
BEATuxedo ®

ATMI C Function
Reference

Version 9.0
Document Released: June 28, 2005

Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread, Top End,
Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign Manager for
WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA WebLogic Commerce Server, BEA WebLogic Enterprise,
BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic JRockit, BEA
WebLogic Log Central, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA
WebLogic Server Process Edition, BEA WebLogic WorkGroup Edition, BEA WebLogic Workshop, and Liquid
Computing are trademarks of BEA Systems, Inc. BEA Mission Critical Support is a service mark of BEA Systems, Inc.
All other company and product names may be the subject of intellectual property rights reserved by third parties.

All other trademarks are the property of their respective companies.

ATMI C Function Reference iii

Contents

About This Document
What You Need to Know . ix

e-docs Web Site . ix

How to Print the Document .x

Related Information .x

Contact Us! .x

Documentation Conventions . xi

Section 3c - C Functions
Introduction to the C Language Application-to-Transaction Monitor Interface8

AEMsetblockinghook(3c) .44

AEOaddtypesw(3c) .45

AEPisblocked(3c) .48

AEWsetunsol(3c). .49

buffer(3c) .50

catgets(3c) .59

catopen, catclose(3c) .60

decimal(3c) .62

getURLEntityCacheDir(3c). .65

getURLEntityCaching(3c). .66

gp_mktime(3c). .66

nl_langinfo(3c) .70

iv ATMI C Function Reference

setlocale(3c) . 71

setURLEntityCacheDir(3c) . 72

setURLEntityCaching(3c) . 73

strerror(3c) . 73

strftime(3c) . 74

tpabort(3c). 77

tpacall(3c) . 79

tpadmcall(3c) . 82

tpadvertise(3c) . 85

tpalloc(3c) . 87

tpbegin(3c) . 88

tpbroadcast(3c) . 90

tpcall(3c) . 93

tpcancel(3c). 97

tpchkauth(3c) . 98

tpchkunsol(3c) . 100

tpclose(3c). 101

tpcommit(3c). 103

tpconnect(3c) . 105

tpconvert(3c) . 108

tpconvmb(3c) . 110

tpcryptpw(3c) . 111

tpdequeue(3c) . 113

tpdiscon(3c) . 122

tpenqueue(3c) . 123

tpenvelope(3c) . 133

tperrordetail(3c) . 137

tpexport(3c). 140

ATMI C Function Reference v

tpfml32toxml(3c) . 142

tpfmltoxml(3c) . 143

tpforward(3c). 145

tpfree(3c) . 147

tpgblktime(3c) . 148

tpgetadmkey(3c) . 150

tpgetctxt(3c) . 151

tpgetlev(3c) . 152

tpgetmbenc(3c) . 154

tpgetrepos(3c) . 155

tpgetrply(3c) . 157

tpgprio(3c). 161

tpimport(3c). 162

tpinit(3c) . 164

tpkey_close(3c) . 172

tpkey_getinfo(3c) . 173

tpkey_open(3c) . 176

tpkey_setinfo(3c). 179

tpnotify(3c) . 180

tpopen(3c) . 182

tppost(3c). 184

tprealloc(3c) . 187

tprecv(3c) . 189

tpresume(3c) . 193

tpreturn(3c) . 195

tpsblktime(3c) . 199

tpscmt(3c) . 201

tpseal(3c) . 203

vi ATMI C Function Reference

tpsend(3c) . 204

tpservice(3c) . 208

tpsetctxt(3c) . 211

tpsetmbenc(3c) . 213

tpsetrepos(3c) . 214

tpsetunsol(3c) . 216

tpsign(3c) . 218

tpsprio(3c) . 219

tpstrerror(3c) . 220

tpstrerrordetail(3c) . 221

tpsubscribe(3c) . 223

tpsuspend(3c) . 231

tpsvrdone(3c) . 233

tpsvrinit(3c). 234

tpsvrthrdone(3c) . 235

tpsvrthrinit(3c) . 236

tpterm(3c) . 237

tptypes(3c) . 239

tpunadvertise(3c) . 241

tpunsubscribe(3c) . 242

tputrace(3c) . 244

tpxmltofml32(3c) . 249

tpxmltofml(3c) . 252

TRY(3c) . 255

tuxgetenv(3c) . 263

tuxgetmbaconv(3c) . 264

tuxgetmbenc(3c) . 265

tuxputenv(3c) . 265

ATMI C Function Reference vii

tuxreadenv(3c). 266

tuxsetmbaconv(3c) . 269

tuxsetmbenc(3c) . 270

tx_begin(3c) . 270

tx_close(3c) . 272

tx_commit(3c) . 274

tx_info(3c). 276

tx_open(3c) . 277

tx_rollback(3c) . 279

tx_set_commit_return(3c) . 281

tx_set_transaction_control(3c) . 283

tx_set_transaction_timeout(3c) . 284

userlog(3c). 286

Usignal(3c) . 288

Uunix_err(3c) . 291

viii ATMI C Function Reference

ATMI C Function Reference ix

About This Document

This document provides reference information on C language functions used in the BEA Tuxedo
ATMI environment. The reference pages are arranged in alphabetical order by function name.

What You Need to Know
This document is intended for the following audiences:

administrators who are interested in configuring and managing applications in a BEA
Tuxedo environment

application developers who are interested in programming applications in a BEA Tuxedo
environment

This document assumes a familiarity with the BEA Tuxedo platform and C programming.

e-docs Web Site
BEA product documentation is available on the BEA corporate Web site. From the BEA Home
page, click on Product Documentation or go directly to the “e-docs” Product Documentation page
at http://e-docs.bea.com.

http://e-docs.bea.com

x ATMI C Function Reference

How to Print the Document
You can print a copy of this document from a Web browser, one file at a time, by using the File—
>Print option on your Web browser.

A PDF version of this document is available on the BEA Tuxedo documentation Home page on
the e-docs Web site (and also on the documentation CD). You can open the PDF in Adobe
Acrobat Reader and print the entire document (or a portion of it) in book format. To access the
PDFs, open the BEA Tuxedo documentation Home page, click the PDF files button and select
the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe Web site at
http://www.adobe.com/.

Related Information
Related documents are listed in the See Also section of each reference page.

Contact Us!
Your feedback on the BEA Tuxedo documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be reviewed
directly by the BEA professionals who create and update the BEA Tuxedo documentation.

In your e-mail message, please indicate that you are using the documentation for the BEA Tuxedo
9.0 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems installing
and running BEA Tuxedo, contact BEA Customer Support through BEA WebSupport at
www.bea.com. You can also contact Customer Support by using the contact information
provided on the Customer Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

ATMI C Function Reference xi

Documentation Conventions
The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:
void commit ()

monospace
italic
text

Identifies variables in code.

Example:
String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

xii ATMI C Function Reference

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:
• That an argument can be repeated several times in a command line
• That the statement omits additional optional arguments
• That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

ATMI C Function Reference 1

Section 3c - C Functions

Table 1 BEA Tuxedo ATMI C Functions

Name Description

Introduction to the C Language
Application-to-Transaction Monitor Interface

Provides an introduction to the C language ATMI

AEMsetblockinghook(3c) Establishes an application-specific blocking hook function

AEOaddtypesw(3c) Installs or replaces a user-defined buffer type at execution
time

AEPisblocked(3c) Determines if a blocking call is in progress

AEWsetunsol(3c) Posts Windows message for BEA Tuxedo ATMI unsolicited
event

buffer(3c) Semantics of elements in tmtype_sw_t

catgets(3c) Reads a program message

catopen, catclose(3c) Opens/closes a message catalogue

decimal(3c) Decimal conversion and arithmetic routines

getURLEntityCacheDir(3c) Gets the absolute path to the location where the DTD,
Schemas, and Entity files are cached. It specifies a particular
Xerces parser class method.

2 ATMI C Function Reference

getURLEntityCaching(3c) Gets the caching mechanism for the DTD, schemas, and
Entity files. It specifies a particular Xerces parser class
method.

gp_mktime(3c) Converts a tm structure to a calendar time

nl_langinfo(3c) Language information

setlocale(3c) Modifies and queries a program’s locale

setURLEntityCacheDir(3c) Sets the directory where the DTD, schemas, and Entity files
are to be cached. It specifies a particular Xerces parser class
method.

setURLEntityCaching(3c) Turns caching on or off for DTD, schema, and Entity files by
default. It specifies a particular Xerces parser class method.

strerror(3c) Gets error message string

strftime(3c) Converts date and time to string

tpabort(3c) Routine for aborting current transaction

tpacall(3c) Routine for sending a service request

tpadmcall(3c) Administers unbooted application

tpadvertise(3c) Routine for advertising a service name

tpalloc(3c) Routine for allocating typed buffers

tpbegin(3c) Routine for beginning a transaction

tpbroadcast(3c) Routine to broadcast notification by name

tpcall(3c) Routine for sending service request and awaiting its reply

tpcancel(3c) Routine for canceling a call descriptor for outstanding reply

tpchkauth(3c) Routine for checking if authentication required to join an
application

tpchkunsol(3c) Routine for checking for unsolicited message

Table 1 BEA Tuxedo ATMI C Functions (Continued)

Name Description

ATMI C Function Reference 3

tpclose(3c) Routine for closing a resource manager

tpcommit(3c) Routine for committing current transaction

tpconnect(3c) Routine for establishing a conversational service connection

tpconvert(3c) Converts structures to/from string representations

tpconvmb(3c) Converts encoding of characters in an input buffer to a named
target encoding

tpcryptpw(3c) Encrypts application password in administrative request

tpdequeue(3c) Routine to dequeue a message from a queue

tpdiscon(3c) Routine for taking down a conversational service connection

tpenqueue(3c) Routine to enqueue a message

tpenvelope(3c) Accesses the digital signature and encryption information
associated with a typed message buffer

tperrordetail(3c) Gets additional detail about an error generated from the last
BEA Tuxedo ATMI system call

tpexport(3c) Converts a typed message buffer into an exportable,
machine-independent string representation, that includes
digital signatures and encryption seals

tpfml32toxml(3c) Converts FML32 buffer data to XML buffer data

tpfmltoxml(3c) Converts FML buffer data to XML buffer data

tpforward(3c) Routine for forwarding a service request to another service
routine

tpfree(3c) Routine for freeing a typed buffer

tpgblktime(3c) Routine for returning a previously set, per second
nontransactional blocktime value

tpgetadmkey(3c) Gets administrative authentication key

Table 1 BEA Tuxedo ATMI C Functions (Continued)

Name Description

4 ATMI C Function Reference

tpgetctxt(3c) Retrieves a context identifier for the current application
association

tpgetlev(3c) Routine for checking if a transaction is in progress

tpgetmbenc(3c) Gets the code-set encoding name from a typed buffer

tpgetrepos(3c) Routine for retrieving service and parameter information
from a Tuxedo repository file.

tpgetrply(3c) Routine for getting a reply from a previous request

tpgprio(3c) Routine for getting a service request priority

tpimport(3c) Converts an exported representation back into a typed
message buffer

tpinit(3c) Joins an application

tpkey_close(3c) Closes a previously opened key handle

tpkey_getinfo(3c) Gets information associated with a key handle

tpkey_open(3c) Opens a key handle for digital signature generation, message
encryption, or message decryption

tpkey_setinfo(3c) Sets optional attribute parameters associated with a key
handle

tpnotify(3c) Routine for sending notification by client identifier

tpopen(3c) Routine for opening a resource manager

tppost(3c) Posts an event

tprealloc(3c) Routine to change the size of a typed buffer

tprecv(3c) Routine for receiving a message in a conversational
connection

tpresume(3c) Resumes a global transaction

tpreturn(3c) Routine for returning from a service routine

Table 1 BEA Tuxedo ATMI C Functions (Continued)

Name Description

ATMI C Function Reference 5

tpsblktime(3c) Routine for setting nontransactional blocktime values, in
seconds, for the next service call or for all service calls used
per context

tpscmt(3c) Routine for setting when tpcommit() should return

tpseal(3c) Marks a typed message buffer for encryption

tpsend(3c) Routine for sending a message in a conversational connection

tpservice(3c) Template for service routines

tpsetctxt(3c) Sets a context identifier for the current application
association

tpsetmbenc(3c) Sets the code-set encoding name for a typed buffer

tpsetrepos(3c) Adds, edits, or deletes service and parameter information
from a Tuxedo Service Metadata repository file

tpsetunsol(3c) Sets the method for handling unsolicited messages

tpsign(3c) Marks a typed message buffer for digital signature

tpsprio(3c) Routine for setting service request priority

tpstrerror(3c) Gets error message string for a BEA Tuxedo ATMI system
error

tpstrerrordetail(3c) Gets error detail message string for a BEA Tuxedo ATMI
system

tpsubscribe(3c) Subscribes to an event

tpsuspend(3c) Suspends a global transaction

tpsvrdone(3c) Terminates a BEA Tuxedo ATMI system server

tpsvrinit(3c) Initializes a BEA Tuxedo ATMI system server

tpsvrthrdone(3c) Terminates a BEA Tuxedo ATMI server thread

tpsvrthrinit(3c) Initializes a BEA Tuxedo ATMI server thread

Table 1 BEA Tuxedo ATMI C Functions (Continued)

Name Description

6 ATMI C Function Reference

tpterm(3c) Leaves an application

tptypes(3c) Routine to determine information about a typed buffer

tpunadvertise(3c) Routine for unadvertising a service name

tpunsubscribe(3c) Unsubscribes to an event

tputrace(3c) User-defined routine to provide trace information

tpxmltofml32(3c) Converts XML buffer data to FML32 buffer data

tpxmltofml(3c) Converts XML buffer data to FML buffer data

TRY(3c) Exception-returning interface

tuxgetenv(3c) Returns value for environment name

tuxgetmbaconv(3c) Gets the value for environment variable TPMBACONV in the
process environment

tuxgetmbenc(3c) Gets the code-set encoding name for environment variable
TPMBENC in the process environment

tuxputenv(3c) Changes or adds value to environment

tuxreadenv(3c) Adds variables to the environment from a file

tuxsetmbaconv(3c) Sets the value for environment variable TPMBACONV in the
process environment

tuxsetmbenc(3c) Sets the code-set encoding name for environment variable
TPMBENC in the process environment

tx_begin(3c) Begins a global transaction

tx_close(3c) Closes a set of resource managers

tx_commit(3c) Commits a global transaction

tx_info(3c) Returns global transaction information

tx_open(3c) Opens a set of resource managers

Table 1 BEA Tuxedo ATMI C Functions (Continued)

Name Description

ATMI C Function Reference 7

tx_rollback(3c) Rolls back a global transaction

tx_set_commit_return(3c) Sets commit_return characteristic

tx_set_transaction_control(3c) Sets transaction_control characteristic

tx_set_transaction_timeout(3c) Sets transaction_timeout characteristic

userlog(3c) Writes a message to the BEA Tuxedo ATMI system central
event log

Usignal(3c) Signal handling in a BEA Tuxedo ATMI system environment

Uunix_err(3c) Prints UNIX system call error

Table 1 BEA Tuxedo ATMI C Functions (Continued)

Name Description

8 ATMI C Function Reference

Introduction to the C Language Application-to-Transaction
Monitor Interface
Description

The Application-to-Transaction Monitor Interface (ATMI) provides the interface between the
application and the transaction processing system. This interface is known as the ATMI interface.
It provides function calls to open and close resources, manage transactions, manage typed
buffers, and invoke request/response and conversational service calls.

Communication Paradigms
The function calls described in the ATMI reference pages imply a particular model of
communication. This model is expressed in terms of how client and server processes can
communicate using request and reply messages.

There are two basic communication paradigms: request/response and conversational.
Request/response services are invoked by service requests along with their associated data.
Request/response services can receive exactly one request (upon entering the service routine) and
send at most one reply (upon returning from the service routine). Conversational services, on the
other hand, are invoked by connection requests along with a means of referring to the open
connection (that is, a descriptor used in calling subsequent connection routines). Once the
connection has been established and the service routine invoked, either the connecting program
or the conversational service can send and receive data as defined by the application until the
connection is torn down.

Note that a process can initiate both request/response and conversational communication, but
cannot accept both request/response and conversational service requests. The following sections
describe the two communication paradigms in greater detail.

Note: In various parts of the BEA Tuxedo documentation we refer to threads. When this term
is used in a discussion of multithreaded applications, it is self-explanatory. In some
instances, however, the term is used in a discussion of a topic that is relevant for both
single-threaded and multithreaded applications. In such cases, readers who are running
single-threaded applications may assume that the term thread refers to an entire process.

BEA Tuxedo ATMI System Request/
Response Paradigm for Client/Server

With regard to request/response communication, a client is defined as a process that can send
requests and receive replies. By definition, clients cannot receive requests nor send replies. A
client can send any number of requests, and can wait for the replies synchronously or receive

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 9

(some limited number of) the replies at its convenience. In certain cases, a client can send a
request that has no reply. tpinit() and tpterm() allow a client to join and leave a BEA Tuxedo
ATMI system application.

A request/response server is a process that can receive one (and only one) service request at a time
and send at most one reply to that request. (If the server is multithreaded, however, it can receive
multiple requests at one time and issue multiple replies at one time.) While a server is working
on a particular request, it can act like a client by initiating request/response or conversational
requests and receiving their replies. In such a capacity, a server is called a requester. Note that
both client and server processes can be requesters (in fact, a client can be nothing but a requester).

A request/response server can forward a request to another request/response server. Here, the
server passes along the request it received to another server and does not expect a reply. It is the
responsibility of the last server in the chain to send the reply to the original requester. Use of the
forwarding routine ensures that the original requester ultimately receives its reply.

Servers and service routines offer a structured approach to writing BEA Tuxedo ATMI system
applications. In a server, the application writer can concentrate on the work performed by the
service rather than communications details such as receiving requests and sending replies.
Because many of the communication details are handled by BEA Tuxedo ATMI system’s main,
the application must adhere to certain conventions when writing a service routine. At the time a
server finishes its service routine, it can send a reply using tpreturn() or forward the request
using tpforward(). A service is not allowed to perform any other work nor is it allowed to
communicate with any other process after this point. Thus, a service performed by a server is
started when a request is received and ended when either a reply is sent or the request is
forwarded.

Concerning request and reply messages, there is an inherent difference between the two: a request
has no associated context before it is sent, but a reply does. For example, when sending a request,
the caller must supply addressing information, whereas a reply is always returned to the process
that originated the request, that is, addressing context is maintained for a reply and the sender of
the reply can exert no control over its destination. The differences between the two message types
manifest themselves in the parameters and descriptions of the routines described in tpcall().

When a request message is sent, it is sent at a particular priority. The priority affects how a request
is dequeued: when a server dequeues requests, it dequeues the one with the highest priority. To
prevent starvation, the oldest request is dequeued every so often regardless of priority. By default,
a request’s priority is associated with the service name to which the request is being sent. Service
names can be given priorities at configuration time (see UBBCONFIG(5)). A default priority is
used if none is defined. In addition, the priority can be set at run time using a routine, tpsprio().
By doing so, the caller can override the configuration or default priority when the message is sent.

../rf5/rf5.htm#365105

10 ATMI C Function Reference

BEA Tuxedo ATMI System Conversational Paradigm for Client/Server
With regard to conversational communication, a client is defined as a process that can initiate a
conversation but cannot accept a connection request.

A conversational server is a process that can receive connection requests. Once the connection
has been established and the service routine invoked, either the connecting program or the
conversational service can send and receive data as defined by the application until the
connection is torn down. The conversation is half-duplex in nature such that one side of the
connection has control and can send data until it gives up control to the other side. In a
single-threaded server, while the connection is established, the server is “reserved” such that no
other process can establish a connection with it. When a connection is established to a
multithreaded server, however, that server is not reserved for exclusive use by one process.
Instead, it can accept requests from multiple client threads.

As with a request/response server, the conversational server can act as a requester by initiating
other requests or connections with other servers. Unlike a request/response server, a
conversational server cannot forward a request to another server. Thus, a conversational service
performed by a server is started when a request is received and ended when the final reply is sent
via tpreturn().

Once the connection is established, the connection descriptor implies any context needed
regarding addressing information for the participants. Messages can be sent and received as
needed by the application. There is no inherent difference between the request and reply
messages and no notion of priority of messages.

Message Delivery
Sending and receiving messages, whether in conversation mode or request/response mode,
implies communication between two units of an application. The great majority of messages lead
to a reply or at least an acknowledgment, so that is an assurance that the message was received.
There are, however, certain messages (some originated by the system, others originated by an
application) where a reply or acknowledgment is not expected. For example, the system can send
an unsolicited message using tpnotify() without the TPACK() flag, or an application can send
a message using tpacall() with the TPNOREPLY() flag. If the message queue of the receiving
program is full, the message is dropped.

If the sending and receiving side are on different machines, the communication takes place
between bridge processes that send and receive messages across a network. This raises the
additional possibility of non-delivery due to a circuit failure. Even when either of these conditions
leads to the positing of an event or to a ULOG message, it is not easy to associate the event or ULOG
message with the non-arrival of a particular message.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 11

Because the BEA Tuxedo ATMI system is designed to handle large volumes of messages across
broad networks, it is not programmed to detect and correct the small percentage of
failures-to-deliver described in the preceding paragraphs. For that reason, there can be no
guarantee that every message will be delivered.

Message Sequencing
In the conversational model, for messages being exchanged using tpsend() and tprecv(), a
sequence number is added to the message header and messages are received in the order in which
they are sent. If a server or client gets a message out of order, the conversation is stopped, any
transaction in progress is rolled back, and message 1572 in LIBTUX, “Bad Conversational
Sequence Number,” is logged.

In the Request/Response model, messages are not sequenced by the system. If the application
logic implies a sequence, it is the responsibility of the application to monitor and control it. The
parallel message transmission made possible by the support of multiple network addresses for
bridge processes increases the possibility that messages will not be received in the order sent. An
application that is concerned about this may choose to specify a single network address for each
bridge process, add sequence numbers to their messages or require periodic acknowledgments.

Queued Message Model
The BEA Tuxedo ATMI system queued message model allows for enqueuing a request message
to stable storage for subsequent processing without waiting for its completion, and optionally
getting a reply via a queued response message. The ATMI functions that queue messages and
dequeue responses are tpenqueue() and tpdequeue(). They can be called from any type of
BEA Tuxedo ATMI system application processes: client, server, or conversational. The functions
tpenqueue() and tpdequeue() can also be used for peer-to-peer communication where neither
the enqueuing application nor the dequeuing application are designated as server or client.

The queued message facility is an XA-compliant resource manager. Persistent messages are
enqueued and dequeued within transactions to ensure one-time-only processing.

ATMI Transactions
The BEA Tuxedo ATMI system supports two sets of mutually exclusive functions for defining
and managing transactions: the BEA Tuxedo system’s ATMI transaction demarcation functions
(the names of which include the prefix tp) and X/Open’s TX Interface functions (the names of
which include the prefix tx_). Because X/Open used ATMI’s transaction demarcation functions
as the base for the TX Interface, the syntax and semantics of the TX Interface are quite similar to
those of the ATMI. This section is an overview of ATMI transaction concepts. The next section
introduces additional concepts about the TX Interface.

12 ATMI C Function Reference

In the BEA Tuxedo ATMI system, a transaction is used to define a single logical unit of work
that either wholly succeeds or has no effect whatsoever. A transaction allows work performed in
many processes, possibly at different sites, to be treated as an atomic unit of work. The initiator
of a transaction normally uses tpbegin() and either tpcommit() or tpabort() to delineate the
operations within a transaction.

The initiator may also suspend its work on the current transaction by issuing tpsuspend().
Another process may take over the role of the initiator of a suspended transaction by issuing
tpresume(). As a transaction initiator, a process must call one of the following: tpsuspend(),
tpcommit(), or tpabort(). Thus, one process can start a transaction that another may finish.

If a process calling a service is in transaction mode, then the called service routine is also placed
in transaction mode on behalf of the same transaction. Otherwise, whether the service is invoked
in transaction mode or not depends on options specified for the service in the configuration file.
A service that is not invoked in transaction mode can define multiple transactions between the
time it is invoked and the time it ends. On the other hand, a service routine invoked in transaction
mode can participate in only one transaction, and work on that transaction is completed upon
termination of the service routine. Note that a connection cannot be upgraded to transaction
mode: if tpbegin() is called while a conversation exists, the conversation remains outside of the
transaction (as if tpconnect() had been called with the TPNOTRAN() flag).

A service routine joining a transaction that was started by another process is called a participant.
A transaction can have several participants. A service can be invoked to do work on the same
transaction more than once. Only the initiator of a transaction (that is, a process calling either
tpbegin() or tpresume()) can call tpcommit() or tpabort(). Participants influence the
outcome of a transaction by using tpreturn() or tpforward(). These two calls signify the end
of a service routine and indicate that the routine has finished its part of the transaction.

TX Transactions
Transactions defined by the TX Interface are practically identical with those defined by the ATMI
functions. An application developer may use either set of functions when writing clients and
service routines, but should not intermingle one set of functions with the other within a single
process (that is, a process cannot call tpbegin() and later call tx_commit()).

The TX Interface has two calls for opening and closing resource managers in a portable manner,
tx_open() and tx_close(), respectively. Transactions are started with tx_begin() and
completed with either tx_commit() or tx_rollback(). tx_info() is used to retrieve
transaction information, and there are three calls to set options for transactions:
tx_set_commit_return(), tx_set_transaction_control(), and

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 13

tx_set_transaction_timeout(). The TX Interface has no equivalents to ATMI’s
tpsuspend() and tpresume().

In addition to the semantics and rules defined for ATMI transactions, the TX Interface has some
additional semantics that are worth introducing here. First, service routine writers wanting to use
the TX Interface must supply their own tpsvrinit() routine that calls tx_open(). The default
BEA Tuxedo ATMI system-supplied tpsvrinit() calls tpopen(). The same rule applies for
tpsvrdone(): if the TX Interface is being used, then service routine writers must supply their
own tpsvrdone() that calls tx_close().

Second, the TX Interface has two additional semantics not found in ATMI. These are chained and
unchained transactions, and transaction characteristics.

Chained and Unchained Transactions
The TX Interface supports chained and unchained modes of transaction execution. By default,
clients and service routines execute in the unchained mode; when an active transaction is
completed, a new transaction does not begin until tx_begin() is called.

In the chained mode, a new transaction starts implicitly when the current transaction completes.
That is, when tx_commit() or tx_rollback() is called, the BEA Tuxedo ATMI system
coordinates the completion of the current transaction and initiates a new transaction before
returning control to the caller. (Certain failure conditions may prevent a new transaction from
starting.)

Clients and service routines enable or disable the chained mode by calling
tx_set_transaction_control(). Transitions between the chained and unchained mode
affect the behavior of the next tx_commit() or tx_rollback() call. The call to
tx_set_transaction_control() does not put the caller into or take it out of transaction mode.

Since tx_close() cannot be called when the caller is in transaction mode, a caller executing in
chained mode must switch to unchained mode and complete the current transaction before calling
tx_close().

Transaction Characteristics
A client or a service routine may call tx_info() to obtain the current values of their transaction
characteristics and to determine whether they are executing in transaction mode.

The state of an application process includes several transaction characteristics. The caller
specifies these by calling tx_set_*() functions. When a client or a service routine sets the value
of a characteristic, it remains in effect until the caller specifies a different value. When the caller
obtains the value of a characteristic via tx_info(), it does not change the value.

14 ATMI C Function Reference

Error Handling
Most of the ATMI functions have one or more error returns. An error condition is indicated by
an otherwise impossible returned value. This is usually -1 or error, or 0 for a bad field identifier
(BADFLDID) or address. The error type is also made available in the external integer tperrno.
tperrno is not cleared on successful calls, so it should be tested only after an error has been
indicated.

The tpstrerror() function is provided to produce a message on the standard error output. It
takes one argument, an integer (found in tperrno) and returns a pointer to the text of an error
message in LIBTUX_CAT. The pointer can be used as an argument to userlog().

tperrordetail() can be used as the first step of a three step procedure to get additional detail
about an error in the most recent BEA Tuxedo ATMI system call on the current thread.
tperrordetail() returns an integer which is then used as an argument to
tpstrerrordetail() to retrieve a pointer to a string that contains the error message. The
pointer can then be used as an argument to userlog or to fprintf().

The error codes that can be produced by an ATMI function are described on each ATMI reference
page. The F_error() and F_error32() functions are provided to produce a message on the
standard error output for FML errors. They take one parameter, a string; print the argument string
appended with a colon and a blank; and then print an error message followed by a newline
character. The error message displayed is the one defined for the error number currently in
Ferror() or Ferror32(), which is set when errors occur.

Fstrerror(), and its counterpart, Fstrerror32(), can be used to retrieve the text of an FML
error message from a message catalog; it returns a pointer that can be used as an argument to
userlog.

The error codes that can be produced by an FML function are described on each FML reference
page.

Timeouts
There are three types of timeouts in the BEA Tuxedo ATMI system: one is associated with the
duration of a transaction from start to finish. A second is associated with the maximum length of
time a blocking call will remain blocked before the caller regains control. The third is a service
timeout and occurs when a call exceeds the number of seconds specified in the SVCTIMEOUT
parameter in the SERVICES section of the configuration file.

The first kind of timeout is specified when a transaction is started with tpbegin(). (See
tpbegin(3c) for details.) The second kind of timeout can occur when using the BEA Tuxedo
ATMI system communication routines defined in tpcall(3c). Callers of these routines

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 15

typically block when awaiting a reply that has yet to arrive, although they can also block trying
to send data (for example, if request queues are full). The maximum amount of time a caller
remains blocked is determined by a BEA Tuxedo ATMI system configuration file parameter.
(See the BLOCKTIME parameter in UBBCONFIG(5) for details.)

Blocking timeouts are performed by default when the caller is not in transaction mode. When a
client or server is in transaction mode, it is subject to the timeout value with which the transaction
was started and is not subject to the blocking timeout value specified in the UBBCONFIG file.

When a transaction timeout occurs, replies to asynchronous requests made in transaction mode
become invalid. That is, if a process is waiting for a particular asynchronous reply for a request
sent in transaction mode and a transaction timeout occurs, the descriptor for that reply becomes
invalid. Similarly, if a transaction timeout occurs, an event is generated on the connection
descriptor associated with the transaction and that descriptor becomes invalid. On the other hand,
if a blocking timeout occurs, the descriptor is still valid and the waiting process can reissue the
call to await the reply.

The service timeout mechanism provides a way for the system to kill processes that may be frozen
by some unknown or unexpected system error. When a service timeout occurs in a
request/response service, the BEA Tuxedo ATMI system kills the server process that is executing
the frozen service and returns error code TPESVCERR. If a service timeout occurs in a
conversational service, the TP_EVSVCERR event is returned.

If a transaction has timed out, the only valid communications before the transaction is aborted are
calls to tpacall() with TPNOREPLY, TPNOTRAN, and TPNOBLOCK set.

Since release 6.4, some additional detail has been provided beyond the TPESVCERR error code. If
a service fails due to exceeding the timeout threshold, an event, .SysServiceTimeout, is
posted.

Dynamic Service Advertisements
By default, a server’s services are advertised when it is booted and unadvertised when it is shut
down. If a server needs to control the set of services that it offers at run time, it can do so by
calling tpadvertise() and tpunadvertise(). These routines affect only the services offered
by the calling server unless that server belongs to a Multiple Server, Single Queue (MSSQ) set.
Because all servers in an MSSQ set must offer the same set of services, these routines also affect
the advertisements of all servers sharing the caller’s MSSQ set.

Buffer Management
Initially, a process has no buffers. Before sending a message, a buffer must be allocated using
tpalloc(). The sender’s data can then be placed in the buffer and sent. This buffer has a specific

../rf5/rf5.htm#365105

16 ATMI C Function Reference

structure. The particular structure is denoted by the type argument to the tpalloc() function.
Since some structures can need further classification, a subtype can also be given (for example,
a particular type of C structure).

When receiving a message, a buffer is required into which application data can be received. This
buffer must be one originally gotten from tpalloc(). Note that a BEA Tuxedo ATMI system
server, in its main, allocates a buffer whose address is passed to a request/response or
conversational service upon invoking the service. (See tpservice(3c) for details on how this
buffer is treated.)

Buffers used for receiving messages are treated slightly differently than those used for sending:
the size and address usually change upon receipt of a message, since the system internally swaps
the buffer passed into the receive call with internal buffers it used to process the buffer. A buffer
may grow or shrink when it receives data. Whether it grows or shrinks depends on the amount of
data sent by the sender, and the internal data flow needed to get the data from sender to receiver.
Many factors can affect the buffer size, including compression, receiving a message from a
different type of machine, and the action of the postrecv() function for the type of buffer being
used (see buffer(3c)). The buffer sizes in Workstation clients are usually different from those
in native clients.

It is best to think of the receive buffer as a placeholder, rather than the actual container that will
receive the message. The system sometimes uses the size of the buffer you pass as a hint, so it
does help if it is big enough to hold the expected reply.

On the sending side, buffer types that might be filled to less than their allocated capacity (for
example, FML or STRING buffers) send only the amount used. A 100K FML32 buffer with one
integer field in it is sent as a much smaller buffer, containing only that integer.

This means that the receiver will receive a buffer smaller than what was originally allocated by
the sender, yet larger than the data that was sent. For example, if a STRING buffer of 10K bytes
is allocated, and the string “HELLO” is copied into it, only the six bytes are sent, and the receiver
will probably end up with a buffer that is around 1K or 4K bytes. (It may be larger or smaller,
depending on other factors.) The BEA Tuxedo ATMI system guarantees only that a received
message will contain all of the data that was sent; it does not guarantee that the message will
contain all the free space it originally contained.

The process receiving the reply is responsible for noting size changes in the buffer (using
tptypes()) and reallocating the buffer if necessary. All BEA Tuxedo ATMI functions change a
receiver’s buffer return information about the amount of data in the buffer, so it should become
standard practice to check the buffer size every time a reply is received.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 17

One can send and receive messages using the same data buffer. Alternatively, a different data
buffer can be allocated for each message. It is usually the responsibility of the calling process to
free its buffers by invoking tpfree(). However, in limited cases, the BEA Tuxedo ATMI system
frees the caller’s buffer. For more information about buffer usage, see the descriptions of
communication functions such as tpfree().

Buffer Type Switch
The tmtype_sw_t structure provides the description required when adding new buffer types to
tm_typesw(), the buffer type switch for a process. The switch elements are defined in
typesw(5). The function names used in this entry are templates for the actual function names
defined by the BEA Tuxedo ATMI system or by applications in which custom buffer types are
created. These function names can be mapped easily to switch elements: to create a template
name simply add the prefix _tm to the element name of a function pointer. For example, the
template name for the element initbuf is _tminitbuf.

The type element must be non-NULL and at most 8 characters in length. If this element is not
unique in the switch, then subtype() must be non-NULL.

The subtype() element can be NULL, a string of at most 16 characters, or * (the wildcard
character). The combination of type() and subtype() must uniquely identify an element in the
switch.

A given type can have multiple subtypes. If all subtypes are to be treated the same for a given
type, then the wildcard character, “*”, can be used. Note that the tptypes() function can be used
to determine a buffer’s type and subtype if subtypes need to be distinguished. If some subset of
the subtypes within a particular type are to be treated individually, and the rest are to be treated
identically, then those that are to be singled out with specific subtype values should appear in the
switch before the subtype designated with the wildcard. Thus, searching for types and subtypes
in the switch is done from top to bottom, and the wildcard subtype entry accepts any “leftover”
type matches.

The dfltsize() element is used when allocating or reallocating a buffer. The semantics of
tpalloc() and tprealloc() are such that the larger of the following two values is used to
create or reallocate a buffer: the value of dfltsize() or the value of the size parameter for the
tpalloc() and tprealloc() functions. For some types of structures, such as a fixed-sized C
structure, the buffer size should equal the size of the structure. If dfltsize() is set to this value,
then the caller may not need to specify the buffer’s length to routines in which a buffer is passed.
dfltsize() can be 0 or less. However, if tpalloc() or tprealloc() is called and the size
parameter for the function being called is also less than or equal to 0, then the routine will fail.
We recommend setting dfltsize() to a value greater than 0.

../rf5/rf5.htm#2183415

18 ATMI C Function Reference

The BEA Tuxedo ATMI system provides five basic buffer types:

CARRAY—a character array, possibly containing NULL characters, which is neither encoded
nor decoded during transmission

STRING—a NULL-terminated character array

FML—fielded buffers (FML or FML32)

XML—XML document or datagram buffer

VIEW—simple C structures (VIEW or VIEW32); all views are handled by the same set of
routines. The name of a particular view is its subtype name.

Two of these buffer types have synonyms: X_OCTET is a synonym for CARRAY, and both
X_C_TYPE and X_COMMON are synonyms for VIEW. X_C_TYPE supports all the same elements as
VIEW, whereas X_COMMON supports only longs, shorts, and characters. X_COMMON should be used
when both C and COBOL programs are communicating.

An application wishing to supply its own buffer type can do so by adding an instance to the
tm_typesw() array. Whenever adding or deleting a buffer type, be careful to leave a NULL entry
at the end of the array. Note that a buffer type with a NULL name is not permitted. An application
client or server is linked with the new buffer type switch by explicitly specifying the name of the
source or object file on the buildserver() or buildclient() command line using the -f
option.

Unsolicited Notification
There are two methods for sending messages to application clients outside the boundaries of the
client/server interaction defined above. The first is the broadcast mechanism supported by
tpbroadcast(). This function allows application clients, servers, and administrators to
broadcast typed buffer messages to a set of clients selected on the basis of the names assigned to
them. The names assigned to clients are determined in part by the application (specifically, by the
information passed in the TPINIT typed buffer at tpinit() time) and in part by the system
(based on the processor through which the client accesses the application).

The second method is the notification of a particular client as identified from an earlier or current
service request. Each service request contains a unique client identifier that identifies the
originating client for the service request. Calls to the tpcall() and tpforward() functions
from within a service routine do not change the originating client for that chain of service
requests. Client identifiers can be saved and passed between application servers. The
tpnotify() function is used to notify clients identified in this manner.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 19

Single or Multiple Application Contexts per Process
The BEA Tuxedo ATMI system allows client programs to create an association with one or more
applications per process. If tpinit() is called with the TPMULTICONTEXTS parameter included
in the flags field of the TPINIT structure, then multiple client contexts are allowed. If tpinit()
is called implicitly, is called with a NULL parameter, or the flags field does not include
TPMULTICONTEXTS, then only a single application association is allowed.

In single-context mode, if tpinit() is called more than once (that is, if it is called after the client
has already joined the application), no action is taken and success is returned.

In multicontext mode, each call to tpinit() creates a new application association. The
application can obtain a handle representing this application association by calling
tpgetctxt(). Any thread in the same process can call tpsetctxt() to set that thread’s context.

Once an application has chosen single-context mode, all calls to tpinit() must specify
single-context mode until all application associations are terminated. Similarly, once an
application has chosen multicontext mode, all calls to tpinit() must specify multicontext mode
until all application associations are terminated.

Server programs can be associated with only a single application and cannot act as clients.
However, within each server program, there may be multiple server dispatch contexts. Each
server dispatch context works in its own thread.

Table 2 shows the transitions that may occur, within a client process, among the following states:
the uninitialized state, the initialized in single-context mode state, and the initialized in
multicontext mode state.

Table 2 Per-Process Context Modes

Function States

Uninitialized
S0

Initialized Single-context
Mode

S1

Initialized Multicontext
Mode

S2

tpinit without
TPMULTICONTEXTS

S1 S1 S2(error)

tpinit with
TPMULTICONTEXTS

S2 S1 (error) S2

Implicit tpinit S1 S1 S2 (error)

20 ATMI C Function Reference

Context State Changes for a Client Thread
In a multicontext application, calls to various functions result in context state changes for the
calling thread and any other threads that are active in the same context as the calling process. The
following diagram illustrates the context state changes that result from calls to the tpinit(),
tpsetctxt(), and tpterm() functions. (The tpgetctxt() function does not produce any
context state changes.)

tpterm—not last
association

S2

tpterm—last association S0 S0

tpterm—no association S0

Table 2 Per-Process Context Modes

Function States

Uninitialized
S0

Initialized Single-context
Mode

S1

Initialized Multicontext
Mode

S2

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 21

Multicontext State Transitions

Note: When tpterm() is called by a thread running in the multicontext state
(TPMULTICONTEXTS), the calling thread is placed in the NULL context state
(TPNULLCONTEXT). All other threads associated with the terminated context are switched
to the invalid context state (TPINVALIDCONTEXT).

Table 3 lists all possible context state changes produced by calling tpinit(), tpsetctxt(), and
tpterm(). These states are thread-specific; different threads can be in different states when they
are part of a multicontexted application. By contrast, each context state listed in the preceding
table (“Per-Process Context Modes”) applies to an entire process.

NULL

tpinit() without TPMULTICONTEXTS
 or

implicit tpinit() invoked by ATMI function

CONTEXT

INVALID
CONTEXT

SINGLE
CONTEXT

tpinit() with TPMULTICONTEXTS
or

tpsetctxt() to a valid context

tpterm() tpterm()
or

tpsetctxt()

tpterm()
or

tpsetctxt()

tpsetctxt()

tpterm()

tpinit() without
TPMULTICONTEXTS

(see Note)

MULTI
CONTEXT

22 ATMI C Function Reference

Support for Threads Programming
The BEA Tuxedo ATMI system supports multithreaded programming in several ways. If the
process is using single-context mode, then as the application creates new threads, those threads
share the BEA Tuxedo ATMI context for the process. In a client, after a thread issues a tpinit()
call in single-context mode, other threads may then proceed to issue ATMI calls. For example,
one thread may issue a tpacall() and a different thread in the same process may issue a
tpgetrply().

When in multicontext mode, threads initially are not associated with a BEA Tuxedo ATMI
application. A thread can either join an existing application association by calling tpsetctxt()
or create a new association by calling tpinit() with the TPMULTICONTEXTS flag set.

Whether running in single-context mode or multicontext mode, the application is responsible for
coordinating its threads so that ATMI operations are performed at the appropriate time.

Table 3 Context State Changes for a Client Thread

When this function is
executed . . .

Then a thread in this context state results in . . .

NULL Context Single Context Multicontext Invalid Context

tpinit without
TPMULTICONTEXTS

Single context Single context Error Error

tpinit with
TPMULTICONTEXTS

Multicontext Error Multicontext Error

tpsetctxt to
TPNULLCONTEXT

NULL Error NULL NULL

tpsetctxt to
context 0

Error Single context Error Error

tpsetctxt to
context > 0

Multicontext Error Multicontext Multicontext

Implicit tpinit Single context N/A N/A Error

tpterm in this thread NULL NULL NULL NULL

tpterm in a different
thread of this context

N/A NULL Invalid N/A

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 23

An application may create additional threads within a server by using OS thread functions. These
threads may operate independently of the BEA Tuxedo ATMI system, or they may operate in the
same context as one of the server dispatch threads. Initially, application-created server threads are
not associated with any server dispatch context. An application-created server thread may call
tpsetctxt() to associate itself with a server dispatch thread. The application-created server
thread must complete all of its ATMI calls before the dispatched thread calls tpreturn() or
tpforward(). A server thread dispatched by the BEA Tuxedo ATMI system may not call
tpsetctxt(). In addition, application-created threads may not make ATMI calls that would
cause an implicit tpinit() when not associated with a context. On the other hand, this failure to
make ATMI calls does not occur with dispatcher-created threads because those threads are
always associated with a context. All server threads are prohibited from calling tpinit().

In a multithreaded application, a thread that is operating in the TPINVALIDCONTEXT state is
prohibited from calling many ATMI functions. The following lists specify which functions may
and may not be called under these circumstances.

The BEA Tuxedo ATMI system allows a thread operating in the TPINVALIDCONTEXT state to call
the following functions:

catgets(3c)

catopen, catclose(3c)

decimal(3c)

gp_mktime(3c)

nl_langinfo(3c)

setlocale(3c)

strerror(3c)

strftime(3c)

tpalloc(3c)

tpconvert(3c)

tpcryptpw(3c)

tperrordetail(3c)

tpfml32toxml(3c)

tpfmltoxml(3c)

tpfree(3c)

tpgblktime(3c)

24 ATMI C Function Reference

tpgetctxt(3c)

tpgetrepos(3c)

tprealloc(3c)

tpsblktime(3c)

tpsetctxt(3c)

tpsetrepos(3c)

tpstrerror(3c)

tpstrerrordetail(3c)

tpterm(3c)

tptypes(3c)

tpxmltofml32(3c)

tpxmltofml(3c)

TRY(3c)

tuxgetenv(3c)

tuxputenv(3c)

tuxreadenv(3c)

userlog(3c)

Usignal(3c)

Uunix_err(3c)

The BEA Tuxedo ATMI system does not allow a thread operating in the TPINVALIDCONTEXT
state to call the following functions:

AEWsetunsol(3c)

tpabort(3c)

tpacall(3c)

tpadmcall(3c)

tpbegin(3c)

tpbroadcast(3c)

tpcall(3c)

tpcancel(3c)

tpchkauth(3c)

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 25

tpchkunsol(3c)

tpclose(3c)

tpcommit(3c)

tpconnect(3c)

tpdequeue(3c)

tpenqueue(3c)

tpgetadmkey(3c)

tpgetlev(3c)

tpgetrply(3c)

tpgprio(3c)

tpinit(3c)

tpnotify(3c)

tpopen(3c)

tppost(3c)

tprecv(3c)

tpresume(3c)

tpscmt(3c)

tpsend(3c)

tpsetunsol(3c)

tpsprio(3c)

tpsubscribe(3c)

tpsuspend(3c)

tpunsubscribe(3c)

tx_begin(3c)

tx_close(3c)

tx_commit(3c)

tx_info(3c)

tx_open(3c)

tx_rollback(3c)

tx_set_commit_return(3c)

26 ATMI C Function Reference

tx_set_transaction_control(3c)

tx_set_transaction_timeout(3c)

C Language ATMI Return Codes and Other Definitions
The following return code and flag definitions are used by the ATMI routines. For an application
to work with different transaction monitors without change or recompilation, each system must
define its flags and return codes as follows:

 /*
 * The following definitions must be included in atmi.h
 */

 /* Flags to service routines */

 #define TPNOBLOCK 0x00000001 /* non-blocking send/rcv */
 #define TPSIGRSTRT 0x00000002 /* restart rcv on interrupt */
 #define TPNOREPLY 0x00000004 /* no reply expected */
 #define TPNOTRAN 0x00000008 /* not sent in transaction mode */
 #define TPTRAN 0x00000010 /* sent in transaction mode */
 #define TPNOTIME 0x00000020 /* no timeout */
 #define TPABSOLUTE 0x00000040 /* absolute value on tmsetprio */
 #define TPGETANY 0x00000080 /* get any valid reply */
 #define TPNOCHANGE 0x00000100 /* force incoming buffer to match */
 #define RESERVED_BIT1 0x00000200 /* reserved for future use */
 #define TPCONV 0x00000400 /* conversational service */
 #define TPSENDONLY 0x00000800 /* send-only mode */
 #define TPRECVONLY 0x00001000 /* recv-only mode */
 #define TPACK 0x00002000 /* */

 /* Flags to tpreturn - also defined in xa.h */
 #define TPFAIL 0x20000000 /* service FAILURE for tpreturn */
 #define TPEXIT 0x08000000 /* service FAILURE with server exit */
 #define TPSUCCESS 0x04000000 /* service SUCCESS for tpreturn */

 /* Flags to tpscmt - Valid TP_COMMIT_CONTROL
 * characteristic values
 */
 #define TP_CMT_LOGGED 0x01 /* return after commit
 * decision is logged */
 #define TP_CMT_COMPLETE 0x02 /* return after commit has
 * completed */

 /* client identifier structure */

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 27

 struct clientid_t {
 long clientdata[4]; /* reserved for internal use */
 }
 typedef struct clientid_t CLIENTID;
 /* context identifier structure */
 typedef long TPCONTEXT_T;
 /* interface to service routines */
 struct tpsvcinfo {
 name[32];
 long flags; /* describes service attributes */
 char *data; /* pointer to data */
 long len; /* request data length */
 int cd; /* connection descriptor
 * if (flags TPCONV) true */
 long appkey; /* application authentication client
 * key */
 CLIENTID cltid; /* client identifier for originating
 * client */
 };

 typedef struct tpsvcinfo TPSVCINFO;

 /* tpinit(3c) interface structure */
 #define MAXTIDENT 30

 struct tpinfo_t {
 char usrname[MAXTIDENT+2]; /* client user name */
 char cltname[MAXTIDENT+2]; /* app client name */
 char passwd[MAXTIDENT+2]; /* application password */
 long flags; /* initialization flags */
 long datalen; /* length of app specific data */
 long data; /* placeholder for app data */
 };
 typedef struct tpinfo_t TPINIT;

 /* The transactionID structure passed to tpsuspend(3c) and tpresume(3c) */
 struct tp_tranid_t {
 long info[6]; /* Internally defined */
 };

 typedef struct tp_tranid_t TPTRANID;

 /* Flags for TPINIT */
 #define TPU_MASK 0x00000007 /* unsolicited notification
 * mask */
 #define TPU_SIG 0x00000001 /* signal based
 * notification */
 #define TPU_DIP 0x00000002 /* dip-in based
 * notification */

28 ATMI C Function Reference

 #define TPU_IGN 0x00000004 /* ignore unsolicited
 * messages */
 #define TPU_THREAD 0x00000040 /* THREAD notification */
 #define TPSA_FASTPATH 0x00000008 /* System access ==
 * fastpath */
 #define TPSA_PROTECTED 0x00000010 /* System access ==
 * protected */
 #define TPMULTICONTEXTS 0x00000020 /* multiple context associa-
 * tions per process */
 /* /Q tpqctl_t data structure */
 #define TMQNAMELEN 15
 #define TMMSGIDLEN 32
 #define TMCORRIDLEN 32

 struct tpqctl_t { /* control parameters to queue primitives */
 long flags; /* indicates which values are set */
 long deq_time; /* absolute/relative time for dequeuing */
 long priority; /* enqueue priority */
 long diagnostic; /* indicates reason for failure */
 char msgid[TMMSGIDLEN]; /* ID of message before which to queue */
 char corrid[TMCORRIDLEN]; /* correlation ID used to identify message */
 char replyqueue[TMQNAMELEN+1]; /* queue name for reply message */
 char failurequeue[TMQNAMELEN+1]; /* queue name for failure message */
 CLIENTID cltid; /* client identifier for */
 /* originating client */
 long urcode; /* application user-return code */
 long appkey; /* application authentication client key */
 long delivery_qos; /* delivery quality of service */
 long reply_qos; /* reply message quality of service */
 long exp_time /* expiration time */
 };
 typedef struct tpqctl_t TPQCTL;

 /* /Q structure elements that are valid - set in flags */
 #ifndef TPNOFLAGS
 #define TPNOFLAGS 0x00000 /* no flags set -- no get */
 #endif
 #define TPQCORRID 0x00001 /* set/get correlation ID */
 #define TPQFAILUREQ 0x00002 /* set/get failure queue */
 #define TPQBEFOREMSGID 0x00004 /* enqueue before message ID */
 #define TPQGETBYMSGIDOLD 0x00008 /* deprecated */
 #define TPQMSGID 0x00010 /* get msgid of enq/deq message */
 #define TPQPRIORITY 0x00020 /* set/get message priority */
 #define TPQTOP 0x00040 /* enqueue at queue top */
 #define TPQWAIT 0x00080 /* wait for dequeuing */
 #define TPQREPLYQ 0x00100 /* set/get reply queue */
 #define TPQTIME_ABS 0x00200 /* set absolute time */
 #define TPQTIME_REL 0x00400 /* set relative time */
 #define TPQGETBYCORRIDOLD 0x00800 /* deprecated */

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 29

 #define TPQPEEK 0x01000 /* non-destructive dequeue */
 #define TPQDELIVERYQOS 0x02000 /* delivery quality of service */
 #define TPQREPLYQOS 0x04000 /* reply msg quality of service*/
 #define TPQEXPTIME_ABS 0x08000 /* absolute expiration time */
 #define TPQEXPTIME_REL 0x10000 /* relative expiration time */
 #define TPQEXPTIME_NONE 0x20000 /* never expire */
 #define TPQGETBYMSGID 0x40008 /* dequeue by msgid */
 #define TPQGETBYCORRID 0x80800 /* dequeue by corrid */

 /* Valid flags for the quality of service fields in the TPQCTL structure */
 #define TPQQOSDEFAULTPERSIST 0x00001 /* queue's default persistence */
 /* policy */
 #define TPQQOSPERSISTENT 0x00002 /* disk message */
 #define TPQQOSNONPERSISTENT 0x00004 /* memory message */

 /* error return codes */
 extern int tperrno;
 extern long tpurcode;

 /* tperrno values - error codes */
 * The reference pages explain the context in which the following
 * error codes can return.
 */

 #define TPMINVAL 0 /* minimum error message */
 #define TPEABORT 1
 #define TPEBADDESC 2
 #define TPEBLOCK 3
 #define TPEINVAL 4
 #define TPELIMIT 5
 #define TPENOENT 6
 #define TPEOS 7
 #define TPEPERM 8
 #define TPEPROTO 9
 #define TPESVCERR 10
 #define TPESVCFAIL 11
 #define TPESYSTEM 12
 #define TPETIME 13
 #define TPETRAN 14
 #define TPGOTSIG 15
 #define TPERMERR 16
 #define TPEITYPE 17
 #define TPEOTYPE 18
 #define TPERELEASE 19
 #define TPEHAZARD 20
 #define TPEHEURISTIC 21
 #define TPEEVENT 22
 #define TPEMATCH 23
 #define TPEDIAGNOSTIC 24

30 ATMI C Function Reference

 #define TPEMIB 25
 #define TPMAXVAL 26 /* maximum error message */

 /* conversations - events */
 #define TPEV_DISCONIMM 0x0001
 #define TPEV_SVCERR 0x0002
 #define TPEV_SVCFAIL 0x0004
 #define TPEV_SVCSUCC 0x0008
 #define TPEV_SENDONLY 0x0020

 /* /Q diagnostic codes */
 #define QMEINVAL -1
 #define QMEBADRMID -2
 #define QMENOTOPEN -3
 #define QMETRAN -4
 #define QMEBADMSGID -5
 #define QMESYSTEM -6
 #define QMEOS -7
 #define QMEABORTED -8
 #define QMENOTA QMEABORTED
 #define QMEPROTO -9
 #define QMEBADQUEUE -10
 #define QMENOMSG -11
 #define QMEINUSE -12
 #define QMENOSPACE -13
 #define QMERELEASE -14
 #define QMEINVHANDLE -15
 #define QMESHARE -16

 /* EventBroker Messages */
 #define TPEVSERVICE 0x00000001
 #define TPEVQUEUE 0x00000002
 #define TPEVTRAN 0x00000004
 #define TPEVPERSIST 0x00000008

 /* Subscription Control Structure */
 struct tpevctl_t {
 long flags;
 char name1[XATMI_SERVICE_NAME_LENGTH];
 char name2[XATMI_SERVICE_NAME_LENGTH];
 TPQCTL qctl;
 };
 typedef struct tpevctl_t TPEVCTL;

C Language TX Return Codes and Other Definitions
The following return code and flag definitions are used by the TX routines. For an application to
work with different transaction monitors without change or recompilation, each system must
define its flags and return codes as follows:

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 31

#define TX_H_VERSION 0 /* current version of this
 * header file */

 /*
 * Transaction identifier
 */
 #define XIDDATASIZE 128 /* size in bytes */
 struct xid_t {
 long formatID; /* format identifier */
 long gtrid_length; /* value not to exceed 64 */
 long bqual_length; /* value not to exceed 64 */
 char data[XIDDATASIZE];
 };
 typedef struct xid_t XID;
 /*
 * A value of -1 in formatID means that the XID is null.
 */

 /*
 * Definitions for tx_ routines
 */
 /* commit return values */
 typedef long COMMIT_RETURN;
 #define TX_COMMIT_COMPLETED 0
 #define TX_COMMIT_DECISION_LOGGED 1

 /* transaction control values */
 typedef long TRANSACTION_CONTROL;
 #define TX_UNCHAINED 0
 #define TX_CHAINED 1

 /* type of transaction timeouts */
 typedef long TRANSACTION_TIMEOUT;

 /* transaction state values */
 typedef long TRANSACTION_STATE;
 #define TX_ACTIVE 0
 #define TX_TIMEOUT_ROLLBACK_ONLY 1
 #define TX_ROLLBACK_ONLY 2

 /* structure populated by tx_info */
 struct tx_info_t {
 XID xid;
 COMMIT_RETURN when_return;
 TRANSACTION_CONTROL transaction_control;
 TRANSACTION_TIMEOUT transaction_timeout;
 TRANSACTION_STATE transaction_state;
 };
 typedef struct tx_info_t TXINFO;

32 ATMI C Function Reference

 /*
 * tx_ return codes
 * (transaction manager reports to application)
 */
 #define TX_NOT_SUPPORTED 1 /* option not supported */
 #define TX_OK 0 /* normal execution */
 #define TX_OUTSIDE -1 /* application is in an RM
 * local transaction */
 #define TX_ROLLBACK -2 /* transaction was rolled
 * back */
 #define TX_MIXED -3 /* transaction was
 * partially committed and
 * partially rolled back */
 #define TX_HAZARD -4 /* transaction may have been
 * partially committed and
 * partially rolled back */
 #define TX_PROTOCOL_ERROR -5 /* routine invoked in an
 * improper context */
 #define TX_ERROR -6 /* transient error */
 #define TX_FAIL -7 /* fatal error */
 #define TX_EINVAL -8 /* invalid arguments were given */
 #define TX_COMMITTED -9 /* transaction has
 * heuristically committed */

 #define TX_NO_BEGIN -100 /* transaction committed plus
 * new transaction could not
 * be started */
 #define TX_ROLLBACK_NO_BEGIN (TX_ROLLBACK+TX_NO_BEGIN)
 /* transaction rollback plus
 * new transaction could not
 * be started */
 #define TX_MIXED_NO_BEGIN (TX_MIXED+TX_NO_BEGIN)
 /* mixed plus new transaction
 * could not be started */
 #define TX_HAZARD_NO_BEGIN (TX_HAZARD+TX_NO_BEGIN)
 /* hazard plus new transaction
 * could not be started */
 #define TX_COMMITTED_NO_BEGIN (TX_COMMITTED+TX_NO_BEGIN)
 /* heuristically committed plus
 * new transaction could not
 * be started */

ATMI State Transitions
The BEA Tuxedo ATMI system keeps track of the state for each process and verifies that legal
state transitions occur for the various function calls and options. The state information includes
the process type (request/response server, conversational server, or client), the initialization state

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 33

(uninitialized or initialized), the resource management state (closed or open), the transaction state
of the process, and the state of all asynchronous request and connection descriptors. When an
illegal state transition is attempted, the called function fails, setting tperrno to TPEPROTO. The
legal states and transitions for this information are described in the following tables.

