
BEATuxedo ®

Using Security in CORBA
Applications

Version 9.0
Document Released: June 28, 2005

Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread, Top End,
Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign Manager for
WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA WebLogic Commerce Server, BEA WebLogic Enterprise,
BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic JRockit, BEA
WebLogic Log Central, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA
WebLogic Server Process Edition, BEA WebLogic WorkGroup Edition, BEA WebLogic Workshop, and Liquid
Computing are trademarks of BEA Systems, Inc. BEA Mission Critical Support is a service mark of BEA Systems, Inc.
All other company and product names may be the subject of intellectual property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Using Security in CORBA Applications iii

Contents

About This Document
What You Need to Know .xii

e-docs Web Site . xiii

How to Print the Document . xiii

Related Information . xiii

Contact Us! . xiii

Documentation Conventions . xiv

Part I. Security Concepts

1. Overview of the CORBA Security Features
The CORBA Security Features . 1-2

The CORBA Security Environment . 1-4

BEA Tuxedo Security SPIs . 1-6

2. Introduction to the SSL Technology
The SSL Protocol . 2-2

Digital Certificates . 2-4

Certificate Authority . 2-5

Certificate Repositories . 2-6

A Public Key Infrastructure . 2-6

PKCS-5 and PKCS-8 Compliance . 2-7

Supported Public Key Algorithms . 2-8

iv Using Security in CORBA Applications

Supported Symmetric Key Algorithms . 2-8

Supported Message Digest Algorithms. 2-9

Supported Cipher Suites . 2-9

Standards for Digital Certificates . 2-10

3. Fundamentals of CORBA Security
Link-Level Encryption . 3-2

How LLE Works . 3-2

Encryption Key Size Negotiation . 3-3

WSL/WSH Connection Timeout During Initialization . 3-5

Development Process . 3-5

Password Authentication. 3-5

How Password Authentication Works . 3-6

Development Process for Password Authentication . 3-8

The SSL Protocol . 3-9

How the SSL Protocol Works . 3-10

Requirements for Using the SSL Protocol . 3-11

Development Process for the SSL Protocol . 3-11

Certificate Authentication . 3-14

How Certificate Authentication Works . 3-16

Development Process for Certificate Authentication. 3-18

Using an Authentication Plug-in . 3-22

Authorization. 3-22

Auditing. 3-23

PKI Plug-ins . 3-24

Commonly Asked Questions About the CORBA Security Features 3-26

Do I Have to Change the Security in an Existing CORBA Application? 3-26

Can I Use the SSL Protocol in an Existing CORBA Application? 3-27

Using Security in CORBA Applications v

When Should I Use Certificate Authentication? . 3-27

Part II. Security Adminstration

4. Managing Public Key Security
Requirements for Using Public Key Security . 4-2

Who Needs Digital Certificates and Private/Private Key Pairs? . 4-2

Requesting a Digital Certificate. 4-2

Publishing Certificates in the LDAP Directory Service . 4-3

Editing the LDAP Search Filter File . 4-4

Storing the Private Keys in a Common Location . 4-6

Defining the Trusted Certificate Authorities . 4-7

Creating a Peer Rules File . 4-8

5. Configuring Link-Level Encryption
Understanding min and max Values . 5-1

Verifying the Installed Version of LLE. 5-2

Configuring LLE on CORBA Application Links . 5-2

6. Configuring the SSL Protocol
Setting Parameters for the SSL Protocol . 6-2

Defining a Port for SSL Network Connections . 6-2

Enabling Host Matching . 6-2

Setting the Encryption Strength. 6-4

Setting the Interval for Session Renegotiation . 6-6

Defining Security Parameters for the IIOP Listener/Handler . 6-6

Example of Setting Parameters on the ISL System Process . 6-7

Example of Setting Command-line Options on the CORBA C++ ORB. 6-8

vi Using Security in CORBA Applications

7. Configuring Authentication
Configuring the Authentication Server . 7-2

Defining Authorized Users . 7-3

Defining a Security Level . 7-6

Configuring Application Password Security. 7-7

Configuring Password Authentication . 7-8

Sample UBBCONFIG File for Password Authentication. 7-9

Configuring Certificate Authentication. 7-11

Sample UBBCONFIG File for Certificate Authentication . 7-13

Configuring Access Control . 7-15

Configuring Optional ACL Security . 7-15

Configuring Mandatory ACL Security . 7-16

Setting ACL Policy Between CORBA Applications. 7-17

Configuring Security to Interoperate with Older WebLogic Enterprise Client Applications.
7-19

8. Configuring Security Plug-ins
Registering the Security Plug-ins (SPIs) . 8-1

Part III. Security Programming

9. Writing a CORBA Application That Implements Security
Using the Bootstrapping Mechanism . 9-1

Using the Host and Port Address Format. 9-4

Using the corbaloc URL Address Format . 9-4

Using the corbalocs URL Address Format . 9-5

Using Password Authentication . 9-5

The Security Sample Application . 9-6

Writing the Client Application. 9-7

Using Security in CORBA Applications vii

Using Certificate Authentication . 9-12

The Secure Simpapp Sample Application . 9-12

Writing the CORBA Client Application . 9-13

Using the Interoperable Naming Service Mechanism. 9-15

Protecting the Client Credentials . 9-15

Using the Invocations_Options_Required() Method. 9-18

10.Building and Running the CORBA Sample Applications
Building and Running the Security Sample Application. 10-2

Building and Running the Secure Simpapp Sample Application 10-2

Step 1: Copy the Files for the Secure Simpapp Sample Application into a Work
Directory . 10-2

Step 2: Change the Protection Attribute on the Files for the Secure Simpapp Sample
Application . 10-4

Step 3: Verify the Settings of the Environment Variables . 10-5

Step 4: Execute the runme Command . 10-6

Using the Secure Simpapp Sample Application. 10-9

11.Troubleshooting
Using ULOGS and ORB Tracing . 11-2

CORBA::ORB_init Problems . 11-3

Password Authentication Problems . 11-4

Certificate Authentication Problems . 11-4

Tobj::Bootstrap::
resolve_initial_references Problems. 11-5

IIOP Listener/Handler Startup Problems. 11-6

Configuration Problems. 11-6

Problems with Using Callbacks Objects with the SSL Protocol 11-7

Troubleshooting Tips for Digital Certificates . 11-8

viii Using Security in CORBA Applications

Part IV. Security Reference

12.CORBA Security APIs
The CORBA Security Model . 12-3

Authentication of Principals. 12-3

Controlling Access to Objects . 12-3

Administrative Control . 12-4

Functional Components of the CORBA Security Environment 12-4

The Principal Authenticator Object. 12-5

Using the Principal Authenticator Object with Certificate Authentication 12-6

BEA Tuxedo Extensions to the Principal Authenticator Object 12-6

The Credentials Object . 12-7

The SecurityCurrent Object . 12-9

13.Security Modules
CORBA Module . 13-2

TimeBase Module . 13-2

Security Module . 13-4

Security Level 1 Module . 13-6

Security Level 2 Module . 13-7

Tobj Module . 13-9

14.C++ Security Reference
SecurityLevel1::Current::get_attributes . 14-1

SecurityLevel2::PrincipalAuthenticator::authenticate 14-2

SecurityLevel2::Current::set_credentials . 14-5

SecurityLevel2::Current::get_credentials . 14-6

SecurityLevel2::Current::principal_authenticator . 14-7

SecurityLevel2::Credentials. 14-8

Using Security in CORBA Applications ix

SecurityLevel2::Credentials::get_attributes . 14-10

SecurityLevel2::Credentials::invocation_options_supported 14-11

SecurityLevel2::Credentials::invocation_options_required 14-12

SecurityLevel2::Credentials::is_valid . 14-14

SecurityLevel2::PrincipalAuthenticator . 14-16

SecurityLevel2::PrincipalAuthenticator::continue_authentication 14-18

Tobj::PrincipalAuthenticator::get_auth_type . 14-19

Tobj::PrincipalAuthenticator::logon . 14-20

Tobj::PrincipalAuthenticator::logoff . 14-22

Tobj::PrincipalAuthenticator::build_auth_data . 14-22

15.Java Security Reference

16.Automation Security Reference
Method Descriptions . 16-2

DISecurityLevel2_Current . 16-2

DISecurityLevel2_Current.get_attributes . 16-2

DISecurityLevel2_Current.set_credentials . 16-3

DISecurityLevel2_Current.get_credentials. 16-4

DISecurityLevel2_Current.principal_authenticator . 16-5

DITobj_PrincipalAuthenticator . 16-6

DITobj_PrincipalAuthenticator.authenticate. 16-6

DITobj_PrincipalAuthenticator.build_auth_data . 16-8

DITobj_PrincipalAuthenticator.continue_authentication 16-9

DITobj_PrincipalAuthenticator.get_auth_type . 16-10

DITobj_PrincipalAuthenticator.logon . 16-11

DITobj_PrincipalAuthenticator.logoff . 16-13

DISecurityLevel2_Credentials . 16-14

x Using Security in CORBA Applications

DISecurityLevel2_Credentials.get_attributes. 16-14

DISecurityLevel2_Credentials.is_valid . 16-15

Index

Using Security in CORBA Applications xi

About This Document

This document provides an introduction to concepts associated with the BEA Tuxedo® security
features, a description of how to secure your CORBA applications using the security features, and
a guide to the use of the application programming interfaces (APIs) in the CORBA Security
Service.

Note: Release 8.0 of the BEA Tuxedo product includes environments that allow you to build
both Application-to-Transaction Monitor Interfaces (ATMI) and CORBA applications.
This topic explains how to implement security in a CORBA application. For information
about implementing security in an ATMI application, see Using Security in ATMI
Applications.

This document includes the following topics:

Chapter 1, “Overview of the CORBA Security Features,” presents an overview of the
security features for CORBA in the BEA Tuxedo product.

Chapter 2, “Introduction to the SSL Technology,” introduces the concepts associated with a
Public Key Infrastructure (PKI).

Chapter 3, “Fundamentals of CORBA Security,” presents an indepth discussion of the
features in the CORBA Security Service and describes the development and administration
processes needed to implement the features.

Chapter 4, “Managing Public Key Security,” describes how to set up a public key
infrastructure to interact with CORBA applications that use the Secure Sockets Layer
(SSL) protocol and certificate authentication.

xii Using Security in CORBA Applications

Chapter 5, “Configuring Link-Level Encryption,” describes setting parameters in the
UBBCONFIG file for Link-Level Encryption (LLE).

Chapter 6, “Configuring the SSL Protocol,” describes configuring the IIOP
Listener/Handler or the CORBA C++ ORB so that it can be used with the Secure Sockets
Layer (SSL) protocol and certificate authentication.

Chapter 7, “Configuring Authentication,” explains the configuration tasks required when
using authentication in a CORBA application.

Chapter 8, “Configuring Security Plug-ins,” explains how to register Security Plug-Ins in
the CORBA environment.

Chapter 9, “Writing a CORBA Application That Implements Security,” explains how the
bootstrapping options work and describes implementing password authentication and
certificate authentication in CORBA applications.

Chapter 10, “Building and Running the CORBA Sample Applications,” describes how to
build and run the Security and Secure Simpapp sample applications.

Chapter 11, “Troubleshooting,” provides troubleshooting tips that can be used when
solving problems that occur with the security portion of a CORBA application.

Chapter 12, “CORBA Security APIs,” introduces the security model in CORBA
applications and the functional components of the security model.

Chapter 13, “Security Modules,” includes the Object Management Group (OMG) Interface
Definition Language (IDL) for the modules used by the CORBA Security service.

Chapter 14, “C++ Security Reference,” includes the C++ method descriptions.

Chapter 16, “Automation Security Reference,” includes the Automation method
descriptions.

What You Need to Know
This document is intended for programmers who want to incorporate security into their CORBA
applications and system administrators who are responsible for setting up and maintaining the
security infrastructure in an enterprise.

Using Security in CORBA Applications xiii

e-docs Web Site
The BEA Tuxedo product documentation is available on the BEA Systems, Inc. corporate Web
site. From the BEA Home page, click the Product Documentation button or go directly to the
“e-docs” Product Documentation page at http://e-docs.beasys.com.

How to Print the Document
You can print a copy of this document from a Web browser, one file at a time, by using the File—
>Print option on your Web browser.

A PDF version of this document is available on the BEA Tuxedo documentation Home page on
the e-docs Web site (and also on the documentation CD). You can open the PDF in Adobe
Acrobat Reader and print the entire document (or a portion of it) in book format. To access the
PDFs, open the BEA Tuxedo documentation Home page, click the PDF Files button, and select
the document you want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free from the Adobe
Web site at http://www.adobe.com/.

Related Information
For more information about CORBA, BEA Tuxedo, distributed object computing, transaction
processing, C++, see the CORBA Bibliography in the BEA Tuxedo online documentation.

Contact Us!
Your feedback on the BEA Tuxedo documentation is important to us. Send us e-mail at
docsupport@beasys.com if you have questions or comments. Your comments will be reviewed
directly by the BEA professionals who create and update the BEA Tuxedo documentation.

In your e-mail message, please indicate that you are using the documentation for the BEA Tuxedo
8.0 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems installing
and running BEA Tuxedo, contact BEA Customer Support through BEA WebSUPPORT at
www.beasys.com. You can also contact Customer Support by using the contact information
provided on the Customer Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

xiv Using Security in CORBA Applications

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions
The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:
void commit ()

monospace
italic
text

Identifies variables in code.

Example:
String expr

Using Security in CORBA Applications xv

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:
• That an argument can be repeated several times in a command line
• That the statement omits additional optional arguments
• That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

xvi Using Security in CORBA Applications

Using Security in CORBA Applications

Part I Security Concepts

Overview of the CORBA Security Features
Introduction to the SSL Technology
Fundamentals of CORBA Security

Using Security in CORBA Applications 1-1

C H A P T E R 1

Overview of the CORBA Security
Features

This topic includes the following sections:

The CORBA Security Features

The CORBA Security Environment

BEA Tuxedo Security SPIs

Notes: Release 8.0 of the BEA Tuxedo product includes environments that allow you to build
both Application-to-Transaction Monitor Interfaces (ATMI) and CORBA applications.
This topic explains how to implement security in a CORBA application. For information
about implementing security in an ATMI application, see Using Security in ATMI
Applications.

The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.0.

All BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB text
references, associated code samples, etc. should only be used:

to help implement/run third party Java ORB libraries, and

for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

1-2 Using Security in CORBA Applications

The CORBA Security Features
Security refers to techniques for ensuring that data stored in a computer or passed between
computers is not compromised. Most security measures involve proof material and data
encryption, where the proof material is a secret word or phrase that gives a user access to a
particular program or system, and data encryption is the translation of data into a form that cannot
be interpreted.

Distributed applications such as those used for electronic commerce (e-commerce) offer many
access points for malicious people to intercept data, disrupt operations, or generate fraudulent
input; the more distributed a business becomes, the more vulnerable it is to attack. Thus, the
distributed computing software, or middleware, upon which such applications are built must
provide security.

The CORBA security features of the BEA Tuxedo product lets you establish secure connections
between client and server applications. It has the following features:

Authentication of CORBA C++ applications to the BEA Tuxedo domain. Authentication
can be accomplished using a standard username/password combination or the identity
inside of the X.509 digital certificate provided to the server applications.

Data integrity and confidentiality through Link-Level Encryption (LLE) or the Secure
Sockets Layer (SSL) protocol. CORBA C++ applications can establish SSL sessions with a
BEA Tuxedo domain. BEA Tuxedo client applications can use LLE to protect network
traffic between bridges and domains.

Security Service Provider Interfaces (SPIs) that can be used to integrate security
mechanisms that provide authentication, authorization, auditing, and public key security
features. Security vendors can use the SPIs to integrate third-party security offerings into
the CORBA environment.

A Public Key Infrastructure (PKI) that uses the SSL protocol and X.509 digital certificates
to provide data privacy for messages sent over network links. In addition, a set of PKI SPIs
are provided.

To access the full security features of the CORBA environment, you need to install a license that
enable the use of the SSL protocol, LLE, and PKI. For information about installing the license
for the security features, see the Installing the BEA Tuxedo System.

Note: Using Security in CORBA Applications describes the security features of the CORBA
environment in the BEA Tuxedo product. For a complete description of using the
security features in the ATMI environment in the BEA Tuxedo product, see Using
Security in ATMI Applications.

The CORBA Secur i t y Features

Using Security in CORBA Applications 1-3

Table 1-1 summarizes the features in the CORBA security features in the BEA Tuxedo product.
.

Table 1-1 CORBA Security Features

Security Features Description Service Provider
Interface (SPI)

Default Implementation

Authentication Proves the stated identity of
users or system processes;
safely remembers and
transports identity information;
and makes identity information
available when needed.

Implemented as a
single interface

Provides security at three
levels: no authentication,
application password, and
certificate authentication.

Authorization Controls access to resources
based on identity or other
information.

Implemented as a
single interface

N/A

Auditing Safely collects, stores, and
distributes information about
operating requests and their
outcomes.

Implemented as a
single interface

Default auditing security is
implemented via the features
of the user log (ULOG).

Link-Level Encryption Uses symmetric key encryption
to establish data privacy for
messages moving over the
network links that connect the
machines in a CORBA
application.

N/A RC4 symmetric key
encryption.

1-4 Using Security in CORBA Applications

The CORBA Security Environment
Direct end-to-end mutual authentication in a distributed enterprise middleware environment such
as the BEA Tuxedo CORBA environment can be prohibitively expensive, especially when
accomplished through security mechanisms optimized for long duration connections. It is not
efficient for principals to establish direct network connections with each server application, nor
is it practical to exchange and verify multiple authentication messages as part of processing each
service request. Instead, CORBA applications in a BEA Tuxedo product implements a delegated
trust authentication model as shown in Figure 1-1.

The Secure Sockets
Layer (SSL) protocol

Uses asymmetric encryption to
establish data privacy for
messages moving over network
links between BEA Tuxedo
domains.

N/A The SSL version 3.0
protocol.

Public key security Uses public key (or asymmetric
key) encryption to establish
data privacy for messages
moving over the network links
between remote client
applications and the IIOP
Listener/Handler. Complies
with SSL version 3.0 allowing
mutual authentication based on
X.509 digital certificates.

Implemented as the
following
interfaces:
• Public key

initialization
• Key

management
• Certificate

lookup
• Certificate

parsing
• Certificate

validation
• Proof material

mapping

Default public key security
supports the following
algorithms:
• RSA for key exchange.
• DES and its variants RC2

and RC4 for bulk
encryption.

• MD5 and SHA for
message digests.

Table 1-1 CORBA Security Features (Continued)

Security Features Description Service Provider
Interface (SPI)

Default Implementation

The CORBA Secur i t y Env i ronment

Using Security in CORBA Applications 1-5

Figure 1-1 Delegated Trust Model

In a delegated trust model, principals (generally users of client applications) authenticate to a
trusted system gateway process. In the case of the CORBA applications, the trusted system
gateway process is the IIOP Listener/Handler. As part of successful authentication, security
tokens are assigned to the initiating principal. A security token is an opaque data structure suitable
for transfer between processes.

When a request from an authenticated principal reaches the IIOP Listener/Handler, the IIOP
Listener/Handler attaches the principal’s security tokens to the request and delivers the request to
the target server application for authorization and auditing purposes.

In a delegated trust authentication model, the IIOP Listener/Handler trusts that the authentication
software in the BEA Tuxedo domain will verify the identity of the principal and generates the
appropriate security tokens. Server applications, in turn, trust that the IIOP Listener/Handler will
attach the correct security tokens. Server applications also trust that any other server applications
involved in the process of a request from a principal will safely deliver the security tokens.

A session is established between the initiating client application and the IIOP Listener/Handler
in the following way:

1-6 Using Security in CORBA Applications

1. When a client application wants to access an object within a BEA Tuxedo domain, the client
application uses either a username and password or a X.509 digital certificate to authenticate
over the connection with the IIOP Listener/Handler.

2. A security association called a security context is established between a principal and the
IIOP Listener/Handler. This security context is used to control access to objects in the BEA
Tuxedo domain.

The IIOP Listener/Handler retrieves the authorization and auditing tokens from the security
context. Together, the authorization and auditing tokens represent the principal’s identity
associated with the security context.

3. Once the authentication process is complete, the principal invokes an object in the BEA
Tuxedo domain. The request is packaged into an IIOP request and forwarded to the IIOP
Listener/Handler. The IIOP Listener/Handler associates the request with the previously
established security context.

4. The IIOP Listener/Handler receives the request from the initiating principal.

The protection of messages between the client application and the IIOP Listener/Handler is
dependent on the security technology used in the CORBA application. The default
behavior of the BEA Tuxedo product is to encrypt the authentication information but not to
protect the message sent between the client application and the BEA Tuxedo domain. The
message is sent in clear text. The SSL protocol can be used to protect the message. If the
SSL protocol is configured to protect messages for integrity and confidentiality, the request
is digitally signed and sealed (encrypted) before it is sent to the IIOP Listener/Handler.

5. The IIOP Listener/Handler forwards the request along with the authorization and auditing
tokens of the initiating principal to the appropriate server application.

6. When the request is received by the server application, the BEA Tuxedo system interrogates
the forwarded tokens of the requesting principal to determine if the request should be
processed or denied. The CORBA security features will, based on the decision of the
authorization implementation, deny the processing of any request on an object for which the
requesting principal has no permission to access.

BEA Tuxedo Security SPIs
As shown in Figure 1-2, the authentication, authorization, auditing, and public key security
features available with the BEA Tuxedo product are implemented through a plug-in interface,
which allows security plug-ins to be integrated into the CORBA environment. A security plug-in
is a code module that implements a particular security feature.

BEA Tuxedo Secur i t y SP Is

Using Security in CORBA Applications 1-7

Figure 1-2 Architecture for the BEA Tuxedo Security Service Provider Interfaces

1-8 Using Security in CORBA Applications

The BEA Tuxedo product provides interfaces for the types of security plug-ins listed in
Table 1-2.

Table 1-2 The BEA Tuxedo Security Plug-Ins

Plug-In Description

Authentication Allows communicating processes to mutually
prove identification.

Authorization Allows system administrators to control access to
CORBA applications. Specifically, an
administrator can use authorization to allow or
disallow principals to use resources or services
provided by a CORBA application.

Auditing Provides a means to collect, store, and distribute
information about operating requests and their
outcomes. Audit-trail records may be used to
determine which principals performed, or
attempted to perform, actions that violated the
configured security policies of a CORBA
application. They may also be used to determine
which operations were attempted, which ones
failed, and which ones successfully completed.

Public key initialization Allows public key software to open public and
private keys. For example, gateway processes may
need to have access to a specific private key in
order to decrypt messages before routing them.

Key management Allows public key software to manage and use
public and private keys. Note that message digests
and session keys are encrypted and decrypted
using this interface, but no bulk data encryption is
performed using public key cryptography. Bulk
data encryption is performed using symmetric key
cryptography.

Certificate lookup Allows public key software to retrieve X.509v3
digital certificates for a given principal. Digital
certificates may be stored using any appropriate
certificate repository, such as Lightweight
Directory Access Protocol (LDAP).

BEA Tuxedo Secur i t y SP Is

Using Security in CORBA Applications 1-9

The specifications for the SPIs are currently only available to third-party security vendors who
have entered into a special agreement with BEA Systems, Inc. Customers who want to customize
a security feature must contact one of these vendors or BEA Professional Services. For example,
a BEA customer who wants a custom implementation of public key security must contact a
third-party vendor who can provide the appropriate security plug-in or BEA Professional
Services.

For more information about security plug-ins, including installation and configuration
procedures, see your BEA account executive.

Certificate parsing Allows public key software to associate a simple
principal name with an X.509v3 digital certificate.
The parser analyzes a digital certificate to generate
a principal name to be associated with the digital
certificate.

Certificate validation Allows public key software to validate an X.509v3
digital certificate in accordance with specific
business logic.

Proof material mapping Allows public key software to access the proof
materials needed to open keys, provide
authorization tokens, and provide auditing tokens.

Table 1-2 The BEA Tuxedo Security Plug-Ins (Continued)

Plug-In Description

1-10 Using Security in CORBA Applications

Using Security in CORBA Applications 2-1

C H A P T E R 2

Introduction to the SSL Technology

This topic includes the following sections:

The SSL Protocol

Digital Certificates

Certificate Authority

Certificate Repositories

A Public Key Infrastructure

PKCS-5 and PKCS-8 Compliance

Supported Public Key Algorithms

Supported Symmetric Key Algorithms

Supported Message Digest Algorithms

Supported Cipher Suites

Standards for Digital Certificates

Note: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.0.

All BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB text
references, associated code samples, etc. should only be used:

to help implement/run third party Java ORB libraries, and

2-2 Using Security in CORBA Applications

for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

The SSL Protocol
The Secure Sockets Layer (SSL) protocol allows you to integrate these essential features into
your CORBA application:

Confidentiality

Confidentiality is the ability to keep communications secret from parties other than the
intended recipient. It is achieved by encrypting data with strong algorithms. The SSL
protocol provides a secure mechanism that enables two communicating parties to negotiate
the strongest algorithm they both support and to agree on the keys with which to encrypt
the data.

Integrity

Integrity is a guarantee that the data being transferred has not been modified in transit. The
same handshake mechanism which allows the two parties to agree on algorithms and keys
also allows the two ends of an SSL connection to establish shared data integrity secrets
which are used to ensure that when data is received any modifications will be detected.

Authentication

Authentication is the ability to ascertain with whom you are speaking. By using digital
certificates and public key security, CORBA client and server applications can each be
authenticated to the other. This allows the two parties to be certain they are communicating
with someone they trust. The SSL protocol provides a mechanism that can be used to
authenticate principals to a BEA Tuxedo domain using X.509 digital certificates. The use
of certificate authentication can be used as an alternative to password authentication.

The SSL protocol provides secure connections by allowing two applications connecting over a
network connection to authenticate the other’s identity and by encrypting the data exchanged
between the applications. When using the SSL protocol, the target always authenticates itself to
the initiator. Optionally, if the target requests it, the initiator can authenticate itself to the target.
Encryption makes data transmitted over the network intelligible only to the intended recipient.
An SSL connection begins with a handshake during which the applications exchange digital
certificates, agree on the encryption algorithms to use, and generate encryption keys used for the
remainder of the session.

The SSL P ro toco l

Using Security in CORBA Applications 2-3

The SSL protocol uses public key encryption for authentication. With public key encryption, a
pair of asymmetric keys are generated for a principal or other entity such as the IIOP
Listener/Handler or an application server. The keys are related such that the data encrypted with
the public key can only be decrypted using the corresponding private key. Conversely, data
encrypted with the private key can be decrypted only with the public key. The private key is
carefully protected so that only the owner can decrypt messages. The public key, however, is
distributed freely so that anyone can encrypt messages intended for the owner.

Figure 2-1 illustrates how the SSL protocol works in the CORBA security environment.

Figure 2-1 The SSL Protocol in the CORBA Security Environment

2-4 Using Security in CORBA Applications

When using the SSL protocol in the CORBA security environment, the IIOP Listener/Handler
authenticates itself to initiating principals. The IIOP Listener/Handler presents its digital
certificate to the initiating principal. To successfully negotiate a SSL connection, the client
application must then authenticate the IIOP Listener/Handler but the IIOP Listener/Handler will
accept any client application into the SSL connection. This type of authentication is referred to
as server authentication.

When using server authentication, the initiating client application is required to have digital
certificates for certificate authorities that are to be trusted. The IIOP Listener/Handler must have
a private key and digital certificates that represents its identity. Server authentication is common
on the Internet where customers want to create secure connections before they share personal
data. In this case, the client application has a similar role to that of a Web browser.

With SSL version 3.0, principals can also authenticate to the IIOP Listener/Handler. This type of
authentication is referred to as mutual authentication. In mutual authentication, principals present
their digital certificates to the IIOP Listener/Handler. When using mutual authentication, both the
IIOP Listener/Handler and the principal need private keys and digital certificates that represent
their identity. This type of authentication is useful when you must restrict access to trusted
principals only.

The SSL protocol and the infrastructure needed to use digital certificates is available in the BEA
Tuxedo product by installing a license available in the product installation. For more information,
see Installing the BEA Tuxedo System.

Digital Certificates
Digital certificates are electronic documents used to uniquely identify principals and entities over
networks such as the Internet. A digital certificate securely binds the identity of a principal or
entity, as verified by a trusted third party known as a certificate authority (CA), to a particular
public key. The combination of the public key and the private key provides a unique identity to
the owner of the digital certificate.

Digital certificates allow verification of the claim that a specific public key does in fact belong to
a specific principal or entity. A recipient of a digital certificate can use the public key contained
in the digital certificate to verify that a digital signature was created with the corresponding
private key. If such verification is successful, this chain of reasoning provides assurance that the
corresponding private key is held by the subject named in the digital certificate, and that the
digital signature was created by that particular subject.

A digital certificate typically includes a variety of information, such as:

Cer t i f i cate Autho r i t y

Using Security in CORBA Applications 2-5

The name of the subject (holder, owner) and other identification information required to
uniquely identify the subject, such as the URL of the Web server using the digital
certificate, or an individual’s e-mail address.

The subject’s public key.

The name of the certificate authority that issued the digital certificate.

A serial number.

The validity period (or lifetime) of the digital certificate (defined by a start date and an end
date).

The most widely accepted format for digital certificates is defined by the ITU-T X.509
international standard. Thus, digital certificates can be read or written by any application
complying with X.509. The PKI in the CORBA security environment recognizes digital
certificates that comply with X.509 version 3, or X.509v3.

Certificate Authority
Digital certificates are issued by a certificate authority. Any trusted third-party organization or
company that is willing to vouch for the identities of those to whom it issues digital certificates
and public keys can be a certificate authority. When a certificate authority creates a digital
certificate, the certificate authority signs it with its private key, to ensure the detection of
tampering. The certificate authority then returns the signed digital certificate to the requesting
subject.

The subject can verify the digital signature of the issuing certificate authority by using the public
key of the certificate authority. The certificate authority makes its public key available by
providing a digital certificate issued from a higher-level certificate authority attesting to the
validity of the public key of the lower-level certificate authority. The second solution gives rise
to hierarchies of certificate authorities. This hierarchy is terminated by a self-signed digital
certificate known as the root key.

