5

Starting the Repository Editor from Your Web Browser . 4-5

Logging On to the Repository Editor . 4-6

Exiting the Repository Editor . 4-8

Main Components of the Repository Editor . 4-10

vi Using BEA Jolt

Repository Editor Flow . 4-10

What Is a Package? . 4-12

What Is a Service? . 4-15

Working with Parameters. 4-17

Setting Up Packages and Services . 4-18

Saving Your Work . 4-18

Adding a Package. 4-19

Adding a Service . 4-20

Adding a Parameter . 4-24

Grouping Services Using the Package Organizer . 4-29

Modifying Packages, Services, and Parameters . 4-32

Editing a Service . 4-32

Editing a Parameter . 4-34

Deleting Parameters, Services, and Packages . 4-35

Making a Service Available to the Jolt Client. 4-36

Exporting and Unexporting Services . 4-36

Reviewing the Exported and Unexported Status . 4-38

Testing a Service . 4-39

Jolt Repository Editor Service Test Window . 4-39

Testing a Service . 4-41

Repository Editor Troubleshooting. 4-43

Using the Jolt Class Library
Class Library Functionality Overview . 5-2

Java Applications Versus Java Applets . 5-2

Jolt Class Library Features. 5-3

Error and Exception Handling . 5-3

Jolt Client/Server Relationship . 5-4

Using BEA Jolt vii

Jolt Object Relationships . 5-7

Jolt Class Library Walkthrough. 5-8

Logon and Logoff. 5-8

Synchronous Service Calling . 5-8

Transaction Begin, Commit, and Rollback . 5-9

Using BEA Tuxedo Buffer Types with Jolt . 5-14

Using the STRING Buffer Type. 5-15

Using the CARRAY Buffer Type . 5-19

Using the FML Buffer Type . 5-23

Using the VIEW Buffer Type. 5-29

Using the XML Buffer Type . 5-36

Using the MBSTRING Buffer Type. 5-40

Multithreaded Applications . 5-42

Threads of Control . 5-42

Using Jolt with Non-Preemptive Threading. 5-43

Using Threads for Asynchronous Behavior . 5-43

Using Threads with Jolt . 5-44

Event Subscription and Notifications . 5-48

Event Subscription Classes. 5-48

Notification Event Handler. 5-49

Connection Modes . 5-50

Notification Data Buffers . 5-50

BEA Tuxedo Event Subscription . 5-50

Using the Jolt API to Receive BEA Tuxedo Notifications 5-52

Clearing Parameter Values . 5-53

Reusing Objects . 5-56

Deploying and Localizing Jolt Applets . 5-60

Deploying a Jolt Applet . 5-60

viii Using BEA Jolt

Client Considerations. 5-60

Web Server Considerations . 5-61

Localizing a Jolt Applet . 5-61

Using JoltBeans
Overview of Jolt Beans . 6-2

JoltBeans Terms. 6-3

Adding JoltBeans to Your Java Development Environment . 6-4

Using Development and Run-time JoltBeans . 6-4

Basic Steps for Using JoltBeans . 6-5

JavaBeans Events and BEA Tuxedo Events . 6-5

Using BEA Tuxedo Event Subscription and Notification with JoltBeans. 6-6

How JoltBeans Use JavaBeans Events . 6-7

The JoltBeans Toolkit . 6-7

JoltSessionBean . 6-8

JoltServiceBean . 6-9

JoltUserEventBean. 6-10

Jolt-Aware GUI Beans . 6-10

JoltTextField. 6-11

JoltLabel. 6-11

JoltList . 6-11

JoltCheckbox . 6-12

JoltChoice. 6-12

Using the Property List and the Property Editor to Modify the JoltBeans Properties . . 6-12

JoltBeans Class Library Walkthrough. 6-14

Building the Sample Form . 6-15

Wiring the JoltBeans Together . 6-22

Using the Jolt Repository and Setting the Property Values . 6-40

Using BEA Jolt ix

JoltBeans Programming Tasks . 6-44

Using Transactions with JoltBeans. 6-44

Using Custom GUI Elements with the JoltService Bean . 6-46

Using Servlet Connectivity for BEA Tuxedo
What Is a Servlet? . 7-2

How Servlets Work with Jolt. 7-2

The Jolt Servlet Connectivity Classes . 7-2

Writing and Registering HTTP Servlets . 7-3

Jolt Servlet Connectivity Sample. 7-5

Viewing the Sample Servlet Applications . 7-5

SimpApp Sample . 7-5

BankApp Sample . 7-8

Admin Sample . 7-10

Additional Information on Servlets . 7-11

BEA Jolt Exceptions

x Using BEA Jolt

Using BEA Jolt xi

About This Document

This document covers the following topics:

Chapter 1, “Introducing BEA Jolt,” describes the components and major features of BEA
Jolt.

Chapter 2, “Bulk Loading BEA Tuxedo Services,” describes the Jolt Bulk Loader
command utility that allows you to load multiple Tuxedo services into the Jolt repository
database in one step.

Chapter 3, “Configuring the BEA Jolt System,” describes how to configure BEA Jolt.

Chapter 4, “Using the Jolt Repository Editor,” describes how to add, modify, test, export,
and delete BEA Tuxedo services in the Jolt repository database using the Jolt Repository
Editor.

Chapter 5, “Using the Jolt Class Library,” describes the BEA Jolt Class Library that
provides developers with a set of object-oriented Java language classes for accessing BEA
Tuxedo services from Java applets.

Chapter 6, “Using JoltBeans,” describes using JoltBeans to develop a BEA Jolt client.
JoltBeans provide a JavaBeans-compliant interface to BEA Jolt.

Chapter 7, “Using Servlet Connectivity for BEA Tuxedo,” describes BEA Jolt servlet
connectivity which allows the use of HTTP servlets to perform server-side Java tasks in
response to HTTP requests. This capability allows many types of HTML clients to make
remote BEA Tuxedo service requests.

xii Using BEA Jolt

Appendix A, “BEA Jolt Exceptions,” describes the BEA Jolt and BEA Tuxedo exceptions
that may occur while running BEA Jolt.

What You Need to Know
This document is intended for users who want to familiarize themselves with the BEA Tuxedo
product.

e-docs Web Site
BEA product documentation is available on the BEA corporate Web site. From the BEA Home
page, click on Product Documentation or go directly to the “e-docs” Product Documentation page
at http://e-docs.bea.com.

How to Print the Document
You can print a copy of this document from a Web browser, one file at a time, by using the File—
>Print option on your Web browser.

A PDF version of this document is available on the BEA Tuxedo documentation Home page on
the e-docs Web site (and also on the documentation CD). You can open the PDF in Adobe
Acrobat Reader and print the entire document (or a portion of it) in book format. To access the
PDFs, open the BEA Tuxedo documentation Home page, click the PDF files button and select
the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe Web site at
http://www.adobe.com.

Related Information
The following BEA Tuxedo documents contain information that is relevant to the BEA Tuxedo
product overview:

Introducing BEA Tuxedo ATMI

Using BEA Tuxedo ATMI on Windows

Getting Started with BEA Tuxedo CORBA Applications

For more information about ATMI, CORBA, transaction processing, distributed object
computing, C++ programming, and Java programming, see Bibliography.

http://e-docs.bea.com
http://www.adobe.com

Using BEA Jolt xiii

Contact Us!
Your feedback on the BEA Tuxedo documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be reviewed
directly by the BEA professionals who create and update the BEA Tuxedo documentation.

In your e-mail message, please indicate that you are using the documentation for the BEA Tuxedo
9.0 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems installing
and running BEA Tuxedo, contact BEA Customer Support through BEA WebSupport at
http://www.bea.com. You can also contact Customer Support by using the contact information
provided on the Customer Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions
The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

mailto:docsupport@bea.com
http://www.bea.com

xiv Using BEA Jolt

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:
void commit ()

monospace
italic
text

Identifies variables in code.

Example:
String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Convention Item

Using BEA Jolt xv

... Indicates one of the following in a command line:
• That an argument can be repeated several times in a command line
• That the statement omits additional optional arguments
• That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

xvi Using BEA Jolt

Using BEA Jolt 1-1

C H A P T E R 1

Introducing BEA Jolt

BEA Jolt is a Java-based interface to the BEA Tuxedo system that extends the functionality of
existing BEA Tuxedo applications to include Intranet- and Internet-wide availability. Using Jolt,
you can now easily transform any BEA Tuxedo application so that its services are available to
customers using an ordinary browser on the Internet. Jolt interfaces with existing and new BEA
Tuxedo applications and services to allow secure, scalable, intranet/Internet transactions between
client and server. Jolt enables you to build client applications and applets that can remotely
invoke existing BEA Tuxedo services, such as application messaging, component management,
and distributed transaction processing.

Because you develop your applications with the Jolt API and the Jolt Repository Editor, which
use BEA Tuxedo and the Java programming language, the Jolt documentation is written with the
assumption that you are familiar with BEA Tuxedo and Java programming. This documentation
is intended for system administrators, network administrators, and developers.

This topic includes the following sections:

BEA Jolt Components

Key Features

How BEA Jolt Works

Creating a Jolt Client to Access BEA Tuxedo Applications

1-2 Using BEA Jolt

BEA Jolt Components
BEA Jolt is a Java class library and API that provides an interface to BEA Tuxedo from remote
Java clients. BEA Jolt consists of the following components for creating Java-based client
programs that access BEA Tuxedo services:

Jolt Servers—one or more Jolt servers listen for network connections from clients, translate
Jolt messages, multiplex multiple clients into a single process, and submit and retrieve
requests to and from BEA Tuxedo-based applications running on one or more BEA Tuxedo
servers.

Jolt Class Library—the Jolt class library is a Java package containing the class files that
implement the Jolt API. These classes enable Java applications and applets to invoke BEA
Tuxedo services. The Jolt class library includes functionality to set, retrieve, manage, and
invoke communication attributes, notifications, network connections, transactions, and
services.
JoltBeans—BEA JoltBeans provides a JavaBeans-compliant interface to BEA Jolt.
JoltBeans are Beans components that you can use in JavaBeans-enabled integrated
development environments (IDEs) to construct BEA Jolt clients. Jolt Beans consists of two
sets of Java Beans: JoltBeans toolkit (a JavaBeans-compliant interface to BEA Jolt that
includes the JoltServiceBean, JoltSessionBean, and JoltUserEventBean) and Jolt GUI
beans, which consist of Jolt-aware Abstract Window Toolkit (AWT) and Swing-based
beans.

Jolt Repository—a central repository contains definitions of BEA Tuxedo services. These
repository definitions are used by Jolt at run time to access BEA Tuxedo services. You can
export services to a Jolt client application or unexport services by hiding the definitions
from the Jolt client. Using the Repository Editor, you can test new and existing BEA
Tuxedo services independently of the client applications.

Jolt Internet Relay—the Jolt Internet Relay is a component that routes messages from a Jolt
client to a Jolt Server Listener (JSL) or Jolt Server Handler (JSH). This component
eliminates the need for the JSH and BEA Tuxedo to run on the same machine as the Web
server. The Jolt Internet Relay consists of the Jolt Relay (JRLY) and the Jolt Relay Adapter
(JRAD).

Key Features
With BEA Jolt, you can leverage existing BEA Tuxedo services and extend your transaction
environment to the corporate intranet or world-wide Internet. The key feature of Jolt architecture

Key Features

Using BEA Jolt 1-3

is its simplicity. You can build, deploy, and maintain robust, modular, and scalable electronic
commerce systems that operate over the Internet.

BEA Jolt includes the following features:

Java-based API for simplified development—with its Java-based API, BEA Jolt simplifies
application design by providing well-designed object interfaces. Jolt supports the Java 2
Software Development Kit (SDK) and is fully compatible with Java threads. Jolt enables
Java programmers to build graphical front-ends that use the BEA Tuxedo application and
transaction services without having to understand detailed transactional semantics or
rewrite existing BEA Tuxedo applications.

Pure Java client development—using Jolt, you can build a pure Java client that runs in any
Java-enabled browser. Jolt automatically converts from Java to native BEA Tuxedo data
types and buffers, and from BEA Tuxedo back to Java. As a pure Java client, your applet
or application does not need resident client-side libraries or installation; thus, you can
download client applications from the network.

Easy access to BEA Tuxedo services through Jolt Repository—the BEA Jolt Repository
facilitates Java application development by managing and presenting BEA Tuxedo service
definitions that you can use in your Java client. A Jolt Repository bulk loading utility lets
you quickly integrate your existing BEA Tuxedo services into the Jolt development
environment. Jolt and BEA Tuxedo simplify network and application scalability, while
encouraging the reuse of application components.

GUI-Based maintenance and distribution of BEA Tuxedo services—the Jolt Repository
Editor lets you manage BEA Tuxedo service definitions such as service names, inputs and
outputs. The Jolt Repository Editor provides support for different input and output names
for services defined in the Jolt Repository.

Encryption for secure transaction processing—BEA Jolt allows you to encrypt data
transmitted between Jolt clients and the JSL/JSH. Jolt encryption helps ensure secure
Internet transaction processing.

Added security through Internet Relay—network administrators can use the BEA Jolt
Internet Relay component to separate their Web server and BEA Tuxedo application server.
Web servers are generally considered insecure because they often exist outside a corporate
firewall. Using the Jolt Internet Relay, you can locate your BEA Tuxedo server in a secure
location or environment on your network, yet still handle transactions from Jolt clients on
the Internet.

1-4 Using BEA Jolt

Event Subscription Support—Jolt Event Subscription enables you to receive event
notifications from BEA Tuxedo services and BEA Tuxedo clients. Jolt Event Subscription
lets you subscribe to two types of BEA Tuxedo application events:

– Unsolicited Event Notifications—a Jolt client can receive these notifications when a
BEA Tuxedo client or service subscribes to unsolicited events and a BEA Tuxedo client
issues a broadcast or a directly targeted message.

– Brokered Event Notifications—the Jolt client receives these notifications through the
BEA Tuxedo Event Broker. The Jolt client receives these notifications only when it
subscribes to an event and any BEA Tuxedo client or server posts an event.

How BEA Jo l t Works

Using BEA Jolt 1-5

How BEA Jolt Works
BEA Jolt connects Java clients to applications that are built using the BEA Tuxedo system. The
BEA Tuxedo system provides a set of modular services, each offering specific functionality
related to the application as a whole.

The end-to-end view of the BEA Jolt architecture, as well as related BEA Tuxedo components
and their interactions, is illustrated in the figure “BEA Jolt Architecture” on page 1-6.

Using this figure as an example, a simple banking application might have services such as
INQUIRY, WITHDRAW, TRANSFER, and DEPOSIT. Typically, service requests are
implemented in C or COBOL as a sequence of calls to a program library. Accessing a library from
a native program means installing the library for the specific combination of CPU and operating
system release on the client machine, a situation that Java was expressly designed to avoid. The
Jolt Server implementation acts as a proxy for the Jolt client, invoking the BEA Tuxedo service
on behalf of the client. The BEA Jolt Server accepts requests from the Jolt clients and maps those
requests into BEA Tuxedo service requests.

1-6 Using BEA Jolt

Figure 1-1 BEA Jolt Architecture

Jolt Servers
The following Jolt Server components act in concert to pass Jolt client transaction processing
requests to the BEA Tuxedo application.

Jolt Server Listener (JSL)

The JSL handles the initial Jolt client connection, and assigns a Jolt client to the Jolt Server
Handler.

Jolt Server Handler (JSH)

The JSH manages network connectivity, executes service requests on behalf of the client
and translates BEA Tuxedo buffer data into the Jolt buffer, as well as Jolt buffer data into
the Tuxedo buffer.

Jolt Repository Server (JREPSVR)

BEA Jolt
Class Library

Jolt BEA Jolt
Connectivity
Module

BEA Jolt Server

Java-enabled
Web Browser Application Server

Jolt Server Listener
Jolt Server Handler

BEA Tuxedo

Java Virtual Machine

HTML, Applet, and
Jolt Code

 Applet/Application

Access Services
Legacy

DEPOSIT Service

INQUIRY Service

BEA Tuxedo

Internet
CLIENT

BEA Jolt
Transaction Protocol..........

Repository Server

BEA Jolt
Repository

State Manager

Repository
Service
Definitions

databases

Legacy Host
Applications

SERVER

How BEA Jo l t Works

Using BEA Jolt 1-7

The JREPSVR retrieves Jolt service definitions from the Jolt Repository and returns the
service definitions to the JSH. The JREPSVR also updates or adds Jolt service definitions.

The following figure illustrates the Jolt Server and Jolt Repository components.

Figure 1-2 Jolt Server and Repository Components

Jolt Class Library
The BEA Jolt Class Library is a set of classes that you can use in your Java application or applet
to make service requests to the BEA Tuxedo system from a Java-enabled client. You access BEA
Tuxedo transaction services by using Jolt class objects.

When developing a Jolt client application, you only need to know about the classes that Jolt
provides and the BEA Tuxedo services that are exported by the Jolt Repository. Jolt hides the
underlying application details. To use Jolt and the Jolt Class Library, you do not need to
understand: the underlying transactional semantics, the language in which the services were
coded, buffer manipulation, the location of services, or the names of databases used.

The Jolt API is a Java class library and has the benefits that Java provides: applets are downloaded
dynamically and are only resident during run time. As a result, there is no need for client
installation, administration, management, or version control. If services are changed, the client
application notes the changes at the next call to the Jolt Repository.

The following figure shows the flow of activity from a Jolt client to and from the BEA Tuxedo
system. The call-out numbers correspond to descriptions of the activity in the table “Using the
Jolt Class Library” on page 1-9.

Repository

BEA Tuxedo
/T

Jolt Server and Repository

Jolt Server
Handler
(JSH)

Jolt Server
Listener
(JSL)

Jolt Repository
Server

(JREPSVR)

BEA Tuxedo
Services

on
Application

Server

1-8 Using BEA Jolt

Figure 1-3 Using the Jolt Class Library to Access BEA Tuxedo Services

 4, 5

JAVA-Enabled
CLIENT

Jolt

Web Browser

1, 2

6

Web Server HOST

connection/request reply

connection

request
Server

Run-Time

Application Server

BEA Tuxedo

BEA Jolt
Repository

contains BEA Tuxedo
service definitions

BEA Tuxedo Environment

Jolt
Class Library

Application
Code

JAVA VM 3 connection

How BEA Jo l t Works

Using BEA Jolt 1-9

The following table briefly describes the flow of activity involved in using the Jolt Class Library
to access BEA Tuxedo services, as shown in the previous figure “Using the Jolt Class Library to
Access BEA Tuxedo Services.”

JoltBeans
BEA Jolt now includes JoltBeans, Java beans components that you use in a Java-enabled
integrated development environment (IDE) to construct BEA Jolt clients. Using JoltBeans, and
popular JavaBeans-enabled development tools such as Symantec Visual Café, you can
graphically create client applications.

BEA JoltBeans provide a JavaBeans-compliant interface to BEA Jolt that enables you to develop
a fully functional BEA Jolt client without writing any code. You can drag and drop JoltBeans
from the component palette of a development tool and position them on the Java form (or forms)
of the Jolt client application you are creating. You can populate the properties of the beans and
graphically establish event source-listener relationships between various beans of the application
or applet. Typically, the development tool is used to generate the event hook-up code, or you can
code the hook-up manually. Client development with JoltBeans is integrated with the BEA Jolt
Repository, which provides easy access to available BEA Tuxedo functions.

Table 1-1 Using the Jolt Class Library

Process Step Action

Connection 1 A Java-enabled Web browser uses HTTP protocol to download
an HTML page.

... 2 A Jolt applet is downloaded and executed in the Java Virtual
Machine on the client.

... 3 The first Java applet task is to open a separate connection to the
Jolt Server.

Request 4 The Jolt client now knows the signature of the service (such as
name, parameters, types); can build a service request object based
on Jolt class definitions, and make a method call.

... 5 The request is sent to the Jolt Server, which translates the
Java-based request into a BEA Tuxedo request and forwards the
request to the BEA Tuxedo environment.

Reply 6 The BEA Tuxedo system processes the request and returns the
information to the Jolt Server, which translates it back to the Java
applet.

1-10 Using BEA Jolt

Jolt Server and Jolt Client Communication
The Jolt system handles all communication between the Jolt Server and the Jolt client using the
BEA Jolt Protocol. The communication process between the Jolt Server and the Jolt client applet
or applications functions as follows:

1. BEA Tuxedo service requests and associated parameters are packaged into a message buffer
and delivered over the network to the Jolt Server.

2. The Jolt Server unpacks the data from the message and performs necessary data
conversions, such as numeric format conversions or character set conversions.

3. The Jolt Server makes the appropriate service request to the application service requested
by the Jolt client.

4. Once a service request enters the BEA Tuxedo system, it is executed in exactly the same
manner as requests issued by any other BEA Tuxedo client.

5. The results are then returned to the BEA Jolt Server, which packages the results and any
error information into a message that is sent to the Jolt client.

6. The Jolt client then maps the contents of the message into the various Jolt client interface
objects, completing the request.

Jolt Repository
The Jolt Repository is a database where BEA Tuxedo services are defined, such as name, number,
type, parameter size, and permissions. The repository functions as a central database of
definitions for BEA Tuxedo services and permits new and existing BEA Tuxedo services to be
made available to Jolt client applications. A BEA Tuxedo application can have many services or
service definitions, such as ADD_CUSTOMER, GET_ACCOUNTBALANCE,
CHANGE_LOCATION, and GET_STATUS. All or only a few of these definitions can be
exported to the Jolt Repository. Within the Jolt Repository, the developer or system administrator
uses the Jolt Repository Editor to export these services to the Jolt client application.

All Repository services that are exported to one client are exported to all clients. BEA Tuxedo
handles the cases where subsets of services may be needed for one client and not others.

The following figure illustrates how the Jolt Repository brokers BEA Tuxedo services to multiple
Jolt client applications. (Four BEA Tuxedo services are shown; however, the WITHDRAW
service is not defined in the repository and the TRANSFER service is defined but not exported.)

How BEA Jo l t Works

Using BEA Jolt 1-11

Figure 1-4 Distributing BEA Tuxedo Services Through Jolt

Jolt Repository Editor
The Jolt Repository Editor is a Java-based GUI administration tool that gives the application
administrator access to individual BEA Tuxedo services. You use the Editor to define, test, and
export services to Jolt clients.

Note: The Jolt Repository Editor only controls services for Jolt client applications. You cannot
use it to make changes to the BEA Tuxedo application.

The Jolt Repository Editor lets you extend and distribute BEA Tuxedo services to Jolt clients
without having to modify many lines of code. You can modify parameters for BEA Tuxedo
services, logically group BEA Tuxedo services into packages, and remove services from created
packages. You can also make the services available to browser-based Jolt applets or Jolt
applications by exporting the services.

Jolt Internet Relay
The Jolt Internet Relay is a component that routes messages from a Jolt client to the Jolt Server.
The Jolt Internet Relay consists of the Jolt Relay (JRLY) and the Jolt Relay Adapter (JRAD).
JRLY is a stand-alone software component that routes Jolt messages to the Jolt Relay Adapter.
Requiring only minimal configuration to work with Jolt clients, the Jolt Relay eliminates the need
for the BEA Tuxedo system to run on the same machine as the Web server.

The JRAD is a BEA Tuxedo system server, but does not include any BEA Tuxedo services. It
requires command-line arguments to allow it to work with the JSH and the BEA Tuxedo system.
JRAD receives client requests from JRLY, and forwards the request to the appropriate JSH.
Replies from the JSH are forwarded back to the JRAD, which sends the response back to the
JRLY. A single Jolt Internet Relay (JRLY/JRAD pair) handles multiple clients concurrently.

Jolt Client
ApplicationBEA Tuxedo

Application
Jolt Repository

Services
INQUIRY

Services

WITHDRAW

Jolt Client
Application

...

DEPOSIT

TRANSFER

DEPOSIT

TRANSFER
INQUIRY

DEPOSIT, INQUIRY

DEPOSIT, INQUIRY

1-12 Using BEA Jolt

Creating a Jolt Client to Access BEA Tuxedo Applications
The main steps for creating and deploying a Jolt client, are described in the following procedure
and in the figure “Creating a Jolt Application” on page 1-13.

1. Make sure you have created a BEA Tuxedo system application.

For information about installing BEA Tuxedo and creating a BEA Tuxedo application,
refer to Installing the BEA Tuxedo System and Setting Up a BEA Tuxedo Application.

2. Install the Jolt system.

Refer to Installing the BEA Tuxedo System.

3. Use the Bulk Loader utility to load Tuxedo services into the Jolt Repository Database.

For information on using this utility, see “Bulk Loading Tuxedo Services.”

4. Configure and define services by using the Jolt Repository Editor.

For information about configuring the Jolt Repository Editor and making BEA Tuxedo
services available to Jolt, see Chapter 4, “Using the Jolt Repository Editor”

5. Create a client application by using the Jolt Class Library.

The following documentation shows you how to program your client application using the
Jolt Class Library:

– Using the Jolt Class Library

– BEA Jolt API Reference

6. Run the Jolt-based client applet or application.

Creat ing a Jo l t C l i ent to Access BEA Tuxedo App l icat ions

Using BEA Jolt 1-13

Figure 1-5 Creating a Jolt Application

BEA Tuxedo Application Is
Installed

Design Your Application
Services

Write/Deploy Your Application and
BEA Tuxedo Services

Install Jolt

Export Services

Program Client by Using
Jolt Class Library

Make Jolt Classes Available
(for example, through the Web)

Have an Existing BEA Tuxedo
Application?

Creating a New BEA Tuxedo
Application?

Start BEA Tuxedo Application

Run Your Jolt Application

Decide Which BEA Tuxedo Services
to Make Available to Jolt

Use Repository Editor to Define
Services Available from Jolt

Test Each Service

1-14 Using BEA Jolt

Using BEA Jolt 2-1

C H A P T E R 2

Bulk Loading BEA Tuxedo Services

As a systems administrator, you may have an existing BEA Tuxedo application with multiple
BEA Tuxedo services. Manually creating these definitions in the repository database may take
hours to complete. The Jolt Bulk Loader is a command utility that allows you to load multiple,
previously defined BEA Tuxedo services to the Jolt Repository database in a single step. Using
the jbld program, the Bulk Loader utility reads the BEA Tuxedo service definitions from the
specified text file and bulk loads them into the Jolt Repository. The services are loaded to the
repository database in one “bulk load.” After the services populate the Jolt Repository, you can
create, edit, and group services with the Jolt Repository Editor.

This topic includes the following sections:

Using the Bulk Loader

Syntax of the Bulk Loader Data Files

Troubleshooting

Sample Bulk Load Data

Using the Bulk Loader
The jbld program is a Java application. Before running the jbld command, set the CLASSPATH
environment variable (or its equivalent) to point to the directory where the Jolt class directory
(that is, jolt.jar and joltadmin.jar) is located. If the CLASSPATH variable is not set, the
Java Virtual Machine (JVM) cannot locate any Jolt classes.

2-2 Using BEA Jolt

For security reasons, jbld does not use command-line arguments to specify user authentication
information (user password or application password). Depending on the server’s security level,
jbld automatically prompts the user for passwords.

The Bulk Loader utility gets its input from command-line arguments and from the input file.

Activating the Bulk Loader
1. Type the following at the prompt (with the correct options):

java bea.jolt.admin.jbld [-n][-p package][-u usrname][-r usrrole]
//host:port filename

2. Use the following table to correctly specify the command-line options.

Command-line Options

The Bulk Load File
The bulk load file is a text file that defines services and their associated parameters. The Bulk
Loader loads the services defined in the bulk loader file into the Jolt Repository using the package
name “BULKPKG” by default. The -p command overrides the default and you can give the
package any name you choose. If another load is performed from a bulk loader file with the same

Table 2-1 Bulk Loader Command-line Options

Option Description

-u usrname Specifies the username (default is your account
name). (Mandatory if required by security.)

-r usrrole Specifies the user role (default is admin). (Mandatory
if required by security.)

-n Validates input file against the current repository; no
updates are made to the repository. (Optional)

-p package Repository package name (default is BULKPKG).

//host:port Specifies the JRLY or JSL address (host name and IP
port number). (Mandatory)

filename Specifies the file containing the service definitions.
(Mandatory)

Syntax o f the Bu lk Loader Data F i l es

Using BEA Jolt 2-3

-p option, all the services in the original package are deleted and a new package is created with
the services from the new bulk loader file.

If a service exists in a package other than the package you name that uses the -p option, the Bulk
Loader reports the conflict and does not load a service from the bulk loader file into the
repository. Use the Repository Editor to remove duplicate services and load the bulk loader file
again. See “Using the Jolt Repository Editor” on page 4-1 for additional information.

Syntax of the Bulk Loader Data Files
Each service definition consists of service properties and parameters that have a set number of
parameter properties. Each property is represented by a keyword and a value.

Keywords are divided into two levels:

Service-level

Parameter-level

Guidelines for Using Keywords
The jbld program reads the service definitions from a text file. To use the keywords, observe the
guidelines in the following table.

Table 2-2 Guidelines for Using Keywords

Guideline Example

Each keyword must be followed
by an equal sign (=) and the
value.

Correct: type=string

Incorrect: type

Only one keyword is allowed on
each line.

Correct: type=string

Incorrect: type=string access=out

Any lines not having an equal
sign (=) are ignored.

Correct: type=string

Incorrect: type string

Certain keywords only accept a
well-defined set of values.

The keyword access accepts only these values: in,
out, inout, noaccess

2-4 Using BEA Jolt

Keyword Order in the Bulk Loader Data File
Keyword order must be maintained within the data files to ensure an error-free transfer during the
bulk load.

The first keyword definition in the bulk loader data text file must be the initial service=<NAME>
keyword definition (shown in the listing “Keyword Hierarchical Order in a Data File”).
Following the service=<NAME> keyword, all remaining service keywords that apply to the
named service must be specified before the first param=<NAME> definition. These remaining
service keywords can be in any order.

All parameters associated with the service must be specified. Following each param=<NAME>
keywords are all the parameter keywords that apply to the named parameter until the next
occurrence of a parameter definition. These remaining parameter keywords can be in any order.
When all the parameters associated with the first service are defined, specify a new
service=<NAME> keyword definition.

Listing 2-1 Keyword Hierarchical Order in a Data File

service=<NAME>

<service keyword>=<value>

<service keyword>=<value>

The input file can contain
multiple service definitions.

service=INQUIRY
<service keywords and values>
service=DEPOSIT
<service keywords and values>
service=WITHDRAWAL
<service keywords and values>
service=TRANSFER
<service keywords and values>

Each service definition consists
of multiple keywords and
values.

service=DEPOSIT
export=true
inbuf=VIEW32
outbuf=VIEW32
inview=INVIEW
outview=OUTVIEW

Table 2-2 Guidelines for Using Keywords (Continued)

Guideline Example

Syntax o f the Bu lk Loader Data F i l es

Using BEA Jolt 2-5

<service keyword>=<value>

param=<NAME>

<parameter keyword>=<value>

<parameter keyword>=<value>

param=<NAME>

<parameter keyword>=<value>

<parameter keyword>=<value>

Using Service-Level Keywords and Values
A service definition must begin with the service=<NAME> keyword. Services using CARRAY,
STRING, or XML buffer types should only have one parameter in the service. The recommended
parameter name for a service that uses a CARRAY buffer type is CARRAY with carray as the data
type. For a service that uses a STRING buffer type, the recommended parameter name is STRING
with string as the data type. For a service that uses a XML buffer type, the recommended
parameter name is XML with xml as the data type.

The following table contains the guidelines for use of the service-level keywords and acceptable
values for each.

Table 2-3 Service-Level Keywords and Values

Keyword Value

service Any BEA Tuxedo service name

export True or false (default is false)

inbuf/outbuf Select one of these buffer types:
FML
FML32
VIEW
VIEW32
STRING
CARRAY

XML

X_OCTET

X_COMMON

X_C_TYPE

2-6 Using BEA Jolt

Using Parameter-Level Keywords and Values
A parameter begins with the param=<NAME> keyword followed by a number of parameter
keywords. It ends when another param or service keyword, or end-of-file is encountered. The
parameters can be in any order after the param=<NAME> keyword.

The following table contains the guidelines for use of the parameter-level keywords and
acceptable values for each.

inview Any view name for input parameters

(This keyword is optional only if one of the
following buffer types is used: VIEW, VIEW32,
X_COMMON, X_C_TYPE.)

outview Any view name for output parameters (Optional)

Table 2-4 Parameter-Level Keywords and Values

Keyword Values

param Any parameter name

type byte
short
integer
float
double
string
carray

xml

access in
out
inout
noaccess

count Maximum number of occurrences (default is 1). The
value for unlimited occurrences is 0. Used only by the
Repository Editor to format test screens.

Table 2-3 Service-Level Keywords and Values (Continued)

Keyword Value

Troub leshoot ing

Using BEA Jolt 2-7

Troubleshooting
If you encounter problems using the Bulk Loader utility, refer to the following table. For a
complete list of Bulk Loader utility error messages and solutions, see “System Messages.”

Table 2-5 Bulk Loader Troubleshooting Table

If . . . Then . . .

The data file is not found Check to ensure that the path is correct.

The keyword is invalid Check to ensure that the keyword is valid for the
package, service, or parameter.

The value of the keyword is null Type a value for the keyword.

The value is invalid Check to ensure that the value of a parameter is within
the allocated range for that parameter.

The data type is invalid Check to ensure that the parameter is using a valid data
type.

2-8 Using BEA Jolt

Sample Bulk Load Data
The following listing contains a sample data file in the correct format using the UNIX command
cat servicefile. This sample loads TRANSFER, LOGIN, and PAYROLL service definitions to
the BULKPKG.

Listing 2-2 Sample Bulk Load Data

service=TRANSFER

export=true

inbuf=FML

outbuf=FML

param=ACCOUNT_ID

type=integer

access=in

count=2

param=SAMOUNT

type=string

access=in

param=SBALANCE

type=string

access=out

count=2

param=STATLIN

type=string

access=out

service=LOGIN

inbuf=VIEW

inview=LOGINS

outview=LOGINR

export=true

param=user

type=string

access=in

param=passwd

type=string

access=in

Sample Bu lk Load Data

Using BEA Jolt 2-9

param=token

type=integer

access=out

service=PAYROLL

inbuf=FML

outbuf=FML

param=EMPLOYEE_NUM

type=integer

access=in

param=SALARY

type=float

access=inout

param=HIRE_DATE

type=string

access=inout

2-10 Using BEA Jolt

Using BEA Jolt 3-1

C H A P T E R 3

Configuring the BEA Jolt System

This chapter describes how to configure BEA Jolt. “Quick Configuration” is for users who are
familiar with Jolt. The other sections provide more detailed information. It is presumed that
readers are system administrators or application developers who have experience with the
operating systems and workstation platforms on which they are configuring BEA Jolt.

This topic includes the following sections:

Quick Configuration

Jolt Background Information

Jolt Relay

Jolt Relay Adapter

Jolt Repository

Event Subscription

BEA Tuxedo Background Information

Sample Applications in BEA Jolt Online Resources

3-2 Using BEA Jolt

Quick Configuration
If you are already familiar with BEA Jolt and BEA Tuxedo, “Quick Configuration” provides
efficient guidelines for the configuration procedure. If you have not used Jolt, refer to “Jolt
Background Information” on page 3-11 before you begin any configuration procedures.