Table 4 indicates which functions may be called by request/response servers, conversational
servers, and clients. Note that tpsvrinit(), tpsvrdone(), tpsvrthrinit(), and
tpsvrthrdone() are not included in this table because they are not called by applications (that
is, they are application-supplied functions that are invoked by the BEA Tuxedo ATMI system).

Table 4 Available Functions

Function Process Type

Request/Response Server Conversational Server Client

tpabort Y Y Y

tpacall Y Y Y

tpadvertise Y Y N

tpalloc Y Y Y

tpbegin Y Y Y

tpbroadcast Y Y Y

tpcall Y Y Y

tpcancel Y Y Y

tpchkauth Y Y Y

tpchkunsol N N Y

tpclose Y Y Y

tpcommit Y Y Y

tpconnect Y Y Y

tpdequeue Y Y Y

tpdiscon Y Y Y

34 ATMI C Function Reference

tpenqueue Y Y Y

tpfmltoxml Y Y Y

tpfml32toxml Y Y Y

tpforward Y N N

tpfree Y Y Y

tpgblktime Y Y Y

tpgetctxt Y Y Y

tpgetlev Y Y Y

tpgetrepos Y Y N

tpgetrply Y Y Y

tpgprio Y Y Y

tpinit N N Y

tpnotify Y Y Y

tpopen Y Y Y

tppost Y Y Y

tprealloc Y Y Y

tprecv Y Y Y

tpresume Y Y Y

tpreturn Y Y N

tpsblktime Y Y Y

tpscmt Y Y Y

tpsend Y Y Y

Table 4 Available Functions (Continued)

Function Process Type

Request/Response Server Conversational Server Client

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 35

The remaining state tables are for both clients and servers, unless otherwise noted. Keep in mind
that because some functions cannot be called by both clients and servers (for example,
tpinit()), certain state transitions shown below may not be possible for both process types. The
above table should be consulted to determine whether the process in question is allowed to call a
particular function.

The following state table indicates whether or not a thread in a client process has been initialized
and registered with the transaction manager. Note that this table assumes the use of tpinit(),
which is optional in single-context mode. That is, a single-context client may implicitly join an
application by issuing one of many ATMI functions (for example, tpconnect() or tpcall()).
A client must use tpinit() when one of the following is true:

tpservice Y Y N

tpsetctxt Y (in application-
 created threads)

Y (in application-
 created threads)

Y

tpsetrepos Y Y N

tpsetunsol N N Y

tpsprio Y Y Y

tpsubscribe Y Y Y

tpsuspend Y Y Y

tpterm N N Y

tptypes Y Y Y

tpunadvertise Y Y N

tpunsubscribe Y Y Y

tpxmltofml Y Y Y

tpxmltofml32 Y Y Y

Table 4 Available Functions (Continued)

Function Process Type

Request/Response Server Conversational Server Client

36 ATMI C Function Reference

Application authentication is required. (See tpinit(3c) and the description of the
SECURITY keyword in UBBCONFIG(5) for details.)

The client wants to access an XA-compliant resource manager directly. (See tpinit(3c)
for details.)

The client wants to create multiple application associations.

A server is placed in the initialized state by the BEA Tuxedo ATMI system’s main() before its
tpsvrinit() function is invoked, and it is placed in the uninitialized state by the BEA Tuxedo
ATMI system’s main() after its tpsvrdone() function has returned. Note that in all of the state
tables shown below, an error return from a function causes the thread to remain in the same state,
unless otherwise noted.

Table 5 Thread Initialization States

Function States

Uninitialize
I0

Initialize
I1

tpalloc I0 I1

tpchkauth I0 I1

tpfree I0 I1

tpgetctxt I0 I1

tpinit I1 I1

tprealloc I0 I1

tpsetctxt
(set to a non-NULL context)

I1 I1

tpsetctxt
(with the TPNULLCONTEXT
context set)

I0 I0

tpsetunsol I0 I1

tpterm
(in this thread)

I0 I0

../rf5/rf5.htm#365105

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 37

The remaining state tables assume a precondition of state I1 (regardless of whether a process
arrived in this state via tpinit(), tpsetctxt(), or the BEA Tuxedo ATMI system’s main()).

Table 6 indicates the state of a client or server with respect to whether or not a resource manager
associated with the process has been initialized.

tpterm
(in a different thread of this
context)

I0 I0

tptypes I0 I1

All other ATMI functions I1 I1

Table 6 Resource Management States

Function States

Closed
R0

Open
R1

tpopen R1 R1

tpclose R0 R0

tpbegin R1

tpcommit R1

tpabort R1

tpsuspend R1

tpresume R1

Table 5 Thread Initialization States (Continued)

Function States

Uninitialize
I0

Initialize
I1

38 ATMI C Function Reference

Table 7 indicates the state of a process with respect to whether or not the process is associated
with a transaction. For servers, transitions to states T1and T2 assume a precondition of state R1
(for example, tpopen() has been called with no subsequent call to tpclose() or tpterm()).

tpservice with flag TPTRAN R1

All other ATMI functions R0 R1

Table 7 Transaction State of Application Association

Function State

Not in Transaction
T0

Initiator
T1

Participant
T2

tpbegin

tpabort T0

tpcommit T0

tpsuspend T0

tpresume T1 T0

tpservice with flag TPTRAN T2

tpservice (not in transaction
mode)

T0

tpreturn T0 T0

tpforward T0 T0

tpclose R0

Table 6 Resource Management States (Continued)

Function States

Closed
R0

Open
R1

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 39

Table 8 indicates the state of a single request descriptor returned by tpacall().

Note: a This state change occurs only if the descriptor is not associated with the caller’s
transaction.

tpterm I0 T0

All other ATMI functions T0 T1 T2

Table 8 Asynchronous Request Descriptor States

Function States

No Descriptor
A0

Valid
Descriptor A1

tpacall A1

tpgetrply A0

tpcancel A0
 a

tpabort A0 A0
 b

tpcommit A0 A0
 b

tpsuspend A0 A1 c

tpreturn A0 A0

tpforward A0 A0

tpterm I0 I0

All other ATMI functions A0 A1

Table 7 Transaction State of Application Association (Continued)

Function State

Not in Transaction
T0

Initiator
T1

Participant
T2

40 ATMI C Function Reference

b This state change occurs only if the descriptor is associated with the caller’s transaction.
c If the descriptor is associated with the caller’s transaction, then tpsuspend() returns a
protocol error.

Table 9 indicates the state of a connection descriptor returned by tpconnect() or provided by a
service invocation in the TPSVCINFO structure. For primitives that do not take a connection
descriptor, the state changes apply to all connection descriptors, unless otherwise noted.

The states are as follows:

C0—No descriptor

C1—tpconnect() descriptor send-only

C2—tpconnect() descriptor receive-only

C3—TPSVCINFO descriptor send-only

C4—TPSVCINFO descriptor receive-only

Table 9 Connection Request Descriptor States

Function/Event States

C0 C1 C2 C3 C4

tpconnect with TPSENDONLY C1 a

tpconnect with TPRECVONLY C2 a

tpservice with flag TPSENDONLY C3 b

tpservice with flag TPRECVONLY C4
b

tprecv/no event C2 C4

tprecv/TPEV_SENDONLY C1 C3

tprecv/TPEV_DISCONIMM C0 C0

tprecv/TPEV_SVCERR C0

tprecv/TPEV_SVCFAIL C0

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 41

Note: a If process is in transaction mode and TPNOTRAN is not specified, the connection is in
transaction mode.
b If the TPTRAN flag is set, the connection is in transaction mode.
c If the connection is not in transaction mode, no state change.
d If the connection is in transaction mode, then tpsuspend() returns a protocol error.

tprecv/TPEV_SVCSUCC C0

tpsend/no event C1 C3

tpsend with flag TPRECVONLY C2 C4

tpsend/TPEV_DISCONIMM C0 C0

tpsend/TPEV_SVCERR C0

tpsend/TPEV_SVCFAIL C0

tpterm (client only) C0 C0

tpcommit (originator only) C0 C0 c C0
c

tpsuspend (originator only) C0 C1 d C2
d

tpabort (originator only) C0 C0 c C0 c

tpdiscon C0 C0

tpreturn (CONV server) C0 C0 C0 C0

tpforward (CONV server) C0 C0 C0 C0

All other ATMI functions C0 C1 C2 C3 C4

Table 9 Connection Request Descriptor States (Continued)

Function/Event States

C0 C1 C2 C3 C4

42 ATMI C Function Reference

TX State Transitions
The BEA Tuxedo ATMI system ensures that a process calls the TX functions in a legal sequence.
When an illegal state transition is attempted (that is, a call from a state with a blank transition
entry), the called function returns TX_PROTOCOL_ERROR. The legal states and transitions for the
TX functions are shown in Table 10. Calls that return failure do not make state transitions, unless
they are described by specific state table entries. Any BEA Tuxedo ATMI system client or server
is allowed to use the TX functions.

The states are defined below:

S0: No RMs have been opened or initialized. An application association cannot start a
global transaction until it has successfully called tx_open.

S1: An application association has opened its RM but is not in a transaction. Its
transaction_control characteristic is TX_UNCHAINED.

S2: An application association has opened its RM but is not in a transaction. Its
transaction_control characteristic is TX_CHAINED.

S3: An application association has opened its RM and is in a transaction. Its
transaction_control characteristic is TX_UNCHAINED.

S4: An application association has opened its RM and is in a transaction. Its
transaction_control characteristic is TX_CHAINED.

Table 10 TX Function States and Transitions

Function States

S0 S1 S2 S3 S4

tx_begin S3 S4

tx_close S0 S0 S0

tx_commit −> TX_SET1 S1 S4

tx_commit −> TX_SET2 S2

tx_info S1 S2 S3 S4

tx_open S1 S1 S2 S3 S4

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 43

TX_SET1 denotes any of the following: TX_OK, TX_ROLLBACK, TX_MIXED, TX_HAZARD, or
TX_COMMITTED. TX_ROLLBACK is not returned by tx_rollback() and TX_COMMITTED is
not returned by tx_commit().

TX_SET2 denotes any of the following: TX_NO_BEGIN, TX_ROLLBACK_NO_BEGIN,
TX_MIXED_NO_BEGIN, TX_HAZARD_NO_BEGIN, or TX_COMMITTED_NO_BEGIN.
TX_ROLLBACK_NO_BEGIN is not returned by tx_rollback() and
TX_COMMITTED_NO_BEGIN is not returned by tx_commit().

If TX_FAIL is returned on any call, the application process is in an undefined state with
respect to the above table.

When tx_info() returns either TX_ROLLBACK_ONLY or TX_TIMEOUT_ROLLBACK_ONLY in
the transaction state information, the transaction is marked rollback-only and will be rolled
back whether the application program calls tx_commit() or tx_rollback().

See Also
buffer(3c), tpadvertise(3c), tpalloc(3c), tpbegin(3c), tpcall(3c),
tpconnect(3c), tpgetctxt(3c), tpinit(3c), tpopen(3c), tpservice(3c),
tpsetctxt(3c), tuxtypes(5), typesw(5)

tx_rollback −> TX_SET1 S1 S4

tx_rollback −> TX_SET2 S2

tx_set_commit_return S1 S2 S3 S4

tx_set_transaction_control control
= TX_CHAINED

S2 S2 S4 S4

tx_set_transaction_control control =
TX_UNCHAINED

S1 S1 S3 S3

tx_set_transaction_timeout S1 S2 S3 S4

Table 10 TX Function States and Transitions (Continued)

Function States

S0 S1 S2 S3 S4

../rf5/rf5.htm#7807115
../rf5/rf5.htm#2183415

44 ATMI C Function Reference

AEMsetblockinghook(3c)

Name
AEMsetblockinghook()—Establishes an application-specific blocking hook function.

Synopsis
#include <atmi.h>

int AEMsetblockinghook(_TM_FARPROC)

Description
AEMsetblockinghook() is an “ATMI Extension for Mac” that allows a Mac task to install a
new function which the ATMI networking software uses to implement blocking ATMI calls. It
takes a pointer to the procedure instance address of the blocking function to be installed.

A default function, by which blocking ATMI calls are handled, is included. The function
AEMsetblockinghook() gives the application the ability to execute its own function at
“blocking” time in place of the default function. If called with a NULL pointer, the blocking hook
function is reset to the default function.

When an application invokes a blocking ATMI operation, the operation is initiated and then a
loop is entered which is equivalent to the following pseudocode:

for(;;) {

 execute operation in non-blocking mode

 if error

 break;

 if operation complete

 break;

 while(BlockingHook())

 ;

}

Return Values
AEMsetblockinghook() returns a pointer to the procedure-instance of the previously installed
blocking function. The application or library that calls the AEMsetblockinghook() function
should save this return value so that it can be restored if necessary. (If “nesting” is not important,
the application may simply discard the value returned by AEMsetblockinghook() and
eventually use AEMsetblockinghook(NULL) to restore the default mechanism.)

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 45

AEMsetblockinghook() returns NULL on error and sets tperrno to indicate the error
condition.

Errors
Under failure, AEMsetblockinghook() sets tperrno to the following value:

[TPEPROTO]
AEMsetblockinghook() was called while a blocking operation was in progress.

Portability
This interface is supported only in Mac clients.

Notices
The blocking function is reset after tpterm(3c) is called by the application.

AEOaddtypesw(3c)

Name
AEOaddtypesw()—Installs or replaces a user-defined buffer type at execution time.

Synopsis
#include <atmi.h>

#include <tmtypes.h>

int FAR PASCAL AEOaddtypesw(TMTYPESW *newtype)

Description
AEOaddtypesw() is an “ATMI Extension for OS/2” that allows an OS/2 client to install a new,
or replace an existing, user-defined buffer type at execution time. The argument to this function
is a pointer to a TMTYPESW structure that contains the information for the buffer type to be
installed.

If the type() and the subtype() match an existing buffer type already installed, then all the
information is replaced with the new buffer type. If the information does not match the type()
and the subtype() fields, then the new buffer type is added to the existing types registered with
the BEA Tuxedo ATMI system. For new buffer types, make sure that the WSH and other BEA
Tuxedo ATMI system processes involved in the call processing have been built with the new
buffer type.

46 ATMI C Function Reference

The function pointers in the TMTYPESW array should appear in the Module Definition file of the
application in the EXPORTS section.

The application can also use the BEA Tuxedo ATMI system’s defined buffer type routines. The
application and the BEA Tuxedo ATMI system’s buffer routines can be intermixed in one user
defined buffer type.

Return Values
Upon success, AEOaddtypesw() returns the number of user buffer types in the system Upon
failure, AEOaddtypesw() returns -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, AEOaddtypesw() sets tperrno to one of the following values:

[TPEINVAL]
AEOaddtypesw() was called and the type parameter was NULL.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

Portability
This interface is supported only in Windows clients. The preferred way to install a type switch is
to add it to the BEA Tuxedo ATMI system type switch DLL. Please refer to Setting Up a BEA
Tuxedo Application for more information.

Notices
FAR PASCAL is used only for the 16-bit OS/2 environment.

Examples

 #include <os2.h>
 #include <atmi.h>
 #include <tmtypes.h>

 int FAR PASCAL Nfinit(char FAR *, long);
 int (FAR PASCAL * lpFinit)(char FAR *, long);
 int FAR PASCAL Nfreinit(char FAR *, long);
 int (FAR PASCAL * lpFreinit)(char FAR *, long);
 int FAR PASCAL Nfuninit(char FAR *, long);
 int (FAR PASCAL * lpFuninit)(char FAR *, long);

 TMTYPESW newtype =

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 47

 {
 “MYFML”, ““, 1024, NULL, NULL,
 NULL, _fpresend, _fpostsend, _fpostrecv, _fencdec,
 _froute
 };

 newtype.initbuf = Nfinit;
 newtype.reinitbuf = Nfreinit;
 newtype.uninitbuf = Nfuninit;

 if(AEOaddtypesw(newtype) == -1) {
 userlog(“AEOaddtypesw failed %s”, tpstrerror(tperrno));
 }
 int
 FAR PASCAL
 Nfinit(char FAR *ptr, long len)
 {

 return(1);
 }

 int
 FAR PASCAL
 Nfreinit(char FAR *ptr, long len)
 {

 return(1);
 }

 int
 FAR PASCAL
 Nfuninit(char FAR *ptr, long mdlen)
 {

 return(1);
 }

The application Module Definition File:

 ; EXAMPLE.DEF file

 NAME EXAMPLE

 DESCRIPTION 'EXAMPLE for OS/2'

 EXETYPE OS/2

 EXPORTS

48 ATMI C Function Reference

 Nfinit
 Nfreinit
 Nfuninit

See Also
buildwsh(1), buffer(3c), typesw(5)

AEPisblocked(3c)

Name
AEPisblocked()—Determines if a blocking call is in progress.

Synopsis
#include <atmi.h>

int far pascal AEPisblocked(void)

Description
AEPisblocked() is an “ATMI Extension for OS/2 Presentation Manager” that allows a OS/2
PM task to determine if it is executing while waiting for a previous blocking call to complete.

Return Values
If there is an outstanding blocking function awaiting completion, AEPisblocked() returns 1.
Otherwise, it returns 0.

Errors
No errors are returned.

Portability
This interface is supported only in OS/2 PM clients.

Comments
Although a blocking ATMI call appears to an application as though it “blocks,” the OS/2 PM
ATMI DLL has to relinquish the processor to allow other applications to run. This means that it
is possible for the application which issued the blocking call to be reentered, depending on the
message(s) it receives. In this instance, the AEPisblocked() function can be used to ascertain
whether the task has been reentered while waiting for an outstanding blocking call to complete.
Note that ATMI prohibits more than one outstanding call per thread.

../rfcm/rfcmd.htm#6523611
../rf5/rf5.htm#2183415

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 49

See Also
AEMsetblockinghook(3c)

AEWsetunsol(3c)

Name
AEWsetunsol()—Posts a Windows message for BEA Tuxedo ATMI unsolicited event.

Synopsis
#include <windows.h>

#include <atmi.h>

int far pascal AEWsetunsol(HWND hWnd, WORD wMsg)

Description
In certain Microsoft Windows programming environments, it is natural and convenient for the
BEA Tuxedo ATMI system’s unsolicited messages to be posted to the Windows event message
queue.

AEWsetunsol() controls which window to notify, hWnd, and which Windows message type to
post, wMsg. When a BEA Tuxedo ATMI unsolicited message arrives, a Windows message is
posted. lParam() is set to the BEA Tuxedo ATMI system buffer pointer, or zero if none. If
lParam() is non-zero, the application must call tpfree() to release the buffer.

If wMsg is zero, any future unsolicited messages will be logged and ignored.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to AEWsetunsol().

Return Values
Upon failure, AEWsetunsol() returns -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, AEWsetunsol() sets tperrno to one of the following values:

[TPESYSTEM]

A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]

An operating system error has occurred.

50 ATMI C Function Reference

Portability
This interface is supported only in Microsoft Windows clients.

Notices
AEWsetunsol() posting of Windows messages may not be activated simultaneously with a
tpsetunsol() callback routine. The most recent tpsetunsol() or AEWsetunsol() request
controls how unsolicited messages will be handled.

See Also
tpsetunsol(3c)

buffer(3c)

Name
buffer()—Semantics of elements in tmtype_sw_t.

Synopsis

int /* Initialize a new data buffer */
_tminitbuf(char *ptr, long len)
int /* Reinitialize a reallocated data buffer */
_tmreinitbuf(char *ptr, long len)
int /* Uninitialize a data buffer to be freed */
_tmuninitbuf(char *ptr, long len)
long /* Process buffer before sending */
_tmpresend(char *ptr, long dlen, long mdlen)
void /* Process buffer after sending */
_tmpostsend(char *ptr, long dlen, long mdlen)
long /* Process buffer after receiving */
_tmpostrecv(char *ptr, long dlen, long mdlen)
long /* Encode/decode a buffer to/from a transmission format */
_tmencdec(int op, char *encobj, long elen, char *obj, long olen)
int /* Determine server group for routing based on data */
_tmroute(char *routing_name, char *service, char *data, long \ len, char *group)
int /* Evaluate boolean expression on buffer’s data */
_tmfilter(char *ptr, long dlen, char *expr, long exprlen)
int /* Extract buffer’s data based on format string */
_tmformat(char *ptr, long dlen, char *fmt, char *result, long \ maxresult)
long /* Process buffer before sending, possibly generating copy */
_tmpresend2(char *iptr, long ilen, long mdlen, char *optr, long olen, long *flags
)
long /* Multibyte code-set encoding conversion */

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 51

_tmconvmb(char *ibufp, long ilen, char *enc_name, char *obufp, long olen, long
*flags)

Description
This page describes the semantics of the elements and routines defined in the tmtype_sw_t
structure. These descriptions are necessary for adding new buffer types to a process buffer type
switch, tm_typesw. The switch elements are defined in typesw(5). The function names used in
this entry are templates for the actual function names defined by the BEA Tuxedo ATMI system
as well as by applications adding their own buffer types. The names map to the switch elements
very simply: the template names are made by taking each function pointer’s element name and
prepending _tm (for example, the element initbuf has the function name _tminitbuf()).

The element type must be non-NULL and up to 8 characters in length. The element subtype can
be NULL, a string of up to 16 characters, or the wildcard character, “*”. If type is not unique in
the switch, then subtype must be used; the combination of type and subtype must uniquely
identify an element in the switch.

A given type can have multiple subtypes. If all subtypes are to be treated the same for a given
type, then the wildcard character, “*”, can be used. Note that the function tptypes() can be used
to determine a buffer’s type and subtype if subtypes need to be distinguished. If some subset of
the subtypes within a particular type are to be treated individually, and the rest are to be treated
identically, then those which are to be singled out with specific subtype values should appear in
the switch before the subtype designated with the wildcard. Thus, searching for types and
subtypes in the switch is done from top to bottom, and the wildcard subtype entry accepts any
“leftover” type matches.

dfltsize() is used when allocating or reallocating a buffer. The larger of dfltsize() and the
routines’ size parameter is used to create or reallocate a buffer. For some types of structures, like
a fixed sized C structure, the buffer size should equal the size of the structure. If dfltsize() is
set to this value, then the caller may not need to specify the buffer’s length to routines in which
a buffer is passed. dfltsize() can be 0 or less; however, if tpalloc() or tprealloc() is
called and its size parameter is also less than or equal to 0, then the routine will fail. It is not
recommended to set dfltsize() to a value less than 0.

Routine Specifics
The names of the functions specified below are template names used within the BEA Tuxedo
ATMI system. Any application adding new routines to the buffer type switch must use names that
correspond to real functions, either provided by the application or library routines. If a NULL
function pointer is stored in a buffer type switch entry, the BEA Tuxedo ATMI system calls a
default function that takes the correct number and type of arguments, and returns a default value.

../rf5/rf5.htm#2183415

52 ATMI C Function Reference

_tminitbuf
_tminitbuf() is called from within tpalloc() after a buffer has been allocated. It is passed a
pointer to the new buffer, ptr, along with its size so that the buffer can be initialized
appropriately. len is the larger of the length passed into tpalloc() and the default specified in
dfltsize() in that type’s switch entry. Note that ptr will never be NULL due to the semantics
of tpalloc() and tprealloc(). Upon successful return, ptr is returned to the caller of
tpalloc().

If a single switch entry is used to manipulate many subtypes, then the writer of _tminitbuf()
can use tptypes() to determine the subtype.

If no buffer initialization needs to be performed, specify a NULL function pointer.

Upon success, _tminitbuf() returns 1. If the function fails, it returns -1 causing tpalloc() to
also return failure setting tperrno to TPESYSTEM.

_tmreinitbuf
_tmreinitbuf() behaves the same as _tminitbuf() except it is used to reinitialize a
reallocated buffer. It is called from within tprealloc() after the buffer has been reallocated.

If no buffer reinitialization needs to be performed, specify a NULL function pointer.

Upon success, _tmreinitbuf() returns 1. If the function fails, it returns -1 causing
tprealloc() to also return failure setting tperrno to TPESYSTEM.

_tmuninitbuf
_tmuninitbuf() is called by tpfree() before the data buffer is freed. _tmuninitbuf() is
passed a pointer to the application portion of a data buffer, along with its size, and can be used to
clean up any structures or state information associated with that buffer. ptr will never be NULL
due to tpfree()’s semantics. Note that _tmuninitbuf() should not free the buffer itself. The
tpfree() function is called automatically for any FLD_PTR fields in the data buffer.

If no processing needs to be performed before freeing a buffer, specify a NULL function pointer.

Upon success, _tmuninitbuf() returns 1. If the function fails, it returns -1 causing tpfree()
to print a log message.

_tmpresend
_tmpresend() is called before a buffer is sent in tpcall(), tpacall(), tpconnect(),
tpsend(), tpbroadcast(), tpnotify(), tpreturn(), or tpforward(). It is also called after
_tmroute() but before _tmencdec(). If ptr() is non-NULL, preprocessing is performed on a
buffer before it is sent. _tmpresend()’s first argument, ptr, is the application data buffer passed

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 53

into the send call. Its second argument, dlen, is the data’s length as passed into the send call. Its
third argument, mdlen, is the actual size of the buffer in which the data resides.

One important requirement on this function is that it ensures that when the function returns, the
data pointed to by ptr can be sent “as is.” That is, since _tmencdec() is called only if the buffer
is being sent to a dissimilar machine, _tmpresend() must ensure upon return that no element in
ptr’s buffer is a pointer to data that is not contiguous to the buffer.

If no preprocessing needs to be performed on the data and the amount of data the caller specified
is the same as the amount that should be sent, specify a NULL function pointer. The default
routine returns dlen and does nothing to the buffer.

If _tmpresend2() is not NULL, _tmpresend() is not called and _tmpresend2() is called in
its place.

Upon success, _tmpresend() returns the amount of data to be sent. If the function fails, it returns
-1 causing _tmpresend()’s caller to also return failure setting tperrno to TPESYSTEM.

_tmpostsend
_tmpostsend() is called after a buffer is sent in tpcall(), tpbroadcast(), tpnotify(),
tpacall(), tpconnect(), or tpsend(). This routine allows any post-processing to be
performed on a buffer after it is sent and before the function returns. Because the buffer passed
into the send call should not be different upon return, _tmpostsend() is called to repair a buffer
changed by _tmpresend(). This function’s first argument, ptr, points to the data sent as a result
of _tmpresend(). The data’s length, as returned from _tmpresend(), is passed in as this
function’s second argument, dlen. The third argument, mdlen, is the actual size of the buffer in
which the data resides. This routine is called only when ptr is non-NULL.

If no post-processing needs to be performed, specify a NULL function pointer.

_tmpostrecv
_tmpostrecv() is called after a buffer is received, and possibly decoded, in tpgetrply(),
tpcall(), tprecv(), or in the BEA Tuxedo ATMI system’s server abstraction, and before it
is returned to the application. If ptr is non-NULL, _tmpostrecv() allows post-processing to be
performed on a buffer after it is received and before it is given to the application. Its first
argument, ptr, points to the data portion of the buffer received. Its second argument, dlen,
specifies the data’s size coming in to _tmpostrecv(). The third argument, mdlen, specifies the
actual size of the buffer in which the data resides.

If _tmpostrecv() changes the data length in post-processing, it must return the data’s new
length. The length returned is passed up to the application in a manner dependent on the call used

54 ATMI C Function Reference

(for example, tpcall() sets the data length in one of its arguments for the caller to check upon
return).

The buffer’s size might not be large enough for post-processing to succeed. If more space is
required, _tmpostrecv() returns the negative absolute value of the desired buffer size. The
calling routine then resizes the buffer, and calls _tmpostrecv() a second time.

If no post-processing needs to be performed on the data and the amount of data received is the
same as the amount that should be returned to the application, specify a NULL function pointer.
The default routine returns dlen and does nothing to the buffer.

On success, _tmpostrecv() returns the size of the data the application should be made aware of
when the buffer is passed up from the corresponding receive call. If the function fails, it returns
-1 causing _tmpostrecv()’s caller to return failure, setting tperrno to TPESYSTEM.

_tmencdec
_tmencdec() is used to encode/decode a buffer sent/received over a network to/from a machine
having different data representations. The BEA Tuxedo ATMI system recommends the use of
XDR; however, any encoding/decoding scheme can be used that obeys the semantics of this
routine.

This function is called by tpcall(), tpacall(), tpbroadcast(), tpnotify(),
tpconnect(), tpsend(), tpreturn(), or tpforward() to encode the caller’s buffer only
when it is being sent to an “unlike” machine. In these calls, _tmencdec() is called after both
_tmroute() and _tmpresend(), respectively. Recall from the description of _tmpresend()
that the buffer passed into _tmencdec() contains no pointers to data that is not contiguous to the
buffer.

On the receiving end, tprecv(), tpgetrply(), the receive half of tpcall() and the server
abstraction all call _tmencdec() to decode a buffer after they have received it from an “unlike”
machine but before calling _tmpostrecv().

_tmencdec()’s first argument, op, specifies whether the function is encoding or decoding data.
op can be one of TMENCODE or TMDECODE.

When op is TMENCODE, encobj points to a buffer allocated by the BEA Tuxedo ATMI system
where the encoded version of the data will be copied. The unencoded data resides in obj. That is,
when op is TMENCODE, _tmencdec() transforms obj to its encoded format and places the result
in encobj. The size of the buffer pointed to by encobj is specified by elen and is at least four
times the size of the buffer pointed to by obj whose length is olen. olen is the length returned
by _tmpresend. _tmencdec() returns the size of the encoded data in encobj (that is, the

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 55

amount of data to actually send). _tmencdec() should not free either of the buffers passed into
the function.

When op is TMDECODE, encobj points to a buffer allocated by the BEA Tuxedo ATMI system
where the encoded version of the data resides as read off a communication endpoint. The length
of the buffer is elen. obj points to a buffer that is at least the same size as the buffer pointed to
by encobj into which the decoded data is copied. The length of obj is olen. As obj is the buffer
ultimately returned to the application, this buffer may be grown by the BEA Tuxedo ATMI
system before calling _tmencdec() to ensure that it is large enough to hold the decoded data.
_tmencdec() returns the size of the decoded data in obj. After _tmencdec() returns,
_tmpostrecv() is called with obj passed as its first argument, _tmencdec()’s return value as
its second, and olen as its third. _tmencdec() should not free either of the buffers passed into
the function.

_tmencdec() is called only when non-NULL data needs to be encoded or decoded.

If no encoding or decoding needs to be performed on the data even when dissimilar machines
exist in the network, specify a NULL function pointer. The default routine returns either olen
(op equals TMENCODE) or elen (op equals TMDECODE).

On success, _tmencdec() returns a non-negative length as described above. If the function fails,
it returns -1 causing _tmencdec()’s caller to return failure, setting tperrno to TPESYSTEM.

_tmroute
The default for message routing is to route a message to any available server group that offers the
desired service. Each service entry in the UBBCONFIG file can specify the logical name of some
routing criteria for the service using the ROUTING parameter. Multiple services can share the same
routing criteria. In the case that a service has a routing criteria name specified, _tmroute() is
used to determine the server group to which a message is sent based on data in the message. This
mapping of data to server group is called “data-dependent routing.” _tmroute() is called before
a buffer is sent (and before _tmpresend() and _tmencdec() are called) in tpcall(),
tpacall(), tpconnect(), and tpforward().

routing_name is the logical name of the routing criteria (as specified in the UBBCONFIG file) and
is associated with every service that needs data dependent routing. service is the name of the
service for which the request is being made. The parameter data points to the data that is being
transmitted in the request and len is its length. Unlike the other routines described in these pages,
_tmroute() is called even when ptr is NULL. The group parameter is used to return the name
of the group to which the request should be routed. This group name must match one of the group
names listed in the UBBCONFIG file (and one that is active at the time the group is chosen). If the

56 ATMI C Function Reference

request can go to any available server providing the specified service, group should be set to the
NULL string and the function should return 1.

If data dependent routing is not needed for the buffer type, specify a NULL function pointer. The
default routine sets group to the NULL string and returns 1.

Upon success, _tmroute() returns 1. If the function fails, it returns -1 causing _tmroute()’s
caller to also return failure; as a result, tperrno is set to TPESYSTEM. If _tmroute() fails
because a requested server or service is not available, tperrno is set to TPENOENT.

If group is set to the name of an invalid server group, the function calling _tmroute() will return
an error and set tperrno to TPESYSTEM.

_tmfilter
_tmfilter() is called by the EventBroker server to analyze the contents of a buffer posted by
tppost(). An expression provided by the subscriber (tpsubscribe()) is evaluated with respect
to the buffer’s contents. If the expression is true, _tmfilter() returns 1 and the EventBroker
performs the subscription’s notification action. Otherwise, if _tmfilter() returns 0, the
EventBroker does not consider this posting a “match” for the subscription.

If exprlen is -1, expr is interpreted as a NULL-terminated character string. Otherwise expr is
interpreted as exprlen bytes of binary data. An exprlen of 0 indicates no expression.

If filtering does not apply to this buffer type, specify a NULL function pointer. The default
routine returns 1 if there is no expression or if expr is an empty NULL-terminated string.
Otherwise the default routine returns 0.

_tmformat
_tmformat() is called by the EventBroker server to convert a buffer’s data into a printable
string, based on a format specification named fmt. The EventBroker converts posted buffers to
strings as input for userlog or system notification actions.

The output is stored as a character string in the memory location pointed to by result. Up to
maxresult bytes are written in result, including a terminating NULL character. If result is
not large enough, _tmformat() truncates its output. The output string is always NULL
terminated.

On success, _tmformat() returns a non-negative integer. 1 means success, 2 means the output
string is truncated. If the function fails, it returns -1 and stores an empty string in result.

If formatting does not apply to this buffer type, specify a NULL function pointer. The default
routine succeeds and returns an empty string in result.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 57

_tmpresend2
_tmpresend2() is called before a buffer is sent in tpcall(), tpacall(), tpconnect(),
tpsend(), tpbroadcast(), tpnotify(), tpreturn(), and tpforward(). It is also called
after _tmroute() but before _tmencdec(). If iptr is not NULL, preprocessing is performed
on a buffer before the buffer is sent.

The first argument to _tmpresend2(), iptr, is the application data buffer passed into the send
call. The second argument, ilen, is the length of the data as passed into the send call. The third
argument, mdlen, is the actual size of the buffer in which the data resides.

Unlike _tmpresend(), _tmpresend2() receives a pointer, optr, which is used to pass a pointer
to a buffer into which the data in iptr can be placed, after any required processing is done. Use
this pointer if you want to use a new buffer for the data modified by _tmpresend2() instead of
modifying the input buffer. The fifth argument, olen, is the size of the optr buffer. The sixth
argument, flags, tells _tmpresend2() whether the buffer being processed is the parent buffer
(the one being sent). The flags argument is returned by _tmpresend2() to indicate the results
of processing.

The size of the optr buffer may not be large enough for successful postprocessing. If more space
is required, _tmpresend2() returns the negative absolute value of the desired buffer size. All
olen bytes of the optr buffer are preserved. The calling routine then resizes the buffer and calls
_tmpresend2() a second time.

If no postprocessing needs to be performed on the data, and the amount of data received is the
same as the amount that should be returned to the application, specify a NULL function pointer.
The default routine returns ilen and does not modify the buffer.

The following is a valid flag on input to _tmpresend2():

[TMPARENT]
This is the parent buffer (the one being sent).

The flags returned in flags specify the results of _tmpresend2(). Possible values are:

[TMUSEIPTR]
_tmpresend2() was successful: the processed data is in the buffer referenced by iptr,
and the return value contains the length of the data to be sent.

[TMUSEOPTR]
_tmpresend2() was successful: the processed data is in the buffer referenced by optr,
and the return value contains the length of the data to be sent.

58 ATMI C Function Reference

If TMUSEOPTR is returned, the processing done after messages are transmitted is different from the
processing done by _tmpresend(): the iptr buffer remains unchanged and _tmpostsend() is
not called. If TMUSEIPTR is returned, _tmpostsend() is called, as it is called for _tmpresend().
It is the responsibility of the caller to allocate and to free or cache the optr buffer.

There are several reasons why you may want to use this approach for a typed buffer:

The buffer created by processing for transmission is larger than the maximum length
allowed for the input buffer.

Undoing the processing to prepare a buffer for transmission is so complicated that it is
easier to copy the data to a different buffer.

The _tmpresend2() function ensures that when a function returns, the data in the buffer to be
sent can be sent without further processing. Because _tmencdec() is called only if the buffer is
being sent to a dissimilar machine, _tmpresend2() ensures, upon return, that all data is stored
contiguously in the buffer to be sent.

If no preprocessing needs to be performed on the data, and the amount of data specified by the
caller is the same as the amount that should be sent, specify a NULL function pointer for
_tmpresend2() in the buffer type switch. If _tmpresend2() is NULL, _tmpresend() is
called by default.

Upon success, _tmpresend2() returns the amount of data to be sent or, if a larger buffer is
needed, the negative absolute value of the desired buffer size. If the function fails, it returns -1,
causing the caller of _tmpresend2() to also return failure, setting tperrno to TPESYSTEM.

_tmconvmb
_tmconvmb() is called after tmpostrecv() to convert multibyte data from a source encoding to
a target encoding. The first argument to _tmconvmb(), ibufp, is a pointer to a stream of bytes—
the multibyte data—to be converted. The second argument, ilen, is the number of bytes in
ibufp. The third argument, enc_name, is one of the encoding names used in the processing. For
an MBSTRING buffer, the third argument is the target encoding name; for an FML32 buffer, the
third argument is the source encoding name.

_tmconvmb() receives a pointer, obufp, which is used to pass a pointer to a buffer into which
the data in ibufp can be placed, after any required code-set encoding conversion is done. Use
this pointer if you want to use a new buffer for the data converted by _tmconvmb() instead of
modifying the input pointer. The fifth argument, olen, is the size of the obufp buffer. The flags
argument is returned by _tmconvmb() to indicate the results of processing.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 59

The size of the obufp buffer may not be large enough for successful post processing. If more
space is required, _tmconvmb() returns the negative absolute value of the desired buffer size. All
ilen bytes of the ibufp buffer are preserved. The calling routine then resizes the buffer and calls
_tmconvmb() a second time.

If no code-set encoding conversion needs to be performed on the data, and the encoding name of
the sending process is the same as the encoding name of the receiving process, specify a NULL
function pointer. The default routine returns ilen and does not convert the buffer. If this function
does not know how to convert the code-set encoding, it returns -1.

The value returned in flags specifies the result of _tmconvmb(). Possible values are:

[TMUSEIPTR]
_tmconvmb() was successful: the processed data is in the buffer referenced by ibufp,
and the return value contains the length of the converted data to be passed to the service.

[TMUSEOPTR]
_tmconvmb() was successful: the processed data is in the buffer referenced by obufp,
and the return value contains the length of the data to be converted. It is the responsibility
of the caller to allocate and to free or cache the obufp buffer.

Upon success, _tmconvmb() returns the amount of data buffer that had code-set encoding
conversion or, if a larger buffer is needed, the negative absolute value of the desired buffer size.
If the function fails, it returns -1, causing the caller of _tmconvmb() to also return failure, setting
tperrno to TPESYSTEM.

See Also
tpacall(3c), tpalloc(3c), tpcall(3c), tpconnect(3c), tpdiscon(3c), tpfree(3c),
tpgetrply(3c), tpgprio(3c), tprealloc(3c), tprecv(3c), tpsend(3c), tpsprio(3c),
tptypes(3c), tuxtypes(5)

catgets(3c)

Name
catgets()—Reads a program message.

Synopsis
#include <nl_types.h>

char *catgets (nl_catd catd, int set_num, int msg_num, char *s)

../rf5/rf5.htm#7807115

60 ATMI C Function Reference

Description
catgets() attempts to read message msg_num, in set set_num, from the message catalogue
identified by catd. catd is a catalogue descriptor returned from an earlier call to catopen(). s
points to a default message string which will be returned by catgets() if the identified message
catalogue is not currently available.

A thread in a multithreaded application may issue a call to catgets() while running in any
context state, including TPINVALIDCONTEXT.

Diagnostics
If the identified message is retrieved successfully, catgets() returns a pointer to an internal
buffer area containing the NULL terminated message string. If the call is unsuccessful because
the message catalogue identified by catd is not currently available, a pointer to s is returned.

See Also
catopen, catclose(3c)

catopen, catclose(3c)

Name
catopen(), catclose()—Opens/closes a message catalogue.

Synopsis
#include <nl_types.h>

nl_catd catopen (char *name, int oflag)

int catclose (nl_catd catd)

Description
catopen() opens a message catalogue and returns a catalogue descriptor. name specifies the
name of the message catalogue to be opened. If name contains a “/” then name specifies a
pathname for the message catalogue. Otherwise, the environment variable NLSPATH is used. If
NLSPATH does not exist in the environment, or if a message catalogue cannot be opened in any of
the paths specified by NLSPATH, then the default path is used (see nl_types(5)).

The names of message catalogues, and their location in the filestore, can vary from one system
to another. Individual applications can choose to name or locate message catalogues according to
their own special needs. A mechanism is therefore required to specify where the catalogue
resides.

../rf5/rf5.htm#1735915

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 61

The NLSPATH variable provides both the location of message catalogues, in the form of a search
path, and the naming conventions associated with message catalogue files. For example:

NLSPATH=/nlslib/%L/%N.cat:/nlslib/%N/%L

The metacharacter % introduces a substitution field, where %L substitutes the current setting of the
LANG environment variable (see following section), and %N substitutes the value of the name
parameter passed to catopen(). Thus, in the above example, catopen() will search in
/nlslib/$LANG/name.cat, then in /nlslib/name/$LANG, for the required message catalogue.

NLSPATH will normally be set up on a system wide basis (for example, in /etc/profile) and
thus makes the location and naming conventions associated with message catalogues transparent
to both programs and users.

The following table lists the full set of metacharacters.

The LANG environment variable provides the ability to specify the user’s requirements for native
languages, local customs and character set, as an ASCII string in the form
LANG=language[_territory[.codeset]]

A user who speaks German as it is spoken in Austria and has a terminal that operates in ISO
8859/1 codeset, would want the setting of the LANG variable to be as follows:

LANG=De_A.88591

With this setting it should be possible for the user to find relevant catalogues if they exist.

If the LANG variable is not set then the value of LC_MESSAGES as returned by setlocale(3c) is
used. If this is NULL then the default path as defined in nl_types(5) is used.

Metacharacter Description

%N The value of the name parameter passed to catopen.

%L The value of LANG.

%l The value of the language element of LANG.

%t The value of the territory element of LANG.

%c The value of the codeset element of LANG.

%% A single %.

../rf5/rf5.htm#1735915

62 ATMI C Function Reference

oflag() is reserved for future use and should be set to 0. The results of setting this field to any
other value are undefined.

catclose() closes the message catalogue identified by catd.

A thread in a multithreaded application may issue a call to catopen() or catclose() while
running in any context state, including TPINVALIDCONTEXT.

Diagnostics
If successful, catopen() returns a message catalogue descriptor for use on subsequent calls to
catgets() and catclose(). Otherwise catopen() returns (nl_catd) -1. catclose()
returns 0 if successful, otherwise -1.

See Also
catgets(3c), setlocale(3c), nl_types(5)

decimal(3c)

Name
decimal()—Decimal conversion and arithmetic routines.

Synopsis

#include “decimal.h”

int
lddecimal(cp, len, np) /* load a decimal */
char*cp; /* input: location of compacted format */

int
len; /* input: length of compacted format */
dec_t*np; /* output: location of dec_t format */

void
stdecimal(np, cp, len) /* store a decimal */
dec_t*np; /* input: location of dec_t format */
char*cp; /* output: location of compacted format */
int len; /* input: length of compacted format */

int
deccmp(n1, n2) /* compare two decimal numbers */
dec_t*n1; /* input: number to be compared */
dec_t*n2; /* input: number to be compared */

../rf5/rf5.htm#1735915

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 63

int
dectoasc(np, cp, len, right) /* convert dec_t to ascii */
dec_t*np; /* input: number to be converted */
char*cp; /* output: number after conversion */
int len; /* input: length of output string */
int right; /* input: number of places to right of decimal point */

int
deccvasc(cp, len, np) /* convert ascii to dec_t */
char*cp; /* input: number to be converted */
int len; /* input: maximum length of number to be converted */
dec_t*np; /* output: number after conversion */

int
dectoint(np, ip) /* convert int to dec_t */
dec_t*np; /* input: number to be converted */
int *ip; /* output: number after conversion */

int
deccvint(in, np) /* convert dec_t to int */
int in; /* input: number to be converted */
dec_t*np; /* output: number after conversion */

int
dectolong(np, lngp) /* convert dec_t to long */
dec_t*np; /* input: number to be converted */
long*lngp; /* output: number after conversion */

int
deccvlong(lng, np) /* convert long to dec_t */
longlng; /* input: number to be converted */
dec_t*np; /* output: number after conversion */

int
dectodbl(np, dblp) /* convert dec_t to double */
dec_t*np; /* input: number to be converted */
double *dblp; /* output: number after conversion */

int
deccvdbl(dbl, np) /* convert double to dec_t */
double *dbl; /* input: number to be converted */
dec_t*np; /* output: number after conversion */

int
dectoflt(np, fltp) /* convert dec_t to float */
dec_t*np; /* input: number to be converted */
float*fltp; /* output: number after conversion */

int
deccvflt(flt, np) /* convert float to dec_t */

64 ATMI C Function Reference

double *flt; /* input: number to be converted */
dec_t*np; /* output: number after conversion */

int
decadd(*n1, *n2, *n3) /* add two decimal numbers */
dec_t*n1; /* input: addend */
dec_t*n2; /* input: addend */
dec_t*n3; /* output: sum */

int
decsub(*n1, *n2, *n3) /* subtract two decimal numbers */
dec_t*n1; /* input: minuend */
dec_t*n2; /* input: subtrahend */
dec_t*n3; /* output: difference */

int
decmul(*n1, *n2, *n3) /* multiply two decimal numbers */
dec_t*n1; /* input: multiplicand */
dec_t*n2; /* input: multiplicand */
dec_t*n3; /* output: product */

int
decdiv(*n1, *n2, *n3) /* divide two decimal numbers */
dec_t*n1; /* input: dividend */
dec_t*n2; /* input: divisor */
dec_t*n3; /* output: quotient */

Description
These functions allow storage, conversion, and manipulation of packed decimal data on the BEA
Tuxedo ATMI system. Note that the format in which the decimal data type is represented on the
BEA Tuxedo ATMI system is different from its representation under CICS.

A thread in a multithreaded application may issue a call to any of the decimal conversion
functions while running in any context state, including TPINVALIDCONTEXT.

Native Decimal Representation
Decimals are represented on native BEA Tuxedo ATMI system nodes using the dec_t structure.
This definition of this structure is as follows:

#define DECSIZE 16

struct decimal {

 short dec_exp; /* exponent base 100 */

 short dec_pos; /* sign: 1=pos, 0=neg, -1=null */

 short dec_ndgts; /* number of significant digits */

 char dec_dgts[DECSIZE]; /* actual digits base 100 */

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 65

};

typedef struct decimal dec_t;

It should never be necessary for programmers to directly access the dec_t structure, but it is
presented here nevertheless to give an understanding of the underlying data structure. If large
amounts of decimal data need to be stored, the stdecimal() and lddecimal() functions may
be used to obtain a more compact format. dectoasc(), dectoint(), dectolong(),
dectodbl(), and dectoflt() allow the conversion of decimals to other data types.
deccvasc(), deccvint(), deccvlong(), deccvdbl(), and deccvflt() allow the conversion
of other data types to the decimal data type. deccmp() is the function which compares two
decimals. It returns -1 if the first decimal is less than the second, 0 if the two decimals are equal,
and 1 if the first decimal is greater than the second. A negative value other than -1 is returned if
either of the arguments is invalid. decadd(), decsub(), decmul(), and decdiv() perform
arithmetic operations on decimal numbers.

Return Value
Unless otherwise stated, these functions return 0 on success and a negative value on error.

getURLEntityCacheDir(3c)

Name
getURLEntityCacheDir() - Specifies a Xerces class method for getting the absolute path to the
location where the DTD, schema and Entity files are cached.

Synopsis
char * getURLEntityCacheDir()

Description
getURLEntityCacheDir() is a method that is called to find out the location where the DTD,
schema and Entity files are cached. It returns the absolute path to the cached file location. This
method is exclusively used in conjunction with the following two Xerces objects:

XercesDOMParser

SAXparser

66 ATMI C Function Reference

getURLEntityCaching(3c)

Name
GetURLEntityCaching() - Specifies a Xerces class method for getting the caching mechanism
for DTD, schema and Entity files.

Synopsis
bool getURLEntityCaching()

Description
GetURLEntityCaching() is a method that is called to find out if caching of the DTD, schema
and Entity files are turned on or off. It returns true if caching is turned on and false if caching is
turned off. This method is exclusively used in conjunction with the following two Xerces objects:

XercesDOMParser

SAXparser

gp_mktime(3c)

Name
gp_mktime()—Converts a tm structure to a calendar time.

Synopsis
#include <time.h>

time_t gp_mktime (struct tm *timeptr);

Description
gp_mktime() converts the time represented by the tm structure pointed to by timeptr into a
calendar time (the number of seconds since 00:00:00 Universal Coordinated Time—UTC,
January 1, 1970).

The tm structure has the following format:

struct tm {

 int tm_sec; /* seconds after the minute [0, 61] */

 int tm_min; /* minutes after the hour [0, 59] */

 int tm_hour; /* hour since midnight [0, 23] */

 int tm_mday; /* day of the month [1, 31] */

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 67

 int tm_mon; /* months since January [0, 11] */

 int tm_year; /* years since 1900 */

 int tm_wday; /* days since Sunday [0, 6] */

 int tm_yday; /* days since January 1 [0, 365] */

 int tm_isdst; /* flag for daylight savings time */

};

In addition to computing the calendar time, gp_mktime() normalizes the supplied tm structure.
The original values of the tm_wday and tm_yday components of the structure are ignored, and
the original values of the other components are not restricted to the ranges indicated in the
definition of the structure. On successful completion, the values of the tm_wday and tm_yday
components are set appropriately, and the other components are set to represent the specified
calendar time, but with their values forced to be within the appropriate ranges. The final value of
tm_mday is not set until tm_mon and tm_year are determined.

The original values of the components may be either greater than or less than the specified range.
For example, a tm_hour of -1 means 1 hour before midnight, tm_mday of 0 means the day
preceding the current month, and tm_mon of -2 means 2 months before January of tm_year.

If tm_isdst is positive, the original values are assumed to be in the alternate time zone. If it turns
out that the alternate time zone is not valid for the computed calendar time, then the components
are adjusted to the main time zone. Likewise, if tm_isdst is zero, the original values are assumed
to be in the main time zone and are converted to the alternate time zone if the main time zone is
not valid. If tm_isdst is negative, the correct time zone is determined and the components are
not adjusted.

Local time zone information is used as if gp_mktime() had called tzset().

gp_mktime() returns the specified calendar time. If the calendar time cannot be represented, the
function returns the value (time_t)-1.

A thread in a multithreaded application may issue a call to gp_mktime() while running in any
context state, including TPINVALIDCONTEXT.

Example
What day of the week is July 4, 2001?

 #include <stdio.h>

 #include <time.h>

 static char *const wday[] = {

 "Sunday", "Monday", "Tuesday", "Wednesday",

68 ATMI C Function Reference

 "Thursday", "Friday", "Saturday", "-unknown-"

 };

 struct tm time_str;

 /*...*/

 time_str.tm_year = 2001 - 1900;

 time_str.tm_mon = 7 - 1;

 time_str.tm_mday = 4;

 time_str.tm_hour = 0;

 time_str.tm_min = 0;

 time_str.tm_sec = 1;

 time_str.tm_isdst = -1;

 if (gp_mktime(time_str) == -1)

 time_str.tm_wday=7;

 printf("%s\en", wday[time_str.tm_wday]);

Notices
tm_year of the tm structure must be for year 1970 or later. Calendar times before 00:00:00 UTC,
January 1, 1970 or after 03:14:07 UTC, January 19, 2038 cannot be represented.

Portability
On systems where the C compilation system already provides the ANSI C mktime() function,
gp_mktime() simply calls mktime() to do the conversion. Otherwise, the conversion is
provided directly in gp_mktime().

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 69

In the latter case, the TZ environment variable must be set. Note that in many installations, TZ is
set to the correct value by default when the user logs on. The default value for TZ is GMT0. The
format for TZ is the following:

stdoffset[dst[offset],[start[time],end[time]]]

std and dst
Three or more bytes that designate the standard time zone (std) and daylight savings time
time zone (dst). Only std is required. If dst is missing, then daylight savings time does
not apply in this locale. Uppercase and lowercase letters are allowed. Any characters
except a leading colon (:), digits, a comma (,), a minus (-) or a plus (+) are allowed.

offset
Indicates the value one must add to the local time to arrive at Coordinated Universal Time.
The offset has the following form: hh[:mm[:ss]]. The minutes (mm) and seconds (ss) are
optional. The hour (hh) is required and may be a single digit. The offset following std
is required. If no offset follows dst, daylight savings time is assumed to be one hour
ahead of standard time. One or more digits may be used; the value is always interpreted
as a decimal number. The hour must be between 0 and 24, and the minutes (and seconds)
if present, between 0 and 59. Out of range values may cause unpredictable behavior. If
preceded by a “-”, the time zone is east of the Prime Meridian; otherwise it is west (which
may be indicated by an optional preceding “+” sign).

start/time,end/time
Indicates when to change to and back from daylight savings time, where start/time
describes when the change from standard time to daylight savings time occurs, and
end/time describes when the change back happens. Each time field describes when, in
current local time, the change is made.
The formats of start and end are one of the following:

Jn
The Julian day n (1 n 365). Leap days are not counted. That is, in all years,
February 28 is day 59 and March 1 is day 60. It is impossible to refer to the
occasional February 29.

n

The zero-based Julian day (0 n 365). Leap days are counted, and it is possible to
refer to February 29.