The recipient of an encrypted message can develop trust in the private key of a certificate
authority recursively, if the recipient has a digital certificate containing the public key of the
certificate authority signed by a superior certificate authority whom the recipient already trusts.
In this sense, a digital certificate is a stepping stone in digital trust. Ultimately, it is necessary to
trust only the public keys of a small number of top-level certificate authorities. Through a chain
of digital certificates, trust in a large number of users’ digital signatures can be established.

2-6 Using Security in CORBA Applications

Thus, digital signatures establish the identities of communicating entities, but a digital signature
can be trusted only to the extent that the public key for verifying the digital signature can be
trusted.

Certificate Repositories
To make a public key and its identification with a specific subject readily available for use in
verification, the digital certificate may be published in a repository or made available by other
means. Certificate repositories are databases of digital certificates and other information
available for retrieval and use in verifying digital signatures. Retrieval can be accomplished
automatically by directly requesting digital certificates from the repository as needed.

In the CORBA security environment, Lightweight Directory Access Protocol (LDAP) is used as
a certificate repository. BEA Systems, Inc. does not provide or recommend any specific LDAP
server. The LDAP server you choose should support the X.500 scheme definition and the LDAP
version 2 or 3 protocol.

A Public Key Infrastructure
A Public Key Infrastructure (PKI) consists of protocols, services, and standards supporting
applications of public key cryptography. Because the technology is still relatively new, the term
PKI is somewhat loosely defined: sometimes PKI simply refers to a trust hierarchy based on
public key digital certificates; in other contexts, it embraces digital signature and encryption
services provided to end-user applications as well.

There is no single standard public key infrastructure today, though efforts are underway to define
one. It is not yet clear whether a standard will be established or multiple independent PKIs will
evolve with varying degrees of interoperability. In this sense, the state of PKI technology today
can be viewed as similar to local and wide area (WAN) network technology in the 1980s, before
there was widespread connectivity via the Internet.

The following services are likely to be found in a PKI:

Key registration for issuing a new digital certificate for a public key.

Certificate revocation for canceling a previously-issued digital certificate and private key.

Key selection for obtaining a party’s public key.

Trust evaluation for determining whether a digital certificate is valid and which operations
it authorizes.

Figure 2-2 shows the PKI process flow.

PKCS-5 and PKCS-8 Compl iance

Using Security in CORBA Applications 2-7

Figure 2-2 PKI Process Flow

1. The subject applies to a certificate authority for digital certificate.

2. The certificate authority verifies the identity of subject and issues a digital certificate.

3. The certificate authority or the subject publishes the digital certificate in a certificate
repository such as LDAP.

4. The subject digitally signs an electronic message with the associated private key to ensure
sender authenticity, message integrity, and nonrepudiation, and then sends message to
recipient.

5. The recipient retrieves the sender’s certificate from the certificate repository and then
retrieves the public key from the certificate.

The BEA Tuxedo product does not provide the tools necessary to be a certificate authority. BEA
Systems, Inc. recommends using a third-party certificate authority such as VeriSign or Entrust.
By offering a Public Key SPI, BEA Systems, Inc. extends the opportunity to all BEA Tuxedo
customers to use a PKI security solution with the PKI software from their vendor of choice. See
“PKI Plug-ins” on page 3-24 for more information.

PKCS-5 and PKCS-8 Compliance
Informal but recognized industry standards for public key software have been issued by a group
of leading communications companies, led by RSA Laboratories. These standards are called
“Public-Key Cryptography Standards,” or PKCS. The BEA Tuxedo product uses PKCS-5 and
PKCS-8 to protect the private keys used with the SSL protocol.

PKCS-5 is a specification of a format for using password-based encryption that uses DES
to protect data.

PKCS-8 is a specification of a format for storing private keys, including the ability to
encrypt them with PKCS-5.

Subject

Certificate
Authority

Recipient

Repository

1

3

4

2 5 6

2-8 Using Security in CORBA Applications

Supported Public Key Algorithms
Public key (or asymmetric key) algorithms are implemented through a pair of different but
mathematically related keys:

A public key (which is distributed widely) for verifying a digital signature or transforming
data into a seemingly unintelligible form.

A private key (which is always kept secret) for creating a digital signature or returning the
data to its original form.

The public key security in the CORBA security environment also supports digital signature
algorithms. Digital signature algorithms are simply public key algorithms used to provide digital
signatures.

The BEA Tuxedo product supports the Rivest, Shamir, and Adelman (RSA) algorithm, the
Diffie-Hellman algorithm, and Digital Signature Algorithm (DSA). With the exception of DSA,
digital signature algorithms can be used for digital signatures and encryption. DSA can be used
for digital signatures but not for encryption.

Supported Symmetric Key Algorithms
In symmetric key algorithms, the same key is used to encrypt and decrypt a message. The public
key encryption system uses symmetric key encryption to encrypt a message sent between two
communicating entities. Symmetric key encryption operates at least 1000 times faster than public
key cryptography.

A block cipher is a type of symmetric key algorithm that transforms a fixed-length block of
plaintext (unencrypted text) data into a block of ciphertext (encrypted text) data of the same
length. This transformation takes place in accordance with the value of a randomly generated
session key. The fixed length is called the block size.

The Public key security feature in the CORBA security environment supports the following
symmetric key algorithms:

DES-CBC (Data Encryption Standard for Cipher Block Chaining)

DES-CBC is a 64-bit block cipher run in Cipher Block Chaining (CBC) mode. It provides
56-bit keys (8 parity bits are stripped from the full 64-bit key).

Two-key triple-DES (Data Encryption Standard)

Two-key triple-DES is a 128-bit block cipher run in Encrypt-Decrypt-Encrypt (EDE)
mode. Two-key triple-DES provides two 56-bit keys (in effect, a 112-bit key).

Suppor ted Message D iges t A lgo r i thms

Using Security in CORBA Applications 2-9

For some time it has been common practice to protect and transport a key for DES
encryption with triple-DES, which means that the input data (in this case the single-DES
key) is encrypted, decrypted, and then encrypted again (an encrypt-decrypt-encrypt
process). The same key is used for the two encryption operations.

RC2 (Rivest’s Cipher 2)

RC2 is a variable key-size block cipher.

RC4 (Rivest’s Cipher 4)

RC4 is a variable key-size block cipher with a key size range of 40 to 128 bits. It is faster
than DES and is exportable with a key size of 40 bits. A 56-bit key size is allowed for
foreign subsidiaries and overseas offices of United States companies. In the United States,
RC4 can be used with keys of virtually unlimited length, although the public key security
in the CORBA security environment restricts the key length to 128 bits.

Customers of the BEA Tuxedo product cannot expand or modify this list of algorithms.

Supported Message Digest Algorithms
The CORBA security environment supports the MD5 and SHA-1 (Secure Hash Algorithm 1)
message digest algorithms. Both MD5 and SHA-1 are well known, one-way hash algorithms. A
one-way hash algorithm takes a message and converts it into a fixed string of digits, which is
referred to as a message digest or hash value.

MD5 is a high-speed, 128-bit hash; it is intended for use with 32-bit machines. SHA-1 offers
more security by using a 160-bit hash, but is slower than MD5.

Supported Cipher Suites
A cipher suite is a SSL encryption method that includes the key exchange algorithm, the
symmetric encryption algorithm, and the secure hash algorithm used to protect the integrity of
the communication. For example, the cipher suite RSA_WITH_RC4_128_MD5 uses RSA for key
exchange, RC4 with a 128-bit key for bulk encryption, and MD5 for message digest.

2-10 Using Security in CORBA Applications

The CORBA security environment supports the cipher suites described in Table 2-1.

Standards for Digital Certificates
The CORBA security environment supports the digital certificates that conform to the X.509v3
standard. The X.509v3 standard specifies the format of digital certificates. BEA recommends
obtaining certificates from a certificate authority such as Verisign or Entrust.

Table 2-1 SSL Cipher Suites Supported by the CORBA Security Environment

Cipher Suite Key
Exchange
Type

Symmetric
Key
Strength

SSL_RSA_WITH_RC4_128_SHA RSA 128

SSL_RSA_WITH_RC4_128_MD5 RSA 128

SSL_RSA_WITH_DES_CDC_SHA RSA 56

SSL_RSA_EXPORT_WITH_RC4_40_MD5 RSA 40

SSL_RSA_EXPORT_WITH_DES40_CBC_SHA RSA 40

SSL_RSA_EXPORT_WITH_RC2_CBC_40_MD5 RSA 40

SSL_DH_DSS_EXPORT_WITH_DES40_CBC_SHA Diffie-
Hellman

40

SSL_DH_RSA_EXPORT_WITH_DES40_CBC_SHA Diffie-
Hellman

40

SSL_RSA_WITH_3DES_EDE_CBC_SHA RSA 112

SSL_RSA_WITH_NULL_SHA RSA 0

SSL_RSA_WITH_NULL_MD5 RSA 0

Using Security in CORBA Applications 3-1

C H A P T E R 3

Fundamentals of CORBA Security

This topic includes the following sections:

Link-Level Encryption

Password Authentication

The SSL Protocol

Certificate Authentication

Using an Authentication Plug-in

Authorization

Auditing

PKI Plug-ins

Commonly Asked Questions About the CORBA Security Features

Note: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.0.

All BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB text
references, associated code samples, etc. should only be used:

to help implement/run third party Java ORB libraries, and

for programmer reference only.

3-2 Using Security in CORBA Applications

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Link-Level Encryption
Link-Level Encryption (LLE) establishes data privacy for messages moving over the network
links. The objective of LLE is to ensure confidentiality so that a network-based eavesdropper
cannot learn the content of BEA Tuxedo system messages or CORBA application-generated
messages. It employs the symmetric key encryption technique (specifically, RC4), which uses the
same key for encryption and decryption.

When LLE is being used, the BEA Tuxedo system encrypts data before sending it over a network
link and decrypts it as it comes off the link. The system repeats this encryption/decryption process
at every link through which the data passes. For this reason, LLE is referred to as a point-to-point
facility.

LLE can be used to encrypt communication between machines and/or domains in a CORBA
application..

Note: LLE cannot be used to protect connections between remote CORBA client applications
and the IIOP Listener/Handler.

There are three levels of LLE security: 0-bit (no encryption), 56-bit (Export), and 128-bit
(Domestic). The Export LLE version allows 0-bit and 56-bit encryption. The Domestic LLE
version allows 0, 56, and 128-bit encryption.

How LLE Works
LLE works in the following way:

1. The system administrator sets parameters for any processes that want to use LLE to control
the encryption strength.

– The first configuration parameter is the minimum encryption level that a process will
accept. It is expressed as a key length: 0, 56, or 128 bits.

– The second configuration parameter is the maximum encryption level a process can
support. It also is expressed as a key length: 0, 56, or 128 bits.

For convenience, the two parameters are denoted as (min, max). For example, the values
(56, 128) for a process mean that the process accepts at least 56-bit encryption but can
support up to 128-bit encryption.

L ink-Leve l Encrypt ion

Using Security in CORBA Applications 3-3

2. An initiator process begins the communication session.

3. A target process receives the initial connection and starts to negotiate the encryption level to
be used by the two processes to communicate.

4. The two processes agree on the largest common key size supported by both.

5. The configured maximum key size parameter is reduced to agree with the installed
software's capabilities. This step must be done at link negotiation time, because at
configuration time it may not be possible to verify a particular machine's installed
encryption package.

6. The processes exchange messages using the negotiated encryption level.

Figure 3-1 illustrates these steps.

Figure 3-1 How LLE Works

Encryption Key Size Negotiation
When two processes at the opposite ends of a network link need to communicate, they must first
agree on the size of the key to be used for encryption. This agreement is resolved through a
two-step process of negotiation.

1. Each process identifies its own min-max values.

2. Together, the two processes find the largest key size supported by both.

3-4 Using Security in CORBA Applications

Determining min-max Values
When either of the two processes starts up, the BEA Tuxedo system (1) checks the bit-encryption
capability of the installed LLE version by checking the LLE licensing information in the
lic.txt file and (2) checks the LLE min-max values for the particular link type as specified in
the two configuration files. The BEA Tuxedo system then proceeds as follows:

If the configured min-max values accommodate the installed LLE version, then the local
software assigns those values as the min-max values for the process.

If the configured min-max values do not accommodate the installed LLE version, for
example, if the Export LLE version is installed but the configured min-max values are (0,
128), then the local software issues a run-time error; link-level encryption is not possible at
this point.

If there are no min-max values specified in the configurations for a particular link type,
then the local software assigns 0 as the minimum value and assigns the highest
bit-encryption rate possible for the installed LLE versions as the maximum value, that is,
(0, 128) for the Domestic LLE version.

Finding a Common Key Size
After the min-max values are determined for the two processes, the negotiation of key size begins.
The negotiation process need not be encrypted or hidden. Once a key size is agreed upon, it
remains in effect for the lifetime of the network connection.

Table 3-1 shows which key size, if any, is agreed upon by two processes when all possible
combinations of min-max values are negotiated. The header row holds the min-max values for one
process; the far left column holds the min-max values for the other.

Table 3-1 Interprocess Negotiation Results

(0, 0) (0, 56) (0, 128) (56, 56) (56, 128) (128, 128)

(0, 0) 0 0 0 ERROR ERROR ERROR

(0, 56) 0 56 56 56 56 ERROR

(0, 128) 0 56 128 56 128 128

(56, 56) ERROR 56 56 56 56 ERROR

Password Authent i cat ion

Using Security in CORBA Applications 3-5

WSL/WSH Connection Timeout During Initialization
The length of time a Workstation client can take for initialization is limited. By default, this
interval is 30 seconds in an application not using LLE, and 60 seconds in an application using
LLE. The 60-second interval includes the time needed to negotiate an encrypted link. This time
limit can be changed when LLE is configured by changing the value of the MAXINITTIME
parameter for the Workstation Listener (WSL) server in the UBBCONFIG file, or the value of the
TA_MAXINITTIME attribute in the T_WSL class of the WS_MIB(5).

Development Process
To use LLE in a CORBA application, you need to install a license that enables the use of LLE.
For information about installing the license, see Installing the BEA Tuxedo System.

The implementation of LLE is an administrative task. The system administrators for each
CORBA application set min-max values in the UBBCONFIG file that control encryption strength.
When the two CORBA applications establish communication, they negotiate what level of
encryption to use to exchange messages. Once an encryption level is negotiated, it remains in
effect for the lifetime of the network connection.

Password Authentication
The CORBA security environment supports a password mechanism to provide authentication to
existing CORBA applications and to new CORBA applications that are not prepared to deploy a
full Public Key Infrastructure (PKI). When using password authentication, the applications that
initiate invocations on CORBA objects authenticate themselves to the BEA Tuxedo domain
using a defined username and password.

The following levels of password authentication are provided:

None—indicates that no password or access checking is performed in the CORBA
application.

(56, 128) ERROR 56 128 56 128 128

(128, 128) ERROR ERROR 128 ERROR 128 128

Table 3-1 Interprocess Negotiation Results (Continued)

(0, 0) (0, 56) (0, 128) (56, 56) (56, 128) (128, 128)

3-6 Using Security in CORBA Applications

Application Password—indicates that users are required to supply a domain password in
order to access the CORBA application.

User Authentication—indicates that users are required to supply an application password as
well as the domain password in order to access the CORBA application.

ACL—indicates that authorization is used in the CORBA application and access control
checks are performed on interfaces, queue names, and event names. If an associated ALC
is not found for a user, it is assumed that access is granted.

Mandatory ACL—indicates that authorization is used in the CORBA application and
access control checks are performed on interfaces, queue names, and event names. The
value of Mandatory ACL is similar to ACL, but permission is denied if an associated ACL
is not found for the user.

When using Password authentication, you have the option of using the
Tobj::PrincipalAuthenticator::logon() or the
SecurityLevel2::PrincipalAuthenticator::authenticate() methods in your client
application.

If you use password authentication, the SSL protocol can be used to provide confidentiality and
integrity to communication between applications. For more information, see “The SSL Protocol”
on page 3-9.

How Password Authentication Works
Password authentication works in the following way:

1. The initiating application accesses the BEA Tuxedo domain in one of the following ways:

– Through the CORBA Interoperable Naming Service (INS) Bootstrapping mechanism.
Use this mechanism if you are using a client ORB from another vendor. For more
information about using CORBA INS, see the CORBA Programming Reference in the
BEA Tuxedo online documentation

– The BEA Bootstrapping mechanism. Use this mechanism if you are using BEA
CORBA client applications.

2. The initiating application obtains credentials for the user. The initiating application must
provide proof material to be used by the BEA Tuxedo domain to authenticate the user. This
proof material consists of the name of the user and a password.

– The initiating application creates the security context using a
PrincipalAuthenticator object. The request for authentication is sent to the IIOP

Password Authent i cat ion

Using Security in CORBA Applications 3-7

Listener/Handler. The proof material in the authentication request is securely relayed to
the authentication server, which verifies the supplied information.

– If the verification succeeds, the BEA Tuxedo system constructs a Credentials object
that is used by all future invocations. The Credentials object for the user is
associated with the Current object that represents the security context.

3. The initiating application invokes a CORBA object in the BEA Tuxedo domain using an
object reference. The request is packaged into an IIOP request and is forwarded to the IIOP
Listener/Handler that associates the request with the previously established security context.

4. The IIOP Listener/Handler receives the request from the initiating application.

5. The IIOP Listener/Handler forwards the request, along with the credentials of the initiating
application, to the appropriate CORBA object.

Figure 3-2 illustrates these steps.

3-8 Using Security in CORBA Applications

Figure 3-2 How Password Authentication Works

Development Process for Password Authentication
Defining password authentication for a CORBA application includes administration and
programming steps. Table 3-2 and Table 3-3 list the administration and programming steps for
password authentication. For a detailed description of the administration steps for password
authentication, see “Configuring Authentication” on page 7-1. For a complete description of the
programming steps, see “Writing a CORBA Application That Implements Security” on page 9-1.

The SSL P ro toco l

Using Security in CORBA Applications 3-9

The SSL Protocol
The BEA Tuxedo product provides the industry-standard SSL protocol to establish secure
communications between client and server applications. When using the SSL protocol, principals
use digital certificates to prove their identity to a peer.

Table 3-2 Administration Steps for Password Authentication

Step Description

1 Set the SECURITY parameter in the UBBCONFIG file to APP_PW, USER_AUTH,
ACL, or MANDATORY_ACL.

2 If you defined the SECURITY parameter as USER_AUTH, ACL, or
MANDATORY_ACL, configure the authentication server (AUTHSRV) in the
UBBCONFIG file.

3 Use the tpusradd and tpgrpadd commands to define lists of authorized users
and groups including the IIOP Listener/Handler.

4 Use the tmloadcf command to load the UBBCONFIG file. When the UBBCONFIG
file is loaded, the system administrator is prompted for a password. The password
entered at this time becomes the password for the CORBA application.

Table 3-3 Programming Steps for Password Authentication

Step Description

1 Write application code that uses the Bootstrap object to obtain a reference to the
SecurityCurrent object or CORBA INS to obtain a reference to a
PrincipalAuthenticator object in the BEA Tuxedo domain.

2 Write application code that obtains the PrincipalAuthenticator object from the
SecurityCurrent object.

3 Write application code that uses the
Tobj::PrincipalAuthenticator::logon() or
SecurityLevel2::PrincipalAuthenticator::authenticate()
operation to establish a security context with the BEA Tuxedo domain.

4 Write application code that prompts the user for the password defined when the
UBBCONFIG file is loaded.

3-10 Using Security in CORBA Applications

The default behavior of the SSL protocol in the CORBA security environment is to have the IIOP
Listener/Handler prove its identity to the principal who initiated the SSL connection using digital
certificates. The digital certificates are verified to ensure that each of the digital certificates has
not been tampered with or expired. If there is a problem with any of the digital certificates in the
chain, the SSL connection is terminated. In addition, the issuer of a digital certificate is compared
against a list of trusted certificate authorities to verify the digital certificate received from the
IIOP Listener/Handler has been signed by a certificate authority that is trusted by the BEA
Tuxedo domain.

Like LLE, the SSL protocol can be used with password authentication to provide confidentiality
and integrity to communication between the client application and the BEA Tuxedo domain.
When using the SSL protocol with password authentication, you are prompted for the password
of the IIOP Listener/Handler defined by the SEC_PRINCIPAL_NAME parameter when you enter
the tmloadcf command.

How the SSL Protocol Works
The SSL protocol works in the following manner:

1. The IIOP Listener/Handler presents its digital certificate to the initiating application.

2. The initiating application compares the digital certificate of the IIOP Listener/Handler
against its list of trusted certificate authorities.

3. If the initiating application validates the digital certificate of the IIOP Listener/Handler, the
application and the IIOP Listener/Handler establish an SSL connection.

The initiating application can then use either password or certificate authentication to
authenticate itself to the BEA Tuxedo domain.

Figure 3-3 illustrates how the SSL protocol works.

The SSL P ro toco l

Using Security in CORBA Applications 3-11

Figure 3-3 How the SSL Protocol Works in a CORBA Application

Requirements for Using the SSL Protocol
To use the SSL protocol in a CORBA application, you need to install a license that enables the
use of the SSL protocol and PKI. For information about installing the license for the security
features, see Installing the BEA Tuxedo System.

The implementation of the SSL protocol is flexible enough to fit into most public key
infrastructures. The BEA Tuxedo product requires that digital certificates are stored in an
LDAP-enabled directory. You can choose any LDAP-enabled directory service. You also need
to choose the certificate authority from which to obtain digital certificates and private keys used
in a CORBA application. You must have an LDAP-enabled directory service and a certificate
authority in place before using the SSL protocol in a CORBA application.

Development Process for the SSL Protocol
Using the SSL protocol in a CORBA application is primarily an administration process.
Table 3-5 lists the administration steps required to set up the infrastructure required to use the
SSL protocol and configure the IIOP Listener/Handler for the SSL protocol. For a detailed
description of the administration steps, see “Managing Public Key Security” on page 4-1 and
“Configuring the SSL Protocol” on page 6-1.

3-12 Using Security in CORBA Applications

Once the administration steps are complete, you can use either password authentication or
certificate authentication in your CORBA application. For more information, see “Writing a
CORBA Application That Implements Security” on page 9-1.

Note: If you are using the BEA CORBA C++ ORB as a server application, the ORB can also
be configured to use the SSL protocol. For more information, see “Configuring the SSL
Protocol” on page 6-1.

If you use the SSL protocol with password authentication, you need to set the SECURITY
parameter in the UBBCONFIG file to desired level of authentication and if appropriate, configure

Table 3-4 Administration Steps for the SSL Protocol

Step Description

1 Set up an LDAP-enabled directory service. You will be prompted for the name of
the LDAP server during the installation of the BEA Tuxedo product.

2 Install the license for the SSL protocol.

3 Obtain a digital certificate and private key for the IIOP Listener/Handler from a
certificate authority.

4 Publish the digital certificates for the IIOP Listener/Handler and the certificate
authority in the LDAP-enabled directory service.

5 Define the SEC_PRINCIPAL_NAME, SEC_PRINCIPAL_LOCATION, and
SEC_PRINCIPAL_PASSVAR parameters for the ISL server process in the
UBBCONFIG file.

6 Set the SECURITY parameter in the UBBCONFIG file to NONE.

7 Define a port for secure communication on the IIOP Listener/Handler using the -S
option of the ISL command.

8 Create a Trusted Certificate Authority file (trust_ca.cer) that defines the
certificate authorities trusted by the IIOP Listener/Handler.

9 Use the tmloadcf command to load the UBBCONFIG file.

10 Optionally, create a Peer Rules file (peer_val.rul) for the IIOP
Listener/Handler.

11 Optionally, modify the LDAP Search filter file to reflect the directory hierarchy in
place in your enterprise.

The SSL P ro toco l

Using Security in CORBA Applications 3-13

the Authentication Server (AUTHSRV). For information about the administration steps for
password authentication, see “Password Authentication” on page 3-5.

Figure 3-4 illustrates the configuration of a CORBA application that uses the SSL protocol.

3-14 Using Security in CORBA Applications

Figure 3-4 Configuration for Using the SSL Protocol in a CORBA Application

Certificate Authentication
Certificate authentication requires that each side of an SSL connection proves its identity to the
other side of the connection. In the CORBA security environment, the IIOP Listener/Handler
presents its digital certificate to the principal who initiated the SSL connection. The initiator then
provides a chain of digital certificates that are used by the IIOP Listener/Handler to verify the
identity of the initiator.

Once a chain of digital certificates is successfully verified, the IIOP Listener/Handler retrieves
the value of the distinguished name from the subject of the digital certificate. The CORBA
security environment uses the e-mail address element of the subject’s distinguished name as the
identity of the principal. The IIOP Listener/Handler uses the identity of the principal to
impersonate the principal and establish a security context between the initiating application and
the BEA Tuxedo domain.

Cer t i f i ca te Au thent i cat i on

Using Security in CORBA Applications 3-15

Once the principal has been authenticated, the principal that initiated the request and the IIOP
Listener/Handler agree on a cipher suite that represents the type and strength of encryption that
they both support. They also agree on the encryption key and synchronize to start encrypting all
subsequent messages.

Figure 3-5 provides a conceptual overview of the certificate authentication.

Figure 3-5 Certificate Authentication

Commonly, X.509 V3 CA certificates are required to contain the Basic Constraints extension,
marked as being from a Certificate Authority (CA), and marked as a critical extension (see IETF
RFC 2459). Ensuring that V3 CA certificates protects against non-CA certificates from
masquerading as intermediate CA certificates.

For more information, please refer to the following URL:
http://www.ietf.org/rfc/rfc2459.txt

Note: This default behavior will not check Basic Constraints on X.509 V1 and V2 certificates,
as these versions of X.509 certificates do not support certificate extensions.

There is a mechanism provided to control the level of enforcement that will be performed in order
to avoid problems with some customer's applications:

The mechanism is used by setting the value of the environment variable
TUX_SSL_ENFORCECONSTRAINTS. The levels of enforcement are as follows:

3-16 Using Security in CORBA Applications

0
This level disables the enforcement entirely. This is not recommended as a solution unless
you really have no other choice.

For example, a customer has purchased certificates from a commercial CA and the chain
does not pass the new checks. Most current commercial CA certificates should work under
the default level 1 setting.

TUX_SSL_ENFORCECONSTRAINTS=0

1
This level is the default. No checking is performed on V1 or V2 certificates in the
certificate chain. The Basic Constraints for V3 CA certificates are checked and the
certificates are verified to be CA certificates.

TUX_SSL_ENFORCECONSTRAINTS=1

2
This level does the same checking as level 1, and additionally enforces two more
requirements:

– All CA certificates in the certificate chain must be V3 certificates.

– The Basic Constraints extensions of the CA certificates must be marked as "critical" in
accordance with IETF RFC 2459.

This is not the default setting because a number of current commercially available V3 CA
certificates do not mark the Basic Constraints as critical.

TUX_SSL_ENFORCECONSTRAINTS=2

How Certificate Authentication Works
Certificate authentication works in the following manner:

1. The initiating application accesses the BEA Tuxedo domain in one of the following ways:

– Through the CORBA INS Bootstrapping mechanism. Use this mechanism if you are
using a client ORB from another vendor. For more information about using CORBA
INS, see CORBA Programming Reference in the BEA Tuxedo online documentation.

– The BEA Bootstrapping mechanism. Use this mechanism if you are using the BEA
client ORB.

Cer t i f i ca te Au thent i cat i on

Using Security in CORBA Applications 3-17

2. The initiating application instantiates the Bootstrap object with a URL in the form of
corbaloc://host:port or corbalocs://host:port and controls the requirement for
protection by setting attributes on the SecurityLevel2::Credentials object returned as
a result of the SecurityLevel2::PrincipalAuthenticator::authenticate operation.

Note: You can also use the SecurityLevel2::Current::authenticate() method to
secure the bootstrapping process and specify that certificate authentication is to be used.

3. The initiating application obtains the digital certificates and the private key of the principal.
Retrieval of this information may require proof material to be supplied to gain access to the
principal’s private key and certificate. The proof material typically is a pass phrase rather
than a password.

 The security context is established as result of a
SecurityLevel2::PrincipalAuthenticator::authenticate() method.

The IIOP Listener/Handler receives and validates the application’s digital certificate as part
of the authentication process.

4. If the verification succeeds, the BEA Tuxedo system constructs a Credentials object. The
Credentials object for the principal represents the security context for the current thread
of execution.

5. The initiating application invokes a CORBA object in the BEA Tuxedo domain using an
object reference.

6. The request is packaged into an IIOP request and is forwarded to the IIOP Listener/Handler
that associates the request with the established security context.

7. The request is digitally signed and encrypted before it is sent to the IIOP Listener/Handler.
The BEA Tuxedo system performs the signing and sealing of requests.

8. The IIOP Listener/Handler receives the request from the initiating application. The request
is decrypted.

9. The IIOP Listener/Handler retrieves the e-mail component of the subjectDN of the
principal’s and uses that as the identity of the user.

10. The IIOP Listener/Handler forwards the request, along with the associated tokens of the
principal, to the appropriate CORBA object.

3-18 Using Security in CORBA Applications

Figure 3-6 How Certificate Authentication Works

Development Process for Certificate Authentication
To use certificate authentication in a CORBA application, you need to install a license that
enables the use of the SSL protocol and PKI. For information about installing the license, see
Installing the BEA Tuxedo System.

Using certificate authentication in a CORBA application includes administration and
programming steps. Table 3-5 and Table 3-6 list the administration and programming steps for
certificate authentication. For a detailed description of the administration steps, see “Managing
Public Key Security” on page 4-1 and “Configuring the SSL Protocol” on page 6-1.

Cer t i f i ca te Au thent i cat i on

Using Security in CORBA Applications 3-19

Table 3-5 Administration Steps for Certificate Authentication

Step Description

1 Set up an LDAP-enabled directory service. You will be prompted for the name of
the LDAP server during the installation of the BEA Tuxedo product.