Quick Configuration contains the information you need to configure the Jolt Server Listener
(JSL) on BEA Tuxedo and covers the following procedures:

Editing the UBBCONFIG File

Configuring the Jolt Repository

Initializing Services That Use BEA Tuxedo and the Repository Editor

Logging On to the Repository Editor

Exiting the Repository Editor

Configuring the BEA Tuxedo TMUSREVT Server for Event Subscription

Configuring Jolt Relay

Editing the UBBCONFIG File
1. In the MACHINES section, specify MAXWSCLIENTS=number (Required).

Note: If MAXWSCLIENTS is not set, JSL does not boot.

2. In the GROUPS section, set GROUPNAME required parameters [optional parameters].

3. Set the SERVERS section (Required).

Lines within this section have the form:

JSL required parameters [optional parameters]

where JSL specifies the file (string_value) to be executed by tmboot(1).

4. Set the required parameters for JSL.

Required parameters are:
SVRGRP=string_value

SRVID=number

CLOPT=”-A...-n...//host port”

Quick Conf igurat ion

Using BEA Jolt 3-3

5. Set other parameters for JSL.

You can use the following parameters with the JSL, but you need to understand how
doing so affects your application. Refer to “Parameters Usable with JSL” on page 3-37
for additional information.
MAX # of JSHs

MIN # of JSHs

Configuring the Jolt Repository
The following sections assist you in configuring the Jolt Repository.

In the Groups Section
1. Specify the same identifiers given as the value of the LMID parameter in the MACHINES

section.

2. Specify the value of the GRPNO, between 1 and 30,000.

In the Servers Section
The BEA Jolt Repository Server (JREPSVR) contains services for accessing and editing the
Repository. Multiple JREPSVR instances share repository information through a shared file.
Include JREPSVR in the SERVERS section of the UBBCONFIG file.

1. Indicate a new server identification with the SRVID parameter.

2. Specify the -W flag for one (and only one) JREPSVR to ensure that you can edit the
repository. (Without this flag, the repository is read-only.)

3. Type the -P flag to specify the path of the repository file. (An error message is displayed in
the BEA Tuxedo ULOG file if the argument for the -P flag is not entered.)

4. Add the file pathname of the Repository file (for example, /app/jrepository).

5. Boot the BEA Tuxedo system by using the tmloadcf and tmboot commands.

Initializing Services That Use BEA Tuxedo and the Repository
Editor
Define the BEA Tuxedo services that use BEA Tuxedo and BEA Jolt in order to make the Jolt
services available to the client.

3-4 Using BEA Jolt

1. Build the BEA Tuxedo server that contains the service.

2. Access the BEA Jolt Repository Editor.

Getting Started with the Repository Editor
Before you start the Repository Editor, make certain that you have installed all of the necessary
BEA Jolt software.

Note: You cannot use the Repository Editor until JREPSVR and JSL are running.

To use the Repository Editor, you must:

1. Start the Repository Editor.

You can start the Repository Editor from either the JavaSoft appletviewer or from your
Web browser. Both of these methods are detailed in the following sections.

2. Log on to the Repository Editor.

Starting the Repository Editor Using the Java Applet Viewer
1. Set the CLASSPATH to include the Jolt class directory or the directory where the *.jar files

reside.

2. If loading the applet from a local disk, type the following at the URL location:

appletviewer full-pathname/RE.html

If loading the applet from the Web server, type the following at the URL location:

http://www.server/URL path/RE.html

3. Press Enter.

The window is displayed as shown in the figure “BEA Jolt Repository Editor Logon
Window” on page 3-6.

Starting the Repository Editor Using Your Web Browser
Use one of the following procedures to start the Repository Editor from your Web browser.

To start the Repository Editor from a local file

1. Set the CLASSPATH to include the Jolt class directory.

2. Type the following:

Quick Conf igurat ion

Using BEA Jolt 3-5

file:full-pathname/RE.html

3. Press Enter.

The window is displayed as shown in the figure “BEA Jolt Repository Editor Logon
Window” on page 3-6.

To start from a Web server

1. Ensure that the CLASSPATH does not include the Jolt class directory.

2. Remove the Jolt cases from CLASSPATH.

3. Type the following:

http://www.server/URL path/RE.html

Note: If jolt.jar and admin.jar are in the same directory as RE.html, the Web server
provides the classes. If they are not in the same directory as RE.html, modify the
applet code base.

4. Press Enter.

The Repository Editor Logon window is displayed as shown in the figure “BEA Jolt
Repository Editor Logon Window” on page 3-6.

Logging On to the Repository Editor
After starting the Jolt Repository Editor, follow these directions to log on:

Note: The “BEA Jolt Repository Editor Logon Window” on page 3-6 must be displayed before
you log on. Refer to this figure as you perform the following procedure.

1. In the logon window, type the name of the Server machine designated as the “access point”
to the BEA Tuxedo application and press Tab.

2. Type the Port Number and press Enter.

The system validates the server and port information.

Note: Unless you are logging on through Jolt Relay, the same port number is used to
configure the Jolt Listener. Refer to your UBBCONFIG file for additional information.

3. Type the BEA Tuxedo Application Password and press Enter.

Depending upon the authentication level, complete steps 5 and 6 as required.

4. Type the BEA Tuxedo User Name and press Tab.

3-6 Using BEA Jolt

5. Type the BEA Tuxedo User Password and press Enter.

The Packages and Services command buttons are enabled.

Note: The BEA Jolt Repository Editor uses the hardcoded joltadmin for the User Role
value.

Figure 3-1 BEA Jolt Repository Editor Logon Window

The following table, “Repository Editor Logon Window Description,” contains details about
each of the fields and buttons.

Quick Conf igurat ion

Using BEA Jolt 3-7

Repository Editor Logon Window Description

Table 3-1 Repository Editor Logon Window Description

Exiting the Repository Editor
Exit the Repository Editor when you finish adding, editing, testing, or deleting packages,
services, and parameters. Prior to exit, the window is displayed as shown in the figure “BEA Jolt
Repository Editor Logon Window Prior to Exit” on page 3-8.

Option Description

Server The server name.

Port Number The port number in decimal value.

Note: After the Server Name and Port Number are entered, the
User Name and Password fields are activated. Activation
is based on the authentication level of the BEA Tuxedo
application.

User Role BEA Tuxedo user role. Required only if BEA Tuxedo
authentication level is USER_AUTH or higher.

Application
Password

BEA Tuxedo administrative password text entry.

User Name BEA Tuxedo user identification text entry. The first character must
be an alpha character.

User Password BEA Tuxedo password text entry.

Packages Accesses the Packages window. (Enabled after the logon.)

Services Accesses the Services window. (Enabled after the logon.)

Log Off Terminates the connection with the server.

3-8 Using BEA Jolt

Figure 3-2 BEA Jolt Repository Editor Logon Window Prior to Exit
.

Note that only the Packages, Services, and Log Off command buttons are enabled. All of the text
entry fields are disabled.

Follow the steps below to exit the Repository Editor.

1. Click Back in a previous window to return to the Repository Editor Logon window.

2. Click Log Off to terminate the connection with the server.

The Repository Editor Logon window shows disabled fields.

3. Click Close from your browser menu to close the window.

Quick Conf igurat ion

Using BEA Jolt 3-9

Configuring the BEA Tuxedo TMUSREVT Server for Event
Subscription
Jolt Event Subscription receives event notifications from either BEA Tuxedo services or other
BEA Tuxedo clients. Configure the BEA Tuxedo TMUSREVT server and modify the application
UBBCONFIG file. The following listing, “TMUSREVT Parameters in the UBBCONFIG File,”
shows the relevant TMUSREVT parameters in the UBBCONFIG file:

Listing 3-1 TMUSREVT Parameters in the UBBCONFIG File

TMUSREVT SRVGRP=EVBGRP1 SRVID=40 GRACE=3600

 ENVFILE="/usr/tuxedo/bankapp/TMUSREVT.ENV"

 CLOPT="-e tmusrevt.out -o tmusrevt.out -A --

 -f /usr/tuxedo/bankapp/tmusrevt.dat"

 SEQUENCE=11

In the SERVERS sections of the UBBCONFIG file, specify the SRVGRP and SRVID.

Configuring Jolt Relay

On UNIX
Start the JRLY process on UNIX by typing the following command at the system prompt:

jrly -f <config_file_path>

If the configuration file does not exist or cannot be opened, the JRLY writes a message to
standard error, attempts to log the startup failure in the error log, then exits.

On UNIX and Windows 2003
The format of the configuration file is a TAG=VALUE format. Blank lines or lines starting
with a “#” are ignored. The following listing, “Formal Configuration File Specifications,”
is an example of the formal specifications of the configuration file.

3-10 Using BEA Jolt

Listing 3-2 Formal Configuration File Specifications

LOGDIR=<LOG_DIRECTORY_PATH>
ACCESS_LOG=<ACCESS_FILE_NAME in LOGDIR>
ERROR_LOG=<ERROR_FILE_NAME in LOGDIR>
LISTEN=<IP:Port combination where JRLY will accept comma-separated
connections>
CONNECT=<IP:Port1, IP:Port2...IP:PortN:Port(List of IP:Port combinations
associated with JRADs: can be 1...N)>

On Windows 2003 Only (Optional)
SOCKETTIMEOUT is the time in seconds for which JRLY Windows 2003 service blocks for
network activity (new connections, data to be read, closed connections). SOCKETTIMEOUT also
affects the Service Control Manager (SCM). When the SCM requests the Windows 2003 service
to stop, the SCM must wait for at least SOCKETTIMEOUT seconds before quitting.

Note: The format for directory and filenames is determined by the operating system. UNIX
systems use the forward slash (/). Windows 2003 systems use the backslash (\). If any
files specified in LOGDIR, ACCESS_LOG, or ERROR_LOG cannot be opened for writing,
JRLY prints an error message on stderr and exits.

The formats for the host names and the port numbers are shown in the following table.

 Start the Jolt Relay Adapter (JRAD)

1. Type tmloadcf -y <UBBFILE>.

2. Type tmboot.

Configure the JRAD
A single JRAD process can only be connected to a single JRLY. A JRAD can be configured to
communicate with only one JSL and its associated JSH. However, multiple JRADs can be

Table 3-2 Host Name and Port Number Formats

Host Name/Port
Number

Description

//Hostname:Port Hostname is a string; Port is a decimal number.

IP:Port IP is a dotted notation IP address; Port is a decimal number.

J o l t Background In fo rmat ion

Using BEA Jolt 3-11

configured to communicate with one JSL. The CLOPT parameter for BEA Tuxedo services must
be included in the UBBCONFIG file.

1. Type -l hexadecimal format (The JSL port to which the JRLY connects on behalf of the
client.)

2. Type -c hexadecimal format (The address of the corresponding JSL to which JRAD
connects.)

Note: The format is 0x0002PPPNNN, or, in dot notation, 100.100.10.100.

3. Configure networked components.

Jolt is now configured.

Jolt Background Information
This section contains additional information on Jolt components.

Jolt Server
The Jolt Server is a listener that supports one or more handlers.

Jolt Server Listener (JSL)—the JSL is configured to support clients on an IP/port
combination.The JSL works with the Jolt Server Handler (JSH) to provide client connectivity to
the back-end of the BEA Jolt system. The JSL runs as a BEA Tuxedo server.

Jolt Server Handler (JSH)—the JSH is a program that runs on a BEA Tuxedo server machine to
provide a network connection point for remote clients. The JSH works with the JSL to provide
client connectivity residing on the back-end of the BEA Jolt system. More than one JSH can be
available to the JSL, up to 32,767. (Refer to the description of the -M command-line option in
“JSL Command-line Options” on page 3-13 for additional information.)

System Administrator Responsibilities—the system administrator’s responsibilities for the server
components of BEA Jolt include:

Determining the JSL network address.

Determining the number of Jolt clients to be serviced. (The number of clients to be
serviced is limited by MAXWSCLIENTS in UBB.)

Determining the minimum and maximum number of JSHs.

3-12 Using BEA Jolt

Starting the JSL
To start all administrative and server processes in the UBBCONFIG file:

1. Type tmloadcf.

This command parses the configuration file and loads the binary version of the
configuration file.

2. Type tmboot -y.

This command activates the application specified in the configuration file.

If you do not enter any options, a prompt asks you if you really want to overwrite your
TUXCONFIG file.

See Administering a BEA Tuxedo Application at Run Time or the BEA Tuxedo Command
Reference for information about tmloadcf and tmboot.

Shutting Down the JSL
All shutdown requests to the Jolt servers are initiated by the BEA Tuxedo command:

 tmshutdown -y

During shutdown:

No new client connections are accepted.

All current client connections are terminated. BEA Tuxedo rolls back in-flight transactions.
Each client receives an error message indicating that the service is unavailable.

Restarting the JSL
BEA Tuxedo monitors the JSL and restarts it in the event of a failure. When BEA Tuxedo restarts
the listener process, the following events occur:

Clients attempting a listener connection must try to reconnect. Clients attempting a handler
connection receive a timeout or a time delay.

Clients currently connected to a handler are disconnected (JSH exits when its
corresponding JSL exits normally).

J o l t Background In fo rmat ion

Using BEA Jolt 3-13

Configuring the JSL
The Jolt Server Listener (JSL) is a BEA Tuxedo server responsible for distributing connection
requests from Jolt to the Jolt Server Handler (JSH). BEA Tuxedo must be running on the host
machine where the JSL and JREPSVR are located.

Note: The way the JSL selects ports for the JSH is different than the process for the BEA
Tuxedo Workstation Server Listener (WSL). For detailed information regarding on
properly configuring JSL ports, refer to the “SERVERS Section” of “Creating the
UBBCONFIG File” on page 3-33.

JSL Command-line Options
The server may need to obtain information from the command line. The CLOPT parameter
allows you to specify command-line options that can change some defaults in the server. The JSL
command-line options are described in the following table.

Table 3-3 JSL Command-line Options

Option Description

[-a] Enables or disables the security context for a Jolt connection
pool. This option should be enabled if you want to
implement authentication propagation between WebLogic
Server and Jolt. If identity propagation is desired, then the
Jolt Service Handler (JSH) must be started with this option.
If the -a option is not set, but SecurityContext is enabled,
the JSH will not accept this request. If the SecurityContext
attribute is enabled, then the Jolt client will pass the
username of the caller to the JSH.

If the JSH, gets a message with the caller’s identity, it calls
impersonate_user() to get the appkey for the user. JSH
caches the appkey, so the next time the caller makes a
request, the appkey is retrieved from the cache and the
request is forwarded to the service. A cache is maintained by
each JSH, which means that there will be a cache maintained
for all the session pools connected to the same JSH.

3-14 Using BEA Jolt

Option Description

[-c
compression_threshold]

Enables application data sent between a Jolt client and a Jolt
server (JSH) to be compressed during transmission over the
network.

compression_threshold is a number that you specify
between 0 and 2,147,483,647 bytes. Any messages that are
larger than the specified compression threshold are
compressed before transmission.

The default is no compression; that is, if no compression
threshold is specified, BEA Jolt does not compress messages
on client or server.

[-d device_name] The device for platforms using the Transport Layer
Interface. There is no default. Required. (Optional for
sockets)

[-H external netaddr] Specifies the network address mask Jolt clients use to
connect to the application when there is network address
translation. The JSL process uses this address to listen for
clients attempting to connect at this address. If the external
address mask is 0x0002MMMMdddddddd and the JSH
network address is 0x00021111ffffffff, the known (or
external) network address is 0x00021111dddddddd. If
the address starts with "//" network address, the type is IP
based and the TCP/IP port number of the JSH network
address is copied into the address to form the combined
network address.

The external IP address mask must be specified in the
following form:
-H //external ip address:MMMM

(Optional for JSL in BEA Tuxedo 6.4 and 6.5)

[-I init-timeout] The time (in seconds) that a Jolt client is allowed to complete
initialization through the JSH before it is timed out by the
JSL. Default is 60 seconds. (Optional)

Table 3-3 JSL Command-line Options (Continued)

J o l t Background In fo rmat ion

Using BEA Jolt 3-15

Option Description

[-j connection_mode] The following connection modes from clients are allowed:

RETAINED—the network connection is retained for the full
duration of a session.

RECONNECT—the client establishes and brings down a
connection when an idle timeout is reached, reconnecting for
multiple requests within a session.

ANY—the server allows a client to request either a
RETAINED or RECONNECT type of connection for a
session.

The default is ANY. That is, if no option is specified, the
server allows a client to request either a RETAINED or
RECONNECT type of connection. (Optional)

[-m minh] The minimum number of JSHs that are available in
conjunction with the JSL at one time. The range of this
parameter is from 0 through 255. Default is 0. (Optional)

[-M maxh] The maximum number of JSHs that are available in
conjunction with the JSL at one time. If this option is not
specified, the parameter defaults to the MAXWSCLIENTS
divided by the -x multiplexing factor (MPX), with the result
rounded up. If specified, the -M option takes a value from 1
to 32,767. (Optional)

Table 3-3 JSL Command-line Options (Continued)

3-16 Using BEA Jolt

Option Description

[-n netaddr] Network address used by the BEA Jolt listener with BEA
Tuxedo 6.4 and 6.5, and WebLogic Enterprise 4.2.

TCP/IP addresses may be specified in the following formats:

"//host.name:port_number"

"//#.#.#.#:port_number"

In the first format, the domain finds an address for
hostname by using the local name resolution facilities
(usually DNS). hostname must be the local machine, and
the local name resolution facilities must unambiguously
resolve hostname to the address of the local machine.

In the second example, the “#.#.#.#” is in dotted decimal
format. In dotted decimal format, each # should be a number
from 0 to 255. This dotted decimal number represents the IP
address of the local machine. In both of the above formats,
port_number is the TCP port number at which the domain
process listens for incoming requests. port_number can
either be a number between 0 and 65535 or a name.

[-S Client-timeout] The idle time (in minutes) when the client does not have any
outstanding requests. In other words, when the client is
“snoozing.”

This option can be used together with the -T option. When
either timeout reached, JSH will close the session.

If a parameter is not specified, the default is no timeout.
(Optional)

[-T Client-timeout] The time (in minutes) allowed for a client to stay idle. If a
client does not make any requests during this time, the JSH
disconnects the client and the session is terminated. If an
argument is not supplied, the session does not timeout.

When the -j ANY or -j RECONNECT option is used,
always specify -T with an idle timeout value. If -T is not
specified and the connection is suspended, JSH does not
automatically terminate the session. The session never
terminates if a client abnormally ends the session.

If a parameter is not specified, the default is no timeout.
(Optional)

Table 3-3 JSL Command-line Options (Continued)

Jo l t Re lay

Using BEA Jolt 3-17

Security and Encryption
Authentication and key exchange data are transmitted between Jolt clients and the JSL/JSH using
the Diffie-Hellman key exchange. All subsequent exchanges are encrypted using RC4
encryption. International packages use a DES key exchange and a 128-bit key, with 40 bits
encrypted and 88 bits exposed.

Programs using the 128-bit encryption cannot be exported outside the United States without
proper approval from the United States government. Customers with intranets extending beyond
the United States cannot use this mode of encryption if any internal clients are outside the United
States.

Jolt Relay
The combination of the Jolt Relay (JRLY) and its associated Jolt Relay Adapter (JRAD) is
typically referred to as the Internet Relay. Jolt Relay routes messages from a Jolt client to a JSL
or JSH. This eliminates the need for the JSH and BEA Tuxedo to run on the same machine as the
Web server (which is generally considered insecure). The Jolt Relay consists of the two
components illustrated in the figure “Jolt Internet Relay Path” on page 3-18.

[-w JSH] This command-line option indicates the Jolt Server Handler.
Default is JSH. (Optional)

Option Description

[-x mpx-factor] This is the number of clients that one JSH can service. Use
this parameter to control the degree of multiplexing within
each JSH process. If specified, this parameter takes a value
from 1 to 32767 for UNIX and Windows 2003. Default value
is 10. (Optional)

[-Z 0|56|128] When a network link between a Jolt client and the JSH is
being established, this option allows encryption up to the
specified level. The initial 0 means no DH nodes, no RC4.
The numbers 56 and 128 specify the length (in bits) of the
encryption key. The DH key exchange is needed to generate
keys. Session keys are not transmitted over the network. The
default value is 0.

Table 3-3 JSL Command-line Options (Continued)

3-18 Using BEA Jolt

Jolt Relay (JRLY)—the JRLY is the Jolt Relay front-end. It is not a BEA Tuxedo client or
server and is not dependent on the BEA Tuxedo version. It is a stand-alone software
component. It requires only minimal configuration to allow it to work with Jolt clients.

Jolt Relay Adapter (JRAD)—the JRAD is the Jolt Relay back-end. It is a BEA Tuxedo
system server, but does not include any BEA Tuxedo services. It requires command-line
arguments to allow it to work with the JSL and the BEA Tuxedo system.

Note: The Jolt Relay is transparent to Jolt clients and Jolt servers. A Jolt server can
simultaneously connect to intranet clients directly, or through the Jolt Relay to Internet
clients.

Figure 3-3 Jolt Internet Relay Path

This figure illustrates how a browser connects to the Web server software and downloads the
BEA Jolt applets. The Jolt applet or client connects to the JRLY on the Web server machine. The
JRLY forwards the Jolt messages across the firewall to the JRAD. The JRAD selectively
forwards messages to the JSL or appropriate JSH.

Firewall

JRAD

JSL

JSH

Web server

JRLY

Insecure
environment

Secure
environment

client
BEA Tuxedo

software
Browser

Jo l t Re lay

Using BEA Jolt 3-19

Jolt Relay Failover
There are two points of failover associated with JRLY:

Jolt Client to JRLY connection failover

JRLY to JRAD connection failover

Jolt Client to JRLY Connection Failover
If one server address does not result in a successful session, the failover function allows the Jolt
Client API to connect to the next free (unconnected) JRLY specified in the argument list of the
API. To enable this failover in a Windows 2003 environment, multiple Windows 2003 JRLY
services can be executed. In a non-Windows 2003 environment, multiple JRLY processes are
executed. Each JRLY (service or process) has its own configuration file. This type of failover is
handled by the client API features in BEA Jolt, which allow you to specify a list of Jolt server
addresses (JSL or JRLY).

JRLY to JRAD Adapter Connection Failover
Each JRLY configuration file has a list of JRAD addresses. When a JRAD is unavailable, JRLY
tries to connect to the next free (unconnected) JRAD, in a round-robin fashion. Two JRLYs
cannot connect to the same JRAD. Given these facts, you can make the connection efficient by
giving different JRAD address orders. That is, if you make one extra JRAD available on standby,
the first JRLY that loses its JRAD connects to the extra JRAD. This type of failover is handled
by JRLY alone.

If any of the listed JRADs are not executing when JRLY is started, the initial connection fails.
When a Jolt client tries to connect to JRLY, the JRLY again tries to connect to the JRAD.

To accommodate the failover functionality, you have to boot multiple JRADs by configuring
them in the UBBCONFIG file.

Jolt Relay Process
The JRLY (front-end relay) process can be started before or after the JRAD is started. If the
JRAD is not available when the JRLY is started, the JRLY attempts to connect to the JRAD when
it receives a client request. If JRLY is still unable to connect to the JRAD, the client is denied
access and a warning is written to the JRLY error log file.

3-20 Using BEA Jolt

Starting the JRLY on UNIX
Start the JRLY process by typing the command name at a system prompt.

jrly -f config_file_path

If the configuration file does not exist or cannot be opened, the JRLY prints an error message.

If the JRLY is unable to start, it writes a message to standard error and attempts to log the startup
failure in the error log, then exits.

JRLY Command-line Options for Windows 2003
This section describes command-line options that are available from the Windows 2003 version
of JRLY.exe. Note the following:

JRLY as a Windows service is available only for Windows 2003.

When the display suffix is optional (when [display_suffix] is shown), all operations
are performed on the default JRLY Windows 2003 service instance.

For manually installed, additional JRLY services, a suffix (any string) is required. Also,
you can install the default service manually by omitting the optional string suffix.

Each instance of JRLY Windows 2003 service uses the same binary executable file.

A new process is started for each instance of JRLY Windows 2003 service.

The syntax for these options is: jrly -command.

Text specified within brackets ([]) is optional.

All commands in the following list of command options except -start and -stop require
that you have write access to Windows 2003 Registry.

The -start and -stop commands require that you have Windows 2003 Service control
access. These requirements are based on Windows 2003 user restrictions.

Jo l t Re lay

Using BEA Jolt 3-21

The JRLY command-line options are detailed in the following table:

Table 3-4 JRLY Command-line Options for Windows 2003

Option Description

jrly -install
[display_suffix]

Install jrly as a Windows 2003 service.

Example 1:
jrly -install

In this example, the default JRLY is installed as a Windows 2003
Service and is displayed in the Service Control Manager (SCM) as
Jolt Relay.

Example 2:
jrly -install MASTER

In this case, an instance of JRLY is installed as a Windows 2003
Service and is displayed in the SCM as Jolt Relay_MASTER. The
suffix, MASTER, does not have any significance; it is only used
to uniquely identify various instances of JRLYs.

At this point, this instance of JRLY is not ready to start. It must be
assigned the configuration file (see the set command
discussion) that specifies the listening TCP/IP port, JSH
connection TCP/IP port, log files, and sockettimeout. This
file should not be shared between various instances of JRLY.

3-22 Using BEA Jolt

jrly -remove
[display_suffix] |
-all

Remove one or all instances of JRLY from Windows 2003
service.

If [display_suffix] is specified, this command removes the
specified JRLY service.

If [display_suffix] is not specified, this command removes
the default JRLY from being a Windows 2003 Service.

If the -all option is specified, all JRLY Windows 2003 Services
are removed. Related Windows 2003 registry entries under
HKEY_LOCAL_MACHINE\System\
CurrentControlSet\Services\BEA JoltRelay

and
HKEY_LOCAL_MACHINE\Software\
BEA Systems\Jolt\x.x

are removed.

jrly -set
[-d display_suffix] -f
config_file

Update the registry with the full path of a new configuration file.

Example 1:
jrly -set -f c:\tux71\udataobj\jolt\jrly.con

In this example, the default JRLY Windows 2003 Service (Jolt
Relay) is assigned a configuration file called jrly.con that is
located in: c:\tuxdir\udataobj\jolt directory.

Example 2:
jrly -set -d MASTER -f
c:\tuxdir\udataobj\jolt\master.con

Here, the JRLY Windows 2003 Service instance, called Jolt
Relay_MASTER is assigned a configuration file called
jrly_master.con that is located in
c:\tuxdir\udataobj\jolt directory.

jrly -manual
[display_suffix]

Set the start/stop to manual.

This command sets the specified JRLY instance to be manually
controlled, using either the command-line options or the SCM.

Table 3-4 JRLY Command-line Options for Windows 2003 (Continued)

Jo l t Re lay

Using BEA Jolt 3-23

JRLY Command-line Option for UNIX
There is only one JRLY command-line option for UNIX:

JRLY Configuration File
The format of the configuration file is a TAG=VALUE format. Blank lines or lines starting with
a “#” are ignored. The following listing contains an example of the formal specifications of the
configuration file.

jrly -auto
[display_suffix]

Set the start/stop to automatic.

This command sets all the operations for a specified Windows
2003 Service to be automatically started when the OS boots and
stopped when the OS shuts down.

jrly -start
[display_suffix]

Start the specified JRLY.

jrly -stop
[display_suffix]

Stop the specified JRLY.

jryl -version Print the current version of JRLY binary.

jrly -help Print command-line options with brief descriptions.

Table 3-5 JRLY Command-line Option for UNIX

Option Description

jrly -f
config_file_path

Start the JRLY process.

This option starts the JRLY process. If the configuration file
does not exist or cannot be opened, the JRLY prints an error
message. If the JRLY cannot start, it writes a message to
standard error, attempts to log the startup failure in the error
log, then exits.

Table 3-4 JRLY Command-line Options for Windows 2003 (Continued)

3-24 Using BEA Jolt

Listing 3-3 Specification of Configuration File

LOGDIR=<LOG_DIRECTORY_PATH>

ACCESS_LOG=<ACCESS_FILE_NAME in LOGDIR>

ERROR_LOG=<ERROR_FILE_NAME in LOGDIR>

LISTEN=<IP:Port combination where JRLY will accept connections>

CONNECT=<IP:Port combination associated with JRAD>

SOCKETTIMEOUT=<Seconds for socket accept()function>

Note: SOCKETTIMEOUT is the duration (in seconds) of which the relay Windows 2003 service
blocks the establishment of new socket connections to allow network activity (new
connections, data to be read, closed connections). It is valid only on Windows 2003
machines. SOCKETTIMEOUT also affects the SCM. When the SCM requests that the
service stop, the SCM needs to wait at least SOCKETTIMEOUT seconds before doing so.

The following listing shows an example of the JRLY configuration file. The CONNECT line
specifies the IP address and port number of JRAD machine.

Listing 3-4 Example of JRLY Configuration File

LOGDIR=/usr/log/relay

ACCESS_LOG=access_log

ERROR_LOG=errorlog

jrly will listen on port 4444

LISTEN=200.100.10.100:4444

CONNECT=machine1:port1

CONNECT=machine2:port2

SOCKETTIMEOUT=30 //See text under listing

The format for directory and filenames is determined by the operating system. UNIX systems use
the forward slash (/). Windows 2003 systems use the backslash (\). If any file specified in
LOGDIR, ACCESS_LOG or ERROR_LOG cannot be opened for writing, the JRLY prints an error
message on stderr and exits.

J o l t Re lay Adapte r

Using BEA Jolt 3-25

The formats for host names and port numbers are shown in the following table.

Jolt Relay Adapter
The Jolt Relay Adapter (back-end relay) is a BEA Tuxedo system server. The Jolt Relay Adapter
(JRAD) server may or may not be located on the same BEA Tuxedo host machine in single host
mode (SHM) and server group to which the JSL server is connected.

The JRAD can be started independently of its associated JRLY. JRAD tracks its startup and
shutdown activity in the BEA Tuxedo log file.

JRAD Configuration
A single JRAD process can only be connected to a single JRLY. A JRAD can be configured to
communicate with only one JSL and its associated JSHs. However, multiple JRADs can be
configured to communicate with one JSL. The CLOPT parameter for the BEA Tuxedo servers
must be included in the UBBCONFIG file. A sample of the file is shown in the listing “Sample
JRAD Entry in UBBCONFIG File” on page 3-26.

The following table contains additional information about the CLOPT parameters.

Table 3-6 Host Name and Port Number Formats

Host Name/Port Number Descriptions

Hostname:Port Hostname is a string, Port is a decimal number

//Hostname:Port Hostname is a string, Port is a decimal number

IP:Port IP is a dotted notation IP address, Port is a decimal
number

Table 3-7 JRAD CLOPT Parameter Descriptions

CLOPT Parameter Description

-l netaddr Port to listen for the JRLY to connect
on behalf of the client.

3-26 Using BEA Jolt

The address for the JRAD CLOPT parameters can be specified in either of the following formats:

//hostname:port

0x0002pppphhhhhhhh
(where pppp is the port number and hhhhhhhh is the hexadecimal IP address)

Listing 3-5 Sample JRAD Entry in UBBCONFIG File

JRAD host 200.100.100.10 listens at port 2000, connects to JSL port 8000

on the same host

JRAD SRVGRP=JSLGRP SRVID=60

 CLOPT="-A -- -l 0x000207D0C864640A –c 0x00021f40C864640A"

-c netaddr The address of the corresponding JSL
to which JRAD connects.

-H netaddr The listening address for an external
proxy. An external proxy is one that
runs on a client host. This proxy
handles HTTP and other protocols.
The other end of the proxy connects to
JRLY, which connects to JSL/JSH.

In order for the proxy to work for Jolt
clients (specifically applets that
connect to JRLY), the JRAD passes
the -H argument to an applet,
instructing it to connect to the proxy
address instead of the JRLY address.

Note: Unlike the JSL -H option, the
JRAD -H option is not used
as a network address
translator, nor is it used as an
address mask.

Table 3-7 JRAD CLOPT Parameter Descriptions (Continued)

CLOPT Parameter Description

J o l t Repos i to r y

Using BEA Jolt 3-27

Network Address Configurations
A Jolt Internet Relay configuration requires that several networked components work together.
Prior to configuration, review the criteria in the following table and record the information to
minimize the possibility of misconfiguration.

 Jolt Repository
The Jolt Repository contains BEA Tuxedo service definitions that allow Jolt clients to access
BEA Tuxedo services. The Jolt Repository files included with the installation contain service
definitions used internally by BEA Jolt. See “Using the Jolt Repository Editor” on page 4-1 for
detailed instructions on how to add definitions to the application services.

Configuring the Jolt Repository
To configure the BEA Jolt Repository, modify the application UBBCONFIG file. The UBBCONFIG
file is an ASCII version of the BEA Tuxedo configuration file. Create a new UBBCONFIG file for
each application. See the BEA Tuxedo Command Reference for information regarding the syntax
of the entries for the file. The following listing shows relevant portions of the UBBCONFIG file.

Listing 3-6 Sample UBBCONFIG File

*GROUPS

JREPGRP GRPNO=94 LMID=SITE1

*SERVERS

JREPSVR SRVGRP=JREPGRP SRVID=98

RESTART=Y GRACE=0 CLOPT="-A -- -W -P /app/jrepository"

JREPSVR SRVGRP=JREPGRP SRVID=97

RESTART=Y RQADDR=JREPQ GRACE=0 CLOPT="-A -- -P /app/jrepository"

Table 3-8 Jolt Internet Relay Network Address Configuration Criteria

JRLY JRAD JSL

LISTEN: Location where
the clients connect.

CONNECT: Location of
your JRAD. Must match the
-l parameter of JRAD.

-l: Location where the
listener connects to the JRLY.

-c: Location of JSL. Must
match -n parameter of JSL.

-n: Location of JSL. Must
match -c parameter of
JRAD.

3-28 Using BEA Jolt

JREPSVR SRVGRP=JREPGRP SRVID=96

RESTART=Y RQADDR=JREPQ REPLYQ=Y GRACE=0 CLOPT="-A -- -P /app/jrepository"

Note: For UNIX systems, use the slash (/) when setting the path to the jrepository file (for
example, app/repository). For Windows 2003 systems, use the backslash (\) and
specify the drive name (for example, c:\app\repository).

Change the sections of the UBBCONFIG file as indicated in the following table:

GROUPS Section
A GROUPS entry is required for the group that includes the BEA Jolt Repository. The group name
parameter is a name selected by the application.

1. Specify the same identifiers given as the value of the LMID parameter in the MACHINES
section.

2. Specify the value of the GRPNO between 1 and 30,000 in the GROUPS section.

SERVERS Section
The Jolt Repository Server, JREPSVR, contains services for accessing and editing the repository.
Multiple JREPSVR instances share repository information through a shared file. Include JREPSVR
in the SERVERS section of the UBBCONFIG file.

1. Indicate a new server identification (for example, 98) with the SRVID parameter.

2. Specify the -W flag for one JREPSVR to ensure that you can edit the Repository. The
Repository is read-only without this flag.

Note: You must install only one writable JREPSVR (that is, only one JREPSVR with the -W
flag). Multiple read-only JREPSVRs can be installed on the same host.

Table 3-9 UBBCONFIG File

Section Parameters to be specified

GROUPS LMID, GRPNO

SERVERS SRVGRP, SRVID

J o l t Repos i to r y

Using BEA Jolt 3-29

3. Type the -P flag to specify the path of the repository file. An error message is displayed in
the BEA Tuxedo ULOG file if the argument for the -P flag is not entered.

4. Add the file pathname of the repository file (for example, /app/jrepository).

5. Boot the BEA Tuxedo system using the tmloadcf command (for example, tmloadcf -y
ubbconfig) and tmboot command. See Administering a BEA Tuxedo Application at Run
Time for information about tmloadcf and tmboot.