Mm.n.d
Day d (0 d 6) of week n of month m in the year (1 n 5, 1 m 12), where week 5 means “the
last d-day in month m,” which may occur in either the fourth or the fifth week). Week 1 is
the first week in which day d occurs. Day 0 (zero) is Sunday.

70 ATMI C Function Reference

Implementation specific defaults are used for start and end if these optional fields are not given.

The time has the same format as offset except that no leading sign (“-” or “+”) is allowed. The
default, if time is not specified, is 02:00:00.

See Also
ctime(3c), getenv(3c), timezone(4) in a UNIX system reference manual

nl_langinfo(3c)

Name
nl_langinfo()—Language information.

Synopsis
#include <nl_types.h>

#include <langinfo.h>

char *nl_langinfo (nl_item item);

Description
nl_langinfo() returns a pointer to a NULL-terminated string containing information relevant
to a particular language or cultural area defined in the programs locale. The manifest constant
names and values of item are defined by langinfo.h.

For example:

nl_langinfo (ABDAY_1);

returns a pointer to the string “Dim” if the identified language is French and a French locale is
correctly installed; or “Sun” if the identified language is English.

A thread in a multithreaded application may issue a call to nl_langinfo() while running in any
context state, including TPINVALIDCONTEXT.

Diagnostics
If setlocale() has not been called successfully, or if langinf0() data for a supported
language is either not available or item is not defined therein, then nl_langinfo() returns a
pointer to the corresponding string in the C locale. In all locales, nl_langinfo() returns a
pointer to an empty string if item contains an invalid setting.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 71

Notices
The array pointed to by the return value should not be modified by the program. Subsequent calls
to nl_langinfo() may overwrite the array.

See Also
setlocale(3c), strftime(3c), langinfo(5), nl_types(5)

setlocale(3c)

Name
setlocale()—Modifies and queries a program’s locale.

Synopsis
#include <locale.h>

char *setlocale (int category, const char *locale);

Description
setlocale() selects the appropriate piece of the program’s locale as specified by the category
and locale arguments. The category argument may have the following values:

LC_CTYPE

LC_NUMERIC

LC_TIME

LC_COLLATE

LC_MONETARY

LC_MESSAGES

LC_ALL

These names are defined in the locale.h header file. For the BEA Tuxedo ATMI system
compatibility functions, setlocale() allows only a single locale for all categories. Setting any
category is treated the same as LC_ALL, which names the program’s entire locale.

A value of “C” for locale specifies the default environment.

A value of "" for locale specifies that the locale should be taken from an environment variable.
The environment variable LANG is checked for a locale.

At program startup, the equivalent of

setlocale(LC_ALL, "C")

../rf5/rf5.htm#6780615
../rf5/rf5.htm#1735915

72 ATMI C Function Reference

is executed. This has the effect of initializing each category to the locale described by the
environment “C”.

If a pointer to a string is given for locale, setlocale() attempts to set the locale for all the
categories to locale. The locale must be a simple locale, consisting of a single locale. If
setlocale() fails to set the locale for any category, a NULL pointer is returned and the
program’s locale for all categories is not changed. Otherwise, locale is returned.

A NULL pointer for locale causes setlocale() to return the current locale associated with the
category. The program’s locale is not changed.

A thread in a multithreaded application may issue a call to setlocale() while running in any
context state, including TPINVALIDCONTEXT.

Files
$TUXDIR/locale/C/LANGINFO - time and money database for the C locale

$TUXDIR/locale/locale/* - locale specific information for each

locale $TUXDIR/locale/C/*_CAT - text messages for the C locale

Note
A composite locale is not supported. A composite locale is a string beginning with a “/”, followed
by the locale of each category, separated by a “/”.

See Also
mklanginfo(1)

ctime(3c), ctype(3c), getdate(3c), localeconv(3c), strftime(3c), strtod(3c),
printf(3S), environ(5) in a UNIX system reference manual

setURLEntityCacheDir(3c)

Name
setURLEntityCacheDir() - Specifies a Xerces class method for setting the directory where the
DTD, schema and Entity files are to be cached.

Synopsis
void setURLEntityCacheDir (const char* cachedir)

../rfcm/rfcmd.htm#5427311

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 73

Description
setURLEntityCacheDir() is method called when caching is turned on and you want the DTD,
schema and Entity files to be cached to a specific directory. cachedir specifies the absolute path
to the location of the files.

If this method is not called and caching is turned on either by calling the method
setURLEntityCaching() or by not setting the environment variable, then the files are cached
in the current directory. This method is exclusively used in conjunction with the following two
Xerces objects:

XercesDOMParser

SAXparser

setURLEntityCaching(3c)

Name
setURLEntityCaching() - Specifies a Xerces class method for setting or unsetting DTD,
schema or Entity file caching for the XML parser.

Synopsis
void setURLEntityCaching (bool UseCache)

Description
setURLEntityCaching()is a method that caches the DTD, schema and Entity files by default.
It allows you to turn caching of the files on or off. UseCache is set to false if caching is to be
turned off and set to true if caching is to be turned on. This method is exclusively used in
conjunction with the following two Xerces objects:

XercesDOMParser

SAXparser

strerror(3c)

Name
strerror()—Gets error message string.

74 ATMI C Function Reference

Synopsis
#include <string.h>

char *strerror (int errnum);

Description
strerror maps the error number in errnum to an error message string, and returns a pointer to
that string. strerror uses the same set of error messages as perror. The returned string should
not be overwritten.

A thread in a multithreaded application may issue a call to strerror() while running in any
context state, including TPINVALIDCONTEXT.

See Also
perror(3) in a UNIX system reference manual

strftime(3c)

Name
strftime()—Converts date and time to string.

Synopsis
#include <time.h>

size_t *strftime (char *s, size_t maxsize, const char *format, const struct

tm *timeptr);

Description
strftime() places characters into the array pointed to by s as controlled by the string pointed
to by format. The format string consists of zero or more directives and ordinary characters. All
ordinary characters (including the terminating NULL character) are copied unchanged into the
array. For strftime(), no more than maxsize characters are placed into the array.

If format is (char *)0, then the locale’s default format is used. The default format is the same as
"%c".

Each directive is replaced by appropriate characters as described in the following list. The
appropriate characters are determined by the LC_TIME category of the program’s locale and by
the values contained in the structure pointed to by timeptr.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 75

Character Description

%% Same as %

%a Locale’s abbreviated weekday name

%A Locale’s full weekday name

%b Locale’s abbreviated month name

%B Locale’s full month name

%c Locale’s appropriate date and time representation

%C Locale’s date and time representation as produced by date(1)

%d Day of month (01 - 31)

%D Date as %m/%d/%y

%e Day of month (1-31; single digits are preceded by a blank)

%h Locale’s abbreviated month name.

%H Hour (00 - 23)

%I Hour (01 - 12)

%j Day number of year (001 - 366)

%m Month number (01 - 12)

%M Minute (00 - 59)

%n Same as \

%p Locale’s equivalent of either AM or PM

%r Time as %I:%M:%S [AM|PM]

%R Time as %H:%M

%S Seconds (00 - 61), allows for leap seconds

%t Insert a tab

%T Time as %H:%M:%S

76 ATMI C Function Reference

The difference between %U and %W lies in which day is counted as the first of the week. Week
number 01 is the first week in January starting with a Sunday for %U or a Monday for %W. Week
number 00 contains those days before the first Sunday or Monday in January for %U and %W,
respectively.

If the total number of resulting characters including the terminating NULL character is not more
than maxsize, strftime(), returns the number of characters placed into the array pointed to by
s not including the terminating NULL character. Otherwise, zero is returned and the contents of
the array are indeterminate.

A thread in a multithreaded application may issue a call to strftime() while running in any
context state, including TPINVALIDCONTEXT.

Selecting the Output Language
By default, the output of strftime(), appears in U.S. English. The user can request that the
output of strftime() be in a specific language by setting the locale for category LC_TIME
in setlocale().

Time Zone
The time zone is taken from the environment variable TZ. See ctime(3c) for a description of TZ.

Examples
The example illustrates the use of strftime(). It shows what the string in str would look like
if the structure pointed to by tmptr contains the values corresponding to Thursday, August 28,
1986 at 12:44:36 in New Jersey.

%U Week number of year (00 - 53), Sunday is the first day of week 1

%w Weekday number (0 - 6), Sunday = 0

%W Week number of year (00 - 53), Monday is the first day of week 1

%x Locale’s appropriate date representation

%X Locale’s appropriate time representation

%y Year within century (00 - 99)

%Y Year as ccyy (for example, 1986)

%Z Time zone name or no characters if no time zone exists

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 77

strftime (str, strsize, "%A %b %d %j", tmptr)

This results in str containing "Thursday Aug 28 240".

Files
$TUXDIR/locale/locale/LANGINFO—file containing compiled locale-specific date and time
information

See Also
mklanginfo(1), setlocale(3c)

tpabort(3c)

Name
tpabort()—Routine for aborting current transaction.

Synopsis
#include <atmi.h>

int tpabort(long flags)

Description
tpabort() signifies the abnormal end of a transaction. When this call returns, all changes made
to resources during the transaction are undone. Like tpcommit(), this function can be called only
by the initiator of a transaction. Participants (that is, service routines) can express their desire to
have a transaction aborted by calling tpreturn() with TPFAIL.

If tpabort() is called while call descriptors exist for outstanding replies, then upon return from
the function, the transaction is aborted and those descriptors associated with the caller’s
transaction are no longer valid. Call descriptors not associated with the caller’s transaction remain
valid.

For each open connection to a conversational server in transaction mode, tpabort() will send a
TPEV_DISCONIMM event to the server, whether or not the server has control of a connection.
Connections opened before tpbegin() or with the TPNOTRAN flag (that is, not in transaction
mode) are not affected.

Currently, the sole argument to the tpabort()function, flags, is reserved for future use and
should be set to 0.

../rfcm/rfcmd.htm#5427311

78 ATMI C Function Reference

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tpabort().

Return Values
Upon failure, tpabort() returns -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpabort() sets tperrno to one of the following values:

[TPEINVAL]
flags is not equal to 0. The caller’s transaction is not affected.

[TPEHEURISTIC]
Due to a heuristic decision, the work done on behalf of the transaction was partially
committed and partially aborted.

[TPEHAZARD]
Due to some failure, the work done on behalf of the transaction could have been
heuristically completed.

[TPEPROTO]
tpabort() was called improperly (for example, by a participant).

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

Notices
When using tpbegin(), tpcommit(), and tpabort() to delineate a BEA Tuxedo ATMI
system transaction, it is important to remember that only the work done by a resource manager
that meets the XA interface (and is linked to the caller appropriately) has transactional properties.
All other operations performed in a transaction are not affected by either tpcommit() or
tpabort().

See Also
tpbegin(3c), tpcommit(3c), tpgetlev(3c)

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 79

tpacall(3c)

Name
tpacall()—Routine for sending a service request.

Synopsis
#include <atmi.h>

int tpacall(char *svc, char *data, long len, long flags)

Description
tpacall() sends a request message to the service named by svc. The request is sent out at the
priority defined for svc unless overridden by a previous call to tpspri(). If data is non-NULL,
it must point to a buffer previously allocated by tpalloc() and len should specify the amount
of data in the buffer that should be sent. Note that if data points to a buffer of a type that does
not require a length to be specified, (for example, an FML fielded buffer), then len is ignored (and
may be 0). If data is NULL, len is ignored and a request is sent with no data portion. The type
and subtype of data must match one of the types and subtypes recognized by svc. Note that for
each request sent while in transaction mode, a corresponding reply must ultimately be received.

The following is a list of valid flags:

TPNOTRAN
If the caller is in transaction mode and this flag is set, then when svc is invoked, it is not
performed on behalf of the caller’s transaction. If svc belongs to a server that does not
support transactions, then this flag must be set when the caller is in transaction mode. Note
that svc may still be invoked in transaction mode but it will not be the same transaction:
a svc may have as a configuration attribute that it is automatically invoked in transaction
mode. A caller in transaction mode that sets this flag is still subject to the transaction
timeout (and no other). If a service fails that was invoked with this flag, the caller’s
transaction is not affected.

TPNOREPLY
Informs tpacall() that a reply is not expected. When TPNOREPLY is set, the function
returns 0 on success, where 0 is an invalid descriptor. When the caller is in transaction
mode, this setting cannot be used unless TPNOTRAN is also set.

TPNOBLOCK
The request is not sent if a blocking condition exists (for example, the internal buffers into
which the message is transferred are full). When TPNOBLOCK is not specified and a

80 ATMI C Function Reference

blocking condition exists, the caller blocks until the condition subsides or a timeout occurs
(either transaction or blocking timeout).

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system call is
reissued.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tpacall().

Return Values
Upon successful completion, tpacall() returns a descriptor that can be used to receive the reply
of the request sent.

Upon failure, tpacall() returns a value of -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpacall() sets tperrno to one of the following values. (Unless otherwise noted,
failure does not affect the caller’s transaction, if one exists.)

[TPEINVAL]
Invalid arguments were given (for example, svc is NULL, data does not point to space
allocated with tpalloc(), or flags are invalid).

[TPENOENT]
Cannot send to svc because it does not exist or is a conversational service.

[TPEITYPE]
The type and subtype of data is not one of the allowed types and subtypes that svc
accepts.

[TPELIMIT]
The caller’s request was not sent because the maximum number of outstanding
asynchronous requests has been reached.

[TPETRAN]
svc belongs to a server that does not support transactions and TPNOTRAN was not set.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 81

[TPETIME]
This error code indicates that either a timeout has occurred or tpacall() has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller is in transaction mode, then either the transaction is already rollback only or
a transaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout cannot
occur if TPNOBLOCK and/or TPNOTIME is specified.)

If a transaction timeout has occurred, then, with one exception, any attempts to send new
requests or receive outstanding replies will fail with TPETIME until the transaction has
been aborted. The exception is a request that does not block, expects no reply, and is not
sent on behalf of the caller’s transaction (that is, tpacall() with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY set).

When a service fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY state. This state is treated, for most purposes, as though it were
equivalent to a timeout. All further ATMI calls for this transaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpacall() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred. If a message queue on a remote location is filled,
TPEOS may be returned even if tpacall() returned successfully.

See Also
tpalloc(3c), tpcall(3c), tpcancel(3c), tpgetrply(3c), tpgprio(3c), tpsprio(3c)

82 ATMI C Function Reference

tpadmcall(3c)

Name
tpadmcall()—Administers unbooted application.

Synopsis
#include <atmi.h>

#include <fml32.h>

#include <tpadm.h>

int tpadmcall(FBFR32 *inbuf, FBFR32 **outbuf, long flags)

Description
tpadmcall() is used to retrieve and update attributes of an unbooted application. It may also be
used in an active application to perform direct retrievals of a limited set of attributes without
requiring communication to an external process. This function provides sufficient capability such
that complete system configuration and administration can take place through system provided
interface routines.

inbuf is a pointer to an FML32 buffer previously allocated with tpalloc() that contains the
desired administrative operation and its parameters.

outbuf is the address of a pointer to the FML32 buffer that should contain the results. outbuf
must point to an FML32 buffer originally allocated by tpalloc(). If the same buffer is to be
used for both sending and receiving, outbuf should be set to the address of inbuf.

Currently, tpadmcall()’s last argument, flags, is reserved for future use and must be set to 0.

MIB(5) should be consulted for generic information on construction of administrative requests.
TM_MIB(5) and APPQ_MIB(5) should be consulted for information on the classes that are
accessible through tpadmcall().

There are four modes in which calls to tpadmcall() can be made.

Mode 1: Unbooted, Unconfigured Application:
The caller is assumed to be the administrator of the application. The only operations
permitted are to SET a NEW T_DOMAIN class object, thus defining an initial
configuration for the application, and to GET and SET objects of the classes defined in
APPQ_MIB().

../rf5/rf5.htm#8244015
../rf5/rf5.htm#1980515
../rf5/rf5.htm#3813815

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 83

Mode 2: Unbooted, Configured Application:
The caller is assigned administrator or other privileges based on a comparison of their
UID/GID to that defined in the configuration for the administrator on the local system.
The caller may GET and SET any attributes for any class in TM_MIB() and APPQ_MIB()
for which they have the appropriate permissions. Note that some classes contain only
attributes that are inaccessible in an unbooted application and attempts to access these
classes will fail.

Mode 3: Booted Application, Unattached Process:
The caller is assigned administrator or other privileges based on a comparison of their
UID/GID to that defined in the configuration for the administrator on the local system.
The caller may GET any attributes for any class in TM_MIB() for which they have the
appropriate permissions. Similarly, the caller may GET and SET any attributes for any
class in APPQ_MIB(), subject to class-specific restrictions. Attributes accessible only
while ACTIVE will not be returned.

Mode 4: Booted Application, Attached Process:
Permissions are determined from the authentication key assigned at tpinit() time. The
caller may GET any attributes for any class in TM_MIB() for which they have the
appropriate permissions. Additionally, the caller may GET and SET any attributes for any
class in APPQ_MIB(), subject to class-specific restrictions.

Access to and update of binary BEA Tuxedo ATMI system application configuration files
through this interface routine is controlled through the use of UNIX system permissions on
directory names and filenames.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tpadmcall().

Environment Variables
The following environment variables must be set prior to calling this routine:

TUXCONFIG
Name of the file or device on which the binary BEA Tuxedo system configuration file for
this application is or should be stored.

Notices
Use of the TA_OCCURS attribute on GET requests is not supported when using tpadmcall().
GETNEXT requests are not supported when using tpadmcall().

Return Values
tpadmcall() returns 0 on success and -1 on failure.

84 ATMI C Function Reference

Errors
Upon failure, tpadmcall() sets tperrno to one of the following values:

Note: Except for TPEINVAL, the caller’s output buffer, outbuf, will be modified to include
TA_ERROR, TA_STATUS, and possibly TA_BADFLD attributes to further qualify the error
condition. See MIB(5), TM_MIB(5), and APPQ_MIB(5) for an explanation of possible
error codes returned in this fashion.

[TPEINVAL]
Invalid arguments were specified. The flags value is invalid or inbuf or outbuf are not
pointers to typed buffers of type “FML32.”

[TPEMIB]
The administrative request failed. outbuf is updated and returned to the caller with
FML32 fields indicating the cause of the error as is discussed in MIB(5) and TM_MIB(5).

[TPEPROTO]
tpadmcall() was called improperly.

[TPERELEASE]
tpadmcall() was called with the TUXCONFIG environment variable pointing to a
different release version configuration file.

[TPEOS]
An operating system error has occurred. A numeric value representing the system call that
failed is available in Uunixerr.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to
userlog().

Interoperability
This interface supports access and update to the local configuration file and bulletin board only;
therefore, there are no interoperability concerns.

Portability
This interface is available only on UNIX system sites running BEA Tuxedo ATMI release 5.0 or
later.

../rf5/rf5.htm#8244015
../rf5/rf5.htm#1980515
../rf5/rf5.htm#3813815
../rf5/rf5.htm#8244015
../rf5/rf5.htm#1980515

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 85

Files
The following library files are required:

${TUXDIR}/lib/libtmib.a, ${TUXDIR}/lib/libqm.a,
${TUXDIR}/lib/libtmib.so.<rel>, ${TUXDIR}/lib/libqm.so.<rel>,
${TUXDIR}/lib/libtmib.lib, ${TUXDIR}/lib/libqm.lib

The libraries must be linked manually when using buildclient. The user must use:
-L${TUXDIR}/lib -ltmid -lqm

See Also
ACL_MIB(5), APPQ_MIB(5), EVENT_MIB(5), MIB(5), TM_MIB(5), WS_MIB(5)
Setting Up a BEA Tuxedo Application
Administering a BEA Tuxedo Application at Run Time

tpadvertise(3c)

Name
tpadvertise()—Routine for advertising a service name.

Synopsis
#include <atmi.h>

int tpadvertise(char *svcname, void (*func)(TPSVCINFO *))

Description
tpadvertise() allows a server to advertise the services that it offers. By default, a server’s
services are advertised when it is booted and unadvertised when it is shutdown.

All servers belonging to a Multiple Server, Single Queue (MSSQ) set must offer the same set of
services. These routines enforce this rule by affecting the advertisements of all servers sharing an
MSSQ set.

tpadvertise() advertises svcname for the server (or the set of servers sharing the caller’s
MSSQ set). svcname should be 15 characters or less, but cannot be NULL or the NULL string
(“”). (See *SERVICES section of UBBCONFIG(5).)func is the address of a BEA Tuxedo ATMI
system service function. This function will be invoked whenever a request for svcname is
received by the server. func cannot be NULL. Explicitly specified function names (see
servopts(5)) can be up to 128 characters long. Names longer than 15 characters are accepted

../rf5/rf5.htm#9125915
../rf5/rf5.htm#3813815
../rf5/rf5.htm#2718115
../rf5/rf5.htm#8244015
../rf5/rf5.htm#1980515
../rf5/rf5.htm#5102915
../rf5/rf5.htm#365105
../rf5/rf5.htm#7588415

86 ATMI C Function Reference

and truncated to 15 characters. Users should make sure that truncated names do not match other
service names.

If svcname is already advertised for the server and func matches its current function, then
tpadvertise() returns success (this includes truncated names that match already advertised
names). However, if svcname is already advertised for the server but func does not match its
current function, then an error is returned (this can happen if truncated names match already
advertised names).

Service names starting with dot (.) are reserved for administrative services. An error will be
returned if an application attempts to advertise one of these services.

Return Values
Upon failure, tpadvertise() returns -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpadvertise() sets tperrno to one of the following values:

[TPEINVAL]
svcname is NULL or the NULL string (“”),or begins with a “.” or func is NULL.

[TPELIMIT]
svcname cannot be advertised because of space limitations. (See MAXSERVICES in the
RESOURCES section of UBBCONFIG(5).)

[TPEMATCH]
svcname is already advertised for the server but with a function other than func. Although
the function fails, svcname remains advertised with its current function (that is, func does
not replace the current function).

[TPEPROTO]
tpadvertise() was called in an improper context (for example, by a client).

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

See Also
tpservice(3c), tpunadvertise(3c)

../rf5/rf5.htm#365105

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 87

tpalloc(3c)

Name
tpalloc()—Routine for allocating typed buffers.

Synopsis
#include <atmi.h>

char * tpalloc(char *type, char *subtype, long size)

Description
tpalloc() returns a pointer to a buffer of type type. Depending on the type of buffer, both
subtype and size are optional. The BEA Tuxedo ATMI system provides a variety of typed
buffers, and applications are free to add their own buffer types. Consult tuxtypes(5) for more
details.

If subtype is non-NULL in tmtype_sw for a particular buffer type, then subtype must be
specified when tpalloc() is called. The allocated buffer will be at least as large as the larger of
size and dfltsize, where dfltsize is the default buffer size specified in tmtype_sw for the
particular buffer type. For buffer type STRING the minimum is 512 bytes; for buffer types FML
and VIEW the minimum is 1024 bytes.

Note that only the first eight bytes of type and the first 16 bytes of subtype are significant.

Because some buffer types require initialization before they can be used, tpalloc() initializes
a buffer (in a BEA Tuxedo ATMI system-specific manner) after it is allocated and before it is
returned. Thus, the buffer returned to the caller is ready for use. Note that unless the initialization
routine cleared the buffer, the buffer is not initialized to zeros by tpalloc().

A thread in a multithreaded application may issue a call to tpalloc() while running in any
context state, including TPINVALIDCONTEXT.

Return Values
Upon successful completion, tpalloc() returns a pointer to a buffer of the appropriate type
aligned on a long word; otherwise, it returns NULL and sets tperrno to indicate the condition.

Errors
Upon failure, tpalloc() sets tperrno to one of the following values:

[TPEINVAL]
Invalid arguments were given (for example, type is NULL).

../rf5/rf5.htm#7807115

88 ATMI C Function Reference

[TPENOENT]
No entry in tmtype_sw matches type and, if non-NULL, subtype.

[TPEPROTO]
tpalloc() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

Usage
If buffer initialization fails, the allocated buffer is freed and tpalloc() fails returning NULL.

This function should not be used in concert with malloc(), realloc(), or free() in the C
library (for example, a buffer allocated with tpalloc() should not be freed with free()).

Two buffer types are supported by any compliant implementation of the BEA Tuxedo ATMI
system extension. Details are in the Introduction to the C Language Application-to-Transaction
Monitor Interface.

See Also
tpfree(3c), tprealloc(3c), tptypes(3c)

tpbegin(3c)

Name
tpbegin()—Routine for beginning a transaction.

Synopsis
#include <atmi.h>

int tpbegin(unsigned long timeout, long flags)

Description
A transaction in the BEA Tuxedo ATMI system is used to define a single logical unit of work that
either wholly succeeds or has no effect whatsoever. A transaction allows work being performed
in many processes, at possibly different sites, to be treated as an atomic unit of work. The initiator
of a transaction uses tpbegin() and either tpcommit() or tpabort() to delineate the

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 89

operations within a transaction. Once tpbegin() is called, communication with any other
program can place the latter (of necessity, a server) in “transaction mode” (that is, the server’s
work becomes part of the transaction). Programs that join a transaction are called participants. A
transaction always has one initiator and can have several participants. Only the initiator of a
transaction can call tpcommit() or tpabort(). Participants can influence the outcome of a
transaction by the return values (rvals) they use when they call tpreturn(). Once in transaction
mode, any service requests made to servers are processed on behalf of the transaction (unless the
requester explicitly specifies otherwise).

Note that if a program starts a transaction while it has any open connections that it initiated to
conversational servers, these connections will not be upgraded to transaction mode. It is as if the
TPNOTRAN flag had been specified on the tpconnect() call.

tpbegin()’s first argument, timeout, specifies that the transaction should be allowed at least
timeout seconds before timing out. Once a transaction times out it must be marked abort-only.
If timeout is 0, then the transaction is given the maximum number of seconds allowed by the
system before timing out (that is, the timeout value equals the maximum value for an unsigned
long as defined by the system).

Currently, tpbegin()’s second argument, flags, is reserved for future use and must be set to 0.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tpbegin().

Return Values
Upon failure, tpbegin() returns -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpbegin() sets tperrno to one of the following values:

[TPEINVAL]
flags is not equal to 0.

[TPETRAN]
The caller cannot be placed in transaction mode because an error occurred starting the
transaction.

[TPEPROTO]
tpbegin() was called in an improper context (for example, the caller is already in
transaction mode).

90 ATMI C Function Reference

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

Notices
When using tpbegin(), tpcommit(), and tpabort() to delineate a BEA Tuxedo ATMI
system transaction, it is important to remember that only the work done by a resource manager
that meets the XA interface (and is linked to the caller appropriately) has transactional properties.
All other operations performed in a transaction are not affected by either tpcommit() or
tpabort(). See buildserver() for details on linking resource managers that meet the XA
interface into a server such that operations performed by that resource manager are part of a BEA
Tuxedo ATMI system transaction.

See Also
tpabort(3c), tpcommit(3c), tpgetlev(3c), tpscmt(3c)

tpbroadcast(3c)

Name
tpbroadcast()—Routine to broadcast notification by name.

Synopsis
#include <atmi.h>

int tpbroadcast(char *lmid, char *usrname, char *cltname,

 char *data, long len, long flags)

Description
tpbroadcast() allows a client or server to send unsolicited messages to registered clients within
the system. The target client set consists of those clients matching identifiers passed to
tpbroadcast(). Wildcards can be used in specifying identifiers.

lmid, usrname, and cltname are logical identifiers used to select the target client set. A NULL
value for any argument constitutes a wildcard for that argument. A wildcard argument matches
all client identifiers for that field. A 0-length string for any argument matches only 0-length client

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 91

identifiers. Each identifier must meet the size restrictions defined for the system to be considered
valid, that is, each identifier must be between 0 and MAXTIDENT characters in length.

The data portion of the request is pointed to by data, a buffer previously allocated by
tpalloc(). len specifies how much of data to send. Note that if data points to a buffer type
that does not require a length to be specified (for example, an FML fielded buffer), then len is
ignored (and may be 0). Also, data may be NULL, in which case len is ignored. The buffer
passes through the typed buffer switch routines just as any other outgoing or incoming message
would; for example, encode/decode are performed automatically.

The following is a list of valid flags:

TPNOBLOCK
The request is not sent if a blocking condition exists (for example, the internal buffers into
which the message is transferred are full).

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system call is
reissued. Upon successful return from tpbroadcast(), the message has been delivered
to the system for forwarding to the selected clients. tpbroadcast() does not wait for the
message to be delivered to each selected client.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to
issue a call to tpbroadcast().

Return Values
Upon failure, tpbroadcast() returns -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpbroadcast()sends no broadcast messages to application clients and sets
tperrno to one of the following values:

[TPEINVAL]
Invalid arguments were given (for example, identifiers too long or invalid flags). Note that
use of an illegal LMID will cause tpbroadcast() to fail and return TPEINVAL. However,
non-existent user or client names will simply successfully broadcast to no one.

92 ATMI C Function Reference

[TPETIME]
A blocking timeout occurred. (A blocking timeout cannot occur if TPNOBLOCK and/or
TPNOTIME is specified.)

[TPEBLOCK]
A blocking condition was found on the call and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpbroadcast() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

Portability
The interfaces described in tpnotify(3c) are supported on native site UNIX-based processors.
In addition, the routines tpbroadcast() and tpchkunsol() as well as the function
tpsetunsol() are supported on UNIX and MS-DOS workstation processors.

Usage
Clients that select signal-based notification may not be signal-able by the system due to signal
restrictions. When this occurs, the system generates a log message that it is switching notification
for the selected client to dip-in and the client is notified then and thereafter via dip-in notification.
(See the description of the RESOURCES NOTIFY parameter in UBBCONFIG() for a detailed
discussion of notification methods.)

Because signaling of clients is always done by the system, the behavior of notification is always
consistent, regardless of where the originating notification call is made. Therefore to use
signal-based notification:

A native client must be running as an application administrator

A Workstation client is not required to be running as the application administrator

The ID for the application administrator is identified as part of the configuration for the
application.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 93

If signal-based notification is selected for a client, then certain ATMI calls can fail, returning
TPGOTSIG due to receipt of an unsolicited message if TPSIGRSTRT is not specified. See
UBBCONFIG(5) and tpinit(3c) for more information on notification method selection.

See Also
tpalloc(3c), tpinit(3c), tpnotify(3c), tpterm(3c), UBBCONFIG(5)

tpcall(3c)

Name
tpcall()—Routine for sending service request and awaiting its reply.

Synopsis
int tpcall(char *svc, char *idata, long ilen, char **odata, long \

 *olen, long flags)

Description
tpcall() sends a request and synchronously awaits its reply. A call to this function is the same
as calling tpacall() immediately followed by tpgetrply(). tpcall() sends a request to the
service named by svc. The request is sent out at the priority defined for svc unless overridden
by a previous call to tpspri(). The data portion of a request is pointed to by idata, a buffer
previously allocated by tpalloc(). ilen specifies how much of idata to send. Note that if
idata points to a buffer of a type that does not require a length to be specified, (for example, an
FML fielded buffer), then ilen is ignored (and may be 0). Also, idata may be NULL, in which
case ilen is ignored. The type and subtype of idata must match one of the types and subtypes
recognized by svc.

odata is the address of a pointer to the buffer where a reply is read into, and olen points to the
length of that reply. *odata must point to a buffer originally allocated by tpalloc(). If the same
buffer is to be used for both sending and receiving, odata should be set to the address of idata.
FML and FML32 buffers often assume a minimum size of 4096 bytes; if the reply is larger than
4096, the size of the buffer is increased to a size large enough to accommodate the data being
returned. Also, if idata and *odata were equal when tpcall() was invoked, and *odata is
changed, then idata no longer points to a valid address. Using the old address can lead to data
corruption or process exceptions. As of release 6.4, the default allocation for buffers is 1024
bytes. Also, historical information is maintained on recently used buffers, allowing a buffer of
optimal size to be reused as a return buffer.

../rf5/rf5.htm#365105
../rf5/rf5.htm#365105

94 ATMI C Function Reference

Buffers on the sending side that may be only partially filled (for example, FML or STRING
buffers) will have only the amount that is used send. The system may then enlarge the received
data size by some arbitrary amount. This means that the receiver may receive a buffer that is
smaller than what was originally allocated by the sender, yet larger than the data that was sent.

The receive buffer may grow, or it may shrink, and its address almost invariably changes, as the
system swaps buffers around internally. To determine whether (and how much) a reply buffer
changed in size, compare its total size before tpgetrply() was issued with *len. See
“Introduction to the C Language Application-to-Transaction Monitor Interface” for more
information about buffer management.

If *olen is 0 upon return, then the reply has no data portion and neither *odata nor the buffer it
points to were modified. It is an error for *odata or olen to be NULL.

The following is a list of valid flags:

TPNOTRAN

If the caller is in transaction mode and this flag is set, then when svc is invoked, it is not
performed on behalf of the caller’s transaction. Note that svc may still be invoked in
transaction mode but it will not be the same transaction: a svc may have as a configuration
attribute that it is automatically invoked in transaction mode. A caller in transaction mode
that sets this flag is still subject to the transaction timeout (and no other). If a service fails
that was invoked with this flag, the caller’s transaction is not affected.

TPNOCHANGE

By default, if a buffer is received that differs in type from the buffer pointed to by *odata,
then *odata’s buffer type changes to the received buffer’s type so long as the receiver
recognizes the incoming buffer type. When this flag is set, the type of the buffer pointed
to by *odata is not allowed to change. That is, the type and subtype of the received buffer
must match the type and subtype of the buffer pointed to by *odata.

TPNOBLOCK

The request is not sent if a blocking condition exists (for example, the internal buffers into
which the message is transferred are full). Note that this flag applies only to the send
portion of tpcall(): the function may block waiting for the reply. When TPNOBLOCK is
not specified and a blocking condition exists, the caller blocks until the condition subsides
or a timeout occurs (either transaction or blocking timeout).

TPNOTIME

This flag signifies that the caller is willing to block indefinitely and wants to be immune
to blocking timeouts. However, if the caller is in transaction mode, this flag has no effect;
it is subject to the transaction timeout limit. Transaction timeouts may still occur.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 95

TPSIGRSTRT

If a signal interrupts any underlying system calls, then the interrupted system call is
reissued.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tpcall().

Return Values
Upon successful return from tpcall() or upon return where tperrno is set to TPESVCFAIL,
tpurcode() contains an application defined value that was sent as part of tpreturn().

Upon failure, tpcall() returns -1 and sets tperrno to indicate the error condition. If a call fails
with a particular tperrno value, a subsequent call to tperrordetail(), with no intermediate
ATMI calls, may provide more detailed information about the generated error. Refer to the
tperrordetail(3c) reference page for more information.

Errors
Upon failure, tpcall() sets tperrno to one of the following values. (Unless otherwise noted,
failure does not affect the caller’s transaction, if one exists.)

[TPEINVAL]
Invalid arguments were given (for example, svc is NULL or flags are invalid).

[TPENOENT]
Cannot send to svc because it does not exist, or it is a conversational service, or the name
provided begins with a dot (.).

[TPEITYPE]
The type and subtype of idata is not one of the allowed types and subtypes that svc
accepts.

[TPEOTYPE]
Either the type and subtype of the reply are not known to the caller; or, TPNOCHANGE was
set in flags and the type and subtype of *odata do not match the type and subtype of the
reply sent by the service. Neither *odata, its contents, nor *olen is changed. If the
service request was made on behalf of the caller’s current transaction, then the transaction
is marked abort-only since the reply is discarded.

[TPETRAN]
svc belongs to a server that does not support transactions and TPNOTRAN was not set.

96 ATMI C Function Reference

[TPETIME]
This error code indicates that either a timeout has occurred or tpcall() has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller is in transaction mode, then either the transaction is already rollback only or
a transaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout cannot
occur if TPNOBLOCK and/or TPNOTIME is specified.) In either case, no changes are made to
*odata, its contents, or *olen.

If a transaction timeout has occurred, then, with one exception, any attempts to send new
requests or receive outstanding replies will fail with TPETIME until the transaction has
been aborted. The exception is a request that does not block, expects no reply, and is not
sent on behalf of the caller’s transaction (that is, tpacall() with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY set).

When a service fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY state. This state is treated, for most purposes, as though it were
equivalent to a timeout. All further ATMI calls for this transaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPESVCFAIL]
The service routine sending the caller’s reply called tpreturn() with TPFAIL. This is an
application-level failure. The contents of the service’s reply, if one was sent, is available
in the buffer pointed to by *odata. If the service request was made on behalf of the
caller’s current transaction, then the transaction is marked abort-only. Note that regardless
of whether the transaction has timed out, the only valid communications before the
transaction is aborted are calls to tpacall() with TPNOREPLY, TPNOTRAN, and
TPNOBLOCK set.

[TPESVCERR]
A service routine encountered an error either in tpreturn(3c) or tpforward(3c) (for
example, bad arguments were passed). No reply data is returned when this error occurs
(that is, neither *odata, its contents, nor *olen is changed). If the service request was
made on behalf of the caller’s transaction (that is, TPNOTRAN was not set), then the
transaction is marked abort-only. Note that regardless of whether the transaction has timed
out, the only valid communications before the transaction is aborted are calls to
tpacall() with TPNOREPLY, TPNOTRAN, and TPNOBLOCK set. If either SVCTIMEOUT in the
UBBCONFIG file or TA_SVCTIMEOUT in the TM_MIB is non-zero, TPESVCERR is returned
when a service timeout occurs.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 97

[TPEBLOCK]
A blocking condition was found on the send call and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpcall() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred. If a message queue on a remote location is filled,
TPEOS may be returned even if tpcall() returned successfully.

See Also
tpacall(3c),tpalloc(3c), tperrordetail(3c), tpforward(3c), tpfree(3c),
tpgprio(3c), tprealloc(3c), tpreturn(3c), tpsprio(3c), tpstrerrordetail(3c),
tptypes(3c)

tpcancel(3c)

Name
tpcancel()—Routine for canceling a call descriptor for outstanding reply.

Synopsis
#include <atmi.h>

int tpcancel(int cd)

Description
tpcancel() cancels a call descriptor, cd, returned by tpacall(). It is an error to attempt to
cancel a call descriptor associated with a transaction.

Upon success, cd is no longer valid and any reply received on behalf of cd will be silently
discarded.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tpcancel().

98 ATMI C Function Reference

Return Values
Upon failure, tpcancel() returns -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpcancel() sets tperrno to one of the following values:

[TPEBADDESC]
cd is an invalid descriptor.

[TPETRAN]
cd() is associated with the caller’s transaction. cd remains valid and the caller’s current
transaction is not affected.

[TPEPROTO]
tpcancel() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

See Also
tpacall(3c)

tpchkauth(3c)

Name
tpchkauth()—Routine for checking if authentication required to join an application.

Synopsis
#include <atmi.h>

int tpchkauth(void)

Description
tpchkauth() checks if authentication is required by the application configuration. This is
typically used by application clients prior to calling tpinit() to determine if a password should
be obtained from the user.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 99

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tpchkauth().

Return Values
Upon success, tpchkauth() returns one of the following non-negative values:

TPNOAUTH
Indicates that no authentication is required.

TPSYSAUTH
Indicates that system authentication only is required.

TPAPPAUTH
Indicates that both system and application specific authentication are required.

Upon failure, tpchkauth() returns -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpchkauth() sets tperrno to one of the following values:

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

Interoperability
tpchkauth() is available only on sites running release 4.2 or later.

100 ATMI C Function Reference

Portability
The interfaces described in tpchkauth(3c) are supported on UNIX, Windows, and MS-DOS
operating systems.

See Also
tpinit(3c)

tpchkunsol(3c)

Name
tpchkunsol()—Routine for checking for unsolicited message.

Synopsis
#include <atmi.h>

int tpchkunsol(void)

Description
tpchkunsol() is used by a client to trigger checking for unsolicited messages. Calls to this
routine in a client using signal-based notification do nothing and return immediately. This call
has no arguments. Calls to this routine can result in calls to an application-defined unsolicited
message handling routine by the BEA Tuxedo ATMI system libraries.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tpchkunsol().

Return Values
Upon successful completion, tpchkunsol() returns the number of unsolicited messages
dispatched; otherwise it returns -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpchkunsol() sets tperrno to one of the following values:

[TPEPROTO]
tpchkunsol() was called in an improper context (for example, from within a server).

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 101

[TPEOS]
An operating system error has occurred.

Portability
The interfaces described in tpnotify(3c) are supported on native site UNIX-based processors.
In addition, the routines tpbroadcast() and tpchkunsol() as well as the function
tpsetunsol() are supported on UNIX and MS-DOS workstation processors.

Clients that select signal-based notification may not be signal-able by the system due to signal
restrictions. When this occurs, the system generates a log message that it is switching notification
for the selected client to dip-in and the client is notified then and thereafter via dip-in notification.
(See the description of the RESOURCES NOTIFY parameter in UBBCONFIG(5) for a detailed
discussion of notification methods.)

Because signaling of clients is always done by the system, the behavior of notification is always
consistent, regardless of where the originating notification call is made. Therefore to use
signal-based notification:

A native client must be running as an application administrator

A Workstation client is not required to be running as the application administrator

The ID for the application administrator is identified as part of the configuration for the
application.

If signal-based notification is selected for a client, then certain ATMI calls can fail, returning
TPGOTSIG due to receipt of an unsolicited message if TPSIGRSTRT is not specified. See
UBBCONFIG(5) and tpinit(3c) for more information on notification method selection.

See Also
tpbroadcast(3c),tpinit(3c), tpnotify(3c), tpsetunsol(3c)

tpclose(3c)

Name
tpclose()—Routine for closing a resource manager.

Synopsis
#include <atmi.h>

int tpclose(void)

../rf5/rf5.htm#365105
../rf5/rf5.htm#365105

102 ATMI C Function Reference

Description
tpclose() tears down the association between the caller and the resource manager to which it
is linked. Since resource managers differ in their close semantics, the specific information
needed to close a particular resource manager is placed in a configuration file.

If a resource manager is already closed (that is, tpclose() is called more than once), no action
is taken and success is returned.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tpclose().

Return Values
Upon failure, tpclose() returns -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpclose() fails and sets tperrno to one of the following values:

[TPERMERR]
A resource manager failed to close correctly. More information concerning the reason a
resource manager failed to close can be obtained by interrogating a resource manager in
its own specific manner. Note that any calls to determine the exact nature of the error
hinder portability.

[TPEPROTO]
tpclose() was called in an improper context (for example, while the caller is in
transaction mode).

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

See Also
tpopen(3c)

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 103

tpcommit(3c)

Name
tpcommit()—Routine for committing current transaction.

Synopsis
#include <atmi.h>

int tpcommit(long flags)

Description
tpcommit() signifies the end of a transaction, using a two-phase commit protocol to coordinate
participants. tpcommit() can be called only by the initiator of a transaction. If any of the
participants cannot commit the transaction (for example, they call tpreturn() with TPFAIL),
then the entire transaction is aborted and tpcommit() fails. That is, all of the work involved in
the transaction is undone. If all participants agree to commit their portion of the transaction, then
this decision is logged to stable storage and all participants are asked to commit their work.

Depending on the setting of the TP_COMMIT_CONTROL characteristic (see tpscmt(3c)),
tpcommit() can return successfully either after the commit decision has been logged or after the
two-phase commit protocol has completed. If tpcommit() returns after the commit decision has
been logged but before the second phase has completed (TP_CMT_LOGGED), then all participants
have agreed to commit the work they did on behalf of the transaction and should fulfill their
promise to commit the transaction during the second phase. However, because tpcommit() is
returning before the second phase has completed, there is a hazard that one or more of the
participants can heuristically complete their portion of the transaction (in a manner that is not
consistent with the commit decision) even though the function has returned success.

If the TP_COMMIT_CONTROL characteristic is set such that tpcommit() returns after the
two-phase commit protocol has completed (TP_CMT_COMPLETE), then its return value reflects the
exact status of the transaction (that is, whether the transaction heuristically completed or not).

Note that if only a single resource manager is involved in a transaction, then a one-phase commit
is performed (that is, the resource manager is not asked whether or not it can commit; it is simply
told to commit). In this case, the TP_COMMIT_CONTROL characteristic has no bearing and
tpcommit() will return heuristic outcomes if present.

If tpcommit() is called while call descriptors exist for outstanding replies, then upon return from
the function, the transaction is aborted and those descriptors associated with the caller’s
transaction are no longer valid. Call descriptors not associated with the caller’s transaction remain
valid.

104 ATMI C Function Reference

tpcommit() must be called after all connections associated with the caller’s transaction are
closed (otherwise TPEABORT is returned, the transaction is aborted and these connections are
disconnected in a disorderly fashion with a TPEV_DISCONIMM event). Connections opened before
tpbegin() or with the TPNOTRAN flag (that is, connections not in transaction mode) are not
affected by calls to tpcommit() or tpabort().

Currently, tpcommit()’s sole argument, flags, is reserved for future use and must be set to 0.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tpcommit().

Return Values
Upon failure, tpcommit() returns -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpcommit() sets tperrno to one of the following values:

[TPEABORT]
The transaction could not commit because either the work performed by the initiator or by
one or more of its participants could not commit. This error is also returned if tpcommit()
is called with outstanding replies or open conversational connections.

[TPEHAZARD]
Due to some failure, the work done on behalf of the transaction could have been
heuristically completed.

[TPEHEURISTIC]
Due to a heuristic decision, the work done on behalf of the transaction was partially
committed and partially aborted.

[TPEINVAL]
flags is not equal to 0. The caller’s transaction is not affected.

[TPEOS]
An operating system error has occurred.

[TPEPROTO]
tpcommit() was called in an improper context (for example, by a participant).

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 105

[TPETIME]

The transaction has timed out and its status is unknown: it may have been either
committed or aborted. If a transaction has timed out and its status is known to be aborted,
then TPEABORT is returned.

Notices
When using tpbegin(), tpcommit(), and tpabort() to delineate a BEA Tuxedo ATMI
system transaction, it is important to remember that only the work done by a resource manager
that meets the XA interface (and is linked to the caller appropriately) has transactional properties.
All other operations performed in a transaction are not affected by either tpcommit() or
tpabort(). See buildserver(1) for details on linking resource managers that meet the XA
interface into a server such that operations performed by that resource manager are part of a BEA
Tuxedo ATMI system transaction.

See Also
tpabort(3c), tpbegin(3c), tpconnect(3c), tpgetlev(3c), tpreturn(3c), tpscmt(3c)

tpconnect(3c)

Name
tpconnect()—Routine for establishing a conversational service connection.

Synopsis
#include <atmi.h>

int tpconnect(char *svc, char *data, long len, long flags)

Description
tpconnect() allows a program to set up a half-duplex connection to a conversational service,
svc. The name must be one of the conversational service names posted by a conversational
server.

As part of setting up a connection, the caller can pass application-defined data to the listening
program. If the caller chooses to pass data, then data must point to a buffer previously allocated
by tpalloc(). len specifies how much of the buffer to send. Note that if data points to a buffer
of a type that does not require a length to be specified, (for example, an FML fielded buffer), then
len is ignored (and may be 0). Also, data can be NULL in which case len is ignored (no

../rfcm/rfcmd.htm#6083611

106 ATMI C Function Reference

application data is passed to the conversational service). The type and subtype of data must
match one of the types and subtypes recognized by svc. data and len are passed to the
conversational service via the TPSVCINFO structure with which the service is invoked; the service
does not have to call tprecv() to get the data.

The following is a list of valid flags:

TPNOTRAN
If the caller is in transaction mode and this flag is set, then when svc is invoked, it is not
performed on behalf of the caller’s transaction. Note that svc may still be invoked in
transaction mode but it will not be the same transaction: a svc may have as a configuration
attribute that it is automatically invoked in transaction mode. A caller in transaction mode
that sets this flag is still subject to the transaction timeout (and no other). If a service fails
that was invoked with this flag, the caller’s transaction is not affected.

TPSENDONLY
The caller wants the connection to be set up initially such that it can only send data and
the called service can only receive data (that is, the caller initially has control of the
connection). Either TPSENDONLY or TPRECVONLY must be specified.

TPRECVONLY
The caller wants the connection to be set up initially such that it can only receive data and
the called service can only send data (that is, the service being called initially has control
of the connection). Either TPSENDONLY or TPRECVONLY must be specified.

TPNOBLOCK
The connection is not established and the data is not sent if a blocking condition exists (for
example, the data buffers through which the message is sent are full). Note that this flag
applies only to the send portion of tpconnect(); the function may block waiting for an
acknowledgement from the server. When TPNOBLOCK is not specified and a blocking
condition exists, the caller blocks until the condition subsides or a blocking timeout or
transaction timeout occurs.

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts will still affect the program.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted call is reissued.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tpconnect().

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 107

Return Values
Upon successful completion, tpconnect() returns a descriptor that is used to refer to the
connection in subsequent calls. Otherwise it returns -1 and sets tperrno to indicate the error
condition.

Errors
Upon failure, tpconnect() sets tperrno to one of the following values. (Unless otherwise
noted, failure does not affect the caller’s transaction, if one exists.)

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPEINVAL]
Invalid arguments were given (for example, svc is NULL, data is non-NULL and does
not point to a buffer allocated by tpalloc(), TPSENDONLY or TPRECVONLY was not
specified in flags, or flags are otherwise invalid).

[TPEITYPE]
The type and subtype of data is not one of the allowed types and subtypes that svc
accepts.

[TPELIMIT]
The caller’s request was not sent because the maximum number of outstanding
connections has been reached.

[TPENOENT]
Cannot initiate a connection to svc because it does not exist or is not a conversational
service.

[TPEOS]
An operating system error has occurred.

[TPEPROTO]
tpconnect() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPETIME]
This error code indicates that either a timeout has occurred or tpconnect() has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

108 ATMI C Function Reference

If the caller is in transaction mode, then either the transaction is already rollback only or
a transaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout cannot
occur if TPNOBLOCK and/or TPNOTIME is specified.)

If a transaction timeout has occurred, then, with one exception, any attempts to start new
conversations, send new requests, or receive outstanding replies will fail with TPETIME
until the transaction has been aborted. The exception is a request that does not block,
expects no reply, and is not sent on behalf of the caller’s transaction (that is, tpacall()
with TPNOTRAN, TPNOBLOCK, and TPNOREPLY set).

When a service fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY state. This state is treated, for most purposes, as though it were
equivalent to a timeout. All further ATMI calls for this transaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPETRAN]
svc belongs to a program that does not support transactions and TPNOTRAN was not set.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

See Also
tpalloc(3c),tpdiscon(3c), tprecv(3c), tpsend(3c), tpservice(3c)

tpconvert(3c)

Name
tpconvert()—Converts structures to/from string representations.

Synopsis
#include <atmi.h>

#include <xa.h>

int tpconvert(char *strrep, char *binrep, long flags)

Description
tpconvert() converts the string representation of interface structures (strrep) to or from the
binary representation (binrep).

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 109

Both the direction of the conversion and the interface structure type are determined from the
flags argument. To convert a structure from binary representation to string representation, the
programmer must set the TPTOSTRING bit in flags. To convert a structure from string to binary
the programmer must clear the bit. The following flags are defined to indicate the particular
structure type to be converted; only one may be specified at a time:

TPCONVCLTID
Convert CLIENTID (see atmi.h).

TPCONVTRANID
Convert TPTRANID (see atmi.h).

TPCONVXID
Convert XID (see xa.h).

For conversions from binary to string representation, strrep should be at least TPCONVMAXSTR
characters in length.

Note that unequal string versions of TPTRANID and XID values may be considered equal by the
system when accessing TM_MIB(5) classes that allow these values as key fields (for example,
T_TRANSACTION or T_ULOG). Therefore, string values for these data types should not be
fabricated or manipulated by application programs. TM_MIB(5) guarantees that only objects
matching the global transaction identified by the string are returned when one of these values is
used as a key field.

A thread in a multithreaded application may issue a call to tpconvert() while running in any
context state, including TPINVALIDCONTEXT.

Return Values
Upon failure, tpconvert() returns -1 and sets tperrno to indicate the error condition.

Errors
Under the following conditions, tpconvert() fails and sets tperrno to one of the following
values:

[TPEINVAL]
Invalid arguments were specified. strrep or binrep is a NULL pointer, or flags does
not indicate exactly one structure type.

[TPEOS]
An operating system error has occurred. A numeric value representing the system call that
failed is available in Uunixerr.

../rf5/rf5.htm#1980515
../rf5/rf5.htm#1980515

110 ATMI C Function Reference

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to
userlog(3c).

Portability
This interface is available only on BEA Tuxedo ATMI release 5.0 or later. This interface is
available on workstation platforms.

See Also
tpresume(3c), tpservice(3c), tpsuspend(3c), tx_info(3c), TM_MIB(5)

tpconvmb(3c)

Name
tpconvmb()—Converts encoding of characters in an input buffer to a named target encoding.

Synopsis
#include <atmi.h>

extern int tperrno;

int

tpconvmb (char **bufp, int *len, char *target_encoding, long flags)

Description
This function is used to convert an input buffer to a desired codeset encoding.

This function is added for user convenience and is not required for normal codeset data
conversion that is done automatically.

The bufp argument is a valid pointer to an MBSTRING typed buffer message. This pointer will
be reallocated internally if the size of the buffer is insufficient to handle the output data of the
converted buffer.

The len argument, on input, contains the number of bytes that need to be converted. Upon
successful completion of conversion it will contain the number of bytes used in bufp.

The target_encoding argument is the target codeset encoding name used to convert the typed
buffer provided in the bufp message.

The flags argument is not used by the Tuxedo conversion code. It will be passed along to the
buffer type switch function for user defined conversion functions.

../rf5/rf5.htm#1980515

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 111

Return Values
Upon success, tpconvmb() returns 0. This function returns -1 on error and sets tperrno as
described below. The function may fail for the following reasons.

[TPEINVAL]
target_encoding, len, or bufp arguments are NULL. len or target_encoding is
invalid.

[TPEPROTO]
bufp translates to a Tuxedo buffer that does not have a buffer typeswitch conversion
function

[TPESYSTEM]
A Tuxedo system error has occurred. (e.g. bufp does not correspond to a valid Tuxedo
buffer).

[TPEOS]
An operating system error has occurred. A numeric value representing the system call that
failed is available in Uunixerr.

See Also
tpalloc(3c), tpgetmbenc(3c), tpsetmbenc(3c)

tpcryptpw(3c)

Name
tpcryptpw()—Encrypts the application password in an administrative request.

Synopsis
#include <atmi.h>

#include <fml32.h>

int tpcryptpw(FBFR32 *buf)

Description
tpcryptpw() is used to encrypt the application password stored in an administrative request
buffer prior to sending the request for servicing. Application passwords are stored as string values
using the FML32 field identifier TA_PASSWORD. This encryption is necessary to insure that clear

112 ATMI C Function Reference

text passwords are not compromised and that appropriate propagation of the update can take place
to all active application sites. Additional system fields may be added to the callers buffer and
existing fields may be modified to satisfy the request.

A thread in a multithreaded application may issue a call to tpcryptpw() while running in any
context state, including TPINVALIDCONTEXT.

Return Values
Upon failure, tpcryptpw() returns -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpcryptpw() sets tperrno to one of the following values:

[TPEINVAL]
Invalid arguments were specified. The buf value is NULL, does not point to a FML32
typed buffer or appdir could not be determined from the input buffer or the environment.

[TPEPERM]
The calling process did not have the appropriate permissions necessary to perform the
requested task.

[TPEOS]
An operating system error has occurred. A numeric value representing the system call that
failed is available in Uunixerr.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to
userlog(3c).

Portability
This interface is available only on UNIX system sites running BEA Tuxedo ATMI release 5.0 or
later. This interface is not available to Workstation clients.

Files
${TUXDIR}/lib/libtmib.a, ${TUXDIR}/lib/libtmib.so.rel

See Also
MIB(5), TM_MIB(5)

Setting Up a BEA Tuxedo Application

Administering a BEA Tuxedo Application at Run Time

../rf5/rf5.htm#8244015
../rf5/rf5.htm#1980515

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 113

tpdequeue(3c)

Name
tpdequeue()—Routine to dequeue a message from a queue.

Synopsis
#include <atmi.h>

int tpdequeue(char *qspace, char *qname, TPQCTL *ctl, char **data, long

*len, long flags)

Description
tpdequeue() takes a message for processing from the queue named by qname in the qspace
queue space.