2 Install the license for the SSL protocol.

3 Obtain a digital certificate and private key for the IIOP Listener/Handler from a
certificate authority.

4 Obtain digital certificates and private keys for the CORBA client applications from
a certificate authority.

5 Store the private key files for the CORBA client applications and the IIOP
Listener/Handler in the Home directory of the user or in
$TUXDIR/udataobj/security/keys.

6 Publish the digital certificates for the IIOP Listener/Handler, the CORBA
applications, and the certificate authority in the LDAP-enabled directory service.

7 Define the SEC_PRINCIPAL_NAME, SEC_PRINCIPAL_LOCATION, and
SEC_PRINCIPAL_PASSVAR for the ISL server process in the UBBCONFIG file.

8 Set the SECURITY parameter in the UBBCONFIG file to USER_AUTH, ACL, or
MANDATORY_ACL.

9 Configure the Authentication Server (AUTHSRV) in the UBBCONFIG file.

10 Use the tpusradd and tpgrpadd commands to define the authorized Users and
Groups of your CORBA application.

11 Define a port for SSL communication on the IIOP Listener/Handler using the -S
option of the ISL command.

12 Enable certificate authentication in the IIOP Listener/Handler using the -a option
of the ISL command.

13 Create a Trusted Certificate Authority file (trust_ca.cer) that defines the
certificate authorities trusted by the IIOP Listener/Handler.

12 Create a Trusted Certificate Authority file (trust_ca.cer) that defines the
certificate authorities trusted by the CORBA client application.

3-20 Using Security in CORBA Applications

Figure 3-7 illustrates the configuration of a CORBA application that uses certificate
authentication.

13 Use the tmloadcf command to load the UBBCONFIG file. You will be prompted
for the password of the IIOP Listener/Handler defined in the
SEC_PRINCIPAL_NAME parameter.

14 Optionally, create a Peer Rules file (peer_val.rul) for both the CORBA client
application and the IIOP Listener/Handler.

15 Optionally, modify the LDAP Search filter file to reflect the directory hierarchy in
place in your enterprise.

Table 3-5 Administration Steps for Certificate Authentication (Continued)

Step Description

Cer t i f i ca te Au thent i cat i on

Using Security in CORBA Applications 3-21

Figure 3-7 Configuration for Using Certificate Authentication in a CORBA Application

Table 3-6 lists the programming steps for using certificate authentication in a CORBA
application. For more information, see “Writing a CORBA Application That Implements
Security” on page 9-1.

3-22 Using Security in CORBA Applications

Using an Authentication Plug-in
The BEA Tuxedo product allows the integration of authentication plug-ins into a CORBA
application. The BEA Tuxedo product can accommodate authentication plug-ins using various
authentication technologies, including shared-secret password, one-time password,
challenge-response, and Kerberos. The authentication interface is based on the generic security
service (GSS) application programming interface (API) where applicable and assumes
authentication plug-ins have been written to the GSSAPI.

If you chose to use an authentication plug-in, you must configure the authentication plug-in in the
registry of the BEA Tuxedo system. For more detail about the registry, see “Configuring Security
Plug-ins” on page 8-1.

For more information about an authentication plug-ins, including installation and configuration
procedures, see your BEA account executive.

Authorization
Authorization allows system administrators to control access to CORBA applications.
Specifically, an administrator can use authorization to allow or disallow principals to use
resources or services provided by a CORBA application.

Table 3-6 Programming Steps for Certificate Authentication

Step Description

1 Write application code that uses the corbaloc or corbalocs URL address
formats of the Bootstrap object. Note that the CommonName in the Distinguished
Name of the certificate of the IIOP Listener/Handler must match exactly the host
name provided in the URL address format. For more information on the URL
address formats, see “Using the Bootstrapping Mechanism” on page 9-1.

You can also use the CORBA INS bootstrap mechanism to object a reference to a
PrincipalAuthenticator object in the BEA Tuxedo domain. For more information
about using CORBA INS, see the CORBA Programming Reference.

2 Write application code that uses the authenticate() method of the
SecurityLevel2::PrincipalAuthenticator interface to perform
authentication. Specify Tobj::CertificateBased for the method argument
and the pass phrase for the private key as the auth_data argument for
Security::Opaque.

Aud i t ing

Using Security in CORBA Applications 3-23

The CORBA security environment supports the integration of authorization plug-ins.
Authorization decisions are based in part on the user identity represented by an authorization
token. Authorization tokens are generated during the authentication process so coordination
between the authentication plug-in and the authorization plug-in is required.

If you chose to use an authorization plug-in, you must configure the authorization plug-in the
registry of the BEA Tuxedo system. For more detail about the registry, see “Configuring Security
Plug-ins” on page 8-1.

For more information about authorization plug-ins, including installation and configuration
procedures, see your BEA account executive.

Auditing
Auditing provides a means to collect, store, and distribute information about operating requests
and their outcomes. Audit-trail records may be used to determine which principals performed, or
attempted to perform, actions that violated the configured security policies of a CORBA
application. They may also be used to determine which operations were attempted, which ones
failed, and which ones successfully completed.

The current implementation of the auditing feature supports the recording of logon failures,
impersonation failures, and disallowed operations into the ULOG file. In the case of disallowed
operations, the value of the parameters to the operation are not provided because there is no way
to know the order and data types of the parameter for an arbitrary operation. Audit entries for
logon and impersonation include the identity of the principal attempting to be authenticated. For
information about setting up the ULOG file, see Setting Up a BEA Tuxedo Application.

You can enhance the auditing capabilities of your CORBA application by using an auditing
plug-in. The BEA Tuxedo system will invoke the auditing plug-in at predefined execution points,
usually before an operation is attempted and then when potential security violations are detected
or when operations are successfully completed. The actions taken to collect, process, protect, and
distribute auditing information depend on the capabilities of the auditing plug-in. Care should be
taken with the performance impact of audit information collection, especially successful
operation audits, which may occur at a high rate.

Auditing decisions are based partly on user identity, which is stored in an auditing token. Because
auditing tokens are generated by the authentication plug-in, providers of authentication and
auditing plug-ins need to ensure that these plug-ins work together.

The purpose of an auditing request is to record an event. Each auditing plug-in returns one of two
responses: success (the audit succeeded and the event was logged) or failure (the audit failed

3-24 Using Security in CORBA Applications

and the event was not logged the event). An auditing plug-in is called once before the operation
is performed and once after the operation completes.

The preoperation audit allows the auditing of both attempts to call an operation, and also
allows storage of input data for the postoperation check.

The postoperation audit reports the status of the completion of an operation. For failure
status, the postoperation audit is called to report a potential security violation. Usually this
type of report is issued when a preoperation or postoperation authorization check fails or
when some other potential security attack is detected.

Multiple implementations of the auditing plug-in can be used in a CORBA application. Using
multiple authorization plug-ins causes more than one preoperation and postoperation auditing
operation to be performed.

When using multiple auditing plug-ins, all the plug-ins are placed under a single master auditing
plug-in. Each subordinate authorization plug-in returns SUCCESS or FAILURE. If any plug-in fails
the operation, the auditing master plug-in determines the outcome to be FAILURE. Other error
returns are also considered FAILURE. Otherwise, SUCCESS is the outcome.

In addition, a BEA Tuxedo system process may call an auditing plug-in when a potential security
violation occurs. (Suspicion of a security violation arises when a preoperation or postoperation
authorization check fails or when an attack on security is detected.) In response, the auditing
plug-in performs a postoperation audit and returns whether the audit succeeded.

The auditing process is somewhat different for users of the auditing feature provided by the BEA
Tuxedo product and users of auditing plug-ins. The default auditing feature does not support
preoperation audits. If the default auditing feature receives a preoperation audit request, it returns
immediately and does nothing.

If you chose to use an auditing plug-in other than the default auditing plug-in, you must configure
the auditing plug-in the registry of the BEA Tuxedo system. For more detail about the registry,
see “Configuring Security Plug-ins” on page 8-1.

For more information about auditing plug-ins, including installation and configuration
procedures, see your BEA account executive.

PKI Plug-ins
The BEA Tuxedo product provides a PKI environment which includes the SSL protocol and the
infrastructure needed to use digital certificates in a CORBA application. However, you can use
the PKI interfaces to integrate a PKI plug-in that supplies custom message-based digital signature

PK I P lug- ins

Using Security in CORBA Applications 3-25

and message-based encryption to your CORBA applications. Table 3-7 describes the PKI
interfaces.

The PKI interfaces support the following algorithms:

Public key algorithms: Rivest, Shamir, and Adelman (RSA) and Digital Signature
Algorithm (DSA)

Table 3-7 PKI Interfaces

PKI Interface Description

Public key initialization Allows public key software to open public and
private keys. For example, gateway processes may
need to have access to a specific private key in
order to decrypt messages before routing them.

Key management Allows public key software to manage and use
public and private keys. Note that message digests
and session keys are encrypted and decrypted
using this interface, but no bulk data encryption is
performed using public key cryptography. Bulk
data encryption is performed using symmetric key
cryptography.

Certificate lookup Allows public key software to retrieve X.509v3
digital certificates for a given principal. Digital
certificates may be stored using any appropriate
certificate repository, such as Lightweight
Directory Access Protocol (LDAP).

Certificate parsing Allows public key software to associate a simple
principal name with an X.509v3 digital certificate.
The parser analyzes a digital certificate to generate
a principal name to be associated with the digital
certificate.

Certificate validation Allows public key software to validate an X.509v3
digital certificate in accordance with specific
business logic.

Proof material mapping Allows public key software to access the proof
materials needed to open keys, provide
authorization tokens, and provide auditing tokens.

3-26 Using Security in CORBA Applications

Symmetric key algorithms:

– Data Encryption Standard for Cipher Block Chaining (DES-CBC)

– Two-key triple-DES

– Rivest’s Cipher 4 (RC4)

Message digest algorithms:

– Message Digest 5 (MD5)

– Secure Hash Algorithm 1 (SHA-1)

If you chose to use a PKI plug-in, you must configure the PKI plug-in in the registry of the BEA
Tuxedo system. For more detail about the registry, see “Configuring Security Plug-ins” on
page 8-1.

For more information about PKI plug-ins, including installation and configuration procedures,
see your BEA account executive.

Commonly Asked Questions About the CORBA Security Features
The following sections answer some of the commonly asked questions about the CORBA
security features.

Do I Have to Change the Security in an Existing CORBA
Application?
The answer is no. If you are using security interfaces from previous versions of the WebLogic
Enterprise product in your CORBA application there is no requirement for you to change your
CORBA application. You can leave your current security scheme in place and your existing
CORBA application will work with CORBA applications built with the BEA Tuxedo 8.0
product.

For example, if your CORBA application consists of a set of server applications which provide
general information to all client applications which connect to them, there is really no need to
implement a stronger security scheme. If your CORBA application has a set of server
applications which provide information to client applications on an internal network which
provides enough security to detect sniffers, you do not need to implement the additional security
features.

Commonly Asked Quest ions Abou t the CORBA Secur i t y Features

Using Security in CORBA Applications 3-27

Can I Use the SSL Protocol in an Existing CORBA Application?
The answer is yes. You may want to take advantage of the extra security protection provided by
the SSL protocol in your existing CORBA application. For example, if you have a CORBA server
application which provides stock prices to a specific set of client applications, you can use the
SSL protocol to make sure the client applications are connected to the correct CORBA server
application and that they are not being routed to a fake CORBA server application with incorrect
data. A username and password is sufficient proof material to authenticate the client application.
However, by using the SSL protocol, the message request/reply information can be protected as
an additional level of security.

The SSL protocol offers CORBA applications the following benefits:

Protection of the entire conversation including the initial bootstrapping process. The SSL
protocol protects against Man-In-The-Middle attacks, replay attacks, tampering, and
sniffing.

Even if you only use the default settings, the SSL protocol provides signed and sealed
protection since the default encryption settings are a minimum of 56 bits by default.

Client verification of the connected IIOP Listener/Handler using the digital certificate of
the IIOP Listener/Handler. The client application can then apply additional security rules to
restrict access to the client application by the IIOP Listener/Handler. This protection also
applies to IIOP Listener/Handlers connecting to remote server applications when using
callback objects.

To use the SSL protocol in a CORBA application, set up the infrastructure to use digital
certificates, change the command-line options on the ISL server process to use the SSL protocol,
and configure a port for secure communications on the IIOP Listener/Handler. If your existing
CORBA application uses password authentication, you can use that code with the SSL protocol.
If your CORBA C++ client application does not already catch the InvalidDomain exception
when resolving initial references to the Bootstrap object and performing authentication, write
code to handle this exception. For more information, see “PKI Plug-ins” on page 3-24.

When Should I Use Certificate Authentication?
You might be ready to migrate your existing CORBA application to use Internet connections
between the CORBA application and Web browsers and commercial Web servers. For example,
users of your CORBA application might be shopping over the Internet. The users must be
confident that:

3-28 Using Security in CORBA Applications

They are in fact communicating with the server at the online store and not an impostor that
mimics the store’s server to get credit card information.

The data exchanged between the user of the CORBA application and the online store will
be unintelligible to network eavesdroppers.

The data exchanged with the online store will arrive unaltered. An instruction to order
$500 worth of merchandise must not accidently or maliciously become a $5000 order.

In these situations, the SSL protocol and certificate authentication offer CORBA applications the
maximum level of protection. In addition to the benefits achieved through the use of the SSL
protocol, certificate authentication offers CORBA applications:

IIOP Listener/Handler verification of the client application that initiates a request using the
digital certificate of the client application. In addition, the IIOP Listener/Handler can apply
additional rules which restrict access to the client application based on the identity
established by the digital certificate. A remote ORB acting as a server application can also
be configured to allow mutual authentication and verify the identity of a client application
based on a digital certificate.

Inside the BEA Tuxedo domain, the client application can still have a BEA Tuxedo
username and password. The IIOP Listener/Handler maps the identity defined in a digital
certificate to a BEA Tuxedo username and password thus allowing existing CORBA
applications to have an identity in native CORBA server applications.

 For more information, see “PKI Plug-ins” on page 3-24.

Hybrid Templates for FrameMaker 5.5

Part II Security Adminstration

Managing Public Key Security
Configuring Link-Level Encryption
Configuring the SSL Protocol
Configuring Authentication
Configuring Security Plug-ins

Using Security in CORBA Applications 4-1

C H A P T E R 4

Managing Public Key Security

This topic includes the following sections:

Requirements for Using Public Key Security

Who Needs Digital Certificates and Private/Private Key Pairs?

Requesting a Digital Certificate

Publishing Certificates in the LDAP Directory Service

Editing the LDAP Search Filter File

Storing the Private Keys in a Common Location

Defining the Trusted Certificate Authorities

Creating a Peer Rules File

Perform the tasks in this topic only if you are using the SSL protocol, or certificate authentication
in your CORBA application.

Note: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.0.

All BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB text
references, associated code samples, etc. should only be used:

to help implement/run third party Java ORB libraries, and

for programmer reference only.

4-2 Using Security in CORBA Applications

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Requirements for Using Public Key Security
To use the SSL protocol and public key security to protect communication between principals and
the BEA Tuxedo domain, you need to install a special license. For information about installing
the license, see Installing the BEA Tuxedo System.

You also need to choose a Lightweight Directory Access Protocol server and a certificate
authority (either commercial or private) setup for your organization before implementing Public
Key Security.

Who Needs Digital Certificates and Private/Private Key Pairs?
To use the SSL protocol in the CORBA security environment, you need a private key and a
digitally-signed certificate containing the matching public key. How many digital certificates and
private keys you need depends on how you plan to use the SSL protocol.

If the SSL protocol is being used for protection of a network connection between a remote
client and the IIOP Listener/Handler, you need to obtain a digital certificate and private
key for the IIOP Listener/Handler.

If the SSL protocol is being used with certificate authentication, you need to obtain a
digital certificate and private key for the IIOP Listener/Handler and each principal that will
access the CORBA application.

Any digital certificate that is obtained and used must be issued from a trusted certificate authority
defined in the trusted CA file. For more information, see “Defining the Trusted Certificate
Authorities” on page 4-7.

Requesting a Digital Certificate
To acquire a digital certificate, you need to submit your request for a digital certificate in a
particular format called a certificate signature request (CSR). How you create a CSR depends on
the certificate authority you use. Certificate authorities typically provide a means to generate a
public key, private key, and a CSR which contains your public key. To create a CSR follow the
steps outlined by your chosen certificate authority.

When you complete the steps to create a CSR, you receive the following files from the certificate
authority:

Publ ish ing Ce r t i f i cates in the LDAP D i rec to r y Se rv i ce

Using Security in CORBA Applications 4-3

To purchase a digital certificate from a certificate authority, you submit the CSR to the certificate
authority according to the enrollment procedure of the certificate authority. Some commercial
certificate authorities allow you to purchase digital certificates through the Web.

Publishing Certificates in the LDAP Directory Service
The use of a global directory service is the most popular way to store digital certificates. A
directory service simplifies the management of information that needs to be globally available to
an ever-growing number of users. An LDAP server provides access to a variety of directory
services.

The CORBA security environment in the BEA Tuxedo product, when configured to use the SSL
protocol, can retrieve digital certificates for principals and certificate authorities from an LDAP
directory service, such as Netscape Directory Service or Microsoft Active Directory. Before you
can use the SSL protocol or certificate authentication, you need to install an LDAP directory
service and configure it for your organization. BEA Systems does not provide nor recommend
any specific LDAP directory service. However, the LDAP directory service you choose should
support the X.500 scheme definition and the LDAP version 2 or 3 protocol.

LDAP directory services define a hierarchy of object classes. While there are a number of
different object classes, there is a small set associated with digital certificates. Figure 4-1
illustrates the object classes typically associated with digital certificates.

File Description

key.der The private key file.

request.pem The CSR file which you submit to the
certificate authority. It contains the same data
as the .dem file but the file is encoded in
ASCII so that you can copy it into e-mail or
paste it into a Web form.

4-4 Using Security in CORBA Applications

Figure 4-1 LDAP Directory Structure for Digital Certificates

Once you receive your digital certificates from the certificate authority, store them in the LDAP
directory service as follows:

Digital certificates for the IIOP Listener/Handler and any principals are stored in the LDAP
directory service with an attribute of userCertificate on an object class with that
attribute defined. Typically, these digital certificates are stored as an instance of the
strongAuthenticationUser object class as defined by X.500.

Digital certificates for certificate authorities are stored in LDAP directory service with an
attribute of caCertificate on an object class with that attribute defined. Typically, these
digital certificates are stored as an instance of the certificateAuthority class as
defined by X.500.

If your LDAP scheme requires the use of different classes, you will need to modify the LDAP
search file as described in “Editing the LDAP Search Filter File” on page 4-4.

The BEA Tuxedo product requires that the digital certificates be stored in the directory service in
Privacy Enhanced Mail (PEM) format.

Refer to Installing the BEA Tuxedo System for information about integrating an LDAP directory
service into the CORBA security environment.

Editing the LDAP Search Filter File
When configuring a CORBA application to use the SSL protocol or certificate authentication,
you may need to customize the LDAP search filter file to limit the scope of the search of the
directory service or specify the object classes that will be used to hold the digital certificates.

root

strongAuthenticationUser

userCertificate

certificationAuthority

caCertificate

Edi t ing the LDAP Search F i l t e r F i l e

Using Security in CORBA Applications 4-5

Customizing the LDAP search filter file can result in significant performance gains. The BEA
Tuxedo product ships with the following LDAP search filters:

A filter stanza that searches the directory service for digital certificates assigned to
certificate authorities. The filter limits its search to instances of the
certificationAuthority object class.

A filter stanza that searches the directory service for digital certificates assigned to
principals. The filter limits its search to instances of the strongAuthenticationUser
object class.

If the directory service scheme for your organization is defined to store digital certificates in
object classes other than certificationAuthority and strongAuthenticationUser, the
LDAP search filter file must be modified to specify those object classes.

You can specify a location of the LDAP search filter file during the installation of the BEA
Tuxedo product. For more information, see Installing the BEA Tuxedo System.

The LDAP search filter file should be owned by the administrator account. BEA recommends
that the file be protected so that only the owner has read and write privileges for the file and all
other users have only read privileges for the file.

To limit the search of the directory service for digital certificates for principals and certificate
authorities, you need to modify the filter stanzas identified by the following tags in the LDAP
search filter file:

BEA_person_lookup

BEA_issuer_lookup

These tags identify the stanzas in the LDAP search filter file that contains the filter expression
that will be used when looking up information in the directory service. These BEA-specific tags
allow the stanzas of an LDAP search filter file to be stored in a common LDAP search filter file
with stanzas used by other LDAP-enabled applications that might be found in your organization.

The following is an example of the stanzas of an LDAP search filter file used by the BEA Tuxedo
product for the SSL protocol and certificate authentication:

“BEA_person_lookup”
 “.*” “ “ “(|(objectClass=strongAuthenticationUser) (mail=%v))”
 “e-mail address”
 “(|(objectClass=strongAuthenticationUser) (mail=%v))”
 “start of e-mail address”
“BEA_issuer_lookup”
 “.*” “ ” “(&(objectClass=certificationAuthority)

4-6 Using Security in CORBA Applications

 (cn=%v)” “exact match cn”
 (sn=%v))” “exact match sn”

BEA_person_lookup specifies to search the LDAP directory service for principals by their
e-mail addresses.

BEA_issuer_lookup specifies to search the LDAP directory service for principals by their
common names (cn).

See the documentation for your LDAP-enabled directory service for additional information about
LDAP search file filters.

Storing the Private Keys in a Common Location
When a principal generates a CSR, they typically get a file with a private key. Principals need this
private key file to verify their identity in the authentication process. Assign the private key file
protections so that only the owner of the private key file has read privileges and all other users
have no privileges to access the file. Private key files must be stored as PEM-encoded PKCS #8
protected format.

The BEA Tuxedo system uses the e-mail address of the principal to construct a name for the
private key file as follows:

1. The @ character in the name is replaced by an underscore (_) character.

2. All characters after the dot (.) character are deleted.

3. A .PEM file extension is appended to the file.

For example, if the name of the principal is milozzi@bigcompany.com the resulting private key
file is milozzi_bigcompany.pem. This naming convention allows an enterprise to have
multiple principals that share a common username but are in different e-mail domains.

The BEA Tuxedo software looks in the following directories for private key files:

Window 2000

%HOMEDRIVE%\%HOMEPATH%

UNIX

$HOME

The BEA Tuxedo software also looks in the following directory for private key files:

$TUXDIR/udataobj/security/keys

Def in ing the T rusted Cer t i f i cate Autho r i t i es

Using Security in CORBA Applications 4-7

The $TUXDIR/udataobj/security/keys directory should be protected so that only the owner
has read privileges for the directory and all other users do not have privileges to access the
directory.

Listing 4-1 provides an example of a private key file.

Listing 4-1 Example of Private Key File

-----BEGIN ENCRYPTED PRIVATE KEY-----

MIICoDAaBgkqhkiG9w0BBQMwDQQItSFrtYcfKygCAQUEggKAEgrMxo8gYB/MOSXG

...

-----END ENCRYPTED PRIVATE KEY-----

Defining the Trusted Certificate Authorities
When establishing an SSL connection, the CORBA processes (client applications and the IIOP
Listener/Handler) check the identity of the certificate authority and certificates from the peer’s
digital certificate chain against a list of trusted certificate authorities to ensure the certificate
authority is trusted by the organization. This check is similar to the check done in Web browsers.
If the comparison fails, the initiator of the SSL connection refuses to authenticate the target and
drops the SSL connection. It is typically the job of the system administrator to define a list of
trusted certificate authorities.

Retrieve from the LDAP directory service the digital certificates for the certificate authorities that
are to be trusted. Cut and paste the PEM formatted digital certificates into a file named
trust_ca.cer which is stored in $TUXDIR/udataobj/security/certs. The trust_ca.cer
can be edited with any text editor.

The trust_ca.cer file should be owned by the administrator account. BEA recommends that
the file be protected so that only the owner has read and write privileges for the file and all other
users have only read privileges for the file.

 Listing 4-2 provides an example of a Trusted Certificate Authority file.

Listing 4-2 Example of Trusted Certificate Authority File

-----BEGIN CERTIFICATE----

MIIEuzCCBCSgAwIBAgIQKtZuM5AOzS9dZaIATJxIuDANBgkqhkiG9w0BAQQFADCB

zDEXMBUGA1UEChMOVmVyaVNpZ24sIEluYy4xHzAdBgNVBAsTFlZlcmlTaWduIFRy

4-8 Using Security in CORBA Applications

dXN0IE5ldHdvcmsxRjBEBgNVBAsTPXd3dy52ZXJpc2lnbi5jb20vcmVwb3NpdG9y

eS9SUEEgSW5jb3JwLiBCeSBSZWYuLExJQUIuTFREKGMpOTgxSDBGBgNVBAMTP1Zl

cmlTaWduIENsYXNzIDEgQ0EgSW5kaXZpZHVhbCBTdWJzY3JpYmVyLVBlcnNvbmEg

...

-----END CERTIFICATE-----

-----BEGIN CERTIFICATE----

MIIEuzCCBCSgAwIBAgIQKtZuM5AOzS9dZaIATJxIuDANBgkqhkiG9w0BAQQFADCB

zDEXMBUGA1UEChMOVmVyaVNpZ24sIEluYy4xHzAdBgNVBAsTFlZlcmlTaWduIFRy

dXN0IE5ldHdvcmsxRjBEBgNVBAsTPXd3dy52ZXJpc2lnbi5jb20vcmVwb3NpdG9y

...

-----END CERTIFICATE-----

Creating a Peer Rules File
When communicating across network links, it is important to validate the peer to which you are
connected is the intended or authorized peer. Without this check, it is possible to make a secure
connection, exchange secure messages, and receive a valid chain of digital certificates but still be
vulnerable to a Man-in-the-Middle attack. You perform peer validation by verifying a set of
specified information contained in the peer digital certificate against a list of information that
specifies the rules for validating peer trust. The system administrator maintains the Peer Rules
file.

The Peer Rules are maintained in an ASCII file named peer_val.rul. Store the peer_val.rul
file in the following location in the BEA Tuxedo directory structure:

$TUXDIR/udataobj/security/certs

Listing 4-3 provides an example of a Peer Rules file.

Listing 4-3 Example of Peer Rules File

#

This file contains the list of rules for validating if

a peer is authorized as the target of a secure connection

#

O=Ace Industry

O=”Acme Systems, Inc.”; OU=Central Engineering;L=Herkimer;S=NY

Creat ing a Pee r Ru les F i l e

Using Security in CORBA Applications 4-9

O=”Ball, Corp.”, C=US

o=Ace Industry, ou=QA, cn=www.ace.com

Each rule in the Peer Rules file is comprised of a set of elements that are identified by a key. The
BEA Tuxedo product recognizes the key names listed in Table 4-1.

Each key is followed by an optional white space, the character =, an optional white space, and
finally the value to be compared. The key is not case sensitive. A rule is not a match unless the
subject’s distinguished name contains each of the specified elements in the rule and the values of
those elements match the values specified in the rule, including case and punctuation.

Each line in the Peer Rules file contains a single rule that is used to determine if a secure
connection is to be established. Rules cannot span lines; the entire rule must appear on a single
line. Each element in the rule can be separated by either a comma (,) or semicolon (;) character.

Lines beginning with the pound character (#) are comments. Comments cannot appear on the
same line as the name of an organization.

A value must be enclosed in single quotation marks if one of the following cases is true:

Strings contain any of the following characters:
, + = "" <CR> < > # ;

Strings have leading or trailing spaces

Table 4-1 Supported Keys for Peer Rules File

Key Attribute

CN CommonName

SN SurName

L LocalityName

S StateOrProvinceName

O OrganizationName

OU OrganizationalUnitName

C CountryName

E EmailAddress

4-10 Using Security in CORBA Applications

Strings contain consecutive spaces

By default, the BEA Tuxedo product verifies peer information against the Peer Rules file. If you
do not want to perform this check, create an empty Peer Rules file.

Using Security in CORBA Applications 5-1

C H A P T E R 5

Configuring Link-Level Encryption

This topic includes the following sections

Understanding min and max Values

Verifying the Installed Version of LLE

Configuring LLE on CORBA Application Links

Note: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.0.

All BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB text
references, associated code samples, etc. should only be used:

to help implement/run third party Java ORB libraries, and

for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Understanding min and max Values
Before you can configure LLE for your CORBA application, you need to be familiar with the
LLE notation: (min, max). The defaults for these parameters are:

For min: 0

5-2 Using Security in CORBA Applications

For max: Number of bits that indicates the highest level of encryption possible for the
installed LLE version

For example, the default min and max values for the Domestic LLE version are (0, 128). If you
want to change the defaults, you can do so by assigning new values to min and max in the
UBBCONFIG file for your application.

Verifying the Installed Version of LLE
Before setting the min and max values for your CORBA application, you need to verify what
version of LLE is installed on your machine. You can verify the LLE version installed on a
machine by running the tmadmin command in verbose mode as follows:

tmadmin -v

Key lines from the BEA Tuxedo license file (lic.txt) appear on your computer screen, similar
to information in Listing 5-1. The entry 128-bit Encryption Package indicates that the
Domestic version of LLE is installed.

Listing 5-1 LLE Licence Information

INFO: BEA Engine, Version 2.4

INFO: Serial: 212889588, Expiration 2000-3-15, Maxusers 10000

INFO: Licensed to: ACME CORPORATION

INFO: 128-bit Encryption Package

BEA Tuxedo license files are located in the following directories:

Windows 2003

%TUXDIR%\udataobj\lic.txt

UNIX

$TUXDIR/udataobj/lic.txt

Configuring LLE on CORBA Application Links
To configure LLE in CORBA applications, you need to set the MINENCRYPTBITS and
MAXENCRYPTBITS parameters in the UBBCONFIG file for each CORBA application participating
in the network connection, as follows:

Conf igur ing LLE on CORBA App l i cat ion L inks

Using Security in CORBA Applications 5-3

The MINENCRYPTBITS parameter specifies that at least the defined number of bits are
meaningful.

The MAXENCRYPTBITS parameter specifies that encryption should be negotiated up to the
defined level.