Repository File
A repository file, jrepository, is available with BEA Jolt. This file includes bankapp services
and the repository services that you can modify, test, and delete using the Repository Editor.

Note: If you are upgrading from version 1.x of BEA Jolt, you must use the Bulk Loader to
regenerate the jrepository file in order to ensure compatibility with the current
version.

Start with the jrepository file provided with the installation, even if you are not going to test
the bankapp application with BEA Jolt. Delete the bankapp packages or services that you do not
need.

The pathname of the file must match the argument of the -P option.

Warning: Do not modify the repository files manually or you will not be able to use the
Repository Editor. Although the jrepository file can be modified and read with
any text editor, the BEA Jolt system does not have integrity checks to ensure that the
file is in the proper format. Any manual changes to the jrepository file might not
be detected until run time. See “Using the Jolt Repository Editor” on page 4-1 for
additional information.

Initializing Services By Using BEA Tuxedo and the Repository
Editor
Define the BEA Tuxedo services by using BEA Tuxedo and BEA Jolt Repository Editor in order
to make the Jolt services available to the client.

1. Build the BEA Tuxedo server containing the service. See Administering a BEA Tuxedo
Application at Run Time or Programming BEA Tuxedo ATMI Applications Using C for
additional information on the following:

– Building the BEA Tuxedo application server

– Editing the UBBCONFIG file

3-30 Using BEA Jolt

– Updating the TUXCONFIG file

– Administering the tmboot command

2. Access the BEA Jolt Repository Editor. See “Using the Jolt Repository Editor” on page 4-1
for additional information on the following:

– Adding a Service

– Saving Your Work

– Testing a Service

– Exporting and Unexporting Services

Event Subscription
Jolt Event Subscription receives event notifications from either BEA Tuxedo services or other
BEA Tuxedo clients:

Unsolicited Event Notifications—a Jolt client receives these notifications as a result of a
BEA Tuxedo client or service subscribing to unsolicited events, and a BEA Tuxedo client
issuing a broadcast (using either a tpbroadcast() or a directly targeted message via a
tpnotify() ATMI call). Unsolicited event notifications do not need the TMUSREVT server.

Brokered Event Notifications—a Jolt client receives these notifications through the BEA
Tuxedo Event Broker. The notifications are only received when both Jolt clients subscribe
to an event and any BEA Tuxedo client or server posts an event using tppost(). Brokered
event notifications require the TMUSREVT server.

Configuring for Event Subscription
Configure the BEA Tuxedo TMUSREVT server and modify the application UBBCONFIG file. The
following listing shows the relevant sections of TMUSREVT parameters in the UBBCONFIG file. See
Programming BEA Tuxedo ATMI Applications Using C for information about the syntax of the
entries for the file.

Listing 3-7 UBBCONFIG File

TMUSREVT SRVGRP=EVBGRP1 SRVID=40 GRACE=3600

 ENVFILE="/usr/tuxedo/bankapp/TMUSREVT.ENV"

 CLOPT="-e tmusrevt.out -o tmusrevt.out -A --

Event Subscr ip t ion

Using BEA Jolt 3-31

 -f /usr/tuxedo/bankapp/tmusrevt.dat"

 SEQUENCE=11

In the SERVERS section of the UBBCONFIG file, modify the SRVGRP and SRVID parameters as
needed.

Filtering BEA Tuxedo FML or VIEW Buffers
Filtering is a process that allows you to customize a subscription. If you require additional
information about the BEA Tuxedo Event Broker, subscribing to events, or filtering, refer to
Programming BEA Tuxedo ATMI Applications Using C.

In order to filter BEA Tuxedo FML or VIEW buffers, the field definition file must be available
to BEA Tuxedo at run time.

Note: There are no special requirements for filtering STRING buffers.

Buffer Types

Table 3-10 BEA Tuxedo Buffer Types

Buffer Type Description

FML Attribute, value pair. Explicit.

VIEW C structure. Very precise offsetting. Implicit.

STRING Length and offset are different values. All readable.

CARRAY Character array. BLOB of binary data. Only client
and server know - JSL doesn’t.

X_C_TYPE Equivalent to VIEW.

X_COMMON Equivalent to VIEW, but used for both COBOL and
C.

X_OCTET Equivalent to CARRAY.

XML Well-formed XML documents. Similar to
CARRAY.

3-32 Using BEA Jolt

FML Buffer Example
The listing “FIELDTBLS Variable in the TMUSREVT.ENV File” on page 3-32 shows an
example that uses the FML buffer. The FML field definition table is made available to BEA
Tuxedo by setting the FIELDTBLS and FLDTBLDIR variables.

To filter a field found in the my.flds file:

1. Copy the my.flds file to /usr/me/bankapp directory.

2. Add my.flds to the FIELDTBLS variable in the TMUSREVT.ENV file as shown in the
following listing:

Listing 3-8 FIELDTBLS Variable in the TMUSREVT.ENV File

FIELDTBLS=Usysflds,bank.flds,credit.flds,event.flds,my.flds

FLDTBLDIR=/usr/tuxedo/me/T6.2/udataobj:/usr/me/bankapp

If ENVFILE="/usr/me/bankapp/TMUSREVT.ENV" is included in the definition of the
UBBCONFIG file (shown in the listing “UBBCONFIG File” on page 3-30), the FIELDTBLS and
FLDTBLDIR definitions are taken from the TMUSREVT.ENV file and not from your environment
variable settings.

If you remove the ENVFILE="/usr/me/bankapp/TMUSREVT.ENV" definition, the FIELDTBLS
and FLDTBLDIR definitions are taken from your environment variable settings. The FIELDTBLS
and FLDTBLDIR definitions must be set to the appropriate value prior to booting the BEA Tuxedo
system.

For additional information on event subscriptions and the BEA Jolt Class Library, refer to
Chapter 5, “Using the Jolt Class Library.”.

BEA Tuxedo Background Information
The following sections provide detailed configuration information. Even if you are familiar with
BEA Tuxedo, you should refer to this section for information concerning Jolt Service Handler
(JSL) configuration.

BEA Tuxedo Background In fo rmat ion

Using BEA Jolt 3-33

Configuration File
The BEA Tuxedo configuration file for your application exists in two forms, the ASCII file,
UBBCONFIG, and a compiled version called TUXCONFIG. Once you create a TUXCONFIG, consider
your UBBCONFIG as a backup.

You can make changes to the UBBCONFIG file with your preferred text editor. Then, at a time
when your application is not running, and when you are logged in to your MASTER machine,
you can recompile your TUXCONFIG by running tmloadcf(1). System/T prompts you to make
sure you really want to overwrite your existing TUXCONFIG file. (If you enter the command with
the -y option, the prompt is suppressed.)

Creating the UBBCONFIG File
A binary configuration file called the TUXCONFIG file contains information used by tmboot(1)
to start the servers and initialize the bulletin board of a BEA Tuxedo system in an orderly
sequence. The binary TUXCONFIG file cannot be created directly. Initially, you must create a
UBBCONFIG file. That file is parsed and loaded into the TUXCONFIG using tmloadcf(1). Then
tmadmin(1) uses the configuration file or a copy of it in its monitoring activity. tmshutdown(1)
references the configuration file for information needed to shut down the application.

Configuration File Format
The UBBCONFIG file can consist of up to nine specification sections. Lines beginning with an
asterisk (*) indicate the beginning of a specification section. Each such line contains the name of
the section immediately following the *. Allowable section names are: RESOURCES, MACHINES,
GROUPS, NETGROUPS, NETWORK, SERVERS, SERVICES, INTERFACES, and ROUTING.

Note: The RESOURCES (if used) and MACHINES sections must be the first two sections, in that
order; the GROUPS section must be ahead of SERVERS, SERVICES, and ROUTING.

To configure the JSL, you must modify the UBBCONFIG file. For further information about BEA
Tuxedo configuration, refer to Administering a BEA Tuxedo Application at Run Time.

The following listing shows relevant portions of the UBBCONFIG file.

Listing 3-9 UBBCONFIG File

*MACHINES

MACH1 LMID=SITE1

MAXWSCLIENTS=40

3-34 Using BEA Jolt

*GROUPS

JSLGRP GRPNO=95 LMID=SITE1

*SERVERS

JSL SRVGRP=JSLGRP SRVID=30 CLOPT= “ -- -n 0x0002PPPPNNNNNNNN -d

/dev/tcp -m2 -M4 -x10”

The parameters shown in the following table are the only parameters that must be designated for
the Jolt Server groups and Jolt Servers. You are not required to specify any other parameters.

Change the sections of the UBBCONFIG file as shown in the following table.

MACHINES Section
The MACHINES section specifies the logical names for physical machines for the configuration. It
also specifies parameters specific to a given machine. The MACHINES section must contain an
entry for each physical processor used by the application. Entries have the form:

ADDRESS or NAME required parameters [optional parameters]

where ADDRESS is the physical name of the processor, for example, the value produced by the
UNIX system uname -n command.

LMID=string_value

This parameter specifies that the string_value is to be used in other sections as the symbolic
name for ADDRESS. This name cannot contain a comma, and must be 30 characters or less. This
parameter is required. There must be an LMID line for every machine used in a configuration.

MAXWSCLIENTS=number

The MAXWSCLIENTS parameter is required in the MACHINES section of the configuration file. It
specifies the number of accesser entries on this processor to be reserved for Jolt and Workstation
clients only. The value of this parameter must be between 0 and 32,768, inclusive.

Table 3-11 UBBCONFIG File Sections

Section Parameters to be specified

MACHINES MAXWSCLIENTS

GROUPS GRPNO, LMID

SERVERS SRVGRP, SRVID, CLOPT

BEA Tuxedo Background In fo rmat ion

Using BEA Jolt 3-35

The Jolt Server and Workstation use MAXWSCLIENTS in the same way. For example, if 200 slots
are configured for MAXWSCLIENTS, this number configures BEA Tuxedo for the total number of
remote clients used by Jolt and Workstation.

Be sure to specify MAXWSCLIENTS in the configuration file. If it is not specified, the default is 0.

Note: If MAXWSCLIENTS is not set, the JSL does not boot.

GROUPS Section
This section provides information about server groups, and must have at least one server group
defined in it. A server group entry provides a logical name for a collection of servers and/or
services on a machine. The logical name is used as the value of the SRVGRP parameter in the
SERVERS section to identify a server as part of this group. SRVGRP is also used in the SERVICES
section to identify a particular instance of a service with its occurrences in the group. Other
GROUPS parameters associate this group with a specific resource manager instance (for example,
the employee database). Lines within the GROUPS section have the form:

GROUPNAME required parameters [optional parameters]

where GROUPNAME specifies the logical name (string_value) of the group. The group name must
be unique within all group names in the GROUPS section and LMID values in the MACHINES
section. The group name cannot contain an asterisk(*), comma, or colon, and must be 30
characters or less.

A GROUPS entry is required for the group that includes the Jolt Server Listener (JSL). Make the
GROUPS entry as follows:

1. The group name is selected by the application, for example: JSLGRP and JREPGRP.

2. Specify the same identifiers given as the value of the LMID parameter in the MACHINES
section.

3. Specify the value of the GRPNO between 1 and 30,000 in the *GROUPS section.

Note: Make sure that Resource Managers are not assigned as a default value for all groups in
the GROUPS section of your UBBCONFIG file. Making Resource Managers the default
value assigns a Resource Manager to the JSL and you receive an error during tmboot. In
the SERVERS section, default values for RESTART, MAXGEN, etc., are acceptable defaults
for the JSL.

3-36 Using BEA Jolt

SERVERS Section
This section provides information on the initial conditions for servers started in the system. The
notion of a server as a process that continually runs and waits for a server group’s service requests
to process may or may not apply to a particular remote environment. For many environments, the
operating system, or perhaps a remote gateway, is the sole dispatcher of services. When either of
these is the case, you need only specify SERVICE entry points for remote program entry points,
and not SERVER table entries. BEA Tuxedo system gateway servers would advertise and queue
remote domain service requests. Host-specific reference pages must indicate whether or not
UBBCONFIG server table entries apply in their particular environments, and if so, the
corresponding semantics. Lines within the SERVERS section have the form:

AOUT required parameters [optional parameters]

where AOUT specifies the file (string_value) to be executed by tmboot(1). tmboot executes
AOUT on the machine specified for the server group to which the server belongs. tmboot searches
for the AOUT file on its target machine, thus, AOUT must exist in a file system on that machine. (Of
course, the path to AOUT can include RFS connections to file systems on other machines.) If a
relative pathname for a server is given, the search for AOUT is done sequentially in APPDIR,
TUXDIR/bin, /bin, and then in path, where <path> is the value of the last PATH= line
appearing in the machine environment file, if one exists. The values for APPDIR and TUXDIR are
taken from the appropriate machine entry in the TUXCONFIG file.

Clients connect to BEA Jolt applications through the Jolt Server Listener (JSL). Services are
accessed through the Jolt Server Handler (JSH). The JSL supports multiple clients and acts as a
single point of contact for all the clients to connect to the application at the network address that
is specified on the JSL command line. The JSL schedules work for handler processes. A handler
process acts as a substitute for clients on remote workstations within the administrative domain
of the application. The handler uses a multiplexing scheme to support multiple clients on one port
concurrently.

The network address specified for the JSL designates a TCP/IP address for both the JSL and any
JSH processes associated with that JSL. The port number identified by the network address
specifies the port number on which the JSL accepts new client connections. Each JSH associated
with the JSL uses consecutive port numbers at the same TCP/IP address. For example, if the
initial JSL port number is 8000 and there are a maximum of three JSH processes, the JSH
processes use ports 8001, 8002, and 8003.

Note: Misconfiguration of the subsequent JSL results in a port number collision.

BEA Tuxedo Background In fo rmat ion

Using BEA Jolt 3-37

Parameters Usable with JSL
In addition to the parameters specified in the previous sections, the following parameters can be
used with the JSL, although you need to understand how doing so would affect your application.

SVRGRP=string_value

This parameter specifies the group name for the group in which the server is to run.
string_value must be the logical name associated with a server group in the *GROUPS section,
and must be 30 characters or less. This association with an entry in the *GROUPS section means
that AOUT is executed on the machine with the LMID specified for the server group. This
association also specifies the GRPNO for the server group and parameters to pass when the
associated resource manager is opened. All server entries must have a server group parameter
specified.

SRVID=number

This parameter specifies an identifier, an integer between 1 and 30,00, inclusive, that identifies
this server within its group. This parameter is required on every server entry, even if the group
has only one server. If multiple occurrences of servers are desired, do not use consecutive
numbers for SRVIDs; leave enough room for the system to assign additional SRVIDs up to MAX.

Optional Parameters
The optional parameters of the SERVERS section are divided into boot parameters and run-time
parameters.

Boot Parameters
 Boot parameters are used by tmboot when it executes a server. Once running, a server reads its
entry from the configuration file to determine its run-time options. The unique server
identification number is used to find the right entry. The following are boot parameters.

CLOPT=string_value

The CLOPT parameter specifies a string of command-line options to be passed to AOUT when
booted.The servopts(5) page in the File Formats, Data Descriptions, MIBs, and System
Processes Reference lists the valid parameters.

Some of the available options apply primarily to servers under development. For example, the
-r option directs the server to write a record to its standard error file each time a service request
begins or ends.

3-38 Using BEA Jolt

Other command-line options can be used to direct the server’s standard out (stdout) and
standard error (stderr) to specific files, or to start the server so that it initially advertises a
limited set of its available services.

The default value for the CLOPT parameter is -A, which means that the server is started with all
available services advertised.

The maximum length of the CLOPT parameter value is 256 characters; it must be enclosed in
double quotes.

SEQUENCE=number

This parameter specifies when to shut down or boot relative to other servers. If SEQUENCE is not
specified, servers are booted in the order found in the SERVERS section (and shut down in the
reverse order). If some servers have sequence numbers specified and others do not, all servers
with sequence numbers are booted first from low to high sequence number, then all servers
without sequence numbers are booted in the order in which they appear in the configuration file.
Sequence numbers range between 1 and 9999. If the same sequence number is assigned to more
than one server, tmboot may boot those servers in parallel.

MIN=number

The MIN parameter specifies the minimum number of occurrences of the server to boot by
tmboot. If an RQADDR is specified, and MIN is greater than 1, the servers form a multiple servers
single queue (MSSQ) set. The identifiers for the servers are SRVID up to (SRVID + (MAX -1)). All
occurrences of the server have the same sequence numbers as well as any other server parameters.
The value range for MIN is 0 to 1000. If MIN is not specified, the default value is 1.

MAX=number

The MAX parameter sets the maximum number of occurrences of the server to be booted. Initially,
tmboot boots MIN servers, and additional servers can be booted up to MAX occurrences using the
-i option of tmboot to specify the associated server identifier. The value range for MAX is 0 to
1000. If no value is specified for MAX, the default is the same as for MIN, or 1.

tmboot starts MIN occurrences unless you explicitly call for more with the -i SRVID
option of tmboot.

If RQADDR is specified and MIN is greater than one, an MSSQ set is formed

If MIN is not specified, the default is 1.

If MAX is not specified, the default is MIN.

BEA Tuxedo Background In fo rmat ion

Using BEA Jolt 3-39

MAX is especially important for conversational servers because they are spawned
automatically as needed.

Run-time Parameters
The server uses run-time parameters after it is started by tmboot. As indicated previously,
tmboot uses the values found in the TUXDIR, APPDIR and ENVFILE parameters for the MACHINES
section when booting the server. It also sets the PATH for the server to:

“APPDIR:TUXDIR/bin:/bin:path”

where path is the value of the last PATH= line appearing in the ENVFILE file. The following
parameters are run-time parameters.

ENVFILE=string_value

You can use the ENVFILE parameter for a server to add values to the environment established by
tmboot during initialization of the server. You can optionally set variables specified in the file
named in the SERVERS ENVFILE parameter after you set those in the MACHINES ENVFILE used
by tmboot. These files cannot be used to override TUXDIR, APDIR, TUXCONFIG, or TUSOFFSET.
The best policy is to include in the server’s ENVFILE only those variable assignments known to
be needed to ensure proper running of the application.

On the server, the ENVFILE file is processed after the server starts. Therefore, it cannot be used
to set the pathnames used to find executable or dynamically loaded files needed to execute the
server. If you need to perform these tasks, use the machine ENVFILE instead.

Within ENVFILE only lines of the form
VARIABLE =string

are allowed. VARIABLE must start with an underscore or alphabetic character and can contain only
underscore or alphanumeric characters. If the server is associated with a server group that can be
migrated to a second machine, the ENVFILE must be in the same location on both machines.

CONV={Y | N}

CONV specifies whether the server is a conversational server. CONV takes a Y value if a
conversational server is being defined. Connections can only be made to conversational servers.
For a request/response server, you can either set CONV=N, which is the default, or omit the
parameter.

RQADDR=string_value

RQADDR assigns a symbolic name to the request queue of this server. MSSQ sets are established
by using the same symbolic name for more than one server (or by specifying MIN greater than 1).

3-40 Using BEA Jolt

All members of an MSSQ set must offer an identical set of services and must be in the same server
group.

If RQADDR is not specified, the system assigns a unique key to serve as the queue address for this
server. However, tmadmin commands that take a queue address as an argument are easier to use
if queues are given symbolic names.

RQPERM=number

Use the RQPERM parameter to assign UNIX-style permissions to the request queue for this server.
The value of number can be between 0001 and 0777, inclusive. If no parameter is specified, the
permissions value of the bulletin board, as specified by PERM in the RESOURCES section, is used.
If no value is specified there, the default of 0666 is used (the default exposes your application to
possible use by any login on the system, so consider this carefully).

REPLYQ={ Y | N }

The REPLYQ parameter specifies whether a reply queue, separate from the request queue, should
be established for AOUT. If N is specified, the reply queue is created on the same LMID as the AOUT.
If only one server is using the request queue, replies can be retrieved from the request queue
without causing problems. However, if the server is a member of an MSSQ set and contains
services programmed to receive reply messages, REPLYQ should be set to Y so that an individual
reply queue is created for this server. If set to N, the reply is sent to the request queue shared by
all servers for the MSSQ set, and you cannot ensure that the reply will be picked up by the server
that is waiting for it.

It should be standard practice for all member servers of an MSSQ set to specify REPLYQ=Y if
replies are anticipated. Servers in an MSSQ set are required to have identical offerings of
services, so it is reasonable to expect that if one server in the set expects replies, any server in the
set can also expect replies.

RPPERM=number

Use the RPPERM parameter to assign permissions to the reply queue. number is specified in the
usual UNIX fashion (for example, 0600); the value can be between 0001 and 0777, inclusive. If
RPPERM is not specified, the default value 0666 is used. This parameter is useful only when
REPLYQ=Y. If requests and replies are read from the same queue, only RQPERM is needed; RPPERM
is ignored.

BEA Tuxedo Background In fo rmat ion

Using BEA Jolt 3-41

RESTART={ Y | N }

The RESTART parameter takes a Y or N to indicate whether AOUT is restartable. The default is N.
If the server is in a group that can be migrated, RESTART must be Y. A server started with a
SIGTERM signal cannot be restarted; it must be rebooted.

An application’s policy on restarting servers might vary according to whether the server is in
production or not. During the test phase of application development it is reasonable to expect that
a server might fail repeatedly, but server failures should be rare events once the application has
been put into production. You might want to set more stringent parameters for restarting servers
once the application is in production.

Parameters Associated with RESTART
RCMD=string_value

If AOUT is restartable, this parameter specifies the command that should be executed when AOUT
abnormally terminates. The string, up to the first space or tab, must be the name of an executable
UNIX file, either a full pathname or relative to APPDIR. (Do not attempt to set a shell variable at
the beginning of the command.) Optionally, the command name can be followed by
command-line arguments. Two additional arguments are appended to the command line: the
GRPNO and SRVID associated with the restarting server. string_value is executed in parallel
with restarting the server.

You can use the RCMD parameter to specify a command to be executed in parallel with the
restarting of the server. The command must be an executable UNIX system file residing in a
directory on the server’s PATH. An example is a command that sends a customized message to the
userlog to mark the restarting of the server.

MAXGEN=number

If AOUT is restartable, this parameter specifies that it can be restarted at most (number - 1) times
within the period specified by GRACE. The value must be greater than 0 and less than 256. If not
specified, the default is 1 (which means that the server can be started once, but not restarted). If
the server is to be restartable, MAXGEN must be equal to or greater than 2. RESTART must be Y or
MAXGEN is ignored.

GRACE=number

If RESTART is Y, the GRACE parameter specifies the time period (in seconds) during which this
server can be restarted, (MAXGEN - 1) times. The number assigned must be equal to or greater than
0, and less than 2,147,483,648 seconds (or a little more than 68 years). If GRACE is not specified

3-42 Using BEA Jolt

the default is 86,400 seconds (24 hours). Setting GRACE to 0 removes all limitations; the server
can be restarted an unlimited number of times.

Entering Parameters
You can use BEA Tuxedo parameters, including RESTART, RQADDR, and REPLYQ, with the JSL.
(See Administering a BEA Tuxedo Application at Run Time for additional information regarding
run-time parameters.) Enter the following parameters:

1. To identify the SRVGRP parameter, type the previously defined group name value from the
GROUPS section.

2. To indicate the SRVID, type a number between 1 and 30,000 that identifies the server within
its group.

3. Verify that the syntax for the CLOPT parameter is as follows:

CLOPT= “-- -n 0x0002PPPPNNNNNNNN -d /dev/tcp -m2 -M4 -x10”

Note: The CLOPT parameters may vary. Refer to the table “JSL Command-line Options” on
page 3-13 for pertinent command-line information.

4. If necessary, type the optional parameters:

– Type the SEQUENCE parameter to determine the order that the servers are booted.

– Specify Y to permit release of the RESTART parameter.

– Type 0 to permit an infinite number of server restarts using the GRACE parameter.

Sample Applications in BEA Jolt Online Resources
You can access sample code that can be modified for use with BEA Jolt through the BEA Jolt
product Web page at:

http://www.bea.com/products/jolt/index.htm

These samples demonstrate and utilize BEA Jolt features and functionality.

Other Web sites with Java-related information include:

Javasoft Home page (http://www.java.sun.com/)

Newsgroups in the comp.lang.java hierarchy. These groups contain lists of past articles and
communications regarding Java, and are a valuable source of archival material.

Using BEA Jolt 4-1

C H A P T E R 4

Using the Jolt Repository Editor

Use the Jolt Repository Editor to add, modify, test, export, and delete BEA Tuxedo service
definitions from the Repository based on the information available from the BEA Tuxedo
configuration file. The Jolt Repository Editor accepts BEA Tuxedo service definitions, including
the names of the packages, services, and parameters.

This topic includes the following sections:

Introduction to the Repository Editor

Getting Started

Main Components of the Repository Editor

Instructions for Viewing a Parameter

Grouping Services Using the Package Organizer

Modifying Packages, Services, and Parameters

Making a Service Available to the Jolt Client

Testing a Service

Repository Editor Troubleshooting

4-2 Using BEA Jolt

Introduction to the Repository Editor
The Jolt Repository is used internally by Jolt to translate Java parameters to a BEA Tuxedo type
buffer. The Repository Editor is available as a downloadable Java applet. When a BEA Tuxedo
service is added to the repository, it must be exported to the Jolt server to ensure that the client
requests can be made from a Jolt client.

Repository Editor Window
Repository Editor windows contain entry fields, scrollable displays, command buttons, status,
and radio buttons. The figure “Sample Repository Editor Window” on page 4-3 illustrates the
parts of the window. The table “Repository Editor Window Parts” on page 4-4 contains details
about each part.

I n t roduct ion to the Repos i to r y Ed i to r

Using BEA Jolt 4-3

Figure 4-1 Sample Repository Editor Window

31
2

5

4

4-4 Using BEA Jolt

Repository Editor Window Description
The following table details the parts of the Repository Editor window shown in the previous
figure.

Table 4-1 Repository Editor Window Parts

Part Function

1 Text boxes Enter text, numbers, or alphanumeric characters such as
“Service Name,” “Input View Name,” server names, or port
numbers. In the previous figure, “Service Name.”

2 Drop-down arrow View lists that extend beyond the display using an arrow
button. In the previous figure, “Input Buffer Type” or “Output
Buffer Type.”

3 Display list Select from a list of predefined items such as the Parameters list
or select from a list of items that have been defined.

4 Command buttons Activate an operation such as displaying the Packages window,
Services window, or Package Organizer. In the previous figure,
command buttons include: “Save Service,” “Test,” “Back,”
“New,” “Edit,” “Delete.”

5 Radio buttons Select one of a number of options. Only one of the radio buttons
can be activated at a time. For example, Export Status can only
be “Unexport” or “Export.”

Gett ing S ta r ted

Using BEA Jolt 4-5

Getting Started
Before starting the Repository Editor, make sure that you install the minimally required
components, the Jolt Server and the Jolt Client.

To use the Repository Editor:

1. Start the Repository Editor.

You can start the Repository Editor from either the JavaSoft appletviewer or from your
Web browser. Both of these methods are detailed in the following sections.

2. Log on to the Repository Editor.

Note: For information about exiting the Repository Editor after you enter information, refer to
“Exiting the Repository Editor” on page 4-8.

Starting the Repository Editor Using the Java Applet Viewer
1. Set the CLASSPATH to include the Jolt class directory.

2. If loading the applet from a local disk, type the following at the URL location:

appletviewer <full-pathname>/RE.html

If loading the applet from the Web server, type the following at the URL location:

appletviewer http://<www.server>/<URL path>/RE.html

3. Press Enter.

The window is displayed as shown in the figure “BEA Jolt Repository Editor Logon
Window” on page 4-7.

Starting the Repository Editor from Your Web Browser
Use one of the following procedures to start the Repository Editor from your Web Browser.

To Start from a Local File
1. Set the CLASSPATH to include the Jolt class directory.

2. Type the following:

file:<full-pathname>/RE.html

3. Press Enter.

4-6 Using BEA Jolt

The editor is displayed as shown in “BEA Jolt Repository Editor Logon Window” on
page 4-7.

To Start from a Web Server
1. Ensure that the CLASSPATH does not include the Jolt class directory.

2. Unset the CLASSPATH.

3. Type the following:

http://<www.server>/<URL path>/RE.html

Note: Before opening the file, modify the applet codebase parameter in RE.html to
match your Jolt Java classes directory.

4. Press Enter.

The editor is displayed as shown in the “BEA Jolt Repository Editor Logon Window” on
page 4-7.

Logging On to the Repository Editor
Note: If you are using the JDK 1.3 appletviewer to start the Jolt Repository Editor, you will not

be able to connect to a remote machine, only to a local host JSL. This is due to a security
restriction imposed in the JDK 1.3 appletviewer. Also, for JDK 1.2, you must use the
-nosecurity option in the appletviewer if you are connecting to a remote machine JSL.

1. Complete the appropriate steps to start the Repository Editor.

The “BEA Jolt Repository Editor Logon Window” on page 4-7 must be displayed before
you continue with step 2. Refer to this figure as you perform the following procedure.

2. Type the name of the Server machine designated as the “access point” to the BEA Tuxedo
application and press Tab.

3. Type the Port Number and press Enter.

The system validates the server and port information.

Note: Unless you are logging on through the Jolt Relay, the same port number is used to
configure the Jolt Listener. Refer to your UBBCONFIG file for additional information.

4. Type the BEA Tuxedo Application Password and press Enter.

Depending upon the authentication level, complete steps 5 and 6 as required.

Gett ing S ta r ted

Using BEA Jolt 4-7

5. Type the BEA Tuxedo User Name and press Tab.

6. Type the BEA Tuxedo User Password and press Enter.

The Packages and Services command buttons are enabled.

Note: See the JoltSessionClass for additional information.

Figure 4-2 BEA Jolt Repository Editor Logon Window

The following table, “Repository Editor Logon Window Description,” describes Repository
Editor logon window elements.

4-8 Using BEA Jolt

Repository Editor Logon Window Description

Table 4-2 Repository Editor Logon Window Description

Exiting the Repository Editor
Exit the Repository Editor when you finish adding, editing, testing, or deleting packages,
services, and parameters. Prior to exit, the window is displayed as shown in the figure “BEA Jolt
Repository Editor Logon Window Prior to Exit” on page 4-9.

Option Description

Server Server name.

Port Number Port number in decimal value.

Note: After the Server Name and Port Number are entered, the
User Name and Password fields are activated. Activation is
based on the authentication level of the BEA Tuxedo
application.

User Role BEA Tuxedo user role. Required only if BEA Tuxedo
authentication level is USER_AUTH or higher.

Application
Password

BEA Tuxedo administrative password text entry.

User Name BEA Tuxedo user identification text entry. The first character must
be an alpha character.

User Password BEA Tuxedo password text entry.

Packages Accesses the Packages window. (Enabled after the logon.)

Services Accesses the Services window. (Enabled after the logon.)

Log Off Terminates the connection with the server.

Gett ing S ta r ted

Using BEA Jolt 4-9

Figure 4-3 BEA Jolt Repository Editor Logon Window Prior to Exit
.

Note that only the Packages, Services, and Log Off command buttons are enabled. All of the text
entry fields are disabled.

Follow the steps below to exit the Repository Editor:

1. Click Back to return to the Repository Editor Logon window.

2. Click Log Off to terminate the connection with the server.

The Repository Editor Logon window continues to be displayed with disabled fields.

3. Select Close from your browser menu to close the window.

4-10 Using BEA Jolt

Main Components of the Repository Editor
The Repository Editor allows you to add, modify, or delete any of the following components:

Packages

Services

You can also test and group services.

Parameters

Repository Editor Flow
After you log on to the Repository Editor, two buttons are enabled, Packages and Services.

The following figure illustrates the Repository Editor flow to help you determine which of these
two buttons to select.

Main Components o f the Repos i to r y Ed i to r

Using BEA Jolt 4-11

Figure 4-4 Repository Editor Flow Diagram

Select Packages to open the Packages window and perform the following functions:

View packages and services

– Make a service available using Export or Unexport

– Select a package to delete

Access the Package Organizer to:

– Move services from one package to another

– Create a new package

Refer to “What Is a Package?” on page 4-12 for complete details.

4-12 Using BEA Jolt

Select Services to open the Services window and perform the following functions:

Create, add, edit, or delete service definitions

Create, add, edit, or delete parameters

Test the services and parameters

Refer to “What Is a Service?” on page 4-15 for complete details.

What Is a Package?
Packages provide a convenient method for grouping services for Jolt administration. (A service
consists of parameters, such as pin number, account number, payment, rate, term, age, or Social
Security number.)

You use the Packages window to perform the following:

View packages and services

Export or unexport services

Delete packages

Access Package Organizer to:

– Move services

– Create a new package

Click the Packages button in the Jolt Repository Editor logon window to display the available
packages. When you select a specific package from the display list, its services within that
package are displayed.

The following figure contains a sample Packages window. The BANKAPP package is selected, and
the services within the BANKAPP package is displayed.

Main Components o f the Repos i to r y Ed i to r

Using BEA Jolt 4-13

Figure 4-5 Sample Packages Window

Packages Window Description
Table 4-3 Packages Window Description

Option Description

Packages Lists available packages.

Services Lists available services within the selected package.

Package Organizer Accesses the Package Organizer window to review available
packages and services. Use this window to move the services
among the packages or add a new package.

Option Description

4-14 Using BEA Jolt

Instructions for Viewing a Package
1. Click Packages in the Repository Editor Logon window.

The Packages window opens and displays the list of available packages.

In the figure “Sample Packages Window” on page 4-13, BANKAPP, BULKPKG, and SIMPSERV
are the available packages.

2. Refer to “Instructions for Viewing a Parameter” on page 4-17 for additional information.

Export Makes the most current services available to the client. This option
is enabled when a package is selected.

Unexport Select this option before testing an existing service. This option is
enabled when a package is selected.

Delete Deletes a package. This option is enabled when a package is
selected and the package is empty (no services contained within the
package).

Back Returns the user to the previous window.

Table 4-3 Packages Window Description (Continued)

Main Components o f the Repos i to r y Ed i to r

Using BEA Jolt 4-15

What Is a Service?
A service is a definition of an available BEA Tuxedo service. Services include parameters such
as pin number, account number, payment, and rate. Adding or editing a Jolt service does not
affect an existing BEA Tuxedo service.

You use the Services Window to add, edit, or delete services.

The following figure is an example of a Services window with the BANKAPP package selected,
and the display list of services and parameters available for this package (parameters are detailed
later).

Figure 4-6 Sample Services Window

4-16 Using BEA Jolt

Services Window Description

Instructions for Viewing a Service
1. Select Services from the Repository Editor Logon window.

The Services window opens and displays the list of available packages.

2. Select a package.

The list of available services for the selected package is displayed.

In the figure “Sample Services Window” on page 4-15, BANKAPP is the selected package.
DEPOSIT, INQUIRY, TRANSFER, and WITHDRAWAL are the available services for BANKAPP.

3. Refer to “Instructions for Viewing a Parameter” on page 4-17 for additional information.

Table 4-4 Services Window Description

Option Description

Packages Lists the available packages.

Services Lists the services in the selected package, which you can edit or
delete. Selecting a service displays the parameters within the service.

Parameters Displays the parameters of the selected service.

New Displays the Edit Services window for adding a new service.

Edit Displays the Edit Services window for editing an existing service.
This button is enabled only if a service has been selected.

Delete Deletes a service. This button is only enabled if a service has been
selected.

Back Returns the user to the previous window.