By default, the message at the top of the queue is dequeued. The order of messages on the queue
is defined when the queue is created. The application can request a particular message for
dequeuing by specifying its message identifier or correlation identifier using the ctl parameter.
ctl flags can also be used to indicate that the application wants to wait for a message, in the case
when a message is not currently available. It is possible to use the ctl parameter to look at a
message without removing it from the queue or changing its relative position on the queue. See
the section below describing this parameter.

data is the address of a pointer to the buffer into which a message is read, and len points to the
length of that message. *data must point to a buffer originally allocated by tpalloc(). If a
message is larger than the buffer passed to tpdequeue, the buffer is increased in size to
accommodate the message. To determine whether a message buffer changed in size, compare its
(total) size before tpdequeue() was issued with *len. If *len is larger, then the buffer has
grown; otherwise, the buffer has not changed size. Note that *data may change for reasons other
than the buffer’s size increased. If *len is 0 upon return, then the message dequeued has no data
portion and neither *data nor the buffer it points to were modified. It is an error for *data or len
to be NULL.

The message is dequeued in transaction mode if the caller is in transaction mode and the
TPNOTRAN flag is not set. This has the effect that if tpdequeue() returns successfully and the
caller’s transaction is committed successfully, then the message is removed from the queue. If the
caller’s transaction is rolled back either explicitly or as the result of a transaction timeout or some
communication error, then the message will be left on the queue (that is, the removal of the
message from the queue is also rolled back). It is not possible to enqueue and dequeue the same
message within the same transaction.

114 ATMI C Function Reference

The message is not dequeued in transaction mode if either the caller is not in transaction mode,
or the TPNOTRAN flag is set. When not in transaction mode, if a communication error or a timeout
occurs, the application will not know whether or not the message was successfully dequeued and
the message may be lost.

The following is a list of valid flags:

TPNOTRAN
If the caller is in transaction mode and this flag is set, the message is not dequeued within
the caller’s transaction. A caller in transaction mode that sets this flag is still subject to the
transaction timeout (and no other) when dequeuing the message. If message dequeuing
fails, the caller’s transaction is not affected.

TPNOBLOCK
The message is not dequeued if a blocking condition exists. If this flag is set and a
blocking condition exists such as the internal buffers into which the message is transferred
are full, the call fails and tperrno is set to TPEBLOCK. If this flag is set and a blocking
condition exists because the target queue is opened exclusively by another application, the
call fails, tperrno is set to TPEDIAGNOSTIC, and the diagnostic field of the TPQCTL
structure is set to QMESHARE. In the latter case, the other application, which is based on a
BEA product other than the BEA Tuxedo ATMI system, opened the queue for exclusive
read and/or write using the Queuing Services API (QSAPI).

When TPNOBLOCK is not set and a blocking condition exists, the caller blocks until the
condition subsides or a timeout occurs (either transaction or blocking timeout). This
blocking condition does not include blocking on the queue itself if the TPQWAIT option in
flags (of the TPQCTL structure) is specified.

TPNOTIME
Setting this flag signifies that the caller is willing to block indefinitely and wants to be
immune to blocking timeouts. Transaction timeouts may still occur.

TPNOCHANGE
When this flag is set, the type of the buffer pointed to by *data is not allowed to change.
By default, if a buffer is received that differs in type from the buffer pointed to by *data,
then *data’s buffer type changes to the received buffer’s type so long as the receiver
recognizes the incoming buffer type. That is, the type and subtype of the dequeued
message must match the type and subtype of the buffer pointed to by *data.

TPSIGRSTRT
Setting this flag indicates that any underlying system calls that are interrupted by a signal
should be reissued. When this flag is not set and a signal interrupts a system call, the call
fails and sets tperrno to TPGOTSIG.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 115

If tpdequeue() returns successfully, the application can retrieve additional information about
the message using the ctl data structure. The information may include the message identifier for
the dequeued message; a correlation identifier that should accompany any reply or failure
message so that the originator can correlate the message with the original request; the quality of
service the message was delivered with, the quality of service any replies to the message should
be delivered with; the name of a reply queue if a reply is desired; and the name of the failure queue
on which the application can queue information regarding failure to dequeue the message. These
are described below.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tpdequeue().

Control Parameter
The TPQCTL structure is used by the application program to pass and retrieve parameters
associated with dequeuing the message. The flags element of TPQCTL is used to indicate what
other elements in the structure are valid.

On input to tpdequeue(), the following elements may be set in the TPQCTL structure:

long flags; /* indicates which of the values

 * are set */

char msgid[32]; /* ID of message to dequeue */

char corrid[32]; /* correlation identifier of

 * message to dequeue */

The following is a list of valid bits for the flags parameter controlling input information for
tpdequeue():

TPNOFLAGS

No flags are set. No information is taken from the control structure.

TPQGETBYMSGID

Setting this flag requests that the message with the message identifier specified by
ctl−>msgid be dequeued. The message identifier may be acquired by a prior call to
tpenqueue(3c). Note that a message identifier changes if the message has moved from
one queue to another. Note also that the entire 32 bytes of the message identifier value are
significant, so the value specified by ctl−>msgid must be completely initialized (for
example, padded with NULL characters).

TPQGETBYCORRID

Setting this flag requests that the message with the correlation identifier specified by
ctl−>corrid be dequeued. The correlation identifier is specified by the application when
enqueuing the message with tpenqueue(). Note that the entire 32 bytes of the correlation

116 ATMI C Function Reference

identifier value are significant, so the value specified by ctl−>corrid must be completely
initialized (for example, padded with NULL characters).

TPQWAIT
Setting this flag indicates that an error should not be returned if the queue is empty.
Instead, the process should wait until a message is available. If TPQWAIT is set in
conjunction with TPQGETBYMSGID or TPQGETBYCORRID, it indicates that an error should
not be returned if no message with the specified message identifier or correlation identifier
is present in the queue. Instead, the process should wait until a message meeting the
criteria is available. The process is still subject to the caller’s transaction timeout, or, when
not in transaction mode, the process is subject to the timeout specified on the TMQUEUE
process by the -t option.

If a message matching the desired criteria is not immediately available and the configured
action resources are exhausted, tpdequeue returns -1, tperrno is set to TPEDIAGNOSTIC,
and the diagnostic field of the TPQCTL structure is set to QMESYSTEM.

Note that each tpdequeue() request specifying the TPQWAIT control parameter requires
that a queue manager (TMQUEUE) action object be available if a message satisfying the
condition is not immediately available. If an action object is not available, the
tpdequeue() request fails. The number of available queue manager actions are specified
when a queue space is created or modified. When a waiting dequeue request completes,
the associated action object associated is made available for another request.

TPQPEEK

If this flag is set, the specified message is read but is not removed from the queue. This
flag implies the TPNOTRAN flag has been set for the tpdequeue() operation. That is,
non-destructive dequeuing is non-transactional. Note that it is not possible to read
messages enqueued or dequeued within a transaction before the transaction completes.

When a thread is non-destructively dequeuing a message using TPQPEEK, the message
may not be seen by other non-blocking dequeuers for the brief time the system is
processing the non-destructive dequeue request. This includes dequeuers using specific
selection criteria (such as message identifier and correlation identifier) that are looking for
the message currently being non-destructively dequeued.

On output from tpdequeue(), the following elements may be set in the TPQCTL structure:

long flags; /* indicates which of the values

 * should be set */

long priority; /* enqueue priority */

char msgid[32]; /* ID of message dequeued */

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 117

char corrid[32]; /* correlation identifier used to

 * identify the message */

long delivery_qos; /* delivery quality of service */

long reply_qos; /* reply message quality of service */

char replyqueue[16]; /* queue name for reply */

char failurequeue[16]; /* queue name for failure */

long diagnostic; /* reason for failure */

long appkey; /* application authentication client

 * key */

long urcode; /* user-return code */

CLIENTID cltid; /* client identifier for originating

 * client */

The following is a list of valid bits for the flags parameter controlling output information from
tpdequeue(). For any of these bits, if the flag bit is turned on when tpdequeue() is called, the
associated element in the structure is populated with the value provided when the message was
queued, and the bit remains set. If a value is not available or the bit is not set when tpdequeue()
is called, tpdequeue() completes with the flag turned off.

TPQPRIORITY
If this flag is set, the call to tpdequeue() is successful, and the message was queued with
an explicit priority, then the priority is stored in ctl−>priority. The priority is in the
range 1 to 100, inclusive, and the higher the number, the higher the priority (that is, a
message with a higher number is dequeued before a message with a lower number). For
queues not ordered by priority, the value is informational.

If no priority was explicitly specified when the message was queued and the call to
tpdequeue() is successful, the priority for the message is 50.

TPQMSGID
If this flag is set and the call to tpdequeue() is successful, the message identifier is stored
in ctl−>msgid. The entire 32 bytes of the message identifier value are significant.

TPQCORRID
If this flag is set, the call to tpdequeue() is successful, and the message was queued with
a correlation identifier, then the correlation identifier is stored in ctl−>corrid. The entire
32 bytes of the correlation identifier value are significant. Any BEA Tuxedo ATMI /Q
provided reply to a message has the correlation identifier of the original request message.

TPQDELIVERYQOS

If this flag is set, the call to tpdequeue() is successful, and the message was queued with
a delivery quality of service, then the flag—TPQQOSDEFAULTPERSIST,

118 ATMI C Function Reference

TPQQOSPERSISTENT, or TPQQOSNONPERSISTENT—is stored in ctl->delivery_qos. If
no delivery quality of service was explicitly specified when the message was queued, the
default delivery policy of the target queue dictates the delivery quality of service for the
message.

TPQREPLYQOS

If this flag is set, the call to tpdequeue() is successful, and the message was queued with
a reply quality of service, then the flag—TPQQOSDEFAULTPERSIST, TPQQOSPERSISTENT,
or TPQQOSNONPERSISTENT—is stored in ctl->reply_qos. If no reply quality of service
was explicitly specified when the message was queued, the default delivery policy of the
ctl->replyqueue queue dictates the delivery quality of service for any reply.

Note that the default delivery policy is determined when the reply to a message is
enqueued. That is, if the default delivery policy of the reply queue is modified between
the time that the original message is enqueued and the reply to the message is enqueued,
the policy used is the one in effect when the reply is finally enqueued.

TPQREPLYQ
If this flag is set, the call to tpdequeue() is successful, and the message was queued with
a reply queue, then the name of the reply queue is stored in ctl−>replyqueue. Any reply
to the message should go to the named reply queue within the same queue space as the
request message.

TPQFAILUREQ
If this flag is set, the call to tpdequeue() is successful, and the message was queued with
a failure queue, then the name of the failure queue is stored in ctl−>failurequeue. Any
failure message should go to the named failure queue within the same queue space as the
request message.

The following remaining bits for the flags parameter are cleared (set to zero) when
tpdequeue() is called: TPQTOP, TPQBEFOREMSGID, TPQTIME_ABS, TPQTIME_REL,
TPQEXPTIME_ABS, TPQEXPTIME_REL, and TPQEXPTIME_NONE. These bits are valid bits for the
flags parameter controlling input information for tpenqueue().

If the call to tpdequeue() failed and tperrno is set to TPEDIAGNOSTIC, a value indicating the
reason for failure is returned in ctl−>diagnostic. The possible values are defined below in the
Diagnostics section.

Additionally on output, if the call to tpdequeue() is successful, ctl−>appkey is set to the
application authentication key, ctl−>cltid is set to the identifier for the client originating the
request, and ctl−>urcode is set to the user-return code value that was set when the message was
enqueued.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 119

If the ctl parameter is NULL, the input flags are considered to be TPNOFLAGS, and no output
information is made available to the application program.

Return Values
Upon failure, tpdequeue() returns -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpdequeue() sets tperrno to one of the following values. (Unless otherwise
noted, failure does not affect the caller’s transaction, if one exists.)

[TPEINVAL]
Invalid arguments were given (for example, qname is NULL, data does not point to space
allocated with tpalloc() or flags are invalid).

[TPENOENT]
Cannot access the qspace because it is not available (that is, the associated TMQUEUE(5)
server is not available), or cannot start a global transaction due to the lack of entries in the
Global Transaction Table (GTT).

[TPEOTYPE]
Either the type and subtype of the dequeued message are not known to the caller; or,
TPNOCHANGE was set in flags and the type and subtype of *data do not match the type
and subtype of the dequeued message. In either case, *data, its contents, and *len are not
changed. When the call is made in transaction mode and this error occurs, the transaction
is marked abort-only, and the message remains on the queue.

[TPETIME]
This error code indicates that either a timeout has occurred or tpdequeue() has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller is in transaction mode, then either the transaction is already rollback only or
a transaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout cannot
occur if TPNOBLOCK and/or TPNOTIME is specified.) In either case, no changes are made to
*data, its contents, or *len.

If a transaction timeout has occurred, then, with one exception, any attempts to perform
further conversational work, send new requests, or receive outstanding replies will fail
with TPETIME until the transaction has been aborted. The exception is a request that does
not block, expects no reply, and is not sent on behalf of the caller’s transaction (that is,
tpacall() with TPNOTRAN, TPNOBLOCK, and TPNOREPLY set).

../rf5/rf5.htm#5695415

120 ATMI C Function Reference

When a service fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY state. This state is treated, for most purposes, as though it were
equivalent to a timeout. All further ATMI calls for this transaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpdequeue() was called improperly. There is no effect on the queue or the transaction.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file. There is no effect on the queue.

[TPEOS]
An operating system error has occurred. There is no effect on the queue.

[TPEDIAGNOSTIC]
Dequeuing a message from the specified queue failed. The reason for failure can be
determined by the diagnostic value returned via ctl structure.

Diagnostic
The following diagnostic values are returned during the dequeuing of a message:

[QMEINVAL]
An invalid flag value was specified.

[QMEBADRMID]
An invalid resource manager identifier was specified.

[QMENOTOPEN]
The resource manager is not currently open.

[QMETRAN]
The call was not in transaction mode or was made with the TPNOTRAN flag set and an error
occurred trying to start a transaction in which to dequeue the message. This diagnostic is
not returned by queue managers from BEA Tuxedo release 7.1 or later.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 121

[QMEBADMSGID]
An invalid message identifier was specified for dequeuing.

[QMESYSTEM]
A system error has occurred. The exact nature of the error is written to a log file.

[QMEOS]
An operating system error has occurred.

[QMEABORTED]
The operation was aborted. When executed within a global transaction, the global
transaction has been marked rollback-only. Otherwise, the queue manager aborted the
operation.

[QMEPROTO]
A dequeue was done when the transaction state was not active.

[QMEBADQUEUE]
An invalid or deleted queue name was specified.

[QMENOMSG]
No message was available for dequeuing. Note that it is possible that the message exists
on the queue and another application process has read the message from the queue. In this
case, the message may be put back on the queue if that other process rolls back the
transaction.

[QMEINUSE]
When dequeuing a message by message identifier or correlation identifier, the specified
message is in use by another transaction. Otherwise, all messages currently on the queue
are in use by other transactions. This diagnostic is not returned by queue managers from
BEA Tuxedo release 7.1 or later.

[QMESHARE]
When dequeuing a message from a specified queue, the specified queue is opened
exclusively by another application. The other application is one based on a BEA product
other than the BEA Tuxedo system that opened the queue for exclusive read and/or write
using the Queuing Services API (QSAPI).

See Also
qmadmin(1), tpalloc(3c), tpenqueue(3c), APPQ_MIB(5), TMQUEUE(5)

../rfcm/rfcmd.htm#9270011
../rf5/rf5.htm#3813815
../rf5/rf5.htm#5695415

122 ATMI C Function Reference

tpdiscon(3c)

Name
tpdiscon()—Routine for taking down a conversational service connection.

Synopsis
#include <atmi.h>

int tpdiscon(int cd)

Description
tpdiscon() immediately tears down the connection specified by cd and generates a
TPEV_DISCONIMM event on the other end of the connection.

tpdiscon() can be called only by the initiator of the conversation. tpdiscon() cannot be called
within a conversational service on the descriptor with which it was invoked. Rather, a
conversational service must use tpreturn() to signify that it has completed its part of the
conversation. Similarly, even though a program communicating with a conversational service can
issue tpdiscon(), the preferred way is to let the service tear down the connection in
tpreturn(); doing so ensures correct results.

tpdiscon() causes the connection to be torn down immediately (that is, abortive rather than
orderly). Any data that has not yet reached its destination may be lost. tpdiscon() can be issued
even when the program on the other end of the connection is participating in the caller’s
transaction. In this case, the transaction must be aborted. Also, the caller does not need to have
control of the connection when tpdiscon() is called.

Return Values
Upon failure, tpdiscon() returns -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpdiscon() sets tperrno to one of the following values:

[TPEBADDESC]
cd is invalid or is the descriptor with which a conversational service was invoked.

[TPETIME]
This error code indicates that either a timeout has occurred or tpdiscon() has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 123

If the caller is in transaction mode, then either the transaction is already rollback only or
a transaction timeout has occurred. The transaction is marked abort-only. (Note that
calling tpdiscon() on a connection in the caller’s transaction would have resulted in the
transaction being marked abort-only, even if tpdiscon() had succeeded.)

If the caller is not in transaction mode, a blocking timeout has occurred.

If a transaction timeout has occurred, then, with one exception, any attempts to perform
further conversational work, send new requests, or receive outstanding replies will fail
with TPETIME until the transaction has been aborted. The exception is a request that does
not block, expects no reply, and is not sent on behalf of the caller’s transaction (that is,
tpacall() with TPNOTRAN, TPNOBLOCK, and TPNOREPLY set).

When a service fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY state. This state is treated, for most purposes, as though it were
equivalent to a timeout. All further ATMI calls for this transaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPEPROTO]
tpdiscon() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file. The descriptor is no longer valid.

[TPEOS]
An operating system error has occurred. The descriptor is no longer valid.

See Also
tpabort(3c), tpcommit(3c), tpconnect(3c), tprecv(3c), tpreturn(3c), tpsend(3c)

tpenqueue(3c)

Name
tpenqueue()—Routine to enqueue a message.

Synopsis
#include <atmi.h>

int tpenqueue(char *qspace, char *qname, TPQCTL *ctl, char *data, long len,

long flags)

124 ATMI C Function Reference

Description
tpenqueue() stores a message on the queue named by qname in the qspace queue space. A
queue space is a collection of queues, one of which must be qname.

When the message is intended for a BEA Tuxedo ATMI system server, the qname matches the
name of a service provided by the server. The system provided server, TMQFORWARD(5), provides
a default mechanism for dequeuing messages from the queue and forwarding them to servers that
provide a service matching the queue name. If the originator expects a reply, then the reply to the
forwarded service request is stored on the originator’s queue, unless otherwise specified. The
originator will dequeue the reply message at a subsequent time. Queues can also be used for a
reliable message transfer mechanism between any pair of BEA Tuxedo ATMI system processes
(clients and/or servers). In this case, the queue name does not match a service name but some
agreed upon name for transferring the message.

If data is non-NULL, it must point to a buffer previously allocated by tpalloc() and len
should specify the amount of data in the buffer that should be queued. Note that if data points to
a buffer of a type that does not require a length to be specified (for example, an FML fielded
buffer), then len is ignored. If data is NULL, len is ignored and a message is queued with no
data portion.

The message is queued at the priority defined for qspace unless overridden by a previous call to
tpsprio().

If the caller is within a transaction and the TPNOTRAN flag is not set, the message is queued in
transaction mode. This has the effect that if tpenqueue() returns successfully and the caller’s
transaction is committed successfully, then the message is guaranteed to be available subsequent
to the transaction completing. If the caller’s transaction is rolled back either explicitly or as the
result of a transaction timeout or some communication error, then the message will be removed
from the queue (that is, the placing of the message on the queue is also rolled back). It is not
possible to enqueue then dequeue the same message within the same transaction.

The message is not queued in transaction mode if either the caller is not in transaction mode, or
the TPNOTRAN flag is set. Once tpenqueue() returns successfully, the submitted message is
guaranteed to be in the queue. When not in transaction mode, if a communication error or a
timeout occurs, the application will not know whether or not the message was successfully stored
on the queue.

The order in which messages are placed on the queue is controlled by the application via ctl data
structure as described below; the default queue ordering is set when the queue is created.

The following is a list of valid flags:

../rf5/rf5.htm#9209715

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 125

TPNOTRAN
If the caller is in transaction mode and this flag is set, the message is not queued within
the caller’s transaction. A caller in transaction mode that sets this flag is still subject to the
transaction timeout (and no other) when queuing the message. If message queuing fails,
the caller’s transaction is not affected.

TPNOBLOCK
The message is not enqueued if a blocking condition exists. If this flag is set and a
blocking condition exists such as the internal buffers into which the message is transferred
are full, the call fails and tperrno is set to TPEBLOCK. If this flag is set and a blocking
condition exists because the target queue is opened exclusively by another application, the
call fails, tperrno is set to TPEDIAGNOSTIC, and the diagnostic field of the TPQCTL
structure is set to QMESHARE. In the latter case, the other application, which is based on a
BEA product other than the BEA Tuxedo ATMI system, opened the queue for exclusive
read and/or write using the Queuing Services API (QSAPI).

When TPNOBLOCK is not set and a blocking condition exists, the caller blocks until the
condition subsides or a timeout occurs (either transaction or blocking timeout). If a
timeout occurs, the call fails and tperrno is set to TPETIME.

TPNOTIME
Setting this flag signifies that the caller is willing to block indefinitely and wants to be
immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If this flag is set and a signal interrupts any underlying system calls, the interrupted system
call is reissued. If TPSIGRSTRT is not set and a signal interrupts a system call,
tpenqueue() fails and tperrno is set to TPGOTSIG.

Additional information about queuing the message can be specified via ctl data structure. This
information includes values to override the default queue ordering placing the message at the top
of the queue or before an enqueued message; an absolute or relative time after which a queued
message is made available; an absolute or relative time when a message expires and is removed
from the queue; the quality of service for delivering the message; the quality of service that any
replies to the message should use; a correlation identifier that aids in correlating a reply or failure
message with the queued message; the name of a queue to which a reply should be enqueued; and
the name of a queue to which any failure message should be enqueued.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tpenqueue().

126 ATMI C Function Reference

Control Parameter
The TPQCTL structure is used by the application program to pass and retrieve parameters
associated with enqueuing the message. The flags element of TPQCTL is used to indicate what
other elements in the structure are valid.

On input to tpenqueue(), the following elements may be set in the TPQCTL structure:

long flags; /* indicates which of the values

 * are set */

long deq_time; /* absolute/relative for dequeuing */

long priority; /* enqueue priority */

long exp_time /* expiration time */

long delivery_qos /* delivery quality of service */

long reply_qos /* reply quality of service */

long urcode; /* user-return code */

char msgid[32]; /* ID of message before which to queue

 * request */

char corrid[32]; /* correlation identifier used to

 * identify the msg */

char replyqueue[16]; /* queue name for reply message */

char failurequeue[16]; /* queue name for failure message */

The following is a list of valid bits for the flags parameter controlling input information for
tpenqueue():

TPNOFLAGS
No flags or values are set. No information is taken from the control structure.

TPQTOP
Setting this flag indicates that the queue ordering be overridden and the message placed
at the top of the queue. This request may not be granted depending on whether or not the
queue was configured to allow overriding the queue ordering. TPQTOP and
TPQBEFOREMSGID are mutually exclusive flags.

TPQBEFOREMSGID
Setting this flag indicates that the queue ordering be overridden and the message placed
in the queue before the message identified by ctl−>msgid. This request may not be
granted depending on whether or not the queue was configured to allow overriding the
queue ordering. TPQTOP and TPQBEFOREMSGID are mutually exclusive flags. Note that the
entire 32 bytes of the message identifier value are significant, so the value identified by
ctl−>msgid must be completely initialized (for example, padded with NULL characters).

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 127

TPQTIME_ABS

If this flag is set, the message is made available after the time specified by
ctl−>deq_time. The deq_time is an absolute time value as generated by time(2),
mktime(3C), or gp_mktime(3c) (the number of seconds since 00:00:00 Universal
Coordinated Time—UTC, January 1, 1970). TPQTIME_ABS and TPQTIME_REL are
mutually exclusive flags. The absolute time is determined by the clock on the machine
where the queue manager process resides.

TPQTIME_REL

If this flag is set, the message is made available after a time relative to the completion of
the enqueuing operation. ctl−>deq_time specifies the number of seconds to delay after
the enqueuing completes before the submitted message should be available.
TPQTIME_ABS and TPQTIME_REL are mutually exclusive flags.

TPQPRIORITY

If this flag is set, the priority at which the message should be enqueued is stored in
ctl−>priority. The priority must be in the range 1 to 100, inclusive. The higher the
number, the higher the priority (that is, a message with a higher number is dequeued
before a message with a lower number). For queues not ordered by priority, this value is
informational.

If this flag is not set, the priority for the message is 50 by default.

TPQCORRID

If this flag is set, the correlation identifier value specified in ctl−>corrid is available
when a message is dequeued with tpdequeue(). This identifier accompanies any reply
or failure message that is queued so that an application can correlate a reply with a
particular request. Note that the entire 32 bytes of the correlation identifier value are
significant, so the value specified in ctl−>corrid must be completely initialized (for
example, padded with NULL characters).

TPQREPLYQ

If this flag is set, a reply queue named in ctl−>replyqueue is associated with the queued
message. Any reply to the message will be queued to the named queue within the same
queue space as the request message. This string must be NULL terminated (maximum 15
characters in length).

TPQFAILUREQ

If this flag is set, a failure queue named in the ctl−>failurequeue is associated with the
queued message. If (1) the enqueued message is processed by TMQFORWARD(), (2)
TMQFORWARD was started with the -d option, and (3) the service fails and returns a
non-NULL reply, a failure message consisting of the reply and its associated tpurcode is

128 ATMI C Function Reference

enqueued to the named queue within the same queue space as the original request
message. This string must be NULL-terminated (maximum 15 characters in length).

TPQDELIVERYQOS, TPQREPLYQOS
If the TPQDELIVERYQOS flag is set, the flags specified by ctl->delivery_qos control
the quality of service for delivery of the message. In this case, one of three mutually
exclusive flags— TPQQOSDEFAULTPERSIST, TPQQOSPERSISTENT, or
TPQQOSNONPERSISTENT—must be set in ctl->delivery_qos. If TPQDELIVERYQOS is
not set, the default delivery policy of the target queue dictates the delivery quality of
service for the message.

If the TPQREPLYQOS flag is set, the flags specified by ctl->reply_qos control the quality
of service for any reply to the message. In this case, one of three mutually exclusive
flags—TPQQOSDEFAULTPERSIST, TPQQOSPERSISTENT, or TPQQOSNONPERSISTENT—
must be set in ctl->reply_qos. The TPQREPLYQOS flag is used when a reply is returned
from messages processed by TMQFORWARD. Applications not using TMQFORWARD to invoke
services may use the TPQREPLYQOS flag as a hint for their own reply mechanism.

If TPQREPLYQOS is not set, the default delivery policy of the ctl->replyqueue queue
dictates the delivery quality of service for any reply. Note that the default delivery policy
is determined when the reply to a message is enqueued. That is, if the default delivery
policy of the reply queue is modified between the time that the original message is
enqueued and the reply to the message is enqueued, the policy used is the one in effect
when the reply is finally enqueued.

The following is the list of valid flags for ctl->delivery_qos and ctl->reply_qos:

TPQQOSDEFAULTPERSIST

This flag specifies that the message is to be delivered using the default delivery
policy specified on the target queue.

TPQQOSPERSISTENT

This flag specifies that the message is to be delivered in a persistent manner using
the disk-based delivery method. Setting this flag overrides the default delivery
policy specified on the target queue.

TPQQOSNONPERSISTENT

This flag specifies that the message is to be delivered in a non-persistent manner
using the memory-based delivery method. Specifically, the message is queued in
memory until it is dequeued. Setting this flag overrides the default delivery policy
specified on the target queue. If the caller is transactional, non-persistent messages
are enqueued within the caller’s transaction, however, non-persistent messages are
lost if the system is shut down, crashes, or the IPC shared memory for the queue
space is removed.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 129

TPQEXPTIME_ABS

If this flag is set, the message has an absolute expiration time, which is the absolute time
when the message will be removed from the queue.
The absolute expiration time is determined by the clock on the machine where the queue
manager process resides.

The absolute expiration time is indicated by the value stored in ctl->exp_time. The
value of ctl->exp_time must be set to an absolute time value generated by time(2),
mktime(3C), or gp_mktime(3c) (the number of seconds since 00:00:00 Universal
Coordinated Time—UTC, January 1, 1970).

If an absolute time is specified that is earlier than the time of the enqueue operation, the
operation succeeds, but the message is not counted for the purpose of calculating
thresholds. If the expiration time is before the message availability time, the message is
not available for dequeuing unless either the availability or expiration time is changed so
that the availability time is before the expiration time. In addition, these messages are
removed from the queue at expiration time even if they were never available for
dequeuing. If a message expires while it is within a transaction, the expiration does not
cause the transaction to fail. Messages that expire while being enqueued or dequeued
within a transaction are removed from the queue when the transaction ends. There is no
notification that the message has expired.

TPQEXPTIME_ABS, TPQEXPTIME_REL, and TPQEXPTIME_NONE are mutually exclusive
flags. If none of these flags is set, the default expiration time associated with the target
queue is applied to the message.

TPQEXPTIME_REL

If this flag is set, the message has a relative expiration time, which is the number of
seconds after the message arrives at the queue that the message is removed from the
queue. The relative expiration time is indicated by the value stored in ctl->exp_time.

If the expiration time is before the message availability time, the message is not available
for dequeuing unless either the availability or expiration time is changed so that the
availability time is before the expiration time. In addition, these messages are removed
from the queue at expiration time even if they were never available for dequeuing. The
expiration of a message during a transaction, does not cause the transaction to fail.
Messages that expire while being enqueued or dequeued within a transaction are removed
from the queue when the transaction ends. There is no acknowledgment that the message
has expired.

TPQEXPTIME_ABS, TPQEXPTIME_REL, and TPQEXPTIME_NONE are mutually exclusive
flags. If none of these flags is set, the default expiration time associated with the target
queue is applied to the message.

130 ATMI C Function Reference

TPQEXPTIME_NONE

Setting this flag indicates that the message should not expire. This flag overrides any
default expiration policy associated with the target queue. A message can be removed by
dequeuing it or by deleting it via an administrative interface.

TPQEXPTIME_ABS, TPQEXPTIME_REL, and TPQEXPTIME_NONE are mutually exclusive
flags. If none of these flags is set, the default expiration time associated with the target
queue is applied to the message.

Additionally, the urcode element of TPQCTL can be set with a user-return code. This value will
be returned to the application that dequeues the message.

On output from tpenqueue(), the following elements may be set in the TPQCTL structure:

long flags; /* indicates which of the values

 * are set */

char msgid[32]; /* ID of enqueued message */

long diagnostic; /* indicates reason for failure */

The following is a valid bit for the flags parameter controlling output information from
tpenqueue(). If this flag is turned on when tpenqueue() is called, the /Q server TMQUEUE(5)
populates the associated element in the structure with a message identifier. If this flag is turned
off when tpenqueue() is called, TMQUEUE() does not populate the associated element in the
structure with a message identifier.

TPQMSGID
If this flag is set and the call to tpenqueue() is successful, the message identifier is stored
in ctl−>msgid. The entire 32 bytes of the message identifier value are significant, so the
value stored in ctl−>msgid is completely initialized (for example, padded with NULL
characters). The actual padding character used for initialization varies between releases of
the BEA Tuxedo ATMI /Q component.

The remaining members of the control structure are not used on input to tpenqueue().

If the call to tpenqueue() failed and tperrno is set to TPEDIAGNOSTIC, a value indicating the
reason for failure is returned in ctl−>diagnostic. The possible values are defined below in the
Diagnostics section.

If this parameter is NULL, the input flags are considered to be TPNOFLAGS and no output
information is made available to the application program.

Return Values
Upon failure, tpenqueue() returns -1 and sets tperrno to indicate the error condition.
Otherwise, the message has been successfully queued when tpenqueue() returns.

../rf5/rf5.htm#5695415

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 131

Errors
Upon failure, tpenqueue() sets tperrno to one of the following values. (Unless otherwise
noted, failure does not affect the caller’s transaction, if one exists.)

[TPEINVAL]
Invalid arguments were given (for example, qspace is NULL, data does not point to
space allocated with tpalloc(), or flags are invalid).

[TPENOENT]
Cannot access the qspace because it is not available (that is, the associated TMQUEUE(5)
server is not available), or cannot start a global transaction due to the lack of entries in the
Global Transaction Table (GTT).

[TPETIME]
This error code indicates that either a timeout has occurred or tpenqueue() has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller is in transaction mode, then either the transaction is already rollback only or
a transaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout cannot
occur if TPNOBLOCK and/or TPNOTIME is specified.)

If a transaction timeout has occurred, then, with one exception, any attempts to send new
requests or receive outstanding replies will fail with TPETIME until the transaction has
been aborted. The exception is a request that does not block, expects no reply, and is not
sent on behalf of the caller’s transaction (that is, tpacall() with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY set).

When a service fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY state. This state is treated, for most purposes, as though it were
equivalent to a timeout. All further ATMI calls for this transaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpenqueue() was called improperly.

../rf5/rf5.htm#5695415

132 ATMI C Function Reference

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

[TPEDIAGNOSTIC]
Enqueuing a message on the specified queue failed. The reason for failure can be
determined by the diagnostic returned via ctl.

Diagnostic
The following diagnostic values are returned during the enqueuing of a message:

[QMEINVAL]
An invalid flag value was specified.

[QMEBADRMID]
An invalid resource manager identifier was specified.

[QMENOTOPEN]
The resource manager is not currently open.

[QMETRAN]
The call was not in transaction mode or was made with the TPNOTRAN flag set and an error
occurred trying to start a transaction in which to enqueue the message. This diagnostic is
not returned by queue managers from BEA Tuxedo release 7.1 or later.

[QMEBADMSGID]
An invalid message identifier was specified.

[QMESYSTEM]
A system error occurred. The exact nature of the error is written to a log file.

[QMEOS]
An operating system error occurred.

[QMEABORTED]
The operation was aborted. When executed within a global transaction, the global
transaction has been marked rollback-only. Otherwise, the queue manager aborted the
operation.

[QMEPROTO]
An enqueue was done when the transaction state was not active.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 133

[QMEBADQUEUE]
An invalid or deleted queue name was specified.

[QMENOSPACE]
Due to an insufficient resource, such as no space on the queue, the message with its
required quality of service (persistent or non-persistent storage) was not enqueued.
QMENOSPACE is returned when any of the following configured resources is exceeded: (1)
the amount of disk (persistent) space allotted to the queue space, (2) the amount of
memory (non-persistent) space allotted to the queue space, (3) the maximum number of
simultaneously active transactions allowed for the queue space, (4) the maximum number
of messages that the queue space can contain at any one time, (5) the maximum number
of concurrent actions that the Queuing Services component can handle, or (6) the
maximum number of authenticated users that may concurrently use the Queuing Services
component.

[QMERELEASE]
An attempt was made to enqueue a message to a queue manager that is from a version of
the BEA Tuxedo system that does not support a newer feature.

[QMESHARE]
When enqueuing a message from a specified queue, the specified queue is opened
exclusively by another application. The other application is one based on a BEA product
other than the BEA Tuxedo system that opened the queue for exclusive read and/or write
using the Queuing Services API (QSAPI).

See Also
qmadmin(1), gp_mktime(3c), tpacall(3c), tpalloc(3c), tpdequeue(3c), tpinit(3c),
tpsprio(3c), APPQ_MIB(5), TMQFORWARD(5), TMQUEUE(5)

tpenvelope(3c)

Name
tpenvelope()—Accesses the digital signature and encryption information associated with a
typed message buffer.

Synopsis
#include <atmi.h>

int tpenvelope(char *data, long len, int occurrence, TPKEY *outputkey, long

*status, char *timestamp, long flags)

../rfcm/rfcmd.htm#9270011
../rf5/rf5.htm#3813815
../rf5/rf5.htm#9209715
../rf5/rf5.htm#5695415

134 ATMI C Function Reference

Description
tpenvelope() provides access to the following types of digital signature and encryption
information associated with a typed message buffer:

Digital-signature registration requests

A sending process explicitly registers a digital signature request for a message buffer by
calling tpsign(), or implicitly registers a digital signature request for a message buffer by
calling tpkey_open() with the TPKEY_AUTOSIGN flag specified.

Digital signatures

Just before the message buffer is sent, the public key software generates and attaches a
digital signature to the message buffer for each digital-signature registration request; a
digital signature enables a receiving process to verify the signer (originator) of the
message.

Encryption registration requests

A sending process explicitly registers an encryption (seal) request for a message buffer by
calling tpseal(), or implicitly registers an encryption (seal) request for a message buffer
by calling tpkey_open() with the TPKEY_AUTOENCRYPT flag specified.

Encryption envelopes

Just before the message buffer is sent, the public key software encrypts the message
content and attaches an encryption envelope to the message buffer for each encryption
registration request; an encryption envelope enables a receiving process to decrypt the
message.

Signature and encryption information is available to both sending and receiving processes. In a
sending process, digital signature and encryption information is generally in a pending state,
waiting until the message is sent. In a receiving process, digital signatures have already been
verified, and encryption and decryption have already been performed. Failures in decryption or
signature verification might prevent message delivery, in which case the receiving process never
receives the message buffer and therefore has no knowledge of the message buffer.

data must point to a valid typed message buffer either (1) previously allocated by a process
calling tpalloc() or (2) delivered by the system to a receiving process. If the message buffer is
self-describing, len is ignored (and may be 0). Otherwise, len must contain the length of data in
data.

There may be multiple occurrences of digital-signature registration requests, digital signatures,
encryption registration requests, and encryption envelopes associated with a message buffer. The

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 135

occurrences are stored in sequence, with the first item at the zero position and subsequent items
in consecutive positions. The occurrence input parameter indicates which item is requested.
When the value of occurrence is beyond the position of the last item, tpenvelope() fails with
the TPENOENT error condition. All items may be examined by calling tpenvelope() repeatedly
until TPENOENT is returned.

The handle to the key associated with a digital-signature registration request, digital signature,
encryption registration request, or encryption envelope is returned via outputkey. The key
handle returned is a separate copy of the original key opened by calling tpkey_open().
Properties of the key, such as the PRINCIPAL attribute parameter, can be obtained by calling
tpkey_getinfo(). It is the caller’s responsibility to release key handle outputkey by calling
tpkey_close().

Note: If outputkey is NULL, no key handle is returned.

The status output parameter reports the state of the digital-signature registration request, digital
signature, encryption registration request, or encryption envelope. If the value of the status is not
NULL, it is set to one of the following states:

TPSIGN_PENDING

A digital signature has been requested on behalf of the signer principal associated with the
corresponding private key, and will be generated when the message buffer is transmitted
from this process.

TPSIGN_OK

The digital signature has been verified.

TPSIGN_TAMPERED_MESSAGE

The digital signature is not valid because the content of the message buffer has been
altered.

TPSIGN_TAMPERED_CERT

The digital signature is not valid because the signer’s digital certificate has been altered.

TPSIGN_REVOKED_CERT

The digital signature is not valid because the signer’s digital certificate has been revoked.

TPSIGN_POSTDATED

The digital signature is not valid because its timestamp is too far into the future.

TPSIGN_EXPIRED_CERT

The digital signature is not valid because the signer’s digital certificate has expired.

TPSIGN_EXPIRED

The digital signature is not valid because its timestamp is too old.

136 ATMI C Function Reference

TPSIGN_UNKNOWN

The digital signature is not valid because the signer’s digital certificate was issued by an
unknown Certification Authority (CA).

TPSEAL_PENDING

An encryption (seal) has been requested for the recipient principal associated with the
corresponding public key, and will be performed when the message buffer is transmitted
from this process.

TPSEAL_OK

The encryption envelope is valid.

TPSEAL_TAMPERED_CERT

The encryption envelope is not valid because the recipient’s digital certificate has been
altered.

TPSEAL_REVOKED_CERT

The encryption envelope is not valid because the recipient’s digital certificate has been
revoked.

TPSEAL_EXPIRED_CERT

The encryption envelope is not valid because the recipient’s digital certificate has expired.

TPSEAL_UNKNOWN

The encryption envelope is not valid because the recipient’s digital certificate was issued
by an unknown CA.

The timestamp output parameter contains the digital signature’s timestamp according to the
local clock on the machine where the digital signature was generated. The integrity of this value
is protected by the associated digital signature. The memory location indicated by timestamp is
set to the NULL-terminated signature time in format YYYYMMDDHHMMSS, where YYYY=year,
MM=month, DD=day, HH=hour, MM=minute, and SS=second. timestamp may be NULL, in which
case no value is returned. Encryption seals do not contain timestamps, and the memory location
indicated by timestamp is unchanged.

The flags parameter may be set to one of the following values:

TPKEY_REMOVE–The item at position occurrence is removed (that is, it is no longer
associated with the buffer). Output parameters outputkey, status, and timestamp
related to the item are captured before the item is removed. Items at subsequent positions
are shifted down by one, so there are never any gaps in the numbering of occurrence.

TPKEY_REMOVEALL–All items associated with the message buffer are removed. The output
parameters outputkey, status, and timestamp are not returned.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 137

TPKEY_VERIFY–All digital signatures associated with the message buffer are reverified.
The status of a signature may change after reverification. For example, if a message buffer
has been modified by a receiving process, the status of the originator’s signature changes
from TPSIGN_OK to TPSIGN_TAMPERED_MESSAGE.

Return Values
On failure, this function returns -1 and sets tperrno to indicate the error condition.

Errors

[TPEINVAL]
Invalid arguments were given. For example, the value of data is NULL or the value
assigned to flags is unrecognized.

[TPENOENT]
This occurrence does not exist.

[TPESYSTEM]
An error occurred. Consult the system error log file for details.

See Also
tpkey_close(3c), tpkey_getinfo(3c), tpkey_open(3c), tpseal(3c), tpsign(3c)

tperrordetail(3c)

Name
tperrordetail()—Gets additional detail about an error generated from the last BEA Tuxedo
ATMI system call.

Synopsis
#include <atmi.h>

int tperrordetail(long flags)

Description
tperrordetail() returns additional detail related to an error produced by the last BEA Tuxedo
ATMI system routine called in the current thread. tperrordetail() returns a numeric value
that is also represented by a symbolic name. If the last BEA Tuxedo ATMI system routine called
in the current thread did not produce an error, then tperrordetail() will return zero.

138 ATMI C Function Reference

Therefore, tperrordetail() should be called after an error has been indicated; that is, when
tperrno has been set.

Currently flags is reserved for future use and must be set to 0.

A thread in a multithreaded application may issue a call to tperrordetail() while running in
any context state, including TPINVALIDCONTEXT.

Return Values
Upon failure, tperrordetail() returns a -1 and sets tperrno to indicate the error condition.

These are the symbolic names and meaning for each numeric value that tperrordetail() may
return. The order in which these are listed is not significant and does not imply precedence.

TPED_CLIENTDISCONNECTED

A Jolt client is disconnected currently. The TPACK flag is used in a tpnotify() call and
the target of tpnotify() is a currently disconnected Jolt client. When tpnotify() fails,
a subsequent call to tperrordetail() with no intermediate ATMI calls will return
TPED_CLIENTDISCONNECTED.

TPED_DECRYPTION_FAILURE

A process receiving an encrypted message cannot decrypt the message. This error most
likely occurs because the process does not have access to the private key required to
decrypt the message.

When a call fails due to this error, a subsequent call to tperrordetail() with no
intermediate ATMI calls will return TPED_DECRYPTION_FAILURE.

TPED_DOMAINUNREACHABLE

A domain is unreachable. Specifically, a domain configured to satisfy a request that a local
domain cannot service was not reachable when a request was made. After the request
failure, a subsequent call to tperrordetail() with no intermediate ATMI calls will
return TPED_DOMAINUNREACHABLE.

The following table indicates the corresponding values returned by tperrno when calls
to tpcall(), tpgetrply(), or tprecv() fail because of an unreachable domain. The
error detail returned by a subsequent call to tperrordetail() is
TPED_DOMAINUNREACHABLE.

ATMI Call tperrno Error Detail

tpcall TPESVCERR TPED_DOMAINUNREACHABLE

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 139

Note that the TPED_DOMAINUNREACHABLE feature applies to BEA Tuxedo Domains only.
It does not apply to other domains products such as Connect OSI TP Domains and
Connect SNA Domains.

TPED_INVALID_CERTIFICATE

A process receiving a digitally signed message cannot verify the digital signature because
the associated digital certificate is invalid. This error most likely occurs because the digital
certificate has expired, the digital certificate was issued by an unknown Certification
Authority (CA), or the digital certificate has been altered.

When a call fails due to this error, a subsequent call to tperrordetail() with no
intermediate ATMI calls will return TPED_INVALID_CERTIFICATE.

TPED_INVALID_SIGNATURE

A process receiving a digitally signed message cannot verify the digital signature because
the signature is invalid. This error most likely occurs because the message has been
altered, the timestamp for the digital signature is too old, or the timestamp for the digital
signature is too far into the future.

When a call fails due to this error, a subsequent call to tperrordetail() with no
intermediate ATMI calls will return TPED_INVALID_SIGNATURE.

TPED_INVALIDCONTEXT

A thread is blocked in an ATMI call when another thread terminates its context.
Specifically, any thread blocked in an ATMI call when another thread terminates its
context will return from the ATMI call with a failure return; tperrno is set to TPESYSTEM.
A subsequent call to tperrordetail() with no intermediate ATMI calls will return
TPED_INVALIDCONTEXT.

TPED_INVALID_XA_TRANSACTION

An attempt was made to start a transaction but the NO_XA flag was turned on in this
domain.

TPED_NOCLIENT

No client exists. The TPACK flag is used in a tpnotify() call but there is no target for
tpnotify(). When tpnotify() fails, tperrno is set to TPENOENT. A subsequent call to
tperrordetail() with no intermediate ATMI calls will return TPED_NOCLIENT.

tpgetrply TPESVCERR TPED_DOMAINUNREACHABLE

tprecv TPEEVENT
TPEV_SVCERR

TPED_DOMAINUNREACHABLE

140 ATMI C Function Reference

TPED_NOUNSOLHANDLER

A client does not have an unsolicited handler set. The TPACK flag is used in a tpnotify()
call and the target of the tpnotify() is in a BEA Tuxedo ATMI session, but it has not
set an unsolicited notification handler. When tpnotify() fails, tperrno is set to
TPENOENT. A subsequent call to tperrordetail() with no intermediate ATMI calls will
return TPED_NOUNSOLHANDLER.

TPED_SVCTIMEOUT

A server was terminated due to a service timeout. The service timeout is controlled by the
value of SVCTIMEOUT in the UBBCONFIG file or TA_SVCTIMEOUT in T_SERVER and
T_SERVICE classes in the TM_MIB. When a call fails due to this error, a subsequent call to
tperrordetail() with no intermediate ATMI calls will return TPED_SVCTIMEOUT.

TPED_TERM

A Workstation client has been disconnected from the application. When a call fails due to
this error, a subsequent call to tperrordetail() with no intermediate ATMI calls will
return TPED_TERM.

Errors
Upon failure, tperrordetail() sets tperrno to one of the following values:

TPEINVAL

flags not set to zero

See Also
Introduction to the C Language Application-to-Transaction Monitor Interface,
tpstrerrordetail(3c), tperrno(5)

tpexport(3c)

Name
tpexport()—Converts a typed message buffer into an exportable, machine-independent string
representation, that includes digital signatures and encryption envelopes.

Synopsis
#include <atmi.h>

int tpexport(char *ibuf, long ilen, char *ostr, long *olen,

long flags)

../rf5/rf5.htm#4186015

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 141

Description
tpexport() converts a typed message buffer into an externalized representation. An
externalized representation is a message buffer that does not include any BEA Tuxedo ATMI
header information that is normally added to a message buffer just before the buffer is
transmitted.

The externalized representation may be transmitted between processes, machines, or BEA
Tuxedo ATMI applications via any communication mechanism. It may be archived on permanent
storage, and remains valid after a system shutdown and reboot.

An externalized representation includes:

Any digital signatures associated with ibuf. They are verified later when the buffer is
imported.

Any encryption envelopes associated with ibuf. The buffer content remains protected by
encryption. Only specified recipients with access to a valid private key for decryption may
later import the buffer.

ibuf must point to a valid typed message buffer either (1) previously allocated by a process
calling tpalloc() or (2) delivered by the system to a receiving process. ilen specifies how
much of ibuf to export. Note that if ibuf points to a buffer type for which a length need not be
specified (for example, an FML fielded buffer), then ilen is ignored (and may be 0).

ostr is a pointer to the output area that will hold an externalized representation of the buffer’s
content and associated properties. If TPEX_STRING is set in flags, then the externalized format
will be a string type. Otherwise, the output length is determined by *olen and may contain
embedded NULL bytes.

On input, *olen specifies the maximum storage size available at ostr. On output *olen is set to
the actual number of bytes written to ostr (including a terminating NULL character if
TPEX_STRING is set in flags).

The flags argument may be set to TPEX_STRING if string format (base 64 encoded) is desired
for the output buffer. Otherwise, the output will be binary.

Return Values
On failure, this function returns -1 and sets tperrno to indicate the error condition.

142 ATMI C Function Reference

Errors

[TPEINVAL]
Invalid arguments were given. For example, the value of ibuf is NULL or the value of
flags is not set correctly.

[TPEPERM]
Permission failure. The cryptographic service provider was not able to access a private
key necessary to produce a digital signature.

[TPESYSTEM]
An error occurred. Consult the system error log file for details.

[TPELIMIT]
Insufficient output storage was provided. *olen is set to the necessary amount of space.

See Also
tpimport(3c)

tpfml32toxml(3c)

Name
tpfml32toxml()—Converts FML32 buffers to XML data

Synopsis
#include <fml32.h>

int tpfml32toxml (FBFR32 *fml32bufp, char *vfile, char *rtag, char

**xmlbufp, long flags)

Description
This function is used to convert FML32 buffers to XML data. It supports the following valid arguments:

fml32bufp
This argument is a pointer to an input FML32 typed buffer.

vfile

This argument is not used for FML32 to XML conversion at this time. It is reserved for
the fully qualified path name of an XML Schema file used to validate XML output when
this capability is supported by Xerces.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 143

rtag

The argument is a pointer to the input root element name for the output XML
document.When a root element name is specified during conversion, it is identified and
saved for use as an XML root tag with an optional Type attribute added to the root element
name. If the input root name is not specified, then the default output XML root tag
<FML32> is used.

xmlbufp

This argument is a pointer to an output XML typed buffer in a pre-defined format for
describing FML32 fielded buffers.

flag

This argument is not used for FML32 to XML conversion at this time and should be set
to 0.

Return Values
Upon success, tpfml32toxml() returns 0. This function returns -1 on error and sets tperrno
to indicate the error condition.

Errors
Upon failure, tpfml32toxml() sets tperrno to one of the following values:

[TPEINVAL]
Either fml32bufp or xmlbufp is not a valid typed buffer.

[TPESYSTEM]
A Tuxedo system error has occurred. The exact nature of the error is written to
userlog(3). This will also indicate when a conversion to XML was unable to be done.
In that instance error detail info will be added to the userlog.

[TPEOS]
An operating system error has occurred. A numeric value representing the system call that
failed is available in Uunixerr.

SEE ALSO
tpxmltofml32(3c), tpxmltofml(3c), tpfmltoxml(3c)

tpfmltoxml(3c)

Name
tpfmltoxml()—Converts FML buffers to XML data

144 ATMI C Function Reference

Synopsis
#include <fml.h>

int tpfmltoxml (FBFR *fmlbufp, char *vfile, char *rtag, char **xmlbufp, long

flags)

Description
This function is used to convert FML buffers to XML data. It supports the following valid
arguments:

fmlbufp

The argument is a pointer to an input FML typed buffer.
vfile

The argument is not used for FML to XML conversion at this time. It is reserved for the
fully qualified path name of an XML Schema file used to validate XML output when this
capability is supported by Xerces.

rtag

This argument is a pointer to the input root element name for the output XML
document.When a root element name is specified during conversion, it is identified and
saved for use as an XML root tag with an optional Type attribute added to the root element
name. If the input root name is not specified, then the default output XML root tag <FML>
is used.

xmlbufp

This argument is a pointer to an output XML typed buffer in a pre-defined format for
describing FML fielded buffers.

flag

This argument is not used for FML to XML conversion at this time and should be set to 0.

Return Values
Upon success, tpfmltoxml() returns 0. This function returns -1 on error and sets tperrno to
indicate the error condition.

Errors
Upon failure, tpfmltoxml() sets tperrno to one of the following values:

[TPEINVAL]
Either fml32bufp or xmlbufp is not a valid typed buffer.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 145

[TPESYSTEM]
A Tuxedo system error has occurred. The exact nature of the error is written to
userlog(3). This will also indicate when a conversion to XML was unable to be done.
In that instance error detail info will be added to the userlog.

[TPEOS]

An operating system error has occurred. A numeric value representing the system call that
failed is available in Uunixerr.

SEE ALSO
tpxmltofml32(3c),tpfml32toxml(3c), tpxmltofml(3c)

tpforward(3c)

Name
tpforward()—Routine for forwarding a service request to another service routine.

Synopsis
#include <atmi.h>

void tpforward(char *svc, char *data, long len, long flags)

Description
tpforward() allows a service routine to forward a client’s request to another service routine for
further processing. tpforward() acts like tpreturn() in that it is the last call made in a service
routine. Like tpreturn(), tpforward() should be called from within the service routine
dispatched to ensure correct return of control to the BEA Tuxedo ATMI system dispatcher.
tpforward() cannot be called from within a conversational service.

This function forwards a request to the service named by svc using data pointed to by data. The
service name must not begin with a dot. A service routine forwarding a request receives no reply.
After the request is forwarded, the service routine returns to the communication manager
dispatcher and the server is free to do other work. Note that because no reply is expected from a
forwarded request, the request may be forwarded without error to any service routine in the same
executable as the service that forwarded the request.

If the service routine is in transaction mode, tpforward() puts the caller’s portion of the
transaction in a state where it may be completed when the originator of the transaction issues
either tpcommit() or tpabort(). If a transaction was explicitly started with tpbegin() while
in a service routine, the transaction must be ended with either tpcommit() or tpabort() before

146 ATMI C Function Reference

calling tpforward(). Thus, all services in a “forward chain” are either all started in transaction
mode or none are.

The last server in a forward chain sends a reply back to the originator of the request using
tpreturn(). In essence, tpforward() transfers to another server the responsibility of sending
a reply back to the awaiting requester.

tpforward() should be called after receiving all replies expected from service requests initiated
by the service routine. Any outstanding replies which are not received will automatically be
dropped by the communication manager dispatcher upon receipt. In addition, the descriptors for
those replies become invalid and the request is not forwarded to svc.

data points to the data portion of a reply to be sent. If data is non-NULL, it must point to a buffer
previously obtained by a call to tpalloc(). If this is the same buffer passed to the service routine
upon its invocation, then its disposition is up to the BEA Tuxedo ATMI system dispatcher; the
service routine writer does not have to worry about whether it is freed or not. In fact, any attempt
by the user to free this buffer will fail. However, if the buffer passed to tpforward() is not the
same one with which the service is invoked, then tpforward() will free that buffer. len
specifies the amount of the data buffer to be sent. If data points to a buffer which does not require
a length to be specified, (for example, an FML fielded buffer), then len is ignored (and can be
0). If data is NULL, then len is ignored and a request with zero length data is sent.

The flags argument is reserved for future use and should be set to 0 (zero).

Return Values
A service routine does not return any value to its caller, the communication manager dispatcher.
Thus, tpforward() is declared as a void. See tpreturn(3c) for a more extensive discussion.

Errors
If any errors occur either in the handling of the parameters passed to the function or in its
processing, a “failed” message is sent back to the original requester (unless no reply is to be sent).
The existence of outstanding replies or subordinate connections, or the caller’s transaction being
marked abort-only, qualify as failures which generate failed messages.

If either SVCTIMEOUT in the UBBCONFIG file or TA_SVCTIMEOUT in the TM_MIB is non-zero, the
event, TPEV_SVCERR is returned when a service timeout occurs.