The possible values for the MINENCRYPTBITS and MAXENCRYPTBITS parameters are 0, 40, and
128. A value of zero means no encryption is used, while 40 and 128 specify the number of
significant bits in the encryption key.

Load the configuration file by running tmloadcf. The tmloadcf command parses UBBCONFIG
and loads the binary TUXCONFIG file to the location referenced by the TUXCONFIG variable.

5-4 Using Security in CORBA Applications

Using Security in CORBA Applications 6-1

C H A P T E R 6

Configuring the SSL Protocol

This topic includes the following sections:

Setting Parameters for the SSL Protocol

Defining a Port for SSL Network Connections

Enabling Host Matching

Setting the Encryption Strength

Setting the Interval for Session Renegotiation

Defining Security Parameters for the IIOP Listener/Handler

Example of Setting Parameters on the ISL System Process

Example of Setting Command-line Options on the CORBA C++ ORB

Note: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.0.

All BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB text
references, associated code samples, etc. should only be used:

to help implement/run third party Java ORB libraries, and

for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

6-2 Using Security in CORBA Applications

Setting Parameters for the SSL Protocol
To use the SSL protocol or certificate authentication with the IIOP Listener/Handler or the
CORBA C++ object request broker (ORB), you need to:

Specify the secure port on which SSL network connections will be accepted.

Specify the strength that will be used when encrypting data.

Optionally, set the interval for session renegotiation (IIOP Listener/Handler only).

The following sections detail how to use the options of the ISL command or the command-line
options of the CORBA C++ ORB to set these SSL parameters.

Defining a Port for SSL Network Connections
To define a port for SSL network connections:

Use the -S option of the ISL command to specify which port of the IIOP Listener/Handler
will listen for secure connections using the SSL protocol. You can configure the IIOP
Listener/Handler to allow only SSL connections by setting the -S option and -n option of
the ISL command to the same value.

If you are using a remote CORBA C++ ORB, use the -ORBsecurePort command-line
option on the ORB to specify which port of the ORB will listen for secure connections
using the SSL protocol. You should set this command-line option when using callback
objects or the CORBA Notification Service.

Note: If you are using the SSL protocol with a joint client/server application, you must specify
a port number for SSL network connections. You cannot use the default.

Defining a secure port for SSL network connections requires the license for the SSL protocol to
be installed. If the -S option or the -ORBsecurePort command-line option is executed and a
license to enable the use of the SSL protocol does not exist, the IIOP Listener/Handler or CORBA
C++ ORB will not start.

Enabling Host Matching
The SSL protocol is capable of encrypting messages for confidentiality; however, the use of
encryption does nothing to prevent a man-in-the-middle attack. During a man-in-the-middle
attack, a principal masquerades as the location from which an initiating application retrieves the
initial object references used in the bootstrapping process.

Enabl ing Hos t Match ing

Using Security in CORBA Applications 6-3

To prevent man-in-the-middle attacks, it is necessary to perform a check to ensure that the digital
certificate received during an SSL connection is for the principal for which the connection was
intended. Host Matching is a check that the host specified in the object reference used to make
the SSL connection matches the common name in the subject in the distinguished name specified
in the target’s digital certificate. Host Matching is performed only by the initiator of an SSL
connection, and confirms that the target of a request is actually located at the same network
address specified by the domain name in the target’s digital certificate. If this comparison fails,
the initiator of the SSL connection refuses to authenticate the target and drops the SSL
connection. Host Matching is not technically part of the SSL protocol and is similar to the same
check done in Web browsers.

The domain name contained in the digital certificate must match exactly the host information
contained in the object reference. Therefore, the use of DNS host names instead of IP addresses
is strongly encouraged.

By default, Host Matching in enabled in the IIOP Listener/Handler and the CORBA C++ ORB.
If you need to enable Host Matching, do one of the following:

In the IIOP Listener/Handler, specify the -v option of the ISL command.

In the CORBA C++ ORB, specify the –ORBpeerValidate command-line option.

The values for the -v option and the -ORBpeerValidate command-line option are as follows:

none—no host matching is performed.

detect—if the object reference used to make the SSL connection does not match the host
name in the target’s digital certificate, the IIOP Listener/Handler or the ORB does not
authenticate the target and drops the SSL connection. The detect value is the default
value.

warn—if the object reference used to make the SSL connection does not match the host
name in the target’s digital certificate, the IIOP Listener/Handler or the ORB sends a
message to the user log and continues processing.

If there is more than one IIOP Listener/Handler in a BEA Tuxedo domain configured for SSL
connections (for example, in the case of fault tolerance), BEA recommends using DNS alias
names for the IIOP Listener/Handlers or creating different digital certificates for each IIOP
Listener/Handler. The –H switch on the IIOP Listener can be used to specify the DNS alias name
so that object references will be created correctly.

6-4 Using Security in CORBA Applications

Setting the Encryption Strength
To set the encryption strength:

Use the -z and -Z options of the ISL command to set the encryption strength in the IIOP
Listener/Handler.

Use the -ORBminCrypto and -ORBmaxCrypto command-line option on the ORB to set the
encryption strength in the CORBA C++ ORB.

The -z option and the -ORBminCrypto command-line option set the minimum level of
encryption used when an application establishes an SSL connection with the IIOP
Listener/Handler or the CORBA C++ ORB. The valid values are 0, 40, 56, and 128. A value of
0 means the data is signed but not sealed while 40, 56, and 128 specify the length (in bits) of the
encryption key. If this minimum level of encryption is not met, the SSL connection fails. The
default is 40.

The -Z option and the -ORBmaxCrypto command-line option set the maximum level of
encryption used when an application establishes an SSL connection with the IIOP
Listener/Handler or the CORBA C++ ORB. The valid values are 0, 40, 56, and 128. Zero means
that data is signed but not sealed while 40, 56, and 128 specify the length (in bits) of the
encryption key. The default minimum value is 40. The default maximum value is whatever
capability is specified by the license.

The –z or –Z options and the -ORBminCrypto and -ORBmaxCrypto command-line options are
available only if the license for the SSL protocol is installed.

To change the strength of encryption currently used in a CORBA application, you need to shut
down the IIOP Listener/Handler or the ORB.

The combination in which you set the encryption values is important. The encryption values set
in the initiator of an SSL connection need to be a subset of the encryption values set in the target
of an SSL connection.

Table 6-1 lists combinations of encryption values and describes the encryption behavior.

Set t ing the Encr yp t i on St rength

Using Security in CORBA Applications 6-5

Note: In all combinations listed in Table 6-1, the value of the SSL license controls the
maximum bit strength. If a bit strength is specified beyond the maximum licensed value,
the IIOP Listener/Handler or ORB will not start and an error will be generated indicating
the bit strength setting is invalid. Stopping the IIOP Listener/Handler or ORB from
starting, instead of lowering the maximum value and giving only a warning, protects

Table 6-1 Combinations of Encryption Values

-z
-ORBminCrypto

-Z
-ORBmaxCrypto

Description

No value specified No value specified If the use of the SSL protocol is specified by
some other command-line option or system
property but no values are specified for
ORBminCrypto and ORBmaxCrypto, these
command-line options or system properties are
assigned their default values.

0 No value specified Maximum encryption defaults to the maximum
value specified in the license. Tamper/replay
detection and privacy protection are negotiated.

No value specified 0 Tamper/replay detection is negotiated. Privacy
protection is not provided.

0 0 Tamper/replay detection is negotiated. Privacy
protection is not provided.

40, 56, 128 No value specified Maximum encryption defaults to the maximum
value specified in the license. Privacy
protection can be negotiated to the maximum
allowed by the SSL license.

No value specified 40, 56, 12 Privacy protection can be negotiated to the
value specified by the -Z option as long as it is
less than the maximum allowed by the SSL
license. The -z option defaults to 40.

40, 56, 128 40, 56, 128 Privacy protection can be negotiated between
the values specified by the -z option up to the
value specified by the -Z option as long as the
values are less than the maximum allowed by
the SSL license.

6-6 Using Security in CORBA Applications

against an incorrectly configured application running with less protection than was
expected.

If a cipher that exceeds the maximum licensed bit strength is somehow negotiated, the
SSL connection is not established.

For a list of cipher suites supported by the CORBA security environment, see “Supported
Cipher Suites” on page 2-9.

Setting the Interval for Session Renegotiation
Note: You set the interval for session renegotiation only in the IIOP Listener/Handler.

Use the -R option of the ISL command to control the time between session renegotiations.
Periodic renegotiation of an SSL session refreshes the symmetric keys used to encrypt and
decrypt information which limits the time a symmetric key is exposed. You can keep long-term
SSL connections more secure by periodically changing the symmetric keys used for encryption.

The –R option specifies the renegotiation interval in minutes. If an SSL connection does
renegotiate within the specified interval, the IIOP Listener/Handler will request the application
to renegotiate the SSL session for inbound connections or actually perform the renegotiation in
the case of outbound connections. The default is 0 minutes which results in no periodic session
renegotiations.

You cannot use session renegotiation when enabling certificate authentication using the -a
option of the ISL command.

Defining Security Parameters for the IIOP Listener/Handler
For the IIOP Listener/Handler to participate in SSL connections, the IIOP Listener/Handler
authenticates itself to the peer that initiated the SSL connection. This authentication requires a
digital certificate. The private key associated with the digital certificate is used as part of
establishing an SSL connection that results in an agreement between the principal and the peer
(in this case a client application and the IIOP Listener/Handler) on the session key. The session
key is a symmetric key (as opposed to the private-public keys) that is used to encrypt data during
an SSL session. You define the following information for the IIOP Listener/Handler so that it can
be authenticated by peers:

SEC_PRINCIPAL_NAME

Specifies the identity of the IIOP Listener/Handler.

SEC_PRINCIPAL_LOCATION

Example o f Se t t ing Paramete rs on the ISL Sys tem Process

Using Security in CORBA Applications 6-7

Specifies the location of the private key file. For example,
$TUXDIR/udataobj/security/keys/milozzi.pem.

SEC_PRINCIPAL_PASSVAR

Specifies an environment variable that holds the pass phrase for the private key of the IIOP
Listener/Handler when the tmloadcf command is not run interactively. Otherwise, you
will be prompted for the pass phrase when you enter the tmloadcf command.

Note: If you define any of the security parameters for the IIOP Listener/Handler incorrectly, the
following errors are reported in the ULOG file:

ISH.28014: LIBPLUGIN_CAT:2008:ERROR:No such file or directory
SEC_PRINCIPAL_LOCATION
ISH.28014:ISNAT_CAT:1552:ERROR:Could not open private key, erro
=-3011
ISH.28104:ISNAT_CAT:1544:ERROR:Could not perform SSL accept from
host/port//IPADDRESS:PORT

To resolve the errors, correct information in the security parameters and reboot the IIOP
Listener/Handler.

These parameters are included in the part of the SERVERS section of the UBBCONFIG file that
defines the ISL system process.

You also need to use the tpusradd command to define the IIOP Listener/Handler as an
authorized user in the BEA Tuxedo domain. You will be prompted for a password for the IIOP
Listener/Handler. Enter the pass phrase you defined for SEC_PRINCIPAL_PASSVAR.

During initialization, the IIOP Listener/Handler includes its principal name as defined by
SEC_PRINCIPAL_NAME as an argument when calling the authentication plug-in to acquire its
credentials. An IIOP Listener/Handler requires credentials so that it can authenticate remote
client applications that want to interact with the CORBA application, and get authorization and
auditing tokens for remote client applications.

Because the IIOP Listener/Handler must authenticate its own identity to the BEA Tuxedo domain
in order to become a trusted system process, it is necessary to configure an authentication server
when using the default authentication plug-in. See “Configuring the Authentication Server” on
page 7-2 for more information.

Example of Setting Parameters on the ISL System Process
You set parameters for the SSL protocol in the portion of the SERVERS section of the UBBCONFIG
that defines information for the ISL server process. Listing 6-1 includes code from a UBBCONFIG

6-8 Using Security in CORBA Applications

file that set parameters to configure the IIOP Listener/Handler for the SSL protocol and certificate
authentication.

Listing 6-1 Using the ISL Command in the UBBCONFIG File

...

ISL

SRVGRP = SYS_GRP

SRVID = 5

CLOPT = “-A -- -a -z40 -Z128 -S3579 -n //ICEPICK:2569

SEC_PRINCIPAL_NAME=”BLOTTO”

 SEC_PRINCIPAL_LOCATION=”BLOTTO.pem”

 SEC_PRINCIPAL_VAR=”AUDIT_PASS”

Example of Setting Command-line Options on the CORBA C++
ORB

Listing 6-2 contains sample code that illustrates using the command-line options on the CORBA
C++ ORB to configure the ORB for the SSL protocol.

Listing 6-2 Example of Setting the Command-line Options on the CORBA C++ ORB

ChatClient -ORBid BEA_IIOP

-ORBsecurePort 2100

-ORBminCrypto 40

-ORBMaxCrypto 128

TechTopics

Using Security in CORBA Applications 7-1

C H A P T E R 7

Configuring Authentication

This topic includes the following sections:

Configuring the Authentication Server

Defining Authorized Users

Defining a Security Level

Configuring Application Password Security

Configuring Password Authentication

Sample UBBCONFIG File for Password Authentication

Configuring Certificate Authentication

Sample UBBCONFIG File for Certificate Authentication

Configuring Access Control

Configuring Security to Interoperate with Older WebLogic Enterprise Client Applications

Note: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.0.

All BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB text
references, associated code samples, etc. should only be used:

to help implement/run third party Java ORB libraries, and

for programmer reference only.

7-2 Using Security in CORBA Applications

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Configuring the Authentication Server
Note: You only need to configure the authentication server, if you have specified a value of

USER_AUTH or higher for the SECURITY parameter and are using the default
authentication plug-in.

Authentication requires that an authentication server be configured for the purpose of
authenticating users by checking their individual passwords against a file of legal users. The BEA
Tuxedo system uses a default authentication server called AUTHSRV to perform authentication.
AUTHSVR provides a single service, AUTHSVC, which performs authentication. AUTHSVC is
advertised by the AUTHSVR server as AUTHSVC when the security level is set to ACL or
MANDATORY_ACL.

For a CORBA application to authenticate users, the value of the AUTHSVC parameter in the
RESOURCES section of the UBBCONFIG file needs to specify the name of the process to be used as
the authentication server for the CORBA application. The service must be called AUTHSVC. If the
AUTHSVC parameter is specified in the RESOURCES section of the UBBCONFIG file, the SECURITY
parameter must also be specified with a value of at least USER_AUTH. If the value is not specified,
an error will occur when the system executes the tmloadcf command. If the -m option is
configured on the ISL process in the UBBCONFIG file, the AUTHSVC must be defined in the
UBBCONFIG file before the ISL process.

In addition, you need to define AUTHSVR in the SERVERS section of the UBBCONFIG file. The
SERVERS section contains information about the server processes to be booted in the CORBA
application. To add AUTHSVC to an application, you need to define AUTHSVC as the authentication
service and AUTHSVR as the authentication server in the UBBCONFIG file. Listing 7-1 contains the
portion of the UBBCONFIG file that defines the authentication server.

Listing 7-1 Parameters for the Authentication Server

*RESOURCES

SECURITY USER_AUTH

AUTHSVC “AUTHSVC”

.

.

.

Def in ing Author i zed Users

Using Security in CORBA Applications 7-3

*SERVERS

AUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2 CLOPT="-A"

If you omit the parameter-value entry AUTHSVC, the BEA Tuxedo system calls AUTHSVC by
default.

AUTHSVR may be replaced with an authentication server that implements logic specific to the
application. For example, a company may want to develop a custom authentication server so that
it can use the popular Kerberos mechanism for authentication.

To add a custom authentication service to an application, you need to define your authentication
service and server in the UBBCONFIG file. For example:

*RESOURCES

SECURITY USER_AUTH

AUTHSVC KERBEROS

.

.

.

*SERVERS

KERBEROSSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2

CLOPT="-A"

Once you configure the default authentication server, the identity of the IIOP Listener/Handler
(as specified in the SEC_PRINCIPAL_NAME parameter in the UBBCONFIG file) must be specified
in the tpusr file. In addition, all the users of the CORBA application must be specified in the
tpusr file. For more information, see “Defining Authorized Users” on page 7-3.

Defining Authorized Users
As part of configuring security for a CORBA application, you need to define the principals and
groups of principals who have access to the CORBA application.

Authorized users can be defined in the following ways:

When using password authentication, authorized users are defined using a username and an
associated password.

When using certificate authentication, authorized users are identified by their e-mail
address. The e-mail address maps the external identity of a principal represented by a
digital certificate to an identity used by a CORBA application.

7-4 Using Security in CORBA Applications

You use the tpusradd command to create files containing lists of authorized principals. The
tpusradd command adds a new principal entry to the BEA Tuxedo security data files. This
information is used by the authentication server to authenticate principals. The file that contains
the principals is called tpusr.

The file is a colon-delimited, flat ASCII file, readable only by the system administrator of the
CORBA application. The system file entries have a limit of 512 characters per line. The file is
kept in the application directory, specified by the environment variable $APPDIR. The
environment variable $APPDIR must be set to the pathname of the CORBA application.

The tpusradd file should be owned by the administrator account. BEA recommends that the file
be protected so that only the owner has read and write privileges for the file and all other users
have only read privileges for the file.

The tpusradd command has the following options:

-u uid

The user identification number. The UID must be a positive decimal integer below 128K.
The UID must be unique within the list of existing identifiers for the application. The UID
defaults to the next available (unique) identifier greater than 0.

-g gid

The group identification number. The GID can be an integer identifier or character-string
name. This option defines the new user’s group membership. It defaults to the other
group (identifier 0).

-c client_name

A string of printable characters that specifies the name of the principal. The name may not
contain a colon (:). pound sign (#), or a newline (\n). The principal name must be unique
within the list of existing principals for the CORBA application.

usrname

A string of printable characters that specifies the new login name of the user. The name
may not contain a colon (:). pound sign (#), or a newline (\n). The user name must be
unique within the list of existing users for the CORBA application

If you are using the default authentication server, the identity of the IIOP Listener/Handler (as
specified in the SEC_PRINCIPAL_NAME parameter in the UBBCONFIG file) must be specified in the
tpusr file. In addition, all the users of the CORBA application must be specified in the tpusr
file.

Def in ing Author i zed Users

Using Security in CORBA Applications 7-5

If you are using a custom authentication service, define the IIOP Listener/Handler and the users
of the CORBA application in the user registry of the custom authentication service. In addition,
no file called tpusr should appear in $APPDIR. If a file by that name exists, a
CORBA/NO_PERMISSION exception will be raised.

Listing 7-2 includes a sample tpusr file.

Listing 7-2 Sample tpusr File

Usrname Cltname Password Entry Uid GID

milozzi “bar” 2 100 0

smart “ “ 1 1 0

pat “tpsysadmin” 3 0 8192

butler “tpsysadmin” 3 N/A 8192

Note: Use the tpgrpadd command to add groups of principals to the BEA Tuxedo security
data files.

In addition to the tpusradd and tpgrpadd commands, the BEA Tuxedo product provides the
following commands to modify the tpusr and tpgrp files:

tpusrdel

tpusrmod

tpgrpdel

tpgrpmod

For a complete description of the commands, see the BEA Tuxedo Command Reference in the
BEA Tuxedo online documentation.

You may already have files containing lists of users and groups on your host system. You can use
them as the user and group files for your CORBA application, but only after converting them to
the format required by the BEA Tuxedo system. To convert your files, run the tpaclcvt
command, as shown in the following sample procedure. The sample procedure is written for a
UNIX host machine.

1. Ensure that you are working on the application MASTER machine and that the application is
inactive.

2. To convert the /etc/password file into the format needed by the BEA Tuxedo system,
enter the following command:

7-6 Using Security in CORBA Applications

tpaclcvt -u /etc/password

This command creates the tpusr file and stores the converted data in it. If the tpusr file
already exists, tpaclcvt adds the converted data to the file, but it does not add duplicate
user information to the file.

Note: For systems on which a shadow password file is used, you are prompted to enter a
password for each user in the file.

3. To convert the /etc/group file into the format needed by the BEA Tuxedo system, enter
the following command:

tpaclcvt -g /etc/group

This command creates the tpgrp file and stores the converted data in it. If the tpgrp file
already exists, tpaclcvt adds the converted data to the file, but it does not add duplicate
group information to the file.

Defining a Security Level
As part of defining security for a CORBA application, you need to define the SECURITY
parameter in the RESOURCES section of the UBBCONFIG file. The SECURITY parameter has the
following format:

*RESOURCES

SECURITY {NONE|APP_PW|USER_AUTH|ACL|MANDATORY_ACL}

Table 7-1 describes the values for the SECURITY parameter.

Table 7-1 Values for the SECURITY Parameter

Value Description

NONE Indicates that no password or access checking is performed in the
CORBA application.

Tobj::PrincipalAuthenticator::get_auth_type()
returns a value of TOBJ_NOAUTH.

APP_PW Indicates that client applications are required to supply an
application password to access the BEA Tuxedo domain. The
tmloadcf command prompts for an application password.
Tobj::PrincipalAuthenticator::get_auth_type()
returns a value of TOBJ_SYSAUTH.

Conf igur ing Appl i ca t i on Password Secur i t y

Using Security in CORBA Applications 7-7

Note: If the IIOP Listener/Handler is configured for using certificate authentication, the value
of the SECURITY parameter must be USER_AUTH or greater.

Configuring Application Password Security
To configure application password security, complete the following steps:

1. Ensure that you are working on the application MASTER machine and that the application is
inactive.

2. Set the SECURITY parameter in the RESOURCES section of the UBBCONFIG file to APP_PW.

USER_AUTH Indicates that client applications and the IIOP Listener/Handler
are required to authenticate themselves to the BEA Tuxedo
domain using a password. The value USER_AUTH is similar to
APP_PW but, in addition, indicates that user authentication will be
done during client initialization. The tmloadcf command
prompts for an application password.

Tobj::PrincipalAuthenticator::get_auth_type()
returns a value of TOBJ_APPAUTH.

No access control checking is performed at this security level.

ACL Indicates that authentication is used in the CORBA application
and access control checks are performed on interfaces, services,
queue names, and event names. If an associated ACL is not found
for a name, it is assumed that permission is granted. The
tmloadcf command prompts for an application password.

Tobj::PrincipalAuthenticator::get_auth_type
returns a value of TOBJ_APPAUTH.

MANDATORY_ACL Indicates that authentication is used in the CORBA application
and access control checks are performed on interfaces, services,
queue names, and event names. The value MANDATORY_ACL is
similar to ACL, but permission is denied if an associated ACL is
not found for the name.The tmloadcf command prompts for an
application password.

Tobj::PrincipalAuthenticator::get_auth_type
returns a value of TOBJ_APPAUTH.

Table 7-1 Values for the SECURITY Parameter (Continued)

Value Description

7-8 Using Security in CORBA Applications

3. Load the configuration by running the tmloadcf command. The tmloadcf command
parses UBBCONFIG and loads the binary TUXCONFIG file to the location referenced by the
TUXCONFIG variable.

4. The system prompts you for a password. The password you enter may be up to 30
characters long. It becomes the password for the application and remains in effect until you
change it by using the passwd parameter of the tmadmin command.

5. Distribute the application password to authorized users of the application through an offline
means such as telephone or letter.

Configuring Password Authentication
Password authentication requires that in addition to the application password, each client
application must provide a valid username and user-specific data, such as a password, to interact
with the CORBA application. The password must match the password associated with the
username stored in the tpusr file. The checking of user passwords against the
username/password combination in the tpusr file is carried out by the authentication service
AUTHSVC, which is provided by the authentication server AUTHSVR.

To enable password authentication, complete the following steps:

1. Define users and their associated passwords in the tpusr file. For more information about the
tpusr file, see “Defining Authorized Users” on page 7-3.

2. Ensure that you are working on the application MASTER machine and that the application is
inactive.

3. Open UBBCONFIG with a text editor and add the following lines to the RESOURCES and
SERVERS sections:

*RESOURCES
SECURITY USER_AUTH
AUTHSVC “AUTHSVC”

.

.

.

*SERVERS
AUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2
CLOPT="-A"

CLOPT="-A" causes the tmboot command to pass only the default command-line options
(invoked by "-A") to AUTHSVR when the tmboot command starts the application.

Sample UBBCONF IG F i l e f o r Password Authent icat ion

Using Security in CORBA Applications 7-9

4. Load the configuration by running the tmloadcf command. The tmloadcf command
parses UBBCONFIG and loads the binary TUXCONFIG file to the location referenced by the
TUXCONFIG variable.

5. The system prompts you for a password. The password you enter may be up to 30
characters long. It becomes the password for the application and remains in effect until you
change it by using the passwd parameter of the tmadmin command.

6. Distribute the application password to authorized users of the application through an offline
means such as telephone or letter.

Sample UBBCONFIG File for Password Authentication
Listing 7-4 includes a UBBCONFIG file for an application which uses password authentication.
The key sections of the UBBCONFIG file are noted in boldface text.

Listing 7-3 Sample UBBCONFIG File for Password Authentication

*RESOURCES

 IPCKEY 55432

 DOMAINID securapp

 MASTER SITE1

 MODEL SHM

 LDBAL N

 SECURITY USER_AUTH

 AUTHSVR “AUTHSVC”

*MACHINES

 "ICEAXE"

 LMID = SITE1

 APPDIR = "D:\TUXDIR\samples\corba\SECURAPP"

 TUXCONFIG = "D:\TUXDIR\samples\corba\SECURAPP\results

\tuxconfig"

 TUXDIR = "D:\Tux8"

 MAXWSCLIENTS = 10

*GROUPS

 SYS_GRP

 LMID = SITE1

7-10 Using Security in CORBA Applications

 GRPNO = 1

 APP_GRP

 LMID = SITE1

 GRPNO = 2

*SERVERS

 DEFAULT:

 RESTART = Y

 MAXGEN = 5

 AUTHSVR

 SRVGRP = SYS_GRP

 SRVID = 1

 RESTART = Y

 GRACE = 60

 MAXGEN = 2

 TMSYSEVT

 SRVGRP = SYS_GRP

 SRVID = 1

 TMFFNAME

 SRVGRP = SYS_GRP

 SRVID = 2

 CLOPT = "-A -- -N -M"

 TMFFNAME

 SRVGRP = SYS_GRP

 SRVID = 3

 CLOPT = "-A -- -N"

 TMFFNAME

 SRVGRP = SYS_GRP

 SRVID = 4

 CLOPT = "-A -- -F"

 simple_server

 SRVGRP = APP_GRP

 SRVID = 1

 RESTART = N

Conf igur ing Cer t i f i ca te Au thent i cat i on

Using Security in CORBA Applications 7-11

 ISL

 SRVGRP = SYS_GRP

 SRVID = 5

 CLOPT = “-A -- -n //PCWIZ::2500”

 SEC_PRINCIPAL_NAME="IIOPListener"

 SEC_PRINCIPAL_PASSVAR="ISH_PASS"

Configuring Certificate Authentication
Certificate authentication uses the SSL protocol so you need to install the license for the SSL
protocol and configure the SSL protocol before you can use certificate authentication.
Information about installing the license for the SSL protocol can be found in Installing the BEA
Tuxedo System. For information about configuring the SSL protocol, see “Configuring the SSL
Protocol” on page 6-1.

You also need an LDAP-enabled directory and certificate authority in place before using
certificate authentication in a CORBA application. You can choose any LDAP-enabled directory
service. You can also choose the certificate authority from which to obtain certificates and private
keys used in a CORBA application. For more information, see “Managing Public Key Security”
on page 4-1.

To enable certificate authentication, complete the following steps:

1. Install the license for the SSL protocol.

2. Set up an LDAP-enabled directory service.

3. Obtain a certificate and private key for the IIOP Listener/Handler from a certificate
authority.

4. Obtain a certificate and private key for the CORBA application from a certificate authority.

5. Store the private keys for the CORBA application in the Home directory of the user or in the
following directories:

Windows 2003
%TUXDIR%\udataobj\security\keys

UNIX
$TUXDIR/udataobj/security/keys

6. Publish the certificates for the IIOP Listener/Handler, the CORBA application, and the
certificate authority in the LDAP-enabled directory service.

7-12 Using Security in CORBA Applications

7. Define the SEC_PRINCIPAL, SEC_PRINCIPAL_LOCATION, and SEC_PRINCIPAL_PASSVAR
for the ISL server process in the UBBCONFIG file. For more information, see “Defining
Security Parameters for the IIOP Listener/Handler” on page 6-6.

8. Use the tpusradd command to define the authorized users of your CORBA application and
IIOP Listener/Handler. Use the e-mail addresss of the user in the tpusr file. For more
information about the tpusr file, see “Defining Authorized Users” on page 7-3. Use the
phase phrase you defined in SEC_PRINCIPAL_PASSVAR as the password for the IIOP
Listener/Handler.

9. Define a port on the IIOP Listener/Handler for secure communications using the -S option
of the ISL command. For more information, see “Defining a Port for SSL Network
Connections” on page 6-2.

10. Enable certificate authentication in the IIOP Listener/Handler using the -a option of the ISL
command.

11. Create a Trusted Certificate Authority file (trust_ca.cer) that defines the certificate
authorities trusted by the CORBA application. For more information, see “Defining the
Trusted Certificate Authorities” on page 4-7.

12. Open UBBCONFIG with a text editor and add the following lines to the RESOURCES and
SERVERS sections:
*RESOURCES
SECURITY USER_AUTH

13. Load the configuration by running the tmloadcf command. The tmloadcf command
parses UBBCONFIG and loads the binary TUXCONFIG file to the location referenced by the
TUXCONFIG variable.

14. Optionally, create a Peer Rules file (peer_val.rul) for both the CORBA application and
the IIOP Listener/Handler. For more information, see “Creating a Peer Rules File” on
page 4-8.

15. Optionally, modify the LDAP search file filter to reflect the hierarchy in place in your
enterprise. For more information, see “Editing the LDAP Search Filter File” on page 4-4.

To enable certificate authentication, complete one of the following:

Use the -a option of the ISL command to specify that certificate authentication must be
used by applications connecting to the IIOP Listener/Handler.