Main Components o f the Repos i to r y Ed i to r

Using BEA Jolt 4-17

Working with Parameters
A service contains parameters, which may be a pin number, account number, payment, rate, term,
age, or Social Security number. The following figure shows a Services window displaying a
selected service and its parameters.

Note: Adding or editing a parameter does not modify or change an existing BEA Tuxedo
Service.

Figure 4-7 Sample Services Window with Parameters List

Instructions for Viewing a Parameter

1. Select Services from the Repository Editor Logon window.

 The Services window opens and displays the list of available packages.

4-18 Using BEA Jolt

2. Select a package.

The list of available services for the selected package is displayed.

 In the preceding figure, BANKAPP is the selected package.

3. Select a service.

The list of available parameters for the selected service is displayed.

In the preceding figure, INQUIRY is the selected service.

4. View the parameters for a selected service in the Parameters display list.

In the preceding figure, ACCOUNT_ID, FORMNAM, SBALANCE, and STATLIN are the available
parameters for the INQUIRY service.

5. Refer to “Adding a Parameter” on page 4-24 for additional information.

Setting Up Packages and Services
This section includes the necessary steps for setting up a package and its services:

Saving your work

Adding a package

Adding a service

Adding a parameter

Saving Your Work
As you create and edit services and parameters, it is important to regularly save information to
avoid losing input. Clicking Save Service in the Edit Services window can prevent the need to
re-enter information in the event of a system failure.

Caution: When you add or edit the parameters of a service, you must select Add before
choosing Back from the Edit Parameters window and returning to the Edit Services
window.

If adding a new service or modifying an existing service in the Edit Services window, be sure to
select Save Service before choosing Back. If you select Back before you save the modified
information, a warning is briefly displayed on the status line at the bottom of the window.

Se t t ing Up Packages and Serv ices

Using BEA Jolt 4-19

Adding a Package
When you need to add a new group of services, you create a new package before adding the
services. The “Package Organizer Window” on page 4-19 and the following procedure show how
to add a new package, BALANCE, to the Packages listing.

Figure 4-8 Package Organizer Window

Instructions for Adding a Package
1. Click Packages in the Repository Editor Logon window to display the Packages window.

2. Select Package Organizer to display the Package Organizer window, similar to that shown
in the figure “Package Organizer Window” on page 4-19.

4-20 Using BEA Jolt

For a description of contents of this window, see “Package Organizer Window
Description” on page 4-30.

3. Click the New Package button in the Package Organizer window.

The text field is activated.

4. Type the name of the new package (not to exceed 32 characters) and press Enter.

The new name (shown in the preceding figure as BALANCE) is displayed on the Packages
list in random order.

Adding a Service
Services are definitions of available BEA Tuxedo services and can only be a part of a Jolt
package.You must create the service as a part of a new or existing package.

The Repository Editor accepts the new service name exactly as it is typed (that is, all uppercase
letters, abbreviations, misspellings are accepted). Service names must not exceed 30 characters.

Se t t ing Up Packages and Serv ices

Using BEA Jolt 4-21

The following figure shows the Edit New Services window for adding a service.

Figure 4-9 Edit Services Window: Add a New Service to a Package

4-22 Using BEA Jolt

Adding a Service Window Description
The following table describes the options for adding services to a package in a package window.

Option Description

Edit Services
Selections

Service Name Name of the new service to be added to the Jolt Repository.

Input Buffer
Type/Output
Buffer Type

VIEW— C-structure and 16-bit integer field. Contains subtypes
that have a particular structure. X_C_TYPE and X_COMMON are
equivalent. X_COMMON is used for COBOL and C.

VIEW32—similar to VIEW, except 32-bit field identifiers are
associated with VIEW32 structure elements.

CARRAY—array of uninterrupted binary data that is neither
encoded nor decoded during transmission; it may contain null
characters. X_OCTET is equivalent.

XML—well-formed XML document. Similar to CARRAY.

FML—type in which each field carries its own definition.

FML32—similar to FML except the ID field and length field are
32 bits long.

STRING—character array terminated by a null character that is
encoded or decoded.

Input View
Name/Output
View Name

Unique name assigned to the Input View Buffer and Output View
Buffer types. These fields are only enabled if VIEW or VIEW32
are the selected buffer types.

Export Status Unexport
Export

Radio button with current status of the service. EXPORT or
UNEXPORT status is checked. UNEXPORT is the default.

Service Level
Actions

Save Service Saves the newly created service in the Repository.

Test Tests the service. This command button is disabled until a new
service is created or edits to an existing service are saved.

Back Returns you to the previous window.

Parameter Parameters List of service parameters to edit or delete.

Se t t ing Up Packages and Serv ices

Using BEA Jolt 4-23

Instructions for Adding a Service
1. Select Services from the Repository Editor Logon window.

The Services window opens, similar to the figure shown in “Sample Services Window” on
page 4-15.

2. Select the package to which you will add the service.

If you later decide that another package should contain the new service, use the Package
Organizer to move the service to a different package. (See “Grouping Services Using the
Package Organizer” on page 4-29 for additional information.)

3. From the Services window, select New to display the Edit Services window, as shown in
“Edit Services Window: Add a New Service to a Package” on page 4-21.

4. Select the Service Name text field to activate it.

5. Type the name of the new service you want to add.

6. Select the input buffer type.

Although the same buffer type selected for the Input Buffer is automatically selected for
the Output Buffer, you can select a different Output Buffer type.

– If VIEW or VIEW32 is selected, you must type the Input View Name and Output View
Name in the associated text fields.

– If another buffer type is selected, the Input View Name and Output View Name text
fields are disabled.

– If CARRAY or STRING is selected, refer to “Selecting CARRAY or STRING as a Service
Buffer Type” on page 4-24 for additional instructions.

7. Select Save Service to save the newly created service.

Parameter Level
Actions

New Adds new parameters to the service.

Edit Used to edit an existing parameter. This command button is
disabled until a new parameter is selected.

Delete Deletes a parameter. This option is disabled until a parameter is
selected.

4-24 Using BEA Jolt

Selecting CARRAY or STRING as a Service Buffer Type
If CARRAY or STRING is selected as the buffer type for a new service, only CARRAY or STRING can
be added as the data type for the accompanying parameters. See also “Adding a Parameter” on
page 4-24 and “Selecting CARRAY or STRING as a Parameter Data Type” on page 4-27. For
additional information, refer to Chapter 5, “Using the Jolt Class Library.”.

The following figure shows an example Edit Services window with STRING selected as the buffer
type for the service SIMPAPP.

Figure 4-10 Edit Services Window: Select STRING Buffer Type

Adding a Parameter
Clicking New under the label Parameter level actions in the Edit Services window is displayed
in the Edit Parameters window. Review the features in the following figure. Use this window to
enter the parameter and screen information for a service.

Se t t ing Up Packages and Serv ices

Using BEA Jolt 4-25

Figure 4-11 Edit Parameters Window: Add a Parameter

4-26 Using BEA Jolt

Adding a Parameter Window Description

Instructions for Adding a Parameter
1. Select Field Name to activate the field, and type the field name.

Option Description

Field Name Adds the field name (for example, asset, inventory).

Data Type Lists data type choices:

byte—8-bit

short—16-bit

integer—32-bit

float—32-bit

double—64-bit

string—null-terminated character array

carray—variable length 8-bit character array

Direction Radio button choices for direction of information:

Input—information is directed from the client to the server.

Output—information is directed from the server to the client.

Both—information is directed from the client to the server, and from
the server to the client.

Occurrence(s) Number of times that an identical field name can be used. If 0, the
field name can be used an unlimited number of times. Occurrences
are used by Jolt to build test screens; not to limit information sent or
retrieved by BEA Tuxedo.

Screen
Information

This button is disabled when the window is launched.

Clear Clears the fields of the window.

Change Is disabled while new parameters are added.

Add Adds new parameters to the service. The parameters are saved when
the service is saved.

Back Returns the user to the previous window.

Se t t ing Up Packages and Serv ices

Using BEA Jolt 4-27

Note: If the buffer type is FML or VIEW, the field name must match the corresponding
parameter field name in FML or VIEW.

2. Select the data type.

3. Specify a direction by selecting the input, output, or both radio buttons.

4. Select the Occurrences text field to activate it, and then enter the number of occurrences.

5. Select Add to append the information. Add does not save the parameter.

6. In the Edit Services window, click Save Service to save the parameter as a part of the
service.

Warning: If you do not click Save Service before you click Back, the parameters are not
saved as part of the service.

7. Click Back to return to the Edit Services window.

Selecting CARRAY or STRING as a Parameter Data Type
If CARRAY or STRING is the selected buffer type for a new service, only CARRAY or string
can be added as the data type for the accompanying parameters.

In this case, only one parameter can be added. It is recommended that you use the parameter name
“CARRAY” for a CARRAY buffer type, and the parameter name “STRING” for a STRING
buffer type.

See also “Instructions for Adding a Service” on page 4-23 and “Selecting CARRAY or STRING
as a Service Buffer Type” on page 4-24. For additional information, refer to Chapter 5, “Using
the Jolt Class Library.”.

The following figure is an example of the Edit Parameters window with string as the selected data
type for the parameter. The Data Type defaults to string and does not allow you to modify that
particular data type. The Field Name can be any name.

4-28 Using BEA Jolt

Figure 4-12 Edit Parameters Window: string Data Type

Group ing Se rv ices Us ing the Package Organi ze r

Using BEA Jolt 4-29

Grouping Services Using the Package Organizer
The Package Organizer moves services between packages. You may want to group related
services in a package (for example, WITHDRAWAL services that are exported only at a certain
time of the day can be grouped together in a package).

Use the Package Organizer arrow buttons to move a service from one package to another. These
buttons are useful if you have several services to move between packages. The packages and
services display listings to help track a service within a particular package.

The following figure is an example of a Package Organizer window with a service selected for
transfer to another package.

Figure 4-13 Package Organizer Window

4-30 Using BEA Jolt

Package Organizer Window Description

Instructions for Grouping Services with the Package Organizer
1. In the Packages window, click Package Organizer.

2. In the Package Organizer window, select the package containing the services to be moved
from the Packages left display window.

3. Select the service to be moved from the Services left display window.

In the previous figure, INQUIRY is the selected service in the BANKAPP package.

4. Select the package to receive the service from the Packages right display window.

The previous figure shows the selected service, INQUIRY, and the selected package, BANK,
to which the INQUIRY service will be moved.

Option Description

Packages (left display list) Lists packages containing services in the selected package.

Packages (right display list) Lists packages available as destinations for the selected
service.

Services (left display list) Lists available services for the selected package.

Services (right display list) Lists available services of the highlighted package that you
moved.

Left arrow Moves services (one service at a time) to the package
highlighted on the left.

Right arrow Moves services (one service at a time) to the package
highlighted on the right.

New Package Adds the name of a new package.

Back Returns user to the previous window.

Group ing Se rv ices Us ing the Package Organi ze r

Using BEA Jolt 4-31

Figure 4-14 Example of a Moved Service

5. To move the service between the packages, select the left arrow (←) or right arrow (→).

These keys are activated only when both packages (left and right are displayed) and a
service are selected. The keys are only active in the direction of the package where the
service is to be moved. The previous figure, “Example of a Moved Service,” shows that
the INQUIRY service has been moved to the BANK package on the right.

Note: You cannot select the same package in both the left and right display lists.

4-32 Using BEA Jolt

Modifying Packages, Services, and Parameters
You can make the following changes to packages, services, and parameters:

Edit a service

Edit a parameter

Delete a parameter, service, or package

Editing a Service
You can edit an existing service name or service information, or access the window to add new
parameters to an existing service. For a description of the Edit Services window, see “Adding a
Service Window Description” on page 4-22. The following figure is an example of the Edit
Services window.

Modi f y ing Packages , Se rv ices , and Paramete rs

Using BEA Jolt 4-33

Figure 4-15 Edit Services Window

Instructions for Editing a Service
Follow these steps to edit a service:

1. From the Services window, select the package containing the service that requires editing.

The services available for the selected package are displayed.

2. Select the service to edit.

The parameters available for the selected service are displayed.

3. Click Edit to display the Edit Services window, as shown in the previous figure.

4. Type or select the new information, and click Save Service.

4-34 Using BEA Jolt

Editing a Parameter
All parameter elements can be changed, including the name of the parameter.

Warning: If you create a new parameter using an existing name, the system overwrites the
existing parameter.

The following figure is an example of the Edit Parameters window.

Figure 4-16 Edit Parameters Window
.

Instructions for Editing a Parameter
Follow these steps to change a parameter:

1. In the Services window (see “Sample Services Window with Parameters List”), select the
package and service that contain the parameter you want to change.

Modi f y ing Packages , Se rv ices , and Paramete rs

Using BEA Jolt 4-35

2. Click Edit to display the Edit Services window.

3. Select the Parameter you want to edit from the Parameters display list and click Edit.

The Edit Parameters Window is displayed as shown in the previous figure.

4. Type the new information and click Change.

5. Click Back to return to the previous window.

Deleting Parameters, Services, and Packages
This section describe how to delete a package. Before deleting a package, all the services must
be deleted from the package. The Delete option is not enabled until all components of the package
or service are deleted.

Warning: The system does not display a prompt to confirm that items are to be deleted. Be
certain that the parameter, service, or package is scheduled to be deleted or has been
moved to another location before selecting Delete.

Deleting a Parameter
Determine which parameters to delete and follow these steps:

1. In the logon window, click Services to display the Services window.

2. In the Services window, select the package and service that contain the parameter you want
to delete.

3. Click Edit to display the Edit Services window.

4. Select the parameter you want to delete from the Parameters display list.

5. Under Parameter Level Actions, click Delete.

Deleting a Service
Determine which services to delete and follow these steps:

Note: Make certain that all parameters within this service are deleted before selecting this
option.

1. Select the package containing the service you want to delete.

2. Select the service you want to delete.

4-36 Using BEA Jolt

Delete is enabled.

3. Click Delete. The service is deleted.

Deleting a Package
Determine which packages to delete and follow these instructions. Make sure all services
contained in this package are deleted or moved to another package before selecting this option.

1. In the Repository Editor Logon window, click Packages to display the Packages window.

2. Select a package.

3. Click Delete.

The package is deleted.

Making a Service Available to the Jolt Client
To make a service available to a Jolt client, you export it. All services in a package must be
exported or unexported as a group. A service is made available by using the Export and Unexport
radio buttons.

This topic includes the following sections:

Exporting and Unexporting Services

Reviewing the Exported and Unexported Status

Exporting and Unexporting Services
Determine which services are being made available or unavailable to the Jolt client. Services are
exported to ensure that the Jolt client can access the most current service definitions from the Jolt
server.

The following figure shows the Packages window, where you can export and unexport services.

Mak ing a Serv ice Ava i lab le t o the J o l t C l i ent

Using BEA Jolt 4-37

Figure 4-17 Packages Window: Export and Unexport Buttons

Follow these steps to export or unexport a service:

1. From the Repository Editor Logon window, select Packages to display the Packages window.

2. Select a package.

The Export and Unexport buttons are enabled.

3. To make the services in the selected package available, click Export.

To make the services in the selected package unavailable, select Unexport.

Caution: The system does not display a confirmation message indicating that the service is
exported or unexported. See “Reviewing the Exported and Unexported Status” for
additional information.

4-38 Using BEA Jolt

Reviewing the Exported and Unexported Status
When a service is exported or unexported, you can review its status from the Edit Services
window.

The following figure displays the Export radio button as active, for Export Status; therefore, the
current status for the service TRANSFER is exported.

Figure 4-18 Export Status

To review the current exported or unexported status of a service, follow these steps:

1. From the Repository Editor Logon window, select Services to display the Services window
shown in the “Sample Services Window” on page 4-15.

2. Select a package from the Package display list.

The Services display list of available services for the selected package is displayed.

Tes t ing a Serv i ce

Using BEA Jolt 4-39

3. Select the service you want to review.

4. Click Edit.

The Edit Services window is displayed as shown in the figure “Edit Services Window” on
page 4-33.

One of the radio buttons (Unexport or Export) next to the Export Status label will be
active, indicating the current status of the service.

Testing a Service
Test a service and its parameters before you make them available to Jolt clients. You can test
currently available services without making changes to the services and parameters.

Note: The Jolt Repository Editor allows you to test an existing BEA Tuxedo service with Jolt,
without writing a line of Java code.

An exported or unexported service can be tested; if you need to change a service and its
parameters, unexport the service prior to editing.

 This topic includes the following sections:

Jolt Repository Editor Service Test Window

Testing a Service

Jolt Repository Editor Service Test Window
Use the Run button to test the service to ensure that the parameter information is accurate. A
service can only be tested when the corresponding BEA Tuxedo server is running for the service
being tested.

Although the Test button in the Edit Services window is enabled when parameters are not added
to the service, the Service Test window displays unused in the parameter fields, and they are
disabled. Refer to “Sample Service Test Window” on page 4-40 for an example of unused
parameter fields.

Note: The Service Test window displays up to 20 items of any multiple-occurrence parameters.
All items that follow the twentieth occurrence of a parameter cannot be tested.

The following figure is an example of a Service Test window with both writable and read-only
text fields.

4-40 Using BEA Jolt

Figure 4-19 Sample Service Test Window

Tes t ing a Serv i ce

Using BEA Jolt 4-41

Service Test Window Description
The following table describes the Service Test window options.

Note: You can enter a two-digit hexadecimal character (0-9, a-f, A-F) for each byte in the
CARRAY data field. For example, the hexadecimal value for 1234 decimal is 0422.

Testing a Service
You can test a service without making changes to the service or its parameters. You can also test
a service after editing the service or its parameters.

Option Description

Service Displays the name of the tested service (read-only).

Parameters displayed Tracks the parameters displayed in the window (read-only).

Parameter text fields The parameter information text entry field. These fields are
writable or read-only. Disabled if read-only.

RUN Runs the test with the data entered.

Clear Clears the text entry field.

Next Lists additional parameter fields, if applicable.

Prev Lists previous parameter fields, if applicable.

Back Returns to the Edit Services window.

4-42 Using BEA Jolt

Test Service Process Flow
The following figure shows a typical Repository Editor service flow test.

Figure 4-20 Test Service Flow

Instructions for Testing a Service
Follow these steps to test a service. For troubleshooting information, see the first two entries in
the Repository Editor Troubleshooting table.

1. Select Services from the Repository Editor Logon window.

The Services window is displayed.

2. Select the package and the service to test.

3. Click Edit to access the Edit Services window.

Repos i to r y Ed i to r T roub leshoot ing

Using BEA Jolt 4-43

4. Click Test to access the Service Test window.

5. Enter data in the Service test window parameter text fields.

6. Click RUN.

The status line displays the outcome as follows:

– If the test passed: “Run Completed OK”

– If the test failed: “Call Failed”

See “Repository Editor Troubleshooting” on page 4-43 for additional Repository Editor
troubleshooting information.

If Edits are Required After Testing
Follow these steps if editing is required to pass the test:

1. Return to the Repository Editor Logon window and click Packages.

2. Select the package with the services to be retested.

3. Click Unexport.

4. Click Back to return to the Repository Editor Logon window.

5. Click Services to display the Services window.

6. Select the package and the service that requires editing and click Edit.

7. In the Edit Services window, edit the service.

8. Save the service, click Test, and repeat steps 5 and 6 of the “Instructions for Testing a
Service” section.

Repository Editor Troubleshooting
Consult the following table if you encounter problems while using the Repository Editor.

Table 4-5 Repository Editor Troubleshooting

If... Then...

A parameter is incorrect Edit the service.

4-44 Using BEA Jolt

The Jolt server is down Check the server. The BEA Tuxedo service is down. You do not
need to edit the service.

You receive any error Make sure the browser you are running is Java-enabled:
• For Netscape browsers, make sure that Enable Java and

Enable JavaScript are checked under
Edit→Preferences→Advanced. Then select
Communicator→Tools→Java Console. If the Java Console
does not exist on the menu, the browser probably does not
support Java.

• For Internet Explorer, make sure the version is 3.0 (or later).
• If running Netscape Navigator, check the Java Console for

error messages.
• If running appletviewer, check the system console (or the

window where you started the appletviewer).

You cannot connect to
the Jolt Server (after
entering Server and Port
Number)

Make sure that:
• Your Server name is correct (and accessible from your

machine). Check that the port number is the correct port. A
JSL or JRLY must be configured to listen on that port.

• The Jolt Server is up and running. If any authentication is
enabled, check that you are entering the correct usernames
and passwords.

• If the applet was loaded through HTTP, make sure that the
Web server, JRLY, and the Jolt server are on the same
machine. (To do this, enter the server name into the
Repository Editor that refers to the same machine name as the
one used in the URL to download the applet).

Table 4-5 Repository Editor Troubleshooting (Continued)

If... Then...

Repos i to r y Ed i to r T roub leshoot ing

Using BEA Jolt 4-45

You cannot start the
Repository Editor

If you are running the editor in a browser and downloading the
Repository Editor applet through HTTP, make sure that:
• The browser is Java-enabled.
• The Web server is running and accessible.
• The RE.html file is available to the Web server.
• The RE.html file contains the correct <codebase>

parameter. Codebase identifies where the Jolt class files are
located.

If running the editor in a browser (or appletviewer) and
loading the applet from disk, make sure that:
• The browser is Java-enabled.
• The RE.html file exists and is readable.
• The RE.html file is Java-enabled.
• The RE.html file contains the correct <codebase>

parameter (this is where the Jolt class files are installed on the
local disk).

• CLASSPATH is set and points to the Jolt class directory.

You cannot display
Packages or Services
even though you are sure
they exist

• Make sure that the Jolt Repository Server is running
(JREPSVR).

• Make sure that the JREPSVR can access the repository file.
• Make sure that the configuration of JREPSVR: verify CLOPT

parameters and verify that jrep.f16 (FML definition file) is
installed and accessible (follow installation documentation).

You cannot save changes
in the Repository Editor

Check permissions on the repository file. The file must be
writable by the user who starts JREPSVR.

Table 4-5 Repository Editor Troubleshooting (Continued)

If... Then...

4-46 Using BEA Jolt

You cannot test services • Check that the service is available.
• Verify the service definition matches the service.
• If BEA Tuxedo authentication is enabled, check that you have

the required permissions to execute the service.
• Check if the application file (FML or VIEW) is specified

correctly in the variables (FIELDTBLS or VIEWFILES) in
the ENVFILE. All applications FML field tables or VIEW
files must be specified in the FIELDTBLS and VIEWFILES
environment variables in the ENVFILE. If these files are not
specified, the JSH cannot process data conversion and you
receive the message “ServiceException: TPEJOLT data
conversion failed.”

• Check the ULOG file for any additional diagnostic messages.

Table 4-5 Repository Editor Troubleshooting (Continued)

If... Then...

Using BEA Jolt 5-1

C H A P T E R 5

Using the Jolt Class Library

The BEA Jolt Class Library provides developers with a set of object-oriented Java language
classes for accessing BEA Tuxedo services. The class library contains the class files that
implement the Jolt API. Using these classes, you can extend applications for Internet and intranet
transaction processing. You can use the Jolt Class Library to customize access to BEA Tuxedo
services from Java applets.

This topic includes the following sections:

Class Library Functionality Overview

Jolt Object Relationships

Jolt Class Library Walkthrough

Using BEA Tuxedo Buffer Types with Jolt

Multithreaded Applications

Event Subscription and Notifications

Clearing Parameter Values

Reusing Objects

Deploying and Localizing Jolt Applets

To use the information in the following sections, you need to be generally familiar with the Java
programming language and object-oriented programming concepts. All the programming
examples are in Java code.

5-2 Using BEA Jolt

Note: All program examples are only fragments used to illustrate Jolt capabilities. They are not
intended to be compiled and run as provided. These program examples require additional
code to be fully executable.

Class Library Functionality Overview
The Jolt Class Library gives the BEA Tuxedo application developer the tools to develop
client-side applications or applets that run as independent Java applications or in a Java-enabled
Web browser. The bea.jolt package contains the Jolt Class Library. To use the Jolt Class
Library, the client program or applet must import this package. For an example of how to import
the bea.jolt package, refer to the listing “Jolt Transfer of Funds Example (SimXfer.java)” on
page 5-11.

Java Applications Versus Java Applets
Java programs that run in a browser are called applets. Applets are small, easily downloaded parts
of an overall application that perform specific functions. Many popular browsers impose
limitations on the capabilities of Java applets in order to provide a high degree of security for the
users of the browser. Applets have the following restrictions:

An applet ordinarily cannot read or write files on any host system.

An applet cannot start any program on the host (client) that is executing the applet.

An applet can make a network connection only to the host from which the applet
originated; it cannot make other network connections, not even to the client machine.

Programming workarounds exist for most restrictions on Java applets. Check your browser’s
Web site (for example, www.netscape.com or www.microsoft.com) or developer documentation
for specific information about the applet capabilities that the browser supports or restricts. You
can also use Jolt Relay to work around some of the network connection restrictions.

A Java application, however, is not run in the context of a browser and is not restricted in the same
ways. For example, a Java application can start another application on the host machine where it
is executing. While an applet relies on the windowing environment of a browser or appletviewer
for much of its user interface, a Java application requires that you create your own user interface.
An applet is designed to be small and highly portable. A Java application, on the other hand, can
operate much like any other non-Java program. The security restrictions for applets imposed by
various browsers and the scope of the two program types are the most important differences
between a Java application and a Java applet.

Class L ib ra ry Funct iona l i t y Overv i ew

Using BEA Jolt 5-3

Jolt Class Library Features
The Jolt Class Library has the following characteristics:

Features fully thread-safe classes.

Encapsulates typical transaction functions such as logon, synchronous calling, transaction
begin, commit, rollback, and logoffs as Java objects.

Contains methods that allow you to set idle timeouts for continuous and intermittent client
network connections.

Features methods that allow a Jolt client to subscribe to and receive event-based
notifications.

Error and Exception Handling
The Jolt Class Library returns both Jolt interpreter and BEA Tuxedo errors as exceptions. The
Jolt Class Library Reference contains the Jolt classes and lists the errors or exceptions thrown for
each class. The BEA Jolt API Reference contains the Error and Exception Class Reference.

5-4 Using BEA Jolt

Jolt Client/Server Relationship
BEA Jolt works in a distributed client/server environment and connects Java clients to BEA
Tuxedo-based applications.

The following figure illustrates the client/server relationship between a Jolt program and the Jolt
Server.

Figure 5-1 Jolt Client/Server Relationship
.

As illustrated in the figure, the Jolt Server acts as a proxy for a native BEA Tuxedo client,
implementing functionality available through the native BEA Tuxedo client. The BEA Jolt
Server accepts requests from BEA Jolt clients and maps those requests into BEA Tuxedo service
requests through the BEA Tuxedo ATMI interface. Requests and associated parameters are
packaged into a message buffer and delivered over the network to the BEA Jolt Server. The BEA
Jolt Connection Manager handles all communication between the BEA Jolt Server and the BEA
Jolt applet using the BEA Jolt Transaction Protocol. The BEA Jolt Server unpacks the data from
the message, performs any necessary data conversions, such as numeric format conversions or
character set conversions, and makes the appropriate service request to BEA Tuxedo as specified
by the message.

Once a service request enters the BEA Tuxedo system, it is executed in exactly the same manner
as any other BEA Tuxedo request. The results are returned through the ATMI interface to the
BEA Jolt Server, which packages the results and any error information into a message that is sent
to the BEA Jolt client applet. The BEA Jolt client then maps the contents of the message into the
various BEA Jolt client interface objects, completing the request.

Client

GUI Application

Jolt Class Library

Connection
Manager

ATMI
Protocol Translator

Connection

Jolt Server

TCP/IP

BEA Tuxedo
Application

Application Protocol

Jolt Transaction Protocol

Jolt Network Protocol
Manager

Class L ib ra ry Funct iona l i t y Overv i ew

Using BEA Jolt 5-5

On the client side, the user program contains the client application code. The Jolt Class Library
packages a JoltSession and JoltTransaction, which in turn handle service requests.

The following table describes the client-side requests and Jolt Server-side actions in a simple
example program.

The following tasks summarize the interaction shown in the previous table, “Jolt Client/Server
Interaction.”

1. Bind the client to the BEA Tuxedo environment using the JoltSessionAttributes class.

2. Establish a session.

Table 5-1 Jolt Client/Server Interaction

Jolt Client Jolt Server

1 attr=new JoltSessionAttributes();

attr.setString(attr.APPADDRESS,
“//myhost:8000”);

Binds the client to the BEA
Tuxedo environment

2 session=new JoltSession(attr, username,
userRole, userPassword, appPassword);

Logs the client onto BEA
Tuxedo

3 withdrawal=new JoltRemoteService(
servname, session);

Looks up the service
attributes in the Repository

4 withdrawal.addString(“accountnumber”,
“123”);

withdrawal.addFloat(“amount”, (float)
100.00);

Populates variables in the
client (no Jolt Server
activity)

5 trans=new JoltTransaction(time-out,
session);

Begins a new Tuxedo
transaction

6 withdrawal.call(trans); Executes the BEA Tuxedo
service

7 trans.commit() or trans.rollback(); Completes or rolls back
transaction

8 balance=withdrawal.getFloatDef(“balance,”
(float) 0.0);

Retrieves the results (no Jolt
Server activity)

9 session.endSession(); Logs the client off of BEA
Tuxedo

5-6 Using BEA Jolt

3. Set variables.

4. Perform the necessary transaction processing.

5. Log the client off of the BEA Tuxedo system.

Each of these activities is handled through the use of the Jolt Class Library classes. These classes
include methods for setting and clearing data and for handling remote service actions. “Jolt
Object Relationships” on page 5-7 describes the Jolt Class Library classes in more detail.

J o l t Ob jec t Re la t ionsh ips

Using BEA Jolt 5-7

Jolt Object Relationships
The following figure illustrates the relationship between the instantiated objects of the Jolt Class
Library classes.

Figure 5-2 Jolt Object Relationships

As objects, the Jolt classes interact in various relationships with each other. In the previous figure,
the relationships are divided into three basic categories:

Contains-a relationship—at the class level an object can contain other objects. For
example, a JoltTransaction stores (or contains) a JoltSession object.

Is-a relationship—the is-a relationship usually occurs at the class instance or sub-object
level and denotes that the object is an instance of a particular object.

Uses-a relationship—an object can use another object without containing it. For example, a
JoltSession can use the JoltSessionAttributes object to obtain the host and port information.

JoltUserEvent

JoltTransaction uses-a

uses-a

contains-a

JoltSession

JoltRemoteService

JoltSessionAttributes

contains-a

call(transaction) contains-a

JoltReply

JoltMessage

contains-a

uses-a

5-8 Using BEA Jolt

Jolt Class Library Walkthrough
Use Jolt classes to perform the basic functions of transaction processing: logon/logoff;
synchronous service calling; transaction begin, commit, and rollback. The following sections
describe how Jolt classes are used to perform these functions.

Logon and Logoff

Synchronous Service Calling

Transaction Begin, Commit, and Rollback

You can also use the Jolt class library to develop multithreaded applications, define Tuxedo
buffer types, and subscribe to events and unsolicited messages. These functions are discussed in
later sections.

Logon and Logoff
The client application must log on to the BEA Tuxedo environment prior to initiating any
transaction activity. The Jolt Class Library provides the JoltSessionAttributes class and
JoltSession class to establish a connection to a BEA Tuxedo system.

The JoltSessionAttributes class will contain the connection properties of Jolt and BEA Tuxedo
systems as well as various other properties of the two systems. To establish a connection, the
client application must create an instance of the JoltSession class. This instance is the JoltSession
object. After the developer instantiates a Jolt Session and BEA Tuxedo object, the Jolt and BEA
Tuxedo logon capability is enabled. Calling the endSession method ends the session and allows
the user to log off.

Synchronous Service Calling
Transaction activities such as requests and replies are handled through a JoltRemoteService
object (an instance of the JoltRemoteService class). Each JoltRemoteService object refers to an
exported BEA Tuxedo request/reply service. You must provide a service name and a JoltSession
object to instantiate a JoltRemoteService object before it can be used.

J o l t C lass L ib rar y Wa lk th rough

Using BEA Jolt 5-9

To use a JoltRemoteService object:

1. Set the input parameters.

2. Invoke the service.

3. Examine the output parameters.

For efficiency, Jolt does not make a copy of any input parameter object; only the references to
the object (for example, string and byte array) are saved. Because JoltRemoteService object is a
stateful object, its input parameters and the request attributes are retained throughout the life of
the object. You can use the clear() method to reset the attributes and input parameters before
reusing the JoltRemoteService object.

Because Jolt is designed for a multithreaded environment, you can invoke multiple
JoltRemoteService objects simultaneously by using the Java multithreading capability. Refer to
“Multithreaded Applications” on page 5-42 for additional information.

Transaction Begin, Commit, and Rollback
In Jolt, a transaction is represented as an object of the class JoltTransaction. The transaction
begins when the transaction object is instantiated. The transaction object is created with a timeout
and JoltSession object parameter:

trans = new JoltTransaction(timeout, session)

Jolt uses an explicit transaction model for any services involved in a transaction. The transaction
service invocation requires a JoltTransaction object as a parameter. Jolt also requires that the
service and the transaction belong to the same session. Jolt does not allow you to use services and
transactions that are not bound to the same session.

The sample code in the listing “Jolt Transfer of Funds Example (SimXfer.java)” on page 5-11
describes how to use the Jolt Class Library and includes the use of the JoltSessionAttributes,
JoltSession, JoltRemoteService, and JoltTransaction classes.

The same sample combines two user-defined BEA Tuxedo services (WITHDRAWAL and
DEPOSIT) to perform a simulated TRANSFER transaction. If the WITHDRAWAL operation
fails, a rollback is performed. Otherwise, a DEPOSIT is performed and a commit completes the
transaction.

The following programming steps describe the transaction process shown in the sample code
listing “Jolt Transfer of Funds Example (SimXfer.java)” on page 5-11:

5-10 Using BEA Jolt

1. Set the connection attributes like hostname and portnumber in the JoltSessionAttribute
object.

Refer to this line in the following code listing:

sattr = new JoltSessionAttributes();

2. The sattr.checkAuthenticationLevel() allows the application to determine the level
of security required to log on to the server.

Refer to this line in the following code listing:

switch (sattr.checkAuthenticationLevel())

3. The logon is accomplished by instantiating a JoltSession object.

Refer to these lines in the following code listing:

session = new JoltSession (sattr, userName, userRole,
userPassword, appPassword);

This example does not explicitly catch SessionException errors.

4. All JoltRemoteService calls require a service to be specified and the session key returned
from JoltSession().

Refer to these lines in the following code listing:

withdrawal = new JoltRemoteService(“WITHDRAWAL”, session);

deposit = new JoltRemoteService(“DEPOSIT”, session);

These calls bind the service definition of both the WITHDRAWAL and DEPOSIT services,
which are stored in the Jolt Repository, to the withdrawal and deposit objects, respectively.
The services WITHDRAWAL and DEPOSIT must be defined in the Jolt Repository;
otherwise a ServiceException is thrown. This example does not explicitly catch
ServiceException errors.

5. Once the service definitions are returned, the application-specific fields such as account
number ACCOUNT_ID and withdrawal amount SAMOUNT are automatically populated.

Refer to these lines in the following code listing:

withdrawal.addInt(“ACCOUNT_ID”, 100000);

withdrawal.addString(“SAMOUNT”, “100.00”);

The add*() methods can throw IllegalAccessError or NoSuchFieldError exceptions.

6. The JoltTransaction call allows a timeout to be specified if the transaction does not
complete within the specified time.