Failed messages are detected by the requester with the TPESVCERR error indication. When such
an error occurs, the caller’s data is not sent. Also, this error causes the caller’s current transaction
to be marked abort-only.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 147

If a transaction timeout occurs, either during the service routine or while the request is being
forwarded, the requester waiting for a reply with either tpcall() or tpgetrply() will get a
TPETIME error return. When a service fails inside a transaction, the transaction times out and is
put into the TX_ROLLBACK_ONLY state. All further ATMI calls for that transaction will fail with
TPETIME. The waiting requester will not receive any data. Service routines, however, are
expected to terminate using either tpreturn() or tpforward(). A conversational service
routine must use tpreturn(); it cannot use tpforward().

If a service routine returns without using either tpreturn() or tpforward() (that is, if it uses
the C language return statement or simply “falls out of the function”) or if tpforward() is
called from a conversational server, the server will print a warning message in a log file and return
a service error to the original requester. All open connections to subordinates will be
disconnected immediately, and any outstanding asynchronous replies will be marked stale. If the
server was in transaction mode at the time of failure, the transaction is marked abort-only. Note
also that if either tpreturn() or tpforward() are used outside of a service routine (for
example, in clients, or in tpsvrinit() or tpsvrdone()), then these routines simply return
having no effect.

See Also
tpalloc(3c), tpconnect(3c), tpreturn(3c), tpservice(3c), tpstrerrordetail(3c)

tpfree(3c)

Name
tpfree()—Routine for freeing a typed buffer.

Synopsis
#include <atmi.h>

void tpfree(char *ptr)

Description
The argument to tpfree() is a pointer to a buffer previously obtained by either tpalloc() or
tprealloc(). If ptr is NULL, no action occurs. Undefined results will occur if ptr does not
point to a typed buffer (or if it points to space previously freed with tpfree()). Inside service
routines, tpfree() returns and does not free the buffer if ptr points to the buffer passed into a
service routine.

148 ATMI C Function Reference

Some buffer types require state information or associated data to be removed as part of freeing a
buffer. tpfree() removes any of these associations (in a communication manager-specific
manner) before a buffer is freed.

Once tpfree() returns, ptr should not be passed as an argument to any BEA Tuxedo ATMI
system routine or used in any other manner.

A thread in a multithreaded application may issue a call to tpfree() while running in any
context state, including TPINVALIDCONTEXT.

When freeing an FML32 buffer using tpfree(), the routine recursively frees all embedded
buffers to prevent memory leaks. In order to preserve the embedded buffers, you should assign
the associated pointer to NULL before issuing the tpfree() command. As stated above, if ptr is
NULL, no action occurs.

Return Values
tpfree() does not return any value to its caller. Thus, it is declared as a void.

Usage
This function should not be used in concert with malloc(), realloc(), or free() in the C
library (for example, a buffer allocated with tpalloc() should not be freed with free()).

See Also
Introduction to the C Language Application-to-Transaction Monitor Interface, tpalloc(3c),
tprealloc(3c)

tpgblktime(3c)

Name
tpgblktime()—Retrieves a previously set, per second, blocktime value

Synopsis
#include <atmi.h>

int tpgblktime(TPBLK_NEXT, TPBLK_ALL long flags)

Description
tpgblktime() retrieves a previously set, per second, blocktime value.If tpgblktime()
specifies a blocktime flag value, and no such flag value has been set, the return value is 0. A
blocktime flag value less than 0 produces an error.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 149

The following is a list of valid flags:

TPBLK_NEXT

This flag returns the per second blocktime value for the previously set
tpsblktime(TPBLK_NEXT)call.

TPBLK_ALL

This flag returns the per second blocktime value for the previously set
tpsblktime(TPBLK_ALL)call.

0

This flag returns the applicable blocktime value for the next blocking ATMI set due to a
previous tpsblktime() call with the TPBLK_NEXT or TPBLK_ALL flag blocktime value,
or a system-wide default blocktime value.

Note: When a workstation client calls a tpgblktime() 0 flag, the system-wide default
blocktime value cannot be returned. A 0 value is returned instead.

Return Values
Upon success, tpgblktime() returns a positive integer indicating the blocking time value
currently in effect for the corresponding flag value. A 0 return value indicates that no such
blocking time override is currently in effect.

This function returns -1 on error and sets tperrno to indicate the error condition. The failure does
not affect the existing transaction, if one exists.

Error
Upon failure, tpgblktime() sets tperrno to one of the following values:

[TPEINVAL]
Invalid arguments were given. For example, the flags value is negative or more than one
blocktime flag value (TPBLK_NEXT, TPBLK_ALL, or 0) was specified.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

See Also
tpcall(3c), tpcommit(3c), tprecv(3c), tpsblktime(3c), UBBCONFIG(5)

../rf5/rf5.htm#365105

150 ATMI C Function Reference

tpgetadmkey(3c)

Name
tpgetadmkey()—Gets administrative authentication key.

Synopsis
#include <atmi.h>

long tpgetadmkey(TPINIT *tpinfo)

Description
tpgetadmkey() is available for application use by an application specific authentication server.
It returns an application security key suitable for assignment to the indicated user for the purpose
of administrative authentication. This routine must be called with a client name (that is,
tpinfo−>cltname) of either tpsysadm() or tpsysop(); otherwise, a valid administrative key
will not be returned.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tpgetadmkey().

Return Values
Upon success, tpgetadmkey() returns a non-0 value with the high-order bit (0x80000000) set;
otherwise it returns 0. Zero may be returned if tpinfo is NULL, tpinfo−>cltname is not
tpsysadm() or tpsysop(), or lastly if the effective user ID is not the configured application
administrator for this site.

Errors
A zero return value is the only indication that a valid administrative key was not assigned.

Portability
This interface is available only on UNIX system sites running BEA Tuxedo release 5.0 or later.

See Also
tpaddusr(1), tpusradd(1), tpinit(3c), AUTHSVR(5)

Setting Up a BEA Tuxedo Application

Administering a BEA Tuxedo Application at Run Time

../rfcm/rfcmd.htm#576141
../rfcm/rfcmd.htm#594671
../rf5/rf5.htm#6445615

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 151

tpgetctxt(3c)

Name
tpgetctxt()—Retrieves a context identifier for the current application association.

Synopsis
#include <atmi.h>

int tpgetctxt(TPCONTEXT_T *context, long flags)

Description
tpgetctxt() retrieves an identifier that represents the current application context and places
that identifier in context. This function operates on a per-thread basis in a multithreaded
environment, and on a per-process basis in a non-threaded environment.

Typically, a thread:

1. Calls tpinit()

2. Calls tpgetctxt()

3. Handles the value of context as follows:

– In a multithreaded application—passes the value of context to another thread in the
same process so the other thread can call tpsetctxt().

– In a single-threaded or multithreaded application—saves this context identifier for itself
so it can switch back to the indicated context later.

The second argument, flags, is not currently used and must be set to 0.

tpgetctxt() may be called in single-context applications as well as in multicontext
applications.

A thread in a multithreaded application may issue a call to tpgetctxt() while running in any
context state, including TPINVALIDCONTEXT.

Return Values
Upon successful completion, tpgetctxt() returns a non-negative value. Context is set to the
current context ID, which may be represented by any of the following:

A context ID greater than 0, indicating a context in a multicontexted application.

152 ATMI C Function Reference

TPSINGLECONTEXT, indicating that the current thread has successfully executed tpinit()
without the TPMULTICONTEXTS flag, or that the current thread was just created in a process
that has successfully executed tpinit() without the TPMULTICONTEXTS flag. The value of
TPSINGLECONTEXT is 0.

TPNULLCONTEXT, indicating that the current thread is not associated with a context.

TPINVALIDCONTEXT, indicating that the current thread is in the invalid context state. If a
thread in a multicontexted client issues a call to tpterm() while other threads in the same
context are still working, the working threads are placed in the TPINVALIDCONTEXT
context. The value of TPINVALIDCONTEXT is -1.

A thread in the TPINVALIDCONTEXT state is prohibited from issuing calls to most ATMI
functions. For a complete list of functions that may and may not be called, see the
Introduction to the C Language Application-to-Transaction Monitor Interface.

For details about the TPINVALIDCONTEXT context state, see tpterm(3c).

Upon failure, tpgetctxt() returns a value of -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpgetctxt() sets tperrno to one of the following values:

[TPEINVAL]
Invalid arguments have been given. For example, the value of context is NULL or the
value of flags is not 0.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error has been written
to a log file.

[TPEOS]
An operating system error has occurred.

See Also
Introduction to the C Language Application-to-Transaction Monitor Interface, tpsetctxt(3c),
tpterm(3c)

tpgetlev(3c)

Name
tpgetlev()—Routine for checking if a transaction is in progress.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 153

Synopsis
#include <atmi.h>

int tpgetlev()

Description
tpgetlev() returns to the caller the current transaction level. Currently, the only levels defined
are 0 and 1.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tpgetlev().

Return Values
Upon successful completion, tpgetlev() returns either a 0 to indicate that no transaction is in
progress, or 1 to indicate that a transaction is in progress;

Upon failure, tpgetlev() returns -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpgetlev() sets tperrno to one of the following values:

[TPEPROTO]
tpgetlev() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

Notices
When using tpbegin(), tpcommit() and tpabort() to delineate a BEA Tuxedo ATMI system
transaction, it is important to remember that only the work done by a resource manager that meets
the XA interface (and is linked to the caller appropriately) has transactional properties. All other
operations performed in a transaction are not affected by either tpcommit() or tpabort(). See
buildserver(1) for details on linking resource managers that meet the XA interface into a
server such that operations performed by that resource manager are part of a BEA Tuxedo ATMI
system transaction.

../rfcm/rfcmd.htm#6083611

154 ATMI C Function Reference

See Also
tpabort(3c), tpbegin(3c), tpcommit(3c), tpscmt(3c)

tpgetmbenc(3c)

Name
tpgetmbenc()—Gets the code-set encoding name from a typed buffer.

Synopsis
#include <atmi.h>

extern int tperrno;

int

tpgetmbenc (char *bufp, char *enc_name, long flags)

Description
This function is used to get the codeset encoding name sent with a typed buffer. This name can
be compared to a target codeset if a conversion is required (see tpconvmb(3c)).

The bufp argument is a valid pointer to a typed buffer message.

The enc_name argument will be set to the encoding name, found in bufp, upon successful
execution of this function. The returned string will be NULL terminated. The user must take care
to allocate a buffer large enough to hold the encoding name plus the NULL terminator (see
NL_LANGMAX in <limits.h>). An MBSTRING typed buffer without the encoding name set is
invalid.

The flags argument is not currently used and should be set to zero.

Return Values
Upon success, tpgetmbenc() returns a value of 0. This function returns -1 on error and sets
tperrno as described below for each function. The function may fail for the following reasons.

[TPEINVAL]
enc_name or bufp argument is NULL.

[TPEPROTO]
This error occurs if bufp cannot provide an encoding name.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 155

[TPESYSTEM]
A Tuxedo system error has occurred. (e.g. bufp does not correspond to a valid Tuxedo
buffer).

See Also
tpalloc(3c), tpconvmb(3c), tpsetmbenc(3c)

tpgetrepos(3c)

Name
tpgetrepos() - retrieves service parameter information from a Tuxedo service metadata
repository file.

#include <atmi.h>

Synopsis
int tpgetrepos(char *reposfile, FBFR32* idata, FBFR32** odata)

Description
tpgetrepos() provides an alternative repository access interface to the .TMMETAREPOS service
provided by TMMETADATA(5). It retrieves service parameters from a Tuxedo service metadata
repository file. To use tpgetrepos(), the metadata repository file must reside on the native
client or server that initiates the request. This allows for repository information access even when
TMMETADATA(5)has not been booted.

Note: tpgetrepos() can also be used to view Jolt repository files. It cannot modify an existing
Jolt repository file or create a new one.

tpgetrepos() accepts the following parameters:

reposfile

specifies the path name of a file accessible on the current machine where the Tuxedo
Metadata Repository is located. The caller must have read permission for this file.

idata
specifies what type of service parameter information is retrieved, and points to an FML32
buffer.

*odata
On output, points to an FML32 buffer containing the retrieved service parameter
information and operation status.

../rf5/rf5.htm#5606415
../rf5/rf5.htm#5606415

156 ATMI C Function Reference

METAREPOS(5)describes the FML32 buffer format tpgetrepos()uses. It is similar to the
format used by the Tuxedo MIB.

Return Value
tpgetrepos() returns 0 on success. On failure, it sets tperrno and returns -1. On most failure
conditions, the TA_ERROR field in *odata is populated with information about the specific error,
as is done by the Tuxedo MIB.

Errors
Upon failure, tpgetrepos() sets tperrno to one of the following values:

Note: Except for TPEINVAL, odata is modified to include TA_ERROR, TA_STATUS for each
service entry to further qualify the error condition.

[TPEINVAL]

Invalid arguments were specified. The reposfile value is invalid or idata or odata are
not pointers to FML32 typed buffers.

[TPEMIB]

The MIB-like request failed. odata is updated and returned to the caller with FML32 fields
indicating the cause of the error as discussed in MIB(5).

[TPEPROTO]

tpgetrepos() was improperly called. The reposfile file argument given is not a valid
repository file.

[TPEOS]

An operating system error has occurred. A numeric value representing the system call that
failed is available in Uunixerr.

[TPESYSTEM]

A BEA Tuxedo system error has occurred. The exact nature of the error is reported in
userlog().

Portability
This interface is available only on BEA Tuxedo release 9.0 or later.

Files
The following library files are required:
${TUXDIR}/lib/libtrep.a
${TUXDIR}/lib/libtrep.so.<rel>
${TUXDIR}/lib/libtrep.lib

../rf5/rf5.htm#8915915

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 157

The libraries must be linked manually when using buildclient. The user must use:
-L${TUXDIR}/lib -ltrep

See Also
tpsetrepos(3c), tmloadrepos(1), tmunloadrepos(1), TMMETADATA(5), Managing The
Tuxedo Service Metadata Repository

tpgetrply(3c)

Name
tpgetrply()—Routine for getting a reply from a previous request.

Synopsis
#include <atmi.h>

int tpgetrply(int *cd, char **data, long *len, long flags)

Description
tpgetrply() returns a reply from a previously sent request. This function’s first argument, cd,
points to a call descriptor returned by tpacall(). By default, the function waits until the reply
matching *cd arrives or a timeout occurs.

data must be the address of a pointer to a buffer previously allocated by tpalloc() and len
should point to a long that tpgetrply() sets to the amount of data successfully received. Upon
successful return, *data points to a buffer containing the reply and *len contains the size of the
data. FML and FML32 buffers often assume a minimum size of 4096 bytes; if the reply is larger
than 4096, the size of the buffer is increased to a size large enough to accommodate the data being
returned. As of release 6.4, the default allocation for buffers is 1024 bytes. Also, historical
information is maintained on recently used buffers, allowing a buffer of optimal size to be reused
as a return buffer.

Buffers on the sending side that may be only partially filled (for example, FML or STRING
buffers) will have only the amount that is used send. The system may then enlarge the received
data size by some arbitrary amount. This means that the receiver may receive a buffer that is
smaller than what was originally allocated by the sender, yet larger than the data that was sent.

The receive buffer may grow, or it may shrink, and its address almost invariably changes, as the
system swaps buffers around internally. To determine whether (and how much) a reply buffer
changed in size, compare its total size before tpgetrply() was issued with *len. See the

../rfcm/rfcmd.htm#899111
../rfcm/rfcmd.htm#350151
../rf5/rf5.htm#5606415
../ads/admrp.htm#44322
../ads/admrp.htm#44322

158 ATMI C Function Reference

“Introduction to the C Language Application-to-Transaction Monitor Interface” for more
information about buffer management.

If *len is 0, then the reply has no data portion and neither *data nor the buffer it points to were
modified.

It is an error for *data or len to be NULL.

Within any particular context of a multithreaded program:

Calls to tpgetrply(TPGETANY) and tpgetrply() for a specific handle cannot be issued
concurrently.

Multiple calls to tpgetrply(TPGETANY) cannot be issued concurrently.

Any tpgetrply() call that would, if issued, cause a violation of either of these restrictions,
returns -1 and sets tperrno to TPEPROTO.

It is acceptable to issue:

Concurrent calls to tpgetrply() for different handles.

A call to tpgetrply(TPGETANY) in a single context concurrently with a call to
tpgetrply(), with or without TPGETANY, in a different context.

The following is a list of valid flags:

TPGETANY

This flag signifies that tpgetrply() should ignore the descriptor pointed to by cd, return
any reply available and set cd to point to the call descriptor for the reply returned. If no
replies exist, tpgetrply() by default will wait for one to arrive.

TPNOCHANGE

By default, if a buffer is received that differs in type from the buffer pointed to by *data,
then *data’s buffer type changes to the received buffer’s type so long as the receiver
recognizes the incoming buffer type. When this flag is set, the type of the buffer pointed
to by *data is not allowed to change. That is, the type and subtype of the received buffer
must match the type and subtype of the buffer pointed to by *data.

TPNOBLOCK

tpgetrply() does not wait for the reply to arrive. If the reply is available, then
tpgetrply() gets the reply and returns. When this flag is not specified and a reply is not
available, the caller blocks until the reply arrives or a timeout occurs (either transaction or
blocking timeout).

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 159

TPNOTIME

This flag signifies that the caller is willing to block indefinitely for its reply and wants to
be immune to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT

If a signal interrupts any underlying system calls, then the interrupted system call is
reissued.

Except as noted below, *cd is no longer valid after its reply is received.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tpgetrply().

Return Values
Upon successful return from tpgetrply() or upon return where tperrno is set to TPESVCFAIL,
tpurcode() contains an application defined value that was sent as part of tpreturn().

Upon failure, tpgetrply() returns -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpgetrply() sets tperrno as indicated below. Note that if TPGETANY is not set,
then *cd is invalidated unless otherwise stated. If TPGETANY is set, then cd points to the descriptor
for the reply on which the failure occurred; if an error occurred before a reply could be retrieved,
then cd points to 0. Also, the failure does not affect the caller’s transaction, if one exists, unless
otherwise stated. If a call fails with a particular tperrno value, a subsequent call to
tperrordetail() with no intermediate ATMI calls, may provide more detailed information
about the generated error. Refer to the tperrordetail(3c) reference page for more
information.

[TPEINVAL]
Invalid arguments were given (for example, cd, data, *data or len is NULL or flags
are invalid). If cd is non-NULL, then it is still valid after this error and the reply remains
outstanding.

[TPEOTYPE]
Either the type and subtype of the reply are not known to the caller; or, TPNOCHANGE was
set in flags and the type and subtype of *data do not match the type and subtype of the
reply sent by the service. Regardless, neither *data, its contents nor *len are changed. If
the reply was to be received on behalf of the caller’s current transaction, then the
transaction is marked abort-only since the reply is discarded.

[TPEBADDESC]
cd points to an invalid descriptor.

160 ATMI C Function Reference

[TPETIME]
This error code indicates that either a timeout has occurred or tpgetrply() has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller is in transaction mode, then either the transaction is already rollback only or
a transaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout cannot
occur if TPNOBLOCK and/or TPNOTIME is specified.) In either case, no changes are made to
*data, its contents, or *len. *cd remains valid unless the caller is in transaction mode
(and TPGETANY has not been set).

If a transaction timeout has occurred, then, with one exception, any attempts to send new
requests or receive outstanding replies will fail with TPETIME until the transaction has
been aborted. The exception is a request that does not block, expects no reply, and is not
sent on behalf of the caller’s transaction (that is, tpacall() with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY set).

When a service fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY state. This state is treated, for most purposes, as though it were
equivalent to a timeout. All further ATMI calls for this transaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPESVCFAIL]
The service routine sending the caller’s reply called tpreturn() with TPFAIL. This is an
application-level failure. The contents of the service’s reply, if one was sent, is available
in the buffer pointed to by *data. If the service request was made on behalf of the caller’s
transaction, then the transaction is marked abort-only. Note that regardless of whether the
transaction has timed out, the only valid communications before the transaction is aborted
are calls to tpacall() with TPNOREPLY, TPNOTRAN, and TPNOBLOCK set.

[TPESVCERR]
A service routine encountered an error either in tpreturn() or tpforward() (for
example, bad arguments were passed). No reply data is returned when this error occurs
(that is, neither *data, its contents nor *len are changed). If the service request was made
on behalf of the caller’s transaction, then the transaction is marked abort-only. Note that
regardless of whether the transaction has timed out, the only valid communications before
the transaction is aborted are calls to tpacall() with TPNOREPLY, TPNOTRAN, and
TPNOBLOCK set. If either SVCTIMEOUT in the UBBCONFIG file or TA_SVCTIMEOUT in the
TM_MIB is non-zero, TPESVCERR is returned when a service timeout occurs.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified. *cd remains valid.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 161

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpgetrply() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred. If a message queue on a remote location is filled,
TPEOS may possibly be returned.

See Also
tpacall(3c), tpalloc(3c), tpcancel(3c), tperrordetail(3c), tprealloc(3c),
tpreturn(3c), tpstrerrordetail(3c), tptypes(3c)

tpgprio(3c)

Name
tpgprio()—Routine for getting a service request priority.

Synopsis
#include <atmi.h>

int tpgprio(void)

Description
tpgprio() returns the priority for the last request sent or received by the current thread in its
current context. Priorities can range from 1 to 100, inclusive, with 100 being the highest priority.
tpgprio() may be called after tpcall() or tpacall(), (also tpenqueue(), or tpdequeue(),
assuming the queued management facility is installed), and the priority returned is for the request
sent. Also, tpgprio() may be called within a service routine to find out at what priority the
invoked service was sent. tpgprio() may be called any number of times and will return the same
value until the next request is sent.

In a multithreaded application tpgprio() operates on a per-thread basis.

Because the conversation primitives are not associated with priorities, issuing tpsend() or
tprecv() has no affect on the priority returned by tpgprio(). Also, there is no priority

162 ATMI C Function Reference

associated with a conversational service routine unless a tpcall() or tpacall() is done within
that service.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tpgprio().

Return Values
Upon success, tpgprio() returns a request’s priority;

Upon failure, tpgprio() returns -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpgprio() sets tperrno to one of the following values:

[TPENOENT]
tpgprio() was called and no requests (via tpcall() or tpacall()) have been sent, or
it is called within a conversational service for which no requests have been sent.

[TPEPROTO]
tpgprio() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

See Also
tpacall(3c), tpcall(3c), tpdequeue(3c), tpenqueue(3c), tpservice(3c),
tpsprio(3c)

tpimport(3c)

Name
tpimport()—Converts an externalized representation of a message buffer into a typed message
buffer.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 163

Synopsis
#include <atmi.h>

int tpimport(char *istr, long ilen, char **obuf, long *olen,

long flags)

Description
tpimport() converts an externalized representation of a message buffer into a typed message
buffer. An externalized representation is a message buffer that does not include any BEA Tuxedo
ATMI header information that is normally added to a message buffer just before the buffer is
transmitted. A process converts a typed message buffer into an externalized representation by
calling the tpexport() function.

Any digital signatures associated with istr are verified when the buffer is imported, and are
available for examination after importing via tpenvelope().

If the istr buffer representation is encrypted, the importing process must have access to a valid
private key for decryption. Decryption is performed automatically during the importing process.

If TPEX_STRING is not set in flags, then ilen contains the length of the binary data contained
in istr. If ilen is 0, istr is assumed to point to a NULL-terminated string, and the
TPEX_STRING flag is inferred.

*obuf must point to a valid typed message buffer either (1) previously allocated by a process
calling tpalloc() or (2) delivered by the system to a receiving process. The buffer will be
reallocated as necessary to accommodate the result, and its buffer type or subtype may change.

*olen is set to the amount of valid data contained in the output buffer. If olen is NULL on input,
it is ignored.

The flags argument should be set to TPEX_STRING if the input externalized representation is in
string format (base 64 encoded). Otherwise, the input is in binary format of length ilen.

Return Values
On failure, this function returns -1 and sets tperrno to indicate the error condition.

Errors

[TPEINVAL]
Invalid arguments were given. For example, the value of istr is NULL or the flags
parameter is not set correctly.

164 ATMI C Function Reference

[TPEPERM]
Permission failure. The cryptographic service provider was not able to access a private
key necessary for decryption.

[TPEPROTO]
A protocol failure occurred. The failure involves an invalid data format in istr or a digital
signature that failed verification.

[TPESYSTEM]
An error occurred. Consult the system error log file for more details.

See Also
tpenvelope(3c), tpexport(3c)

tpinit(3c)

Name
tpinit()—Joins an application.

Synopsis
#include <atmi.h>

int tpinit(TPINIT *tpinfo)

Description
tpinit() allows a client to join a BEA Tuxedo ATMI system application. Before a client can
use any of the BEA Tuxedo ATMI system communication or transaction routines, it must first
join a BEA Tuxedo ATMI system application.

tpinit() has two modes of operation: single-context mode and multicontext mode, which will
be discussed in detail below. Because calling tpinit() is optional when in single-context mode,
a single-context client may also join an application by calling many ATMI routines (for example,
tpcall()), which transparently call tpinit() with tpinfo set to NULL. A client may want to
call tpinit() directly so that it can set the parameters described below. In addition, tpinit()
must be used when multicontext mode is required, when application authentication is required
(see the description of the SECURITY keyword in UBBCONFIG(5)), or when the application wishes
to supply its own buffer type switch (see typesw(5)). After tpinit() successfully returns, the
client can initiate service requests and define transactions.

In single-context mode, if tpinit() is called more than once (that is, if it is called after the client
has already joined the application), no action is taken and success is returned.

../rf5/rf5.htm#365105
../rf5/rf5.htm#2183415

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 165

In a multithreaded client, a thread in the TPINVALIDCONTEXT state is not allowed to issue a call
to tpinit(). To join a BEA Tuxedo ATMI application, a multithreaded Workstation client must
always call tpinit() with the TPMULTICONTEXTS flag set, even if the client is running in
single-context mode.

Note: The TPMULTICONTEXTS mode of tpinit will continue to work properly when the
TMNOTHREADS environment variable is set to yes. Setting this environment variable to
yes turns off multithreaded processing for applications that do not use threads.

Description of the TPINFO Structure
tpinit()’s argument, tpinfo, is a pointer to a typed buffer of type TPINIT and a NULL
subtype. TPINIT is a buffer type that is typedefed in the atmi.h header file. The buffer must be
allocated via tpalloc() prior to calling tpinit(). The buffer should be freed using tpfree()
after calling tpinit(). The TPINIT typed buffer structure includes the following members:

char usrname[MAXTIDENT+2];

char cltname[MAXTIDENT+2];

char passwd[MAXTIDENT+2];

char grpname[MAXTIDENT+2];

long flags;

long datalen;

long data;

The values of usrname, cltname, grpname, and passwd are all NULL-terminated strings.
usrname is a name representing the caller. cltname is a client name whose semantics are
application defined. The value sysclient is reserved by the system for the cltname field. The
usrname and cltname fields are associated with the client at tpinit() time and are used for
both broadcast notification and administrative statistics retrieval. They should not have more
characters than MAXTIDENT, which is defined as 30. passwd is an application password in
unencrypted format that is used for validation against the application password. The passwd is
limited to 30 characters. grpname is used to associate the client with a resource manager group
name. If grpname is set to a 0-length string, then the client is not associated with a resource
manager and is in the default client group. The value of grpname must be the NULL string
(0-length string) for Workstation clients. Note that grpname is not related to ACL GROUPS.

Single-context Mode Versus Multicontext Mode
tpinit() has two modes of operation: single-context mode and multicontext mode. In
single-context mode, a process may join at most one application at any one time. Multiple
application threads may access this application. Single-context mode is specified by calling

166 ATMI C Function Reference

tpinit() with a NULL parameter or by calling it without specifying the TPMULTICONTEXTS flag
in the flags field of the TPINIT structure. Single-context mode is also specified when tpinit()
is called implicitly by another ATMI function. The context state for a process operating in
single-context mode is TPSINGLECONTEXT.

Note: The TPMULTICONTEXTS mode of tpinit will continue to work properly when the
TMNOTHREADS environment variable is set to “yes”.

In single-context mode, if tpinit() is called more than once (that is, if it is called after the client
has already joined the application), no action is taken and success is returned.

Multicontext mode is entered by calling tpinit() with the TPMULTICONTEXTS flag set in the
flags field of the TPINIT structure. In multicontext mode, each call to tpinit() results in the
creation of a separate application association.

An application association is a context that associates a process and a BEA Tuxedo ATMI
application. A client may have associations with multiple BEA Tuxedo ATMI applications, and
may also have multiple associations with the same application. All of a client’s associations must
be made to applications running the same release of the BEA Tuxedo ATMI system, and either
all associations must be native clients or all associations must be Workstation clients.

For native clients, the value of the TUXCONFIG environment variable is used to identify the
application to which the new association will be made. For Workstation clients, the value of the
WSNADDR or WSENVFILE environment variable is used to identify the application to which the new
association will be made. The context for the current thread is set to the new association.

In multicontext mode, the application can get a handle for the current context by calling
tpgetctxt() and pass that handle as a parameter to tpsetctxt(), thus setting the context in
which a particular thread or process will operate.

Mixing single-context mode and multicontext mode is not allowed. Once an application has
chosen one of these modes, calling tpinit() in the other mode is not allowed unless tpterm()
is first called for all application associations.

TPINFO Structure Field Descriptions
In addition to controlling multicontext and single-context modes, the setting of flags is used to
indicate both the client-specific notification mechanism and the mode of system access. These
two settings may override the application default. If these settings cannot override the application
default, tpinit() prints a warning in a log file, ignores the setting, and restores the application
default setting in the flags field upon return from tpinit(). For client notification, the possible
values for flags are as follows:

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 167

TPU_SIG

Select unsolicited notification by signals. This flag should be used only with
single-threaded, single-contexted applications; it cannot be used when the
TPMULTICONTEXTS flag is set.

TPU_DIP

Select unsolicited notification by dip-in.

TPU_THREAD

Select THREAD notification in a separate thread managed by the BEA Tuxedo ATMI
system. This flag is allowed only on platforms that support multithreading. If
TPU_THREAD is specified on a platform that does not support multithreading, it is
considered an invalid argument and will result in an error return with tperrno set to
TPEINVAL.

TPU_IGN

Ignore unsolicited notification.

Only one of the above flags can be used at a time. If the client does not select a notification
method via the flags field, then the application default method will be set in the flags field upon
return from tpinit().

For setting the mode of system access, the possible values for flags are as follows:

TPSA_FASTPATH

Set system access to fastpath.

TPSA_PROTECTED

Set system access to protected.

Only one of the above flags can be used at a time. If the client does not select a notification
method or a system access mode via the flags field, then the application default method(s) will
be set in the flags field upon return from tpinit(). See UBBCONFIG(5) for details on both
client notification methods and system access modes.

If your application uses multithreading and/or multicontexting, you must set the following flag:

TPMULTICONTEXTS

See description in “Single-context Mode Versus Multicontext Mode.”

datalen is the length of the application-specific data that follows. The buffer type switch entry
for the TPINIT typed buffer sets this field based on the total size passed in for the typed buffer
(the application data size is the total size less the size of the TPINIT structure itself plus the size
of the data placeholder as defined in the structure). data is a place holder for variable length data
that is forwarded to an application-defined authentication service. It is always the last element of
this structure.

../rf5/rf5.htm#365105

168 ATMI C Function Reference

A macro, TPINITNEED, is available to determine the size TPINIT buffer necessary to
accommodate a particular desired application specific data length. For example, if 8 bytes of
application-specific data are desired, TPINITNEED(8) will return the required TPINIT buffer size.

A NULL value for tpinfo is allowed for applications not making use of the authentication
feature of the BEA Tuxedo ATMI system. Clients using a NULL argument will get: defaults of
0-length strings for usrname, cltname and passwd; no flags set; and no application data.

Return Values
Upon failure, tpinit() leaves the calling process in its original context, returns -1, and sets
tperrno to indicate the error condition. Also, tpurcode() is set to the value returned by the
AUTHSVR(5) server.

Errors
Upon failure, tpinit() sets tperrno to one of the following values:

[TPEINVAL]
Invalid arguments were specified. tpinfo is non-NULL and does not point to a typed
buffer of type TPINIT.

[TPENOENT]
The client cannot join the application because of space limitations.

[TPEPERM]
The client cannot join the application because it does not have permission to do so or
because it has not supplied the correct application password. Permission may be denied
based on an invalid application password, failure to pass application-specific
authentication, or use of restricted names. tpurcode() may be set by an
application-specific authentication server to explain why the client cannot join the
application.

[TPEPROTO]
tpinit() has been called improperly. For example: (a) the caller is a server; (b) the
TPMULTICONTEXTS flag has been specified in single-context mode; or (c) the
TPMULTICONTEXTS flag has not been specified in multicontext mode.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 169

Interoperability
tpchkauth() and a non-NULL value for the TPINIT typed buffer argument of tpinit() are
available only on sites running release 4.2 or later.

Portability
The interfaces described in tpinit(3c) are supported on UNIX system, Windows, and
MS-DOS operating systems. However, signal-based notification is not supported on 16-bit
Windows or MS-DOS platforms. If it is selected at tpinit() time, then a userlog() message
is generated and the method is automatically set to dip-in.

Environment Variables
TUXCONFIG

Used within tpinit() when invoked by a native client. It indicates the application to
which the client should connect. Note that this environment variable is referenced only
when tpinit() is called. Subsequent calls make use of the application context.

WSENVFILE

Used within tpinit() when invoked by a Workstation client. It indicates a file
containing environment variable settings that should be set in the caller’s environment.
See compilation(5) for details on environment variable settings necessary for
Workstation clients. Note that this file is processed only when tpinit() is called and not
before.

WSNADDR

Used within tpinit() when invoked by a Workstation client. It indicates the network
addresses of the workstation listener that is to be contacted for access to the application.
This variable is required for Workstation clients and is ignored for native clients.

TCP/IP addresses may be specified in the following forms:

//host.name:port_number

//#.#.#.#:port_number

In the first format, the domain finds an address for hostname using the local name
resolution facilities (usually DNS). hostname must be the local machine, and the local
name resolution facilities must unambiguously resolve hostname to the address of the
local machine.

In the second format, the string #.#.#.# is in dotted-decimal format. In dotted-decimal
format, each # should be a number from 0 to 255. This dotted-decimal number represents
the IP address of the local machine.

../rf5/rf5.htm#4968815

170 ATMI C Function Reference

In both of the above formats, port_number is the TCP port number at which the domain
process will listen for incoming requests. port_number can either be a number between
0 and 65535 or a name. If port_number is a name, then it must be found in the network
services database on your local machine.

The address can also be specified in hexadecimal format when preceded by the characters
0x. Each character after the initial 0x is a number between 0 and 9 or a letter between A
and F (case insensitive). The hexadecimal format is useful for arbitrary binary network
addresses such as IPX/SPX or TCP/IP.

The address can also be specified as an arbitrary string. The value should be the same as
that specified for the NLSADDR parameter in the NETWORK section of the configuration file.

More than one address can be specified if desired by specifying a comma-separated list of
pathnames for WSNADDR. Addresses are tried in order until a connection is established.
Any member of an address list can be specified as a parenthesized grouping of
pipe-separated network addresses. For example:

WSNADDR=(//m1.acme.com:3050|//m2.acme.com:3050),//m3.acme.com:3050

For users running under Windows, the address string looks like the following:

set WSNADDR=(//m1.acme.com:3050^|//m2.acme.com:3050),//m3.acme.com:3050

Because the pipe symbol (|) is considered a special character in Windows, it must be
preceded by a carat (^)—an escape character in the Windows environment—when it is
specified on the command line. However, if WSNADDR is defined in an envfile, the BEA
Tuxedo ATMI system gets the values defined by WSNADDR through the tuxgetenv(3c)
function. In this context, the pipe symbol (|) is not considered a special character, so you
do not need to escape it with a carat (^).

The BEA Tuxedo ATMI system randomly selects one of the parenthesized addresses.
This strategy distributes the load randomly across a set of listener processes. Addresses
are tried in order until a connection is established. Use the value specified in the
application configuration file for the workstation listener to be called. If the value begins
with the characters 0x, it is interpreted as a string of hex-digits; otherwise, it is interpreted
as ASCII characters.

WSFADDR

Used within tpinit() when invoked by a Workstation client. It specifies the network
address used by the Workstation client when connecting to the workstation listener or
workstation handler. This variable, along with the WSFRANGE variable, determines the
range of TCP/IP ports to which a Workstation client will attempt to bind before making
an outbound connection. This address must be a TCP/IP address. The port portion of the

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 171

TCP/IP address represents the base address from which a range of TCP/IP ports can be
bound by the Workstation client. The WSFRANGE variable specifies the size of the range.
For example, if this address is //mymachine.bea.com:30000 and WSFRANGE is 200, then
all native processes attempting to make outbound connections from this LMID will bind a
port on mymachine.bea.com between 30000 and 30200. If not set, this variable defaults
to the empty string, which implies the operating system chooses a local port randomly.

WSFRANGE

Used within tpinit() when invoked by a Workstation client. It specifies the range of
TCP/IP ports to which a Workstation client process will attempt to bind before making an
outbound connection. The WSFADDR parameter specifies the base address of the range. For
example, if the WSFADDR parameter is set to //mymachine.bea.com:30000 and
WSFRANGE is set to 200, then all native processes attempting to make outbound
connections from this LMID will bind a port on mymachine.bea.com between 30000 and
30200. The valid range is 1-65535. The default is 1.

WSDEVICE

Used within tpinit() when invoked by a Workstation client. It indicates the device
name to be used to access the network. This variable is used by Workstation clients and
ignored for native clients. Note that certain supported transport level network interfaces
do not require a device name; for example, sockets and NetBIOS. Workstation clients
supported by such interfaces need not specify WSDEVICE.

WSTYPE

Used within tpinit() when invoked by a Workstation client to negotiate encode/decode
responsibilities with the native site. This variable is optional for Workstation clients and
ignored for native clients.

WSRPLYMAX

Used by tpinit() to set the maximum amount of core memory that should be used for
buffering application replies before they are dumped to file. The default for this parameter
256,000 bytes. For more information, see the programming documentation for your
instantiation.

TMMINENCRYPTBITS

Used to establish the minimum level of encryption required to connect to the BEA Tuxedo
ATMI system. “0” means no encryption, while “56” and “128” specify the encryption key
length (in bits). The link-level encryption value of 40 bits is also provided for backward
compatibility. If this minimum level of encryption cannot be met, link establishment will
fail. The default is “0”.

TMMAXENCRYPTBITS

Used to negotiate the level of encryption up to this level when connecting to the BEA
Tuxedo ATMI system. “0” means no encryption, while “56” and “128” specify the

172 ATMI C Function Reference

encryption length (in bits). The link-level encryption value of 40 bits is also provided for
backward compatibility. The default is “128.”

Warning
Signal-based notification is not allowed in multicontext mode. In addition, signal restrictions may
prevent the system from using signal-based notification even though it has been selected by a
client. When this happens, the system generates a log message that it is switching notification for
the selected client to dip-in and the client is notified then and thereafter via dip-in notification.
(See the description of the NOTIFY parameter in the RESOURCES section of UBBCONFIG(5) for a
detailed discussion of notification methods.)

Because signaling of clients is always done by the system, the behavior of notification is always
consistent, regardless of where the originating notification call is made. Therefore to use
signal-based notification:

A native client must be running as an application administrator.

A Workstation client is not required to be running as the application administrator

The ID for the application administrator is identified as part of the configuration for the
application.

If signal-based notification is selected for a client, then certain ATMI calls may fail, returning
TPGOTSIG due to receipt of an unsolicited message if TPSIGRSTRT is not specified.

See Also
Introduction to the C Language Application-to-Transaction Monitor Interface, tpgetctxt(3c),
tpsetctxt(3c), tpterm(3c)

tpkey_close(3c)

Name
tpkey_close()—Closes a previously opened key handle.

Synopsis
#include <atmi.h>

int tpkey_close(TPKEY hKey, long flags)

../rf5/rf5.htm#365105

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 173

Description
tpkey_close() releases a previously opened key handle and all resources associated with it.
Any sensitive information, such as the principal’s private key, is erased from memory.

Key handles can be opened in one of two ways:

By an explicit call to tpkey_open()

As output from tpenvelope()

It is the application’s responsibility to release key resources by calling tpkey_close(). Once a
process closes a key, the process can no longer use the key handle to register a message buffer
for digital signature or encryption. If the process opened the key using tpkey_open() with the
TPKEY_AUTOSIGN or TPKEY_AUTOENCRYPT flag specified, the key handle no longer applies to
future communication operations after the key is closed.

Even though a key is closed, however, the key handle continues to be valid for any associated
signature or encryption request registered before the key was closed. When the last buffer
associated with a closed key is freed or overwritten, resources attributable to the key are released.

The flags argument is reserved for future use and must be set to 0.

Return Values
On failure, this function returns -1 and sets tperrno to indicate the error condition.

Errors

[TPEINVAL]
Invalid arguments were given. For example, the value of hKey is not a valid key.

[TPESYSTEM]
An error occurred. Consult the system error log file for details.

See Also
tpenvelope(3c), tpkey_getinfo(3c), tpkey_open(3c), tpkey_setinfo(3c)

tpkey_getinfo(3c)

Name
tpkey_getinfo()—Gets information associated with a key handle.

174 ATMI C Function Reference

Synopsis
#include <atmi.h>

int tpkey_getinfo(TPKEY hKey, char *attribute_name, void *value, long

*value_len, long flags)

Description
tpkey_getinfo() reports information about a key handle. A key handle represents a specific
principal’s key and the information associated with it.

The key under examination is identified by the hKey input parameter. The attribute for which
information is desired is identified by the attribute_name input parameter. Some attributes are
specific to a cryptographic service provider, but the following core set of attributes should be
supported by all providers.

Attribute Value

PRINCIPAL The name identifying the principal associated with the key (key
handle), represented as a NULL-terminated character string.

PKENCRYPT_ALG An ASN.1 Distinguished Encoding Rules (DER) object identifier of
the public key algorithm used by the key for public key encryption.

The object identifier for RSA is identified in the following table.

PKENCRYPT_BITS The key length of the public key algorithm (RSA modulus size). The
value must be within the range of 512 to 2048 bits, inclusive.

SIGNATURE_ALG An ASN.1 DER object identifier of the digital signature algorithm
used by the key for digital signature.

The object identifiers for RSA and DSA are identified in the following
table.

SIGNATURE_BITS The key length of the digital signature algorithm (RSA modulus size).
The value must be within the range of 512 to 2048 bits, inclusive.

ENCRYPT_ALG An ASN.1 DER object identifier of the symmetric key algorithm used
by the key for bulk data encryption.

The object identifiers for DES, 3DES, and RC2 are identified in the
following table.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 175

The ASN.1 DER algorithm object identifiers supported by the default public key implementation
are given in the following table.

The information associated with the specified attribute_name parameter will be stored in the
memory location indicated by value. The maximum amount of data that can be stored at this
location is specified by the caller in value_len.

ENCRYPT_BITS The key length of the symmetric key algorithm. The value must be
within the range of 40 to 128 bits, inclusive.

When an algorithm with a fixed key length is set in ENCRYPT_ALG,
the ENCRYPT_BITS value is automatically set to the fixed key length.
For example, if ENCRYPT_ALG is set to DES, the ENCRYPT_BITS
value is automatically set to 56.

DIGEST_ALG An ASN.1 DER object identifier of the message digest algorithm used
by the key for digital signature.

The object identifiers for MD5 and SHA-1 are identified in the
following table.

PROVIDER The name of the cryptographic service provider.

VERSION The version number of the cryptographic service provider’s software.

ASN.1 DER Algorithm Object Identifier Algorithm

{ 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x02, 0x05 } MD5

{ 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x1a } SHA1

{ 0x06, 0x09, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x01, 0x01, 0x01 } RSA

{ 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x0c } DSA

{ 0x06, 0x05, 0x2b, 0x0e, 0x03, 0x02, 0x07 } DES

{ 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x07 } 3DES

{ 0x06, 0x08, 0x2a, 0x86, 0x48, 0x86, 0xf7, 0x0d, 0x03, 0x02 } RC2

Attribute Value

176 ATMI C Function Reference

After tpkey_getinfo() completes, value_len is set to the size of the data actually returned
(including a terminating NULL value for string values). If the number of bytes that need to be
returned exceeds value_len, tpkey_getinfo() fails (with the TPELIMIT error code) and sets
value_len to the required amount of space.

The flags argument is reserved for future use and must be set to 0.

Return Values
On failure, this function returns -1 and sets tperrno to indicate the error condition.

Errors

[TPEINVAL]
Invalid arguments were given. For example, hKey is not a valid key.

[TPESYSTEM]
An error occurred. Consult the system error log file for details.

[TPELIMIT]
Insufficient space was provided to hold the requested attribute value.

[TPENOENT]
The requested attribute is not associated with this key.

See Also
tpkey_close(3c), tpkey_open(3c), tpkey_setinfo(3c)

tpkey_open(3c)

Name
tpkey_open()—Opens a key handle for digital signature generation, message encryption, or
message decryption.

Synopsis
#include <atmi.h>

int tpkey_open(TPKEY *hKey, char *principal_name, char *location, char

*identity_proof, long proof_len, long flags)

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 177

Description
tpkey_open() makes a key handle available to the calling process. A key handle represents a
specific principal’s key and the information associated with it.

A key may be used for one or more of the following purposes:

Generating a digital signature, which protects a typed message buffer’s content and proves
that a specific principal originated the message. (A principal may be a person or a process.)
This type of key is a private key and is available only to the key’s owner.

Calling tpkey_open() with the principal’s name and either the TPKEY_SIGNATURE or
TPKEY_AUTOSIGN flag returns a handle to the principal’s private key and digital certificate.

Verifying a digital signature, which proves that a typed message buffer’s content remains
unaltered and that a specific principal originated the message.

Signature verification does not require a call to tpkey_open(); the verifying process uses
the public key specified in the digital certificate accompanying the digitally signed
message to verify the signature.

Encrypting a message buffer destined for a specific principal. This type of key is available
to any process with access to the principal’s public key and digital certificate.

Calling tpkey_open() with the principal’s name and either the TPKEY_ENCRYPT or
TPKEY_AUTOENCRYPT flag returns a handle to the principal’s public key via the principal’s
digital certificate.

Decrypting a message buffer intended for a specific principal. This type of key is a private
key and is available only to the key’s owner.

Calling tpkey_open() with the principal’s name and the TPKEY_DECRYPT flag returns a
handle to the principal’s private key and digital certificate.

The key handle returned by tpkey_open() is stored in *hKey, the value of which cannot be
NULL.

The principal_name input parameter specifies the key owner’s identity. If the value of
principal_name is a NULL pointer or an empty string, a default identity is assumed. The
default identity may be based on the current login session, the current operating system account,
or another attribute such as a local hardware device.

The file location of a key may be passed into the location parameter. If the underlying key
management provider does not require a location parameter, the value of this parameter may be
NULL.

178 ATMI C Function Reference

To authenticate the identity of principal_name, proof material such as a password or pass
phrase may be required. If required, the proof material should be referenced by
identity_proof. Otherwise, the value of this parameter may be NULL.

The length of the proof material (in bytes) is specified by proof_len. If proof_len is 0,
identity_proof is assumed to be a NULL-terminated character string.

The type of key access required for a key’s mode of operation is specified by the flags
parameter:

TPKEY_SIGNATURE:
This private key is available to generate digital signatures.

TPKEY_AUTOSIGN:
Whenever this process transmits a message buffer, the public key software uses the
signer’s private key to generate a digital signature and then attaches the digital signature
to the buffer. TPKEY_SIGNATURE is implied.

TPKEY_ENCRYPT:
This public key is available to identify the recipient of an encrypted message.

TPKEY_AUTOENCRYPT:
Whenever this process transmits a message buffer, the public key software encrypts the
message content, uses the recipient’s public key to generate an encryption envelope, and
then attaches the encryption envelope to the buffer. TPKEY_ENCRYPT is implied.

TPKEY_DECRYPT:
This private key is available for decryption.

Any combination of one or more of these flag values is allowed. If a key is used only for
encryption (TPKEY_ENCRYPT), identity_proof is not required and may be set to NULL.

Return Values
Upon successful completion, *hKey is set to a value that represents this key, for use by other
functions such as tpsign() and tpseal().

On failure, this function returns -1 and sets tperrno to indicate the error condition.

Errors

[TPEINVAL]
Invalid arguments were given. For example, the value of hKey is NULL or the flags
parameter is not set correctly.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 179

[TPEPERM]
Permission failure. The cryptographic service provider was not able to access a private
key for this principal, given the proof information and current environment.

[TPESYSTEM]
A system error occurred. Consult the systems error log file for details.

See Also
tpkey_close(3c), tpkey_getinfo(3c), tpkey_setinfo(3c)

tpkey_setinfo(3c)

Name
tpkey_setinfo()—Sets optional attribute parameters associated with a key handle.

Synopsis
#include <atmi.h>

int tpkey_setinfo(TPKEY hKey, char *attribute_name, void *value, long

value_len, long flags)

Description
tpkey_setinfo() sets an optional attribute parameter for a key handle. A key handle represents
a specific principal’s key and the information associated with it.

The key for which information is to be modified is identified by the hKey input parameter. The
attribute for which information is to be modified is identified by the attribute_name input
parameter. Some attributes may be specific to a certain cryptographic service provider, but the
core set of attributes presented on the tpkey_getinfo(3c) reference page should be supported
by all providers.

The information to be associated with the attribute_name parameter is stored in the memory
location indicated by value. If the data content of value is self-describing, value_len is
ignored (and may be 0). Otherwise, value_len must contain the length of data in value.

The flags argument is reserved for future use and must be set to 0.

Return Values
On failure, this function returns -1 and sets tperrno to indicate the error condition.

180 ATMI C Function Reference

Errors

[TPEINVAL]
Invalid arguments were given. For example, hKey is not a valid key or attribute_name
refers to a read-only value.

[TPELIMIT]
The value provided is too large.

[TPESYSTEM]
An error occurred. Consult the system error log file for details.

 [TPENOENT]
The requested attribute is not recognized by the key’s cryptographic service provider.

See Also
tpkey_close(3c), tpkey_getinfo(3c), tpkey_open(3c)

tpnotify(3c)

Name
tpnotify()—Routine for sending notification by client identifier.

Synopsis
#include <atmi.h>

int tpnotify(CLIENTID *clientid, char *data, long len, long flags)

Description
tpnotify() allows a client or server to send an unsolicited message to an individual client.

clientid is a pointer to a client identifier saved from the TPSVCINFO structure of a previous or
current service invocation, or passed to a client via some other communications mechanism (for
example, retrieved via the administration interface).

The data portion of the request is pointed to by data, a buffer previously allocated by
tpalloc(). len specifies how much of data to send. Note that if data points to a buffer type
that does not require a length to be specified, (for example, an FML fielded buffer) then len is
ignored (and may be 0). Also, data may be NULL in which case len is ignored.

Upon successful return from tpnotify(), the message has been delivered to the system for
forwarding to the identified client. If the TPACK flag was set, a successful return means the

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 181

message has been received by the client. Furthermore, if the client has registered an unsolicited
message handler, the handler will have been called.

The following is a list of valid flags:

TPACK
The request is sent and the caller blocks until an acknowledgement message is received
from the target client.

TPNOBLOCK
The request is not sent if a blocking condition exists in sending the notification (for
example, the internal buffers into which the message is transferred are full).

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system call is
reissued.

Unless the TPACK flag is set, tpnotify() does not wait for the message to be delivered
to the client.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tpnotify().

Return Values
Upon failure, tpnotify() returns -1 and sets tperrno to indicate the error condition. If a call
fails with a particular tperrno value, a subsequent call to tperrordetail(), with no
intermediate ATMI calls, may provide more detailed information about the generated error. Refer
to the tperrordetail(3c) reference page for more information.

Errors
Upon failure, tpnotify() sets tperrno to one of the following values:

[TPEINVAL]
Invalid arguments were given (for example, invalid flags).

[TPENOENT]
The target client does not exist or does not have an unsolicited handler set and the TPACK
flag is set.

182 ATMI C Function Reference

[TPETIME]
A blocking timeout occurred and neither TPNOBLOCK nor TPNOTIME were specified, or
TPACK was set but no acknowledgment was received and TPNOTIME was not specified. (A
blocking timeout cannot occur if TPNOBLOCK and/or TPNOTIME is specified.)

[TPEBLOCK]
A blocking condition was found on the call and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpnotify() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

[TPERELEASE]
When the TPACK is set and the target is a client from a prior release of BEA Tuxedo that
does not support the acknowledgment protocol.

See Also
Introduction to the C Language Application-to-Transaction Monitor Interface, tpalloc(3c),
tpbroadcast(3c), tpchkunsol(3c), tperrordetail(3c), tpinit(3c), tpsetunsol(3c),
tpstrerrordetail(3c), tpterm(3c)

tpopen(3c)

Name
tpopen()—Routine for opening a resource manager.

Synopsis
#include <atmi.h>

int tpopen(void)

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 183

Description
tpopen() opens the resource manager to which the caller is linked. At most one resource
manager can be linked to the caller. This function is used in place of resource manager-specific
open() calls and allows a service routine to be free of calls that may hinder portability. Since
resource managers differ in their initialization semantics, the specific information needed to open
a particular resource manager is placed in a configuration file.

If a resource manager is already open (that is, tpopen() is called more than once), no action is
taken and success is returned.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tpopen().

Return Values
Upon failure, tpopen() returns -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpopen() sets tperrno to one of the following values:

[TPERMERR]
A resource manager failed to open correctly. More information concerning the reason a
resource manager failed to open can be obtained by interrogating a resource manager in
its own specific manner. Note that any calls to determine the exact nature of the error
hinder portability.

[TPEPROTO]
tpopen() was called in an improper context (for example, by a client that has not joined
a BEA Tuxedo system server group).

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

See Also
tpclose(3c)

184 ATMI C Function Reference

tppost(3c)

Name
tppost()—Posts an event.

Synopsis
#include <atmi.h>

int tppost(char *eventname, char *data, long len, long flags)

Description
The caller uses tppost() to post an event and any accompanying data. The event is named by
eventname and data, if not NULL, points to the data. The posted event and its data are
dispatched by the BEA Tuxedo ATMI EventBroker to all subscribers whose subscriptions
successfully evaluate against eventname and whose optional filter rules successfully evaluate
against data.

eventname is a NULL-terminated string of at most 31 characters. eventname’s first character
cannot be a dot (“.”) as this character is reserved as the starting character for all events defined
by the BEA Tuxedo ATMI system itself.

If data is non-NULL, it must point to a buffer previously allocated by tpalloc() and len
should specify the amount of data in the buffer that should be posted with the event. Note that if
data points to a buffer of a type that does not require a length to be specified (for example, an
FML fielded buffer), then len is ignored. If data is NULL, len is ignored and the event is posted
with no data.

When tppost() is used within a transaction, the transaction boundary can be extended to include
those servers and/or stable-storage message queues notified by the EventBroker. When a
transactional posting is made, some of the recipients of the event posting are notified on behalf
of the poster’s transaction (for example, servers and queues), while some are not (for example,
clients).

If the poster is within a transaction and the TPNOTRAN flag is not set, the posted event goes to the
EventBroker in transaction mode such that it dispatches the event as part of the poster’s
transaction. The broker dispatches transactional event notifications only to those service routine
and stable-storage queue subscriptions that used the TPEVTRAN bit setting in the ctl−>flags
parameter passed to tpsubscribe(). Client notifications, and those service routine and
stable-storage queue subscriptions that did not use the TPEVTRAN bit setting in the ctl−>flags
parameter passed to tpsubscribe(), are also dispatched by the EventBroker but not as part of
the posting process’s transaction.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 185

If the poster is outside a transaction, tppost() is a one-way post with no acknowledgement when
the service associated with the event fails. This occurs even when TPEVTRAN is set for that event
(using the ctl−>flags parameter passed to tpsubscribe()). If the poster is in a transaction,
then tppost() returns TPESVCFAIL when the associated service fails in the event.

The following is a list of valid flags:

TPNOTRAN
If the caller is in transaction mode and this flag is set, then the event posting is not made
on behalf of the caller’s transaction. A caller in transaction mode that sets this flag is still
subject to the transaction timeout (and no other) when posting events. If the event posting
fails, the caller’s transaction is not affected.