Use the -ORBmutualAuth command-line option on the ORB to specify that certificate
authentication must be used by applications connecting to the CORBA C++ ORB.

Sample UBBCONF IG F i l e f o r Cer t i f i ca te Authent icat ion

Using Security in CORBA Applications 7-13

Enabling certificate authentication requires the license for the SSL protocol to be installed. If the
-a option or the -ORBmutualAuth command-line option is executed and a license to enable the
use of the SSL protocol does not exist, the IIOP Listener/Handler or CORBA C++ ORB will not
start.

Sample UBBCONFIG File for Certificate Authentication
Listing 7-4 includes a UBBCONFIG file for a CORBA application which uses certificate
authentication. The key sections of the UBBCONFIG file are noted in boldface text.

Listing 7-4 Sample UBBCONFIG File for Certificate Authentication

*RESOURCES

 IPCKEY 55432

 DOMAINID simpapp

 MASTER SITE1

 MODEL SHM

 LDBAL N

 SECURITY USER_AUTH

AUTHSVR “AUTHSVC”

*MACHINES

 "ICEAXE"

 LMID = SITE1

 APPDIR = "D:\TUXDIR\samples\corba\SIMPAP~1"

 TUXCONFIG = "D:\TUXDIR\samples\corba\SIMPAP~1

\results\tuxconfig"

 TUXDIR = "D:\TUX8"

 MAXWSCLIENTS = 10

*GROUPS

 SYS_GRP

 LMID = SITE1

 GRPNO = 1

 APP_GRP

 LMID = SITE1

 GRPNO = 2

7-14 Using Security in CORBA Applications

*SERVERS

 DEFAULT:

 RESTART = Y

 MAXGEN = 5

 AUTHSVR

 SRVGRP = SYS_GRP

 SRVID = 1

 RESTART = Y

 GRACE = 60

 MAXGEN = 2

TMSYSEVT

 SRVGRP = SYS_GRP

 SRVID = 1

 TMFFNAME

 SRVGRP = SYS_GRP

 SRVID = 2

 CLOPT = "-A -- -N -M"

 TMFFNAME

 SRVGRP = SYS_GRP

 SRVID = 3

 CLOPT = "-A -- -N"

 TMFFNAME

 SRVGRP = SYS_GRP

 SRVID = 4

 CLOPT = "-A -- -F"

 simple_server

 SRVGRP = APP_GRP

 SRVID = 1

 RESTART = N

 ISL

 SRVGRP = SYS_GRP

 SRVID = 5

 CLOPT = "-A -- -a -z40 -Z128 -S2458 -n //ICEAXE:2468"

 SEC_PRINCIPAL_NAME="IIOPListener"

Conf igur ing Access Cont ro l

Using Security in CORBA Applications 7-15

 SEC_PRINCIPAL_LOCATION="IIOPListener.pem"

 SEC_PRINCIPAL_PASSVAR="ISH_PASS"

Configuring Access Control
Note: Access control only applies to the default authorization implementation. The default

authorization provider for the CORBA security environment does not enforce access
control checks. In addition, the setting of the SECURITY parameter in the UBBCONFIG file
does not control or enforce access control used by third-party authorization
implementation.

There are two levels of access control security: optional access control list (ACL) and mandatory
access control list (MANDATORY_ACL). Only when users are authenticated to join an application
does the access control list become active.

By using an access control list, a system administrator can organize users into groups and
associate the groups with objects that the member users have permission to access. Access control
is done at the group level for the following reasons:

System administration is simplified. It is easier to give a group of people access to a new
object than it is to give individual users access to the object.

Performance is improved. Because access permission needs to be checked for each
invocation of an entity, permission should be resolved quickly. Because there are fewer
groups than users, it is quicker to search through a list of privileged groups than it is to
search through a list of privileged users.

When using the default authorization provider, the access control checking feature is based on the
following files that are created and maintained by the system administrator:

tpusr contains a list of users

tpgrp contains a list of groups

tpacl contains a list of ACLs

Configuring Optional ACL Security
The difference between ACL and MANDATORY_ACL is the following.

In ACL mode, a service request will be allowed if there is not a specific ACL.

In MANDATORY_ACL mode, the service request is denied if there is not a specific ACL.

7-16 Using Security in CORBA Applications

Optional ACL Security requires that each client provide an application password, a username,
and user-specific data, such as a password, to join the application.

To configure optional ACL security, complete the following steps:

1. Ensure that you are working on the application MASTER machine and that the application is
inactive.

2. Open UBBCONFIG with a text editor and add the following lines to the RESOURCES and
SERVERS sections:

*RESOURCES
SECURITY ACL
AUTHSVC “AUTHSVC”

.

.

.

*SERVERS
AUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2
CLOPT="-A"

CLOPT="-A" causes the tmboot command to pass only the default command-line options
(invoked by "-A") to AUTHSVR when the tmboot command starts the application. By
default, AUTHSVR uses the user information in the tpusr file to authenticate clients that
want to interact with the CORBA application.

3. Load the configuration by running the tmloadcf command. The tmloadcf command
parses UBBCONFIG and loads the binary TUXCONFIG file to the location referenced by the
TUXCONFIG variable.

4. The system prompts you for a password. The password you enter may be up to 30
characters long. It becomes the password for the application and remains in effect until you
change it by using the passwd command of tmadmin.

5. Distribute the application password to authorized users of the application through an offline
means such as telephone or letter.

Configuring Mandatory ACL Security
Mandatory ACL security level requires that each client provide an application password, a
username, and user-specific data, such as a password, to interact with the CORBA application.

To configure mandatory ACL security, perform the following steps:

Conf igur ing Access Cont ro l

Using Security in CORBA Applications 7-17

1. Ensure that you are working on the application MASTER machine and that the application is
inactive.

2. Open UBBCONFIG with a text editor and add the following lines to the RESOURCES and
SERVERS sections:

*RESOURCES
SECURITY MANDATORY_ACL
AUTHSVC ..AUTHSVC

.

.

.

*SERVERS
AUTHSVR SRVGRP="group_name" SRVID=1 RESTART=Y GRACE=600 MAXGEN=2
CLOPT="-A"

CLOPT="-A" causes the tmboot command to pass only the default command-line options
(invoked by "-A") to AUTHSVR when the tmboot command starts the application. By
default, AUTHSVR uses the client user information in the tpusr file named to authenticate
clients that want to join the application. The tpusr file resides in the directory referenced
by the first pathname defined in the application’s APPDIR variable.

3. Load the configuration by running the tmloadcf command. The tmloadcf command
parses UBBCONFIG and loads the binary TUXCONFIG file to the location referenced by the
TUXCONFIG variable.

4. The system prompts you for a password. The password you enter may be up to 30
characters long. It becomes the password for the application and remains in effect until you
change it by using the passwd command of tmadmin.

5. Distribute the application password to authorized users of the application through an offline
means such as telephone or letter.

Setting ACL Policy Between CORBA Applications
As the administrator, you use the following configuration parameters to set and control the access
control list (ACL) policy between CORBA applications that reside in different BEA Tuxedo
domains.

7-18 Using Security in CORBA Applications

.

The following bullets explain how the ACL_POLICY configuration affects the operation of local
domain gateway (GWTDOMAIN) processes.

When using a local ACL policy, each domain gateway (GWTDOMAIN) modifies inbound
CORBA client requests (requests originating from the remote application and received over
the network connection) so that they take on the DOMAINID for the remote domain access
point and thus have the same access permissions as that identity. Each domain gateway
passes outbound client requests without change.

In this configuration, each application has an ACL database containing entries only for
users in its own domain.

When using a global ACL policy, each domain gateway (GWTDOMAIN) passes inbound and
outbound CORBA client requests without change. In this configuration, each application
has an ACL database containing entries for users in its own domain as well as users in the
remote domain.

Impersonating the Remote Domain Gateway
If the domain gateway receives a client request from a remote domain for which the ACL_POLICY
parameter is set (or defaulted) to LOCAL in the local DMCONFIG file, the domain gateway removes
any tokens from the request and creates an application key containing the DOMAINID of the remote
domain access point.

Parameter Name Description Setting

ACL_POLICY in DMCONFIG
(TA_DMACLPOLICY in DM_MIB)

May appear in the DM_REMOTE_DOMAINS
section of the DMCONFIG file for each remote
domain access point. Its value for a particular
remote domain access point determines whether
or not the local domain gateway modifies the
identity of service requests received from the
remote domain.*

LOCAL or GLOBAL.
Default is LOCAL.

LOCAL means modify
the identity of service
requests, and GLOBAL
means pass service
requests with no
change. DOMAINID
string for the remote
domain access point.

* A remote domain access point is also known as an RDOM (pronounced “are dom”) or simply remote domain.

Conf igur ing Secur i t y to In te roperate w i th O lde r WebLog ic Ente rp r ise C l i ent App l i cat ions

Using Security in CORBA Applications 7-19

Example DMCONFIG Entries for ACL Policy
In Listing 7-5, the connection through the remote domain access point b01 is configured for
global ACL in the local DMCONFIG file, meaning that the domain gateway process for domain
access point c01 passes client requests from and to domain access point b01 without change.

Listing 7-5 Sample DMCONFIG File for ACL Policy

*DM_LOCAL_DOMAINS

<LDOM name> <Gateway Group name> <domain type> <domain id>

[<connection principal name>] [<security>]...

c01 GWGRP=bankg1

TYPE=TDOMAIN

DOMAINID="BA.CENTRAL01"

CONN_PRINCIPAL_NAME="BA.CENTRAL01"

SECURITY=DM_PW

.

.

.

*DM_REMOTE_DOMAINS

<RDOM name> <domain type> <domain id> [<ACL policy>]

[<connection principal name>] [<local principal name>]...

b01 TYPE=TDOMAIN

DOMAINID="BA.BANK01"

ACL_POLICY=GLOBAL

CONN_PRINCIPAL_NAME="BA.BANK01"

Configuring Security to Interoperate with Older WebLogic
Enterprise Client Applications

It may be necessary for CORBA erver applications in a BEA Tuxedo domain to securely
interoperate with client applications that were built with the security features available in the 4.2
and 5.0 releases of the WebLogic Enterprise product. To allow CORBA server applications to
interoperate with older, secure client applications, you need to either set the CLOPT -t option in
the UBBCONFIG file or specify the -ORBinterOp command-line option on the CORBA object
request broker (ORB).

7-20 Using Security in CORBA Applications

By setting the CLOPT -t option or specifying the -ORBinterOP command-line option, you are
lowering the effective level of security for a CORBA server. Therefore, the use of compatibility
mode should be carefully considered before enabling the mode in a server application.

You need to set the CLOPT -t option on any server applications that will interoperate with the
older client application. The CLOPT -t option is specified in the *SERVERS section of the
UBBCONFIG file.

Listing 7-6 Example UBBCONFIG File Entries for Interoperability

*SERVERS

SecureSrv SRVGRP=group_name SRVID=server_number

CLOPT=A -t..

If you are using a remote CORBA C++ ORB, specify the -ORBinterOp command-line option on
the ORB to allow the ORB to interoperate with client application using the security features in
the 4.2 or 5.0 releases of the WebLogic Enterprise product.

Using Security in CORBA Applications 8-1

C H A P T E R 8

Configuring Security Plug-ins

This topic includes the Registering the Security Plug-ins (SPIs) section.

Note: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.0.

All BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB text
references, associated code samples, etc. should only be used:

to help implement/run third party Java ORB libraries, and

for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Registering the Security Plug-ins (SPIs)
The CORBA and ATMI environments in the BEA Tuxedo product use a common transaction
processing (TP) infrastructure that consists of a set of core services, such as security. The TP
infrastructure is available to CORBA applications through well defined interfaces. These
interfaces allow system administrators to change the default behavior of the TP infrastructure by
loading and linking their own service code modules, referred to as security plug-ins.

In order to use a security plug-in, you need to register the security plug-in with the BEA Tuxedo
system. The registry of the BEA Tuxedo system is a disk-based repository for storing information
related to the security plug-ins. Initially, this registry holds information about the default security
plug-ins. Additional entries are made to the registry as custom security plug-ins are added to the

8-2 Using Security in CORBA Applications

BEA Tuxedo system. The registry entry for a security plug-in is a set of binary files that stores
information about the plug-in. There is one registry per BEA Tuxedo installation. Every client
application, server application, and server machine in a particular CORBA application must use
the same set of security plug-ins.

The registry is located in the following directory:

Windows 2003

$TUXDIR\udataobj

UNIX

$TUXDIR/udataobj

The system administrator of a CORBA application in which custom security plug-ins are used is
responsible for registering those plug-ins. A system administer can register security plug-ins in
the registry of the BEA Tuxedo system only from the local machine. That is, a system
administrator cannot register security plug-ins while logged on to the host machine from a remote
location.

The following commands are available for managing security plug-ins:

epifreg—for registering a security plug-in

epifunreg—for unregistering a security plug-in

epifregedt—for editing registry information

Instructions for using these commands are available in Developing Security Services for ATMI
and CORBA Environments. (This document contains the specifications for the Security SPIs, and
describes the BEA Tuxedo plug-in framework feature that makes the dynamic loading and
linking of security plug-ins possible.) To obtain this document, see your BEA account executive.

When installing custom security plug-ins, the security vendor that provided the plug-in should
provide instructions for using the commands to set up the registry for the BEA Tuxedo system in
order to access the customer security plug-ins.

Hybrid Templates for FrameMaker 5.5

Part III Security Programming

Writing a CORBA Application That Implements Security
Building and Running the CORBA Sample Applications
Troubleshooting

Using Security in CORBA Applications 9-1

C H A P T E R 9

Writing a CORBA Application That
Implements Security

This topic includes the following sections:

Using the Bootstrapping Mechanism

Using Password Authentication

Using Certificate Authentication

Using the Interoperable Naming Service Mechanism

Using the Invocations_Options_Required() Method

Note: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.0.

All BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB text
references, associated code samples, etc. should only be used:

to help implement/run third party Java ORB libraries, and

for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Using the Bootstrapping Mechanism
Note: This mechanism should be used with the BEA CORBA client applications.

9-2 Using Security in CORBA Applications

The Bootstrap object in the BEA Tuxedo CORBA environment has been enhanced so that users
can specify that all communication to a given IIOP Listener/Handler be protected. The Bootstrap
object supports corbaloc and corbalocs Uniform Resource Locator (URL) address formats to
be used when specifying the location of the IIOP Listener/Handler. The type of security provided
depends on the format of URL used to specify the location of the IIOP Listener/Handler.

As with the Host and Port address format, you use the URL address formats to specify the
location of the IIOP Listener/Handler, but the bootstrapping process behaves differently. When
using the corbaloc or corbalocs URL address format, the initial connection to the IIOP
Listener/Handler is deferred until either:

The principal uses password authentication with either the
Tobj::PrincipalAuthenticator::logon or the
SecurityLevel2::PrincipalAuthenticator::authenticate methods.

The principal calls the Tobj_Bootstrap::resolve_initial_references method
using an object ID value other than SecurityCurrent.

Using the corbalocs URL address format indicates that the SSL protocol is used to protect at
least the integrity of the connection between the principal and the IIOP Listener/Handler.

Table 9-1 highlights the differences between the two URL address formats.

Both the corbaloc and corbalocs URL address formats provide stringified object references
that are easily manipulated in both TCP/IP and Domain Name System (DNS) environments. The

Table 9-1 Differences Between corbaloc and corbalocs URL Address Formats

URL Address Formats Functionality

corbaloc By default, invocations on the IIOP Listener/Handler are unprotected.
Configuring the IIOP Listener/Handler for the SSL protocol is optional.

A principal can secure the bootstrapping process by using the
authenticate() method of the
SecurityLevel2::PrincipalAuthenticator interface and the
invocation_options_required() method of the
SecurityLeve12::Credentials interface to specify that certificate
authentication is to be used.

corbalocs Invocations on the IIOP Listener/Handler are protected and the IIOP
Listener/Handler or the CORBA C++ ORB must be configured to enable the use
of the SSL protocol. For more information, see “Configuring the SSL Protocol”
on page 6-1.

Using the Boots t rapp ing Mechan ism

Using Security in CORBA Applications 9-3

corbaloc and corbalocs URL address formats contain a DNS-style host name or an IP address
and port.

The URL address formats follow and extend the definition of object URLs adopted by the Object
Management Group (OMG) as part of the Interoperable Naming Service submission. The BEA
Tuxedo software also extends the URL format described in the OMG Interoperable Naming
Service submission to support a secure form that is modeled after the URL for secure HTTP, as
well as to support functionality in previous releases of the WebLogic Enterprise product.

Listing 9-1 contains examples of the new URL address formats.

Listing 9-1 Examples of the corbaloc and corbalocs URL Address Formats

corbaloc://555xyz.com:1024,corbaloc://555backup.com:1022,

corbaloc://555last.com:1999

corbalocs://555xyz.com:1024,(corbalocs://555backup.com:1022|corbalocs://55

5last.com:1999)

corbaloc://555xyz.com:1111

corbalocs://24.128.122.32:1011, corbalocs://24.128.122.34

As an enhancement to the URL syntax described in the OMG Interoperable Naming Service
submission, the BEA Tuxedo product extends the syntax to support a list of multiple URLs, each
with a different scheme. Listing 9-2 contains examples of specifying multiple URLs.

Listing 9-2 Examples of Specifying Multiple URL Address Formats

corbalocs://555xyz.com:1024,corbaloc://555xyz.com:1111
corbalocs://ctxobj.com:3434,corbalocs://mthd.com:3434,corbaloc://force.com:111
1

In the examples in Listing 9-2, if the parser reaches the URL corbaloc://force.com:1111, it
resets its internal state as if it had never attempted secure connections, and then begins attempting
unprotected connections. This situation occurs if the client application has not set any SSL
parameters on the Credentials object.

The following sections describe the behavior when using the different address formats of the
Bootstrap object.

9-4 Using Security in CORBA Applications

Using the Host and Port Address Format
If a CORBA client application uses the Host and Port address format of the Bootstrap object, the
constructor method of the Bootstrap object constructs an object reference using the specified host
name and port number. The invocation to the IIOP Listener/Handler is made without the
protections offered by the SSL protocol.

The client application can still authenticate using password authentication. However, since the
bootstrapping process is performed over an unprotected and unverified link, all communications
are vulnerable to the following security attacks:

The Man-in-the-Middle attack, because there was no verification that the principal to
which the connection was made was the desired principal.

The Denial of Service attack, because no object references were returned, the object
references returned were invalid, or the security token was invalid.

The Sniffer attack, because the information was sent in the clear so that anyone with a
packet sniffer can see the content of a message that was not encrypted (for example, only
the username/password information is encrypted).

The Tamper attack, because the integrity of the information is not protected. The contents
of the message could be changed and the change would not be detected.

The Replay attack, because the same request can be sent repeatedly without detection.

Note: If the IIOP Listener/Handler is configured for the SSL protocol and the Host and Port
address format of the Bootstrap object is used, the invocation on the specified CORBA
object results in a INVALID_DOMAIN exception.

Using the corbaloc URL Address Format
By default, the invocation on the IIOP Listener/Handler is unprotected when using the corbaloc
URL address format and password authentication. Therefore, all communications are vulnerable
to the following security attacks:

The Man-in-the-Middle attack, because there was no verification that the principal to
which the connection was made was the desired principal.

The Denial of Service attack, because no object references were returned, the object
references returned were invalid, or the security token was invalid.

Us ing Password Authent i cat i on

Using Security in CORBA Applications 9-5

The Sniffer attack, because the information was sent in the clear so that anyone with a
packet sniffer can see the content of a message that was not encrypted (for example, only
the username/password information is encrypted).

The Tamper attack, because the integrity of the information is not protected. The content of
the message could be changed and the change would not be detected.

The Replay attack, because the same request can be sent repeatedly without detection.

You can protect the bootstrapping process when using the corbaloc URL address format by
using the SecurityLevel2::PrincipalAuthenticator::authenticate() method,
specifying that certificate authentication is to be used, and setting the
invocation_methods_required method on the Credentials object.

Note: If the IIOP Listener/Handler is configured for the SSL protocol but not configured for
certificate authentication and the corbaloc URL address format is used, the invocation
on the specified CORBA object results in an INVALID_DOMAIN exception.

BEA recommends that existing CORBA applications migrate to the corbaloc URL address
format instead of using the Host and Port Address format.

Using the corbalocs URL Address Format
The corbalocs URL address format is the recommended format to use to ensure that
communications between principals and the IIOP Listener/Handler are protected. The
corbalocs URL address format functions in the same way as the corbaloc URL address
format, except the SSL protocol is used to protect all communications with the IIOP
Listener/Handler or the CORBA C++ ORB regardless of the type of authentication used.

When the defaults are used with the corbalocs URL address format, communications are
vulnerable only to Denial of Service security attacks. Using the SSL protocol and certificate
authentication guards against Sniffer, Tamper, and Replay attacks. In addition, the validation
check of the host specified in the digital certificate guards against Man-in-the-Middle attacks.

To use the corbalocs URL address format, the IIOP Listener/Handler or the CORBA C++ ORB
must be configured to enable the use of the SSL protocol. For more information about configuring
the IIOP Listener/Handler or the CORBA C++ ORB for the SSL protocol, see “Configuring the
SSL Protocol” on page 6-1.

Using Password Authentication
This section describes implementing password authentication in a CORBA applications.

9-6 Using Security in CORBA Applications

The Security Sample Application
The Security sample application demonstrates password authentication. The Security sample
application requires each student using the application to have an ID and a password. The
Security sample application works in the following manner:

1. The client application has a logon method. This method invokes operations on the
PrincipalAuthenticator object, which is obtained as part of the process of logging on to access
the domain.

2. The server application implements a get_student_details() method on the Registrar
object to return information about a student. After the user is authenticated and the logon is
complete, the get_student_details() method accesses the student information in the
database to obtain the student information needed by the client logon method.

3. The database in the Security sample application contains course and student information.

Figure 9-1 illustrates the Security sample application.

Us ing Password Authent i cat i on

Using Security in CORBA Applications 9-7

Figure 9-1 Security Sample Application

The source files for the Security sample application are located in the
\samples\corba\university directory in the BEA Tuxedo software. For information about
building and running the Security sample application, see the Guide to the CORBA University
Sample Applications.

Writing the Client Application
When using password authentication, write client application code that does the following:

1. Uses the Bootstrap object to obtain a reference to the SecurityCurrent object for the specific
BEA Tuxedo domain. You can use the Host and Port Address format, the corbaloc URL
address format, or the corbalocs URL address format.

2. Gets the PrincipalAuthenticator object from the SecurityCurrent object.

3. Uses one of the following methods to authenticate the principal:

– C++—SecurityLevel2::PrincipalAuthenticator::authenticate() using
Tobj::TuxedoSecurity

– C++—Tobj::PrincipalAuthenticator::logon()

CORBA C++ Client
Application

Database

logon()

Security Required

CORBA Server
Application

Registrar Object

get_student_details()

browse_courses()

get_course_details()

CORBA

9-8 Using Security in CORBA Applications

The SecurityLevel2::PrincipalAuthenticator interface is defined in the CORBAservices
Security Service specification. This interface contains two methods that are used to accomplish
the authentication of the principal. There are two methods because authentication of principals
may require more than one step. The authenticate() method allows the caller to authenticate
and optionally select attributes for the principal of this session.

The CORBA environment extends the PrincipalAuthenticator object with functionality to
support similar security to that found in the ATMI environment in the BEA Tuxedo product. The
enhanced functionality is provided by the Tobj::PrincipalAuthenticator interface.

The methods defined for the Tobj::PrincipalAuthenticator interface provide a focused,
simplified form of the equivalent CORBA-defined interface. You can use either the
CORBA-defined or the BEA Tuxedo extensions when developing a CORBA application.

The Tobj::PrincipalAuthenticator interface provides the same functionality as the
SecurityLevel2::PrincipalAuthenticator interface. However, unlike the
SecurityLevel2::PrincipalAuthenticator::authenticate() method, the logon()
method of the Tobj::PrincipalAuthenticator interface does not return a Credentials object.
As a result, CORBA applications that need to use more than one principal identity are required
to call the Current::get_credentials() method immediately after the logon() method to
retrieve the Credentials object as a result of the logon. Retrieval of the Credentials object directly
after a logon method should be protected with serialized access.

Note: The user data specified as part of the logon cannot contain embedded NULLs.

The following sections contain C++ code examples that illustrate implementing password
authentication. For a Visual Basic code example, see “Automation Security Reference” on
page 16-1.

C++ Code Example That Uses the
SecurityLevel2::PrincipalAuthenticator::authenticate() Method
Listing 9-3 contains C++ code that performs password authentication using the
SecurityLevel2::PrincipalAuthenticator::authenticate()method.

Listing 9-3 C++ Client Application That Uses the SecurityLevel2::PrincipalAuthenticator::authenticate()
Method

...
//Create Bootstrap object

Us ing Password Authent i cat i on

Using Security in CORBA Applications 9-9

 Tobj_Bootstrap* bootstrap = new Tobj_Bootstrap(orb,
 corbalocs://sling.com:2143);

//Get SecurityCurrent object
CORBA::Object_var var_security_current_oref =
 bootstrap.resolve_initial_references(“SecurityCurrent”);
SecurityLevel2::Current_var var_security_current_ref =
 SecurityLevel2::Current::_narrow(var_security_current_oref.in());

//Get the PrincipalAuthenticator
SecurityLevel2::PrincipalAuthenticator_var var_principal_authenticator =
 var_security_current_oref->principal_authenticator();

const char * user_name = “john”
const char * client_name = “university”;
char system_password[31] = {‘\0’};
char user_password[31] = {‘\0’};

Tobj::PrincipalAuthenticator_ptr var_bea_principal_authenticator =

Tobj::PrincipalAuthenticator::_narrow(var_bea_principal_authenticator.in())
;

//Determine the security level
Tobj::AuthType auth_type = var_bea_principal_authenticator->get_auth_type();
switch (auth_type)
{
 case Tobj::TOBJ_NOAUTH;
 break;

 case Tobj::TOBJ_SYSAUTH
 strcpy(system_password, “sys_pw”);

 case Tobj::TOBJ_APPAUTH
 strcpy(system_password, “sys_pw”);
 strcpy(user_password, “john_pw”);
 break;
}
if (auth_type != Tobj::TOBJ_NOAUTH)

{
 SecurityLevel2::Credentials_var creds;
 Security::Opaque_var auth_data;
 Security::AttributeList_var privileges;
 Security::Opaque_var cont_data;
 Security::Opaque_var auth_spec_data;

var_bea_principalauthenticator->build_auth_data(user_name,
 client_name,

9-10 Using Security in CORBA Applications

 system_password,
 user_password,
 NULL,
 auth_data,
 privileges);
Security::AuthenticationStatus status =
 var_bea_principalauthenticator->authenticate(
 Tobj::TuxedoSecurity,
 user_name,
 auth_data,
 privileges,
 creds,
 cont_data, auth_spec_data);

if (status != Security::SecAuthSuccess)
 {
 //Failed authentication
 return;
 }
}

// Proceed with application
...

C++ Code Example That Uses the Tobj::PrincipalAuthenticator::logon()
Method
Listing 9-4 contains C++ code that performs password authentication using the
Tobj::PrincipalAuthenticator::logon()method.

Listing 9-4 C++ Client Application That Uses the Tobj::PrincipalAuthenticator::logon() Method

...
CORBA::Object_var var_security_current_oref =
 bootstrap.resolve_initial_references(“SecurityCurrent”);
SecurityLevel2::Current_var var_security_current_ref =
 SecurityLevel2::Current::_narrow(var_security_current_oref.in());

//Get the PrincipalAuthenticator
SecurityLevel2::PrincipalAuthenticator_var var_principal_authenticator_oref =
 var_security_current_oref->principal_authenticator();

//Narrow the PrincipalAuthenticator
Tobj::PrincipalAuthenticator_var var_bea_principal_authenticator =

Us ing Password Authent i cat i on

Using Security in CORBA Applications 9-11

 Tobj::PrincipalAuthenticator::_narrow
 var_principal_authenticator_oref.in());

const char * user_name = “john”
const char * client_name = “university”;
char system_password[31] = {‘\0’};
char user_password[31] = {‘\0’};

//Determine the security level
Tobj::AuthType auth_type = var_bea_principal_authenticator->get_auth_type();
switch (auth_type)
{
 case Tobj::TOBJ_NOAUTH;
 break;

 case Tobj::TOBJ_SYSAUTH
 strcpy(system_password, “sys_pw”);

 case Tobj::TOBJ_APPAUTH
 strcpy(system_password, “sys_pw”);
 strcpy(user_password, “john_pw”);
 break;
}
if (auth_type != Tobj::TOBJ_NOAUTH)

{
 SecurityLevel2::Credentials_var creds;
 Security::Opaque_var auth_data;
 Security::AttributeList_var privileges;
 Security::Opaque_var cont_data;
 Security::Opaque_var auth_spec_data;

//Determine the security level
Tobj::AuthType auth_type = var_bea_principal_authenticator->get_auth_type();
Security::AuthenticationStatus status = var_bea_principal_authenticator->logon(
 user_name,
 client_name,
 system_password,
 user_password,
 0);

if (status != Security::SecAuthSuccess)
 {
 //Failed authentication
 return;
 }
}

9-12 Using Security in CORBA Applications

// Proceed with application
...
// Log off
 try
 {
 logoff();
 }
...

Using Certificate Authentication
This section describes implementing certificate authentication in CORBA applications.

The Secure Simpapp Sample Application
The Secure Simpapp sample application uses the existing Simpapp sample application and
modifies the code and configuration files to support secure communications through the SSL
protocol and certificate authentication.

The server application in the Secure Simpapp sample application provides an implementation of
a CORBA object that has the following two methods:

– The upper method accepts a string from the client application and converts the string
to uppercase letters.

– The lower method accepts a string from the client application and converts the string
to lowercase letters.

The Simpapp sample application was modified in the following ways to support certificate
authentication and the SSL protocol:

In the ISL section of the UBBCONFIG file, the -a, -S, -z, and -Z options of the ISL
command are specified to configure the IIOP Listener/Handler for the SSL protocol.