J o l t C lass L ib rar y Wa lk th rough

Using BEA Jolt 5-11

Refer to this line in the following code listing:

trans = new JoltTransaction(5,session);

7. Once the withdrawal service definition is automatically populated, the withdrawal service is
invoked by calling the withdrawal.call(trans) method.

Refer to this line in the following code listing:

withdrawal.call(trans);

8. A failed WITHDRAWAL can be rolled back.

Refer to this line in the following code listing:

trans.rollback();

9. Otherwise, once the DEPOSIT is performed, all the transactions are committed. Refer to
these lines in the following code listing:

deposit.call(trans);

trans.commit();

The following listing shows an example of a simple application for the transfer of funds using the
Jolt classes.

Listing 5-1 Jolt Transfer of Funds Example (SimXfer.java)

/* Copyright 1999 BEA Systems, Inc. All Rights Reserved */

import bea.jolt.*;

public class SimXfer

{

 public static void main (String[] args)

 {

 JoltSession session;

 JoltSessionAttributes sattr;

 JoltRemoteService withdrawal;

 JoltRemoteService deposit;

 JoltTransaction trans;

 String userName=null;

 String userPassword=null;

 String appPassword=null;

 String userRole=”myapp”;

5-12 Using BEA Jolt

 sattr = new JoltSessionAttributes();

 sattr.setString(sattr.APPADDRESS, “//bluefish:8501”);

 switch (sattr.checkAuthenticationLevel())

 {

 case JoltSessionAttributes.NOAUTH:

 System.out.println(“NOAUTH\n”);

 break;

 case JoltSessionAttributes.APPASSWORD:

 appPassword = “appPassword”;

 break;

 case JoltSessionAttributes.USRPASSWORD:

 userName = “myname”;

 userPassword = “mysecret”;

 appPassword = “appPassword”;

 break;

 }

 sattr.setInt(sattr.IDLETIMEOUT, 300);

 session = new JoltSession(sattr, userName, userRole,

 userPassword, appPassword);

 // Simulate a transfer

 withdrawal = new JoltRemoteService(“WITHDRAWAL”, session);

 deposit = new JoltRemoteService(“DEPOSIT”, session);

 withdrawal.addInt(“ACCOUNT_ID”, 100000);

 withdrawal.addString(“SAMOUNT”, “100.00”);

 // Begin the transaction w/ a 5 sec timeout

 trans = new JoltTransaction(5, session);

 try

 {

 withdrawal.call(trans);

 }

 catch (ApplicationException e)

 {

 e.printStackTrace();

 // This service uses the STATLIN field to report errors

 // back to the client application.

 System.err.println(withdrawal.getStringDef(“STATLIN”,”NO

J o l t C lass L ib rar y Wa lk th rough

Using BEA Jolt 5-13

 STATLIN”));

 System.exit(1);

 }

 String wbal = withdrawal.getStringDef(“SBALANCE”, “$-1.0”);

 // remove leading “$” before converting string to float

 float w = Float.valueOf(wbal.substring(1)).floatValue();

 if (w < 0.0)

 {

 System.err.println(“Insufficient funds”);

 trans.rollback();

 System.exit(1);

 }

 else // now attempt to deposit/transfer the funds

 {

 deposit.addInt(“ACCOUNT_ID”, 100001);

 deposit.addString(“SAMOUNT”, “100.00”);

 deposit.call(trans);

 String dbal = deposit.getStringDef(“SBALANCE”, “-1.0”);

 trans.commit();

 System.out.println(“Successful withdrawal”);

 System.out.println(“New balance is: “ + wbal);

 System.out.println(“Successful deposit”);

 System.out.println(“New balance is: “ + dbal);

 }

 session.endSession();

 System.exit(0);

 } // end main

 } // end SimXfer

5-14 Using BEA Jolt

Using BEA Tuxedo Buffer Types with Jolt
Jolt supports the following built-in BEA Tuxedo buffer types:

FML, FML32

VIEW, VIEW32

X_COMMON

X_C_TYPE

CARRAY

X_OCTET

STRING

XML

MBSTRING

Note: X_OCTET is used identically to CARRAY.
X_COMMON and X_C_TYPE are used identically to VIEW.

Of the BEA Tuxedo built-in buffer types, the Jolt programmer should be particularly aware of
how Jolt handles the CARRAY (character array) and STRING buffer types:

The CARRAY type is used to handle data opaquely (that is, the characters of a CARRAY
data type are not interpreted in any way). Therefore, no data conversion is performed
between a Jolt client and BEA Tuxedo service.

The STRING data type is character and, unlike CARRAY, you can determine its
transmission length by counting the number of characters in the buffer until reaching the
null character. Therefore, data is automatically converted when data is exchanged by
machines with different character sets.

For more information about all the BEA Tuxedo typed buffers, data types, and buffer types, refer
to the following documents:

Programming BEA Tuxedo ATMI Applications Using C

BEA Tuxedo ATMI C Function Reference

BEA Tuxedo ATMI FML Function Reference

File Formats, Data Descriptions, MIBs, and System Processes Reference

Using BEA Tuxedo Buf fe r T ypes w i th Jo l t

Using BEA Jolt 5-15

Using the STRING Buffer Type
The STRING buffer type is an array of non-null characters that terminates with a null character.
Unlike CARRAY, you can determine its transmission length by counting the number of
characters in the buffer until reaching the null character. Since the STRING buffer is
self-describing, the BEA Tuxedo System can convert data automatically when data is exchanged
by machines with different character sets.

Note: During the data conversion from Jolt to STRING, the null terminator is automatically
appended to the end of the STRING buffers because a Java string is not null-terminated.

Using the STRING buffer type requires two main steps:

1. Define the Tuxedo service that you will be using with the buffer type.

2. Write the code that uses the STRING buffer type.

The next two sections provide examples that demonstrate these steps.

The ToUpper code fragment shown in the listing “Use of the STRING Buffer Type
(ToUpper.java)” on page 5-18 illustrates how Jolt works with a service whose buffer type is
STRING. The ToUpper BEA Tuxedo Service is available in the BEA Tuxedo simpapp example.

Define TOUPPER in the Repository Editor
Before running the ToUpper.java example, you need to define the TOUPPER service through the
Jolt Repository Editor.

Note: Refer to “Using the Jolt Repository Editor” on page 4-1 for more information about
defining your services and adding new parameters.

1. In the Jolt Repository Editor Logon window, click Services.

5-16 Using BEA Jolt

Figure 5-3 Add a TOUPPER Service

2. In the Services window, select the TOUPPER service in the SIMPSERV package.

3. Click Edit.

Using BEA Tuxedo Buf fe r T ypes w i th Jo l t

Using BEA Jolt 5-17

Figure 5-4 Set Input and Output Buffer Types to STRING

4. In the Edit Services window, define an input buffer type of STRING and an output buffer
type of STRING. Refer to the figure “Set Input and Output Buffer Types to STRING” on
page 5-17.)

5. For the TOUPPER service, define only one parameter named STRING, which is both an
input and an output parameter.

6. Click Save Service.

ToUpper.java Client Code
The ToUpper.java Java code fragment in the following listing illustrates how Jolt works with a
service with a buffer type of STRING. The example shows a Jolt client using a STRING buffer
to pass data to a server. The BEA Tuxedo server would take the buffer, convert the string to all
uppercase letters, and pass the string back to the client. The following example assumes that a
session object was already instantiated.

5-18 Using BEA Jolt

Listing 5-2 Use of the STRING Buffer Type (ToUpper.java)

/* Copyright 1996 BEA Systems, Inc. All Rights Reserved */

import bea.jolt.*;

public class ToUpper

 {

 public static void main (String[] args)

 {

 JoltSession session;

 JoltSessionAttributes sattr;

 JoltRemoteService toupper;

 JoltTransaction trans;

 String userName=null;

 String userPassword=null;

 String appPassword=null;

 String userRole=”myapp”;

 String outstr;

 sattr = new JoltSessionAttributes();

 sattr.setString(sattr.APPADDRESS, “//myhost:8501”);

 switch (sattr.checkAuthenticationLevel())

 {

 case JoltSessionAttributes.NOAUTH:

 break;

 case JoltSessionAttributes.APPASSWORD:

 appPassword = “appPassword”;

 break;

 case JoltSessionAttributes.USRPASSWORD:

 userName = “myname”;

 userPassword = “mysecret”;

 appPassword = “appPassword”;

 break;

 }

 sattr.setInt(sattr.IDLETIMEOUT, 300);

 session = new JoltSession(sattr, userName, userRole,

 userPassword, appPassword);

 toupper = new JoltRemoteService (“TOUPPER”, session);

 toupper.setString(“STRING”, “hello world”);

Using BEA Tuxedo Buf fe r T ypes w i th Jo l t

Using BEA Jolt 5-19

 toupper.call(null);

 outstr = toupper.getStringDef(“STRING”, null);

 if (outstr != null)

 System.out.println(outstr);

 session.endSession();

 System.exit(0);

 } // end main

 } // end ToUpper

Using the CARRAY Buffer Type
The CARRAY buffer type is a simple character array buffer type that is built into the BEA
Tuxedo system. Because the system does not interpret the data (although the data type is known)
when you use the CARRAY buffer type, you must specify a data length in the Jolt client
application. The Jolt client must specify a data length when passing this buffer type.

For example, if a BEA Tuxedo service uses a CARRAY buffer type and the user sets a 32-bit
integer (in Java the integer is in big-endian byte order), then the data is sent unmodified to the
BEA Tuxedo service.

To use the CARRAY buffer type, you first define the Tuxedo service that you will be using with
the buffer type. Then, write the code that uses the buffer type. The next two sections demonstrate
these steps.

Note: X_OCTET is used identically to CARRAY.

Define the Tuxedo Service in the Repository Editor
Before running the ECHO example, you must write and boot a Tuxedo ECHO service. The
ECHO service takes a buffer and passes it back to the Jolt client. You need to define the ECHO
service in the Jolt Repository Editor.

Note: Refer to “Using the Jolt Repository Editor” on page 4-1 for more information about
defining your services and adding new parameters.

5-20 Using BEA Jolt

Figure 5-5 Repository Editor: Add the ECHO Service

Use the Repository Editor to add the ECHO service as follows:

1. In the Repository Editor, add a service called ECHO.

2. Define the input buffer type and output buffer type as CARRAY.

3. Define only one parameter named CARRAY, which is both an input and output parameter.

Note: If using the X_OCTET buffer type, you must change the Input Buffer Type and Output
Buffer Type fields to X_OCTET.

Using BEA Tuxedo Buf fe r T ypes w i th Jo l t

Using BEA Jolt 5-21

Figure 5-6 Repository Editor: Edit ECHO Service

tryOnCARRAY.java Client Code
The code in the following listing illustrates how Jolt works with a service with a buffer type of
CARRAY. Because Jolt does not look into the CARRAY data stream, it is the programmer's
responsibility to ensure that the data formats between the Jolt client and the CARRAY service
match. The example in the following listing assumes that a session object was already
instantiated.

Listing 5-3 CARRAY Buffer Type Example

/* Copyright 1996 BEA Systems, Inc. All Rights Reserved */

 /* This code fragment illustrates how Jolt works with a service

 * whose buffer type is CARRAY.

 */

5-22 Using BEA Jolt

import java.io.*;

import bea.jolt.*;

class ...

{

 ...

 public void tryOnCARRAY()

 {

 byte data[];

 JoltRemoteService csvc;

 DataInputStream din;

 DataOutputStream dout;

 ByteArrayInputStream bin;

 ByteArrayOutputStream bout;

 /*

 * Use java.io.DataOutputStream to put data into a byte array

 */

 bout = new ByteArrayOutputStream(512);

 dout = new DataOutputStream(bout);

 dout.writeInt(100);

 dout.writeFloat((float) 300.00);

 dout.writeUTF("Hello World");

 dout.writeShort((short) 88);

 /*

 * Copy the byte array into a new byte array "data". Then

 * issue the Jolt remote service call.

 */

 data = bout.toByteArray();

 csvc = new JoltRemoteService("ECHO", session);

 csvc.setBytes("CARRAY", data, data.length);

 csvc.call(null);

 /*

 * Get the result from JoltRemoteService object and use

 * java.io.DataInputStream to extract each individual value

 * from the byte array.

 */

 data = csvc.getBytesDef("CARRAY", null);

 if (data != null)

 {

Using BEA Tuxedo Buf fe r T ypes w i th Jo l t

Using BEA Jolt 5-23

 bin = new ByteArrayInputStream(data);

 din = new DataInputStream(bin);

 System.out.println(din.readInt());

 System.out.println(din.readFloat());

 System.out.println(din.readUTF());

 System.out.println(din.readShort());

 }

 }

}

Using the FML Buffer Type
FML (Field Manipulation Language) is a flexible data structure that can be used as a typed buffer.
The FML data structure stores tagged values that are typed, variable in length, and may have
multiple occurrences. The typed buffer is treated as an abstract data type in FML.

FML gives you the ability to access and update data values without having to know how the data
is structured and stored. In your application program, you simply access or update a field in the
fielded buffer by referencing its identifier. To perform the operation, the FML run time
determines the field location and data type.

FML is especially suited for use with Jolt clients because the client and server code can be in two
languages (for example, Java and C); the client/server platforms can have different data type
specifications; or the interface between the client and the server can change frequently.

The following tryOnFml examples illustrate the use of the FML buffer type. The examples show
a Jolt client using FML buffers to pass data to a server. The server takes the buffer, creates a new
FML buffer to store the data, and passes that buffer back to the Jolt client. The examples consist
of the following components.

The “tryOnFml.java Code Example” on page 5-24 is a Jolt client that contains a PASSFML
service.

The “tryOnFml.f16 Field Definitions” on page 5-25 is a BEA Tuxedo FML field
definitions table used by the PASSFML service.

The “tryOnFml.c Code Example” on page 5-28 is a server code fragment that contains the
server side C code for handling the data sent by the Jolt client.

5-24 Using BEA Jolt

tryOnFml.java Client Code
The tryOnFml.java Java code fragment in the following listing illustrates how Jolt works with
a service whose buffer type is FML. In this example, it is assumed that a session object was
already instantiated.

Listing 5-4 tryOnFml.java Code Example

/* Copyright 1997 BEA Systems, Inc. All Rights Reserved */

import bea.jolt.*;
class ...
{
 ...
 public void tryOnFml ()
 {
 JoltRemoteService passFml;
 String outputString;
 int outputInt;
 float outputFloat;
 ...
 passFml = new JoltRemoteService("PASSFML",session);
 passFml.setString("INPUTSTRING", "John");
 passFml.setInt("INPUTINT", 67);
 passFml.setFloat("INPUTFLOAT", (float)12.0);
 passFml.call(null);
 outputString = passFml.getStringDef("OUTPUTSTRING", null);
 outputInt = passFml.getIntDef("OUTPUTINT", -1);
 outputFloat = passFml.getFloatDef("OUTPUTFLOAT", (float)-1.0);
 System.out.print("String =" + outputString);
 System.out.print(" Int =" + outputInt);
 System.out.println(" Float =" + outputFloat);
 }
}

FML Field Definitions
The entries in the following listing,“tryOnFml.f16 Field Definitions,” show the FML field
definitions for the previous listing, “tryOnFml.java Code Example.”

Using BEA Tuxedo Buf fe r T ypes w i th Jo l t

Using BEA Jolt 5-25

Listing 5-5 tryOnFml.f16 Field Definitions

#

FML field definition table

#

*base 4100

INPUTSTRING 1 string

INPUTINT 2 long

INPUTFLOAT 3 float

OUTPUTSTRING 4 string

OUTPUTINT 5 long

OUTPUTFLOAT 6 float

Define PASSFML in the Repository Editor
The BULKPKG package contains the PASSFML service, which is used with the
tryOnFml.java and tryOnFml.c code. Before running the tryOnFml.java example, you need
to modify the PASSFML service through the Jolt Repository Editor.

Note: Refer to “Using the Jolt Repository Editor” on page 4-1 for more information about
defining a service.

1. In the Edit Services window of the Jolt Repository Editor, define the PASSFML service with
an input buffer type of FML and an output buffer type of FML.

The figure “Repository Editor Window: Edit Services (PASSFML)” on page 5-26
illustrates the PASSFML service, and Input Buffer and Output Buffer of FML.

5-26 Using BEA Jolt

Figure 5-7 Repository Editor Window: Edit Services (PASSFML)

2. Select the input buffer type and output buffer type as FML for the PASSFML service.

3. Click Edit to display the Edit Parameters window as shown in the following figure.

Using BEA Tuxedo Buf fe r T ypes w i th Jo l t

Using BEA Jolt 5-27

Figure 5-8 Edit the PASSFML Parameters

4. Define the parameter for the PASSFML service.

5. Repeat steps 2-4 for each parameter in the PASSFML service.

5-28 Using BEA Jolt

tryOnFml.c Server Code
The following listing illustrates the server side code for using the FML buffer type. The
PASSFML service reads in an input FML buffer and outputs a FML buffer.

Listing 5-6 tryOnFml.c Code Example

/*

 * tryOnFml.c
 *
 * Copyright (c) 1997 BEA Systems, Inc. All rights reserved
 *
 * Contains the PASSFML BEA Tuxedo server.
 *
 */
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/stat.h>
#include <malloc.h>
#include <math.h>
#include <string.h>
#include <fml.h>
#include <fml32.h>
#include <Usysflds.h>
#include <atmi.h>
#include <userlog.h>
#include "tryOnFml.f16.h"
/*
 * PASSFML service reads in a input fml buffer and outputs a fml buffer.
 */
void
PASSFML(TPSVCINFO *rqst)
{
FLDLENlen;
FBFR*svcinfo = (FBFR *) rqst->data;
charinputString[256];
longinputInt;
floatinputFloat;
FBFR*fml_ptr;
intrt;
if (Fget(svcinfo, INPUTSTRING, 0, inputString, &len) < 0) {
(void)userlog("Fget of INPUTSTRING failed %s",

Using BEA Tuxedo Buf fe r T ypes w i th Jo l t

Using BEA Jolt 5-29

Fstrerror(Ferror));
tpreturn(TPFAIL, 0, rqst->data, 0L, 0);
}
if (Fget(svcinfo, INPUTINT, 0, (char *) &inputInt, &len) < 0) {
(void)userlog("Fget of INPUTINT failed %s",Fstrerror(Ferror));
tpreturn(TPFAIL, 0, rqst->data, 0L, 0);
}
if (Fget(svcinfo, INPUTFLOAT, 0, (char *) &inputFloat, &len) < 0) {
(void)userlog("Fget of INPUTFLOAT failed %s",
Fstrerror(Ferror));
tpreturn(TPFAIL, 0, rqst->data, 0L, 0);
}
/* We could just pass the FML buffer back as is, put lets*/
/* store it into another FML buffer and pass it back.*/
if ((fml_ptr = (FBFR *)tpalloc("FML",NULL,rqst->len))==(FBFR *)NULL) {
(void)userlog("tpalloc failed in PASSFML %s",
tpstrerror(tperrno));
tpreturn(TPFAIL, 0, rqst->data, 0L, 0);
}
if(Fadd(fml_ptr, OUTPUTSTRING, inputString, (FLDLEN)0) == -1) {
userlog("Fadd failed with error: %s", Fstrerror(Ferror));
tpfree((char *)fml_ptr);
tpreturn(TPFAIL, 0, NULL, 0L, 0);
 }
if(Fadd(fml_ptr, OUTPUTINT, (char *)&inputInt, (FLDLEN)0) == -1) {
userlog("Fadd failed with error: %s", Fstrerror(Ferror));
tpfree((char *)fml_ptr);
tpreturn(TPFAIL, 0, NULL, 0L, 0);
 }
if(Fadd(fml_ptr, OUTPUTFLOAT, (char *)&inputFloat, (FLDLEN)0) == -1) {
userlog("Fadd failed with error: %d\n", Fstrerror(Ferror));
tpfree((char *)fml_ptr);
tpreturn(TPFAIL, 0, NULL, 0L, 0);
 }
tpreturn(TPSUCCESS, 0, (char *)fml_ptr, 0L, 0);
}

Using the VIEW Buffer Type
VIEW is a built-in BEA Tuxedo typed buffer. The VIEW buffer provides a way to use C
structures and COBOL records with the BEA Tuxedo system. The VIEW typed buffer enables
the BEA Tuxedo run-time system to understand the format of C structures and COBOL records
based on the view description that is read at run time.

5-30 Using BEA Jolt

When allocating a VIEW, your application specifies a VIEW buffer type and a subtype that
matches the name of the view (the name that appears in the view description file). The parameter
name must match the field name in that view. Because the BEA Tuxedo run-time system can
determine the space needed based on the structure size, your application need not provide a buffer
length. The run-time system can also automatically handle such things as computing how much
data to send in a request or response, and handle encoding and decoding when the message
transfers between different machine types.

The following examples show the use of the VIEW buffer type with a Jolt client and its
server-side application.

The “simpview.java Code Example” on page 5-33 is the Jolt client that contains the code
used to connect to BEA Tuxedo and uses the VIEW buffer type.

The listing “simpview.v16 Field Definitions” on page 5-34 contains the BEA Tuxedo
VIEW field definitions.

The “simpview.c Code Example” on page 5-35 contains the server side C code for
handling the input from the Jolt client.

The Jolt client treats a null character in a VIEW buffer string format as an end-of-line character
and truncates any part of the string that follows the null.

Define VIEW in the Repository Editor
Before running the simpview.java and simpview.c examples, you need to define the
SIMPVIEW service through the Jolt Repository Editor.

Note: Refer to “Using the Jolt Repository Editor” on page 4-1 for more information about
defining a service.

Using BEA Tuxedo Buf fe r T ypes w i th Jo l t

Using BEA Jolt 5-31

Figure 5-9 Repository Editor: Add SIMPVIEW Service

In the Repository Editor add the VIEW service as follows:

1. Add a SIMPVIEW service for the SIMPSERV package.

2. Define the SIMPVIEW service with an input buffer type of VIEW and an output buffer type
of VIEW.

5-32 Using BEA Jolt

Figure 5-10 Repository Editor: Edit SIMPVIEW Service

3. Define the parameters for the VIEW service. In this example the parameters are: inInt,
inString, outFloat, outInt, outString.

Note: If using the X_COMMON or X_C_TYPE buffer types, you must put the correct buffer
type in the Input Buffer Type and Output Buffer Type fields. Additionally, you must
choose the corresponding Input View Name and Output View Name fields.

Using BEA Tuxedo Buf fe r T ypes w i th Jo l t

Using BEA Jolt 5-33

simpview.java Client Code
The listing “simpview.java Code Example” on page 5-33 illustrates how Jolt works with a service
whose buffer type is VIEW. The client code is identical to the code used for accessing an FML
service.

Note: The code in the following listing does not catch any exceptions. Because all Jolt
exceptions are derived from java.lang.RunTimeException, the Java Virtual Machine
(JVM) catches these exceptions if the application does not. (A well-written application
will catch these exceptions and take appropriate actions.)

Before running the example in the following listing, you need to add the VIEW service to the
SIMPAPP package using the Jolt Repository Editor and write the simpview.c BEA Tuxedo
application. This service takes the data from the client VIEW buffer, creates a new buffer and
passes it back to the client as a new VIEW buffer. The following example assumes that a session
object has already been instantiated.

Listing 5-7 simpview.java Code Example

/* Copyright 1997 BEA Systems, Inc. All Rights Reserved */
/*
 * This code fragment illustrates how Jolt works with a service whose buffer
 * type is VIEW.
 */
import bea.jolt.*;
class ...
{
...
public void simpview ()
{
JoltRemoteService ViewSvc;
String outString;
int outInt;
float outFloat;
// Create a Jolt Service for the BEA Tuxedo service "SIMPVIEW"
ViewSvc = new JoltRemoteService("SIMPVIEW",session);
// Set the input parameters required for SIMPVIEW
ViewSvc.setString("inString", "John");
ViewSvc.setInt("inInt", 10);
ViewSvc.setFloat("inFloat", (float)10.0);
// Call the service. No transaction required, so pass
// a "null" parameter
ViewSvc.call(null);
// Process the results
outString = ViewSvc.getStringDef("outString", null);

5-34 Using BEA Jolt

outInt = ViewSvc.getIntDef("outInt", -1);
outFloat = ViewSvc.getFloatDef("outFloat", (float)-1.0);
// And display them...
System.out.print("outString=" + outString + ",");
System.out.print("outInt=" + outInt + ",");
System.out.println("outFloat=" + outFloat);
}
}

VIEW Field Definitions
The “simpview.v16 Field Definitions” listing shows the BEA Tuxedo VIEW field definitions for
the simpview.java example that were shown in the previous listing.

Listing 5-8 simpview.v16 Field Definitions

#

VIEW for SIMPVIEW. This view is used for both input and output. The

service could also have used separate input and output views.

The first 3 params are input params, the second 3 are outputs.

#

VIEW SimpView

$

#type cname fbname count flag size null

string inString - 1 - 32 -

long inInt - 1 - - -

float inFloat - 1 - - -

string outString - 1 - 32 -

long outInt - 1 - - -

float outFloat - 1 - - -

END

Using BEA Tuxedo Buf fe r T ypes w i th Jo l t

Using BEA Jolt 5-35

simpview.c Server Code
In the following listing, the input and output buffers are VIEW. The code accepts the VIEW
buffer data as input and outputs the same data as VIEW.

Listing 5-9 simpview.c Code Example

/*
 * SIMPVIEW.c
 *
 * Copyright (c) 1997 BEA Systems, Inc. All rights reserved
 *
 * Contains the SIMPVIEW BEA Tuxedo server.
 *
 */
#include <stdlib.h>
#include <stdio.h>
#include <ctype.h>
#include <sys/types.h>
#include <sys/ipc.h>
#include <sys/sem.h>
#include <sys/stat.h>
#include <malloc.h>
#include <math.h>
#include <string.h>
#include <fml.h>
#include <fml32.h>
#include <Usysflds.h>
#include <atmi.h>
#include <userlog.h>
#include "simpview.h"
/*
 * Contents of simpview.h.
 *
 *struct SimpView {
 *
 *charinString[32];
 *longinInt;
 *floatinFloat;
 *charoutString[32];
 *longoutInt;
 *floatoutFloat;
 *};
 */
/*
 * service reads in a input view buffer and outputs a view buffer.

5-36 Using BEA Jolt

 */
void
SIMPVIEW(TPSVCINFO *rqst)
{
/*
 * get the structure (VIEWSVC) from the TPSVCINFO structure
 */
struct SimpView*svcinfo = (struct SimpView *) rqst->data;
/*
 * print the input params to the UserLog. Note there is
 * no error checking here. Normally a SERVER would perform
 * some validation of input and return TPFAIL if the input
 * is not correct.
 */
(void)userlog("SIMPVIEW: InString=%s,InInt=%d,InFloat=%f",
svcinfo->inString, svcinfo->inInt, svcinfo->inFloat);
/*
 * Populate the output fields and send them back to the caller
 */

strcpy (svcinfo->outString, "Return from SIMPVIEW");
svcinfo->outInt = 100;
svcinfo->outFloat = (float) 100.00;
/*
 * If there was an error, return TPFAIL
 * tpreturn(TPFAIL, ErrorCode, (char *)svcinfo, sizeof (*svcinfo), 0);
 */
tpreturn(TPSUCCESS, 0, (char *)svcinfo, sizeof (*svcinfo), 0);
}

Using the XML Buffer Type
The XML buffer type enables BEA Tuxedo applications to use XML documents for exchanging
data within and between applications. BEA Tuxedo applications can send and receive XML
buffers, and route those buffers to the appropriate servers. All logic for dealing with XML
documents, including parsing, resides in the application.

A well-formed XML document consists of:

Text in the form of a sequence of encoded characters, including proper headings, opening
and closing tags, etc.

A description of the logical structure of the document and information about that structure.

To use the XML buffer type, you first define the Tuxedo service that you will be using with the
buffer type, and then write the code that uses the buffer type. The next two sections demonstrate
these steps.

Using BEA Tuxedo Buf fe r T ypes w i th Jo l t

Using BEA Jolt 5-37

Note: Similar to CARRAY, the XML buffer type is treated as a byte arrary, not a STRING.
Therefore, no data conversion takes place between a Jolt client and a BEA Tuxedo
service.

Define the Tuxedo Service in the Repository Editor
Before running the XML example, you must write and boot a Tuxedo XML service. The XML
service takes a buffer and passes it back to the Jolt client. You need to define the XML service in
the Jolt Repository Editor.

Note: Refer to “Using the Jolt Repository Editor” on page 4-1 for more information about
defining your services and adding new parameters.

Figure 5-11 Repository Editor: Add the XML Service

Use the Repository Editor to add the XML service as follows:

1. In the Repository Editor, add a service called ECHO_XML.

5-38 Using BEA Jolt

2. For the ECHO_XML service, define the input buffer type and output buffer type as XML.

3. Define the ECHO_XML service with only one parameter named XML, which is both an
input and output parameter.

Figure 5-12 Repository Editor: Edit the XML Service

simpxml.java Client Code
The code in the following listing illustrates how Jolt works with a service with an XML type
buffer. Because Jolt does not look into the XML data stream, it is the programmer's responsibility
to ensure that the data formats between the Jolt client and the XML service match. The example
in the following listing assumes that a session object was already instantiated.

Using BEA Tuxedo Buf fe r T ypes w i th Jo l t

Using BEA Jolt 5-39

Listing 5-10 XML Buffer Type Example

/* Copyright 2001 BEA Systems, Inc. All Rights Reserved */
/*
 * This code fragment illustrates how Jolt works with a service whose buffer
 * type is XML.
 */

import java.io.*;
import java.lang.*;
import bea.jolt.*;

public class xmldoc {

 public static void main (String[] args) {
 JoltSessionAttributes sattr;
 JoltSession session;
 JoltRemoteService echo_xml;

String inString = "<?xml version=\"1.0\" encoding=\"UTF-8\"?><ORDER><HEADER
DATE=\"05/13/1999\" ORDERNO=\"22345\"/><COMPANY>ACME</COMPANY><LINE><ITEM
MODEL=\"Pabc\" QUANTITY=\"5\">LAPTOP</ITEM></LINE><LINE><ITEM MODEL=\"P500\"
QUANTITY=\"15\">LAPTOP</ITEM></LINE></ORDER>";

 byte data[];
 DataInputStream din;
 DataOutputStream dout;
 ByteArrayInputStream bin;
 ByteArrayOutputStream bout;

 byte odata[];
 String outString = null;
 String appAddress = null;

 //...Create Jolt Session

 try {
 /*
 * Use java.io.DataOutputStream to put data
 * into a byte array
 */
 bout = new ByteArrayOutputStream(inString.length());
 dout = new DataOutputStream(bout);
 dout.writeBytes(inString);

5-40 Using BEA Jolt

 /*
 * Copy the byte array into a new byte array "data".
 * Then issue the Jolt remote service call.
 */
 data = bout.toByteArray();
 } catch (Exception e) {
 System.out.println("toByteArray error");
 return;
 }

 try {
 echo_xml = new JoltRemoteService("ECHO_XML", session);
 System.out.println("JoltRemoteService Created");
 echo_xml.setBytes("XML", data, data.length);
 } catch (Exception e) {
 System.out.println("RemoteService call error" + e);
 return;
 }

 echo_xml.call(null);
 System.out.println("Service Call Returned");
 odata = echo_xml.getBytesDef("XML", null);

 try {
 System.out.println("Return String is:" + new String(odata));
 } catch (Exception e) {
 System.err.println("getByteDef Error");
 }
 }
}

// end of class

Using the MBSTRING Buffer Type
Starting with Tuxedo 9.0, Jolt supports the MBSTRING buffer type which is already supported
by Tuxedo ATMI as of Tuxedo 8.1.

Since Java uses Unicode as the standard for multi byte character encoding and provides String
class for handling Unicode string data, Jolt MBSTRING support will use the String class as the
MBSTRING container on the Java client side. Jolt automatically converts the Unicode
MBSTRING data in a String object between byte array MBSTRING data, which is the ATMI’s
MBSTRING representation, when the data is transferred between a Jolt client and a Tuxedo
server.

Using BEA Tuxedo Buf fe r T ypes w i th Jo l t

Using BEA Jolt 5-41

The following methods are added to bea.jolt.Message interface and to
bea.jolt.JoltMessage and bea.jolt.JoltRemoteService classes.
addMBString
setMBString
setMBStringItem
getMBStringDef
getMBStringItemDef

The usage of the MBSTRING buffer type is very similar to the STRING buffer type except that
the buffer type specified in the Jolt Repository Editor is “MBSTRING” and the Java methods
used for setting and getting the MBSTRING data are listed above.

In addition, the following Java system properties are used to specify the character encoding name
for MBSTRING data sent to Tuxedo servers.

bea.jolt.mbencoding

The Tuxedo encoding name used for converting Unicode MBSTRING data to the
corresponding byte array MBSTRING data while sending MBSTRING data to a Tuxedo
server. If this property is not specified, the Java default character encoding name is used
and mapped to the corresponding Tuxedo encoding name. For example, the default
Japanese Windows encoding name “MS932” should be mapped to the corresponding
Tuxedo encoding name “CP932” and specified in this property.

bea.jolt.mbencodingmap

The full path name for the file which specifies character encoding name mapping between
Jolt clients and Tuxedo servers. This mapping is necessary because the character encoding
name for the same character encoding is sometimes different between Java and Tuxedo.
For example, the default Japanese Windows encoding name is MS932 in Java, but in
Tuxedo it is CP932. If this property is not specified, mapping is not done.

This means that the Java character encoding name is directly set in the MBSTRING data
sent to the Tuxedo server, and the encoding name which is set in the received MBSTRING
data from the Tuxedo server is used as the Java encoding name. This may cause a
conversion error if the encoding name is not supported by Java or Tuxedo.

To specify the bea.jolt.mbencoding or bea.jolt.mbencodingmap, jolti18n.jar must be
included in the CLASSPATH. If jolti18n.jar is not included in the CLASSPATH, the
encoding name is set to “ISO-8859-1” and no encoding name is done between Java and
Tuxedo even if these properties are specified in the Java command line.

5-42 Using BEA Jolt

Multithreaded Applications
As a Java-based set of classes, Jolt supports multithreaded applications; however, various
implementations of the Java language differ with respect to certain language and environment
features. Jolt programmers need to be aware of the following:

The use of preemptive and non-preemptive threads when creating applications or applets
with the Jolt Class Library.

The use of threads to get asynchronous behavior similar to the tpacall() function in
BEA Tuxedo.

“Threads of Control” describes the issues arising from using threads with different Java
implementations and is followed by an example of the use of threads in a Jolt program.

Note: Most Java implementations provide preemptive rather than non-preemptive threads. The
difference between these two models can lead to very different performance and
programming requirements.

Threads of Control
Each concurrently operating task in the Java virtual machine is a thread. Threads exist in various
states, the important ones being RUNNING, RUNNABLE, or BLOCKED.

A RUNNING thread is a currently executing thread.

A RUNNABLE thread can be run once the current thread has relinquished control of the
CPU. There can be many threads in the RUNNABLE state, but only one can be in the
RUNNING state. Running a thread means changing the state of a thread from
RUNNABLE to RUNNING, and causing the thread to have control of the Java Virtual
Machine (VM).

A BLOCKED thread is a thread that is waiting on the availability of some event or
resource.

Note: The Java VM schedules threads of the same priority to run in a round-robin mode.

Preemptive Threading
The main performance difference between the two threading models arises in telling a running
thread to relinquish control of the Java VM. In a preemptive threading environment, the usual
procedure is to set a hardware timer that goes off periodically. When the timer goes off, the
current thread is moved from the RUNNING to the RUNNABLE state, and another thread is
chosen to run.