TPNOREPLY
Informs tppost() not to wait for the EventBroker to process all subscriptions for
eventname before returning. When TPNOREPLY is set, tpurcode() is set to zero
regardless of whether tppost() returns successfully or not. When the caller is in
transaction mode, this setting cannot be used unless TPNOTRAN is also set.

TPNOBLOCK
The event is not posted if a blocking condition exists. If such a condition occurs, the call
fails and tperrno is set to TPEBLOCK. When TPNOBLOCK is not specified and a blocking
condition exists, the caller blocks until the condition subsides or a timeout occurs (either
transaction or blocking timeout).

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system call is
reissued. When TPSIGRSTRT is not specified and a signal interrupts a system call, then
tppost() fails and tperrno is set to TPGOTSIG.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tppost().

Return Values
Upon successful return from tppost(), tpurcode() contains the number of event notifications
dispatched by the EventBroker on behalf of eventname (that is, postings for those subscriptions
whose event expression evaluated successfully against eventname and whose filter rule
evaluated successfully against data). Upon return where tperrno is set to TPESVCFAIL,

186 ATMI C Function Reference

tpurcode() contains the number of non-transactional event notifications dispatched by the
EventBroker on behalf of eventname.

Upon failure, tppost() returns -1 sets tperrno to indicate the error condition.

Errors
Upon failure, tppost() sets tperrno to one of the following values. (Unless otherwise noted,
failure does not affect the caller’s transaction, if one exists.)

[TPEINVAL]
Invalid arguments were given (for example, eventname is NULL).

[TPENOENT]
Cannot access the BEA Tuxedo User EventBroker.

[TPETRAN]
The caller is in transaction mode, TPNOTRAN was not set and tppost() contacted an
EventBroker that does not support transaction propagation (that is, TMUSREVT(5) is not
running in a BEA Tuxedo ATMI system group that supports transactions).

[TPETIME]
This error code indicates that either a timeout has occurred or tppost() has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller is in transaction mode, then either the transaction is already rollback only or
a transaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout cannot
occur if TPNOBLOCK and/or TPNOTIME is specified.)

If a transaction timeout has occurred, then, with one exception, any attempts to send new
requests or receive outstanding replies will fail with TPETIME until the transaction has
been aborted. The exception is a request that does not block, expects no reply, and is not
sent on behalf of the caller’s transaction (that is, tpacall() with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY set).

When tppost() fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY state. This state is treated, for most purposes, as though it were
equivalent to a timeout. All further ATMI calls for this transaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

../rf5/rf5.htm#5119715

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 187

[TPESVCFAIL]
The EventBroker encountered an error posting a transactional event to either a service
routine or to a stable storage queue on behalf of the caller’s transaction. The caller’s
current transaction is marked abort-only. When this error is returned, tpurcode()
contains the number of non-transactional event notifications dispatched by the
EventBroker on behalf of eventname; transactional postings are not counted since their
effects will be aborted upon completion of the transaction. Note that so long as the
transaction has not timed out, further communication may be performed before aborting
the transaction and that any work performed on behalf of the caller’s transaction will be
aborted upon transaction completion (that is, for subsequent communication to have any
lasting effect, it should be done with TPNOTRAN set).

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tppost() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

See Also
tpsubscribe(3c), tpunsubscribe(3c), EVENTS(5), TMSYSEVT(5), TMUSREVT(5)

tprealloc(3c)

Name
tprealloc()—Routine to change the size of a typed buffer.

Synopsis
#include <atmi.h>

char * tprealloc(char *ptr, long size)

../rf5/rf5.htm#1605515
../rf5/rf5.htm#9901015
../rf5/rf5.htm#5119715

188 ATMI C Function Reference

Description
tprealloc() changes the size of the buffer pointed to by ptr to size bytes and returns a pointer
to the new (possibly moved) buffer. Similar to tpalloc(), the size of the buffer will be at least
as large as the larger of size and dfltsize, where dfltsize is the default buffer size specified
in tmtype_sw. If the larger of the two is less than or equal to zero, then the buffer is unchanged
and NULL is returned. A buffer’s type remains the same after it is reallocated. After this function
returns successfully, the returned pointer should be used to reference the buffer; ptr should no
longer be used. The buffer’s contents will not change up to the lesser of the new and old sizes.

Some buffer types require initialization before they can be used. tprealloc() reinitializes a
buffer (in a communication manager-specific manner) after it is reallocated and before it is
returned. Thus, the buffer returned to the caller is ready for use.

A thread in a multithreaded application may issue a call to tprealloc() while running in any
context state, including TPINVALIDCONTEXT.

Return Values
Upon successful completion, tprealloc() returns a pointer to a buffer of the appropriate type
aligned on a long word.

Upon failure, tprealloc() returns NULL and sets tperrno to indicate the error condition.

Errors
If the reinitialization function fails, tprealloc() fails, returning NULL and the contents of the
buffer pointed to by ptr may not be valid. Upon failure, tprealloc() sets tperrno to one of
the following values:

[TPEINVAL]
Invalid arguments were given (for example, ptr does not point to a buffer originally
allocated by tpalloc()).

[TPEPROTO]
tprealloc() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 189

Usage
If buffer reinitialization fails, tprealloc() fails returning NULL and the contents of the buffer
pointed to by ptr may not be valid. This function should not be used in concert with malloc(),
realloc() or free() in the C library (for example, a buffer allocated with tprealloc() should
not be freed with free()).

See Also
tpalloc(3c), tpfree(3c), tptypes(3c)

tprecv(3c)

Name
tprecv()—Routine for receiving a message in a conversational connection.

Synopsis
#include <atmi.h>

int tprecv(int cd, char **data, long *len, long flags, long \

 *revent)

Description
tprecv() is used to receive data sent across an open connection from another program.
tprecv()’s first argument, cd, specifies on which open connection to receive data. cd is a
descriptor returned from either tpconnect() or the TPSVCINFO parameter to the service. The
second argument, data, is the address of a pointer to a buffer previously allocated by tpalloc().

data must be the address of a pointer to a buffer previously allocated by tpalloc() and len
should point to a long that tprecv() sets to the amount of data successfully received. Upon
successful return, *data points to a buffer containing the reply and *len contains the size of
the buffer. FML and FML32 buffers often assume a minimum size of 4096 bytes; if the reply is
larger than 4096 bytes, the size of the buffer is increased to a size large enough to accommodate
the data being returned.

Buffers on the sending side that may be only partially filled (for example, FML or STRING
buffers) will have only the amount that is used sent. The system may then enlarge the received
data size by some arbitrary amount. This means that the receiver may receive a buffer that is
smaller than what was originally allocated by the sender, yet larger than the data that was sent.

The receive buffer may grow, or it may shrink, and its address almost invariably changes, as the
system swaps buffers around internally. To determine whether (and how much) a reply buffer

190 ATMI C Function Reference

changed in size, compare its total size before tprecv() was issued with *len. See “Introduction
to the C Language Application-to-Transaction Monitor Interface” for more information about
buffer management.

If *len is 0, then no data was received and neither *data nor the buffer it points to were
modified. It is an error for data, *data or len to be NULL.

tprecv() can be issued only by the program that does not have control of the connection.

The following is a list of valid flags:

TPNOCHANGE

By default, if a buffer is received that differs in type from the buffer pointed to by *data,
then *data’s buffer type changes to the received buffer’s type so long as the receiver
recognizes the incoming buffer type. When this flag is set, the type of the buffer pointed
to by *data is not allowed to change. That is, the type and subtype of the received buffer
must match the type and subtype of the buffer pointed to by *data.

TPNOBLOCK

tprecv() does not wait for data to arrive. If data is already available to receive, then
tprecv() gets the data and returns. When this flag is not specified and no data is available
to receive, the caller blocks until data arrives.

TPNOTIME

This flag signifies that the caller is willing to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts will still affect the program.

TPSIGRSTRT

If a signal interrupts the underlying receive system call, then the call is reissued.

If an event exists for the descriptor, cd, then tprecv() will return setting tperrno to TPEEVENT.
The event type is returned in revent. Data can be received along with the TPEV_SVCSUCC,
TPEV_SVCFAIL, and TPEV_SENDONLY events. Valid events for tprecv() are as follows:

TPEV_DISCONIMM

Received by the subordinate of a conversation, this event indicates that the originator of
the conversation has either issued an immediate disconnect on the connection via
tpdiscon(), or it issued tpreturn(), tpcommit() or tpabort() with the connection
still open. This event is also returned to the originator or subordinate when a connection
is broken due to a communications error (for example, a server, machine, or network
failure). Because this is an immediate disconnection notification (that is, abortive rather
than orderly), data in transit may be lost. If the two programs were participating in the
same transaction, then the transaction is marked abort-only. The descriptor used for the
connection is no longer valid.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 191

TPEV_SENDONLY

The program on the other end of the connection has relinquished control of the
connection. The recipient of this event is allowed to send data but cannot receive any data
until it relinquishes control.

TPEV_SVCERR

Received by the originator of a conversation, this event indicates that the subordinate of
the conversation has issued tpreturn(). tpreturn() encountered an error that
precluded the service from returning successfully. For example, bad arguments may have
been passed to tpreturn() or tpreturn() may have been called while the service had
open connections to other subordinates. Due to the nature of this event, any application
defined data or return code are not available. The connection has been torn down and is
no longer a valid descriptor. If this event occurred as part of the cd recipient’s transaction,
then the transaction is marked abort-only.

TPEV_SVCFAIL

Received by the originator of a conversation, this event indicates that the subordinate
service on the other end of the conversation has finished unsuccessfully as defined by the
application (that is, it called tpreturn() with TPFAIL or TPEXIT). If the subordinate
service was in control of this connection when tpreturn() was called, then it can pass
an application defined return value and a typed buffer back to the originator of the
connection. As part of ending the service routine, the server has torn down the connection.
Thus, cd is no longer a valid descriptor. If this event occurred as part of the recipient’s
transaction, then the transaction is marked abort-only.

TPEV_SVCSUCC

Received by the originator of a conversation, this event indicates that the subordinate
service on the other end of the conversation has finished successfully as defined by the
application (that is, it called tpreturn() with TPSUCCESS). As part of ending the service
routine, the server has torn down the connection. Thus, cd is no longer a valid descriptor.
If the recipient is in transaction mode, then it can either commit (if it is also the initiator)
or abort the transaction causing the work done by the server (if also in transaction mode)
to either commit or abort.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tprecv().

Return Values
Upon return from tprecv() where revent is set to either TPEV_SVCSUCC or TPEV_SVCFAIL, the
tpurcode global contains an application defined value that was sent as part of tpreturn().

Upon failure, tprecv() returns -1 and sets tperrno to indicate the error condition. If a call fails
with a particular tperrno value, a subsequent call to tperrordetail(), with no intermediate

192 ATMI C Function Reference

ATMI calls, may provide more detailed information about the generated error. Refer to the
tperrordetail(3c) reference page for more information.

Errors
Upon failure, tprecv() sets tperrno to one of the following values:

[TPEINVAL]
Invalid arguments were given (for example, data is not the address of a pointer to a buffer
allocated by tpalloc() or flags are invalid).

[TPEOTYPE]
Either the type and subtype of the incoming buffer are not known to the caller, or
TPNOCHANGE was set in flags and the type and subtype of *data do not match the type
and subtype of the incoming buffer. Regardless, neither *data, its contents nor *len are
changed. If the conversation is part of the caller’s current transaction, then the transaction
is marked abort-only because the incoming buffer is discarded.

[TPEBADDESC]
cd is invalid.

[TPETIME]
This error code indicates that either a timeout has occurred or tprecv() has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller is in transaction mode, then either the transaction is already rollback only or
a transaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout cannot
occur if TPNOBLOCK and/or TPNOTIME is specified.) In either case, no changes are made to
*data or its contents.

If a transaction timeout has occurred, then, with one exception, any attempts to send new
requests or receive outstanding replies will fail with TPETIME until the transaction has
been aborted. The exception is a request that does not block, expects no reply, and is not
sent on behalf of the caller’s transaction (that is, tpacall() with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY set).

When an ATMI call fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY state. This state is treated, for most purposes, as though it were
equivalent to a timeout. All further ATMI calls for this transaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 193

[TPEEVENT]
An event occurred and its type is available in revent. There is a relationship between the
[TPETIME] and the [TPEEVENT] return codes. While in transaction mode, if the receiving
side of a conversation is blocked on tprecv and the sending side calls tpabort(), then
the receiving side gets a return code of [TPEVENT] with an event of TPEV_DISCONIMM. If,
however, the sending side calls tpabort() before the receiving side calls tprecv(), then
the transaction may have already been removed from the GTT, which causes tprecv()
to fail with the [TPETIME] code.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tprecv() was called in an improper context (for example, the connection was established
such that the calling program can only send data).

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

Usage
A server can pass an application defined return value and typed buffer when calling tpreturn().
The return value is available in the global variable tpurcode and the buffer is available in data.

See Also
tpalloc(3c), tpconnect(3c), tpdiscon(3c), tperrordetail(3c), tpsend(3c),
tpservice(3c), tpstrerrordetail(3c)

tpresume(3c)

Name
tpresume()—Resumes a global transaction.

194 ATMI C Function Reference

Synopsis
#include <atmi.h>

int tpresume(TPTRANID *tranid, long flags)

Description
tpresume() is used to resume work on behalf of a previously suspended transaction. Once the
caller resumes work on a transaction, it must either suspend it with tpsuspend(), or complete it
with one of tpcommit() or tpabort() at a later time.

The caller must ensure that its linked resource managers have been opened (via tpopen()) before
it can resume work on any transaction.

tpresume() places the caller in transaction mode on behalf of the global transaction identifier
pointed to by tranid. It is an error for tranid to be NULL.

Currently, flags are reserved for future use and must be set to 0.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tpresume().

Return Value
tpresume() returns -1 on error and sets tperrno to indicate the error condition.

Errors
Under the following conditions, tpresume() fails and sets tperrno to:

[TPEINVAL]
Either tranid is a NULL pointer, it points to a non-existent transaction identifier
(including previously completed or timed-out transactions), or it points to a transaction
identifier that the caller is not allowed to resume. The caller’s state with respect to the
transaction is not changed.

[TPEMATCH]
tranid points to a transaction identifier that another process has already resumed. The
caller’s state with respect to the transaction is not changed.

[TPETRAN]
The BEA Tuxedo system is unable to resume the global transaction because the caller is
currently participating in work outside any global transaction with one or more resource
managers. All such work must be completed before a global transaction can be resumed.
The caller’s state with respect to the local transaction is unchanged.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 195

[TPEPROTO]
tpresume() was called in an improper context (for example, the caller is already in
transaction mode). The caller’s state with respect to the transaction is not changed.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

Notes
XA-compliant resource managers must be successfully opened to be included in the global
transaction. (See tpopen(3c) for details.)

A process resuming a suspended transaction must reside on the same logical machine (LMID) as
the process that suspended the transaction. For a Workstation client, the workstation handler
(WSH) to which it is connected must reside on the same logical machine as the handler for the
Workstation client that suspended the transaction.

See Also
tpabort(3c), tpcommit(3c), tpopen(3c), tpsuspend(3c)

tpreturn(3c)

Name
tpreturn()—Returns from a BEA Tuxedo ATMI system service routine.

Synopsis
void tpreturn(int rval, long rcode, char *data, long len, long \

 flags)

Description
tpreturn() indicates that a service routine has completed. tpreturn() acts like a return
statement in the C language (that is, when tpreturn() is called, the service routine returns to
the BEA Tuxedo ATMI system dispatcher). It is recommended that tpreturn() be called from
within the service routine dispatched to ensure correct return of control to the BEA Tuxedo ATMI
system dispatcher.

196 ATMI C Function Reference

tpreturn() is used to send a service’s reply message. If the program receiving the reply is
waiting in either tpcall(), tpgetrply(), or tprecv(), then after a successful call to
tpreturn(), the reply is available in the receiver’s buffer.

For conversational services, tpreturn() also tears down the connection. That is, the service
routine cannot call tpdiscon() directly. To ensure correct results, the program that connected
to the conversational service should not call tpdiscon(); rather, it should wait for notification
that the conversational service has completed (that is, it should wait for one of the events, like
TPEV_SVCSUCC or TPEV_SVCFAIL, sent by tpreturn()).

If the service routine was in transaction mode, tpreturn() places the service’s portion of the
transaction in a state from which it may be either committed or rolled back when the transaction
is completed. A service may be invoked multiple times as part of the same transaction so it is not
necessarily fully committed or rolled back until either tpcommit() or tpabort() is called by
the originator of the transaction.

tpreturn() should be called after receiving all replies expected from service requests initiated
by the service routine. Otherwise, depending on the nature of the service, either a TPESVCERR
status or a TPEV_SVCERR event will be returned to the program that initiated communication with
the service routine. Any outstanding replies that are not received will automatically be dropped
by the communication manager. In addition, the descriptors for those replies become invalid.

tpreturn() should be called after closing all connections initiated by the service. Otherwise,
depending on the nature of the service, either a TPESVCERR or a TPEV_SVCERR event will be
returned to the program that initiated communication with the service routine. Also, an immediate
disconnect event (that is, TPEV_DISCONIMM) is sent over all open connections to subordinates.

Since a conversational service has only one open connection which it did not initiate, the
communication manager knows over which descriptor data (and any event) should be sent. For
this reason, a descriptor is not passed to tpreturn().

The following is a description of the arguments for tpreturn(). rval can be set to one of the
following:

TPSUCCESS

The service has terminated successfully. If data is present, then it will be sent (barring any
failures processing the return). If the caller is in transaction mode, then tpreturn()
places the caller’s portion of the transaction in a state such that it can be committed when
the transaction ultimately commits. Note that a call to tpreturn() does not necessarily
finalize an entire transaction. Also, even though the caller indicates success, if there are
any outstanding replies or open connections, if any work done within the service caused
its transaction to be marked rollback-only, then a failed message is sent (that is, the
recipient of the reply receives a TPESVCERR indication or a TPEV_SVCERR event). Note

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 197

that if a transaction becomes rollback-only while in the service routine for any reason,
then rval should be set to TPFAIL. If TPSUCCESS is specified for a conversational service,
a TPEV_SVCSUCC event is generated.

TPFAIL

The service has terminated unsuccessfully from an application standpoint. An error will
be reported to the program receiving the reply. That is, the call to get the reply will fail
and the recipient receives a TPSVCFAIL indication or a TPEV_SVCFAIL event. If the caller
is in transaction mode, then tpreturn() marks the transaction as rollback-only (note that
the transaction may already be marked rollback-only). Barring any failures in processing
the return, the caller’s data is sent, if present. One reason for not sending the caller’s data
is that a transaction timeout has occurred. In this case, the program waiting for the reply
will receive an error of TPETIME. If TPFAIL is specified for a conversational service, a
TPEV_SVCFAIL event is generated.

TPEXIT

This value behaves the same as TPFAIL with respect to completing the service, but when
TPEXIT is returned, the server exits after the transaction is rolled back and the reply is sent
back to the requester.
When specified for a multithreaded process, TPEXIT indicates that an entire process (not
only a single thread within that process) will be killed.
If the server is restartable, then the server is restarted automatically.

If rval is not set to one of these three values, then it defaults to TPFAIL.

An application defined return code, rcode, may be sent to the program receiving the service
reply. This code is sent regardless of the setting of rval as long as a reply can be successfully
sent (that is, as long as the receiving call returns success or TPESVCFAIL). In addition, for
conversational services, this code can be sent only if the service routine has control of the
connection when it issues tpreturn(). The value of rcode is available in the receiver in the
variable, tpurcode().

data points to the data portion of a reply to be sent. If data is non-NULL, it must point to a buffer
previously obtained by a call to tpalloc(). If this is the same buffer passed to the service routine
upon its invocation, then its disposition is up to the BEA Tuxedo ATMI system dispatcher; the
service routine writer does not have to worry about whether it is freed or not. In fact, any attempt
by the user to free this buffer will fail. However, if the buffer passed to tpreturn() is not the
same one with which the service is invoked, then tpreturn() frees that buffer. Although the
main buffer is freed, any buffers referenced by embedded fields within that buffer are not freed.
len specifies the amount of the data buffer to be sent. If data points to a buffer which does not
require a length to be specified, (for example, an FML fielded buffer), then len is ignored (and
can be 0).

198 ATMI C Function Reference

If data is NULL, then len is ignored. In this case, if a reply is expected by the program that
invoked the service, then a reply is sent with no data. If no reply is expected, then tpreturn()
frees data as necessary and returns sending no reply.

Currently, flags is reserved for future use and must be set to 0 (if set to a non-zero value, the
recipient of the reply receives a TPESVCERR indication or a TPEV_SVCERR event).

If the service is conversational, there are two cases where the caller’s return code and the data
portion are not transmitted:

If the connection has already been torn down when the call is made (that is, the caller has
received TPEV_DISCONIMM on the connection), then this call simply ends the service
routine and rolls back the current transaction, if one exists.

If the caller does not have control of the connection, either TPEV_SVCFAIL or
TPEV_SVCERR is sent to the originator of the connection as described above. Regardless of
which event the originator receives, no data is transmitted; however, if the originator
receives the TPEV_SVCFAIL event, the return code is available in the originator's
tpurcode() variable.

Return Values
A service routine does not return any value to its caller, the BEA Tuxedo ATMI system
dispatcher; thus, it is declared as a void. Service routines, however, are expected to terminate
using either tpreturn() or tpforward(). A conversational service routine must use
tpreturn(), and cannot use tpforward(). If a service routine returns without using either
tpreturn() or tpforward() (that is, it uses the C language return statement or just simply
“falls out of the function”) or tpforward() is called from a conversational server, the server will
print a warning message in the log and return a service error to the service requester. In addition,
all open connections to subordinates will be disconnected immediately, and any outstanding
asynchronous replies will be dropped. If the server was in transaction mode at the time of failure,
the transaction is marked rollback-only. Note also that if either tpreturn() or tpforward() are
used outside of a service routine (for example, in clients, or in tpsvrinit() or tpsvrdone()),
then these routines simply return having no effect.

Errors
Since tpreturn() ends the service routine, any errors encountered either in handling arguments
or in processing cannot be indicated to the function’s caller. Such errors cause tperrno to be set
to TPESVCERR for a program receiving the service’s outcome via either tpcall() or
tpgetrply(), and cause the event, TPEV_SVCERR, to be sent over the conversation to a program
using tpsend() or tprecv().

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 199

If either SVCTIMEOUT in the UBBCONFIG file or TA_SVCTIMEOUT in the TM_MIB is non-zero, the
event TPEV_SVCERR is returned when a service timeout occurs.

tperrordetail() and tpstrerrordetail() can be used to get additional information about
an error produced by the last BEA Tuxedo ATMI system routine called in the current thread. If
an error occurred, tperrordetail() returns a numeric value that can be used as an argument to
trstrerrordetail() to retrieve the text of the error detail.

See Also
tpalloc(3c), tpcall(3c), tpconnect(3c), tpforward(3c), tprecv(3c), tpsend(3c),
tpservice(3c)

tpsblktime(3c)

Name
tpsblktime() —Routine for setting blocktime in seconds for the next service call or for all service calls

Synopsis
#include <atmi.h>

int tpsblktime(int blktime,long flags)

Description
tpsblktime() is used to set the blocktime value, in seconds, of a potential blocking API. A
potential blocking API is defined as: any system API that can use the flag TBNOBLOCK as a value.
It does not have any effect on transaction timeout values.

The blktime range is 0 to 32767. Effective blocktime values are rounded up to the nearest
multiple of the SCANUNIT value as depicted in the following example:

A 0 value indicates that any previously set blocking time flag value is cancelled, and the blocking
time set with a different blocktime flag value prevails. If tpsblktime() is not called, the

User Set Blocktime Value Scanunit Value Effective Blocktime Value

13 5 15

18 5 20

200 ATMI C Function Reference

BLOCKTIME value in the *SERVICES section or the default *RESOURCES section of the UBBCONFIG
file is used.

Note: Blocking timeouts set with tpsblktime() take precedence over the BLOCKTIME
parameter set in the SERVICES and RESOURCES section of the UBBCONFIG file. The
precedence for blocktime checking is as follows:
tpsblktime(TPBLK_NEXT), tpsblktime(TPBLK_ALL), *SERVICES, *RESOURCES

The following is a list of valid flags:

TPBLK_NEXT

This flag sets the blocktime value, in seconds, for the next potential blocking API.
Any API that is called containing the TPNOBLOCK flag is not effected by tpsblktime
(TPBLK_NEXT)and continues to be non-blocking.

A TPBLK_NEXT flag value overrides a TPBLK_ALL flag value for those API calls that
immediately follow it. For example:

tpsblktime(50,TPBLK_ALL)
tpcall(one)
tpsblktime(30,TPBLK_NEXT)
tpcall(two)
tpcall(three)

tpcall(two) will have a 30 second blocking timeout based on
tpsblktime(30,TPBLK_NEXT). tpcall(one) and tpcall(three) will have a 50
second blocking timeout based on tpsblktime(50,TPBLK_ALL).

tpsblktime(TPBLK_NEXT) operates on a per-thread basis. Therefore, it is not necessary
for applications to use any mutex around the tpsblktime(TPBLK_NEXT)call and the
subsequent API call which it affects.

TPBLK_ALL

This flag sets the blocktime value, in seconds, for the all subsequent potential blocking
APIs until the next tpsblktime() is called within that context. Any API that is called
containing the TPNOBLOCK flag is not effected by tpsblktime(TPBLK_ALL) and
continues to be non-blocking.

tpsblktime(TPBLK_ALL) operates on a per-context basis. Therefore, it is necessary to
call tpsblktime(TPBLK_ALL) in only one thread of context that is used in multiple
threads.

tpsblktime(TPBLK_ALL)will not affect any context that follows after tpterm(3c) is
called.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 201

Note: In order to perform blocking time values that are not affected by thread timing
dependencies, it is best that tpsblktime(TPBLK_ALL) is called in a
multi-threaded context immediately after tpinit(3c) using the
TPMULTICONTEXTS flag and before the return value of tpgetctxt(3c) is made
available to other threads.

When tpsblktime(TPBLK_ALL) is called in a service on a multi-threaded server, it will
affect the currently executed thread only. To set the blocktime for all services, it is best
to use tpsblktime(TPBLK_ALL) with tpsvrinit(3c) or tpsvrthrinit(3c).

Return Values
tpsblktime()returns -1 on error and sets tperrno to indicate the error condition.

Error
Upon failure, tpsblktime() sets tperrno to one of the following values:

[TPEINVAL]
Invalid arguments were given. For example, the value of blktime is negative or more
than one TPBLK_NEXT and TPBLK_ALL blocktime flag value is specified.

[TPERELEASE]
tpsblktime() was called in a client attached to a workstation handler running an earlier
Tuxedo release.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

See Also
tpcall(3c), tpcommit(3c), tprecv(3c), tpgblktime(3c), UBBCONFIG(5)

tpscmt(3c)

Name
tpscmt()—Routine for setting when tpcommit() should return.

Synopsis
#include <atmi.h>

int tpscmt(long flags)

../rf5/rf5.htm#365105

202 ATMI C Function Reference

Description
tpscmt() sets the TP_COMMIT_CONTROL characteristic to the value specified in flags. The
TP_COMMIT_CONTROL characteristic affects the way tpcommit() behaves with respect to
returning control to its caller. A program can call tpscmt() regardless of whether it is in
transaction mode or not. Note that if the caller is participating in a transaction that another
program must commit, then its call to tpscmt() does not affect that transaction. Rather, it affects
subsequent transactions that the caller will commit.

In most cases, a transaction is committed only when a BEA Tuxedo ATMI system thread of
control calls tpcommit(). There is one exception: when a service is dispatched in transaction
mode because the AUTOTRAN variable in the *SERVICES section of the UBBCONFIG file is enabled,
then the transaction completes upon calling tpreturn(). If tpforward() is called, then the
transaction will be completed by the server ultimately calling tpreturn(). Thus, the setting of
the TP_COMMIT_CONTROL characteristic in the service that calls tpreturn() determines when
tpcommit() returns control within a server. If tpcommit() returns a heuristic error code, the
server will write a message to a log file.

When a client joins a BEA Tuxedo ATMI system application, the initial setting for this
characteristic comes from a configuration file. (See the CMTRET variable in the RESOURCES
section of UBBCONFIG(5))

The following are the valid settings for flags:

TP_CMT_LOGGED
This flag indicates that tpcommit() should return after the commit decision has been
logged by the first phase of the two-phase commit protocol but before the second phase
has completed. This setting allows for faster response to the caller of tpcommit()
although there is a risk that a transaction participant might decide to heuristically complete
(that is, abort) its work due to timing delays waiting for the second phase to complete. If
this occurs, there is no way to indicate this situation to the caller since tpcommit() has
already returned (although the BEA Tuxedo ATMI system writes a message to a log file
when a resource manager takes a heuristic decision). Under normal conditions,
participants that promise to commit during the first phase will do so during the second
phase. Typically, problems caused by network or site failures are the sources for heuristic
decisions being made during the second phase.

TP_CMT_COMPLETE
This flag indicates that tpcommit(3c) should return after the two-phase commit protocol
has finished completely. This setting allows for tpcommit() to return an indication that
a heuristic decision occurred during the second phase of commit.

../rf5/rf5.htm#365105

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 203

In a multi-threaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue
a call to tpscmt().

Return Values
Upon success, tpscmt() returns the previous value of the TP_COMMIT_CONTROL characteristic.

Upon failure, tpscmt() returns -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpscmt() sets tperrno to one of the following values:

[TPEINVAL]
flags is not one of TP_CMT_LOGGED or TP_CMT_COMPLETE.

[TPEPROTO]
tpscmt() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

Notices
When using tpbegin(), tpcommit() and tpabort() to delineate a BEA Tuxedo ATMI system
transaction, it is important to remember that only the work done by a resource manager that meets
the XA interface (and is linked to the caller appropriately) has transactional properties. All other
operations performed in a transaction are not affected by either tpcommit() or tpabort(). See
buildserver(1) for details on linking resource managers that meet the XA interface into a
server such that operations performed by that resource manager are part of a BEA Tuxedo ATMI
system transaction.

See Also
tpabort(3c), tpbegin(3c), tpcommit(3c), tpgetlev(3c)

tpseal(3c)

Name
tpseal()—Marks a typed message buffer for encryption.

../rfcm/rfcmd.htm#6083611

204 ATMI C Function Reference

Synopsis
#include <atmi.h>

int tpseal(char *data, TPKEY hKey, long flags)

Description
tpseal() marks, or registers, a message buffer for encryption. The principal who owns hKey can
decrypt this buffer and access its content. A buffer may be sealed for more than one recipient
principal by making several calls to tpseal().

data must point to a valid typed message buffer either (1) previously allocated by a process
calling tpalloc() or (2) delivered by the system to a receiving process. The content of the buffer
may be modified after tpseal() is invoked.

When the message buffer pointed to by data is transmitted from a process, the public key
software encrypts the message content and attaches an encryption envelope to the message buffer
for each encryption registration request. An encryption envelope enables a receiving process to
decrypt the message.

The flags argument is reserved for future use and must be set to 0.

Return Values
On failure, this function returns -1 and sets tperrno to indicate the error condition.

Errors

[TPEINVAL]
Invalid arguments were given. For example, hKey is not a valid key for encrypting or data
is NULL.

[TPESYSTEM]
An error has occurred. Consult the system error log file for details.

See Also
tpkey_close(3c), tpkey_open(3c)

tpsend(3c)

Name
tpsend()—Routine for sending a message in a conversational connection.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 205

Synopsis
#include <atmi.h>

int tpsend(int cd, char *data, long len, long flags, long *revent)

Description
tpsend() is used to send data across an open connection to another program. The caller must
have control of the connection. tpsend()’s first argument, cd, specifies the open connection
over which data is sent. cd is a descriptor returned from either tpconnect() or the TPSVCINFO
parameter passed to a conversational service.

The second argument, data, must point to a buffer previously allocated by tpalloc(). len
specifies how much of the buffer to send. Note that if data points to a buffer of a type that does
not require a length to be specified (for example, an FML fielded buffer), then len is ignored (and
may be 0). Also, data can be NULL in which case len is ignored (no application data is sent—
this might be done, for instance, to grant control of the connection without transmitting any data).
The type and subtype of data must match one of the types and subtypes recognized by the other
end of the connection.

The following is a list of valid flags:

TPRECVONLY

This flag signifies that, after the caller’s data is sent, the caller gives up control of the
connection (that is, the caller can not issue any more tpsend() calls). When the receiver
on the other end of the connection receives the data sent by tpsend(), it will also receive
an event (TPEV_SENDONLY) indicating that it has control of the connection (and can not
issue more any tprecv() calls).

TPNOBLOCK

The data and any events are not sent if a blocking condition exists (for example, the
internal buffers into which the message is transferred are full). When TPNOBLOCK is not
specified and a blocking condition exists, the caller blocks until the condition subsides or
a timeout occurs (either transaction or blocking timeout).

TPNOTIME

This flag signifies that the caller is willing to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT

If a signal interrupts any underlying system calls, then the interrupted system call is
reissued.

If an event exists for the descriptor, cd, then tpsend() will fail without sending the caller’s data.
The event type is returned in revent. Valid events for tpsend() are as follows:

206 ATMI C Function Reference

TPEV_DISCONIMM

Received by the subordinate of a conversation, this event indicates that the originator of
the conversation has issued an immediate disconnect on the connection via tpdiscon(),
or it issued tpreturn(), tpcommit() or tpabort() with the connection still open. This
event is also returned to the originator or subordinate when a connection is broken due to
a communications error (for example, a server, machine, or network failure).

TPEV_SVCERR

Received by the originator of a conversation, this event indicates that the subordinate of
the conversation has issued tpreturn() without having control of the conversation. In
addition, tpreturn() has been issued in a manner different from that described for
TPEV_SVCFAIL below. This event can be caused by an ACL permissions violation; that
is, the originator does not have permission to connect to the receiving process. This event
is not returned at the time the tpconnect() is issued, but is returned with the first
tpsend() (following a tpconnect() with flag TPSENDONLY) or tprecv() (following a
tpconnect() with flag TPRECVONLY). A system event and a log message are also
generated.

TPEV_SVCFAIL

Received by the originator of a conversation, this event indicates that the subordinate of
the conversation has issued tpreturn() without having control of the conversation. In
addition, tpreturn() was issued with the rval set to TPFAIL or TPEXIT and data to
NULL.

Because each of these events indicates an immediate disconnection notification (that is, abortive
rather than orderly), data in transit may be lost. The descriptor used for the connection is no longer
valid. If the two programs were participating in the same transaction, then the transaction has
been marked abort-only.

If the value of either SVCTIMEOUT in the UBBCONFIG file or TA_SVCTIMEOUT in the TM_MIB is
non-zero, TPESVCERR is returned when a service timeout occurs.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tpsend().

Return Values
Upon return from tpsend() where revent is set to either TPEV_SVCSUCC or TPEV_SVCFAIL, the
tpurcode() global contains an application-defined value that was sent as part of tpreturn().
The function tpsend() returns -1 on error and sets tperrno to indicate the error condition. Also,
if an event exists and no errors were encountered, tpsend() returns -1 and tperrno is set to
[TPEEVENT].

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 207

Errors
Upon failure, tpsend() sets tperrno to one of the following values:

[TPEINVAL]
Invalid arguments were given (for example, data does not point to a buffer allocated by
tpalloc() or flags are invalid).

[TPEBADDESC]
cd is invalid.

[TPETIME]
This error code indicates that either a timeout has occurred or tpsend() has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller is in transaction mode, then either the transaction is already rollback only or
a transaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout cannot
occur if TPNOBLOCK and/or TPNOTIME is specified.)

If a transaction timeout has occurred, then, with one exception, any attempts to send new
requests or receive outstanding replies will fail with TPETIME until the transaction has
been aborted. The exception is a request that does not block, expects no reply, and is not
sent on behalf of the caller’s transaction (that is, tpacall() with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY set).

When a transactional ATMI call fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY state. This state is treated, for most purposes, as though it were
equivalent to a timeout. All further ATMI calls for this transaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPEEVENT]
An event occurred. data is not sent when this error occurs. The event type is returned in
revent.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpsend() was called in an improper context (for example, the connection was established
such that the calling program can only receive data).

208 ATMI C Function Reference

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

See Also
tpalloc(3c), tpconnect(3c), tpdiscon(3c), tprecv(3c), tpservice(3c)

tpservice(3c)

Name
tpservice()—Template for service routines.

Synopsis
#include <atmi.h> /* C interface */

void tpservice(TPSVCINFO *svcinfo) /* C++ interface - must have

 * C linkage */

extern “C” void tpservice(TPSVCINFO *svcinfo)

Description
tpservice() is the template for writing service routines. This template is used for services that
receive requests via tpcall(), tpacall() or tpforward() routines as well as by services that
communicate via tpconnect(), tpsend() and tprecv() routines.

Service routines processing requests made via either tpcall() or tpacall() receive at most
one incoming message (in the data element of svcinfo) and send at most one reply (upon
exiting the service routine with tpreturn()).

Conversational services, on the other hand, are invoked by connection requests with at most one
incoming message along with a means of referring to the open connection. When a conversational
service routine is invoked, either the connecting program or the conversational service may send
and receive data as defined by the application. The connection is half-duplex in nature meaning
that one side controls the conversation (that is, it sends data) until it explicitly gives up control to
the other side of the connection.

Concerning transactions, service routines can participate in at most one transaction if invoked in
transaction mode. As far as the service routine writer is concerned, the transaction ends upon
returning from the service routine. If the service routine is not invoked in transaction mode, then

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 209

the service routine may originate as many transactions as it wants using tpbegin(),
tpcommit(), and tpabort(). Note that tpreturn() is not used to complete a transaction.
Thus, it is an error to call tpreturn() with an outstanding transaction that originated within the
service routine.

Service routines are invoked with one argument: svcinfo, a pointer to a service information
structure. This structure includes the following members:

char name[32];

char *data;

long len;

long flags;

int cd;

long appkey;

CLIENTID cltid;

name is populated with the service name that the requester used to invoke the service.

The setting of flags upon entrance to a service routine indicates attributes which the service
routine may want to note. The following are the possible values for flags:

TPCONV
A connection request for a conversation has been accepted and the descriptor for the
conversation is available in cd. If not set, then this is a request/response service and cd is
not valid.

TPTRAN
The service routine is in transaction mode.

TPNOREPLY
The caller is not expecting a reply. This option will not be set if TPCONV is set.

TPSENDONLY
The service is invoked such that it can only send data across the connection and the
program on the other end of the connection can only receive data. This flag is mutually
exclusive with TPRECVONLY and may be set only when TPCONV is also set.

TPRECVONLY
The service is invoked such that it can only receive data from the connection and the
program on the other end of the connection can only send data. This flag is mutually
exclusive with TPSENDONLY and may be set only when TPCONV is also set.

data points to the data portion of a request message and len is the length of the data. The buffer
pointed to by data was allocated by tpalloc() in the communication manager. This buffer may

210 ATMI C Function Reference

be grown by the user with tprealloc(); however, it cannot be freed by the user. It is
recommended that this buffer be the one passed to either tpreturn() or tpforward() when the
service ends. If a different buffer is passed to those routines, then that buffer is freed by them.
Note that the buffer pointed to by data will be overwritten by the next service request even if this
buffer is not passed to tpreturn() or tpforward(). data may be NULL if no data
accompanied the request. In this case, len will be 0.

When TPCONV is set in flags, cd is the connection descriptor that can be used with tpsend()
and tprecv() to communicate with the program that initiated the conversation.

appkey is set to the application key assigned to the requesting client by the application defined
authentication service. This key value is passed along with any and all service requests made
while within this invocation of the service routine. appkey will have a value of -1 for originating
clients that do not pass through the application authentication service.

cltid is the unique client identifier for the originating client associated with this service request.
The definition of this structure is made available to the application in atmi.h solely so that client
identifiers may be passed between application servers if necessary. Therefore, the semantics of
the fields defined below are not documented and applications should not manipulate the contents
of CLIENTID structures. Doing so will invalidate the structures. The CLIENTID structure includes
the following member:

long clientdata[4];

Note that for C++, the service function must have C linkage. This is done by declaring the
function as ‘extern “C.”’

Return Values
A service routine does not return any value to its caller, the communication manager dispatcher;
thus, it is declared as a void. Service routines, however, are expected to terminate using either
tpreturn() or tpforward(). A conversational service routine must use tpreturn(), and
cannot use tpforward(). If a service routine returns without using either tpreturn() or
tpforward() (that is, it uses the C language return statement or just simply “falls out of the
function”) or tpforward() is called from a conversational server, the server will print a warning
message in a log file and return a service error to the originator or requester. All open connections
to subordinates will be disconnected immediately, and any outstanding asynchronous replies will
be marked stale. If the server was in transaction mode at the time of failure, the transaction is
marked abort-only. Note also that if either tpreturn() or tpforward() are used outside of a
service routine (for example, in clients, or in tpsvrinit() or tpsvrdone()), then these routines
simply return having no effect.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 211

Errors
Since tpreturn() ends the service routine, any errors encountered either in handling arguments
or in processing cannot be indicated to the function’s caller. Such errors cause tperrno to be set
to TPESVCERR for a program receiving the service’s outcome via either tpcall() or
tpgetrply(), and cause the event, TPEV_SVCERR, to be sent over the conversation to a program
using tpsend() or tprecv().

See Also
tpalloc(3c), tpbegin(3c), tpcall(3c), tpconnect(3c), tpforward(3c),
tpreturn(3c), servopts(5)

tpsetctxt(3c)

Name
tpsetctxt()—Sets a context identifier for the current application association.

Synopsis
#include <atmi.h>

int tpsetctxt(TPCONTEXT_T context, long flags)

Description
tpsetctxt() defines the context in which the current thread operates. This function operates on
a per-thread basis in a multithreaded environment, and on a per-process basis in a non-threaded
environment.

Subsequent BEA Tuxedo ATMI calls made in this thread reference the application indicated by
context. The context should have been provided by a previous call to tpgetctxt() in one of the
threads of the same process. If the value of context is TPNULLCONTEXT, then the current thread
is disassociated from any BEA Tuxedo ATMI context.

You can put an individual thread in a process operating in multicontext mode into the
TPNULLCONTEXT state by issuing the following call:

tpsetctxt(TPNULLCONTEXT, 0)

TPINVALIDCONTEXT is not a valid input value for context.

A thread in the TPINVALIDCONTEXT state is prohibited from issuing calls to most ATMI
functions. (For a complete list of the functions that may and may not be called, see “Introduction
to the C Language Application-to-Transaction Monitor Interface.”.) Therefore, you may

../rf5/rf5.htm#7588415

212 ATMI C Function Reference

sometimes need to move a thread out of the TPINVALIDCONTEXT state. To do so, call
tpsetctxt() with context set to TPNULLCONTEXT or another valid context. (It is also allowable
to call the tpterm() function to exit from the TPINVALIDCONTEXT state.)

The second argument, flags, is not currently used and must be set to 0.

A thread in a multithreaded application may issue a call to tpsetctxt() while running in any
context state, including TPINVALIDCONTEXT.

Return Values
Upon successful completion, tpsetctxt() returns a non-negative value.

Upon failure, it leaves the calling process in its original context, returns a value of -1, and sets
tperrno to indicate the error condition.

Errors
Upon failure, tpsetctxt() sets tperrno to one of the following values:

 [TPEINVAL]
Invalid arguments have been given. For example, flags has been set to a value other than
0 or the context is TPINVALIDCONTEXT.

[TPENOENT]
The value of context is not a valid context.

[TPEPROTO]
tpsetctxt() has been called in an improper context. For example: (a) it has been called
in a server-dispatched thread; (b) it has been called in a process that has not called
tpinit(); (c) it has been called in a process that has called tpinit() without specifying
the TPMULTICONTEXTS flag; or (d) it has been called from more than one thread in a
process where the TMNOTHREADS environment variable has been turned on.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error has been written
to a log file.

[TPEOS]
An operating system error has occurred.

See Also
Introduction to the C Language Application-to-Transaction Monitor Interface, tpgetctxt(3c)

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 213

tpsetmbenc(3c)

Name
tpsetmbenc()—Sets the code-set encoding name for a typed buffer.

Synopsis
#include <atmi.h>

extern int tperrno;

int

tpsetmbenc(char *bufp, char *enc_name, long flags)

Description
This function is used for setting or resetting the codeset encoding name. The encoding name is
sent along with the input typed buffer. A process receiving these message can use tpgetmbenc()
to retrieve this encoding name.

tpsetmbenc() sets the codeset encoding name to be included with a Tuxedo system request.
Once this function sets a non-NULL encoding name in the caller's buffer, all requests sent (via
tpcall(), tpsend()) include this string until reset or unset. An initial codeset encoding name
is applied to a MBSTRING buffer, during tpalloc(), using the TPMBENC environment
variable. An MBSTRING buffer without an encoding name defined is invalid.

The bufp argument is a valid pointer to a typed buffer with an encoding name.

The enc_name argument is the encoding name to use to identify the codeset encoding.

The flags argument is 0 or RM_ENC. For RM_ENC the encoding name will be removed from
the MBSTRING buffer and the enc_name argument will be ignored. Note that an MBSTRING
buffer without an encoding name will fail the _tmconvmb() conversion.

Return Values
Upon success, tpsetmbenc() returns a 0 value otherwise it returns a non-zero on error and sets
tperrno to indicate the error condition. This function may fail for the following reasons.

 [TPEINVAL]
buf, enc_name argument is NULL or enc_name is not a valid name to use.

 [TPESYSTEM]
A Tuxedo system error has occurred. (e.g. bufp does not correspond to a valid Tuxedo
buffer, could not add or remove the encoding name from the buffer)

214 ATMI C Function Reference

See Also
tpalloc(3c), tpconvmb(3c), tpgetmbenc(3c), tpservice(3c), tuxsetmbenc(3c)

tpsetrepos(3c)

Name
tpsetrepos() - adds, edits, or deletes service parameter information from a Tuxedo Service
Metadata repository file

Synopsis
int tpsetrepos(char *reposfile, FBFR32* idata, FBFR32** odata)

Description
tpsetrepos() provides an alternative repository access interface to the .TMMETAREPOS service
provided by TMMETADATA(5). It adds, edits, or deletes parameter information from a Tuxedo
Service Metadata repository file. To use tpsetrepos(), the metadata repository file must reside
on the native client or server that initiates the request. This allows for repository information
access even when TMMETADATA(5)has not been booted.

tpsetrepos() is available in processes linked with the BEA Tuxedo native libraries, but is not
available in processes linked with the BEA Tuxedo workstation libraries.

Note: tpsetrepos() cannot be used to add, edit, or delete service parameter information in a
JOLT Repository file.

reposfile

specifies the path name of a file accessible on the current machine where the Tuxedo
Metadata Repository is located. The user must have read and write permissions for this
file.

idata
specifies what type of service information is added, edited, or deleted, and points to an
FML32 buffer.

*odata
On output, points to an FML32 buffer containing the retrieved service information and
operation status.

METAREPOS(5)describes the FML32 buffer format tpsetrepos()uses. It is similar to the
format used by MIB(5).

../rf5/rf5.htm#5606415
../rf5/rf5.htm#5606415
../rf5/rf5.htm#8915915
../rf5/rf5.htm#8244015

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 215

Return Values
tpsetrepos() returns 0 on success. On failure, it sets tperrno and returns -1. On most failure
conditions, the TA_ERROR field in *odata is populated with information about the specific error,
as is done by the Tuxedo MIB.

Errors
Upon failure, tpsetrepos() sets tperrno to one of the following values:

Note: Except for TPEINVAL, odata is modified to include TA_ERROR, TA_STATUS for each
service entry to further qualify the error condition.

[TPEINVAL]

Invalid arguments were specified. The reposfile value is invalid or idata or odata are
not pointers to FML32 typed buffers.

[TPEMIB]

The MIB-like request failed. odata is updated and returned to the caller with FML32 fields
indicating the cause of the error as discussed in MIB(5).

[TPEPROTO]

tpsetrepos() was improperly called. The reposfile file argument given is not a valid
repository file.

[TPEPERM]

A Jolt repository file is specified. tpsetrepos() cannot be applied to a Jolt repository
file.

[TPEOS]

An operating system error has occurred. A numeric value representing the system call that
failed is available in Uunixerr.

[TPESYSTEM]

A BEA Tuxedo system error has occurred. The exact nature of the error is reported in
userlog().

Portability
This interface is available only on BEA Tuxedo release 9.0 or later.

Files
The following library files are required:
${TUXDIR}/lib/libtrep.a
${TUXDIR}/lib/libtrep.so.<rel>
${TUXDIR}/lib/libtrep.lib

216 ATMI C Function Reference

The libraries must be linked manually when using buildclient. The user must use:
-L${TUXDIR}/lib -ltrep

See Also
tpgetrepos(3c), tmloadrepos(1), tmunloadrepos(1), TMMETADATA(5), Managing The
Tuxedo Service Metadata Repository

tpsetunsol(3c)

Name
tpsetunsol()—Sets the method for handling unsolicited messages.

Synopsis
#include <atmi.h>

void (*tpsetunsol (void (_TMDLLENTRY *)(*disp) (char *data, long len, long

flags))) (char *data, long len, long flags)

Description
tpsetunsol() allows a client to identify the routine that should be invoked when an unsolicited
message is received by the BEA Tuxedo ATMI system libraries. Before the first call to
tpsetunsol(), any unsolicited messages received by the BEA Tuxedo ATMI system libraries
on behalf of the client are logged and ignored. A call to tpsetunsol() with a NULL function
pointer has the same effect. The method used by the system for notification and detection is
determined by the application default, which can be overridden on a per-client basis (see
tpinit(3c)).

The function pointer passed on the call to tpsetunsol() must conform to the parameter
definition given. data points to the typed buffer received and len is the length of the data. flags
are currently unused. data can be NULL if no data accompanied the notification. data may be
of a buffer type/subtype that is not known by the client, in which case the message data is
unintelligible.

data cannot be freed by application code. However, the system frees it and invalidates the data
area following return.

Processing within the application’s unsolicited message handling routine is restricted to the
following BEA Tuxedo ATMI functions: tpalloc(), tpfree(), tpgetctxt(), tpgetlev(),
tprealloc(), and tptypes().

../rfcm/rfcmd.htm#899111
../rfcm/rfcmd.htm#350151
../rf5/rf5.htm#5606415
../ads/admrp.htm#44322
../ads/admrp.htm#44322

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 217

Note that in a multithreaded programming environment, it is possible for an unsolicited message
handling routine to call tpgetctxt(), create another thread, have that thread call tpsetctxt()
to the appropriate context, and have the new thread use the full set of ATMI functions that are
available to clients.

If tpsetunsol() is called from a thread that is not currently associated with a context, this
establishes a per-process default unsolicited message handler for all new tpinit() contexts
created. It has no effect on contexts already associated with the system. A specific context may
change this default unsolicited message handler by calling tpsetunsol() again when the
context is active. The per-process default unsolicited message handler may be changed by again
calling tpsetunsol() in a thread not currently associated with a context.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tpsetunsol().

Return Values
Upon success, tpsetunsol() returns the previous setting for the unsolicited message handling
routine. (NULL is a successful return indicating that no message handling function had been set
previously.)

Upon failure, it returns TPUNSOLERR and sets tperrno to indicate the error condition.

Errors
Upon failure, tpsetunsol() sets tperrno to one of the following values:

[TPEPROTO]
tpsetunsol() has been called in an improper context. For example, it has been called
from within a server.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

Portability
The interfaces described in tpnotify(3c) are supported on native site UNIX-based and
Windows processors. In addition, the routines tpbroadcast() and tpchkunsol(), as well as
the function tpsetunsol(), are supported on UNIX and MS-DOS workstation processors.

218 ATMI C Function Reference

See Also
tpinit(3c), tpterm(3c)

tpsign(3c)

Name
tpsign()—Marks a typed message buffer for digital signature.

Synopsis
#include <atmi.h>

int tpsign(char *data, TPKEY hKey, long flags)

Description
tpsign() marks, or registers, a message buffer for digital signature on behalf of the principal
associated with hKey.

data must point to a valid typed message buffer either (1) previously allocated by a process
calling tpalloc() or (2) delivered by the system to a receiving process. The content of the buffer
may be modified after tpsign() is invoked.

When the buffer pointed to by data is transmitted from a process, the public key software
generates and attaches a digital signature to the message buffer for each digital-signature
registration request. A digital signature enables a receiving process to verify the signer
(originator) of the message.

The flags argument is reserved for future use and must be set to 0.

Return Values
On failure, this function returns -1 and sets tperrno to indicate the error condition.

Errors

[TPEINVAL]
Invalid arguments were given. For example, hKey is not a valid key for signing or the
value of data is NULL.

[TPESYSTEM]
An error occurred. Consult the system error log file for details.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 219

See Also
tpkey_close(3c), tpkey_open(3c)

tpsprio(3c)

Name
tpsprio()—Sets the service request priority.

Synopsis
#include <atmi.h>

int tpsprio(prio, flags)

Description
tpsprio() sets the priority for the next request sent or forwarded by the current thread in the
current context. The priority set affects only the next request sent. Priority can also be set for
messages enqueued or dequeued by tpenqueue() or tpdequeue(), if the queued message
facility is installed. By default, the setting of prio increments or decrements a service’s default
priority up to a maximum of 100 or down to a minimum of 1, depending on its sign, where 100
is the highest priority. The default priority for a request is determined by the service to which the
request is being sent. This default may be specified administratively (see UBBCONFIG(5)), or take
the system default of 50. tpsprio() has no effect on messages sent via tpconnect() or
tpsend().

A lower priority message does not remain enqueued forever because every tenth message is
retrieved on a “first in, first out” (FIFO) basis. Response time should not be a concern of the lower
priority interface or service.

In a multithreaded application tpsprio() operates on a per-thread basis.

The following is a list of valid flags:

TPABSOLUTE
The priority of the next request should be sent out at the absolute value of prio. The
absolute value of prio must be within the range 1 and 100, inclusive, with 100 being the
highest priority. Any value outside of this range causes a default value to be used.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tpsprio().

../rf5/rf5.htm#365105

220 ATMI C Function Reference

Return Values
Upon failure, tpsprio() returns -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpsprio() sets tperrno to one of the following values:

[TPEINVAL]
flags are invalid.

[TPEPROTO]
tpsprio() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

See Also
tpacall(3c), tpcall(3c),tpdequeue(3c), tpenqueue(3c), tpgprio(3c)

tpstrerror(3c)

Name
tpstrerror()—Gets error message string for a BEA Tuxedo ATMI system error.

Synopsis
#include <atmi.h>

char *

tpstrerror(int err)

Description
tpstrerror() is used to retrieve the text of an error message from LIBTUX_CAT. err is the error
code set in tperrno when a BEA Tuxedo ATMI system function call returns a -1 or other failure
value.

You can use the pointer returned by tpstrerror() as an argument to userlog() or the UNIX
function fprintf().

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 221

A thread in a multithreaded application may issue a call to tpstrerror() while running in any
context state, including TPINVALIDCONTEXT.

Return Values
Upon success, tpstrerror() returns a pointer to a string that contains the error message text.

If err is an invalid error code, tpstrerror() returns a NULL.

Errors
Upon failure, tpstrerror() returns a NULL but does not set tperrno.

Example
#include <atmi.h>

.

.

.

 char *p;

 if (tpbegin(10,0) == -1) {

 p = tpstrerror(tperrno);

 userlog(“%s”, p);

 (void)tpabort(0);

 (void)tpterm();

 exit(1);

 }

See Also
userlog(3c), Fstrerror, Fstrerror32(3fml)

tpstrerrordetail(3c)

Name
tpstrerrordetail()—Gets error detail message string for a BEA Tuxedo ATMI system error.

Synopsis
#include <atmi.h>

char * tpstrerrordetail(int err, long flags)

../rf3fml/rf3fml.htm#151981323

222 ATMI C Function Reference

Description
tpstrerrordetail() is used to retrieve the text of an error detail of a BEA Tuxedo ATMI
system error. err is the value returned by tperrordetail().

The user can use the pointer returned by tpstrerrordetail() as an argument to userlog()
or the UNIX function fprintf().

Currently flags is reserved for future use and must be set to 0.

A thread in a multithreaded application may issue a call to tpstrerrordetail() while running
in any context state, including TPINVALIDCONTEXT.

Return Values
Upon success, the function returns a pointer to a string that contains the error detail message text.

Upon failure (that is, if err is an invalid error code), tpstrerrordetail() returns a NULL.