In the ISL section of the UBBCONFIG file, the SEC_PRINCIPAL_NAME, the
SEC_PRINCIPAL_LOCATION, and the SEC_PRINCIPAL_PASSVAR parameters are defined to
specify proof material for the IIOP Listener/Handler.

The code for the CORBA client application uses the corbalocs URL address format.

The code for the CORBA client application uses the authenticate() method of the
SecurityLevel2:PrincipalAuthenticator interface to authenticate the principal and
obtain credentials for the principals.

The source files for the C++ Secure Simpapp sample application are located in the
\samples\corba\simpappSSL directory of the BEA Tuxedo software. For instructions for

Us ing Cer t i f i ca te Au thent i cat i on

Using Security in CORBA Applications 9-13

building and running the Secure Simpapp sample application, see “Building and Running the
CORBA Sample Applications” on page 10-1.

Writing the CORBA Client Application
When using certificate authentication, write CORBA client application code that does the
following:

1. Uses the Bootstrap object to obtain a reference to the SecurityCurrent object for the specific
BEA Tuxedo domain. Use the corbalocs URL address format.

2. Gets the PrincipalAuthenticator object from the SecurityCurrent object.

3. Uses the authenticate() method of the SecurityLevel2:PrincipalAuthenticator
interface to authenticate the principals and obtain credentials for the principals. When using
certificate authentication, specify Tobj::CertificateBased for the method argument and
the pass phrase for the private key as the auth_data argument for Security::Opaque.

The following sections contain C++ code examples that illustrate implementing certificate
authentication.

C++ Code Example of Certificate Authentication
Listing 9-5 illustrates using certificate authentication in a CORBA C++ client application.

Listing 9-5 CORBA C++ Client Application That Uses Certificate Authentication

....

// Initialize the ORB

CORBA::ORB_var v_orb = CORBA::ORB_init(argc, argv, "");

// Create the bootstrap object

Tobj_Bootstrap bootstrap(v_orb.in(), corbalocs://sling.com:2143);

// Resolve SecurityCurrent

CORBA::Object_ptr seccurobj =

 bootstrap.resolve_initial_references("SecurityCurrent");

SecurityLevel2::Current_ptr seccur =

 SecurityLevel2::Current::_narrow(seccurobj);

9-14 Using Security in CORBA Applications

// Perform certificate-based authentication

 SecurityLevel2::Credentials_ptr the_creds;

 Security::AttributeList_varprivileges;

 Security::Opaque_var continuation_data;

 Security::Opaque_var auth_specific_data;

 Security::Opaque_var response_data;

//Principal email address

 char emailAddress[] = “milozzi@bigcompany.com;”

// Pass phrase for principal’s digital certificate

 char password[] = “asdawrewe98infldi7;”

// Convert the certificate private key password to opaque

 unsigned long password_len = strlen(password);

 Security::Opaque ssl_auth_data(password_len);

// Authenticate principal certificate with principal authenticator

 for(int i = 0; (unsigned long) i < password_len; i++)

 ssl_auth_data[i] = password[i];

 Security::AuthenticationStatus auth_status;

 SecurityLevel2::PrincipalAuthenticator_var PA =

 seccur->principal_authenticator();

 auth_status = PA->authenticate(Tobj::CertificateBased,

 emailAddress,

 ssl_auth_data,

 privileges,

 the_creds,

 continuation_data,

 auth_specific_data);

while(auth_status == Security::SecAuthContinue) {

auth_status = PA->continue_authentication(

 response_data,

 the_creds,

 continuation_data,

 auth_specific_data);

}

...

Us ing the In te roperab le Naming Serv ice Mechanism

Using Security in CORBA Applications 9-15

Using the Interoperable Naming Service Mechanism
Note: This mechanism should be used with third-party client ORBs.

To use the Interoperable Naming Service mechanism to access the BEA Tuxedo domain with the
proper credentials, perform the following steps:

1. Use the ORB::resolve_initial_references() operation to get a
SecurityLevel2::PrincipalAuthenticator object for the BEA Tuxedo domain. The
SecurityLevel2::PrincipalAuthenticator object adheres to the standard
CORBAservices Security Service instead of the proprietary BEA delegated interfaces and
contains methods for the purpose of authenticating principals.

2. Use the authenticate() method of the SecurityLevel2::PrincipalAuthenticator
object to log on to the BEA Tuxedo domain and authenticate the client ORB to the BEA
Tuxedo domain. If security credentials are required to access the BEA Tuxedo domain, the
authenticate() method will return a status indicating that continued authentication is
required.

3. Use the continue_authentication() method of the
SecurityLevel2::PrincipalAuthenticator object to pass encyrpted logon and
credential information to the BEA Tuxedo domain.

For more information about using the CORBA Interoperable Naming Service (INS) mechanism,
see the CORBA Bootstrap Object Programming Reference for the
SecurityLevel2::PrincipalAuthenticator interface.

Protecting the Client Credentials

The following information provides a sample that protects the client credentials before
performing the step of continuing authentication.

The following example assumes a Java client using J2SE v 1.4, accessing a BEA Tuxedo
application.

1. Add $TUXDIR/udataobj/java/jdk/tuxsecenv.jar to your CLASSPATH.

2. In your client code, call com.bea.protectLogonData() before you call the
PrincipalAuthenticator continue_authentication() method.

9-16 Using Security in CORBA Applications

3. The following is sample code that shows a protectLogonData() call. This code depends
on Java classes that are generated from these IDL files in $TUXDIR/include:
security.idl, lcs.idl, ns.idl, tobj.idl.

Listing 9-6 Sample Client Code Using CORBA INS

 try {

 // Initialize the ORB.

 ORB orb = ORB.init(args, null);

 // Authentication

 org.omg.CORBA.Object sec_obj =

 orb.resolve_initial_references("PrincipalAuthenticator");

 org.omg.SecurityLevel2.PrincipalAuthenticator pa =

 org.omg.SecurityLevel2.PrincipalAuthenticatorHelper.narrow(sec_obj);

 String userName = "geni";

 String clientName = "SimpleClient";

 org.omg.Security.SecAttribute[] privilege =

 new org.omg.Security.SecAttribute[1];

 org.omg.SecurityLevel2.CredentialsHolder myCreds =

 new org.omg.SecurityLevel2.CredentialsHolder();

 org.omg.Security.OpaqueHolder cont_data = // continuation data

 new org.omg.Security.OpaqueHolder();

 org.omg.Security.OpaqueHolder auth_data = // auth specific data

 new org.omg.Security.OpaqueHolder();

 org.omg.Security.AuthenticationStatus status = pa.authenticate(

 1,

 userName,

Us ing the In te roperab le Naming Serv ice Mechanism

Using Security in CORBA Applications 9-17

 clientName.getBytes(),

 privilege,

 myCreds,

 cont_data,

 auth_data

);

 if (status.value() == 2) {

 // further authentication required

 org.omg.SecurityLevel2.Credentials creds = myCreds.value;

 String secUid = new String(cont_data.value);

 org.omg.Security.OpaqueHolder cont_data_2 =

 new org.omg.Security.OpaqueHolder();

 org.omg.Security.OpaqueHolder auth_data_2 =

 new org.omg.Security.OpaqueHolder();

 org.omg.Security.OpaqueHolder opqholder =

 new org.omg.Security.OpaqueHolder();

byte[] ba0 = new byte[0];

 String userPasswd = new String("abc123");

 String domainPasswd = new String("abc123");

// encrypt the logon data

com.bea.LogonData td = new com.bea.LogonData();

 int rc = td.protectLogonData(

 userName,

 clientName,

 domainPasswd,

 userPasswd,

 secUid,

 ba0,

 opqholder

);

 // continue authentication

9-18 Using Security in CORBA Applications

 status = pa.continue_authentication(

 opqholder.value,

 creds,

 cont_data_2,

 auth_data_2

);

 }

 else {

 System.out.println("No security required");

 }

 .

 .

 .

Using the Invocations_Options_Required() Method
When using certificate authentication, it may be necessary for a principal to explicitly define the
security attributes it requires. For example, a bank application may have specific security
requirements it needs to meet before the bank application can transfer data to a database. The
invocation_options_required() method of the SecurityLevel2::Credentials
interface allows the principal to explicitly control the security characteristics of the SSL
connection. When using the corbaloc URL address format, you can secure the bootstrapping
process by using the authenticate()and invocation_options_required() methods of the
SecurityLevel2::Credentials interface.

To use the invocation_options_required() method, complete the following steps:

1. Write application code that uses the authenticate() method of the
SecurityLevel2::PrincipalAuthenticator object to specify certificate authentication
is being used.

2. Use the invocation_options_required() method to specify the security attributes the
principal requires. See the description of the invocation_options_required() method
in the “C++ Security Reference” on page 14-1 and “Java Security Reference” on page 15-1
for a complete list of security options.

Listing 9-7 provides a C++ example that uses the invocation_options_required() method.

Us ing the Invocat i ons_Opt ions_Requi red() Method

Using Security in CORBA Applications 9-19

Listing 9-7 C++ Example That Uses the invocation_options_required() Method

// Initialize the ORB

CORBA::ORB_var v_orb = CORBA::ORB_init(argc, argv, "");

// Create the bootstrap object

Tobj_Bootstrap bootstrap(v_orb.in(), corbalocs://sling.com:2143);

// Resolve SecurityCurrent

CORBA::Object_ptr seccurobj =

 bootstrap.resolve_initial_references("SecurityCurrent");

SecurityLevel2::Current_ptr seccur =

 SecurityLevel2::Current::_narrow(seccurobj);

// Perform certificate-based authentication

 SecurityLevel2::Credentials_ptr the_creds;

Security::AttributeList_var privileges;

 Security::Opaque_var continuation_data;

 Security::Opaque_var auth_specific_data;

 Security::Opaque_var response_data;

//Principal email address

 char emailAddress[] = “milozzi@bigcompany.com;”

// Pass phrase for principal’s digital certificate

 char password[] = “asdawrewe98infldi7;”

// Convert the certificate private key password to opaque

 unsigned long password_len = strlen(password);

 Security::Opaque ssl_auth_data(password_len);

// Authenticate principal certificate with principal authenticator

 for(int i = 0; (unsigned long) i < password_len; i++)

 ssl_auth_data[i] = password[i];

 Security::AuthenticationStatus auth_status;

 SecurityLevel2::PrincipalAuthenticator_var PA =

 seccur->principal_authenticator();

 auth_status = PA->authenticate(Tobj::CertificateBased,

 emailAddress,

 ssl_auth_data,

 privileges,

 the_creds,

9-20 Using Security in CORBA Applications

 continuation_data,

 auth_specific_data);

 the_creds->invocation_options_required(

 Security::Integrity|

 Security::DetectReplay|

 Security::DetectMisordering|

 Security::EstablishTrustInTarget|

 Security::EstalishTrustInClient|

 Security::SimpleDelegation);

 while(auth_status == Security::SecAuthContinue) {

 auth_status = PA->continue_authentication(

 response_data,

 the_creds,

 continuation_data,

 auth_specific_data);

}

Using Security in CORBA Applications 10-1

C H A P T E R 10

Building and Running the CORBA
Sample Applications

The topic includes the following sections:

Building and Running the Security Sample Application

Building and Running the Secure Simpapp Sample Application

Note: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.0.

All BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB text
references, associated code samples, etc. should only be used:

to help implement/run third party Java ORB libraries, and

for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

10-2 Using Security in CORBA Applications

Building and Running the Security Sample Application
The Security sample application demonstrates using password authentication. For instructions for
building and running the Security sample application, see the Guide to the CORBA University
Sample Applications.

Building and Running the Secure Simpapp Sample Application
The Secure Simpapp sample application demonstrates using the SSL protocol and certificate
authentication to protect communications between client applications and the BEA Tuxedo
domain.

To build and run the Secure Simpapp sample application, complete the following steps:

1. Copy the files for the Secure Simpapp sample application into a work directory.

2. Change the protection attribute on the files for the Secure Simpapp sample application.

3. Verify the environment variables.

4. Execute the runme command.

Before you can use the Secure Simpapp sample application, obtain a certificate and private key
(IIOPListener.pem) for the IIOP Listener/Handler from the certificate authority in your
enterprise and load the certificate in a Lightweight Directory Access Protocol (LDAP)-enabled
directory service. The runme command prompts you for the pass phrase for the private key for
the IIOP Listener/Handler.

Step 1: Copy the Files for the Secure Simpapp Sample
Application into a Work Directory
You need to copy the files for the Secure Simpapp sample application into a work directory on
your local machine.

The files for the Secure Simpapp sample application are located in the following directories:

Windows 2003

drive:\TUXdir\samples\corba\simpappSSL

UNIX

/usr/local/TUXdir/samples/corba/simpappSSL

Bui ld ing and Running the Secure S impapp Sample Appl i cat i on

Using Security in CORBA Applications 10-3

You will use the files listed in Table 10-1 to build and run the Secure Simpapp sample
application.

Table 10-1 Files Included in the Secure Simpapp Sample Application

File Description

Simple.idl The OMG IDL code that declares the Simple and
SimpleFactory interfaces.

Simples.cpp The C++ source code that overrides the default
Server::initialize and
Server::release methods.

Simplec.cpp The source code for the CORBA C++ client
application in the Secure Simpapp sample
application.

Simple_i.cpp The C++ source code that implements the Simple
and SimpleFactory methods.

Simple_i.h The C++ header file that defines the implementation
of the Simple and SimpleFactory methods.

Readme.html This file provides the latest information about
building and running the Secure Simpapp sample
application.

runme.cmd The Windows 2003 batch file that builds and runs the
Secure Simpapp sample application.

runme.ksh The UNIX Korn shell script that builds and executes
the Secure Simpapp sample application.

10-4 Using Security in CORBA Applications

Step 2: Change the Protection Attribute on the Files for the
Secure Simpapp Sample Application
During the installation of the BEA Tuxedo software, the sample application files are marked
read-only. Before you can edit or build the files in the Secure Simpapp sample application, you
need to change the protection attribute of the files you copied into your work directory, as
follows:

Windows 2003

prompt>attrib -r drive:\workdirectory*.*

UNIX

prompt>/bin/ksh

ksh prompt>chmod u+w /workdirectory/*.*

On the UNIX operating system platform, you also need to change the permission of runme.ksh
to give execute permission to the file, as follows:

ksh prompt>chmod +x runme.ksh

makefile.mk The makefile for the Secure Simpapp sample
application on the UNIX operating system. This file
is used to manually build the Secure Simpapp sample
application. Refer to the Readme.html file for
information about manually building the Secure
Simpapp sample application. The UNIX make
command needs to be in the path of your machine.

makefiles.nt The makefile for the Secure Simpapp sample
application on the Windows 2003 operating system.
This makefile can be used directly by the Visual C++
nmake command. This file is used to manually build
the Secure Simpapp sample application. Refer to the
Readme.html file for information about manually
building the Secure Simpapp sample application.
The Windows 2003 nmake command needs to be in
the path of your machine.

Table 10-1 Files Included in the Secure Simpapp Sample Application (Continued)

File Description

Bui ld ing and Running the Secure S impapp Sample Appl i cat i on

Using Security in CORBA Applications 10-5

Step 3: Verify the Settings of the Environment Variables
Before building and running the Secure Simpapp sample application, you need to ensure that
certain environment variables are set on your system. In most cases, these environment variables
are set as part of the installation procedure. However, you need to check the environment
variables to ensure they reflect correct information.

Table 10-2 lists the environment variables required to run the Secure Simpapp sample
application.

Table 10-2 Required Environment Variables for the Secure Simpapp Sample Application

Environment Variable Description

APPDIR The directory path where you copied the sample application files. For example:

Windows 2003
APPDIR=c:\work\simpappSSL

UNIX

APPDIR=/usr/work/simpappSSL

TUXCONFIG The directory path and name of the configuration file. For example:

Windows 2003
TUXCONFIG=c:\work\simpappSSL\tuxconfig

UNIX

TUXCONFIG=/usr/work/simpappSSL/tuxconfig

TOBJADDR The host name and port number of the IIOP Listener/Handler. The port number must
be defined as a port for SSL communications. For example:

Windows 2003
TOBJADDR=trixie::1111

UNIX
TOBJADDR=trixie::1111

RESULTSDIR A subdirectory of APPDIR where files that are created as a result of executing the
runme command are stored. For example:

Windows 2003

RESULTSDIR=c:\workdirectory\

UNIX
RESULTSDIR=/usr/local/workdirectory/

10-6 Using Security in CORBA Applications

To verify that the information for the environment variables defined during installation is correct,
perform the following steps:

Windows 2003

1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.

The Control Panel appears.

3. Click the System icon.

The System Properties window appears.

4. Click the Environment tab.

The Environment page appears.

5. Check the settings of the environment variables.

UNIX

ksh prompt>printenv TUXDIR

To change the settings, perform the following steps:

Windows 2003

1. On the Environment page in the System Properties window, click the environment variable
you want to change or enter the name of the environment variable in the Variable field.

2. Enter the correct information for the environment variable in the Value field.

3. Click OK to save the changes.

UNIX

ksh prompt>export TUXDIR=directorypath

Step 4: Execute the runme Command
The runme command automates the following steps:

1. Setting the system environment variables.

2. Loading the UBBCONFIG file.

3. Compiling the code for the client application.

Bui ld ing and Running the Secure S impapp Sample Appl i cat i on

Using Security in CORBA Applications 10-7

4. Compiling the code for the server application.

5. Starting the server application using the tmboot command.

6. Starting the client application.

7. Stopping the server application using the tmshutdown command.

Note: You can also run the Secure Simpapp sample application manually. The steps for
manually running the Secure Simpapp sample application are described in the
Readme.html file.

To build and run the Secure Simpapp sample application, enter the runme command, as follows:

Windows 2003

prompt>cd workdirectory

prompt>runme

UNIX

ksh prompt>cd workdirectory

ksh prompt>./runme.ksh

The Secure Simpapp sample application runs and prints the following messages:

Testing simpapp

 cleaned up

 prepared

 built

 loaded ubb

 booted

 ran

 shutdown

 saved results

 PASSED

During execution of the runme command, you are prompted for a password. Enter the pass phrase
of the private key of the IIOP Listener/Handler.

Table 10-3 lists the C++ files in the work directory generated by the runme command.

10-8 Using Security in CORBA Applications

Table 10-4 lists files in the RESULTS directory generated by the runme command.

Table 10-3 C++ Files Generated by the runme Command

File Description

Simple_c.cpp Generated by the idl command, this file contains
the client stubs for the SimpleFactory and
Simple interfaces.

Simple_c.h Generated by the idl command, this file contains
the client definitions of the SimpleFactory and
Simple interfaces.

Simple_s.cpp Generated by the idl command, this file contains
the server skeletons for the SimpleFactory and
Simple interfaces.

Simple_s.h Generated by the idl command, this file contains
the server definition for the SimpleFactory
and Simple interfaces.

Table 10-4 Files in the results Directory Generated by the runme Command

File Description

input Contains the input that the runme command
provides to the CORBA client application.

output Contains the output produced when the runme
command executes the CORBA client
application.

expected_output Contains the output that is expected when the
CORBA client application is executed by the
runme command. The data in the output file
is compared to the data in the
expected_output file to determine whether
or not the test passed or failed.

log Contains the output generated by the runme
command. If the runme command fails, check
this file for errors.

Bui ld ing and Running the Secure S impapp Sample Appl i cat i on

Using Security in CORBA Applications 10-9

Using the Secure Simpapp Sample Application
Run the server application in the Secure Simpapp sample application, as follows:

Windows 2003

prompt>tmboot -y

UNIX

ksh prompt>tmboot -y

Run the CORBA C++ client application in the Secure Simpapp sample application as follows:

Windows 2003

prompt> set TOBJADDR=corbalocs://host:port

prompt> simple_client -ORBid BEA_IIOP -ORBpeerValidate none

String?

Hello World

setenv.cmd Contains the commands to set the environment
variables needed to build and run the Secure
Simpapp sample application on the Windows
2003 operating system platform.

stderr Generated by the tmboot command, which is
executed by the runme command.

stdout Generated by the tmboot command, which is
executed by the runme command.

tmsysevt.dat Contains filtering and notification rules used by
the TMSYSEVT (system event reporting)
process. This file is generated by the tmboot
command in the runme command.

tuxconfig A binary version of the UBBCONFIG file.

ULOG.<date> A log file that contains messages generated by
the tmboot command.

Table 10-4 Files in the results Directory Generated by the runme Command (Continued)

File Description

10-10 Using Security in CORBA Applications

HELLO WORLD

hello world

UNIX

ksh prompt>export TOBJADDR=corbalocs://host:port

ksh prompt>simple_client -ORBid BEA_IIOP -ORBpeerValidate none

String?

Hello World

HELLO WORLD

hello world

Windows 2003

prompt>tmshutdown -y

prompt>nmake -f makefile.nt clean

UNIX

ksh prompt>tmshutdown -y

ksh prompt>make -f makefile.mk clean

Using Security in CORBA Applications 11-1

C H A P T E R 11

Troubleshooting

This topic includes the following sections:

Using ULOGS and ORB Tracing

CORBA::ORB_init Problems

Password Authentication Problems

Certificate Authentication Problems

Tobj::Bootstrap:: resolve_initial_references Problems

IIOP Listener/Handler Startup Problems

Configuration Problems

Problems with Using Callbacks Objects with the SSL Protocol

Troubleshooting Tips for Digital Certificates

Notes: The problems in this topic pertain to using the SSL protocol and certificate authentication
with CORBA applications.

The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.0.

All BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB text
references, associated code samples, etc. should only be used:

to help implement/run third party Java ORB libraries, and

11-2 Using Security in CORBA Applications

for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

Using ULOGS and ORB Tracing
In general, Object Request Brokers (ORBs) write important failures to the ULOG file. When using
the CORBA C++ ORB, you can also enable ORB internal tracing which may provide information
in addition to the information that appears in the ULOG file.

When looking at the ULOG file, note that remote ORB processes by default do not write data to
the ULOG file in APPDIR.

On UNIX, the remote ORB writes information to a ULOG file in the current directory.

On Windows 2003, the remote ORB writes information to a ULOG file in the c:\ulog
directory.

You can set the ULOGPFX environment variable to control the location of the ULOG file for remote
ORBs (for example, you can set the location of the ULOG file to APPDIR so that all information is
put in the same ULOG file). Set the ULOGPFX environment variable as follows:

Windows 2003

set ULOGPFX=%APPDIR%\ULOG

UNIX

setenv ULOGPFX $APPDIR/ULOG

To enable ORB tracing, complete the following steps:

1. Create a file named trace.dat in APPDIR. The contents of trace.dat should have all=on.

2. Use the following command to set the OBB_TRACE_INPUT environment variable to point to
the trace.dat file before running the application:
set OBB_TRACE_INPUT=%APPDIR%\trace.dat

If you want ORB tracing sent to separate files, add the following line to the trace.dat
file:
output=obbtrace%p.log

This command sends the trace output to files that are named after each running process.
You may want to do this if you are using ORB tracing on UNIX to an NFS mounted drive.

CORBA: :ORB_in i t P rob lems

Using Security in CORBA Applications 11-3

In this case, trace performance is slow due to the user log opening, writing, and closing the
file for each trace statement.

CORBA::ORB_init Problems
The ORB_init routine does not perform internal ORB tracing so you will not see any trace output
for invalid argument processing. Therefore, you need to double check the arguments that were
passed to the ORB_init routine.

If a CORBA::BAD_PARAM exception occurs when executing the ORB_init routine, verify that all
required arguments have values. Also, check that arguments which expect a value from a specific
set of valid values have the correct value. Note that values for the arguments of the ORB_init
routine are case sensitive.

If a CORBA::NO_PERMISSION exception occurs and an SSL argument was specified to the
ORB_init routine, make sure the security license is enabled. Also, verify that the specified level
of encryption does not exceed the encryption level supported by the security license.

If a CORBA::IMP_LIMIT exception occurs when executing the ORB_init routine, verify that the
ORBport and ORBSecurePort system properties have the same value.

If a CORBA::Initialize exception occurs when executing the ORB_init routine, verify that the
values for OrbId or configset are valid.

If Secure Sockets Layer (SSL) arguments are passed to the ORB_init routine, the ORB attempts
to load and initialize the SSL protocol. If no SSL arguments are passed, the ORB does not attempt
to initialize the SSL protocol.

The ORB is not aware of the new URL address formats for the Bootstrap object so if you specify
a corbaloc or corbalocs URL address format, the ORB does not try to load the SSL protocol
during the ORB_init routine.

If SSL arguments were specified to the ORB_init routine, check the following:

The specified values for the SSL arguments do not conflict with each other or other ORB
arguments.

Whether or not the ORB is a native process. If the ORB is a native process, SSL arguments
are not supported.

That the value specified for the maxCrypto system property is less than the value specified
for the minCrypto system property. The values for the properties must be within the range
appropriate for the license.

11-4 Using Security in CORBA Applications

Application-controlled SSL configuration parameters that are not correct. The ORB_init
routine does not perform digital certificate lookups check so look for missing or corrupted
files that would case the dynamic libraries not to be loaded. Also, verify the dynamic
libraries are loaded. The ORB trace function will provide information about whether or not
the dynamic libraries are loaded.

If the problem persists, turn on ORB tracing. ORB tracing will log SSL failures that occur when
the liborbssl dynamic library is loaded and initialized.

Password Authentication Problems
If the client application fails when using the corbalocs URL address format with password
authentication, check the following:

The proper configuration steps were performed. See “Configuring the SSL Protocol”and
“Configuring Authentication” for the list of the required configuration steps.

An initialization error occurred. Specify a valid SSL system property to the ORB_init
routine, an error occurs if:

– The IIOP Listener/Handler is not available. The ORB trace log will show failed
connection attempts.

– The IIOP Listener/Handler is available but it does not support the SSL protocol. The
ULOG file will show that a non-GIOP message was received.

– The IIOP Listener/Handler was available and configured for the SSL protocol but the
SSL connection could not be established. This error can occur when the range of
encryption strengths supported by the IIOP Listener/Handler and the range of
encryption strengths required by the client application do not match.

The ULOG file will indicate that a non-GIOP message was received if the IIOP
Listener/Handler was configured for the SSL protocol but the CORBA client
application used a TOBJADDR object without the corbalocs prefix to indicate a secure
connection.

Certificate Authentication Problems
If the client application fails when using the corbalocs URL address format with certificate
authentication, check the following:

The proper configuration steps were performed. See “Configuring the SSL Protocol” on
page 6-1 and “Configuring Authentication” on page 7-1 for the list of the required
configuration steps.

Tob j : :Boots t rap : : r eso lve_ in i t ia l_re fe rences P rob lems

Using Security in CORBA Applications 11-5

Determine whether or not an initialization error occurred.

Specify a valid SSL system property to the ORB_init routine, an error occurs if:

– The IIOP Listener/Handler is not available. The ORB trace log will show failed
connection attempts.

– The IIOP Listener/Handler is available but it does not support the SSL protocol. The
ULOG file will show that a non-GIOP message was received.

– The IIOP Listener/Handler was available and configured for the SSL protocol but the
SSL connection could not be established. This error can occur when the range of
encryption strengths supported by the IIOP Listener/Handler and the range of
encryption strengths required by the client application do not match. The error can also
occur when the client application does not trust the certificate chain of the IIOP
Listener/Handler or the client application did not receive a certificate from the IIOP
Listener/Handler. The error will be written to the ULOG file and the error will also show
up in the ORB trace output.

If an error does not occur, the problem is in the authentication process and the ULOG file
will contain one of the following error statements indicating the problem:
– Couldn’t connect to an LDAP server

– Couldn’t find a filter that matched the client certificate

– The client certificate was not found in LDAP

– The private key file could not be found

– The passphrase used to open the private key is not correct

– The public key from the client certificate did not match the
private key

Additional certificate problems can also occur. See “Tobj::Bootstrap:: resolve_initial_references
Problems” on page 11-5 for more information about the types of certificate errors that can occur.

Note: At this point of the initialization process, the failure is not due to a problem in the IIOP
Listener/Handler.

Tobj::Bootstrap::
resolve_initial_references Problems

If a failure occurs when performing a Tobj::Bootstrap::resolve_initial_references
with the corbaloc or corbalocs URL address format, a CORBA::InvalidDomain exception
is raised. This exception may mask CORBA::NO_PERMISSION or CORBA::COMM_FAILURE

11-6 Using Security in CORBA Applications

exceptions that are raised internally. Look at the ULOG file and turn on ORB tracing to get more
details on the error. The following errors may occur:

If the IIOP Listener/Handler is not available, the ORB trace log will show failed
connection attempts.

If the IIOP Listener/Handler is available but it does not support the SSL protocol, the ULOG
file will show that a non-GIOP message was received.

If the IIOP Listener/Handler is available and configured for the SSL protocol but the SSL
connection could not be established. An error can occur if the range of encryption strengths
supported by the IIOP Listener/Handler and required by the client application do not
match.

The IIOP Listener/Handler could not map a certificate to a username/password
combination. Verify that the security level for the CORBA application is set to USER_AUTH
and that the specified username matches the principal name passed into the authenticate
call. Also, check that the username does not exceed the 30 character limit.

Additional certificate problems can occur. See “Troubleshooting Tips for Digital Certificates” on
page 11-8 for more information about the types of certificate errors that can occur.

IIOP Listener/Handler Startup Problems
This section describes problems that can occur during the startup of the IIOP Listener/Handler.

If a failure occurs when starting the IIOP Listener/Handler, check the ULOG file for a description
of the error. The IIOP Listener/Hander verifies that the values for the SSL arguments specified
in the CLOPT parameters are valid. If any of the values are invalid, the appropriate error is
recorded in the ULOG file. This check is similar to the argument checking done by the ORB.

The IIOP Listener/Handler will not start its processes unless the -m option is specified. The ISH
is the process that actually loads and initializes the SSL libraries. If there is a problem loading
and initializing the SSL libraries in the ISH process, the error will not be recorded in the ULOG
file until the ISH process starts to handle incoming requests from client application.

If you suspect a problem with the startup of the IIOP Listener/Handler processes, check the ULOG
file.