Mul t i th readed App l icat ions

Using BEA Jolt 5-43

Non-Preemptive Threading
In a non-preemptive threading environment, a thread must volunteer to give up control of the
CPU and move to the RUNNABLE state. Many methods in the Java language classes contain
code that volunteers to give up control, and are typically associated with actions that might take
a long time. For example, reading from the network generally causes a thread to wait for a packet
to arrive. A thread that is waiting on the availability of some event or resource is in the
BLOCKED state. When the event occurs or the resource becomes available, the thread becomes
RUNNABLE.

Using Jolt with Non-Preemptive Threading
If your Jolt-based Java program is running on a non-preemptive threading Virtual Machine (such
as Sun Solaris), the program must either:

Occasionally call a method that blocks the thread, or

Explicitly give up control of the CPU using the Thread.yield() method

The typical usage is to make the following call in all long-running code segments or potentially
time-consuming loops:

Thread.currentThread.yield();

Without sending this message, the threads used by the Jolt Library may never get scheduled and,
as such, the Jolt operation is impaired.

The only virtual machine known to use non-preemptive threading is the Java Developer’s Kit
(JDK) machine running on a Sun platform. If you want your applet to work on JDK 1.3, you must
make sure to send the yield messages. As mentioned earlier, some methods contain yields. An
important exception is the System.in.read method. This method does not cause a thread
switch. Rather than rely on these messages, we suggest using yields explicitly.

Using Threads for Asynchronous Behavior
You can use threads in Jolt to get asynchronous behavior that is analogous to the tpacall()
function in BEA Tuxedo. With this capability, you do not need an asynchronous service request
function. You can get this functionality because Jolt is thread-safe. For example, the Jolt client
application can start one thread that sends a request to a BEA Tuxedo service function and then
immediately start another thread that sends another request to a BEA Tuxedo service function.
So even though the Jolt tpacall() is synchronous, the application is asynchronous because the
two threads are running at the same time.

5-44 Using BEA Jolt

Using Threads with Jolt
A Jolt client-side program or applet is fully thread-safe. Jolt support of multithreaded applications
includes the following client characteristics:

Multiple sessions per client

Multithreaded within a session

Client application manages threads, not asynchronous calls

Performs synchronous calls

The following listing illustrates the use of two threads in a Jolt application.

Listing 5-11 Using Multiple Threads with Jolt (ThreadBank.java)

/* Copyright 1996 BEA Systems, Inc. All Rights Reserved */

import bea.jolt.*;

public class ThreadBank

{

 public static void main (String [] args)

 {

 JoltSession session;

 try

 {

 JoltSessionAttributes dattr;

 String userName = null;

 String userPasswd = null;

 String appPasswd = null;

 String userRole = null;

 // fill in attributes required

 dattr = new JoltSessionAttributes();

 dattr.setString(dattr.APPADDRESS,”//bluefish:8501”);

 // instantiate domain

 // check authentication level

 switch (dattr.checkAuthenticationLevel())

 {

Mul t i th readed App l icat ions

Using BEA Jolt 5-45

 case JoltSessionAttributes.NOAUTH:

 System.out.println(“NOAUTH\n”);

 break;

 case JoltSessionAttributes.APPASSWORD:

 appPasswd = “myAppPasswd”;

 break;

 case JoltSessionAttributes.USRPASSWORD:

 userName = “myName”;

 userPasswd = “mySecret”;

 appPasswd = “myAppPasswd”;

 break;

 }

 dattr.setInt(dattr.IDLETIMEOUT, 60);

 session = new JoltSession (dattr, userName, userRole,

 userPasswd, appPasswd);

 T1 t1 = new T1 (session);

 T2 t2 = new T2 (session);

 t1.start();

 t2.start();

 Thread.currentThread().yield();

 try

 {

 while (t1.isAlive() && t2.isAlive())

 {

 Thread.currentThread().sleep(1000);

 }

 }

 catch (InterruptedException e)

 {

 System.err.println(e);

 if (t2.isAlive())

 {

 System.out.println(“job 2 is still alive”);

 try

 {

 Thread.currentThread().sleep(1000);

5-46 Using BEA Jolt

 }

 catch (InterruptedException e1)

 {

 System.err.println(e1);

 }

 }

 else if (t1.isAlive())

 { System.out.println(“job1 is still alive”);

 try

 {

 Thread.currentThread().sleep(1000);

 }

 catch (InterruptedException e1)

 {

 System.err.println(e1);

 }

 }

 }

 session.endSession();

 }

 catch (SessionException e)

 {

 System.err.println(e);

 }

 finally

 {

 System.out.println(“normal ThreadBank term”);

 }

 }

}

class T1 extends Thread

{

 JoltSession j_session;

 JoltRemoteService j_withdrawal;

 public T1 (JoltSession session)

 {

Mul t i th readed App l icat ions

Using BEA Jolt 5-47

 j_session=session;

 j_withdrawal= new JoltRemoteService(“WITHDRAWAL”,j_session);

 }

 public void run()

 {

 j_withdrawal.addInt(“ACCOUNT_ID”,10001);

 j_withdrawal.addString(“SAMOUNT”,”100.00”);

 try

 {

 System.out.println(“Initiating Withdrawal from account 10001”);

 j_withdrawal.call(null);

 String W = j_withdrawal.getStringDef(“SBALANCE”,”-1.0”);

 System.out.println(“-->Withdrawal Balance: “ + W);

 }

 catch (ApplicationException e)

 {

 e.printStackTrace();

 System.err.println(e);

 }

 }

}

class T2 extends Thread

{

 JoltSession j_session;

 JoltRemoteService j_deposit;

 public T2 (JoltSession session)

 {

 j_session=session;

 j_deposit= new JoltRemoteService(“DEPOSIT”,j_session);

 }

 public void run()

 {

 j_deposit.addInt(“ACCOUNT_ID”,10000);

 j_deposit.addString(“SAMOUNT”,”100.00”);

 try

 {

 System.out.println(“Initiating Deposit from account 10000”);

5-48 Using BEA Jolt

 j_deposit.call(null);

 String D = j_deposit.getStringDef(“SBALANCE”,”-1.0”);

 System.out.println(“-->Deposit Balance: “ + D);

 }

 catch (ApplicationException e)

 {

 e.printStackTrace();

 System.err.println(e);

 }

 }

}

Event Subscription and Notifications
Programmers developing client applications with Jolt can receive event notifications from either
BEA Tuxedo Services or other BEA Tuxedo clients. The Jolt Class Library contains classes that
support the following types of BEA Tuxedo notifications for handling event-based
communication:

Unsolicited Event Notifications—these are notifications that a Jolt client receives as a
result of a BEA Tuxedo client or service issuing a broadcast using either a
tpbroadcast() or a directly targeted message via a tpnotify() ATMI call.

Brokered Event Notifications—these notifications are received by a Jolt client through the
BEA Tuxedo Event Broker. The notifications are only received when the Jolt client
subscribes to an event and any BEA Tuxedo client or server issues a system-posted event
or tppost() call.

Event Subscription Classes
The Jolt Class Library provides four classes that implement the asynchronous notification
mechanism for Jolt client applications:

JoltSession—the JoltSession class includes an onReply() method for receiving
notifications and notification messages.

JoltReply—the JoltReply class gives the client application access to any messages received
with an event or notification.

Event Subscr ip t i on and No t i f i cat ions

Using BEA Jolt 5-49

JoltMessage—the JoltMessage class provides get() methods for obtaining information
about the notification or event.

JoltUserEvent—the JoltUserEvent class supports subscription to both unsolicited and event
notification types.

For additional information about these classes refer to the BEA Jolt API Reference.

Notification Event Handler
For both unsolicited notifications and a brokered event notification, the Jolt client application
requires an event handler routine that is invoked upon receipt of a notification. Jolt only supports
a single handler per session. In BEA Tuxedo versions, you cannot determine which event
generated a notification. Therefore, you cannot invoke an event-specific handler based on a
particular event.

The client application must provide a single handler (by overriding the onReply() method) per
session that will be invoked for all notifications received by that client for that session. The single
handler call-back function is used for both unsolicited and event notification types. It is up to the
(user-supplied) handler routine to determine what event caused the handler invocation and to take
appropriate action. If the user does not override the session handler, then notification messages
are silently discarded by the default handler.

The Jolt client provides the call back function by subclassing the JoltSession class and overriding
the onReply() method with a user-defined onReply() method.

In BEA Tuxedo/ATMI clients, processing in the handler call-back function is limited to a subset
of ATMI calls. This restriction does not apply to Jolt clients. Separate threads are used to monitor
notifications and run the event handler method. A Jolt client can perform all Jolt-supported
functionality from within the handler. All the rules that apply to a normal Jolt client program
apply to the handler, such as a single transaction per session at any time.

Each invocation of the handler method takes place in a separate thread. The application developer
should ensure that the onReply() method is either synchronized or written thread-safe, because
separate threads could be executing the method simultaneously.

Jolt uses an implicit model for enabling the handler routine. When a client subscribes to an event,
Jolt internally enables the handler for that client, thus enabling unsolicited notifications as well.
A Jolt client cannot subscribe to event notifications without also receiving unsolicited
notifications. In addition, a single onReply() method is invoked for both types of notifications.

5-50 Using BEA Jolt

Connection Modes
Jolt supports notification receipts for clients working in either connection-retained or
connection-less modes of operation. Connection-retained clients receive all notifications. Jolt
clients working in connection-less mode receive notifications while they have an active network
connection to the Jolt Session Handler (JSH). When the network connection is closed, the JSH
logs and drops notifications destined for the client. Jolt clients operating in a connection-less
mode do not receive unsolicited messages or notifications while they do not have an active
network connection. All messages received during this time are logged and discarded by the JSH.

Connection mode notification handling includes acknowledged notifications for Jolt clients in
the BEA Tuxedo environment. If a JSH receives an acknowledged notification for a client and
the client does not have an active network connection, the JSH logs an error and returns a failure
acknowledgment to the notification.

Notification Data Buffers
When a client receives notification, it is accompanied by a data buffer. The data buffer can be of
any BEA Tuxedo data buffer type. Jolt clients (for example, the handler) receive these buffers as
a JoltMessage object and should use the appropriate JoltMessage class get*() methods to
retrieve the data from this object.

The Jolt Repository does not need to have the definition of the buffers used for notification.
However, the Jolt client application programmer needs to know field names.

The Jolt system does not provide functionality equivalent to tptypes() in BEA Tuxedo. For
FML and VIEW buffers, the data is accessed using the get*() methods with the appropriate field
name, for example:

getIntDef ("ACCOUNT_ID", -1);

For STRING and CARRAY buffers, the data is accessed by the same name as the buffer type:

getStringDef ("STRING", null);

getBytesDef ("CARRAY", null);

STRING and CARRAY buffers contain only a single data element. This complete element is
returned by the preceding get*() methods.

BEA Tuxedo Event Subscription
BEA Tuxedo brokered event notification allows BEA Tuxedo programs to post events without
knowing what other programs are supposed to receive notification of an event’s occurrence. The

Event Subscr ip t i on and No t i f i cat ions

Using BEA Jolt 5-51

Jolt event notification allows Jolt client applications to subscribe to BEA Tuxedo events that are
broadcast or posted using the BEA Tuxedo tpnotify() or tpbroadcast() calls.

Jolt clients can only subscribe to events and notifications that are generated by other components
in BEA Tuxedo (such as a BEA Tuxedo service or client). Jolt clients can not send events or
notifications.

Supported Subscription Types
Jolt only supports notification types of subscriptions. The Jolt onReply() method is called when
a subscription is fulfilled. The Jolt API does not support dispatching a service routine or
enqueueing a message to an application queue when a notification is received.

Subscribing to Notifications
If a Jolt client subscribes to a single event notification, the client receives both unsolicited
messages and event notification. Subscribing to an event implicitly enables unsolicited
notification. This means that if the application creates a JoltUserEvent object for Event "X", the
client automatically receives notifications directed to it as a result of tpnotify() or
tpbroadcast().

Note: Subscribing to single event notification is not the recommended method for enabling
unsolicited notification. If you want unsolicited notification, the application should
explicitly subscribe to unsolicited notifications (as described in the JoltUserEvent class).
The next section is about unsubscribing from notifications.

Unsubscribing from Notifications
To stop subscribing to event notifications and/or unsolicited messages, you need to use the
JoltUserEvent unsubscribe method. In Jolt, disabling unsolicited notifications with an
unsubscribe method does not turn off all subscription notifications. This differs from BEA
Tuxedo. In BEA Tuxedo the use of tpsetunsol() with a NULL handler turns off all
subscription notifications.

When unsubscribing, the following considerations apply:

If a client is subscribed to a single event, unsubscribing from notification disables both
event notification and unsolicited messages.

If a client has multiple subscriptions, then unsubscribing from any single subscription
disables only that single subscription. Unsolicited notifications continue. Only the last
subscription to be unsubscribed causes unsolicited notification to stop.

5-52 Using BEA Jolt

If a client subscribes to both unsolicited and event notifications, then unsubscribing to only
the unsolicited notification will not stop either type of notification from continuing. In
addition, this unsubscribe does not throw an exception. However, the Jolt API notes that an
unsubscribe has taken place, and a subsequent unsubscribe to the remaining event disables
both event notification and unsolicited messages.

If you want to stop unsolicited messages in your client application, you need to make sure that
you have unsubscribed to all events.

Using the Jolt API to Receive BEA Tuxedo Notifications
The “Asynchronous Notification” listing shows how to use the Jolt Class Library for receiving
notifications and includes the use of the JoltSession, JoltReply, JoltMessage and
JoltUserEvent classes.

Listing 5-12 Asynchronous Notification

class EventSession extends JoltSession

{

 public EventSession(JoltSessionAttributes attr, String user,

 String role, String upass, String apass)

 {

 super(attr, user, role, upass, apass);

 }

 /**

 * Override the default unsolicited message handler.

 * @param reply a place holder for the unsolicited message

 * @see bea.jolt.JoltReply

 */

 public void onReply(JoltReply reply)

 {

 // Print out the STRING buffer type message which contains

 // only one field; the field name must be "STRING". If the

 // message uses CARRAY buffer type, the field name must be

 // "CARRAY". Otherwise, the field names must conform to the

 // elements in FML or VIEW.

 JoltMessage msg = (JoltMessage) reply.getMessage();

 System.out.println(msg.getStringDef("STRING", "No Msg"));

Clear ing Paramete r Va lues

Using BEA Jolt 5-53

 }

 public static void main(Strings args[])

 {

 JoltUserEvent unsolEvent;

 JoltUserEvent helloEvent;

 EventSession session;

 ...

 // Instantiate my session object which can print out the

 // unsolicited messages. Then subscribe to HELLO event

 // and Unsolicited Notification which both use STRING

 // buffer type for the unsolicited messages.

 session = new EventSession(...);

 helloEvent = new JoltUserEvent("HELLO", null, session);

 unsolEvent = new JoltUserEvent(JoltUserEvent.UNSOLMSG, null,

 session);

 ...

 // Unsubscribe the HELLO event and unsolicited notification.

 helloEvent.unsubscribe();

 unsolEvent.unsubscribe();

 }

}

Clearing Parameter Values
The Jolt Class Library contains the clear() method, which allows you to remove existing
attributes from an object and, in effect, provides for the reuse of the object. The “Jolt Object
Reuse (reuseSample.java)” listing illustrates how to use the clear() method to clear parameter
values and how to reuse the JoltRemoteService parameter values; you do not have to destroy the
service to reuse it. Instead, the svc.clear(); statement is used to discard the existing input
parameters before reusing the addString() method.

5-54 Using BEA Jolt

Listing 5-13 Jolt Object Reuse (reuseSample.java)

/* Copyright 1999 BEA Systems, Inc. All Rights Reserved */

import java.net.*;

import java.io.*;

import bea.jolt.*;

/*

 * This is a Jolt sample program that illustrates how to reuse the

 * JoltRemoteService after each invocation.

 */

class reuseSample

{

 private static JoltSession s_session;

 static void init(String host, short port)

 {

 /* Prepare to connect to the Tuxedo domain. */

 JoltSessionAttributes attr = new JoltSessionAttributes();

 attr.setString(attr.APPADDRESS,”//”+ host+”:” + port);

 String username = null;

 String userrole = “sw-developer”;

 String applpasswd = null;

 String userpasswd = null;

 /* Check what authentication level has been set. */

 switch (attr.checkAuthenticationLevel())

 {

 case JoltSessionAttributes.NOAUTH:

 break;

 case JoltSessionAttributes.APPASSWORD:

 applpasswd = “secret8”;

 break;

 case JoltSessionAttributes.USRPASSWORD:

 username = “myName”;

 userpasswd = “BEA#1”;

 applpasswd = “secret8”;

 break;

 }

Clear ing Paramete r Va lues

Using BEA Jolt 5-55

 /* Logon now without any idle timeout (0). */

 /* The network connection is retained until logoff. */

 attr.setInt(attr.IDLETIMEOUT, 0);

 s_session = new JoltSession(attr, username, userrole,

 userpasswd, applpasswd);

 }

 public static void main(String args[])

 {

 String host;

 short port;

 JoltRemoteService svc;

 if (args.length != 2)

 {

 System.err.println(“Usage: reuseSample host port”);

 System.exit(1);

 }

 /* Get the host name and port number for initialization. */

 host = args[0];

 port = (short)Integer.parseInt(args[1]);

 init(host, port);

 /* Get the object reference to the DELREC service. This

 * service has no output parameters, but has only one input

 * parameter.

 */

 svc = new JoltRemoteService(“DELREC”, s_session);

 try

 {

 /* Set input parameter REPNAME. */

 svc.addString(“REPNAME”, “Record1”);

 svc.call(null);

 /* Change the input parameter before reusing it */

 svc.setString(“REPNAME”, “Record2”);

 svc.call(null);

 /* Simply discard all input parameters */

 svc.clear();

5-56 Using BEA Jolt

 svc.addString(“REPNAME”, “Record3”);

 svc.call(null);

 }

 catch (ApplicationException e)

 {

 System.err.println(“Service DELREC failed: “+

 e.getMessage()+” “+ svc.getStringDef(“MESSAGE”, null));

 }

 /* Logoff now and get rid of the object. */

 s_session.endSession();

 }

}

Reusing Objects
The following listing, “Extending Jolt Remote Service (extendSample.java),” illustrates one way
to subclass the JoltRemoteService class. In this case, a TransferService class is created by
subclassing the JoltRemoteService class. The TransferService class extends the
JoltRemoteService class, adding a Transfer feature that makes use of the BEA Tuxedo
BANKAPP funds TRANSFER service.

The following listing uses the extends keyword from the Java language. The extends keyword
is used in Java to subclass a base (parent) class. The following code shows one of many ways to
extend from JoltRemoteService.

Listing 5-14 Extending Jolt Remote Service (extendSample.java)

/* Copyright 1999 BEA Systems, Inc. All Rights Reserved */

import java.net.*;

import java.io.*;

import bea.jolt.*;

/*

 * This Jolt sample code fragment illustrates how to customize

 * JoltRemoteService. It uses the Java language “extends” mechanism

 */

Reus ing Ob jec ts

Using BEA Jolt 5-57

class TransferService extends JoltRemoteService

{

 public String fromBal;

 public String toBal;

 public TransferService(JoltSession session)

 {

 super(“TRANSFER”, session);

 }

 public String doxfer(int fromAcctNum, int toAcctNum, String amount)

 {

 /* Clear any previous input parameters */

 this.clear();

 /* Set the input parameters */

 this.setIntItem(“ACCOUNT_ID”, 0, fromAcctNum);

 this.setIntItem(“ACCOUNT_ID”, 1, toAcctNum);

 this.setString(“SAMOUNT”, amount);

 try

 {

 /* Invoke the transfer service. */

 this.call(null);

 /* Get the output parameters */

 fromBal = this.getStringItemDef(“SBALANCE”, 0, null);

 if (fromBal == null)

 return “No balance from Account “ +

 fromAcctNum;

 toBal = this.getStringItemDef(“SBALANCE”, 1, null);

 if (toBal == null)

 return “No balance from Account “ + toAcctNum;

 return null;

 }

 catch (ApplicationException e)

 {

 /* The transaction failed, return the reason */

 return this.getStringDef(“STATLIN”, “Unknown reason”);

 }

5-58 Using BEA Jolt

 }

}

class extendSample

{

 public static void main(String args[])

 {

 JoltSession s_session;

 String host;

 short port;

 TransferService xfer;

 String failure;

 if (args.length != 2)

 {

 System.err.println(“Usage: reuseSample host port”);

 System.exit(1);

 }

 /* Get the host name and port number for initialization. */

 host = args[0];

 port = (short)Integer.parseInt(args[1]);

 /* Prepare to connect to the Tuxedo domain. */

 JoltSessionAttributes attr = new JoltSessionAttributes();

 attr.setString(attr.APPADDRESS,”//”+ host+”:” + port);

 String username = null;

 String userrole = “sw-developer”;

 String applpasswd = null;

 String userpasswd = null;

 /* Check what authentication level has been set. */

 switch (attr.checkAuthenticationLevel())

 {

 case JoltSessionAttributes.NOAUTH:

 break;

 case JoltSessionAttributes.APPASSWORD:

 applpasswd = “secret8”;

 break;

 case JoltSessionAttributes.USRPASSWORD:

Reus ing Ob jec ts

Using BEA Jolt 5-59

 username = “myName”;

 userpasswd = “BEA#1”;

 applpasswd = “secret8”;

 break;

 }

 /* Logon now without any idle timeout (0). */

 /* The network connection is retained until logoff. */

 attr.setInt(attr.IDLETIMEOUT, 0);

 s_session = new JoltSession(attr, username, userrole,

 userpasswd, applpasswd);

 /*

 * TransferService extends from JoltRemoteService and uses the

 * standard BEA Tuxedo BankApp TRANSFER service. We invoke this

 * service twice with different parameters. Note, we assume

 * that “s_session” is initialized somewhere before.

 */

 xfer = new TransferService(s_session);

 if ((failure = xfer.doxfer(10000, 10001, “500.00”)) != null)

 System.err.println(“Tranasaction failed: “ + failure);

 else

 {

 System.out.println(“Transaction is done.”);

 System.out.println(“From Acct Balance: “+xfer.fromBal);

 System.out.println(“ To Acct Balance: “+xfer.toBal);

 }

 if ((failure = xfer.doxfer(51334, 40343, “$123.25”)) != null)

 System.err.println(“Tranasaction failed: “ + failure);

 else

 {

 System.out.println(“Transaction is done.”);

 System.out.println(“From Acct Balance: “+xfer.fromBal);

 System.out.println(“ To Acct Balance: “+xfer.toBal);

 }

}

}

5-60 Using BEA Jolt

Deploying and Localizing Jolt Applets
Using the Jolt Class Library, you can build Java applications that execute from within a client
Web browser. For these types of applications, perform the following application development
tasks:

Deploy your Jolt applet in an HTML page.

Localize your Jolt applets for different languages and character sets.

The following sections describe these application development considerations.

Deploying a Jolt Applet
When you deploy a Jolt applet, consider the following:

Installation and configuration requirements for the BEA Tuxedo server and Jolt Server

Client-side execution of the applet

Requirements for the Web server that downloads the Java applet

Information for configuring the BEA Tuxedo server and Jolt server to work with Jolt is available
in Installing the BEA Tuxedo System. The following sections describe common client and Web
server considerations for deploying Jolt applets.

Client Considerations
When you write a Java applet that incorporates Jolt classes, the applet works just as any other
Java applet in an HTML page. A Jolt applet can be embedded in an HTML page using the HTML
applet tag:

<applet code=“applet_name.class”> </applet>

If the Jolt applet is embedded in an HTML page, the applet is downloaded when the HTML page
loads. You can code the applet to run immediately after it is downloaded, or you can include code
that sets the applet to run based upon a user action, a timeout, or a set interval. You can also create
an applet that downloads in the HTML page, but opens in another window or, for instance, simply
plays a series of sounds or musical tunes at intervals. The programmer has a large degree of
freedom in coding the applet initialization procedure.

Note: If the user loads a new HTML page into the browser, the applet execution is stopped.

Deploy ing and Loca l i z ing Jo l t App le ts

Using BEA Jolt 5-61

Web Server Considerations
When you use the Jolt classes in a Java applet, the Jolt Server must run on the same machine as
the Web server that downloads the Java applet unless you install Jolt Relay on the Web server.

When a webmaster sets up a Web server, a directory is specified to store all the HTML files.
Within that directory, a subdirectory named “classes” must be created to contain all Java class
files and packages. For example:

<html-dir>/classes/bea/jolt

Or, you can set the CLASSPATH to include the jolt.jar file that contains all the Jolt classes.

Note: You can place the Jolt classes subdirectory anywhere. For convenient access, you may
want to place it in the same directory as the HTML files. The only requirement for the
Jolt classes subdirectory is that the classes must be made available to the Web server.

The HTML file for the Jolt applet should refer the codebase to the jolt.jar file or the classes
directory. For example:

 /export/html/

 |___ classes/

 | |_____ bea/

 | | |______ jolt/

 | | |_____ JoltSessionAttributes.class

 | | |_____ JoltRemoteServices.class

 | | |_____ ...

 | |_____ mycompany/

 | |________ app.class

 |___ ex1.html

 |___ ex2.html

The webmaster may specify the “app” applet in ex1.html as:

<applet codebase=“classes” code=mycompany.app.class width=400 height=200>

Localizing a Jolt Applet
If your Jolt application is intended for international use, you must address certain localization
issues. Localization considerations apply to applications that execute from a client Web browser
and applications that are designed to run outside a Web browser environment. Localization tasks
can be divided into two categories:

Adapting an application from its original language to a target language.

5-62 Using BEA Jolt

Translating strings from one language to another. This sometimes requires specifying a
different alphabet or a character set from the one used in the original language.

For localization, the Jolt Class Library package relies on the conventions of the Java language
and the BEA Tuxedo system. Jolt transfers Java 16-bit Unicode characters to the JSH. The JSH
provides a mechanism to convert Unicode to the local character set.

For information about the Java implementation for Unicode and character escapes, refer to your
Java Development Kit (JDK) documentation.

Using BEA Jolt 6-1

C H A P T E R 6

Using JoltBeans

Formerly available as an add on, JoltBeans are included in BEA Jolt and are as easy to use as
JavaBeans. They are JavaBeans components you use in Java development environments to
construct Jolt clients. You can use popular Java-enabled development tools such as Symantec
Visual Café to graphically construct client applications. JoltBeans provide a
JavaBeans-compliant interface to BEA Jolt. You can develop a fully functional BEA Jolt client
without writing any code.

This topic includes the following sections:

Overview of Jolt Beans

Basic Steps for Using JoltBeans

JavaBeans Events and BEA Tuxedo Events

How JoltBeans Use JavaBeans Events

The JoltBeans Toolkit

Jolt-Aware GUI Beans

Using the Property List and the Property Editor to Modify the JoltBeans Properties

JoltBeans Class Library Walkthrough

Using the Jolt Repository and Setting the Property Values

JoltBeans Programming Tasks

6-2 Using BEA Jolt

Overview of Jolt Beans
JoltBeans consists of two sets of Java Beans. The first set, the JoltBeans Toolkit, is a beans
version of the Jolt API. The second set consists of GUI beans, which include Jolt-aware AWT
beans and Jolt-aware Swing beans. These GUI components are a “Jolt-enabled” version of some
of the standard Java AWT and Swing components, and help you build a Jolt client GUI with
minimal or no coding.

You can drag and drop JoltBeans from the component palette of a development tool and position
them on the Java form (or forms) of the Jolt client application you are creating. You can populate
the properties of the beans and graphically establish event source-listener relationships between
various beans of the application or applet. Typically, the development tool is used to generate the
event hook-up code, or you can code the hook-up manually. Client development using JoltBeans
is integrated with the BEA Jolt Repository, providing easy access to available BEA Tuxedo
services.

Note: Currently, Symantec Visual Café 3.0 is the only IDE that is certified by BEA for use with
JoltBeans. However, JoltBeans are also compatible with other Java development
environments such as Visual Age.

To use the JoltBeans Toolkit, it is recommended that you be familiar with JavaBeans-enabled,
integrated development environments (IDEs). The walkthrough in this chapter is based on
Symantec’s Visual Café 3.0 IDE and illustrates the basic steps of building a sample applet.

Overv i ew o f Jo l t Beans

Using BEA Jolt 6-3

JoltBeans Terms
You will encounter the following terms as you work with JoltBeans:

JavaBeans
Portable, platform-independent, reusable software components that are graphically
displayed in a development environment.

JoltBeans
Two sets of Java Beans: JoltBeans toolkit and Jolt aware GUI beans.

Custom GUI element
A Java GUI class that communicates with JoltBeans. The means of communication can
be JavaBeans events, methods, or properties offered by JoltBeans.

Jolt-Aware Bean
A bean that is the source of JoltInputEvents, listener of JoltOutputEvents, or both.
Jolt-aware beans are a subset of Custom GUI elements that follow beans guidelines.

Jolt-Aware GUI Beans
Two packages of GUI components Abstract Window Toolkit (AWT) and Swing, both
containing the JoltList, JoltCheckBox, JoltTextField, JoltLabel, and JoltChoice
components.

JoltBeans Toolkit
A JavaBeans-compliant interface to BEA Jolt, which includes the JoltServiceBean,
JoltSessionBean, and JoltUserEventBean.

Wiring
The process of connecting beans together so that one bean is registered as a listener of
events from another bean.

6-4 Using BEA Jolt

Adding JoltBeans to Your Java Development Environment
Before you can use JoltBeans, set up your Java development environment to include JoltBeans:

Set the CLASSPATH in your development environment to include all Jolt classes.

Add JoltBeans to the Component Library of your development environment.

The method of setting the CLASSPATH can vary, depending on the development environment you
use.

JoltBeans includes a set of .jar files containing all of the JoltBeans. You can add these .jar
files to your preferred Java development environment so that JoltBeans are available in the
component library of your Java tool. For example, using Symantec Visual Café, you can set the
CLASSPATH so that the .jar files are visible in the Component Library window of Visual Café.
You only need to set the CLASSPATH of these .jar files in your development environment once.
After you place these .jar files in the CLASSPATH of your development environment, you can
then add JoltBeans to the Component Library. Then you can simply drag and drop any JoltBean
directly onto the Java form on which you are developing your Jolt client application.

To set the CLASSPATH in your Java development environment, follow the instructions in the
product documentation for your development environment. Navigate from the IDE of your
development tool to the directory where the jolt.jar file resides. The jolt.jar file is typically
found in the directory called %TUXDIR%\udatadoj\jolt. The jolt.jar file contains the main
Jolt classes. Set the CLASSPATH to include these classes. The JoltBean .jar files do not need to
be added to the CLASSPATH. To use them, you only need to add them as components in your IDE.

After you have set the CLASSPATH to include the Jolt classes, you can add JoltBeans to the
Component Library of your development environment. See the documentation for your particular
development environment for instructions on populating the Component Library.

When you are ready to add JoltBeans to the Component Library of your development
environment, add only the development version of JoltBeans. Refer to “Using Development and
Run-time JoltBeans” for complete details.

Using Development and Run-time JoltBeans
The .jar files containing JoltBeans contain two versions of each JoltBean, a development
version and a run-time version. The development version of each JoltBean name ends with the
suffix Dev. The run-time version of each class name ends with the suffix Rt. For example, the
development version of the class, JoltBean, is JoltBeanDev, while the run-time version of the
same class is JoltBeanRt.

Bas ic S teps fo r Us ing Jo l tBeans

Using BEA Jolt 6-5

Use the development version of JoltBeans during the development process. The development
JoltBeans have additional properties that enhance development in a graphic IDE. For example,
the JoltBeans have graphic properties (“bean information”) that allow you to work with them as
graphic icons in your development environment.

The run-time version of JoltBeans does not have these additional properties. You do not need the
additional development properties of the beans at run time. The run-time beans are simply a pared
down version of the development JoltBeans.

When you compile your application in your development environment, it is compiled using the
development beans. However, if you want to run it from a command line outside of your
development environment, it is recommended that you set the CLASSPATH so that the run-time
beans are used when compiling your application.

Basic Steps for Using JoltBeans
The basic steps for using JoltBeans are as follows:

1. Add the development version of JoltBeans to the Component Library of your Java
development environment, as described in “Adding JoltBeans to Your Java Development
Environment.”

2. Drag the beans from the JoltBeans component palette of your development environment to
the Java form-designer for a Jolt client application or applet.

3. Populate the properties of the beans and set up the event-source listener relationships
between the beans of the application or applet (“wire” the beans together). The development
tool generates the event hook-up code.

4. Add the application logic to the event callbacks.

These steps are explained in more detail in later sections. The JoltBeans walkthrough
demonstrates each of these steps with an example.

JavaBeans Events and BEA Tuxedo Events
JavaBeans communicate through events. An event in a BEA Tuxedo system is different from an
event in a JavaBeans environment. In a BEA Tuxedo application, an event is raised from one part
of an application to another part of the same application. JoltBeans events are communicated
between beans.

6-6 Using BEA Jolt

Using BEA Tuxedo Event Subscription and Notification with
JoltBeans
BEA Tuxedo supports brokered and unsolicited event notification. Jolt provides a mechanism for
Jolt clients to receive BEA Tuxedo events. JoltBeans also include this capability.

Note: BEA Tuxedo event subscription and notification is different from JavaBeans events.

The following procedure illustrates how the BEA Tuxedo asynchronous notification mechanism
is used in JoltBeans applications.

1. Use the setEventName() and setFilter() methods of the JoltUserEventBean to specify
the BEA Tuxedo event to which you want to subscribe.

2. The component that receives the event notifications registers itself as a JoltOutputListener
to the JoltSessionBean.

3. The subscribe() method is called on JoltUserEventBean.

4. When the actual BEA Tuxedo event notification arrives, JoltSessionBean sends a
JoltOutputEvent to its listeners by calling serviceReturned() on them. The
JoltOutputEvent object contains the data of the BEA Tuxedo event.

When the client no longer needs to receive the event, it calls unsubscribe() on the
JoltUserEventBean.

Note: If the client will only subscribe to unsolicited events, use setEventName
("\\.UNSOLMSG"), which can be set using the property sheet. EventName and Filter
are properties of the JoltUserEventBean.

How Jo l tBeans Use JavaBeans Events

Using BEA Jolt 6-7

How JoltBeans Use JavaBeans Events
A Jolt client applet or application that is built using JoltBeans typically consists of Jolt-aware
GUI beans, such as JoltTextField or JoltList, and JoltBeans, such as JoltServiceBean and
JoltSessionBean. The main mode of communication between Beans is by JavaBeans events.

Jolt-aware beans are sources of JoltInputEvents or listeners of JoltOutputEvents or both.
JoltServiceBeans are sources of JoltOutputEvents and listeners of JoltInputEvents.

The Jolt-aware GUI Beans expose properties and methods so you can link the beans directly to
the parameters of a BEA Tuxedo service (represented by a JoltServiceBean). Jolt-aware beans
notify the JoltServiceBean via a JoltInputEvent when their content changes. The JoltServiceBean
sends a JoltOutputEvent to all registered Jolt-aware beans when the reply data is available after
the service call. The Jolt-aware GUI Beans contain logic that updates their contents with the
corresponding output parameter of the service.

The following figure represents the possible relationships among the JoltBeans.