Errors
Upon failure, tpstrerrordetail() returns a NULL but does not set tperrno.

Example
#include <atmi.h> . . .

int ret;

char *p;

if (tpbegin(10,0) == -1) {

 ret = tperrordetail(0);

 if (ret == -1) {

 (void) fprintf(stderr, “tperrordetail() failed!\n”);

 (void) fprintf(stderr, “tperrno = %d, %s\n”,

 tperrno, tpstrerror(tperrno));

 }

 else if (ret != 0) {

 (void) fprintf(stderr, “errordetail:%s\n”,

 tpstrerrordetail(ret, 0));

 }

 .

 .

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 223

 .

}

See Also
Introduction to the C Language Application-to-Transaction Monitor Interface,
tperrordetail(3c), tpstrerror(3c), userlog(3c), tperrno(5)

tpsubscribe(3c)

Name
tpsubscribe()—Subscribes to an event.

Synopsis
#include <atmi.h>

long tpsubscribe(char *eventexpr, char *filter, TPEVCTL *ctl, long flags)

Description
The caller uses tpsubscribe() to subscribe to an event or set of events named by eventexpr.
Subscriptions are maintained by the BEA Tuxedo ATMI EventBroker, TMUSREVT(5), and are
used to notify subscribers when events are posted via tppost(). Each subscription specifies a
notification method which can take one of three forms: client notification, service calls, or
message enqueuing to stable-storage queues. Notification methods are determined by the
subscriber’s process type and the arguments passed to tpsubscribe().

The event or set of events being subscribed to is named by eventexpr, a NULL-terminated string
of at most 255 characters containing a regular expression. For example, if eventexpr is
“\e\e..*”, the caller is subscribing to all system-generated events; if eventexpr is
“\e\e.SysServer.*”, the caller is subscribing to all system-generated events related to servers.
If eventexpr is “[A-Z].*”, the caller is subscribing to all user events starting with A-Z; if
eventexpr is “.*(ERR|err).*”, the caller is subscribing to all user events containing either the
substring ERR or the substring err in the event name. Events called account_error and
ERROR_STATE, for example, would both qualify. For more information on regular expressions,
see “Regular Expressions” on page 227.

If present, filter is a string containing a Boolean filter rule that must be evaluated successfully
before the EventBroker posts the event. Upon receiving an event to be posted, the EventBroker
applies the filter rule, if one exists, to the posted event’s data. If the data passes the filter rule, the
EventBroker invokes the notification method; otherwise, the broker does not invoke the

../rf5/rf5.htm#4186015
../rf5/rf5.htm#5119715

224 ATMI C Function Reference

associated notification method. The caller can subscribe to the same event multiple times with
different filter rules.

Filter rules are specific to the typed buffers to which they are applied. For FML and view buffers,
the filter rule is a string that can be passed to each’s Boolean expression compiler (see
Fboolco(3fml) and Fvboolco(3fml), respectively) and evaluated against the posted buffer (see
Fboolev(3fml) and Fvboolev(3fml), respectively). For STRING buffers, the filter rule is a
regular expression. All other buffer types require customized filter evaluators (see buffer(3c)
and typesw(5) for details on adding customized filter evaluators). filter is a
NULL-terminated string of at most 255 characters.

If the subscriber is a BEA Tuxedo ATMI system client process and ctl is NULL, then the
EventBroker sends an unsolicited message to the subscriber when the event to which it subscribed
is posted. That is, when an event name is posted that evaluates successfully against eventexpr,
the EventBroker tests the posted data against the filter rule associated with eventexpr. If the data
passes the filter rule or if there is no filter rule for the event, then the subscriber receives an
unsolicited notification along with any data posted with the event. In order to receive unsolicited
notifications, the client must register (via tpsetunsol()) an unsolicited message handling
routine. If a BEA Tuxedo ATMI system server process calls tpsubscribe() with a NULL ctl
parameter, then tpsubscribe() fails setting tperrno to TPEPROTO.

Clients receiving event notification via unsolicited messages should remove their subscriptions
from the EventBroker’s list of active subscriptions before exiting (see tpunsubscribe(3c) for
details). Using tpunsubscribe()’s wildcard handle, -1, clients can conveniently remove all of
their “non-persistent” subscriptions which include those associated with the unsolicited
notification method (see the description of TPEVPERSIST below for subscriptions and their
associated notification methods that persist after a process exits). If a client exits without
removing its non-persistent subscriptions, then the EventBroker will remove them when it detects
that the client is no longer accessible.

If the subscriber (regardless of process type) wants event notifications to go to service routines
or to stable-storage queues, then the ctl parameter must point to a valid TPEVCTL structure. This
structure contains the following elements:

long flags;

char name1[32];

char name2[32];

TPQCTL qctl;

Note: The service name length limit is 15 bytes. If the service name length exceeds 15 bytes,
TPEINVAL is returned.

../rf5/rf5.htm#2183415

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 225

The following is a list of valid bits for the ctl−>flags element controlling options for event
subscriptions:

TPEVSERVICE
Setting this flag indicates that the subscriber wants event notifications to be sent to the
BEA Tuxedo ATMI system service routine named in ctl−>name1. That is, when an event
name is posted that evaluates successfully against eventexpr, the EventBroker tests the
posted data against the filter rule associated with eventexpr. If the data passes the filter
rule or if there is no filter rule for the event, then a service request is sent to ctl−>name1
along with any data posted with the event. The service name in ctl−>name1 can be any
valid BEA Tuxedo ATMI system service name and it may or may not be active at the time
the subscription is made. Service routines invoked by the EventBroker should return with
no reply data. That is, they should call tpreturn() with a NULL data argument. Any data
passed to tpreturn() will be dropped. TPEVSERVICE and TPEVQUEUE are mutually
exclusive flags.

If TPEVTRAN is also set in ctl−>flags, then if the process calling tppost() is in
transaction mode, the EventBroker calls the subscribed service routine such that it will be
part of the poster’s transaction. Both the EventBroker, TMUSREVT(5), and the subscribed
service routine must belong to server groups that support transactions (see UBBCONFIG(5)
for details). If TPEVTRAN is not set in ctl−>flags, then the EventBroker calls the
subscribed service routine such that it will not be part of the poster’s transaction.

TPEVQUEUE
Setting this flag indicates that the subscriber wants event notifications to be enqueued to
the queue space named in ctl−>name1 and the queue named in ctl−>name2. That is, when
an event name is posted that evaluates successfully against eventexpr, the EventBroker
tests the posted data against the filter rule associated with eventexpr. If the data passes
the filter rule or if there is no filter rule for the event, then the EventBroker enqueues a
message to the queue space named in ctl−>name1 and the queue named in ctl−>name2
along with any data posted with the event. The queue space and queue name can be any
valid BEA Tuxedo ATMI system queue space and queue name, either of which may or
may not exist at the time the subscription is made.

ctl−>qctl can contain options further directing the EventBroker’s enqueuing of the
posted event. If no options are specified, then ctl−>qctl.flags should be set to
TPNOFLAGS. Otherwise, options can be set as described in the “Control Parameter”
subsection of tpenqueue(3c) (specifically, see the section describing the valid list of
flags controlling input information for tpenqueue(3c)). TPEVSERVICE and TPEVQUEUE
are mutually exclusive flags.

../rf5/rf5.htm#5119715
../rf5/rf5.htm#365105

226 ATMI C Function Reference

If TPEVTRAN is also set in ctl−>flags, then if the process calling tppost() is in
transaction mode, the EventBroker enqueues the posted event and its data such that it will
be part of the poster’s transaction. The EventBroker, TMUSREVT(5), must belong to a
server group that supports transactions (see UBBCONFIG(5) for details). If TPEVTRAN is
not set in ctl−>flags, then the EventBroker enqueues the posted event and its data such
that it will not be part of the poster’s transaction.

TPEVTRAN
Setting this flag indicates that the subscriber wants the event notification for this
subscription to be included in the poster’s transaction, if one exists. If the poster is not a
transaction, then a transaction is started for this event notification. If this flag is not set,
then any events posted for this subscription will not be done on behalf of any transaction
in which the poster is participating. This flag can be used with either TPEVSERVICE or
TPEVQUEUE.

TPEVPERSIST
By default, the BEA Tuxedo EventBroker deletes subscriptions when the resource to
which it is posting is not available (for example, the EventBroker cannot access a service
routine and/or a queue space/queue name associated with an event subscription). Setting
this flag indicates that the subscriber wants this subscription to persist across such errors
(usually because the resource will become available again in the future). When this flag is
not used, the EventBroker will remove this subscription if it encounters an error accessing
either the service name or queue space/queue name designated in this subscription.

If this flag is used with TPEVTRAN and the resource is not available at the time of event
notification, then the EventBroker will return to the poster such that its transaction must
be aborted. That is, even though the subscription remains intact, the resource’s
unavailability will cause the poster’s transaction to fail.

If the EventBroker’s list of active subscriptions already contains a subscription that matches the
one being requested by tpsubscribe(), then the function fails setting tperrno to TPEMATCH.
For a subscription to match an existing one, both eventexpr and filter must match those of a
subscription already in the EventBroker’s active list of subscriptions. In addition, depending on
the notification method, other criteria are used to determine matches.

If the subscriber is a BEA Tuxedo ATMI system client process and ctl is NULL (such that the
caller receives unsolicited notifications when events are posted), then its system-defined client
identifier (known as a CLIENTID) is also used to detect matches. That is, tpsubscribe() fails
if eventexpr, filter, and the caller’s CLIENTID match those of a subscription already known
to the EventBroker.

../rf5/rf5.htm#5119715
../rf5/rf5.htm#365105

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 227

If the caller has set ctl−>flags to TPEVSERVICE, then tpsubscribe() fails if eventexpr,
filter, and the service name set in ctl−>name1 match those of a subscription already known to
the EventBroker.

For subscriptions to stable-storage queues, the queue space, queue name, and correlation
identifier are used, in addition to eventexpr and filter, when determining matches. The
correlation identifier can be used to differentiate among several subscriptions for the same event
expression and filter rule, destined for the same queue. Thus, if the caller has set ctl−>flags to
TPEVQUEUE, and TPQCOORID is not set in ctl−>qctl.flags, then tpsubscribe() fails if
eventexpr, filter, the queue space name set in ctl−>name1, and the queue name set in
ctl−>name2 match those of a subscription (which also does not have a correlation identifier
specified) already known to the EventBroker. Further, if TPQCOORID is set in ctl−>qctl.flags,
then tpsubscribe() fails if eventexpr, filter, ctl−>name1, ctl−>name2, and
ctl−>qctl.corrid match those of a subscription (which has the same correlation identifier
specified) already known to the EventBroker.

The following is a list of valid flags for tpsubscribe():

TPNOBLOCK
The subscription is not made if a blocking condition exists. If such a condition occurs, the
call fails and tperrno is set to TPEBLOCK. When TPNOBLOCK is not specified and a
blocking condition exists, the caller blocks until the condition subsides or a timeout occurs
(either transaction or blocking timeout).

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts may still occur.

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system call is
reissued. When TPSIGRSTRT is not specified and a signal interrupts a system call, then
tpsubscribe() fails and tperrno is set to TPGOTSIG.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tpsubscribe().

Regular Expressions
The regular expressions described in Table 11 are much like those used in the UNIX system
editor, ed(1). The alternation operator, (|), has been added along with some other practical
things. In general, however, there should be few surprises.

228 ATMI C Function Reference

Regular expressions (REs) are constructed by applying any of the following production rules one
or more times.

Table 11 Regular Expressions

Rule Matching Text

character Itself (character is any ASCII character except the special ones mentioned below).

\ character Itself except as follows:
• \\—newline
• \\t—tab
• \\b—backspace
• \\r—carriage return
• \\f—formfeed

\ special-character Its unspecial self. The special characters are . * + ? | () [{ and \\.

.—Any character except the end-of-line character (usually newline or NULL).

^—Beginning of the line.

$—End-of-line character.

[class] any character in the class denoted by a sequence of characters and/or ranges. A
range is given by the construct character-character. For example, the character
class, [a-zA-Z0-9_], will match any alphameric character or “_”. To be included in
the class, a hyphen, “-”, must be escaped (preceded by a “\\”) or appear first or last
in the class. A literal “]” must be escaped or appear first in the class. A literal “^”
must be escaped if it appears first in the class.

[^ class] Any character in the complement of the class with respect to the ASCII character
set, excluding the end-of-line character.

RE RE The sequence. (catenation)

RE | RE Either the left RE or the right RE. (left to right alternation)

RE * Zero or more occurrences of RE.

RE + One or more occurrences of RE.

RE ? Zero or one occurrences of RE.

RE { n } n occurrences of RE. n must be between 0 and 255, inclusive.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 229

There are three levels of precedence. In order of decreasing binding strength they are:

catenation closure (*,+,?,{...})

catenation

alternation (|)

As indicated above, parentheses are used to give explicit precedence.

Return Values
Upon successful completion, tpsubscribe() returns a handle that can be used to remove this
subscription from the EventBroker’s list of active subscriptions. The subscriber or any other
process is allowed to use the returned handle to delete this subscription.

Upon failure, tpsubscribe() returns -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpsubscribe() sets tperrno to one of the following values. (Unless otherwise
noted, failure does not affect the caller’s transaction, if one exists.)

[TPEINVAL]
Invalid arguments were given (for example, eventexpr is NULL).

[TPENOENT]
Cannot access the BEA Tuxedo EventBroker.

[TPELIMIT]
The subscription failed because the EventBroker’s maximum number of subscriptions has
been reached.

RE { m, n } m through n occurrences of RE, inclusive. A missing m is taken to be zero. A
missing n denotes m or more occurrences of RE.

(RE) Explicit precedence/grouping.

(RE) $ n The text matching RE is copied into the nth user buffer. n may be 0 through 9. User
buffers are cleared before matching begins and loaded only if the entire pattern is
matched.

Table 11 Regular Expressions (Continued)

Rule Matching Text

230 ATMI C Function Reference

[TPEMATCH]
The subscription failed because it matched one already listed with the EventBroker.

[TPEPERM]
The client is not attached as tpsysadm and the subscription action is either a service call
or the enqueuing of a message.

[TPETIME]
This error code indicates that either a timeout has occurred or tpsubscribe() has been
attempted, in spite of the fact that the current transaction is already marked rollback only.

If the caller is in transaction mode, then either the transaction is already rollback only or
a transaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout cannot
occur if TPNOBLOCK and/or TPNOTIME is specified.)

If a transaction timeout has occurred, then, with one exception, any attempts to send new
requests or receive outstanding replies will fail with TPETIME until the transaction has
been aborted. The exception is a request that does not block, expects no reply, and is not
sent on behalf of the caller’s transaction (that is, tpacall() with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY set).

When a transactional ATMI call fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY state. This state is treated, for most purposes, as though it were
equivalent to a timeout. All further ATMI calls for this transaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpsubscribe() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 231

See Also
buffer(3c), tpenqueue(3c), tppost(3c), tpsetunsol(3c), tpunsubscribe(3c),
Fboolco, Fboolco32, Fvboolco, Fvboolco32(3fml), Fboolev, Fboolev32,
Fvboolev, Fvboolev32(3fml), EVENTS(5), EVENT_MIB(5), TMSYSEVT(5), TMUSREVT(5),
tuxtypes(5), typesw(5), UBBCONFIG(5)

tpsuspend(3c)

Name
tpsuspend()—Suspends a global transaction.

Synopsis
#include <atmi.h>

int tpsuspend(TPTRANID *tranid, long flags)

Description
tpsuspend() is used to suspend the transaction active in the caller’s process. A transaction
begun with tpbegin() may be suspended with tpsuspend(). Either the suspending process or
another process may use tpresume() to resume work on a suspended transaction. When
tpsuspend() returns, the caller is no longer in transaction mode. However, while a transaction
is suspended, all resources associated with that transaction (such as database locks) remain active.
Like an active transaction, a suspended transaction is susceptible to the transaction timeout value
that was assigned when the transaction first began.

For the transaction to be resumed in another process, the caller of tpsuspend() must have been
the initiator of the transaction by explicitly calling tpbegin(). tpsuspend() may also be called
by a process other than the originator of the transaction (for example, a server that receives a
request in transaction mode). In the latter case, only the caller of tpsuspend() may call
tpresume() to resume that transaction. This case is allowed so that a process can temporarily
suspend a transaction to begin and do some work in another transaction before completing the
original transaction (for example, to run a transaction to log a failure before rolling back the
original transaction).

tpsuspend() returns in the space pointed to by tranid the transaction identifier being
suspended. The caller is responsible for allocating the space to which tranid points. It is an error
for tranid to be NULL.

To ensure success, the caller must have completed all outstanding transactional communication
with servers before issuing tpsuspend(). That is, the caller must have received all replies for

../rf3fml/rf3fml.htm#41003132323
../rf3fml/rf3fml.htm#57954132323
../rf3fml/rf3fml.htm#57954132323
../rf5/rf5.htm#1605515
../rf5/rf5.htm#2718115
../rf5/rf5.htm#9901015
../rf5/rf5.htm#5119715
../rf5/rf5.htm#7807115
../rf5/rf5.htm#2183415
../rf5/rf5.htm#365105

232 ATMI C Function Reference

requests sent with tpacall() that were associated with the caller’s transaction. Also, the caller
must have closed all connections with conversational services associated with the caller’s
transaction (that is, tprecv() must have returned the TPEV_SVCSUCC event). If either rule is not
followed, then tpsuspend() fails, the caller’s current transaction is not suspended and all
transactional communication descriptors remain valid. Communication descriptors not
associated with the caller’s transaction remain valid regardless of the outcome of tpsuspend().

Currently, flags are reserved for future use and must be set to 0.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tpsuspend().

Return Value
tpsuspend() returns -1 on error and sets tperrno to indicate the error condition.

Errors
Under the following conditions, tpsuspend() fails and sets tperrno to:

[TPEINVAL]
tranid is a NULL pointer or flags is not 0. The caller’s state with respect to the
transaction is not changed.

[TPEABORT]
The caller’s active transaction has been aborted. All communication descriptors
associated with the transaction are no longer valid.

[TPEPROTO]
tpsuspend() was called in an improper context (for example, the caller is not in
transaction mode). The caller’s state with respect to the transaction is not changed.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

See Also
tpacall(3c), tpbegin(3c), tprecv(3c), tpresume(3c)

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 233

tpsvrdone(3c)

Name
tpsvrdone()—Terminates a BEA Tuxedo ATMI system server.

Synopsis
#include <atmi.h>

void tpsvrdone(void)

Description
The BEA Tuxedo ATMI system server abstraction calls tpsvrdone() after it has finished
processing service requests but before it exits. When this routine is invoked, the server is still part
of the system but its own services have been unadvertised. Thus, BEA Tuxedo ATMI system
communication can be performed and transactions can be defined in this routine. However, if
tpsvrdone() returns with open connections, asynchronous replies pending or while still in
transaction mode, the BEA Tuxedo ATMI system will close its connections, ignore any pending
replies, and abort the transaction before the server exits.

If a server is shut down by the invocation of tmshutdown -y, services are suspended and the
ability to perform communication or to begin transactions in tpsvrdone() is limited.

If an application does not provide this routine in a server, then the default version provided by the
BEA Tuxedo ATMI system is called instead. If a server has been defined as a single-threaded
server, the default tpsvrdone() calls tpsvrthrdone(), and the default version of
tpsvrthrdone() calls tx_close(). If a server has been defined as a multithreaded server,
tpsvrthrdone() is called in each server dispatch thread, but is not called from tpsvrdone().
Regardless of whether the server is multithreaded, the default tpsvrdone() calls userlog to
indicate that the server is about to exit.

Usage
When called in tpsvrdone(), the tpreturn() and tpforward() functions simply return with
no effect.

See Also
tpsvrthrdone(3c), tpsvrthrinit(3c), servopts(5)

../rf5/rf5.htm#7588415

234 ATMI C Function Reference

tpsvrinit(3c)

Name
tpsvrinit()—Initializes a BEA Tuxedo system server.

Synopsis
#include <atmi.h>

int tpsvrinit(int argc, char **argv)

Description
The BEA Tuxedo ATMI system server abstraction calls tpsvrinit() during its initialization.
This routine is called after the thread of control has become a server but before it handles any
service requests; thus, BEA Tuxedo ATMI system communication may be performed and
transactions may be defined in this routine. However, if tpsvrinit() returns with either open
connections or asynchronous replies pending, or while still in transaction mode, the BEA Tuxedo
ATMI system closes the connections, ignores any pending replies, and aborts the transaction
before the server exits.

If an application does not provide this routine in a server, then the default version provided by the
BEA Tuxedo ATMI system is called, instead.

If a server has been defined as a single-threaded server, the default tpsvrinit() calls
tpsvrthrinit(), and the default version of tpsvrthrinit() calls tx_open(). If a server has
been defined as a multithreaded server, tpsvrthrinit() is called in each server dispatch thread,
but is not called from tpsvrinit(). Regardless of whether the server is single-threaded or
multithreaded, the default version of tpsvrinit() calls userlog() to indicate that the server
started successfully.

Application-specific options can be passed into a server and processed in tpsvrinit() (see
servopts(5)). The options are passed through argc and argv. Since getopt() is used in a
BEA Tuxedo ATMI system server abstraction, optarg(), optind(), and opterr() may be
used to control option parsing and error detection in tpsvrinit().

Note: When invoking tpsvrinit() in your code, avoid long blocking actions. Otherwise,
when one remote server in an MP configuration has trouble with tpsvrinit()
processing, then tmboot fails to boot the other servers on that node.

If an error occurs in tpsvrinit(), the application can cause the server to exit gracefully (and
not take any service requests) by returning -1. The application itself should not call exit().

../rf5/rf5.htm#7588415

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 235

When tpsvrinit() returns -1, the system does not restart the server. Instead, the administrator
must run tmboot to restart the server.

Return Values
A negative return value causes the server to exit gracefully.

Usage
When used outside a service routine (for example, in clients, in tpsvrinit(), or in
tpsvrdone()), the tpreturn() and tpforward() functions simply return with no effect.

See Also
tpopen(3c), tpsvrdone(3c), tpsvrthrinit(3c), servopts(5)
getopt(3) in a C language reference manual

tpsvrthrdone(3c)

 Name
tpsvrthrdone()—Terminates a BEA Tuxedo ATMI server thread.

Synopsis
#include <atmi.h>

void tpsvrthrdone(void)

Description
The BEA Tuxedo ATMI server abstraction calls tpsvrthrdone() during the termination of
each thread that has been started to handle dispatched service requests. In other words, even if a
thread is terminated before it has handled a request, the tpsvrdone() function is called. When
this routine is called, the thread of control is still part of the BEA Tuxedo ATMI server, but the
thread has finished processing all service requests. Thus, BEA Tuxedo ATMI communication
may be performed and transactions may be defined in this routine. However, if tpsvrthrdone()
returns with either open connections or asynchronous replies pending, or while still in transaction
mode, the BEA Tuxedo ATMI system closes the connections, ignores any pending replies, and
aborts the transaction before the server dispatch thread exits.

If an application does not provide this routine in a server, then the default version of
tpsvrthrdone() provided by the BEA Tuxedo ATMI system is called instead. The default
version of tpsvrthrdone() calls tx_close().

../rf5/rf5.htm#7588415

236 ATMI C Function Reference

tpsvrthrdone() is called even in single-threaded servers. In a single-threaded server,
tpsvrthrdone() is called from the default version of tpsvrdone(). In a server with the
potential for multiple dispatch threads, tpsvrdone() does not call tpsvrthrdone().

Usage
When called from tpsvrthrdone(), the tpreturn() and tpforward() functions simply
return with no effect.

See Also
tpforward(3c), tpreturn(3c), tpsvrdone(3c), tpsvrthrinit(3c), tx_close(3c),
servopts(5)

tpsvrthrinit(3c)

Name
tpsvrthrinit()—Initializes a BEA Tuxedo ATMI server thread.

Synopsis
#include <atmi.h>

int tpsvrthrinit(int argc, char **argv)

Description
The BEA Tuxedo ATMI server abstraction calls tpsvrthrinit() during the initialization of
each thread that handles dispatched service requests. This routine is called after the thread of
control has become part of the BEA Tuxedo ATMI server but before the thread handles any
service requests. Thus, BEA Tuxedo ATMI communication may be performed and transactions
may be defined in this routine. However, if tpsvrthrinit() returns with either open
connections or asynchronous replies pending, or while still in transaction mode, the BEA Tuxedo
ATMI system closes the connections, ignores any pending replies, and aborts the transaction
before the server dispatch thread exits.

If an application does not provide this routine in a server, then the default version of
tpsvrthrinit() provided by the BEA Tuxedo ATMI system is called instead. The default
version of tpsvrthrinit() calls tx_open().

tpsvrthrinit() is called even in single-threaded servers. In a single-threaded server,
tpsvrthrinit() is called from the default version of tpsvrinit(). In a server with the
potential for multiple dispatch threads, tpsvrinit() does not call tpsvrthrinit().

../rf5/rf5.htm#7588415

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 237

Application-specific options can be passed into a server and processed in tpsvrthrinit(). For
more information about options, see servopts(5). The options are passed argc and argv.
Because getopt() is used in a BEA Tuxedo ATMI server abstraction, optarg(), optind(),
and opterr() may be used to control option parsing and error detection in tpsvrthrinit().

If an error occurs in tpsvrthrinit(), the application can cause the server dispatch thread to exit
gracefully (and not take any service requests) by returning -1. The application should not call
exit() or any operating system thread exit function.

Return Values
A negative return value will cause the server dispatch thread to exit gracefully.

Usage
When used outside a service routine (for example, when used in a client or in tpsvrinit(),
tpsvrdone(), tpsvrthrinit(), or tpsvrthrdone()), the tpreturn() and tpforward()
functions simply return with no effect.

See Also
tpforward(3c), tpreturn(3c), tpsvrthrdone(3c), tpsvrthrinit(3c), tx_open(3c),
servopts(5)

getopt(3) in a C language reference manual

tpterm(3c)

Name
tpterm()—Leaves an application.

Synopsis
#include <atmi.h>

int tpterm(void)

Description
tpterm() removes a client from a BEA Tuxedo ATMI system application. If the client is in
transaction mode, then the transaction is rolled back. When tpterm() returns successfully, the
caller can no longer perform BEA Tuxedo ATMI client operations. Any outstanding
conversations are immediately disconnected.

../rf5/rf5.htm#7588415
../rf5/rf5.htm#7588415

238 ATMI C Function Reference

If tpterm() is called more than once (that is, if it is called after the caller has already left the
application), no action is taken and success is returned.

Multithreading and Multicontexting Issues
In good programming practice, all threads but one should either exit or switch context before the
single remaining thread issues a call to tpterm(). If this is not done, then the remaining threads
are put in a TPINVALIDCONTEXT context. A description of the semantics of this context follows.

When invoked by one thread in a context with which multiple threads are associated, tpterm():

Operates on all threads in a context, but not on all contexts in a process

Executes immediately, even if other threads in the same process are still associated with
that context

Any thread blocked in an ATMI call when another thread terminates its context will return from
the ATMI call with a failure return; tperrno is set to TPESYSTEM. In addition, if
tperrordetail() is invoked after such a failure return, it returns TPED_INVALIDCONTEXT.

In a single-context application, whenever a single thread calls tpterm(), the context state for all
threads is set to TPNULLCONTEXT.

In a multicontexted application, however, when tpterm() is invoked by one thread, all other
threads in the same context are placed in a state such that if they subsequently call most ATMI
functions, those functions will, instead, return failure with tperrno set to TPEPROTO. Lists of
the functions that are allowed and disallowed in such an invalid context state are provided in
“Introduction to the C Language Application-to-Transaction Monitor Interface” on page 8. If a
thread in the invalid context state (TPINVALIDCONTEXT) calls the tpgetctxt() function,
tpgetctxt() sets the context parameter to TPINVALIDCONTEXT.

A thread may exit from the TPINVALIDCONTEXT state by calling one of the following:

tpsetctxt() with the TPNULLCONTEXT context or another valid context

tpterm()

It is forbidden to call tpsetctxt() with a context of TPINVALIDCONTEXT; doing so results in
failure with tperrno set to TPEPROTO. When a thread invokes ATMI functions other than
tpsetunsol()that do not require the caller to be associated with an application, these functions
behave as if they were invoked in the NULL context. Client applications using unsolicited thread
notification should explicitly call tpterm() to terminate the unsolicited notification thread.

After invoking tpterm(), a thread is placed in the TPNULLCONTEXT context. Most ATMI
functions invoked by a thread in the TPNULLCONTEXT context perform an implicit tpinit().

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 239

Whether or not the call to tpinit() succeeds depends on the usual determining factors,
unrelated to context-specific or thread-specific issues.

A thread in a multithreaded application may issue a call to tpterm() while running in any
context state, including TPINVALIDCONTEXT.

Return Values
Upon success in a single-context application, all threads in the application’s current context are
placed in the TPNULLCONTEXT state.

Upon success in a multicontexted application, the calling thread is placed in the TPNULLCONTEXT
state and all other threads in the same context as the calling thread are placed in the
TPINVALIDCONTEXT state. The user may change the context state of the latter threads by running
tpsetctxt() with the context argument set to TPNULLCONTEXT or another valid context.

Upon failure, tpterm() leaves the calling process in its original context state, returns -1, and sets
tperrno to indicate the error condition.

Errors
Upon failure, tpterm() sets tperrno to one of the following values:

[TPEPROTO]
tpterm() was called in an improper context (for example, the caller is a server).

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

See Also
tpinit(3c), tpgetctxt(3c), tpsetctxt(3c), tpsetunsol(3c)

tptypes(3c)

Name
tptypes()—Routine to determine information about a typed buffer.

240 ATMI C Function Reference

Synopsis
#include <atmi.h>

long tptypes(char *ptr, char *type, char *subtype)

Description
tptypes() takes as its first argument a pointer to a data buffer and returns the type and subtype
of that buffer in its second and third arguments, respectively. ptr must point to a buffer gotten
from tpalloc(). If type and subtype are non-NULL, then the function populates the character
arrays to which they point with the names of the buffer’s type and subtype, respectively. If the
names are of their maximum length (8 for type, 16 for subtype), the character array is not
NULL-terminated. If no subtype exists, then the array pointed to by subtype will contain a
NULL string.

Note that only the first eight bytes of type and the first 16 bytes of subtype are populated.

A thread in a multithreaded application may issue a call to tptypes() while running in any
context state, including TPINVALIDCONTEXT.

Return Values
Upon success, tptypes() returns the size of the buffer;

Upon failure, it returns -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tptypes() sets tperrno to one of the following values:

[TPEINVAL]
Invalid arguments were given (for example, ptr does not point to a buffer gotten from \%
tpalloc()).

[TPEPROTO]
tptypes() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

See Also
tpalloc(3c), tpfree(3c), tprealloc(3c)

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 241

tpunadvertise(3c)

Name
tpunadvertise()—Routine for unadvertising a service name.

Synopsis
#include <atmi.h>

int tpunadvertise(char *svcname)

Description
tpunadvertise() allows a server to unadvertise a service that it offers. By default, a server’s
services are advertised when it is booted and they are unadvertised when it is shut down.

All servers belonging to a Multiple Server, Single Queue (MSSQ) set must offer the same set of
services. These routines enforce this rule by affecting the advertisements of all servers sharing an
MSSQ set.

tpunadvertise() removes svcname as an advertised service for the server (or the set of servers
sharing the caller’s MSSQ set). svcname cannot be NULL or the NULL string (“”). Also,
svcname should be 15 characters or less. (See the *SERVICES section of UBBCONFIG(5)).
Longer names will be accepted and truncated to 15 characters. Care should be taken such that
truncated names do not match other service names.

Return Values
Upon failure, tpunadvertise() returns -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpunadvertise() sets tperrno to one of the following values:

[TPEINVAL]
svcname is NULL or the NULL string (“”).

[TPENOENT]
svcname is not currently advertised by the server.

[TPEPROTO]
tpunadvertise() was called in an improper context (for example, by a client).

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

../rf5/rf5.htm#365105

242 ATMI C Function Reference

[TPEOS]
An operating system error has occurred.

See Also
tpadvertise(3c)

tpunsubscribe(3c)

Name
tpunsubscribe()—Unsubscribes to an event.

Synopsis
#include <atmi.h>

int tpunsubscribe(long subscription, long flags)

Description
The caller uses tpunsubscribe() to remove an event subscription or a set of event subscriptions
from the BEA Tuxedo EventBroker’s list of active subscriptions. subscription is an event
subscription handle returned by tpsubscribe(). Setting subscription to the wildcard value,
-1, directs tpunsubscribe() to unsubscribe to all non-persistent subscriptions previously made
by the calling process. Non-persistent subscriptions are those made without the TPEVPERSIST bit
setting in the ctl−>flags parameter of tpsubscribe(). Persistent subscriptions can be deleted
only by using the handle returned by tpsubscribe().

Note that the -1 handle removes only those subscriptions made by the calling process and not any
made by previous instantiations of the caller (for example, a server that dies and restarts cannot
use the wildcard to unsubscribe to any subscriptions made by the original server).

The following is a list of valid flags:

TPNOBLOCK
The subscription is not removed if a blocking condition exists. If such a condition occurs,
the call fails and tperrno is set to TPEBLOCK. When TPNOBLOCK is not specified and a
blocking condition exists, the caller blocks until the condition subsides or a timeout occurs
(either transaction or blocking timeout).

TPNOTIME
This flag signifies that the caller is willing to block indefinitely and wants to be immune
to blocking timeouts. Transaction timeouts may still occur.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 243

TPSIGRSTRT
If a signal interrupts any underlying system calls, then the interrupted system call is
reissued. When TPSIGRSTRT is not specified and a signal interrupts a system call, then
tpunsubscribe() fails and tperrno is set to TPGOTSIG.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tpunsubscribe().

Return Values
Upon completion of tpunsubscribe(), tpurcode() contains the number of subscriptions
deleted (zero or greater) from the EventBroker’s list of active subscriptions. tpurcode() may
contain a number greater than 1 only when the wildcard handle, -1, is used. Also, tpurcode()
may contain a number greater than 0 even when tpunsubscribe() completes unsuccessfully
(that is, when the wildcard handle is used, the EventBroker may have successfully removed some
subscriptions before it encountered an error deleting others).

Upon failure, tpunsubscribe() returns -1 and sets tperrno to indicate the error condition.

Errors
Upon failure, tpunsubscribe() sets tperrno to one of the following values. (Unless otherwise
noted, failure does not affect the caller’s transaction, if one exists.)

[TPEINVAL]
Invalid arguments were given (for example, subscription is an invalid subscription
handle).

[TPENOENT]
Cannot access the BEA Tuxedo EventBroker.

[TPETIME]
This error code indicates that either a timeout has occurred or tpunsubscribe() has
been attempted, in spite of the fact that the current transaction is already marked rollback
only.

If the caller is in transaction mode, then either the transaction is already rollback only or
a transaction timeout has occurred. The transaction is marked abort-only. If the caller is
not in transaction mode, a blocking timeout has occurred. (A blocking timeout cannot
occur if TPNOBLOCK and/or TPNOTIME is specified.)

If a transaction timeout has occurred, then, with one exception, any attempts to send new
requests or receive outstanding replies will fail with TPETIME until the transaction has
been aborted. The exception is a request that does not block, expects no reply, and is not

244 ATMI C Function Reference

sent on behalf of the caller’s transaction (that is, tpacall() with TPNOTRAN, TPNOBLOCK,
and TPNOREPLY set).

When a transactional ATMI call fails inside a transaction, the transaction is put into the
TX_ROLLBACK_ONLY state. This state is treated, for most purposes, as though it were
equivalent to a timeout. All further ATMI calls for this transaction (with the exception of
those issued in the circumstances described in the previous paragraph) will fail with
TPETIME.

[TPEBLOCK]
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG]
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO]
tpunsubscribe() was called improperly.

[TPESYSTEM]
A BEA Tuxedo system error has occurred. The exact nature of the error is written to a log
file.

[TPEOS]
An operating system error has occurred.

See Also
tppost(3c), tpsubscribe(3c), EVENTS(5), EVENT_MIB(5), TMSYSEVT(5), TMUSREVT(5)

tputrace(3c)

Name
tputrace()—User-defined trace information application.

Synopsis
#include <atmi.h>
int tputrace (char *trrec, int nest, char *category, char *funcname, int
utrtype, va_list args)

Description
tputrace(3c)is a user-defined API the allows flexibility in monitoring and obtaining detailed
trace output information (such as full user data content that is passed to or returned from ATMI

../rf5/rf5.htm#1605515
../rf5/rf5.htm#2718115
../rf5/rf5.htm#9901015
../rf5/rf5.htm#5119715

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 245

functions) and defines how and where this information is output. By default, tputrace() outputs
trace record information to userlog(3c) if the user does not update or modify otherwise.

tputrace(3c) is called exclusively by specifying the utrace receiver with TMTRACE. For
example: TMTRACE=atmi:utrace. Specifying the utrace receiver automatically invokes
tputrace(3c)and applies it only to atmi trace category records for output. For more TMTRACE
and utrace receiver information, see tmtrace(5) in the File Formats, Data Descriptions,
MIBs, and System Processes Reference.

Valid tputrace(3c) arguments are:

trrec

Trace information record defined by user. ttrec is always specified as the first argument
in tputrace(3c). Outputting trrec to the userlog, produces the same results as
tmtrace(5).

nest

Defines the nesting level. Use this if indentations are added to the tputrace(3c) output
lines.

category

Defines the ATMI function category, for example "atmi", "iatmi" or "xa".

funcname

Defines the function name. For example, "tpcall" or "tconnect".

utrtype

Indicates whether tputrace(3c) is called when entering or leaving an ATMI function.
Set values as follows: 0 = entering, 1 = leaving.

args

Define arguments passed to the tputrace(3c) output function. This includes user data
or flags passed to ATMI functions. The list of the arguments for each ATMI functions are
defined in the tputrace() example implementation in the Example(s) section. The
argument list is also available from tmtrace(5) trace information output.

Libutrace Library
A separate Tuxedo library, libutrace, is used in conjunction with tputrace(). The default
libutrace is installed in the Tuxedo system shared library directory ($TUXDIR/lib in UNIX
and %TUXDIR%\bin in Windows).

Users can also write their own their own custom libutrace library and can install it in either:

the Tuxedo system shared library directory, or

the Tuxedo application directory ($APPDIR in UNIX and %APPDIR% in Windows).

../rf5/rf5.htm#3160115
../rf5/rf5.htm#3160115
../rf5/rf5.htm#3160115

246 ATMI C Function Reference

If the custom libutrace library is installed in the system directory, it replaces the default
libutrace and is used by all Tuxedo clients and servers on the machine. If the custom
libutrace library is installed in the application directory, it is used only by the clients and the
servers in the application.

Whenever tputrace() is modified, the libutrace library must be recompiled and linked to
Tuxedo 9.0. A sample tputrace() source file is located in the
$TUXDIR/samples/atmi/libutrace directory.

The Example(s) section further illustrates how to customize tputrace().

Warning: The default or custom libutrace library is loaded into every Tuxedo application
process, including system servers such as BBL or WSL. This being the case, all
Tuxedo system servers consume some amount of memory for loading libutrace.
The default libutrace library is very small so memory consumption is negligible.
But a custom libutrace can consume a larger amount of memory depending on how
much functionality the user adds.

Example(s)
This is example shows the user-level trace information userlog output for the simpcl execution
of the Tuxedo simpapp sample program.

In order to customize user-level trace information and output, you must do the following:

1. Modify tputrace().

2. Re-compile the libutrace library and link to Tuxedo.

For this example, when TMTRACE=atmi:utrace is specified it writes the contents of the user data
and flags passed to the ATMI functions to the Tuxedo userlog.

Listing 1 Simpapp Sample User-Level Trace Information Userlog Output

091206.HOST1!?proc.1560.1520.0: UTRAC:at: } tpinit = 1

091206.HOST1!?proc.1560.1520.0: UTRAC:at: { tpalloc("STRING", "", 7)

091206.HOST1!?proc.1560.1520.0: UTRAC:at: } tpalloc = 0x86a8e8

091206.HOST1!?proc.1560.1520.0: UTRAC:at: { tpalloc("STRING", "", 7)

091206.HOST1!?proc.1560.1520.0: UTRAC:at: } tpalloc = 0x87fa20

091206.HOST1!?proc.1560.1520.0: UTRAC:at: { tpcall(

091206.HOST1!?proc.1560.1520.0: UTRAC:at: svc="TOUPPER"

091206.HOST1!?proc.1560.1520.0: UTRAC:at: idata=(0x86a8e8){

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 247

091206.HOST1!?proc.1560.1520.0: UTRAC:at: len=0

091206.HOST1!?proc.1560.1520.0: UTRAC:at: type="STRING"

091206.HOST1!?proc.1560.1520.0: UTRAC:at: value="abcdef"

091206.HOST1!?proc.1560.1520.0: UTRAC:at: }

091206.HOST1!?proc.1560.1520.0: UTRAC:at: odata=(0x12ff48){

091206.HOST1!?proc.1560.1520.0: UTRAC:at: data=(0x87fa20){

091206.HOST1!?proc.1560.1520.0: UTRAC:at: len=0

091206.HOST1!?proc.1560.1520.0: UTRAC:at: type="STRING"

091207.HOST1!?proc.1560.1520.0: UTRAC:at: }

091207.HOST1!?proc.1560.1520.0: UTRAC:at: len=(0x12ff44)0

091207.HOST1!?proc.1560.1520.0: UTRAC:at: }

091207.HOST1!?proc.1560.1520.0: UTRAC:at: flags=<none>

091207.HOST1!?proc.1560.1520.0: UTRAC:at:)

091207.HOST1!simpserv.760.2188.0: UTRAC:at: { tpservice(

091207.HOST1!simpserv.760.2188.0: UTRAC:at: svcinfo=(0x5e1518){

091207.HOST1!simpserv.760.2188.0: UTRAC:at: name="TOUPPER"

091207.HOST1!simpserv.760.2188.0: UTRAC:at: flags=<none>

091207.HOST1!simpserv.760.2188.0: UTRAC:at: data=(0x602820){

091207.HOST1!simpserv.760.2188.0: UTRAC:at: len=7

091207.HOST1!simpserv.760.2188.0: UTRAC:at: type="STRING"

091207.HOST1!simpserv.760.2188.0: UTRAC:at: value="abcdef"

091207.HOST1!simpserv.760.2188.0: UTRAC:at: }

091207.HOST1!simpserv.760.2188.0: UTRAC:at: cd=0

091207.HOST1!simpserv.760.2188.0: UTRAC:at: appkey=0

091207.HOST1!simpserv.760.2188.0: UTRAC:at:

cltid=(0x5e154c){1095811926,0,12,0}

091207.HOST1!simpserv.760.2188.0: UTRAC:at: }

091207.HOST1!simpserv.760.2188.0: UTRAC:at:)

091207.HOST1!simpserv.760.2188.0: UTRAC:at: { tpreturn(

091207.HOST1!simpserv.760.2188.0: UTRAC:at: rval=TPSUCCESS

091207.HOST1!simpserv.760.2188.0: UTRAC:at: rcode=0

091207.HOST1!simpserv.760.2188.0: UTRAC:at: data=(0x602820){

091207.HOST1!simpserv.760.2188.0: UTRAC:at: len=0

091207.HOST1!simpserv.760.2188.0: UTRAC:at: type="STRING"

091207.HOST1!simpserv.760.2188.0: UTRAC:at: value="ABCDEF"

091207.HOST1!simpserv.760.2188.0: UTRAC:at: }

091207.HOST1!simpserv.760.2188.0: UTRAC:at: flags=<none>

091207.HOST1!simpserv.760.2188.0: UTRAC:at:)

248 ATMI C Function Reference

091207.HOST1!?proc.1560.1520.0: UTRAC:at: } tpcall(

091207.HOST1!?proc.1560.1520.0: UTRAC:at: ret=0

091207.HOST1!?proc.1560.1520.0: UTRAC:at: odata=(0x12ff48){

091207.HOST1!?proc.1560.1520.0: UTRAC:at: data=(0x881690){

091207.HOST1!?proc.1560.1520.0: UTRAC:at: len=7

|091207.HOST1!?proc.1560.1520.0: UTRAC:at: type="STRING"

091207.HOST1!?proc.1560.1520.0: UTRAC:at: value="ABCDEF"

091207.HOST1!?proc.1560.1520.0: UTRAC:at: }

091207.HOST1!?proc.1560.1520.0: UTRAC:at: len=(0x12ff44)7

091207.HOST1!simpserv.760.2188.0: UTRAC:at: } tpreturn [long jump]

091207.HOST1!?proc.1560.1520.0: UTRAC:at: }

091207.HOST1!?proc.1560.1520.0: UTRAC:at:)

091207.HOST1!?proc.1560.1520.0: UTRAC:at: { tpfree(0x86a8e8)

091207.HOST1!?proc.1560.1520.0: UTRAC:at: } tpfree

091207.HOST1!?proc.1560.1520.0: UTRAC:at: { tpfree(0x881690)

091207.HOST1!?proc.1560.1520.0: UTRAC:at: } tpfree

091207.HOST1!simpserv.760.2188.0: UTRAC:at: } tpservice

091207.HOST1!?proc.1560.1520.0: UTRAC:at: { tpterm()

091207.HOST1!?proc.1560.1520.0: UTRAC:at: } tpterm = 1

091207.HOST1!?proc.1560.1520.-2: UTRAC:at: { tpterm()

091207.HOST1!?proc.1560.1520.-2: UTRAC:at: } tpterm = 1

Return Values
tmutrace(3c) returns 0 when run successfully, and return -1 when a failure occurs.

Errors
Failure depends on the tputrace() user-level implementation/customization. The default
tputrace() implementation included in Tuxedo 9.0 does not cause failure.

See Also

tmtrace(5)

userlog(3c)

Using the Run-time and User-level tracing utilities in Monitoring Your BEA Tuxedo
Application

../rf5/rf5.htm#3160115
../ada/admon.htm#248431
../ada/admon.htm#248431

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 249

tpxmltofml32(3c)

Name
tpxmltofml32()—Converts XML data to FML32 buffers

Synopsis
#include <fml32.h>

int tpxmltofml32 (char *xmlbufp, char *vfile, FBFR32 **fml32bufp, char

**rtag, long flags)

Description
This function is used to convert XML buffers to FML32 buffers. It supports the following valid
arguments:

xmlbufp

This argument is a pointer to valid XML typed buffer input.

vfile

The argument is the fully qualified path name of an XML Schema file used to validate
XML input. To use this argument, you must set the TPXPARSNSPACE and TPXPARSDOSCHE
flags and not set the TPXPARSNEVER flag.

fml32bufp

This argument is a pointer to an output FML32 typed buffer created from the input XML.

rtag
This argument is a pointer that stores the root element name from the input XML
document.

flags

This argument is used in XML to FML/FML32 conversion to map to a Tuxedo 9.0 subset
of Xerces parser classes (see, XercesParser 2.5 documentation). The following is a list of
Tuxedo 9.0 valid Xerces parser flags:

TPXPARSNEVER

Sets setValidationScheme to Val_Never. The parser will not report Schema
validation errors.

TPXPARSALWAYS
Sets setValidationScheme to Val_Always. The parser will always report Schema
validation errors.

Note: TPXPARSNEVER takes precedent over TPXPARSALWAYS if both arguments are used at the
same time.

250 ATMI C Function Reference

TPXPARSSCHFULL
Sets setValidationSchemaFullChecking to true. This flag allows the user to turn
full Schema constraint checking on/off. Only takes effect if Schema validation is enabled.
If turned off, partial constraint checking is done. Full schema constraint checking includes
those checking that may be time-consuming or memory intensive. Currently, particle unique
attribution constraint checking and particle derivation restriction checking are controlled by
this option.

TPXPARSCONFATAL

Sets setValidationConstraintFatal to true. This flag allows users to set the
parser’s behavior when it encounters a validation constraint error. If set to true, and
the parser will treat validation error as fatal and will exit depends on the state of
getExitOnFirstFatalError. If false, then it will report the error and continue
processing.

TPXPARSNSPACE

Sets setDoNamespaces to true. This flag allows users to enable or disable the
parser’s namespace processing. When set to true, parser starts enforcing all the
constraints and rules specified by the NameSpace specification.

TPXPARSDOSCH

Sets setDoSchema to true. This flag allows users to enable or disable the parser’s
schema processing. When set to false, parser will not process any schema found.

Note: If set to true, namespace processing must also be turned on.

TPXPARSEREFN
Sets setCreateEntityReferencNodes to false. This flag allows the user to specify
whether the parser should create entity reference nodes in the DOM tree being produced.
When the create flag is true, the parser will create EntityReference nodes in the DOM tree.
The EntityReference nodes and their child nodes will be read-only. When the create flag is
false, no EntityReference nodes will be created.The replacement text of the entity is
included in either case, either as a child of the Entity Reference node or in place at the
location of the reference.

TPXPARSNOEXIT
Sets setExitOnFirstFatalError to false. This flag allows users to set the parser’s
behavior when it encounters the first fatal error. If set to true, the parser will exit at the first
fatal error. If false, then it will report the error and continue processing.

TPXPARSNOINCWS

Sets setIncludeIgnorableWhitespace to false. This flag allows the user to
specify whether a validating parser should include ignorable whitespaces as text
nodes. It has no effect on non-validating parsers which always include non-markup
text.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 251

When set to false, all ignorable whitespace will be discarded and no text node is
added to the DOM tree.

TPXPARSCACHESET
Sets setcacheGrammarFromParse to true. This flag allows users to enable or disable
caching of grammar when parsing XML documents. When set to true, the parser will cache
the resulting grammar for use in subsequent parses. If the flag is set to true, the Use cached
grammar flag will also be set to true.

TPXPARSCACHERESET

Resets resetCachedGrammarPool. Resets the documents vector pool and release
all the associated memory back to the system.
When parsing a document using a DOM parser, all memory allocated for a DOM
tree is associated to the DOM document.
If you do multiple parse using the same DOM parser instance, then multiple DOM
documents will be generated and saved in a vector pool. All these documents (and
thus all the allocated memory) won't be deleted until the parser instance is
destroyed.
If you do not need these DOM documents anymore and do not want to destroy the
DOM parser instance at this moment, then you can call this method to reset the
document vector pool and release all the allocated memory back to the system. It
is an error to call this method if you are in the middle of a parse (for example, a
mid progressive parse).

Return Values
Upon success, tpxmltofml32 () returns 0. This function returns -1 on error and sets tperrno
to indicate the error condition.

Errors
The function may fail for the following reasons:

[TPEINVAL]
Either fml32bufp or xmlbufp is not a valid typed buffer, or parser has problems
understanding the input.

[TPESYSTEM]
A Tuxedo system error has occurred. The exact nature of the error is written to
userlog(3). This will also indicate when a conversion to FML32 was unable to be done.
In that instance error detail info will be added to the userlog.

252 ATMI C Function Reference

[TPEOS]
An operating system error has occurred. A numeric value representing the system call that
failed is available in Uunixerr.

SEE ALSO
tpfml32toxml(3c), tpxmltofml(3c),tpfmltoxml(3c)

tpxmltofml(3c)

Name
tpxmltofml()—Converts XML data to FML buffers

Synopsis
#include <fml.h>

int tpxmltofml (char *xmlbufp, char *vfile, FBFR **fmlbufp, char **rtag,

long flags)

Description
This function is used to convert XML data to FML buffers. It supports the following valid arguments:

xmlbufp

This argument is a pointer to valid XML typed buffer input.

vfile

The argument is the fully qualified path name of an XML Schema file used to validate
XML input. To use this argument, you must set the TPXPARSNSPACE and TPXPARSDOSCHE
flags and not set the TPXPARSNEVER flag.

fmlbufp

This argument is a pointer to an output FML typed buffer created from the input XML.

rtag
This argument is a pointer that stores the root element name from the input XML
document.

flags

This argument is used in XML to FML/FM32L conversion to map to a Tuxedo 9.0 subset
of Xerces parser classes (see, XercesParser 2.5 documentation). The following is a list of
Tuxedo 9.0 valid Xerces parser flags:

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 253

TPXPARSNEVER

Sets setValidationScheme to Val_Never. The parser will not report Schema
validation errors.

TPXPARSALWAYS
Sets setValidationScheme to Val_Always. The parser will always report Schema
validation errors.

Note: TPXPARSNEVER takes precedent over TPXPARSALWAYS if both arguments are used at the
same time.

TPXPARSSCHFULL
Sets setValidationSchemaFullChecking to true. This flag allows the user to turn
full Schema constraint checking on/off. Only takes effect if Schema validation is enabled.
If turned off, partial constraint checking is done. Full schema constraint checking includes
those checking that may be time-consuming or memory intensive. Currently, particle unique
attribution constraint checking and particle derivation restriction checking are controlled by
this option.

TPXPARSCONFATAL

Sets setValidationConstraintFatal to true. This flag allows users to set the
parser’s behavior when it encounters a validation constraint error. If set to true, and
the parser will treat validation error as fatal and will exit depends on the state of
getExitOnFirstFatalError. If false, then it will report the error and continue
processing.

TPXPARSNSPACE

Sets setDoNamespaces to true. This flag allows users to enable or disable the
parser’s namespace processing. When set to true, parser starts enforcing all the
constraints and rules specified by the NameSpace specification.

TPXPARSDOSCH

Sets setDoSchema to true. This flag allows users to enable or disable the parser’s
schema processing. When set to false, parser will not process any schema found.

Note: If set to true, namespace processing must also be turned on.

TPXPARSEREFN
Sets setCreateEntityReferencNodes to false. This flag allows the user to specify
whether the parser should create entity reference nodes in the DOM tree being produced.
When the create flag is true, the parser will create EntityReference nodes in the DOM tree.
The EntityReference nodes and their child nodes will be read-only. When the create flag is
false, no EntityReference nodes will be created.The replacement text of the entity is
included in either case, either as a child of the Entity Reference node or in place at the
location of the reference.

254 ATMI C Function Reference

TPXPARSNOEXIT
Sets setExitOnFirstFatalError to false. This flag allows users to set the parser’s
behavior when it encounters the first fatal error. If set to true, the parser will exit at the first
fatal error. If false, then it will report the error and continue processing.

TPXPARSNOINCWS

Sets setIncludeIgnorableWhitespace to false. This flag allows the user to
specify whether a validating parser should include ignorable whitespaces as text
nodes. It has no effect on non-validating parsers which always include non-markup
text.
When set to false, all ignorable whitespace will be discarded and no text node is
added to the DOM tree.

TPXPARSCACHESET
Sets setcacheGrammarFromParse to true. This flag allows users to enable or disable
caching of grammar when parsing XML documents. When set to true, the parser will cache
the resulting grammar for use in subsequent parses. If the flag is set to true, the Use cached
grammar flag will also be set to true.

TPXPARSCACHERESET

Resets resetCachedGrammarPool. Resets the documents vector pool and release
all the associated memory back to the system.
When parsing a document using a DOM parser, all memory allocated for a DOM
tree is associated to the DOM document.
If you do multiple parse using the same DOM parser instance, then multiple DOM
documents will be generated and saved in a vector pool. All these documents (and
thus all the allocated memory) won't be deleted until the parser instance is
destroyed.
If you do not need these DOM documents anymore and do not want to destroy the
DOM parser instance at this moment, then you can call this method to reset the
document vector pool and release all the allocated memory back to the system. It
is an error to call this method if you are in the middle of a parse (for example, a
mid progressive parse).

Return Values
Upon success, tpxmltofml () returns a 0. This function returns -1 on error and sets tperrno
to indicate the error condition.

Errors
The function may fail for the following reasons.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 255

[TPEINVAL]

Either fml32bufp or xmlbufp is not a valid typed buffer, or parser has problems
understanding the input.

[TPESYSTEM]
A Tuxedo system error has occurred. The exact nature of the error is written to
userlog(3c). This will also indicate when a conversion to FML was unable to be done.
In that instance error detail info will be added to the userlog.

[TPEOS]
An operating system error has occurred. A numeric value representing the system call that
failed is available in Uunixerr.

SEE ALSO

tpxmltofml32(3c), tpfml32toxml(3c), tpfmltoxml(3c)

Converting XML Data To and From FML/FML32 Buffers

TRY(3c)

Name
TRY()—Exception-returning interface.

Synopsis
#include <texc.h>

TRY

try_block

[CATCH(exception_name) handler_block] ...