Configuration Problems
The following are miscellaneous tips to resolve the common configuration problems which may
occur when using security:

Prob lems wi th Us ing Ca l lbacks Ob jec ts w i th the SSL P ro toco l

Using Security in CORBA Applications 11-7

The ORB -ORBpeerValidate command-line option and the -v option of the ISL
command do not control the peer validation rules checking. This system property and
option only control the checking of the host name specified in the peer certificate against
the host name of the machine to which the principal was connected.

The only way to disable the peer validation rules on an installed kit is to create an empty
file for %TUXDIR%\udataobj\security\certs\peer_val.rul. If you are writing a
script that builds your CORBA application, you cannot register the peer_val.rul file in
the script.

When enabling renegotiation intervals in the IIOP Listener/Handler, check that the option
on the ISL command is -R not -r. If you use an -r, the IIOP Listener/Handler will use
the SSL protocol but the renegotiation interval will not be used. In addition, the ULOG file
will note that an unknown option was specified on the IIOP Listener/Handler.

Another way to determine if the IIOP Listener/Handler is performing renegotiations is to
enable ORB tracing on the client side and check whether the cipher suite negotiation
callback is being called the configured renegotiation interval. Note that the client
application must be sending requests for in order for renegotiations to occur.

If you have defined the SECURITY parameter in the CORBA application’s UBBCONFIG file
to be APP_PW or greater and you have configured the IIOP Listener/Handler to use the SSL
protocol but not mutual authentication, you must use password authentication with the
corbalocs URL address format to communicate with the IIOP Listener/Handler. If you
try to use certificate authentication, the IIOP Listener/Handler will not ask the principal for
a certificate when establishing an SSL connection and the IIOP Listener/Handler is not
able to map the identity of the principal to a BEA Tuxedo identity.

Problems with Using Callbacks Objects with the SSL Protocol
If you have a joint client/server application and the client portion of the joint client/server
application specifies security requirements using either the corbalocs URL address format or
by requiring credentials, you must use the -ORBsecurePort system property with the ORB_init
routine to specify that a secure port be used.

If you do not specify the -ORBsecurePort system property, the server registration will fail with
a CORBA::NO_PERMISSION exception. To verify this is the problem, enable ORB tracing and
look for the following trace output:

TCPTransport::Listen: FAILURE: Attempt to listen on clear port while

Credentials require SSL be used

11-8 Using Security in CORBA Applications

If you want to use the SSL protocol with callback objects, the joint client/server application must
use the SecurityLevel2::PrincipalAuthenticator::authenticate() method with
certificate authentication. Otherwise, the joint client/server application does not have a certificate
with which to identify itself to the IIOP Listener/Handler which in this case is the initiator of the
SSL connection.

Troubleshooting Tips for Digital Certificates
In general, problems with digital certificates occur when:

One of the digital certificates in the certificate chain of the IIOP Listener/Handler is not
from a certificate authority defined in the trust_ca.cer file. A problem can occur if any
certificate authority in the trust_ca.cer file is invalid.

The name the IIOP Listener/Handler connected to the client application does not match the
host name specified in digital certificates of the IIOP Listener/Handler when a host match
is performed. The name of the IIOP Listener/Handler is specified in the CommonName
attribute of the distinguish name of the IIOP Listener/Handler. The host name and the
CommonName attribute must match exactly.

You can verify this error by setting the -ORBpeerValidate system property to none and
executing the ORB_init routine again.

One of the digital certificates in the certificate chain of the IIOP Listener/Handler does not
match the specified peer validation rules.

The digital certificate of the IIOP Listener/Handler is invalid. The digital certificate of the
IIOP Listener/Handler becomes invalid when the digital certificate is tampered with, it
expires, or the certificate authority that issued the digital certificate expires.

If a digital certificate is rejected for no explainable reason, complete the following steps:

1. Open the digital certificate in a viewer, for example, Microsoft Explorer.

2. Look at the KeyUsage and BasicConstraints properties of the digital certificate. A small
yellow triangle with an exclamation mark indicates the property is critical. Any digital
certificate with a property marked critical is rejected by the BEA Tuxedo software.

3. If the none of the properties of the digital certificate are critical, check the properties of the
next digital certificate in the certificate chain. Perform this step until all the properties of all
the digital certificates in the certificate chain have been verified.

Hybrid Templates for FrameMaker 5.5

Part IV Security Reference

CORBA Security APIs
Security Modules
C++ Security Reference
Java Security Reference
Automation Security Reference

Using Security in CORBA Applications 12-1

C H A P T E R 12

CORBA Security APIs

This topic includes the following sections:

The CORBA Security Model

Functional Components of the CORBA Security Environment

The Principal Authenticator Object

The Credentials Object

The SecurityCurrent Object

Note: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.0.

All BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB text
references, associated code samples, etc. should only be used:

to help implement/run third party Java ORB libraries, and

for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

For the C++ and Automation method descriptions for the CORBA Security APIs, see the
following topics:

“C++ Security Reference” on page -1

12-2 Using Security in CORBA Applications

“Java Security Reference” on page -1

“Automation Security Reference” on page -1

The CORBA Secur i t y Mode l

Using Security in CORBA Applications 12-3

The CORBA Security Model
The security model in the CORBA environment of the BEA Tuxedo product defines only a
framework for security. The BEA Tuxedo product provides the flexibility to support different
security mechanisms and policies that can be used to achieve the appropriate level of
functionality and assurance for a particular CORBA application.

The security model in the CORBA environment defines:

Under what conditions client applications may access objects in a BEA Tuxedo domain

What type of proof material principals are required to authenticate themselves to the BEA
Tuxedo domain

The security model in the CORBA environment is a combination of the security model defined
in the CORBAservices Security Service specification and the value-added extensions that
provide a focused, simplified form of the security model found in the ATMI environment of the
BEA Tuxedo product.

The following sections describe the general characteristics of the CORBA security model.

Authentication of Principals
Authentication of principals (for example, an individual user, a client application, a server
application, a joint client/server application, or an IIOP Listener/Handler) provides security
officers with the ability to ensure that only registered principals have access to the objects in the
system. An authenticated principal is used as the primary mechanism to control access to objects.
The act of authenticating principals allows the security mechanisms to:

Make principals accountable for their actions

Control access to protected objects

Identify the originator of a request

Identify the target of request

Controlling Access to Objects
The CORBA security model provides a simple framework through which a security officer can
limit access to the BEA Tuxedo domain to authorized users only. Limiting access to objects
allows security officers to prohibit access to objects by unauthorized principals. The access
control framework consists of two parts:

12-4 Using Security in CORBA Applications

The object invocation policy that is enforced automatically on object invocation

An application access policy that the user-written application can enforce

Administrative Control
The system administrator is responsible for setting security policies for the CORBA application.
The BEA Tuxedo product provides a set of configuration parameters and utilities. Using the
configuration parameters and utilities, a system administrator can configure the CORBA
application to force the principals to be authenticated to access a system on which BEA Tuxedo
software is installed. To enforce the configuration parameters, the system administrator uses the
tmloadcf command to update the configuration file for a particular CORBA application.

For more information about configuring security for your CORBA application, see “Configuring
the SSL Protocol” on page 6-1 and “Configuring Authentication” on page 7-1.

Functional Components of the CORBA Security Environment
The CORBA security model is based on the process of authenticating principals to the BEA
Tuxedo domain. The objects in the CORBA security environment are used to authenticate a
principal. The principal provides identity and authentication data, such as a password, to the
client application. The client application uses the Principal Authenticator object to make the calls
necessary to authenticate the principal. The credentials for the authenticated principal are
associated with the security system’s implementation of the SecurityCurrent object and are
represented by a Credentials object.

Figure 12-1 illustrates the authentication process used in the CORBA security model.

Figure 12-1 Authentication Process in the CORBA Security Model

The Pr inc ipa l Authent i cato r Ob jec t

Using Security in CORBA Applications 12-5

The following sections describe the objects in the CORBA security model.

The Principal Authenticator Object
The Principal Authenticator object is used by a principal that requires authentication but has not
been authenticated prior to calling the object system. The act of authenticating a principal results
in the creation of a Credentials object that is made available as the default credentials for the
application.

The Principal Authenticator object is a singleton object; there is only a single instance allowed in
a process address space. The Principal Authenticator object is also stateless. A Credentials object
is not associated with the Principal Authenticator object that created it.

All Principal Authenticator objects support the SecurityLevel2::PrincipalAuthenticator
interface defined in the CORBAservices Security Service specification. This interface contains
two methods that are used to accomplish the authentication of the principal. This is because
authentication of principals may require more than one step. The authenticate method allows
the caller to authenticate, and optionally select, attributes for the principal of this session.

User
Sponsor

Principal
Authenticator

Object

Client
Application

Credentials
Object

Security
Current
Object

ORB

12-6 Using Security in CORBA Applications

Any invocation that fails because the security infrastructure does not permit the invocation will
raise the standard exception CORBA::NO_PERMISSION. A method that fails because the feature
requested is not supported by the security infrastructure implementation will raise the
CORBA::NO_IMPLEMENT standard exception. Any parameter that has inappropriate values will
raise the CORBA::BAD_PARAM standard exception. If a timing-related problem occurs, they raise
a CORBA::COMM_FAILURE. The Bootstrap object maps most system exceptions to
CORBA::Invalid_Domain.

The Principal Authenticator object is a locality-constrained object. Therefore, a Principal
Authenticator object may not be used through the DII/DSI facilities of CORBA. Any attempt to
pass a reference to this object outside of the current process, or any attempt to externalize it using
CORBA::ORB::object_to_string, will result in the raising of the CORBA::MARSHAL exception.

Using the Principal Authenticator Object with Certificate
Authentication
The Principal Authenticator object has been enhanced to support certificate authentication. The
use of certificate authentication is controlled by specifying the
Security::AuthenticationMethod value of Tobj::CertificateBased as a parameter to
the PrincipalAuthenticator::authenticate operation. When certificate authentication is
used, the implementation of the PrincipalAuthenticator::authenticate operation must
retrieve the credentials for the principal by obtaining the private key and digital certificates for
the principal and registering them for use with the SSL protocol.

The values of the security_name and auth_data parameters of the
PrincipalAuthenticator::authenticate operation are used to open the private key for the
principal. If the user does not specify the proper values for both of these parameters, the private
key cannot be opened and the user fails to be authenticated. As a result of successfully opening
the private key, a chain of digital certificates that represent the local identity of the principal is
built. Both the private key and the chain of digital certificates must be registered to be used with
the SSL protocol.

BEA Tuxedo Extensions to the Principal Authenticator Object
The CORBA environment in the BEA Tuxedo product extends the Principal Authenticator object
to support a security mechanism similar to the security in the ATMI environment in the BEA
Tuxedo product. The enhanced functionality is provided by defining the
Tobj::PrincipalAuthenticator interface. This interface contains methods to provide similar
capability to that available from the ATMI environment through the tpinit function. The

The Credent ia l s Ob jec t

Using Security in CORBA Applications 12-7

interface Tobj::PrincipalAuthenticator is derived from the CORBA
SecurityLevel2::PrincipalAuthenticator interface.

The extended Principal Authenticator object adheres to all the same rules as the Principal
Authenticator object defined in the CORBAservices Security Service specification.

The implementation of the extended Principal Authenticator object requires users to supply a
username, client name, and additional authentication data (for example, passwords) used for
authentication. Because the information needs to be transmitted over the network to the IIOP
Listener/Handler, it is protected to ensure confidentiality. The protection must include encryption
of any information provided by the user.

An extended Principal Authenticator object that supports the
Tobj::PrincipalAuthenticator interface provides the same functionality as if the
SecurityLevel2::PrincipalAuthenticator interface were used to perform the
authentication of the principal. However, unlike the
SecurityLevel2::PrincipalAuthenticator::authenticate method, the logon method
defined on the Tobj::PrincipalAuthenticator interface does not return a Credentials object.

The Credentials Object
A Credentials object (as shown in Figure 12-2) holds the security attributes of a principal. The
Credentials object provides methods to obtain and set the security attributes of the principals it
represents. These security attributes include its authenticated or unauthenticated identities and
privileges. It also contains information for establishing security associations.

Credentials objects are created as the result of:

Authentication

Copying an existing Credentials object

Asking for a Credentials object via the SecurityCurrent object

12-8 Using Security in CORBA Applications

Figure 12-2 The Credentials Object

Multiple references to a Credentials object are supported. A Credentials object is stateful. It
maintains state on behalf of the principal for which it was created. This state includes any
information necessary to determine the identity and privileges of the principal it represents.
Credentials objects are not associated with the Principal Authenticator object that created it, but
must contain some indication of the authentication authority that certified the principal’s identity.

The Credentials object is a locality-constrained object; therefore, a Credentials object may not be
used through the DII/DSI facilities. Any attempt to pass a reference to this object outside of the
current process, or any attempt to externalize it using CORBA::ORB::object_to_string, will
result in the raising of the CORBA::MARSHAL exception.

The Credentials object has been enhanced to allow application developers to indicate the security
attributes for establishing secure connections. These attributes allow developers to indicate
whether a secure connection requires integrity, confidentiality, or both. To support this
capability, two new attributes were added to the SecurityLevel2::Credentials interface.

The invocation_options_supported attribute indicates which security options are
allowed when establishing a secure connection.

The invocation_options_required attribute allows the application developer to
specify the minimum set of security options that must be used in establishing a secure
connection.

Public
Identity

Attributes

Unauthenticated
Attributes

Authenticated
Attributes

Credentials - Containing Security Attributes

The Secur i t yCur rent Ob jec t

Using Security in CORBA Applications 12-9

The SecurityCurrent Object
The SecurityCurrent object (see Figure 12-3) represents the current execution context at both the
principal and target objects. The SecurityCurrent object represents service-specific state
information associated with the current execution context. Both client and server applications
have SecurityCurrent objects that represent the state associated with the thread of execution and
the process in which the thread is executing.

Figure 12-3 The SecurityCurrent Object

The SecurityCurrent object is a singleton object; there is only a single instance allowed in a
process address space. Multiple references to the SecurityCurrent object are supported.

The CORBAservices Security Service specification defines two interfaces for the
SecurityCurrent object associated with security:

SecurityLevel1::Current, which derives from CORBA::Current

SecurityLevel2::Current, which derives from the SecurityLevel1::Current
interface

Both interfaces give access to security information associated with the execution context.

At any stage, a client application can determine the default credentials for subsequent invocations
by calling the Current::get_credentials method and asking for the invocation credentials.
These default credentials are used in all invocations that use object references.

When the Current::get_attributes method is invoked by a client application, the attributes
returned from the Credentials object are those of the principal.

The SecurityCurrent object is a locality-constrained object; therefore, a SecurityCurrent object
may not be used through the DII/DSI facilities. Any attempt to pass a reference to this object

get_credentials

principal_authenticator
CredentialsCredentials

TID Ptr
0

authenticate

Current
PrincipalAuthenticator

Credentials

12-10 Using Security in CORBA Applications

outside of the current process, or any attempt to externalize it using
CORBA::ORB::object_to_string, results in a CORBA::MARSHAL exception.

Using Security in CORBA Applications 13-1

C H A P T E R 13

Security Modules

This topic contains the Object Management Group (OMG) Interface Definition Language (IDL)
definitions for the following modules that are used in the CORBA security model:

CORBA

TimeBase

Security

Security Level 1

Security Level 2

Tobj

Note: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.0.

All BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB text
references, associated code samples, etc. should only be used:

to help implement/run third party Java ORB libraries, and

for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

13-2 Using Security in CORBA Applications

CORBA Module
The OMG added the CORBA::Current interface to the CORBA module to support the Current
pseudo-object. This change enables the CORBA module to support Security Replaceability and
Security Level 2.

Listing 13-1 shows the CORBA::Current interface OMG IDL statements.

Note: This information is taken from CORBAservices: Common Object Services Specification,
p. 15-230. Revised Edition: March 31, 1995. Updated: November 1997. Used with
permission by OMG.

Listing 13-1 CORBA::Current Interface OMG IDL Statements

module CORBA {

 // Extensions to CORBA

 interface Current {

 };

};

TimeBase Module
All data structures pertaining to the basic Time Service, Universal Time Object, and Time
Interval Object are defined in the TimeBase module. This allows other services to use these data
structures without requiring the interface definitions. The interface definitions and associated
enums and exceptions are encapsulated in the TimeBase module.

Listing 13-2 shows the TimeBase module OMG IDL statements.

Note: This information is taken from CORBAservices: Common Object Services Specification,
p. 14-5. Revised Edition: March 31, 1995. Updated: November 1997. Used with
permission by OMG.

Listing 13-2 TimeBase Module OMG IDL Statements

// From time service

module TimeBase {

 // interim definition of type ulonglong pending the

Using Security in CORBA Applications 13-3

 // adoption of the type extension by all client ORBs.

 struct ulonglong {

 unsigned long low;

 unsigned long high;

 };

 typedef ulonglong TimeT;

 typedef short TdfT;

 struct UtcT {

 TimeT time; // 8 octets

 unsigned long inacclo; // 4 octets

 unsigned short inacchi; // 2 octets

 TdfT tdf; // 2 octets

 // total 16 octets

 };

};

Table 13-1 defines the TimeBase module data types.

Note: This information is taken from CORBAservices: Common Object Services Specification,
p. 14-6. Revised Edition: March 31, 1995. Updated: November 1997. Used with
permission by OMG.

Table 13-1 TimeBase Module Data Type Definitions

Data Type Definition

Time
ulonglong

OMG IDL does not at present have a native type representing an unsigned
64-bit integer. The adoption of technology submitted against that RFP will
provide a means for defining a native type representing unsigned 64-bit
integers in OMG IDL.

Pending the adoption of that technology, you can use this structure to
represent unsigned 64-bit integers, understanding that when a native type
becomes available, it may not be interoperable with this declaration on all
platforms. This definition is for the interim, and is meant to be removed when
the native unsigned 64-bit integer type becomes available in OMG IDL.

Time TimeT TimeT represents a single time value, which is 64-bit in size, and holds the
number of 100 nanoseconds that have passed since the base time. For
absolute time, the base is 15 October 1582 00:00.

13-4 Using Security in CORBA Applications

Security Module
The Security module defines the OMG IDL for security data types common to the other security
modules. This module depends on the TimeBase module and must be available with any ORB
that claims to be security ready.

Listing 13-3 shows the data types supported by the Security module.

Note: This information is taken from CORBAservices: Common Object Services Specification,
p. 15-193 to 15-195. Revised Edition: March 31, 1995. Updated: November 1997. Used
with permission by OMG.

Listing 13-3 Security Module OMG IDL Statements

module Security {

 typedef sequence<octet> Opaque;

 // Extensible families for standard data types

 struct ExtensibleFamily {

 unsigned short family_definer;

Time TdfT TdfT is of size 16 bits short type and holds the time displacement factor in
the form of seconds of displacement from the Greenwich Meridian.
Displacements east of the meridian are positive, while those to the west are
negative.

Time UtcT UtcT defines the structure of the time value that is used universally in the
service. When the UtcT structure is holding, a relative or absolute time is
determined by its history. There is no explicit flag within the object holding
that state information. The inacclo and inacchi fields together hold a
value of type InaccuracyT packed into 48 bits. The tdf field holds time
zone information. Implementation must place the time displacement factor
for the local time zone in this field whenever it creates a Universal Time
Object (UTO).

The content of this structure is intended to be opaque; to be able to marshal
it correctly, the types of fields need to be identified.

Table 13-1 TimeBase Module Data Type Definitions (Continued)

Data Type Definition

Using Security in CORBA Applications 13-5

 unsigned short family;

 };

 //security attributes

 typedef unsigned long SecurityAttributeType;

 // identity attributes; family = 0

 const SecurityAttributeType AuditId = 1;

 const SecurityAttributeType AccountingId = 2;

 const SecurityAttributeType NonRepudiationId = 3;

 // privilege attributes; family = 1

 const SecurityAttributeType Public = 1;

 const SecurityAttributeType AccessId = 2;

 const SecurityAttributeType PrimaryGroupId = 3;

 const SecurityAttributeType GroupId = 4;

 const SecurityAttributeType Role = 5;

 const SecurityAttributeType AttributeSet = 6;

 const SecurityAttributeType Clearance = 7;

 const SecurityAttributeType Capability = 8;

 struct AttributeType {

 ExtensibleFamily attribute_family;

 SecurityAttributeType attribute_type;

 };

 typedef sequence <AttributeType> AttributeTypeLists;

 struct SecAttribute {

 AttributeType attribute_type;

 Opaque defining_authority;

 Opaque value;

 // The value of this attribute can be

 // interpreted only with knowledge of type

 };

 typedef sequence<SecAttribute> AttributeList;

 // Authentication return status

13-6 Using Security in CORBA Applications

 enum AuthenticationStatus {

 SecAuthSuccess,

 SecAuthFailure,

 SecAuthContinue,

 SecAuthExpired

 };

 // Authentication method

 typedef unsigned long AuthenticationMethod;

 enum CredentialType {

 SecInvocationCredentials;

 SecOwnCredentials;

 SecNRCredentials

 // Pick up from TimeBase

 typedef TimeBase::UtcT UtcT;

};

Table 13-2 describes the Security module data type.

Security Level 1 Module
This section defines those interfaces available to client application objects that use only Level 1
Security functionality. This module depends on the CORBA module and the Security and
TimeBase modules. The Current interface is implemented by the ORB.

Listing 13-4 shows the Security Level 1 module OMG IDL statements.

Note: This information is taken from CORBAservices: Common Object Services Specification,
p. 15-198. Revised Edition: March 31, 1995. Updated: November 1997. Used with
permission by OMG.

Table 13-2 Security Module Data Type Definition

Data Type Definition

sequence<octet> Data whose representation is known only to the Security Service
implementation.

Using Security in CORBA Applications 13-7

Listing 13-4 Security Level 1 Module OMG IDL Statements

module SecurityLevel1 {

 interface Current : CORBA::Current {// PIDL

 Security::AttributeList get_attributes(

 in Security::AttributeTypeList attributes

);

 };

};

Security Level 2 Module
This section defines the additional interfaces available to client application objects that use Level
2 Security functionality. This module depends on the CORBA and Security modules.

Listing 13-5 shows the Security Level 2 module OMG IDL statements.

Note: This information is taken from CORBAservices: Common Object Services Specification,
p. 15-198 to 15-200. Revised Edition: March 31, 1995. Updated: November 1997. Used
with permission by OMG.

Listing 13-5 Security Level 2 Module OMG IDL Statements

module SecurityLevel2 {

 // Forward declaration of interfaces

 interface PrincipalAuthenticator;

 interface Credentials;

 interface Current;

 // Interface Principal Authenticator

 interface PrincipalAuthenticator {

 Security::AuthenticationStatus authenticate(

 in Security::AuthenticationMethod method,

 in string security_name,

 in Security::Opaque auth_data,

 in Security::AttributeList privileges,

 out Credentials creds,

 out Security::Opaque continuation_data,

13-8 Using Security in CORBA Applications

 out Security::Opaque auth_specific_data

);

 Security::AuthenticationStatus

 continue_authentication(

 in Security::Opaque response_data,

 inout Credentials creds,

 out Security::Opaque continuation_data,

 out Security::Opaque auth_specific_data

);

 };

 // Interface Credentials

 interface Credentials {

 attribute Security::AssociationOptions

 invocation_options_supported;

attribute Security::AssociationOptions

invocation_options_required;

Security::AttributeList get_attributes(

 in Security::AttributeTypeList attributes

);

 boolean is_valid(

 out Security::UtcT expiry_time

);

 };

 // Interface Current derived from SecurityLevel1::Current

 // providing additional operations on Current at this

 // security level. This is implemented by the ORB.

 interface Current : SecurityLevel1::Current { // PIDL

 void set_credentials(

 in Security::CredentialType cred_type,

 in Credentials cred

);

 Credentials get_credentials(

 in Security::CredentialType cred_type

);

Using Security in CORBA Applications 13-9

 readonly attribute PrincipalAuthenticator

 principal_authenticator;

 };

};

Tobj Module
This section defines the Tobj module interfaces.

This module provides the interfaces you use to program the ATMI-style of authentication.

Listing 13-6 shows the Tobj module OMG IDL statements.

Listing 13-6 Tobj Module OMG IDL Statements

//Tobj Specific definitions

 //get_auth_type () return values

 enum AuthType {

 TOBJ_NOAUTH,

 TOBJ_SYSAUTH,

 TOBJ_APPAUTH

 };

 typedef sequence<octet> UserAuthData;

 interface PrincipalAuthenticator :

 SecurityLevel2::PrincipalAuthenticator { // PIDL

 AuthType get_auth_type();

 Security::AuthenticationStatus logon(

 in string user_name,

 in string client_name,

 in string system_password,

 in string user_password,

 in UserAuthData user_data

);

 void logoff();

13-10 Using Security in CORBA Applications

 void build_auth_data(

 in string user_name,

 in string client_name,

 in string system_password,

 in string user_password,

 in UserAuthData user_data,

 out Security::Opaque auth_data,

 out Security::AttributeList privileges

);

 };

};

Using Security in CORBA Applications 14-1

C H A P T E R 14

C++ Security Reference

This topic contains the C++ method descriptions for CORBA security.

SecurityLevel1::Current::get_attributes

Synopsis
Returns attributes for the Current interface.

OMG IDL Definition
Security::AttributeList get_attributes(

in Security::AttributeTypeList attributes

);

};

Argument
attributes

The set of security attributes (privilege attribute types) whose values are desired. If this
list is empty, all attributes are returned.

Description
This method gets privilege (and other) attributes from the principal’s credentials for the Current
interface.

14-2 Using Security in CORBA Applications

Return Values
The following table describes valid return values.

Note: The defining_authority field is always empty. Depending on the security level
defined in the UBBCONFIG file not all the values for the get_attribute method may
be available. Two additional values, Group Id and Role, are available with the security
level is set to ACL or MANDATORY_ACL in the UBBCONFIG file.

Note: This information is taken from CORBAservices: Common Object Services Specification,
pp. 15-103, 104. Revised Edition: March 31, 1995. Updated: November 1997. Used with
permission by OMG.

SecurityLevel2::PrincipalAuthenticator::authenticate

Synopsis
Authenticates the principal and optionally obtains credentials for the principal.

OMG IDL Definition
Security::AuthenticationStatus

 authenticate(

 in Security::AuthenticationMethod method,

 in Security::SecurityName security_name,

 in Security::Opaque auth_data,

 in Security::AttributeList privileges,

 out Credentials creds,

Return Value Meaning

Security::Public Empty (Public is returned when no authentication was
performed).

Security::AccessId Null terminated ASCII string containing the BEA
Tuxedo username.

Security::PrimaryGroupId Null terminated ASCII string containing the BEA
Tuxedo name of the principal.

Using Security in CORBA Applications 14-3

 out Security::Opaque continuation_data,

 out Security::Opaque auth_specific_data);

Arguments
method

The security mechanism to be used. Valid values are Tobj::TuxedoSecurity and
Tobj::CertificateBased.

security_name

The principal’s identification information (for example, logon information). The value
must be a pointer to a NULL-terminated string containing the username of the principal.
The string is limited to 30 characters, excluding the NULL character.

When using certificate authentication, this name is used to look up a certificate in the
LDAP-enabled directory service. It is also used as the basis for the name of the file in
which the private key is stored. For example:
milozzi@company.com is the e-mail address used to look up a certificate in the
LDAP-enabled directory service and milozzi_company.pem is the name of the private
key file.

auth_data

The principals’ authentication, such as their password or private key. If the
Tobj:TuxedoSecurity security mechanism is specified, the value of this argument is
dependent on the configured level of authentication. If the Tobj::CertificateBased
argument is specified, the value of this argument is the pass phrase used to decrypt the
private key of the principal.

privileges

The privilege attributes requested.

creds

The object reference of the newly created Credentials object.The object reference is not
fully initialized; therefore, the object reference cannot be used until the return value of the
SecurityLevel2::Current::authenticate method is SecAuthSuccess.

continuation_data

If the return value of the SecurityLevel2::Current::authenticate method is
SecAuthContinue, this argument contains the challenge information for the
authentication to continue. The value returned will always be empty.

auth_specific_data

Information specific to the authentication service being used. The value returned will
always be empty.

14-4 Using Security in CORBA Applications

Description

The SecurityLevel2::Current::authenticate method is used by the client application to
authenticate the principal and optionally request privilege attributes that the principal requires
during its session with the BEA Tuxedo domain.

If the Tobj::TuxedoSecurity security mechanism is to be specified, the same functionality
can be obtained by calling the Tobj::PrincipalAuthenticator::logon operation, which
provides the same functionality but is specifically tailored for use with the ATMI authentication
security mechanism.

Return Values
The following table describes the valid return values.

Return Value Meaning

SecAuthSuccess The object reference of the newly created Credentials object
returned as the value of the creds argument is initialized and ready
to use.

SecAuthFailure The authentication process was inconsistent or an error occurred
during the process. Therefore, the creds argument does not contain
an object reference to a Credentials object.

If the Tobj::TuxedoSecurity security mechanism is used, this
return value indicates that authentication failed or that the client
application was already authenticated and did not call either the
Tobj::PrincipalAuthenticator::logoff or the
Tobj_Bootstrap::destroy_current operation.

SecAuthContinue Indicates that the authentication procedure uses a
challenge/response mechanism. The creds argument contains the
object reference of a partially initialized Credentials object. The
continuation_data indicates the details of the challenge.

Using Security in CORBA Applications 14-5

SecurityLevel2::Current::set_credentials

Synopsis
Sets credentials type.

OMG IDL Definition
void set_credentials(

 in Security::CredentialType cred_type,

 in Credentials creds

);

Arguments
cred_type

The type of credentials to be set; that is, invocation, own, or non-repudiation.

creds

The object reference to the Credentials object, which is to become the default.

SecAuthExpired Indicates that the authentication data contained some information,
the validity of which had expired; therefore, the creds argument
does not contain an object reference to a Credentials object.

If the Tobj::TuxedoSecurity security mechanism is used, this
return value is never returned.