Figure 6-1 Possible Interrelationships Among JoltBeans

The JoltBeans Toolkit
The JoltBeans Toolkit includes the following beans:

JoltSessionBean

6-8 Using BEA Jolt

JoltServiceBean

JoltUserEventBean

These components transform the complete Jolt Class Library into beans components, with all of
the features of any typical JavaBean, including easy reuse and graphic development.

Refer to the online BEA Jolt API Reference for specific descriptions of the JoltBeans classes,
constructors, and methods.

The following sections provide information about the properties of each bean.

JoltSessionBean
The JoltSessionBean, which represents the BEA Tuxedo session, encapsulates the functionality
of the JoltSession, JoltSessionAttributes, and JoltTransaction classes. The JoltSessionBean has
properties that you use to set session and security attributes, such as sending a timeout or a BEA
Tuxedo username, as well as methods to open and close a BEA Tuxedo session.

The JoltSessionBean sends a PropertyChange event when the BEA Tuxedo session is established
or closed. PropertyChange is a standard bean event defined in the java.beans package. The
purpose of this event is to signal other beans about a change of the value of a property in the
source bean. In this case, the source is the JoltSessionBean; the targets are JoltServiceBeans or
JoltUserEventBeans; and the property changing is the LoggedOn property of the
JoltSessionBean. When a logon is successful and a session is established, LoggedOn is set to
true. After the logoff is successful and the session is closed, the LoggedOn property is set to
false.

The JoltSessionBean provides methods to control transactions, including
beginTransaction(), commitTransaction(), and rollbackTransaction().

The following table shows the JoltSessionBean properties and descriptions.

Table 6-1 JoltSessionBean Properties and Descriptions

Property Description

AppAddress Set the IP address (host name) and port number of the JSL or the Jolt
Relay. The format is //host:port number
 (for example, myhost:7000).

AppPassword Set the BEA Tuxedo application password used at logon, if required.

IdleTimeOut Set the IDLETIMEOUT value.

The Jo l tBeans Too lk i t

Using BEA Jolt 6-9

JoltServiceBean
The JoltServiceBean represents a remote BEA Tuxedo service. The name of the service is set as
a property of the JoltServiceBean. The JoltServiceBean listens to JoltInputEvents from other
beans to populate its input buffer. JoltServiceBean offers the callService() method to invoke
the service. JoltServiceBean is an event source for JoltOutputEvents that carry information about
the output of the service. After a successful callService(), listener beans are notified via a
JoltOutputEvent that carries the reply message.

Although the primary way of changing and querying the underlying message buffer of the
JoltServiceBean is via events, the JoltServiceBean also provides methods to access the
underlying message buffer directly (setInputValue(…), getOutputValue(…)).

The following table shows the JoltServiceBean properties and descriptions.

inTransaction Indicate true or false depending if a transaction has been started
and not committed or aborted.

LoggedOn Indicate true or false if a BEA Tuxedo session does or does not
exist.

ReceiveTimeOut Set the RECVTIMEOUT value.

SendTimeOut Set the SENDTIMEOUT value.

SessionTimeOut Set the SESSIONTIMEOUT value.

UserName Indicate the BEA Tuxedo username, if required.

UserPassword Indicate the BEA Tuxedo user password, if required.

UserRole Indicate the BEA Tuxedo user role, if required.

Table 6-1 JoltSessionBean Properties and Descriptions (Continued)

Property Description

6-10 Using BEA Jolt

JoltUserEventBean
The JoltUserEventBean provides access to BEA Tuxedo events. You define the BEA Tuxedo
event to which you subscribe or unsubscribe by setting the appropriate properties of this bean
(event name and event filter). The actual event notification is delivered in the form of a
JoltOutputEvent from the JoltSessionBean.

The following table shows the JoltUserEventBean properties and descriptions.

Jolt-Aware GUI Beans
The Jolt-aware GUI Beans consist of Java AWTbeans and Swing beans, and are inherited from
the Java Abstract Windowing Toolkit. They include:

JoltTextField

JoltLabel

JoltList

Table 6-2 JoltServiceBean Properties and Descriptions

Property Description

ServiceName The name of the BEA Tuxedo service represented by this
JoltServiceBean.

Session The JoltSessionBean associated with the bean that allows access to
the BEA Tuxedo client session.

Transactional Set to true if this JoltServiceBean is to be included in the
transaction that was started by its JoltSessionBean.

Table 6-3 JoltUserEventBean Properties and Descriptions

Property Description

EventName Set the name of the user event represented by the bean.

Filter Set the event filter.

Session The JoltSessionBean associated with the bean that allows access to
the BEA Tuxedo client session.

Jo l t -Aware GUI Beans

Using BEA Jolt 6-11

JoltCheckbox

JoltChoice

Note: To avoid errors when compiling, it is recommended that you use only the AWT beans
together, or the Swing beans together, rather than mixing beans from these two packages.

JoltTextField
This is a Jolt-aware extension of java.awt.TextField and Swing JTextfield. JoltTextField
contains parts of the input for a service. A JoltServiceBean can listen to events raised by a
JoltTextField. JoltTextField sends JoltInputEvents to its listeners (typically JoltServiceBeans)
when its contents changes.

JoltTextField displays output from a service. In this case, JoltTextField listens to
JoltOutputEvents from JoltServiceBeans and updates its contents according to the occurrence of
the field to which it is linked.

JoltLabel
This is a Jolt-aware extension of java.awt.Label and Swing JLabel that is linked to a specific
field in the Jolt output buffer by its JoltFieldName property. If the field occurs multiple times, the
occurrence to which this textfield is linked is specified by the occurrenceIndex property of this
bean. JoltLabel can be connected with JoltServiceBeans to display output from a service. A
JoltLabel listens to JoltOutputEvents from JoltServiceBeans and updates its contents according
to the occurrence of the field to which it is linked.

JoltList
This is a Jolt-aware extension of java.awt.List and Swing Jlist that is linked to a specific
Jolt field in the Jolt input or output buffer by its JoltFieldName property. If the field occurs
multiple times in the Jolt input buffer, the occurrence this list is linked to is specified by the
occurrenceIndex property of this bean. JoltList can be connected with JoltServiceBeans in two
ways:

JoltList contains parts of the input for a service. A JoltServiceBean listens to events raised
by a JoltList. JoltList sends JoltInputEvents to its listeners when the selection in the listbox
changes. The JoltInputEvent, in this case, is populated with the single value of the selected
item.

6-12 Using BEA Jolt

JoltList displays output from a service. When used to display the output of a service,
JoltList listens to JoltOutputEvents from JoltServiceBeans and updates its contents
accordingly with all occurrences of the field to which it is linked.

JoltCheckbox
JoltCheckbox is a Jolt-aware extension of java.awt.Checkbox and Swing JCheckBox that is
linked to a specific field in the Jolt input buffer by its JoltFieldName property. If the field occurs
multiple times, the occurrence to which this checkbox is linked is specified by the
occurrenceIndex property of this bean.

JoltCheckbox can be connected with JoltServiceBeans to contain parts of the input for a service.
A JoltServiceBean listens to events raised by a JoltCheckbox. JoltCheckbox sends
JoltInputEvents to its listeners (typically JoltServiceBeans) when the selection in the checkbox
changes. The JoltInputEvent in this case is populated with the TrueValue property of data type
String (if the box is selected) or FalseValue (if the box is unselected).

JoltChoice
JoltChoice provides a Jolt-aware extension of java.awt.Choice and Swing JChoice that is
linked to a specific field in the Jolt input buffer by its JoltFieldName property. If the field occurs
multiple times, the occurrence to which this choice is linked is specified by the occurrenceIndex
property of this bean.

JoltChoice can be connected to JoltServiceBeans to contain parts of the input for a service. A
JoltServiceBean can listen to events raised by a JoltChoice. JoltChoice sends JoltInputEvents to
its listeners (typically JoltServiceBeans) when the selection in the choicebox changes. The
JoltInputEvent in this case is populated with the single value of the selected item.

Note: For a detailed description of these classes, see the BEA Jolt API Reference.

Using the Property List and the Property Editor to Modify the
JoltBeans Properties

The values of most JoltBeans properties can be modified by editing the right column of the
Property List in your integrated development environment (IDE), such as Visual Café, as shown
in the following figure “Property List: Ellipsis Button.”

Custom property editors are provided for some properties of JoltBeans.

Using the P roper t y L is t and the P rope r t y Ed i to r t o Mod i f y the Jo l tBeans P roper t i es

Using BEA Jolt 6-13

The custom property editors, accessed from the Property List, include dialog boxes that you use
to modify the property values. You can invoke the custom property editors from the Property List
by clicking the button with the ellipsis (“...”) that is next to the value of the corresponding
property value.

Figure 6-2 Property List: Ellipsis Button

When you click the ellipsis button, the Property Editor shown in the following figure is displayed.

Figure 6-3 Custom Property Editor Dialog Box
.

The Custom Property Editor of JoltBeans reads cached information. Initially, no cached
information is available, so when the Property Editor is used for the first time, the dialog box is
empty. Log on to the Jolt Repository and load the property editor cache from the repository.

For details about the logon and using the Property List and Property Editor, see “Using the Jolt
Repository and Setting the Property Values” on page 6-40.

6-14 Using BEA Jolt

JoltBeans Class Library Walkthrough
This walkthrough describes how to build an applet that you use to:

Enter an account ID

Click on the Inquiry button

Display the balance of the account (shown in the following figure)

The following figure shows an example of a completed Java form containing JoltBeans. The
applet implements the client functionality for the INQUIRY service of the BANKAPP sample
that is included with BEA Tuxedo. To run this sample, the BEA Tuxedo server must be running.

Figure 6-4 Sample Inquiry Applet

J o l tBeans C lass L ib rar y Wa lk th rough

Using BEA Jolt 6-15

Refer to the figure “Visual Café 3.0 Form Designer” on page 6-17 for an example of each item
required by the Java form. Each item in that figure is described in the following table “Required
Form Elements”.

Building the Sample Form
The sample form is created using an integrated development environment (IDE), in this example,
Visual Café 3.0. The example demonstrates how to build an applet that allows you to enter an
account ID and use a BEA Tuxedo service to get and show the account balance.

Follow the basic steps below to create this sample.

1. In Visual Café, choose File→New Project and select either JFC Applet or AWT application.
This step provides you with the basic form designer on which you drop the JoltBeans.

2. Drag and drop all of the JoltBeans you want to use in your applet from the Component
Library onto the form designer.

3. Modify or customize each bean using the property list or the custom property editor.

4. Wire the beans together using the Interaction Wizard.

5. Compile the applet.

These steps are described in detail in the following sections.

Table 6-4 Required Form Elements

Element Purpose

Applet (or JApplet, if JFC
applet is chosen)

A form used to paint the beans in your development
environment.

JoltSessionBean Logs on to a BEA Tuxedo session.

JoltTextField Gets input from the user (in this case, ACCOUNT_ID).

JoltTextField Displays the result (in this case, SBALANCE).

JoltServiceBean Accesses a BEA Tuxedo service. (In this case, INQUIRY
from BANKAPP).

Button Initiates an action.

Label Describes the field on the applet.

6-16 Using BEA Jolt

Note: The graphic interface of previous versions of Visual Café differ from the look of Visual
Café 3.0. You can complete this sample applet in a previous version of Visual Café;
however, the steps executed in the Interaction Wizard differ slightly from this example.

Placing JoltBeans onto the Form Designer
1. Choose File→New Project, and choose JFC Applet.

2. Drag and drop the beans from the Component Library (shown in the following figure) onto
the palette of the form designer.

Figure 6-5 JoltBeans and the Form Designer in Visual Café

The following figure “Visual Café 3.0 Form Designer” illustrates how JoltBeans appear when
they are placed on the palette of the Form Designer.

J o l tBeans C lass L ib rar y Wa lk th rough

Using BEA Jolt 6-17

Figure 6-6 Visual Café 3.0 Form Designer

3. Set the properties of each bean. To modify or customize the buttons, labels or fields, use the
property list. Some JoltBeans use a Custom Property Editor.

The following figure,“Example of JoltTextField Property List and Custom Property
Editor,” shows how selecting the JoltFieldName of the button property list displays the
Custom Property Editor.

4. Set the properties of the beans (for example, set the JoltFieldName property of the
JoltTextField to ACCOUNT_ID).

Note: For complete information on setting and modifying the properties of the JoltBeans, refer
to “Using the Jolt Repository and Setting the Property Values” on page 6-40.

The following table specifies the property values that should be set. Values specified in
bold and italic text are required, and those in plain text are recommended.

Table 6-5 Required and Recommended Property Values

Bean Property Value

label1 Text Account ID

label2 Text Balance

JoltTextField1 Name accountId

JoltTextField1 JoltFieldName ACCOUNT_ID

6-18 Using BEA Jolt

Note: In this walkthrough, the default occurrenceIndex of 0 works for both JoltTextFields.

Refer to the following figure “Example of JoltTextField Property List and Custom Property
Editor”and “Using the Jolt Repository and Setting the Property Values” on page 6-40 for
general guidelines about JoltBean properties.

JoltTextField2 Name balance

JoltTextField2 JoltFieldName SBALANCE

JoltSessionBean1 AppAddress //tuxserv:2010

JoltServiceBean1 Name inquiry

JoltServiceBean1 ServiceName INQUIRY

button1 Label Inquiry

Table 6-5 Required and Recommended Property Values (Continued)

Bean Property Value

J o l tBeans C lass L ib rar y Wa lk th rough

Using BEA Jolt 6-19

Figure 6-7 Example of JoltTextField Property List and Custom Property Editor

5. To change the value of the JoltFieldName property, click on the ellipsis button of the
JoltFieldName in the Property List.

The Custom Property Editor is displayed.

6. Select or type the new field name (in this example, “ACCOUNT_ID”) and click OK.

The change is reflected in the Property List shown in the following figure “Revised
JoltFieldName in the JoltTextField Property List”and on the text field shown on the figure
“Example of JoltBeans on the Form Designer with Property Changes” on page 6-21.

Note: The properties that are visible in the Custom Property Editor are cached locally;
therefore, if the source database is modified you must use the Refresh button to see the
current, available properties.

6-20 Using BEA Jolt

Figure 6-8 Revised JoltFieldName in the JoltTextField Property List

The following figure “Example of JoltBeans on the Form Designer with Property Changes”
illustrates how the text on the button and the textfield changes after the text is added to the
property list fields for these beans.

J o l tBeans C lass L ib rar y Wa lk th rough

Using BEA Jolt 6-21

Figure 6-9 Example of JoltBeans on the Form Designer with Property Changes

7. After you set the properties to the right values (refer to the table “Required and
Recommended Property Values” on page 6-17 for additional information), define how the
beans will interact by wiring them together using the Visual Café Interaction Wizard. Refer
to “Wiring the JoltBeans Together” for details.

6-22 Using BEA Jolt

Wiring the JoltBeans Together
After all the beans are positioned on your form and the properties are set, you must wire the beans
and their events together. The following figure “Sequence in Which JoltBeans Are Wired”
illustrates an example of the flow to help you determine the correct order in which to wire the
beans.

Wiring the beans allows you to establish event source-listener relationships between various
beans on the form. For example, the JoltServiceBean is a listener of ActionEvents from the button
and invokes callService() when the event is received. Use the Visual Café Interaction Wizard
to wire the beans together.

The following figure shows the sequence in which you will wire the beans together to create this
sample applet. The numbers in this figure correspond to the numbered steps that follow.

Figure 6-10 Sequence in Which JoltBeans Are Wired

1

23

4

5

6

J o l tBeans C lass L ib rar y Wa lk th rough

Using BEA Jolt 6-23

The steps below correspond to the callouts shown in the figure “Sequence in Which JoltBeans
Are Wired” on page 6-22. Each of the steps below is detailed in the sections that follow.

Step 1: Wire the JoltSessionBean Logon

Step 2: Wire JoltSessionBean to JoltServiceBean Using PropertyChange

Step 3: Wire the accountID JoltTextField as Input to the JoltServiceBean Using JoltInputEvent

Step 4: Wire Button to JoltServiceBean Using JoltAction

Step 5: Wire JoltServiceBean to the Balance JoltTextField Using JoltOutputEvent

Step 6: Wire the JoltSessionBean Logoff

Step 7: Compile the Applet (not shown as a callout)

Step 1: Wire the JoltSessionBean Logon
1. In the Form Designer window, click the Interaction Wizard button.

2. Click in the applet window and drag a line to the JoltSessionBean as shown in the following
figure.

Figure 6-11 Wire the Applet to the Jolt Session Bean

 Drag
 here

6-24 Using BEA Jolt

The Interaction Wizard window is displayed as shown in the figure “Select
ComponentShown Event” on page 6-24, with the prompt:

What event in JApplet1 do you want to start the interaction?

3. Select componentShown in the Interaction Wizard window as the event with which you
want to start the interaction, as shown in the following figure.

Figure 6-12 Select ComponentShown Event

4. Click Next.

The Interaction Wizard window is displayed, as shown in the figure “Select Logon to the
Tuxedo System Action” on page 6-25, with the prompt:

What do you want to happen when Japplet1 fires componentShown event?

J o l tBeans C lass L ib rar y Wa lk th rough

Using BEA Jolt 6-25

5. With the Perform an action radio button enabled, select the action Logon to the TUXEDO
system, as shown in the following figure.

Figure 6-13 Select Logon to the Tuxedo System Action

6. Click Finish.

Completing “Step 1: Wire the JoltSessionBean Logon” enables the logon() method of the
JoltSessionBean to be triggered by an applet (for example, ComponentShown) that is sent when
the applet is opened for the first time.

6-26 Using BEA Jolt

Step 2: Wire JoltSessionBean to JoltServiceBean Using PropertyChange
1. Click the Interaction Tool icon in the toolbar of the Visual Café Form Designer window to

display the bean components.

2. Click on the JoltSessionBean and drag a line to the JoltServiceBean, as shown in the
following figure.

Figure 6-14 Wire the JoltSessionBean to the JoltServiceBean

The Interaction Wizard window is displayed as shown in the figure “Select
propertyChange Event” on page 6-27, with the prompt:

 What event in joltSessionBean1 do you want to start the interaction?

J o l tBeans C lass L ib rar y Wa lk th rough

Using BEA Jolt 6-27

3. Select propertyChange as the event that starts the interaction, as shown in the following
figure.

Figure 6-15 Select propertyChange Event

4. Click Next.

The Interaction Wizard window is displayed as shown in the figure “Select Handle a Jolt
property change event...” on page 6-28, with the prompt:

What do you want to happen when joltSessionBean1 fires propertyChange event?

6-28 Using BEA Jolt

5. Select Handle a Jolt property change event as the method, as shown in the following figure.

Figure 6-16 Select Handle a Jolt property change event...

6. Click Next.

The Interaction Wizard window is displayed as shown in the figure “Select
joltSesssionBean1” on page 6-29, with the prompt:

How do you want to supply the parameter to this method?

and a list of available objects and actions from which to choose.

J o l tBeans C lass L ib rar y Wa lk th rough

Using BEA Jolt 6-29

7. Select joltSessionBean1 as the object that supplies the action, as shown in the following
figure.

8. Select Get the current Property Change Event object as the action, also as shown in the
following figure.

Figure 6-17 Select joltSesssionBean1

9. Click Finish.

Completing “Step 2: Wire JoltSessionBean to JoltServiceBean Using PropertyChange”enables
the JoltSessionBean to send a propertyChange event when logon() completes. The
JoltServiceBean listens to this event and associates its service with this session.

6-30 Using BEA Jolt

Step 3: Wire the accountID JoltTextField as Input to the JoltServiceBean
Using JoltInputEvent
1. Click the Interaction Wizard icon in the Visual Café Form Designer window.

2. Select the accountID JoltTextField bean and drag a line to the JoltServiceBean.

The Interaction Wizard window is displayed, as shown in the following figure, with the
prompt:

What event in accountId do you want to start the interaction?

3. Select dataChanged as the event, as shown in the following figure.

Figure 6-18 Select dataChanged Event

4. Click Next.

The Interaction Wizard window is displayed as shown in the figure “Select inquiry Object
and Handle a Jolt input event Action” on page 6-31, with the prompt:

What do you want to happen when accountId fires dataChanged event?

J o l tBeans C lass L ib rar y Wa lk th rough

Using BEA Jolt 6-31

5. Select the joltServiceBean inquiry as the object supplying the parameter, as shown in the
following figure.

6. Select Handle a jolt input event as the action, also as shown in the following figure.

Figure 6-19 Select inquiry Object and Handle a Jolt input event Action

7. Click Next.

The Interaction Wizard window is displayed as shown in “Select accountId Object and Get
the current Jolt Input Event Action” on page 6-32, with the prompt:

How do you want to supply the parameter to this method?

and a list of available objects and actions from which to choose.

8. Select accountId as the object, as shown in the following figure.

9. Select get the current Jolt Input Event as the action, also as shown in the following figure.

6-32 Using BEA Jolt

Figure 6-20 Select accountId Object and Get the current Jolt Input Event Action

10. Click Finish.

Completing “Step 3: Wire the accountID JoltTextField as Input to the JoltServiceBean Using
JoltInputEvent” enables you to type the account number in the first text field. The JoltFieldName
property of this JoltTextField is set to “ACCOUNT_ID”. Whenever the text inside this text box
changes, it sends a JoltInputEvent to the JoltServiceBean. (The JoltServiceBean listens to
JoltInputEvents from this text box.) The JoltInputEvent object contains the name, value, and
occurrence index of the field.

J o l tBeans C lass L ib rar y Wa lk th rough

Using BEA Jolt 6-33

Step 4: Wire Button to JoltServiceBean Using JoltAction
1. Click the Interaction Wizard icon in the Visual Café Form Designer window.

2. Click the Inquiry Button and drag a line to the JoltServiceBean.

The Interaction Wizard window is displayed as shown in the following figure, with the
prompt:

What event in button1 do you want to start the interaction?

3. Select actionPerformed as the event, as shown in the following figure.

Figure 6-21 Select action Performed Event

4. Click Next.

The Interaction Wizard window is displayed, as shown in the figure “Select inquiry Object
and Invoke the TUXEDO Service... Action” on page 6-34, with the prompt:

What do you want to happen when button1 fires actionPerformed event?

6-34 Using BEA Jolt

5. Select inquiry as the object, as shown in the following figure.

6. Select Invoke the TUXEDO Service represented by this Bean as the action, also as shown
in the following figure.

Figure 6-22 Select inquiry Object and Invoke the TUXEDO Service... Action

7. Click Finish.

Completing “Step 4: Wire Button to JoltServiceBean Using JoltAction” enables the
callService() method of the JoltServiceBean to be triggered by an ActionEvent from the
Inquiry button.

J o l tBeans C lass L ib rar y Wa lk th rough

Using BEA Jolt 6-35

Step 5: Wire JoltServiceBean to the Balance JoltTextField Using
JoltOutputEvent
1. Click the Interaction Wizard icon in the Visual Café Form Designer window.

2. Select the JoltServiceBean and drag a line to the AmountJoltTextField bean.

The Interaction Wizard is displayed, as shown in the following figure, with the prompt:

What event in inquiry do you want to start the interaction?

3. Select serviceReturned as the event, as shown in the following figure.

Figure 6-23 Select ServiceReturned Event

4. Click Next.

The Interaction Wizard window is displayed, as shown in the figure “Select balance Object
and Handle a service returned event Action” on page 6-36, with the prompt:

What do you want to happen when inquiry fires serviceReturned event?

6-36 Using BEA Jolt

5. Select balance as the object, as shown in the following figure.

6. Select Handle a service returned event... as the action, also as shown in the following figure.

Figure 6-24 Select balance Object and Handle a service returned event Action

7. Click Next.

The Interaction Wizard window is displayed, as shown in the figure “Select inquiry Object
and Get the JoltOutputEvent object Action” on page 6-37, with the prompt:

How do you want to supply the parameter to this method?

J o l tBeans C lass L ib rar y Wa lk th rough

Using BEA Jolt 6-37

8. Select inquiry as the object, as shown in the following figure.

9. Select Get the JoltOutputEvent object as the action, also as shown in the following figure.

Figure 6-25 Select inquiry Object and Get the JoltOutputEvent object Action

10. Click Finish.

Completing “Step 5: Wire JoltServiceBean to the Balance JoltTextField Using
JoltOutputEvent”allows the JoltServiceBean to send a JoltOutputEvent when it receives reply
data from the remote service. The JoltOutputEvent object contains methods to access fields in the
output buffer. The JoltTextField displays the result of the INQUIRY service.

6-38 Using BEA Jolt

Step 6: Wire the JoltSessionBean Logoff
1. Click the Interaction Wizard icon in the Visual Café Form Designer window.

2. Click in the applet window (not on another bean) and drag a line to the JoltSessionBean.

The Interaction Wizard is displayed, as shown in the following figure, with the prompt:

What event in JApplet1 do you want to start the interaction?

3. Select componentHidden as the event, as shown in the following figure.

Figure 6-26 Select componentHidden Event

4. Click Next.

The Interaction Wizard window is displayed, as shown in the figure “Select
joltSessionBean1 Object and Logoff from the Tuxedo System Action” on page 6-39, with
the prompt:

What do you want to happen when JApplet1 fires componentHidden event?

J o l tBeans C lass L ib rar y Wa lk th rough

Using BEA Jolt 6-39

5. Select joltSessionBean1 as the object, as shown in the following figure.

6. Select Logoff from the TUXEDO system as the action, also as shown in the following
figure.

Figure 6-27 Select joltSessionBean1 Object and Logoff from the Tuxedo System Action

7. Click Finish.

Completing “Step 6: Wire the JoltSessionBean Logoff” enables the logoff() method of the
JoltSessionBean to be triggered by an applet (for example, componentHidden) that is sent when
the applet gets hidden.

6-40 Using BEA Jolt

Step 7: Compile the Applet
After wiring the JoltBeans together, compile the applet. It is also recommended that you fill in
the empty catch blocks for exceptions. Check the message window for any compilation errors and
exceptions.

For additional information see the following section “Using the Jolt Repository and Setting the
Property Values.” Also refer to the table “JoltBean Specific Properties” on page 6-41 and the
figure “JoltServiceBean Property Editor” on page 6-42.

Running the Sample Application
To run the sample application, you must have the BEA Tuxedo server running. Then enter an
account number in the Account ID textfield. You can use any of the account numbers included in
the BANKAPP database. Following are two examples of account numbers you can use to test the
sample application:

80001

50050

Using the Jolt Repository and Setting the Property Values
Custom Property Editors are provided for the following properties:

JoltFieldName (Jolt-aware AWT beans)

serviceName (JoltServiceBean)

The Property Editor, accessed from the Property List, includes dialog boxes that are used to add
or modify the properties. You can invoke the boxes from the Property List by selecting the button
with the ellipsis (...) that is next to the value of the corresponding property value.

Some JoltBeans require input to the Property List field. The beans are listed in the following
table.

Us ing the Jo l t Repos i to r y and Se t t ing the P roper t y Va lues

Using BEA Jolt 6-41

The property editor reads cached information from the repository and returns names of the
available services and data elements in a list box. An example of the ServiceName property editor
is shown in the following figure “JoltServiceBean Property Editor.”

To add or modify a property bean, follow these steps:

1. Select the service name by clicking on the ellipsis in the ServiceName field shown in the
following figure.

Table 6-6 JoltBean Specific Properties

JoltBean Property Input Description

JoltSessionBean appAddress

userName, Password or
AppPassword

e.g., //host:port

Type your BEA Tuxedo username
and passwords.

JoltServiceBean serviceName

isTransactional

INQUIRY, for example.

Set to true if the service needs to be
executed within a transaction. Set
isTransactional to false if the
service does not require a transaction.

JoltUserEventBean eventName

filter

Refer to the BEA Tuxedo
tpsubscribe calls.

All Jolt-aware GUI
beans

joltFieldName

occurrenceIndex

ACCOUNT_ID, for example

Multiple fields of the same name.
Index starts at 0.

JoltCheckbox TrueValue and FalseValue The field value corresponding to the
state of the checkbox.

6-42 Using BEA Jolt

Figure 6-28 JoltServiceBean Property Editor

The Custom Property Editor for ServiceName shown in the following figure is displayed.

Figure 6-29 Custom Property Editor for ServiceName

Note: If you cannot or do not want to connect to the Repository database, type the service name
in the text box and skip to Step 7.

2. If you are not logged on, make sure the Jolt Server is running and select Logon.

 The JoltBeans Repository Logon shown in the following figure is displayed.

Us ing the Jo l t Repos i to r y and Se t t ing the P roper t y Va lues

Using BEA Jolt 6-43

Figure 6-30 JoltBeans Repository Logon

3. Type the BEA Tuxedo or Jolt Relay Machine name in the Server field and the JSL or Jolt
Relay in the Port number field.

4. Type the password and username information (if required) and click Logon.

The Custom Property Editor loads its cache from the repository and is displayed, as shown
in the following figure “Property Editor with Selected Service.”

5. Select the appropriate service name from the list box, as shown in the following figure.

6. Enter the property value (service or field name) directly.

A text box is provided.

7. Click OK in the Custom Property Editor dialog.

The bean property is set with the contents of the text box.

6-44 Using BEA Jolt

Figure 6-31 Property Editor with Selected Service

8. Click OK in the Custom Property Editor dialog box again.

JoltBeans Programming Tasks
Additional programming tasks include:

Using Transactions with JoltBeans

Using Custom GUI Elements with the JoltService Bean

Using Transactions with JoltBeans
Your BEA Tuxedo application services may have functionality that updates your database. If so,
you can use transactions with JoltBeans (for example, in the sample, BANKAPP, the services
TRANSFER and WITHDRAWAL update the database of BANKAPP). If your application
service is read-only (such as INQUIRY), you do not need to use transactions.

The following example shows how to use transactions with JoltBeans.

1. The setTransactional (true) method is called on the JoltServiceBean. (isTransactional
is a Boolean property of the JoltServiceBean.)

2. The beginTransaction() method is called on the JoltSessionBean.

Jo l tBeans P rogramming Tasks

Using BEA Jolt 6-45

3. The callService() method is called on the JoltServiceBean.

4. Depending on the outcome of the service call, the commitTransaction() or
rollbackTransaction()method is called on the JoltSessionBean.

6-46 Using BEA Jolt

Using Custom GUI Elements with the JoltService Bean
JoltBeans provides a limited set of Jolt-enabled GUI components. You can also use controls that
are not Jolt-enabled together with the JoltServiceBean. You can link controls to the
JoltServiceBean that display output information of the service represented by the
JoltServiceBean. You can also link controls that display input information.

For example, a GUI element that uses an adapter class to implement the JoltOutputListener
interface can listen to JoltOutputEvents. The JoltServiceBean as the event source for
JoltOutputEvents calls the serviceReturned() method of the adapter class when it sends a
JoltOutputEvent. Inside serviceReturned(), the control’s internal data is updated using
information from the event object.

The development tool generates the adapter class when the JoltServiceBean and the GUI element
are wired together.

As another example, a GUI element can call the setInputTextValue() method on the
JoltServiceBean. The GUI element contains input data for the BEA Tuxedo service represented
by the JoltServiceBean.

As a third example, a GUI element can implement the required methods
(addJoltInputListener() and removeJoltInputListener()) to act as event sources for
JoltInputEvents. The JoltServiceBean acts as an event listener for these events. The control sends
a JoltInputEvent when its own state changes to keep the JoltServiceBean updated with the input
information.

Using BEA Jolt 7-1

C H A P T E R 7

Using Servlet Connectivity for BEA
Tuxedo

With BEA Jolt servlet connectivity, you can use HTTP servlets to perform server-side Java tasks
in response to HTTP requests. Jolt certifies servlet connectivity with the Java Web Server
versions 1.1.3 and up, and supports most other standard servlet engines. Using the Jolt session
pool classes, a simple HTML client can connect to any Web server that supports generic servlets.
Thus, all Jolt transactions are handled by a servlet on the Web server rather than being handled
by a client applet or application.

This capability enables HTML clients to invoke BEA Tuxedo services without directly
connecting to BEA Tuxedo. HTML clients can instead connect to a Web server, through HTTP,
where the BEA Tuxedo service request is executed by a generic servlet. Using a Jolt session, the
servlet on the Web server administers the BEA Tuxedo service request by connecting to the BEA
Tuxedo Server through the Jolt Server Handler (JSH) or the Jolt Server Listener (JSL), which
then makes the BEA Tuxedo service request.

This capability allows many types of HTML clients to make remote BEA Tuxedo service
requests. All Jolt transactions are handled on the server side without requiring any change to the
original HTML client. Thus, HTML clients are allowed to be very simple and require little
maintenance.

This topic includes the following sections:

What Is a Servlet?

How Servlets Work with Jolt

Writing and Registering HTTP Servlets

7-2 Using BEA Jolt

Jolt Servlet Connectivity Sample

Additional Information on Servlets

What Is a Servlet?
A servlet is any Java class that can be invoked and executed on a server, usually on behalf of a
client. A servlet works on the server, while an applet works on the client. An HTTP servlet is a
Java class that handles an HTTP request and delivers an HTTP response. HTTP servlets reside
on an HTTP server and must extend the JavaSoft javax.servlet.http.Http Servlet Class so that they
can run in a generic servlet engine framework.

Some advantages of using HTTP servlets are:

They are written in a well-formed, and compiled language (Java), so are more robust than
“interpreted” scripts.

They are an integral part of the HTTP server that supports them.

They can be protected by the robust security of the server, unlike some CGI scripts that are
hazardous.

They interact with the HTTP request through a well-developed programmatic interface,
and so are easier to write and less prone to errors.

How Servlets Work with Jolt
With Jolt servlet connectivity, any generic HTTP servlet allows you to take advantage of the Jolt
features. Jolt servlets handle HTTP requests using the following Jolt classes:

ServletDataSet

ServletPoolManagerConfig

ServletResult

ServletSessionPool

ServletSessionPoolManager

The Jolt Servlet Connectivity Classes
Following are descriptions of the Jolt servlet connectivity classes.

ServletDataSet

Wri t ing and Reg is te r ing HTTP Se rv le ts

Using BEA Jolt 7-3

This class contains data elements that represent the input and output parameters of a BEA Tuxedo
service. It provides a method to import the HTML field names and values from a
javax.servlet.http.HttpServletRequest object.

ServletPoolManagerConfig

This class is the startup class for a Jolt Session Pool Manager and one or more associated Jolt
session pools. It creates the session pool manager if needed and starts a session pool with a
minimum number of sessions. Jolt Session Pool Manager internally keeps track of one or more
named session pools.

This class is derived from bea.jolt.pool.PoolManagerConfig and allows the caller to pass
a Properties or Hashtable object to the static startup() method to create a session pool and the
static getSessionPoolManager() method to get the session pool manager of
bea.jolt.pool.servlet.ServletSessionPoolManager class.

ServletResult

This class provides methods to retrieve each field in a ServletResult object as a String.

ServletSessionPool

This class provides a session pool for use in a Java servlet. A session pool represents one or more
connections (sessions) to a BEA Tuxedo system. This class provides call methods that accept
input parameters for a BEA Tuxedo service as a javax.servlet.http.HttpServletRequest
object.

ServletSessionPoolManager

This class is a servlet-specific session pool manager. It manages a collection of one or more
session pools of class ServletSessionPool. This class provides methods that are used to create
both the ServletSessionPoolManager itself and the session pools that it contains. These methods
are part of the administrative API for a session pool.

Writing and Registering HTTP Servlets
Before writing and registering HTTP servlets, you must first import the packages that support Jolt
servlet connectivity (jolt.jar, joltjse.jar, servlet.jar). HTTP servlets must extend
javax.servlet.http.HttpServlet. After you write your HTTP servlets, you register them with a Web
server that supports generic servlets. Your custom servlets are treated exactly like the standard
HTTP servlets that provide the HTTP capabilities.