[CATCH_ALL handler_block]

ENDTRY

TRY

try_block

FINALLY

finally_block

ENDTRY

RAISE(exception_name)

../pgc/pgbuf.htm#18700232

256 ATMI C Function Reference

RERAISE

/* declare exception */

EXCEPTION exception_name;

/* initialize address (application) exception */

EXCEPTION_INIT(EXCEPTION exception_name)

/* intialize status exception (map status to exception */

exc_set_status(EXCEPTION *exception_name, long status)

/* map status exception to status */

exc_get_status(EXCEPTION *exception_name, long *status)

/* compare exceptions */

exc_matches(EXCEPTION *e1, EXCEPTION *e2)

/* print error to stderr */

void exc_report(EXCEPTION *exception)

Description
The TRY/CATCH interface provides a mechanism to handle exceptions without the use of status
variables (for example, errno or status variables passed back from an RPC operation). These
macros are defined in texc.h and this header is automatically included in any header files
generated by tidl(1).

The TRY try_block is a block of C or C++ declarations and statements in which an exception
may be raised (code that is not associated with raising an exception should be placed before or
after the try_block). Each TRY/ENDTRY pair constitutes a “scope,” with respect to exceptions
(not unlike C scoping), or a region of code over which exceptions are caught. These scopes can
be properly nested. When an exception is raised, an error is reported to the application by
searching the active scopes for actions written to handle (“absorb”) an exception (CATCH or
CATCH_ALL clauses) or complete the scopes (FINALLY clauses). If a scope does not handle an
exception, the scope is torn down with the exception raised at the next higher level (unwinding
the stack of exception scopes). Execution resumes at the point after which the exception is
handled; there is no provision for resuming execution at the point of error. If the exception is not
handled by any scope, the program is terminated (a message is written to the log via
userlog(3c) and abort(3) is called).

../rfcm/rfcmd.htm#6280211

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 257

Zero or more occurrences of CATCH (exception_name) handler_block may be provided. Each
handler_block is a block of C or C++ declarations and statements in which the associated
exception (exception_name) is processed (normally, actions are specified for recovery from the
failure). If an exception is raised by a statement in try_block, then the first CATCH clause that
matches the exception is executed.

Within a CATCH or CATCH_ALL handler_block, the current exception can be referenced by the
EXCEPTION pointer THIS_CATCH (for example, for logic based on or printing the exception
value).

If the exception is not handled by one of the CATCH clauses, then the CATCH_ALL clause is
executed. By default, no further action is taken for an exception that is handled by a CATCH or
CATCH_ALL clause. If no CATCH_ALL clause exists, then the exception is raised at the try_block
at the next higher level, assuming that the try_block is nested within another try_block. If an
ANSI C compiler is used, register and automatic variables that are used in the handler blocks
should be declared with the volatile attribute (as is true of any blocks that use
setjmp/longjmp). Also note that output parameters and return values from the functions that
can generate an exception are indeterminate.

Within a CATCH or CATCH_ALL handler_block, the current exception can be propagated to the
next higher level (the exception is “reraised”) using the RERAISE statement. The RERAISE
statement must appear lexically within the scope of a handler_block (that is, not within a
function called by the handler_block). Any exception that is caught but not fully handled
should be reraised. In many cases, a CATCH_ALL handler should reraise the exception because the
handler is not written to handle every exception. The application should also be written such that
an exception is raised to the proper scope such that the handler blocks take the appropriate actions
and modify the appropriate state (for example, if an exception occurs while opening a file, the
handler function for that level should not try to close the unopened file).

An exception can be raised from anywhere by using the RAISE(exception_name) statement.
This statement causes the exception to start propagating at the current try_block and will be
reraised until it is handled.

The FINALLY clause can be used to specify an epilogue block of code that is executed after the
try_block, whether or not an exception is raised. If an exception is raised in the try_block, it
is reraised after the finally_block is executed. This clause can be used to avoid replicating
epilogue code twice, once in a CATCH_ALL clause, and again after the ENDTRY. It is normally used
to execute cleanup activities, restoring invariants (for example, shared data, locks) as the scopes
are unwound, whether or not exceptions are raised (that is, on both normal and abnormal exits
from the block). Note (in the “Synopsis” section) that a FINALLY clause cannot be used with a
CATCH or CATCH_ALL clause for the same try_block; use nested try_blocks.

258 ATMI C Function Reference

The ENDTRY statement must be used to complete the TRY block, since it contains code that must
be executed to make sure that exceptions are handled and the context is cleaned up. A
try_block, handler_block, or finally_block must not contain a return, non-local jump,
or any other means of leaving the block such that the ENDTRY is not reached (for example,
goto(), break(), continue(), longjmp()).

This interface is provided to handle exceptions from RPC operations. However, this is a generic
interface that can be used for any application. An exception is declared to be of type EXCEPTION.
(This is a complex data type; do not try to use it like a long integer.) There are two types of
exceptions. They are declared in the same manner but initialized differently.

One type of exception is used to define application exceptions. It is initialized by calling the
EXCEPTION_INIT() macro. The address of the exception is stored as the value within the
address exception. Note that this value is valid only within a single address space and will
change if the exception is an automatic variable. For this reason, an address exception should
be declared as a static or external variable, not an automatic or register variable. The
exc_get_status() macro will evaluate to -1 for an address exception. Using the
exc_set_status() macro on this exception will make it a status exception.

The exc_matches macro can be used to compare two exceptions. To compare equal, the
exceptions must both be the same type and have the same value (for example, the same status
value for status exceptions, or the same addresses for address exceptions). This comparison
is used for the CATCH clause, described above.

When status exceptions are raised, a common part of handling the exception might be to print out
the status value, or better yet, a string indicating what status value occurred. If the string is to be
printed to the standard error output, then the function exc_report() can be called with a pointer
to the status exception to print the string in one operation.

CATCH_ALL

{

 exc_report(THIS_CATCH);

}

ENDTRY

If something else is to be done with the string (for example, printing the error to the user log),
exc_get_status() can be used on THIS_CATCH to get the status value (remember that
THIS_CATCH is already a pointer to an EXCEPTION, not an EXCEPTION), and
dce_error_inq_text() can be used to get the string value associated with the status value.

CATCH_ALL

{

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 259

 unsigned long status_to_convert;

 unsigned char error_text[200];

 int status;

 exc_get_status(THIS_CATCH,status_to_convert);

 dce_error_inq_text(status_to_convert, error_text, status);

 userlog(“%s”, (char *)error_text);

}

ENDTRY

Note: A thread in a multithreaded application may invoke the TRY/CATCH interface while
running in any context state, including TPINVALIDCONTEXT.

When to Use Exception and Status Returns
The status of RPC operations can be determined portably by defining status variables for each
operation ([comm_status] and [fault_status] parameters are defined via the Attribute
Configuration File). The status-returning interface is the only interface provided in the X/OPEN
RPC specification. The fault_status attribute indicates that errors occurring on the server due
to incorrectly specified parameter values, resource constraints, or coding errors be reported by an
additional status argument or return value. Similarly, the comm_status attribute indicates that
RPC communications failures be reported by an additional status argument or return value. Using
status values works well for fine-grained error handling (on a per-call basis) with recovery
specified for each possible error on each call, and where it is necessary to retry from the point of
failure. The disadvantage is that it is not transparent whether or not the call is local or remote. The
remote call has additional status parameters, or a status return value instead of being a void return.
Thus, the application must have procedure declarations adjusted between local and distributed
code.

For application portability from an OSF/DCE environment, the TRY/CATCH exception-returning
interface is also provided. This interface may not be provided in all environments. However, it
has the advantage that procedure declarations need not be adjusted between local and distributed
code, maintaining existing interfaces. The checking for errors can be simplified such that each
procedure call does not have specific failure checking or recovery code. If an error is not handled
at some level, then the program exits with a system error message such that the error is detected
and can be corrected (omissions become more obvious). Exceptions work better for
coarse-grained exception handling.

260 ATMI C Function Reference

Built-in Exceptions
The exceptions shown in Table 12 are “built-in” to the use of this exception interface. The first
TRY clause sets up a signal handler to catch the signals list below if they are not currently ignored
or caught; the other exceptions are defined only for DCE program portability.

Table 12 Built-in Exceptions

Exception Description

exc_e_SIGBUS An unhandled SIGBUS signal occurred.

exc_e_SIGEMT An unhandled SIGEMT signal occurred.

exc_e_SIGFPE An unhandled SIGFPE signal occurred.

exc_e_SIGILL An unhandled SIGILL signal occurred.

exc_e_SIGIOT An unhandled SIGIOT signal occurred.

exc_e_SIGPIPE An unhandled SIGPIPE signal occurred.

exc_e_SIGSEGV An unhandled SIGSEGV signal occurred.

exc_e_SIGSYS An unhandled SIGSYS signal occurred.

exc_e_SIGTRAP An unhandled SIGTRAP signal occurred.

exc_e_SIGXCPU An unhandled SIGXCPU signal occurred.

exc_e_SIGXFSZ An unhandled SIGXFSZ signal occurred.

pthread_e_badparam

pthread_e_defer_q_full

pthread_e_existence

pthread_e_in_use

pthread_e_nostackmem

pthread_e_nostack

pthread_e_signal_q_full

pthread_e_stackovf

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 261

These same exception codes are also defined with the “_e” at the end of the name (for example,
exc_e_SIGBUS is also defined as exc_SIGBUS_e). Equivalent status codes are defined with
similar names but the “_e_” is changed to “_s_” (for example, exc_e_SIGBUS is equivalent to
the exc_s_SIGBUS status code).

Caveats
In OSF/DCE, the header file is named exc_handling.h; the BEA Tuxedo ATMI system header
file is texc.h. It is not possible for the same source file to use both DCE and BEA Tuxedo ATMI

pthread_e_unimp

pthread_e_use_error

exc_e_decovf

exc_e_exquota

exc_e_fltdiv

exc_e_fltovf

exc_e_fltund

exc_e_illaddr

exc_e_insfmem

exc_e_intdiv

exc_e_intovf

exc_e_nopriv

exc_e_privinst

exc_e_resaddr

exc_e_resoper

exc_e_subrng

exc_e_uninitexc

Table 12 Built-in Exceptions (Continued)

Exception Description

262 ATMI C Function Reference

system exception handling. Further, within a program, the handling of signal exceptions can only
be done by either DCE or the BEA Tuxedo ATMI system, not both.

Examples
The following is an example C source file that uses exceptions:

#include <texc.h>

EXCEPTION badopen_e; /* declare exception for bad open() */

doit(char *filename)
{
 EXCEPTION_INIT(badopen_e); /* initialize exception */
 TRY get_and_update_data(filename); /* do the operation */
 CATCH(badopen_e) /* exception - open() failed */
 fprintf(stderr, “Cannot open %s\en”, filename);
 CATCH_ALL /* handle other errors */
 /* handle rpc service not available, ... */
 exc_report(THIS_CATCH)
 ENDTRY
}
/*
 * Open output file
 * Get the remote data item
 * Write out to file
 */
get_and_update_data(char *filename)
{
 FILE *fp;
 if ((fp == fopen(filename)) == NULL) /* open output file */
 RAISE(badopen_e); /* raise exception */
 TRY
 /* in this block, file is opened successfully -
 * use associated FINALLY to close file
 */
 long data;
 /*
 * Execute RPC call - exceptions are raised to the calling
 * function, doit()
 */
 data = remote_get_data();
 fprintf(fp, “%ld\en”, data);
 FINALLY
 /* Whether or not exceptions are raised, close the file */
 fclose(fp);
 ENDTRY
}

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 263

See Also
userlog(3c)

abort(2) in a UNIX system reference manual

Programming BEA Tuxedo ATMI Applications Using TxRPC

tuxgetenv(3c)

Name
tuxgetenv()—Returns value for environment name.

Synopsis
#include <atmi.h>

char *tuxgetenv(char *name)

Description
tuxgetenv() searches the environment list for a string of the form name=value and, if the string
is present, returns a pointer to the value in the current environment. Otherwise, it returns a NULL
pointer.

This function provides a portable interface to environment variables across the different
platforms on which the BEA Tuxedo ATMI system is supported, including those platforms that
do not normally have environment variables.

Note that tuxgetenv is case-sensitive.

A thread in a multithreaded application may issue a call to tuxgetenv() while running in any
context state, including TPINVALIDCONTEXT.

Return Values
If a pointer to the string exists, tuxgetenv() returns that pointer. If a pointer does not exist,
tuxgetenv() returns a NULL pointer.

Portability
On MS Windows, this function overcomes the inability to share environment variables between
an application and a Dynamic Link Library. The BEA Tuxedo ATMI Workstation DLL
maintains an environment copy for each application that is attached to it. This associated
environment and context information is destroyed when tpterm() is called from a Windows

264 ATMI C Function Reference

application. The value of an environment variable could be changed after the application program
calls tpterm().

It is recommended that uppercase variable names be used for the Windows environments.
(tuxreadenv() converts all environment variable names to uppercase.)

See Also
tuxputenv(3c), tuxreadenv(3c)

tuxgetmbaconv(3c)

Name
tuxgetmbaconv()—Gets the value for environment variable TPMBACONV in the process
environment.

Synopsis
#include <atmi.h>

extern int tperrno;

int

tuxgetmbaconv(long flags) /* Get TPMBACONV info */

Description
This function is used for getting the TPMBACONV status. The tuxgetnombaconv() function
is used by an application developer to check if the automatic conversion capability of the typed
switch buffers is turned off. By default the TPMBACONV is not set and automatic conversion
functions are used.

The flags argument is not currently used and should be set to 0.

Return Values
tuxgetnombaconv() returns MBAUTOCONVERSION_ON if the TPMBACONV is set and
MBAUTOCONVERSION_OFF if TPMBACONV is not set.

See Also
tuxgetenv(3c), tuxsetmbaconv(3c)

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 265

tuxgetmbenc(3c)

Name
tuxgetmbenc()—Gets the code-set encoding name for environment variable TPMBENC in the
process environment.

Synopsis
#include <atmi.h>

extern int tperrno;

int

tuxgetmbenc(char *enc_name, long flags)

Description
This function is used for getting the codeset encoding name that is contained in the TPMBENC
environment variable. This environment variable is automatically used as the default codeset
encoding name when an MBSTRING typed buffer is created. The default encoding name can be
reset or unset using the tpsetmbenc() function once the new message is available.

The enc_name argument will contain the value of the TPMBENC environment variable upon
successful execution of this function. This pointer should be large enough for the encoding name
to be copied into.

The flags argument is not currently used and should be set to 0.

Return Values
Upon success, tuxgetmbenc() returns 0; otherwise, it returns a non-zero value on error.

See Also
tpconvmb(3c), tpgetmbenc(3c), tpsetmbenc(3c), tuxgetenv(3c), tuxsetmbenc(3c)

tuxputenv(3c)

Name
tuxputenv()—Changes or adds a value to the environment.

Synopsis
#include <atmi.h>
int tuxputenv(char *string)

266 ATMI C Function Reference

Description
string points to a string of the form “name=value.” tuxputenv() makes the value of the
environment variable name equal to value by altering an existing variable or creating a new one.
In either case, the string pointed to by string becomes part of the environment.

This function provides a portable interface to environment variables across the different
platforms on which the BEA Tuxedo ATMI system is supported, including those platforms that
do not normally have environment variables.

Note that tuxputenv() is case-sensitive.

A thread in a multithreaded application may issue a call to tuxputenv() while running in any
context state, including TPINVALIDCONTEXT.

Return Values
If tuxputenv() cannot obtain enough space, via malloc(), for an expanded environment, it
returns a non-zero integer. Otherwise, it returns zero.

Portability
On MS Windows, this function overcomes the inability to share environment variables between
an application and a Dynamic Link Library. The BEA Tuxedo ATMI system Workstation DLL
maintains an environment copy for each application that is attached to it. This associated
environment and context information is destroyed when tpterm() is called from a Windows
application. The value of an environment variable could be changed after the application program
calls tpterm().

We recommend using uppercase variable names for the DOS, Windows, and OS/2,
environments. (tuxreadenv() converts all environment variable names to uppercase.)

See Also
tuxgetenv(3c), tuxreadenv(3c)

tuxreadenv(3c)

Name
tuxreadenv()—Adds variables to the environment from a file.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 267

Synopsis
#include <atmi.h>

int tuxreadenv(char *file, char *label)

Description
tuxreadenv() reads a file containing environment variables and adds them to the environment,
independent of platform. These variables are available using tuxgetenv() and can be reset using
tuxputenv().

The format of the environment file is as follows:

Any leading space or tab character on a line is ignored and is not considered in the
following points.

Lines containing variables to be put into the environment are of the form:

variable=value

or

set variable=value

where variable must begin with an alphabetic or underscore character and contain only
alphanumeric or underscore characters, and value may contain any character except
newline.

Within the value, strings of the form ${env} are expanded using variables already in the
environment (forward referencing is not supported and if a value is not set, the variable is
replaced with the empty string). Backslash (\) may be used to escape the dollar sign and
itself. All other shell quoting and escape mechanisms are ignored and the expanded value
is placed into the environment.

Lines beginning with slash (/), pound sign (#), semicolon (;), or exclamation point (!) are
treated as comments and ignored. Lines beginning with other characters besides these
comment characters, a left square bracket, or an alphabetic or underscore character are
reserved for future use; their use is undefined.

268 ATMI C Function Reference

The file is partitioned into sections by lines beginning with left square bracket ([), which
acts as a label. The label will be silently truncated if longer than 31 characters. The format
of a label is:

[label]

where label follows the same rules for variable above (lines with invalid label values
are ignored).

Variable lines between the top of the file and the first label are put into the environment for
all labels (this is the global section). Other variables are put into the environment only if
the label matches the label specified for the application. A label of [] will indicate the
global section.

If file is NULL, then a default filename is used. The fixed filenames are as follows:

DOS, Windows, OS2, NT: C:\TUXEDO\TUXEDO.ENV

MAC: TUXEDO.ENV in the system preferences directory

NETWARE: SYS:SYSTEM\TUXEDO.ENV

POSIX: /usr/tuxedo/TUXEDO.ENV or /var/opt/tuxedo/TUXEDO.ENV

If label is NULL, then only variables in the global section are put into the environment. For
other values of label, the global section variables plus any variables in a section matching the
label are put into the environment.

An error message is printed to the userlog() if there is a memory failure, if a non-NULL
filename does not exist, or if a non-NULL label does not exist.

A thread in a multithreaded application may issue a call to tuxreadenv() while running in any
context state, including TPINVALIDCONTEXT.

Example
The following is an example environment file.

TUXDIR=/usr/tuxedo

[application1]

;this is a comment

/* this is a comment */

#this is a comment

//this is a comment

FIELDTBLS=app1_flds

FLDTBLDIR=/usr/app1/udataobj

[application2]

FIELDTBLS=app2_flds

FLDTBLDIR=/usr/app2/udataobj

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 269

Return Values
If tuxreadenv()cannot obtain enough space, via malloc(), for an expanded environment, or if
it cannot open and read a file with a non-NULL name, it returns a non-zero integer. Otherwise,
tuxreadenv() returns zero.

Portability
In the DOS, Windows, OS/2, and NetWare environments, tuxreadenv() converts all
environment variable names to uppercase.

See Also
tuxgetenv(3c), tuxputenv(3c)

tuxsetmbaconv(3c)

Name
tuxsetmbaconv()—Sets the value for environment variable TPMBACONV in the process
environment.

Synopsis
#include <atmi.h>

extern int tperrno;

int

tuxsetmbaconv(int onoff, long flags) /* Set TPMBACONV */

Description
This function is used for setting or resetting the TPMBACONV environment variable. By default
TPMBACONV is not set and automatic conversion functions are used.

The onoff argument is equal to MBAUTOCONVERSION_OFF to unset TPMBACONV and
turn off auto-conversions. It is equal to MBAUTOCONVERSION_ON to set TPMBACONV
and turn on the typed switch buffers auto-conversion of codeset multi-byte data.

The flags argument is not currently used and should be set to 0.

Return Values
Upon success, tuxsetnombaconv() returns 0; otherwise, it returns a non-zero value on error.
(e.g. it returns -1 if the onoff arg is not one of the defined values).

270 ATMI C Function Reference

See Also
tuxgetmbaconv(3c), tuxputenv(3c)

tuxsetmbenc(3c)

Name
tuxsetmbenc()—Sets the code-set encoding name for environment variable TPMBENC in the
process environment.

Synopsis
#include <atmi.h>

extern int tperrno;

int

tuxsetmbenc(char *enc_name, long flags)

Description
This function is used for setting or resetting the codeset encoding name that is contained in the
TPMBENC environment variable. This environment variable is automatically used as the default
codeset encoding name when an MBSTRING typed buffer is created. This default encoding name
can be reset or unset using the tpsetmbenc() function once the new message is available.

The enc_name argument is the encoding name to use to identify the codeset.

The flags argument is not currently used and should be set to 0.

Return Values
Upon success, tuxsetmbenc() returns 0; otherwise, it returns a non-zero value on error.

See Also
tpconvmb(3c), tpgetmbenc(3c), tpsetmbenc(3c), tuxgetmbenc(3c), tuxputenv(3c)

tx_begin(3c)

Name
tx_begin()—Begins a global transaction.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 271

Synopsis
#include <tx.h>

int tx_begin(void)

Description
tx_begin() is used to place the calling thread of control in transaction mode. The calling thread
must first ensure that its linked resource managers have been opened (via tx_open()) before it
can start transactions. tx_begin() fails (returning [TX_PROTOCOL_ERROR]) if the caller is
already in transaction mode or tx_open() has not been called.

Once in transaction mode, the calling thread must call tx_commit() or tx_rollback() to
complete its current transaction. There are certain cases related to transaction chaining where
tx_begin() does not need to be called explicitly to start a transaction. See tx_commit() and
tx_rollback() for details.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tx_begin().

Optional Set-up
tx_set_transaction_timeout()

Return Value
Upon successful completion, tx_begin() returns TX_OK, a non-negative return value.

Errors
Under the following conditions, tx_begin() fails and returns one of these negative values:

[TX_OUTSIDE]
The transaction manager is unable to start a global transaction because the calling thread
of control is currently participating in work outside any global transaction with one or
more resource managers. All such work must be completed before a global transaction can
be started. The caller’s state with respect to the local transaction is unchanged.

[TX_PROTOCOL_ERROR]
The function was called in an improper context (for example, the caller is already in
transaction mode). The caller’s state with respect to transaction mode is unchanged.

[TX_ERROR]
Either the transaction manager or one or more of the resource managers encountered a
transient error trying to start a new transaction. When this error is returned, the caller is
not in transaction mode. The exact nature of the error is written to a log file.

272 ATMI C Function Reference

[TX_FAIL]
Either the transaction manager or one or more of the resource managers encountered a
fatal error. The nature of the error is such that the transaction manager and/or one or more
of the resource managers can no longer perform work on behalf of the application. When
this error is returned, the caller is not in transaction mode. The exact nature of the error is
written to a log file.

See Also
tx_commit(3c), tx_open(3c), tx_rollback(3c), tx_set_transaction_timeout(3c)

Warnings
XA-compliant resource managers must be successfully opened to be included in the global
transaction. (See tx_open(3c) for details.) Both the X/Open TX interface and the X-Windows
system define the type XID. It is not possible to use both X-Windows calls and TX calls in the
same file.

tx_close(3c)

Name
tx_close()—Closes a set of resource managers.

Synopsis
#include <tx.h>

int tx_close(void)

Description
tx_close() closes a set of resource managers in a portable manner. It invokes a transaction
manager to read resource-manager-specific information in a transaction-manager-specific
manner and pass this information to the resource managers linked to the caller.

tx_close() closes all resource managers to which the caller is linked. This function is used in
place of resource-manager-specific “close” calls and allows an application program to be free of
calls which may hinder portability. Since resource managers differ in their termination semantics,
the specific information needed to “close” a particular resource manager must be published by
each resource manager.

tx_close() should be called when an application thread of control no longer wishes to
participate in global transactions. tx_close() fails (returning [TX_PROTOCOL_ERROR]) if the

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 273

caller is in transaction mode. That is, no resource managers are closed even though some may not
be participating in the current transaction.

When tx_close() returns success (TX_OK), all resource managers linked to the calling thread
are closed.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tx_close().

Return Value
Upon successful completion, tx_close() returns TX_OK, a non-negative return value.

Errors
Under the following conditions, tx_close() fails and returns one of these negative values:

[TX_PROTOCOL_ERROR]
The function was called in an improper context (for example, the caller is in transaction
mode). No resource managers are closed.

[TX_ERROR]
Either the transaction manager or one or more of the resource managers encountered a
transient error. The exact nature of the error is written to a log file. All resource managers
that could be closed are closed.

[TX_FAIL]
Either the transaction manager or one or more of the resource managers encountered a
fatal error. The nature of the error is such that the transaction manager and/or one or more
of the resource managers can no longer perform work on behalf of the application. The
exact nature of the error is written to a log file.

See Also
tx_open(3c)

Warnings
Both the X/Open TX interface and the X-Windows system define the type XID. It is not possible
to use both X-Windows calls and TX calls in the same file.

274 ATMI C Function Reference

tx_commit(3c)

Name
tx_commit()—Commits a global transaction.

Synopsis
#include <tx.h>

int tx_commit(void)

Description
tx_commit() is used to commit the work of the transaction active in the caller’s thread of
control.

If the transaction_control characteristic (see tx_set_transaction_control(3c)) is
TX_UNCHAINED, then when tx_commit() returns, the caller is no longer in transaction mode.
However, if the transaction_control characteristic is TX_CHAINED, then when tx_commit()
returns, the caller remains in transaction mode on behalf of a new transaction (see the Return
Value and Errors sections below).

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tx_commit().

Optional Set-up
tx_set_commit_return()

tx_set_transaction_control()

tx_set_transaction_timeout()

Return Value
Upon successful completion, tx_commit() returns TX_OK, a non-negative return value.

Errors
Under the following conditions, tx_commit() fails and returns one of these negative values:

[TX_NO_BEGIN]
The current transaction committed successfully; however, a new transaction could not be
started and the caller is no longer in transaction mode. This return value may occur only
when the transaction_control characteristic is TX_CHAINED.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 275

[TX_ROLLBACK]
The current transaction could not commit and has been rolled back. In addition, if the
transaction_control characteristic is TX_CHAINED, a new transaction is started.

[TX_ROLLBACK_NO_BEGIN]
The transaction could not commit and has been rolled back. In addition, a new transaction
could not be started and the caller is no longer in transaction mode. This return value can
occur only when the transaction_control characteristic is TX_CHAINED.

[TX_MIXED]
The work done on behalf of the transaction was partially committed and partially rolled
back. In addition, if the transaction_control characteristic is TX_CHAINED, a new
transaction is started.

[TX_MIXED_NO_BEGIN]
The work done on behalf of the transaction was partially committed and partially rolled
back. In addition, a new transaction could not be started and the caller is no longer in
transaction mode. This return value can occur only when the transaction_control
characteristic is TX_CHAINED.

[TX_HAZARD]
Due to a failure, some of the work done on behalf of the transaction may have been
committed and some of it may have been rolled back. In addition, if the
transaction_control characteristic is TX_CHAINED, a new transaction is started.

[TX_HAZARD_NO_BEGIN]
Due to a failure, some of the work done on behalf of the transaction may have been
committed and some of it may have been rolled back. In addition, a new transaction could
not be started and the caller is no longer in transaction mode. This return value can occur
only when the transaction_control characteristic is TX_CHAINED.

[TX_PROTOCOL_ERROR]
The function was called in an improper context (for example, the caller is not in
transaction mode). The caller’s state with respect to transaction mode is not changed.

[TX_FAIL]
Either the transaction manager or one or more of the resource managers encountered a
fatal error. The nature of the error is such that the transaction manager and/or one or more
of the resource managers can no longer perform work on behalf of the application. The
exact nature of the error is written to a log file. The caller’s state with respect to the
transaction is unknown.

276 ATMI C Function Reference

See Also
tx_begin(3c), tx_set_commit_return(3c), tx_set_transaction_control(3c),
tx_set_transaction_timeout(3c)

Warnings
Both the X/Open TX interface and the X-Windows system define the type XID. It is not possible
to use both X-Windows calls and TX calls in the same file.

tx_info(3c)

Name
tx_info()—Returns global transaction information.

Synopsis
#include <tx.h>

int tx_info(TXINFO *info)

Description
tx_info() returns global transaction information in the structure pointed to by info. In
addition, this function returns a value indicating whether the caller is currently in transaction
mode or not. If info is non-NULL, then tx_info() populates a TXINFO structure pointed to by
info with global transaction information. The TXINFO structure contains the following elements:

XID xid;

COMMIT_RETURN when_return;

TRANSACTION_CONTROL transaction_control;

TRANSACTION_TIMEOUT transaction_timeout;

TRANSACTION_STATE transaction_state;

If tx_info() is called in transaction mode, then xid will be populated with a current transaction
branch identifier and transaction_state will contain the state of the current transaction. If the
caller is not in transaction mode, xid will be populated with the NULL XID (see the tx.h file
for details). In addition, regardless of whether the caller is in transaction mode, when_return,
transaction_control, and transaction_timeout contain the current settings of the
commit_return and transaction_control characteristics, and the transaction timeout value
in seconds.

The transaction timeout value returned reflects the setting that will be used when the next
transaction is started. Thus, it may not reflect the timeout value for the caller’s current global

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 277

transaction since calls made to tx_set_transaction_timeout() after the current transaction
was begun may have changed its value.

If info is NULL, no TXINFO structure is returned.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tx_info().

Return Value
If the caller is in transaction mode, then 1 is returned. If the caller is not in transaction mode, then
0 is returned.

Errors
Under the following conditions, tx_info() fails and returns one of these negative values:

[TX_PROTOCOL_ERROR]
The function was called in an improper context (for example, the caller has not yet called
tx_open()).

[TX_FAIL]
The transaction manager encountered a fatal error. The nature of the error is such that the
transaction manager can no longer perform work on behalf of the application. The exact
nature of the error is written to a log file.

See Also
tx_open(3c), tx_set_commit_return(3c), tx_set_transaction_control(3c),
tx_set_transaction_timeout(3c)

Warnings
Within the same global transaction, subsequent calls to tx_info() are guaranteed to provide an
XID with the same gtrid component, but not necessarily the same bqual component. Both the
X/Open TX interface and the X-Windows system define the type XID. It is not possible to use
both X-Windows calls and TX calls in the same file.

tx_open(3c)

Name
tx_open()—Opens a set of resource managers.

278 ATMI C Function Reference

Synopsis
#include <tx.h>

int tx_open(void)

Description
tx_open() opens a set of resource managers in a portable manner. It invokes a transaction
manager to read resource-manager-specific information in a transaction-manager-specific
manner and pass this information to the resource managers linked to the caller.

tx_open() attempts to open all resource managers that have been linked with the application.
This function is used in place of resource-manager-specific “open” calls and allows an
application program to be free of calls which may hinder portability. Since resource managers
differ in their initialization semantics, the specific information needed to “open” a particular
resource manager must be published by each resource manager.

If tx_open() returns TX_ERROR, then no resource managers are open. If tx_open() returns
TX_OK, some or all of the resource managers have been opened. Resource managers that are not
open will return resource-manager-specific errors when accessed by the application. tx_open()
must successfully return before a thread of control participates in global transactions.

Once tx_open() returns success, subsequent calls to tx_open() (before an intervening call to
tx_close()) are allowed. However, such subsequent calls will return success, and the TM will
not attempt to reopen any RMs.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tx_open().

Return Value
Upon successful completion, tx_open() returns TX_OK, a non-negative return value.

Errors
Under the following conditions, tx_open() fails and returns one of these negative values:

[TX_ERROR]
Either the transaction manager or one or more of the resource managers encountered a
transient error. No resource managers are open. The exact nature of the error is written to
a log file.

[TX_FAIL]
Either the transaction manager or one or more of the resource managers encountered a
fatal error. TX_FAIL is returned if tpinit() is not called before the call to tx_open in a

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 279

secure application (SECURITY APP_PW). The nature of the error is such that the
transaction manager and/or one or more of the resource managers can no longer perform
work on behalf of the application. The exact nature of the error is written to a log file.

See Also
tx_close(3c)

Warnings
Both the X/Open TX interface and the X-Windows system define the type XID. It is not possible
to use both X-Windows calls and TX calls in the same file.

tx_rollback(3c)

Name
tx_rollback()—Rolls back a global transaction.

Synopsis
#include <tx.h>

int tx_rollback(void)

Description
tx_rollback() is used to roll back the work of the transaction active in the caller’s thread of
control.

If the transaction_control characteristic (see tx_set_transaction_control(3c)) is
TX_UNCHAINED, then when tx_rollback() returns, the caller is no longer in transaction mode.
However, if the transaction_control characteristic is TX_CHAINED, then when
tx_rollback() returns, the caller remains in transaction mode on behalf of a new transaction
(see the Return Value and Errors sections below).

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tx_rollback().

Optional Set-up
tx_set_transaction_control()

tx_set_transaction_timeout()

280 ATMI C Function Reference

Return Value
Upon successful completion, tx_rollback() returns TX_OK, a non-negative return value.

Errors
Under the following conditions, tx_rollback() fails and returns one of these negative values:

[TX_NO_BEGIN]
The current transaction rolled back; however, a new transaction could not be started and
the caller is no longer in transaction mode. This return value may occur only when the
transaction_control characteristic is TX_CHAINED.

[TX_MIXED]
The work done on behalf of the transaction was partially committed and partially rolled
back. In addition, if the transaction_control characteristic is TX_CHAINED, a new
transaction is started.

[TX_MIXED_NO_BEGIN]
The work done on behalf of the transaction was partially committed and partially rolled
back. In addition, a new transaction could not be started and the caller is no longer in
transaction mode. This return value can occur only when the transaction_control
characteristic is TX_CHAINED.

[TX_HAZARD]
Due to a failure, some of the work done on behalf of the transaction may have been
committed and some of it may have been rolled back. In addition, if the
transaction_control characteristic is TX_CHAINED, a new transaction is started.

[TX_HAZARD_NO_BEGIN]
Due to a failure, some of the work done on behalf of the transaction may have been
committed and some of it may have been rolled back. In addition, a new transaction could
not be started and the caller is no longer in transaction mode. This return value can occur
only when the transaction_control characteristic is TX_CHAINED.

[TX_COMMITTED]
The work done on behalf of the transaction was heuristically committed. In addition, if the
transaction_control characteristic is TX_CHAINED, a new transaction is started.

[TX_COMMITTED_NO_BEGIN]
The work done on behalf of the transaction was heuristically committed. In addition, a
new transaction could not be started and the caller is no longer in transaction mode. This
return value can occur only when the transaction_control characteristic is
TX_CHAINED.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 281

[TX_PROTOCOL_ERROR]
The function was called in an improper context (for example, the caller is not in
transaction mode).

[TX_FAIL]
Either the transaction manager or one or more of the resource managers encountered a
fatal error. The nature of the error is such that the transaction manager and/or one or more
of the resource managers can no longer perform work on behalf of the application. The
exact nature of the error is written to a log file. The caller’s state with respect to the
transaction is unknown.

See Also
tx_begin(3c), tx_set_transaction_control(3c), tx_set_transaction_timeout(3c)

Warnings
Both the X/Open TX interface and the X-Windows system define the type XID. It is not possible
to use both X-Windows calls and TX calls in the same file.

tx_set_commit_return(3c)

Name
tx_set_commit_return()—Sets the commit_return characteristic.

Synopsis
#include <tx.h>

int tx_set_commit_return(COMMIT_RETURN when_return)

Description
tx_set_commit_return() sets the commit_return characteristic to the value specified in
when_return. This characteristic affects the way tx_commit() behaves with respect to
returning control to its caller. tx_set_commit_return() may be called regardless of whether
its caller is in transaction mode. This setting remains in effect until changed by a subsequent call
to tx_set_commit_return().

The initial setting for this characteristic is TX_COMMIT_COMPLETED.

The following are the valid settings for when_return:

282 ATMI C Function Reference

TX_COMMIT_DECISION_LOGGED
This flag indicates that tx_commit() should return after the commit decision has been
logged by the first phase of the two-phase commit protocol but before the second phase
has completed. This setting allows for faster response to the caller of tx_commit().
However, there is a risk that a transaction will have a heuristic outcome, in which case the
caller will not find out about this situation via return codes from tx_commit(). Under
normal conditions, participants that promise to commit during the first phase will do so
during the second phase. In certain unusual circumstances however (for example,
long-lasting network or node failures), phase 2 completion may not be possible and
heuristic results may occur.

TX_COMMIT_COMPLETED
This flag indicates that tx_commit() should return after the two-phase commit protocol
has finished completely. This setting allows the caller of tx_commit() to see return codes
that indicate that a transaction had or may have had heuristic results.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tx_set_commit_return().

Return Value
Upon successful completion, tx_set_commit_return() returns TX_OK, a non-negative return
value.

Errors
Under the following conditions, tx_set_commit_return() does not change the setting of the
commit_return characteristic and returns one of these negative values:

[TX_EINVAL]
when_return is not one of TX_COMMIT_DECISION_LOGGED or TX_COMMIT_COMPLETED.

[TX_PROTOCOL_ERROR]
The function was called in an improper context (for example, the caller has not yet called
tx_open()).

[TX_FAIL]
The transaction manager encountered a fatal error. The nature of the error is such that the
transaction manager can no longer perform work on behalf of the application. The exact
nature of the error is written to a log file.

See Also
tx_commit(3c), tx_info(3c), tx_open(3c)

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 283

Warnings
Both the X/Open TX interface and the X-Windows system define the type XID. It is not possible
to use both X-Windows calls and TX calls in the same file.

tx_set_transaction_control(3c)

Name
tx_set_transaction_control()—Sets the transaction_control characteristic.

Synopsis
#include <tx.h>

int tx_set_transaction_control(TRANSACTION_CONTROL control)

Description
tx_set_transaction_control() sets the transaction_control characteristic to the value
specified in control. This characteristic determines whether tx_commit() and
tx_rollback() start a new transaction before returning to their caller.
tx_set_transaction_control() may be called regardless of whether the application
program is in transaction mode. This setting remains in effect until changed by a subsequent call
to tx_set_transaction_control().

The initial setting for this characteristic is TX_UNCHAINED.

The following are the valid settings for control:

TX_UNCHAINED
This flag indicates that tx_commit() and tx_rollback() should not start a new
transaction before returning to their caller. The caller must issue tx_begin() to start a
new transaction.

TX_CHAINED
This flag indicates that tx_commit() and tx_rollback() should start a new transaction
before returning to their caller.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tx_set_transaction_control().

Return Value
Upon successful completion, tx_set_transaction_control() returns TX_OK, a non-negative
return value.

284 ATMI C Function Reference

Errors
Under the following conditions, tx_set_transaction_control() does not change the setting
of the transaction_control characteristic and returns one of these negative values:

[TX_EINVAL]
control is not one of TX_UNCHAINED or TX_CHAINED.

[TX_PROTOCOL_ERROR]
The function was called in an improper context (for example, the caller has not yet called
tx_open()).

[TX_FAIL]
The transaction manager encountered a fatal error. The nature of the error is such that the
transaction manager can no longer perform work on behalf of the application. The exact
nature of the error is written to a log file.

See Also
tx_begin(3c), tx_commit(3c), tx_info(3c), tx_open(3c), tx_rollback(3c)

Warnings
Both the X/Open TX interface and the X-Windows system define the type XID. It is not possible
to use both X-Windows calls and TX calls in the same file.

tx_set_transaction_timeout(3c)

Name
tx_set_transaction_timeout()—Sets the transaction_timeout characteristic.

Synopsis
#include <tx.h>

int tx_set_transaction_timeout(TRANSACTION_TIMEOUT timeout)

Description
tx_set_transaction_timeout() sets the transaction_timeout characteristic to the value
specified in timeout. This value specifies the time period in which the transaction must complete
before becoming susceptible to transaction timeout; that is, the interval between the AP calling
tx_begin() and tx_commit() or tx_rollback(). tx_set_transaction_timeout() may
be called regardless of whether its caller is in transaction mode or not. If

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 285

tx_set_transaction_timeout() is called in transaction mode, the new timeout value does
not take effect until the next transaction.

The initial transaction_timeout value is 0 (no timeout).

timeout specifies the number of seconds allowed before the transaction becomes susceptible to
transaction timeout. It may be set to any value up to the maximum value for a long as defined by
the system. A timeout value of zero disables the timeout feature.

In a multithreaded application, a thread in the TPINVALIDCONTEXT state is not allowed to issue a
call to tx_set_transaction_timeout().

Return Value
Upon successful completion, tx_set_transaction_timeout() returns TX_OK, a non-negative
return value.

Errors
Under the following conditions, tx_set_transaction_timeout() does not change the setting
of the transaction_timeout characteristic and returns one of these negative values:

[TX_EINVAL]
The timeout value specified is invalid.

[TX_PROTOCOL_ERROR]
The function was called improperly. For example, it was called before the caller called
tx_open().

[TX_FAIL]
The transaction manager encountered an error. The nature of the error is such that the
transaction manager can no longer perform work on behalf of the application. The exact
nature of the error is written to a log file.

See Also
tx_begin(3c), tx_commit(3c), tx_info(3c), tx_open(3c), tx_rollback(3c)

Warnings
Both the X/Open TX interface and the X-Windows system define the type XID. It is not possible
to use both X-Windows calls and TX calls in the same file.

286 ATMI C Function Reference

userlog(3c)

Name
userlog()—Writes a message to the BEA Tuxedo ATMI system central event log.

Synopsis
#include “userlog.h”

extern char *proc_name;

int userlog (format [,arg] . . .)

char *format;

Description
userlog() accepts a printf(3S) style format specification, with a fixed output file—the BEA
Tuxedo ATMI system central event log.

The central event log is an ordinary UNIX file whose pathname is composed as follows: If the
shell variable ULOGPFX is set, its value is used as the prefix for the filename. If ULOGPFX is not
set, ULOG is used. The prefix is determined the first time userlog() is called. Each time
userlog() is called the date is determined, and the month, day, and year are concatenated to the
prefix as mmddyy to set the name for the file. The first time a process writes to the user log, it first
writes an additional message indicating the associated BEA Tuxedo ATMI system version.

The message is then appended to the file. With this scheme, processes that call userlog() on
successive days will write into different files.

Messages are appended to the log file with a tag made up of the time (hhmmss), system name,
process name, and process ID, thread ID, and context ID of the calling process. The tag is
terminated with a colon (:). The name of the process is taken from the pathname of the external
variable proc_name. If proc_name has value NULL, the printed name is set to ?proc.

BEA Tuxedo ATMI system-generated error messages in the log file are prefixed by a unique
identification string of the form:

<catalog>:number>:

This string gives the name of the internationalized catalog containing the message string, plus the
message number. By convention, BEA Tuxedo ATMI system-generated error messages are used
only once, so the string uniquely identifies a location in the source code.

If the last character of the format specification is not a newline character, userlog() appends
one.

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 287

If the first character of the shell variable ULOGDEBUG is 1 or y, the message sent to userlog() is
also written to the standard error of the calling process, using the fprintf(3S) function.

userlog() is used by the BEA Tuxedo ATMI system to record a variety of events.

The userlog mechanism is entirely independent of any database transaction logging mechanism.

A thread in a multithreaded application may issue a call to userlog() while running in any
context state, including TPINVALIDCONTEXT.

Environment Variables
ULOGMILLISEC

An on/off switch environment variable that time stamps messages sent to the userlog file
in millisecond time intervals instead of seconds. If not specified, default time stamping is
in seconds. The server must be rebooted when ULOGMILLISEC is turned on or off.
Example: ULOGMILLISEC=Y

ULOGRTNSIZE

An on/off switch environment variable that specifies the userlog rotation file size. The
default rotation file size is 2GB. The server must be rebooted when ULOGRTNSIZE is
turned on or off.
Example: ULOGRTNSIZE=1000000 (when the file size is 1Mb)

Rotated files are saved in using the following syntax: filename.nn.
Example: ULOG.083103.1, ULOG.083103.2 ... ULOG.083103.10, etc.

Note: If ULOGRTNSIZE is not specified, file rotation does not take place.

Portability
The userlog() interface is supported on UNIX and MS-DOS operating systems. The system
name produced as part of the log message is not available on MS-DOS systems; therefore, the
value PC is used as the system name for MS-DOS systems.

Examples
If the variable ULOGPFX is set to /application/logs/log and if the first call to userlog()
occurred on 9/7/90, the log file created is named /application/logs/log.090790. If the call:

userlog(“UNKNOWN USER '%s' (UID=%d)”, usrname, UID);

is made at 4:22:14pm on the UNIX system file named m1 by the sec program, whose process-id
is 23431, and the variable usrname contains the string “sxx”, and the variable UID contains the
integer 123, the following line appears in the log file:

162214.m1!sec.23431: UNKNOWN USER 'sxx' (UID=123)

288 ATMI C Function Reference

If the message is sent to the central event log while the process is in transaction mode, the user
log entry has additional components in the tag. These components consist of the literal gtrid
followed by three long hexadecimal integers. The integers uniquely identify the global
transaction and make up what is referred to as the global transaction identifier. This identifier is
used mainly for administrative purposes, but it does make an appearance in the tag that prefixes
the messages in the central event log. If the foregoing message is written to the central event log
in transaction mode, the resulting log entry will look like this:

162214.logsys!security.23431: gtrid x2 x24e1b803 x239: UNKNOWN USER 'sxx'

(UID=123)

If the shell variable ULOGDEBUG has a value of y, the log message is also written to the standard
error of the program named security.

Errors
userlog() hangs if the message sent to it is larger than BUFSIZ as defined in stdio.h

Diagnostics
userlog() returns the number of characters output, or a negative value if an output error was
encountered. Output errors include the inability to open, or write to the current log file. Inability
to write to the standard error, when ULOGDEBUG is set, is not considered an error.

Notices
It is recommended that applications’ use of userlog() messages be limited to messages that can
be used to help debug application errors; flooding the log with incidental information can make
it hard to spot actual errors.

See Also

printf(3S) in a UNIX system reference manual

Using Log Files to Monitor Activity in Monitoring Your BEA Tuxedo Application

Usignal(3c)

Name
Usignal()—Signal handling in a BEA Tuxedo ATMI system environment.

../ada/admon.htm#248431

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 289

Synopsis
#include “Usignal.h”

UDEFERSIGS()

UENSURESIGS()

UGDEFERLEVEL()

URESUMESIGS()

USDEFERLEVEL(level)

int (*Usignal(sig,func)()

int sig;

int (*func)();

void Usiginit()

Description
Many of the facilities provided by the BEA Tuxedo ATMI system software require concurrent
access to data structures in shared memory. Processes accessing the shared data structures run in
user mode, and are thus interruptible by signals sent to them. In order to ensure the consistency
of the shared data structures, it is important that the operations which access them not be
interrupted by the receipt of certain UNIX signals. The functions described in this section provide
protection against the most common signals, and are used internally by much of the BEA Tuxedo
ATMI system code. Additionally, they are available to applications to prevent the untimely
arrival of a signal.

The idea behind the BEA Tuxedo ATMI system signal handling package is that signals should
be deferrable while in critical code sections. To this end, signals are not immediately processed
when received. Instead, a BEA Tuxedo ATMI system routine first catches the sent signal. If it is
safe to process the signal, the specified action for the signal is taken. If it is not safe to process
the signal when it arrives, the arrival is noted, but the processing is deferred until the user
indicates that the critical section of code has been terminated.

We recommend against any use of signals in multithreaded programs, although the software does
not prevent such usage. If signals are used, however, a thread in a multithreaded application may
issue a call to Usignal() while running in any context state, including TPINVALIDCONTEXT.

Catching Signals
User code that uses calls rmopen() or tpinit() should catch signals through the use of the
Usignal() function. Usignal() behaves like the UNIX signal() system call, except that

290 ATMI C Function Reference

Usignal() first arranges for the signal to be caught by an internal routine before dispatching the
user routine.

Deferring and Restoring Signals
The calls described in this section need only be used if application code wishes to defer signals.
In general, these routines are called automatically by BEA Tuxedo ATMI system routines to
protect themselves from untimely signal arrival.

Before deferring or restoring signals, the mechanism must be initialized. This is done
automatically for BEA Tuxedo ATMI system clients when they call tpinit() and for BEA
Tuxedo ATMI system servers. It is also done the first time that the application calls Usignal().
It can be done explicitly by calling Usiginit().

The UDEFERSIGS() macro should be used when entering a section of critical code. After
UDEFERSIGS() is called, signals are held in a pending state. The URESUMESIGS() macro should
be invoked when the critical section is exited. Note that signal deferrals stack. The stack is
implemented via a counter which is initially set to zero. When signals are deferred by a call to
UDEFERSIGS(), the counter is incremented. When signals are resumed, by a call to
URESUMESIGS(), the counter is decremented. If a signal arrives while the counter is non-zero, the
processing of the signal is deferred. If the counter is zero when the signal arrives, the signal is
processed immediately. If signal resumption causes the counter to be become zero (that is, prior
to the resumption it had value 1), any signals that arrived during the deferral period are processed.
In general, each call to UDEFERSIGS() should have a counterpart call to URESUMESIGS().

UDEFERSIGS increments the deferral counter, but returns the value of the counter prior to its
incrementation. The macro UENSURESIGS() may be used to explicitly set the deferral counter to
zero (and thus force the processing of deferred signals), in case the user wishes to protect against
unmatching UDEFERSIGS() and URESUMESIGS().

The function UGDEFERLEVEL() returns the current setting of the deferral counter. The macro
USDEFERLEVEL(level) allows the setting of a specific deferral level. UGDEFERLEVEL() and
USDEFERLEVEL() are useful to set the counter appropriately in setjmp/longjmp situations
where a set of deferrals/resumes are bypassed. The idea is to save the value of the counter when
setjmp() is called, via a call to UGDEFERLEVEl(), and to restore it via a call to
USDEFERLEVel() when the longjmp() is performed.

Notices
Usignal provides signal deferral for the following signals: SIGHUP,SIGINT, SIGQUIT, SIGALRM,
SIGTERM, SIGUSR1, and SIGUSR2. Handling requests for all other signal numbers are passed
directly to signaL() by Usignal(). Signals may be deferred for a considerable time. For this

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 291

reason, during signal deferral, individual signal arrivals are counted. When it is safe to process a
signal that may have arrived many times, the signal’s processing routine is iteratively called to
process each arrival of the signal. Before each call the default action for the signal is instantiated.
The idea is to handle the deferred occurrences of the signal as if they happened in quick
succession in safe code.

In general, users should not mix calls to signaL() and UsignaL() for the same signal. The
recommended procedure is to go through Usignal(), so that it is always aware of the state of the
signal. Sometimes it may be necessary, such as when an application wants to use alarms within
BEA Tuxedo ATMI system services. To do this, UsiginiT() should be called to initialize the
signal deferring mechanism. Then signaL() can be called to override the mechanism for the
desired signal. To restore the deferring mechanism for the signal, it is necessary to call
UsignaL() for the signal with SIG_IGN, and then again with the desired signal-handling
function.

The shell variable UIMMEDSIGS can be used to override the deferral of signals. If the value of this
variable begins with the letter y as in:

UIMMEDSIGS=y

signals are not intercepted (and thus not deferred) by the Usignal() code. In such a case, a call
to Usignal() is passed immediately to signaL().

Usignal is not available under DOS operating systems.

Files
Usignal.h

See Also
signal(2) in a UNIX system reference manual

Uunix_err(3c)

Name
Uunix_err()—Prints a UNIX system call error.

Synopsis
#include Uunix.h

292 ATMI C Function Reference

void Uunix_err(s)

char *s;

Description
When a BEA Tuxedo ATMI system function calls a UNIX system call that detects an error, an
error is returned. The external integer Uunixerr() is set to a value (as defined in Uunix.h) that
identifies the system call that returned the error. In addition, the system call sets errno() to a
value (as defined in errno.h) that tells why the system call failed.

The Uunix_err() function is provided to produce a message on the standard error output,
describing the last system call error encountered during a call to a BEA Tuxedo ATMI system
function. It takes one argument, a string. The function prints the argument string, then a colon and
a blank, followed by the name of the system call that failed, the reason for failure, and a newline.
To be of most use, the argument string should include the name of the program that incurred the
error. The system call error number is taken from the external variable Uunixerr(), the reason
is taken from errno(). Both variables are set when errors occur. They are not cleared when
non-erroneous calls are made.

To simplify variant formatting of messages, the array of message strings:

extern char *Uunixmsg[];

is provided; Uunixerr() can be used as an index into this table to get the name of the system call
that failed (without the newline).

A thread in a multithreaded application may issue a call to Uunix_err() while running in any
context state, including TPINVALIDCONTEXT.

Examples
#include Uunix.h

extern int Uunixerr, errno;

 if((fd=open(“myfile”, 3, 0660)) == -1)

 {

 Uunixerr = UOPEN;

 Uunix_err(“myprog”);

 exit(1);

 }

In t roduct i on to the C Language Appl i cat ion- to-T ransac t i on Mon i to r In te r face

ATMI C Function Reference 293

294 ATMI C Function Reference

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions
	Introduction to the C Language Application-to-Transaction Monitor Interface
	AEMsetblockinghook(3c)
	AEOaddtypesw(3c)
	AEPisblocked(3c)
	AEWsetunsol(3c)
	buffer(3c)
	catgets(3c)
	catopen, catclose(3c)
	decimal(3c)
	getURLEntityCacheDir(3c)
	getURLEntityCaching(3c)
	gp_mktime(3c)
	nl_langinfo(3c)
	setlocale(3c)
	setURLEntityCacheDir(3c)
	setURLEntityCaching(3c)
	strerror(3c)
	strftime(3c)
	tpabort(3c)
	tpacall(3c)
	tpadmcall(3c)
	tpadvertise(3c)
	tpalloc(3c)
	tpbegin(3c)
	tpbroadcast(3c)
	tpcall(3c)
	tpcancel(3c)
	tpchkauth(3c)
	tpchkunsol(3c)
	tpclose(3c)
	tpcommit(3c)
	tpconnect(3c)
	tpconvert(3c)
	tpconvmb(3c)
	tpcryptpw(3c)
	tpdequeue(3c)
	tpdiscon(3c)
	tpenqueue(3c)
	tpenvelope(3c)
	tperrordetail(3c)
	tpexport(3c)
	tpfml32toxml(3c)
	tpfmltoxml(3c)
	tpforward(3c)
	tpfree(3c)
	tpgblktime(3c)
	tpgetadmkey(3c)
	tpgetctxt(3c)
	tpgetlev(3c)
	tpgetmbenc(3c)
	tpgetrepos(3c)
	tpgetrply(3c)
	tpgprio(3c)
	tpimport(3c)
	tpinit(3c)
	tpkey_close(3c)
	tpkey_getinfo(3c)
	tpkey_open(3c)
	tpkey_setinfo(3c)
	tpnotify(3c)
	tpopen(3c)
	tppost(3c)
	tprealloc(3c)
	tprecv(3c)
	tpresume(3c)
	tpreturn(3c)
	tpsblktime(3c)
	tpscmt(3c)
	tpseal(3c)
	tpsend(3c)
	tpservice(3c)
	tpsetctxt(3c)
	tpsetmbenc(3c)
	tpsetrepos(3c)
	tpsetunsol(3c)
	tpsign(3c)
	tpsprio(3c)
	tpstrerror(3c)
	tpstrerrordetail(3c)
	tpsubscribe(3c)
	tpsuspend(3c)
	tpsvrdone(3c)
	tpsvrinit(3c)
	tpsvrthrdone(3c)
	tpsvrthrinit(3c)
	tpterm(3c)
	tptypes(3c)
	tpunadvertise(3c)
	tpunsubscribe(3c)
	tputrace(3c)
	tpxmltofml32(3c)
	tpxmltofml(3c)
	TRY(3c)
	tuxgetenv(3c)
	tuxgetmbaconv(3c)
	tuxgetmbenc(3c)
	tuxputenv(3c)
	tuxreadenv(3c)
	tuxsetmbaconv(3c)
	tuxsetmbenc(3c)
	tx_begin(3c)
	tx_close(3c)
	tx_commit(3c)
	tx_info(3c)
	tx_open(3c)
	tx_rollback(3c)
	tx_set_commit_return(3c)
	tx_set_transaction_control(3c)
	tx_set_transaction_timeout(3c)
	userlog(3c)
	Usignal(3c)
	Uunix_err(3c)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