Each HTTP servlet is registered against a specific URL pattern, so that when a matching URL is
requested, the corresponding servlet is called upon to handle the request.

7-4 Using BEA Jolt

Refer to the documentation for your particular Web server for instructions on how to register
servlets.

J o l t Se rv le t Connect iv i t y Sample

Using BEA Jolt 7-5

Jolt Servlet Connectivity Sample
The Jolt software includes three sample applications that demonstrate servlet connectivity using
the Jolt servlet classes. The three samples are:

SimpApp Sample

BankApp Sample

Admin Sample

Refer to these samples to see code examples of how to use the Jolt servlet classes in your own
servlets.

Viewing the Sample Servlet Applications
To view the code for the Jolt sample applications, you need to install the Jolt API client classes
(usually chosen as an option when installing Jolt). Once the classes are installed in your directory
of choice, navigate to the following directory to see the sample application files:

<Installation directory>\udataobj\jolt\examples\servlet

To view the sample code, use a text editor such as Microsoft Notepad to open the Java files for
each sample application.

SimpApp Sample
A sample application named simpapp is included with Jolt. The simpapp application illustrates
how the servlet uses Servlet Connectivity for BEA Tuxedo. The following servlet tasks are
illustrated by the SimpApp sample:

Using a property file to create a session pool

Getting the session pool manager

Retrieving the session pool by name

Invoking a BEA Tuxedo service

Processing the result set

This example demonstrates how a servlet can connect to BEA Tuxedo and call upon one of its
services; it should be invoked from the simpapp.html file. The servlet creates a session pool
manager at initialization, which is used to obtain a session when the doPost() method is
invoked. This session is used to connect to a service in BEA Tuxedo with a name described by

7-6 Using BEA Jolt

the posted “SVCNAME” argument. In this example the service is called "TOUPPER", which
transposes the posted “STRING” argument text into uppercase, and returns the result to the client
browser within some generated HTML.

Note: The WebLogic Server is used in this example.

Requirements for Running the SimpApp Sample
The requirements for running the SimpApp sample are:

Any Web application server with Servlet JSDK 1.1 or above

BEA Tuxedo 8.0 or later with SimpApp sample running

BEA Jolt

Installing the SimpApp Sample
1. Install the Jolt class library (jolt.jar) and Servlet Connectivity for BEA Tuxedo class

library (joltjse.jar) on the Web application server. Extract the class files if it is required
by your Web application server.

2. Compile the SimpAppServlet.java. Make sure that you include the standard JDK 1.1.x
classes.zip, JSDK 1.1 classes, Jolt class library, and Servlet Connectivity for BEA
Tuxedo class library in the classpath.

javac -classpath $(JAVA_HOME)/lib/classes.zip:$(JSDK)/lib/servlet.jar:

$(JOLTHOME)/jolt.jar:$(JOLTHOME)/joltjse.jar:./classes

-d ./classes SimpAppServlet.java

Note: The package name of the SimpAppServlet is examples.jolt.servlet.simpapp.

3. Put the simpapp.html and simpapp.properties files in the public HTML directory.

4. Modify the simpapp.properties file. Change the “appaddrlist” and “failoverlist”
with the proper Jolt server hosts and ports. Specify the proper BEA Tuxedo authentication
information if the SimpApp has security turned on. For example:

#simpapp

#Fri Apr 16 00:43:30 PDT 1999

poolname=simpapp

appaddrlist=//host:7000,//host:8000

J o l t Se rv le t Connect iv i t y Sample

Using BEA Jolt 7-7

failoverlist=//backup:9000

minpoolsize=1

maxpoolsize=3

userrole=tester

apppassword=appPass

username=guest

userpassword=myPass

5. Register “Simpapp” for the SimpAppServlet. Consult your Web application server for
details. If you are using BEA WebLogic Server, add the following section of the
config.xml file:

<Application
 Deployed="true"
 Name="simpapp"
 Path=".\config\mydomain\applications"
>
 <WebAppComponent
 Name="simpapp"
 Targets="myserver"
 URI="simpapp"
 />
</Application>

6. To access the SimpApp initial page “simpapp.html,” type:
http://mywebserver:8080/simpapp.html

7-8 Using BEA Jolt

BankApp Sample
The bankapp application illustrates how the servlet is written with PageCompiledServlet with
Servlet Connectivity for BEA Tuxedo. bankapp illustrates how to:

Use a property file to create a session pool

Get the session pool manager

Retrieve a session pool by name

Invoke a BEA Tuxedo service

Process the result set

Requirements for Running the BankApp Sample
Following are the requirements for running the BankApp sample:

Any Web application server with Servlet JSDK 1.1 or above

BEA Tuxedo 8.0 or later with BankApp sample running

BEA Jolt

Installation Instructions
1. Install the Jolt class library (jolt.jar) and Servlet Connectivity for BEA Tuxedo class

library (joltjse.jar) to the Web application server. Extract the class files if it is required
by your Web application server.

2. Copy all HTML, JHTML and bankapp.properties files to the public HTML directory of
the Web application server (for example, $WEBLOGIC/myserver/public_html for
WebLogic):

bankapp.properties

tellerForm.html

inquiryForm.html

depositForm.html

withdrawalForm.html

transferForm.html

InquiryServlet.jhtml

J o l t Se rv le t Connect iv i t y Sample

Using BEA Jolt 7-9

DepositServlet.jhtml

WithdrawalServlet.jhtml

TransferServlet.jhtml

3. Modify the bankapp.properties file. Change the “appaddrlist” and “failoverlist”
with the proper Jolt server hosts and ports. Specify the proper BEA Tuxedo authentication
information if the BankApp has security turned on. For example:

#bankapp

#Fri Apr 16 00:43:30 PDT 1999

poolname=bankapp

appaddrlist=//host:8000,//host:7000

failoverlist=//backup:9000

minpoolsize=2

maxpoolsize=10

userrole=teller

apppassword=appPass

username=JaneDoe

userpassword=myPass

4. If applicable, turn on the automatic page compilation for JHTML from your servlet engine.
Consult the user manual of your Web application server for details.

5. To access BankApp through Servlet Connectivity for BEA Tuxedo, use the following URL
in your favorite browser:
http://mywebserver:8080/tellerForm.html

7-10 Using BEA Jolt

Admin Sample
The Admin sample application illustrates the following servlet tasks:

Using the administrative API to control the session pools

Retrieving the statistics through PageCompiledServlet in Servlet Connectivity for BEA
Tuxedo

Requirements for Running the Admin Sample
Following are the requirements for running the Admin sample:

Any Web application server with Servlet JSDK 1.1 or above

BEA Jolt

Installation Instructions
1. Install the Jolt class library and Servlet Connectivity for BEA Tuxedo class library on the Web

application server.

2. Copy all JHTML files to the public HTML directory (for example,
$WEBLOGIC/myserver/public_html for WebLogic):

PoolList.jhtml

PoolAdmin.jhtml

3. To get a list of session pools, use the following URL in your favorite browser:
http://mywebserver:8080/PoolList.jhtml

Addi t i ona l In fo rmat ion on Se rv le ts

Using BEA Jolt 7-11

Additional Information on Servlets
For more information on writing and using servlets, refer to the following sites:

BEA WebLogic Servlet Documentation

http://e-docs.bea.com/wls/docs81/adminguide/index.html

http://e-docs.bea.com/wls/docs81/servlet/index.html

http://e-docs.bea.com/wls/docs81/javadocs/index.html

Java Servlets

http://jserv.java.sun.com/products/java-server/documentation/

webserver1.1/index_developer.html

Servlet Interest Group

http://servlet-interest@java.sun.com

7-12 Using BEA Jolt

Using BEA Jolt A-1

A P P E N D I X A

BEA Jolt Exceptions

This appendix describes all the BEA Jolt exceptions that you may encounter. Keep in mind that
the Jolt Class Library returns both BEA Jolt and BEA Tuxedo exceptions.

For details about BEA Tuxedo exceptions, refer to the appropriate document in the following list:

BEA Tuxedo Command Reference

BEA Tuxedo ATMI C Function Reference

BEA Tuxedo ATMI COBOL Function Reference

BEA Tuxedo ATMI FML Function Reference

File Formats, Data Descriptions, MIBs, and System Processes Reference

The Jolt Class Library exceptions are listed for each class, constructor, and method listed in the
BEA Jolt API Reference.

A-2 Using BEA Jolt

The following table lists the BEA Jolt and BEA Tuxedo exceptions that you may encounter while
running BEA Jolt. Each exception includes a possible cause (or causes) and a recommended
action (wherever possible) to help resolve the situation

1. TPEABORT A transaction could not commit.

Cause This exception occurs because a transaction could not commit on
the server side. This exception may also occur if the JSH
performs a message resend for a commit that has timed out due
to a previous blocking condition. In BEA Tuxedo, you can get
this exception if tpcommit() is called with outstanding replies
or open conversation connections.

Action Check transaction failures on the server side. BEA Jolt clients
should resend the request after the transaction problem has been
fixed on the server side.

2. TPEBADDESC This exception should not occur in BEA Jolt.

Cause In BEA Tuxedo, this exception usually occurs when an invalid
caller descriptor is given to tpgetrply() or tpsend().

Action None.

3. TPEBLOCK A blocking condition has occurred and the TPNOBLOCK flag is specified in BEA
Tuxedo.

Cause This exception occurs because the server is backed up.

Action You may need to re-examine and re-architect the application to
handle extreme load cases.

4. TPEINVAL Invalid arguments were given by the application.

Using BEA Jolt A-3

Cause This exception occurs if a new JoltSession class is processed
before performing the security protocol. In Jolt’s URL handler
routine, this exception occurs when a invalid challenge response
is received by the openConnection() method. The
TPEINVAL exception can also occur if you specified a
hexadecimal address for the JSL -H option without a leading
“0x” , or if you entered a wrong address in UBBCONFIG file. In
addition, the GETREC(), DELREC() and GETSVC() services in
JREPSVR can return TPEINVAL if the REPNAME is missing.
Also, the ADDREC() service in JREPSVR can return TPEINVAL
if the REPVAL is not specified.

Action This type of exception should have been handled during the
application development cycle. You should not receive this
exception in a production environment.

5. TPELIMIT The maximum number of outstanding requests or subscriptions has been
reached.

Cause The maximum number of outstanding requests has been reached.
This exception could also mean that the BEA Tuxedo System
Event Broker's maximum number of subscriptions (50 internally
defined for now) has been reached.

Action You may need to re-examine and re-architect the application to
handle load extreme cases.

6. TPENOENT The requested service is not available.

Cause Usually, the requested service is not booted or advertised on the
BEA Tuxedo server side. It is also possible that the requested
service is not defined in the Jolt Repository. This exception could
also indicate that you could not access the BEA Tuxedo System
Event Broker.

Action You need to check the server side to see if the service is booted
or advertised. Otherwise, check to see if the requested service is
defined in the Jolt Repository. After the service is available on
the server side, Jolt clients should resend the request.

7. TPEOS An operating system exception has occurred.

A-4 Using BEA Jolt

Cause The exact nature of the problem is described in the ULOG file.
Typically, you can get this exception due to the memory
allocation failures, wrong network address, or failure to attach to
the Bulletin Board for the JSL.

Action Try fixing the problem as described in the ULOG file. Jolt clients
might need to reconnect or resend the request after the problem
has been fixed.

8. TPEPERM There is a permission problem when attempting to join a session.

Cause In the JoltSession class, this exception occurs because the Jolt
client does not have the permission to join the application.
Permission may be denied based on an invalid application
password, failure to pass application specific authentication, or
the use of restricted client names. In the Jolt URL handler
routing, this exception occurs when a bad challenge response is
received on the openConnection() method. If the Jolt
Repository is set to read-only, the ADDREC() and DELREC()
services, or the GARBAGECOLLECT() service in JREPSVR, also
return the TPEPERM exception.

Action This type of exception should have been handled during the
application development cycle. You should not receive this
exception in a production environment.

9. TPEPROTO A function was called in an improper context.

Cause For this exception, an improper context could include a
rollback() or commit() method called by a participant, an
unsubscribe event that is called while “unsubscribe all” is in
progress, or when the caller is not a client.

Action This type of exception should have been handled during the
application development cycle. You should not receive this
exception in a production environment.

10. TPESVCERR A service routine has encountered an exception during tpreturn() or
tpforward() in BEA Tuxedo.

Using BEA Jolt A-5

Cause The service routine is returning application-level failures, which
may include any of the following: an application calls
tpreturn() or tpforward() with invalid flags, the caller
descriptor is no longer valid, or there are invalid return values.

Action This type of exception should have been handled during the
application development cycle. You should not receive this
exception in a production environment.

11. TPESVCFAIL The service routine sending the caller's reply called tpreturn() with TPFAIL.

Cause The service routine is returning application-level failures.

Action This type of exception should have been handled during the
application development cycle. You should not receive this
exception in a production environment.

12. TPESYSTEM A BEA Tuxedo system exception has occurred.

Cause The exact nature of the exception is written to the ULOG file. For
example, when performing the Diffie-Hellman encryption, this
exception occurs if the JSH is unable to send negotiation
parameters. The JSL fails to send the reply challenge call to the
Jolt client. The Jolt client sends an incorrect timestamp value, an
incorrect number of encrypted bits value, an incorrect ticket
value, or timestamp mismatches in reconnect protocol. The JSL
fails to initialize network protocol information, or could not
establish a listening address on a network. The JSH receives a
network message with an unknown context or receives a message
with a different connection.

Action In most cases, you need to find out the exact nature of the
exception from the ULOG file on the server side. In case of
hardware or network failures, you can try to reconnect if a
hardware or network failover is available.

13. TPETIME A transaction timeout has occurred.

Cause There is a transaction timeout on the server side.

Action This type of exception should be addressed on the application
server side. Jolt clients should resend the request after the server
side problem has been resolved.

14. TPETRAN The requested service belongs to a server that does not support transactions and
TPNOTRAN is not set.

A-6 Using BEA Jolt

Cause A transaction is not supported for the requested service.

Action This type of exception should be addressed on the application
server side. Jolt clients should resend the request after the server
side problem has been resolved.

15. TPGOTSIG An unexpected signal was received.

Cause A signal was received and the TPSIGSTRT flag was not
specified.

Action None.

16. TPERMERR A resource manager failed to open or close correctly on the server side.

Cause The resource manager might not be available; or all the resource
might not be released or committed before close.

Action Check the ULOG file for reasons why the resource manager
failed to open or close on the server side.

17. TPEITYPE For the JoltRemoteService class, the requested BEA Tuxedo service does not
recognize the type and subtype of the input data.

Cause The type and subtype of input data is not defined in the Jolt
Repository.

Action The type and subtype of input data should be defined in the Jolt
Repository. This type of exception should have been handled
during the application development cycle. You should not
receive this exception in a production environment.

18. TPEOTYPE For the JoltRemoteService class, the BEA Tuxedo caller does not recognize the
type and the subtype of the reply data.

Cause The type and subtype of output data is not defined in the Jolt
Repository.

Action The type and subtype of output data should be defined in the Jolt
Repository. This type of exception should have been handled
during the application development cycle. You should not
receive this exception in a production environment.

19. TPERELEASE This exception should not occur in BEA Jolt.

Using BEA Jolt A-7

Cause Usually, this exception occurs when an unsolicited notification
message is sent from a server with the TPACK flag set, and the
target is a Jolt client from an older release of BEA Jolt that does
not support the acknowledgment protocol.

Action Verify that the correct version of BEA Jolt is installed on your
machine. This type of exception should have been handled during
the application development cycle. You should not receive this
exception in an production environment.

20. TPEHAZARD Due to some failure, the work done on behalf of the transaction may have been
heuristically completed.

Cause Check the ULOG file on the server side for details.

Action None.

21. TPEHEURISTIC Due to a heuristic decision, the work done on behalf of the transaction was
partially committed and partially aborted.

Cause Check the ULOG file on the server side for details.

Action None.

22. TPEEVENT This exception should not occur in BEA Jolt.

Cause Usually, this exception means that an event has occurred when
sending or receiving a message in a conversational connection in
BEA Tuxedo. However, conversational server connections are
not available in BEA Jolt.

Action None.

23. TPEMATCH The JoltUserEvent class has implemented a subscription to an asynchronous
notification event, but the subscription has failed because it matches an existing
subscription.

Cause The subscription failed because it matched one already listed
with the BEA Tuxedo System Event Broker.

Action None.

24. TPEDIAGNOSTIC This exception should not occur in BEA Jolt.

A-8 Using BEA Jolt

Cause Usually, this exception occurs when enqueuing or dequeuing a
message from the specified queue fails in BEA Tuxedo.
However, enqueing and dequeing of messages is not available in
BEA Jolt.

Action None.

25. TPEMIB This exception should not occur in BEA Jolt.

Cause Usually, this exception occurs when an administrative request via
tpadmcall() has failed in BEA Tuxedo. However, TMIB
calls are not available in BEA Jolt.

Action None.

26. TPEJOLT This exception indicates there is a problem in BEA Jolt.

Cause The TPEJOLT exception could occur for any of the following
reasons:
• JoltSession class—the send(), recv() or cancel()

methods throw TPEJOLT if the session object or message ID
is invalid.

• JoltSession class—throws TPEJOLT when TPINIT data
conversion fails.

• bea.jolt.pool.connection class—throws TPEJOLT when a
run-time exception occurs.

• JoltRemoteService—the call() method throws TPEJOLT
when the buffer conversion between BEA Jolt and BEA
Tuxedo fails, the requested service is not defined in the Jolt
Repository, the requested service does not the right version,
or the reply data conversion fails.

• JoltUserEvent class—throws TPEJOLT when event name
conversion fails, an invalid message ID is encountered, or
unsolicited message data conversion fails.

Action This type of exception should have been handled during the
application development cycle. You should not receive this
exception in a production environment.

Using BEA Jolt Index-1

Index

A
applets

client-side execution 5-60
Java 5-1, 5-2, 5-60
Jolt 1-11, 5-4
localizing 5-61

appletview
Repository Editor 4-5

applications
deployment 5-60
localization 5-60
multithreaded 5-42

B
BEA Tuxedo

ATMI interface 5-4
buffer types

using with Jolt 5-14
customizing services 5-1
data types

using with Jolt 5-14
distributing services 1-11
Jolt Repository Editor

initializing services using 3-29
logging

off 5-5
on 5-5

server requirements 5-60
services

executing 5-5
requests 5-4

transaction

begin 5-5
complete 5-5
new 5-5
rollback 5-5

buffer types
filtering FML or VIEW 3-31
FML 5-23
overview 5-14
STRING 5-15
VIEW 5-29
XML 5-36

bulk loader
bulk load file 2-2
command line options 2-2
command-line options 2-2
data file syntax 2-3
getting started 2-1
introduction 2-1
keywords 2-3, 2-4, 2-5, 2-6
sample data 2-8
troubleshooting 2-7

C
CARRAY 5-21
CARRAY buffer type 5-19
classes 5-6

hierarchy 5-7
Jolt 5-1, 5-8
JoltRemoteService 5-8
JoltSession 5-8
JoltSessionAttributes 5-5, 5-8
JoltTransaction 5-9

Index-2 Using BEA Jolt

relationships 5-7
subdirectory 5-61

client
Jolt 5-5
logon/logoff 5-8

command-line options 3-13–3-17
Jolt Relay 3-20

configuration 3-1, 3-28
Event Subscription 3-9, 3-30
Jolt Relay (JRLY) 3-9
Jolt Relay Adapter (JRAD) 3-10, 3-25
Jolt Repository 3-3, 3-27

*GROUPS section 3-28
*SERVERS section 3-28

Jolt Server Listener (JSL) 3-2, 3-13
network address 3-25, 3-27
quick 3-2
Repository File, jrepository 3-29

configuration file
format 3-33
Jolt Relay 3-23
overview 3-33

connection attributes 5-10
hostname 5-10
portnumber 5-10

connection modes
connection-less 5-50
retained 5-50

customer support contact information xiii

D
data types

BEA Tuxedo 5-14
DES 1-3
Diffie-Hellman (DH) Key Exchange 3-17
documentation, where to find it xii

E
encryption 1-3, 3-17
Event Subscription 5-48

classes for 5-48
supported types 5-50

events
subscribing to 5-48

exceptions
Jolt 5-3
Jolt interpreter 5-3
ServiceException 5-10
System.in.read 5-43
Tuxedo generated in Jolt 5-3

exceptions, Jolt A-1
exporting services 4-36

F
failover

Jolt Client to JRLY connection 3-19
JRLY to JRAD connection 3-19

FML 5-24
FML buffer type 5-23

G
group services

package organizer
how to use 4-30

GROUPS section configuration 3-28

H
HTML

applet tag 5-60
page 5-60

I
illustrates 5-33
installation 3-1

J
Java

Using BEA Jolt Index-3

applets 5-1, 5-2, 5-60, 5-61
class files 5-61
clients 1-7, 5-4
Developer’s Kit (JDK) 5-43
language classes 5-1
packages 5-61
programs 5-2
Thread.yield() method 5-43
Virtual Machine (VM) 5-42

Jolt 1-2, 5-6
applets 1-11

deploying 5-60
localizing 5-61

architecture 1-3, 1-5, 1-6
bulk loader 2-1
Class Library 1-2
classes 5-1, 5-61

functionality 5-8
hierarchy 5-7
relationships 5-7
subdirectory 5-61

client
interface objects 5-4
logon/logoff 5-8
populating variables 5-5
requests 5-5

client/server
interaction 5-5
relationship 5-4

clients
communication with servers 1-10

components 1-2
connection manager 5-4
exceptions A-1
international use 5-61
Internet Relay 1-2
JoltBeans 1-2
key features 1-2
Repository Editor 1-2
server 5-4, 5-5, 5-61

requirements 5-60

servers 1-2
communication with clients 1-10
components 1-6
proxy for Tuxedo client 1-5

Transaction Protocol 1-10, 5-4
using threads with 5-43

Jolt Class Library 1-2, 1-7, 5-2, 5-6, 5-8, 5-10
application development 5-60
errors

handling 5-3
exceptions 5-3

handling 5-3
object/class reusability 5-53

Jolt Internet Relay 1-2, 3-17
Jolt Relay (JRLY)

command-line options for Windows 2003
3-20

configuration 3-23
configuration file 3-23
failover 3-19
network address configuration 3-25
starting 3-20

Jolt Relay Adapter (JRAD) 3-25
configuration 3-25
starting 3-25

Jolt Reply 5-48
Jolt Repository 3-27, 5-5

configuring 3-27
Editor 1-2
Editor, using 4-1
getting started 4-5
initializing services 3-3
service attributes 5-5

Jolt Repository Editor
initializing services using 3-29

Jolt Repository Server 1-6
Jolt server 3-11

shutting down the 3-12
starting the 3-12

Jolt Server Handler 1-6
Jolt Server Listener (JSL) 1-6

Index-4 Using BEA Jolt

*MACHINES section 3-34
*SERVERS section 3-35
configuration 3-13, 3-36
optional parameters 3-37
parameters usable with 3-37
restarting 3-12
UBBCONFIG file 3-33

JoltBeans 1-2, 6-1
JoltMessage 5-48
JoltRemoteService 5-9

calls 5-10
class 5-8
object 5-8
resetting parameters 5-9
reusing 5-53

JoltSession 5-5, 5-9, 5-48, 5-52
class 5-8, 5-9, 5-52
object 5-7, 5-8

instantiating 5-10
JoltSessionAttributes 5-5, 5-7, 5-8, 5-9
JoltTransaction 5-5, 5-7, 5-9

class 5-9
JoltUserEvent 5-48
jrepository 3-29
JREPSVR
JRLY See Jolt Relay
JSH
JSL

L
logon

Repository Editor 4-6

M
MACHINES section

Jolt Server Listener (JSL) 3-34
methods

clear() 5-9
Thread.yield() 5-43

multithreaded applications 5-42

N
notifications

brokered event 5-48
data buffers 5-50
event handler for 5-49
unsolicited 5-48
unsubscribing 5-51
using Jolt to receive 5-52

O
objects

relationships 5-7
reusability 5-48
reusing 5-56

P
package organizer

description 4-30
group services

how to 4-30
using 4-29

packages
adding 4-19
delete a package 4-35
deleting 4-36
modifying 4-32
package organizer 4-29
Repository Editor 4-12, 4-13

parameters 3-42, 4-17
associated with RESTART 3-41
boot 3-37
delete a parameter 4-35
deleting 4-35
edit a parameter 4-34
editing 4-34
modifying 4-32
optional for JSL 3-37
runtime 3-39
Tuxedo 3-42

Using BEA Jolt Index-5

usable with JSL 3-37
printing product documentation xii

R
RC4 1-3
related information xii
Repository Editor 1-10

appletviewer 4-5
exiting 4-8
introduction 4-2
logon 4-6
main components 4-10
packages 4-12, 4-13

setting up 4-18
parameters 4-17
process flow 4-10
sample window 4-2
sample window description 4-4
saving your work 4-18
services 4-15

description of 4-16
setting up 4-18
view services 4-16

starting with browser 3-4
starting with Web browser 4-5
troubleshooting 4-43

S
sample applications, online resources 3-42
saving your work 4-18
security 1-3, 3-17
server

Jolt 5-5
Tuxedo requirements for 5-60
Web 5-61

servers
components 1-6
Jolt 1-2
Jolt Repository 1-6

services

add a parameter 4-24
data type selection 4-27
how to 4-26
window description 4-26

add a service
buffer type selection 4-24

adding to package 4-20
instructions 4-23

calling synchronous 5-8
definitions 5-10
delete a service 4-35
deleting 4-35
edit a service 4-32
editing 4-33
export status

reviewing 4-38
exporting 4-36
grouping 4-29
Jolt client

make service available to 4-36
modifying 4-32
parameters 4-17
service test window 4-39, 4-41
test a service

how to 4-41, 4-42
process flow 4-41

testing 4-39
unexport 4-36
unexport status

reviewing 4-38
using the Repository Editor 4-15
view parameters 4-17
view services 4-16

Servlets 7-1
simpapp, online resources 3-42
STRING 5-17
STRING buffer type 5-15
support

technical xiii

Index-6 Using BEA Jolt

T
testing

services 4-39
threads 5-42

BLOCKED 5-42
non-preemptive 5-43
RUNNABLE 5-42
RUNNING 5-42
using Jolt with non-preemptive 5-43
using with Jolt 5-43

TOUPPER 5-15
Transaction

Protocol 5-4
transaction

begin 5-9
commit 5-9
object 5-9
rollback 5-9

troubleshooting
Repository Editor 4-43

Tuxedo
background information 3-32
parameters, entering 3-42

U
UBBCONFIG file

creating 3-33
Jolt Server Listener (JSL) configuration

sample 3-33
unexporting services 4-36

V
VIEW 5-33
VIEW buffer type 5-29
view parameters 4-17

W
Web server

considerations 5-61

X
XML buffer type 5-36

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	Introducing BEA Jolt
	BEA Jolt Components
	Key Features
	How BEA Jolt Works
	Jolt Servers
	Jolt Class Library
	JoltBeans
	Jolt Server and Jolt Client Communication
	Jolt Repository
	Jolt Repository Editor

	Jolt Internet Relay

	Creating a Jolt Client to Access BEA Tuxedo Applications

	Bulk Loading BEA Tuxedo Services
	Using the Bulk Loader
	Activating the Bulk Loader
	Command-line Options

	The Bulk Load File

	Syntax of the Bulk Loader Data Files
	Guidelines for Using Keywords
	Keyword Order in the Bulk Loader Data File
	Using Service-Level Keywords and Values
	Using Parameter-Level Keywords and Values

	Troubleshooting
	Sample Bulk Load Data

	Configuring the BEA Jolt System
	Quick Configuration
	Editing the UBBCONFIG File
	Configuring the Jolt Repository
	In the Groups Section
	In the Servers Section

	Initializing Services That Use BEA Tuxedo and the Repository Editor
	Getting Started with the Repository Editor
	Starting the Repository Editor Using the Java Applet Viewer
	Starting the Repository Editor Using Your Web Browser

	Logging On to the Repository Editor
	Repository Editor Logon Window Description

	Exiting the Repository Editor
	Configuring the BEA Tuxedo TMUSREVT Server for Event Subscription
	Configuring Jolt Relay
	On UNIX
	On UNIX and Windows 2003

	Jolt Background Information
	Jolt Server
	Starting the JSL
	Shutting Down the JSL
	Restarting the JSL
	Configuring the JSL
	JSL Command-line Options
	Security and Encryption

	Jolt Relay
	Jolt Relay Failover
	Jolt Client to JRLY Connection Failover
	JRLY to JRAD Adapter Connection Failover

	Jolt Relay Process
	Starting the JRLY on UNIX

	JRLY Command-line Options for Windows 2003
	JRLY Command-line Option for UNIX
	JRLY Configuration File

	Jolt Relay Adapter
	JRAD Configuration
	Network Address Configurations

	Jolt Repository
	Configuring the Jolt Repository
	GROUPS Section
	SERVERS Section
	Repository File

	Initializing Services By Using BEA Tuxedo and the Repository Editor

	Event Subscription
	Configuring for Event Subscription
	Filtering BEA Tuxedo FML or VIEW Buffers
	Buffer Types
	FML Buffer Example

	BEA Tuxedo Background Information
	Configuration File
	Creating the UBBCONFIG File
	Configuration File Format
	MACHINES Section
	GROUPS Section
	SERVERS Section
	Parameters Usable with JSL
	Optional Parameters
	Run-time Parameters
	Parameters Associated with RESTART
	Entering Parameters

	Sample Applications in BEA Jolt Online Resources

	Using the Jolt Repository Editor
	Introduction to the Repository Editor
	Repository Editor Window
	Repository Editor Window Description

	Getting Started
	Starting the Repository Editor Using the Java Applet Viewer
	Starting the Repository Editor from Your Web Browser
	To Start from a Local File
	To Start from a Web Server

	Logging On to the Repository Editor
	Repository Editor Logon Window Description

	Exiting the Repository Editor

	Main Components of the Repository Editor
	Repository Editor Flow
	What Is a Package?
	Packages Window Description
	Instructions for Viewing a Package

	What Is a Service?
	Services Window Description
	Instructions for Viewing a Service

	Working with Parameters
	Instructions for Viewing a Parameter

	Setting Up Packages and Services
	Saving Your Work
	Adding a Package
	Instructions for Adding a Package

	Adding a Service
	Adding a Service Window Description
	Instructions for Adding a Service
	Selecting CARRAY or STRING as a Service Buffer Type

	Adding a Parameter
	Adding a Parameter Window Description
	Instructions for Adding a Parameter
	Selecting CARRAY or STRING as a Parameter Data Type

	Grouping Services Using the Package Organizer
	Package Organizer Window Description
	Instructions for Grouping Services with the Package Organizer

	Modifying Packages, Services, and Parameters
	Editing a Service
	Instructions for Editing a Service

	Editing a Parameter
	Instructions for Editing a Parameter

	Deleting Parameters, Services, and Packages
	Deleting a Parameter
	Deleting a Service
	Deleting a Package

	Making a Service Available to the Jolt Client
	Exporting and Unexporting Services
	Reviewing the Exported and Unexported Status

	Testing a Service
	Jolt Repository Editor Service Test Window
	Service Test Window Description

	Testing a Service
	Test Service Process Flow
	Instructions for Testing a Service

	Repository Editor Troubleshooting

	Using the Jolt Class Library
	Class Library Functionality Overview
	Java Applications Versus Java Applets
	Jolt Class Library Features
	Error and Exception Handling
	Jolt Client/Server Relationship

	Jolt Object Relationships
	Jolt Class Library Walkthrough
	Logon and Logoff
	Synchronous Service Calling
	Transaction Begin, Commit, and Rollback

	Using BEA Tuxedo Buffer Types with Jolt
	Using the STRING Buffer Type
	Define TOUPPER in the Repository Editor
	ToUpper.java Client Code

	Using the CARRAY Buffer Type
	Define the Tuxedo Service in the Repository Editor
	tryOnCARRAY.java Client Code

	Using the FML Buffer Type
	tryOnFml.java Client Code
	FML Field Definitions
	Define PASSFML in the Repository Editor
	tryOnFml.c Server Code

	Using the VIEW Buffer Type
	Define VIEW in the Repository Editor
	simpview.java Client Code
	VIEW Field Definitions
	simpview.c Server Code

	Using the XML Buffer Type
	Define the Tuxedo Service in the Repository Editor
	simpxml.java Client Code

	Using the MBSTRING Buffer Type

	Multithreaded Applications
	Threads of Control
	Preemptive Threading
	Non-Preemptive Threading

	Using Jolt with Non-Preemptive Threading
	Using Threads for Asynchronous Behavior
	Using Threads with Jolt

	Event Subscription and Notifications
	Event Subscription Classes
	Notification Event Handler
	Connection Modes
	Notification Data Buffers
	BEA Tuxedo Event Subscription
	Supported Subscription Types
	Subscribing to Notifications
	Unsubscribing from Notifications

	Using the Jolt API to Receive BEA Tuxedo Notifications

	Clearing Parameter Values
	Reusing Objects
	Deploying and Localizing Jolt Applets
	Deploying a Jolt Applet
	Client Considerations
	Web Server Considerations
	Localizing a Jolt Applet

	Using JoltBeans
	Overview of Jolt Beans
	JoltBeans Terms
	Adding JoltBeans to Your Java Development Environment
	Using Development and Run-time JoltBeans

	Basic Steps for Using JoltBeans
	JavaBeans Events and BEA Tuxedo Events
	Using BEA Tuxedo Event Subscription and Notification with JoltBeans

	How JoltBeans Use JavaBeans Events
	The JoltBeans Toolkit
	JoltSessionBean
	JoltServiceBean
	JoltUserEventBean

	Jolt-Aware GUI Beans
	JoltTextField
	JoltLabel
	JoltList
	JoltCheckbox
	JoltChoice

	Using the Property List and the Property Editor to Modify the JoltBeans Properties
	JoltBeans Class Library Walkthrough
	Building the Sample Form
	Placing JoltBeans onto the Form Designer

	Wiring the JoltBeans Together
	Step 1: Wire the JoltSessionBean Logon
	Step 2: Wire JoltSessionBean to JoltServiceBean Using PropertyChange
	Step 3: Wire the accountID JoltTextField as Input to the JoltServiceBean Using JoltInputEvent
	Step 4: Wire Button to JoltServiceBean Using JoltAction
	Step 5: Wire JoltServiceBean to the Balance JoltTextField Using JoltOutputEvent
	Step 6: Wire the JoltSessionBean Logoff
	Step 7: Compile the Applet
	Running the Sample Application

	Using the Jolt Repository and Setting the Property Values
	JoltBeans Programming Tasks
	Using Transactions with JoltBeans
	Using Custom GUI Elements with the JoltService Bean

	Using Servlet Connectivity for BEA Tuxedo
	What Is a Servlet?
	How Servlets Work with Jolt
	The Jolt Servlet Connectivity Classes

	Writing and Registering HTTP Servlets
	Jolt Servlet Connectivity Sample
	Viewing the Sample Servlet Applications
	SimpApp Sample
	Requirements for Running the SimpApp Sample
	Installing the SimpApp Sample

	BankApp Sample
	Requirements for Running the BankApp Sample
	Installation Instructions

	Admin Sample
	Requirements for Running the Admin Sample
	Installation Instructions

	Additional Information on Servlets

	BEA Jolt Exceptions
	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