CORBA::BAD_PARAM The CORBA::BAD_PARAM exception occurs if:
• Values for the security_name, auth_data, or

privileges arguments are not specified.
• The length of an input argument exceeds the maximum length

of the argument.
• The value of the method argument is

Tobj::TuxedoSecurity and the content of the
auth_data argument contains a username or a
clientname as an empty or a NULL string.

Return Value Meaning

14-6 Using Security in CORBA Applications

Description
This method can be used only to set SecInvocationCredentials; otherwise,
set_credentials raises CORBA::BAD_PARAM. The credentials must have been obtained from a
previous call to SecurityLevel2::Current::get_credentials or
SecurityLevel2::PrincipalAuthenticator::authenticate.

Return Values
None.

Note: This information is taken from CORBAservices: Common Object Services Specification,
p. 15-104. Revised Edition: March 31, 1995. Updated: November 1997. Used with
permission by OMG.

SecurityLevel2::Current::get_credentials

Synopsis
Gets credentials type.

OMG IDL Definition
Credentials get_credentials(

 in Security::CredentialType cred_type

);

Argument
cred_type

The type of credentials to get.

Description
This call can be used only to get SecInvocationCredentials; otherwise, get_credentials
raises CORBA::BAD_PARAM. If no credentials are available, get_credentials raises
CORBA::BAD_INV_ORDER.

Return Values
Returns the active credentials in the client application only.

Note: This information is taken from CORBAservices: Common Object Services Specification,
p. 15-105. Revised Edition: March 31, 1995. Updated: November 1997. Used with
permission by OMG.

Using Security in CORBA Applications 14-7

SecurityLevel2::Current::principal_authenticator

Synopsis
Returns the PrincipalAuthenticator.

OMG IDL Definition
readonly attribute PrincipalAuthenticator

 principal_authenticator;

Description

The PrincipalAuthenticator returned by the principal_authenticator attribute is of
actual type Tobj::PrincipalAuthenticator. Therefore, it can be used both as a
Tobj::PrincipalAuthenticator and as a SecurityLevel2::PrincipalAuthenticator.

Note: This method raises CORBA::BAD_INV_ORDER if it is called on an invalid SecurityCurrent
object.

Return Values
Returns the PrincipalAuthenticator.

14-8 Using Security in CORBA Applications

SecurityLevel2::Credentials
Synopsis

Represents a particular principal’s credential information that is specific to a process. A
Credentials object that supports the SecurityLevel2::Credentials interface is a
locality-constrained object. Any attempt to pass a reference to the object outside its locality, or
any attempt to externalize the object using the CORBA::ORB::object_to_string() operation,
results in a CORBA::Marshall exception.

OMG IDL Definition
#ifndef _SECURITY_LEVEL_2_IDL

#define _SECURITY_LEVEL_2_IDL

#include <SecurityLevel1.idl>

#pragma prefix “omg.org”

module SecurityLevel2

 {

 interface Credentials

 {

 attribute Security::AssociationOptions

 invocation_options_supported;

 attribute Security::AssociationOptions

 invocation_options_required;

Security::AttributeList

 get_attributes(

 in Security::AttributeTypeList attributes);

 boolean

 is_valid(

 out Security::UtcT expiry_time);

};

 };

#endif /* _SECURITY_LEVEL_2_IDL */

Using Security in CORBA Applications 14-9

C++ Declaration
class SecurityLevel2

 {

 public:

 classCredentials;

 typedefCredentials *Credentials_ptr;

 class Credentials : public virtual CORBA::Object

 {

 public:

 static Credentials_ptr _duplicate(Credentials_ptr obj);

 static Credentials_ptr _narrow(CORBA::Object_ptr obj);

 static Credentials_ptr _nil();

 virtual Security::AssociationOptions

 invocation_options_supported() = 0;

 virtual void

 invocation_options_supported(

 const Security::AssociationOptions options) = 0;

 virtual Security::AssociationOptions

 invocation_options_required() = 0;

 virtual void

 invocation_options_required(

 const Security::AssociationOptions options) = 0;

 virtual Security::AttributeList *

 get_attributes(

 const Security::AttributeTypeList & attributes) = 0;

 virtual CORBA::Boolean

 is_valid(Security::UtcT_out expiry_time) = 0;

 protected:

 Credentials(CORBA::Object_ptr obj = 0);

 virtual ~Credentials() { }

 private:

14-10 Using Security in CORBA Applications

 Credentials(const Credentials&) { }

 void operator=(const Credentials&) { }

 }; // class Credentials

 }; // class SecurityLevel2

SecurityLevel2::Credentials::get_attributes

Synopsis
Gets the attribute list attached to the credentials.

OMG IDL Definition
Security::AttributeList get_attributes(

 in AttributeTypeList attributes

);

Argument
attributes

The set of security attributes (privilege attribute types) whose values are desired. If this
list is empty, all attributes are returned.

Description
This method returns the attribute list attached to the credentials of the principal. In the list of
attribute types, you are required to include only the type value(s) for the attributes you want
returned in the AttributeList. Attributes are not currently returned based on attribute family
or identities. In most cases, this is the same result you would get if you called
SecurityLevel1::Current::get_attributes(), since there is only one valid set of
credentials in the principal at any instance in time. The results could be different if the credentials
are not currently in use.

Return Values
Returns attribute list.

Note: This is information taken from CORBAservices: Common Object Services Specification,
p. 15-97. Revised Edition: March 31, 1995. Updated: November 1997. Used with
permission by OMG.

Using Security in CORBA Applications 14-11

SecurityLevel2::Credentials::invocation_options_supported

Synopsis
Indicates the maximum number of security options that can be used when establishing an SSL
connection to make an invocation on an object in the BEA Tuxedo domain.

OMG IDL Definition
attribute Security::AssociationOptions

 invocation_options_supported;

Argument
None.

Description
This method should be used in conjunction with the
SecurityLevel2::Credentials::invocation_options_required method.

The following security options can be specified:

Security Option Description

NoProtection The SSL protocol does not provide message protection.

Integrity The SSL protocol provides an integrity check of messages. Digital signatures
are used to protect the integrity of messages.

Confidentiality The SSL connection protects the confidentiality of messages. Crytography is
used to protect the confidentiality of messages.

DetectReplay The SSL protocol provides replay detection. Replay occurs when a message is
sent repeatedly with no detection.

DetectMisordering The SSL protocol provides sequence error detection for requests and request
fragments.

EstablishTrustInTarget Indicates that the target of a request authenticates itself to the initiating
principal.

NoDelegation Indicates that the principal permits an intermediate object to use its privileges
for the purpose of access control decisions. However, the principal’s privileges
are not delegated so the intermediate object cannot use the privileges when
invoking the next object in the chain.

14-12 Using Security in CORBA Applications

Return Values
The list of defined security options.

If the Tobj::TuxedoSecurity security mechanism is used to create the security association,
only the NoProtection, EstablishTrustInClient, and SimpleDelegation security options
are returned. The EstablishTrustInClient security option appears only if the security level
of the CORBA application is defined to require passwords to access the BEA Tuxedo domain.

Note: A CORBA::NO_PERMISSION exception is returned if the security options specified are not
supported by the security mechanism defined for the CORBA application. This exception
can also occur if the security options specified have less capabilities than the security
options specified by the
SecurityLevel2::Credentials::invocation_options_required method.

The invocation_options_supported attribute has set() and get() methods. You
cannot use the set() method when using the Tobj::TuxedoSecurity security
mechanism to get a Credentials object. If you do use the set() method with the
Tobj::TuxedoSecurity security mechanism, a CORBA::NO_PERMISSION exception is
returned.

SecurityLevel2::Credentials::invocation_options_required

Synopsis
Specifies the minimum number of security options to be used when establishing an SSL
connection to make an invocation on a target object in the BEA Tuxedo domain.

SimpleDelegation Indicates that the principal permits an intermediate object to use its privileges
for the purpose of access control decisions, and delegates the privileges to the
intermediate object. The target object receives only the privileges of the client
application and does not know the identity of the intermediate object. When
this invocation option is used without restrictions on the target object, the
behavior is known as impersonation.

CompositeDelegation Indicates that the principal permits the intermediate object to use its
credentials and delegate them. The privileges of both the principal and the
intermediate object can be checked.

Security Option Description

Using Security in CORBA Applications 14-13

OMG IDL Definition
attribute Security::AssociationOptions

 invocation_options_required;

Argument
None.

Description
Use this method to specify that communication between principals and the BEA Tuxedo domain
should be protected. After using this method, a Credentials object makes an invocation on a target
object using the SSL protocol with the defined level of security options. This method should be
used in conjunction with the
SecurityLevel2::Credentials::invocation_options_supported method.

The following security options can be specified:

Security Option Description

NoProtection The SSL protocol does not provide message protection.

Integrity The SSL protocol provides an integrity check of messages. Digital signatures
are used to protect the integrity of messages.

Confidentiality The SSL connection protects the confidentiality of messages. Crytography is
used to protect the confidentiality of messages.

DetectReplay The SSL protocol provides replay detection. Replay occurs when a message is
sent repeatedly with no detection.

DetectMisordering The SSL protocol provides sequence error detection for requests and request
fragments.

EstablishTrustInTarget Indicates that the target of a request authenticates itself to the initiating
principal.

NoDelegation Indicates that the principal permits an intermediate object to use its privileges
for the purpose of access control decisions. However, the principal’s privileges
are not delegated so the intermediate object cannot use the privileges when
invoking the next object in the chain.

14-14 Using Security in CORBA Applications

Return Values
The list of defined security options.

If the Tobj::TuxedoSecurity security mechanism is used to create the security association,
only the NoProtection, EstablishTrustInClient, and SimpleDelegation security options
are returned. The EstablishTrustInClient security option appears only if the security level
of the CORBA application is defined to require passwords to access the BEA Tuxedo domain.

Note: A CORBA::NO_PERMISSION exception is returned if the security options specified are not
supported by the security mechanism defined for the CORBA application. This exception
can also occur if the security options specified have more capabilities than the security
options specified by the
SecurityLevel2::Credentials::invocation_options_supported method.

The invocation_options_required attribute has set() and get() methods. You
cannot use the set() method when using the Tobj::TuxedoSecurity security
mechanism to get a Credentials object. If you do use the set() method with the
Tobj::TuxedoSecurity security mechanism, a CORBA::NO_PERMISSION exception is
returned.

SecurityLevel2::Credentials::is_valid

Synopsis
Checks status of credentials.

SimpleDelegation Indicates that the principal permits an intermediate object to use its privileges
for the purpose of access control decisions, and delegates the privileges to the
intermediate object. The target object receives only the privileges of the client
application and does not know the identity of the intermediate object. When
this invocation option is used without restrictions on the target object, the
behavior is known as impersonation.

CompositeDelegation Indicates that the principal permits the intermediate object to use its
credentials and delegate them. The privileges of both the principal and the
intermediate object can be checked.

Security Option Description

Using Security in CORBA Applications 14-15

OMG IDL Definition
boolean is_valid(

 out Security::UtcT expiry_time

);

Description
This method returns TRUE if the credentials used are active at the time; that is, you did not call
Tobj::PrincipalAuthenticator::logoff or Tobj_Bootstrap::destroy_current. If
this method is called after Tobj::PrincipalAuthenticator::logoff(), FALSE is returned.
If this method is called after Tobj_Bootstrap::destroy_current(), the
CORBA::BAD_INV_ORDER exception is raised.

Return Values
The expiration date returned contains the maximum unsigned long long value in C++. Until
the unsigned long long datatype is adopted, the ulonglong datatype is substituted. The
ulonglong datatype is defined as follows:

 // interim definition of type ulonglong pending the
 // adoption of the type extension by all client ORBs.
 struct ulonglong {
 unsigned long low;
 unsigned long high;
 };

Note: This information is taken from CORBAservices: Common Object Services Specification,
p. 15-97. Revised Edition: March 31, 1995. Updated: November 1997. Used with
permission by OMG.

14-16 Using Security in CORBA Applications

SecurityLevel2::PrincipalAuthenticator
Synopsis

Allows a principal to be authenticated. A Principal Authenticator object that supports the
SecurityLevel2::PrincipalAuthenticator interface is a locality-constrained object. Any
attempt to pass a reference to the object outside its locality, or any attempt to externalize the
object using the CORBA::ORB::object_to_string() operation, results in a
CORBA::Marshall exception.

OMG IDL Definition
#ifndef _SECURITY_LEVEL_2_IDL

#define _SECURITY_LEVEL_2_IDL

#include <SecurityLevel1.idl>

#pragma prefix “omg.org”

module SecurityLevel2

 {

 interface PrincipalAuthenticator

 { // Locality Constrained

 Security::AuthenticationStatus authenticate (

 in Security::AuthenticationMethod method,

 in Security::SecurityName security_name,

 in Security::Opaque auth_data,

 in Security::AttributeList privileges,

 out Credentials creds,

 out Security::Opaque continuation_data,

 out Security::Opaque auth_specific_data

);

 Security::AuthenticationStatus continue_authentication (

 in Security::Opaque response_data,

 in Credentials creds,

 out Security::Opaque continuation_data,

 out Security::Opaque auth_specific_data

);

Using Security in CORBA Applications 14-17

 };

 };

#endif // SECURITY_LEVEL_2_IDL

#pragma prefix "beasys.com"

module Tobj

 {

 const Security::AuthenticationMethod

 TuxedoSecurity = 0x54555800;

 CertificateBased = 0x43455254;

 };

C++ Declaration
class SecurityLevel2

 {

 public:

 classPrincipalAuthenticator;

 typedefPrincipalAuthenticator * PrincipalAuthenticator_ptr;

 class PrincipalAuthenticator : public virtual CORBA::Object

 {

 public:

 static PrincipalAuthenticator_ptr

 _duplicate(PrincipalAuthenticator_ptr obj);

 static PrincipalAuthenticator_ptr

 _narrow(CORBA::Object_ptr obj);

 static PrincipalAuthenticator_ptr _nil();

 virtual Security::AuthenticationStatus

 authenticate (

 Security::AuthenticationMethod method,

 const char * security_name,

 const Security::Opaque & auth_data,

 const Security::AttributeList & privileges,

 Credentials_out creds,

 Security::Opaque_out continuation_data,

 Security::Opaque_out auth_specific_data) = 0;

14-18 Using Security in CORBA Applications

 virtual Security::AuthenticationStatus

 continue_authentication (

 const Security::Opaque & response_data,

 Credentials_ptr & creds,

 Security::Opaque_out continuation_data,

 Security::Opaque_out auth_specific_data) = 0;

 protected:

 PrincipalAuthenticator(CORBA::Object_ptr obj = 0);

 virtual ~PrincipalAuthenticator() { }

 private:

 PrincipalAuthenticator(const PrincipalAuthenticator&) { }

 void operator=(const PrincipalAuthenticator&) { }

 }; // class PrincipalAuthenticator

 };

SecurityLevel2::PrincipalAuthenticator::continue_authentication

Synopsis
Always fails.

OMG IDL Definition
Security::AuthenticationStatus continue_authentication(

 in Security::Opaque response_data,

 in Credentials creds,

 out Security::Opaque continuation_data,

 out Security::Opaque auth_specific_data

);

Description
Because the BEA Tuxedo software does authentication in one step, this method always fails and
returns Security::AuthenticationStatus::SecAuthFailure.

Return Values

Always returns Security::AuthenticationStatus::SecAuthFailure.

Using Security in CORBA Applications 14-19

Note: This information is taken from CORBAservices: Common Object Services Specification,
pp. 15-92, 93. Revised Edition: March 31, 1995. Updated: November 1997. Used with
permission by OMG.

Tobj::PrincipalAuthenticator::get_auth_type

Synopsis
Gets the type of authentication expected by the BEA Tuxedo domain.

OMG IDL Definition
AuthType get_auth_type();

Description
This method returns the type of authentication expected by the BEA Tuxedo domain.

Note: This method raises CORBA::BAD_INV_ORDER if it is called with an invalid
SecurityCurrent object.

Return Values
A reference to the Tobj_AuthType enumeration. Returns the type of authentication required to
access the BEA Tuxedo domain. The following table describes the valid return values.

Return Value Meaning

TOBJ_NOAUTH No authentication is needed; however, the client
application can still authenticate itself by specifying a
username and a client application name. No password
is required.

To specify this level of security, specify the NONE
value for the SECURITY parameter in the RESOURCES
section of the UBBCONFIG file.

14-20 Using Security in CORBA Applications

Tobj::PrincipalAuthenticator::logon

Synopsis
Authenticates the principal.

OMG IDL Definition
Security::AuthenticationStatus logon(

 in string user_name,

 in string client_name,

 in string system_password,

 in string user_password,

 in UserAuthData user_data

);

Arguments
user_name

The BEA Tuxedo username. The authentication level is TOBJ_NOAUTH. If user_name
is NULL or empty, or exceeds 30 characters, logon raises CORBA::BAD_PARAM.

TOBJ_SYSAUTH The client application must authenticate itself to the
BEA Tuxedo domain, and must specify a username, a
name, and a password for the client application.

To specify this level of security, specify the APP_PW
value for the SECURITY parameter in the RESOURCES
section of the UBBCONFIG file.

TOBJ_APPAUTH The client application must provide proof material that
authenticates the client application to the BEA Tuxedo
domain.The proof material may be a password or a
digital certificate.

To specify this level of security, specify the
USER_AUTH value for the SECURITY parameter in the
RESOURCES section of the UBBCONFIG file.

Return Value Meaning

Using Security in CORBA Applications 14-21

client_name

The BEA Tuxedo name of the client application. The authentication level is
TOBJ_NOAUTH. If the client_name is NULL or empty, or exceeds 30 characters, logon
raises the CORBA::BAD_PARAM exception.

system_password

The CORBA client application password. The authentication level is TOBJ_SYSAUTH. If
the client name is NULL or empty, or exceeds 30 characters, logon raises the
CORBA::BAD_PARAM exception.

Note: The system_password must not exceed 30 characters.

user_password

The user password (needed for use by the default BEA Tuxedo authentication service).
The authentication level is TOBJ_APPAUTH. The password must not exceed 30 characters.

user_data

Data that is specific to the client application (needed for use by a custom BEA Tuxedo
authentication service). The authentication level is TOBJ_APPAUTH.

Note: TOBJ_SYSAUTH includes the requirements of TOBJ_NOAUTH, plus a client application
password. TOBJ_APPAUTH includes the requirements of TOBJ_SYSAUTH, plus
additional information, such as a user password or user data.

Note: The user_password and user_data arguments are mutually exclusive, depending
on the requirements of the authentication service used in the configuration of the BEA
Tuxedo domain. The BEA Tuxedo default authentication service expects a user
password. A customized authentication service may require user data. The logon call
raises the CORBA::BAD_PARAM exception if both user_password and user_data
are specified.

Description
This method authenticates the principal via the IIOP Listener/Handler so that the principal can
access a BEA Tuxedo domain. This method is functionally equivalent to
SecurityLevel2::PrincipalAuthenticator::authenticate, but the arguments are
oriented to ATMI authentication.

Note: This method raises CORBA::BAD_INV_ORDER if it is called with an invalid
SecurityCurrent object.

Return Values
The following table describes the valid return values.

14-22 Using Security in CORBA Applications

Tobj::PrincipalAuthenticator::logoff

Synopsis
Discards the security context associated with the principal.

OMG IDL Definition
void logoff();

Description
This call discards the security context, but does not close the network connections to the BEA
Tuxedo domain. Logoff also invalidates the current credentials. After logging off, invocations
using existing object references fail if the authentication type is not TOBJ_NOAUTH.

If the principal is currently authenticated to a BEA Tuxedo domain, calling
Tobj_Bootstrap::destroy_current() calls logoff implicitly.

Note: This method raises CORBA::BAD_INV_ORDER if it is called with an invalid
SecurityCurrent object.

Return Values
None.

Tobj::PrincipalAuthenticator::build_auth_data

Synopsis
Creates authentication data and attributes for use by
SecurityLevel2::PrincipalAuthenticator::authenticate.

Return Value Meaning

Security::AuthenticationStatus::
SecAuthSuccess

The authentication succeeded.

Security::AuthenticationStatus::
SecAuthFailure

The authentication failed, or the client application was
already authenticated and did not call one of the following
methods:
Tobj::PrincipalAuthenticator:logoff

Tobj_Bootstrap::destroy_current

Using Security in CORBA Applications 14-23

OMG IDL Definition

void build_auth_data(

 in string user_name,

 in string client_name,

 in string system_password,

 in string user_password,

 in UserAuthData user_data,

 out Security::Opaque auth_data,

 out Security::AttributeList privileges

);

Arguments
user_name

The BEA Tuxedo username.

client_name

The CORBA client name.

system_password

The CORBA client application password.

user_password

The user password (default BEA Tuxedo authentication service).

user_data

Client application-specific data (custom BEA Tuxedo authentication service).

auth_data

For use by authenticate.

privileges

For use by authenticate.

Note: If user_name, client_name, or system_password is NULL or empty, or exceeds
30 characters, the subsequent authenticate method invocation raises the
CORBA::BAD_PARAM exception.

Note: The user_password and user_data parameters are mutually exclusive, depending
on the requirements of the authentication service used in the configuration of the BEA
Tuxedo domain. The BEA Tuxedo default authentication service expects a user
password. A customized authentication service may require user data. If both
user_password and user_data are specified, the subsequent authentication call
raises the CORBA::BAD_PARAM exception.

14-24 Using Security in CORBA Applications

Description

This method is a helper function that creates authentication data and attributes to be used by
SecurityLevel2::PrincipalAuthenticator::authenticate.

Note: This method raises CORBA::BAD_INV_ORDER if it is called with an invalid
SecurityCurrent object.

Return Values
None.

Using Security in CORBA Applications 15-1

C H A P T E R 15

Java Security Reference

For information about the security application programming interface (API), see the CORBA
Javadoc in the BEA Tuxedo online documentation.

Note: The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.0.

All BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB text
references, associated code samples, etc. should only be used:

to help implement/run third party Java ORB libraries, and

for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

15-2 Using Security in CORBA Applications

Using Security in CORBA Applications 16-1

C H A P T E R 16

Automation Security Reference

This topic contains the Automation method descriptions for CORBA security. This topic includes
the following section:

Method Descriptions

Notes: The Automation security methods do not support certificate authentication or the use of
the SSL protocol.

The BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB were
deprecated in Tuxedo 8.1 and are no longer supported in Tuxedo 9.0.

All BEA Tuxedo CORBA Java client and BEA Tuxedo CORBA Java client ORB text
references, associated code samples, etc. should only be used:

to help implement/run third party Java ORB libraries, and

for programmer reference only.

Technical support for third party CORBA Java ORBs should be provided by their
respective vendors. BEA Tuxedo does not provide any technical support or
documentation for third party CORBA Java ORBs.

16-2 Using Security in CORBA Applications

Method Descriptions
This section describes the Automation Security Service methods.

DISecurityLevel2_Current
The DISecurityLevel2_Current object is a BEA implementation of the CORBA Security
model. In this release of the BEA Tuxedo software, the get_attributes(),
set_credentials(), get_credentials(), and Principal_Authenticator() methods are
supported.

DISecurityLevel2_Current.get_attributes

Synopsis
Returns attributes for the Current interface.

MIDL Mapping
HRESULT get_attributes(

 [in] VARIANT attributes,

 [in,out,optional] VARIANT* exceptionInfo,

 [out,retval] VARIANT* returnValue);

Automation Mapping
Function get_attributes(attributes, [exceptionInfo])

Parameters
attributes

The set of security attributes (privilege attribute types) whose values are desired. If this
list is empty, all attributes are returned.

exceptioninfo

An optional input argument that allows the client application to get additional exception
data if an error occurs.

Description
This method gets privilege (and other) attributes from the credentials for the client application
from the Current interface.

Method Desc r ip t ions

Using Security in CORBA Applications 16-3

Return Values
A variant containing an array of DISecurity_SecAttribute objects. The following table
describes the valid return values.

DISecurityLevel2_Current.set_credentials

Synopsis
Sets credentials type.

MIDL Mapping
HRESULT set_credentials(

 [in] Security_CredentialType cred_type,

 [in] DISecurityLevel2_Credentials* cred,

 [in,out,optional] VARIANT* exceptionInfo);

Automation Mapping
Sub set_credentials(cred_type As Security_CredentialType,

 cred As DISecurityLevel2_Credentials,

 [exceptionInfo])

Description
This method can be used only to set SecInvocationCredentials; otherwise,
set_credentials raises CORBA::BAD_PARAM. The credentials must have been obtained from a
previous call to DISecurityLevel2_Current.get_credentials.

Return Value Meaning

Security::Public Empty (Public is returned when no authentication was
performed.)

Security::AccessId Null-terminated ASCII string containing the BEA
Tuxedo username.

Security::PrimaryGroupId Null-terminated ASCII string containing the BEA
Tuxedo name of the client application.

16-4 Using Security in CORBA Applications

Arguments
cred_type

The type of credentials to be set; that is, invocation, own, or nonrepudiation.

cred

The object reference to the Credentials object, which is to become the default.

exceptioninfo

An optional input argument that allows the client application to get additional exception
data if an error occurs.

Return Values
None.

DISecurityLevel2_Current.get_credentials

Synopsis
Gets credentials type.

MIDL Mapping
HRESULT get_credentials(

 [in] Security_CredentialType cred_type,

 [in,out,optional] VARIANT* exceptionInfo,

 [out,retval] DISecurityLevel2_Credentials** returnValue);

Automation Mapping
Function get_credentials(cred_type As Security_CredentialType,

 [exceptionInfo]) As DISecurityLevel2_Credentials

Description
This call can be used only to get SecInvocationCredentials; otherwise, get_credentials
raises CORBA::BAD_PARAM. If no credentials are available, get_credentials raises
CORBA::BAD_INV_ORDER.

Arguments
cred_type

The type of credentials to get.

Method Desc r ip t ions

Using Security in CORBA Applications 16-5

exceptioninfo

An optional input argument that allows the client application to get additional exception
data if an error occurs.

Return Values
A DISecurityLevel2_Credentials object for the active credentials in the client application
only.

DISecurityLevel2_Current.principal_authenticator

Synopsis
Returns the PrincipalAuthenticator.

MIDL Mapping
HRESULT principal_authenticator([out, retval]

 DITobj_PrincipalAuthenticator** returnValue);

Automation Mapping
Property principal_authenticator As DITobj_PrincipalAuthenticator

Description
The PrincipalAuthenticator returned by the principal_authenticator property is of
actual type DITobj_PrincipalAuthenticator. Therefore, it can be used as a
DISecurityLevel2_PrincipalAuthenticator.

Note: This method raises CORBA::BAD_INV_ORDER if it is called on an invalid SecurityCurrent
object.

Return Values
A DITobj_PrincipalAuthenticator object.

16-6 Using Security in CORBA Applications

DITobj_PrincipalAuthenticator
The DITobj_PrincipalAuthenticator object is used to log in to and log out of the BEA
Tuxedo domain. In this release of the BEA Tuxedo software, the authenticate,
build_auth_data(), continue_authentication(), get_auth_type(), logon(), and
logoff() methods are implemented.

DITobj_PrincipalAuthenticator.authenticate

Synopsis
Authenticates the client application.

MIDL Mapping
HRESULT authenticate(

 [in] long method,

 [in] BSTR security_name,

 [in] VARIANT auth_data,

 [in] VARIANT privileges,

 [out] DISecurityLevel2_Credentials**

creds,

 [out] VARIANT* continuation_data,

 [out] VARIANT* auth_specific_data,

 [in,out,optional] VARIANT* exceptionInfo,

 [out,retval] Security_AuthenticationStatus* returnValue);

Automation Mapping
Function authenticate(method As Long, security_name As String,

 auth_data, privileges, creds As DISecurityLevel2_Credentials,

 continuation_data, auth_specific_data,

 [exceptionInfo]) As Security_AuthenticationStatus

Arguments
method

Must be Tobj::TuxedoSecurity. If method is invalid, authenticate raises
CORBA::BAD_PARAM.

Method Desc r ip t ions

Using Security in CORBA Applications 16-7

security_name

The BEA Tuxedo username.

auth_data

As returned by DITobj_PrincipalAuthenticator.build_auth_data. If auth_data
is invalid, authenticate raises CORBA::BAD_PARAM.

privileges

As returned by DITobj_PrincipalAuthenticator.build_auth_data. If
privileges is invalid, authenticate raises CORBA::BAD_PARAM.

creds

Placed into the SecurityCurrent object.

continuation_data

Always empty.

auth_specific_data

Always empty.

exceptioninfo

An optional input argument that allows the client application to get additional exception
data if an error occurs.

Description
This method authenticates the client application via the IIOP Listener/Handler so that it can
access a BEA Tuxedo domain.

Return Values
A Security_AuthenticationStatus Enum value. The following table describes the valid
return values.

Return Value Meaning

Security::Authentication
Status::
SecAuthSuccess

The authentication succeeded.

Security::Authentication
Status::
SecAuthFailure

The authentication failed, or the client application was
already authenticated and did not invoke
Tobj::PrincipalAuthenticator:logoff or
Tobj_Bootstrap::destroy_current.

16-8 Using Security in CORBA Applications

DITobj_PrincipalAuthenticator.build_auth_data

Synopsis
Creates authentication data and attributes for use by
DITobj_PrincipalAuthenticator.authenticate.

MIDL Mapping
HRESULT build_auth_data(

 [in] BSTR user_name,

 [in] BSTR client_name,

 [in] BSTR system_password,

 [in] BSTR user_password,

 [in] VARIANT user_data,

 [out] VARIANT* auth_data,

 [out] VARIANT* privileges,

 [in,out,optional] VARIANT* exceptionInfo);

Automation Mapping
Sub build_auth_data(user_name As String, client_name As String,

 system_password As String, user_password As String, user_data,

 auth_data, privileges, [exceptionInfo])

Arguments
user_name

The BEA Tuxedo username.

client_name

A name of the CORBA client application.

system_password

The password for the CORBA client application.

user_password

The user password (for default authentication service).

user_data

Client application-specific data (custom authentication service).

auth_data

For use by authenticate.

Method Desc r ip t ions

Using Security in CORBA Applications 16-9

privileges

For use by authenticate.

exceptioninfo

An optional input argument that allows the client application to get additional exception
data if an error occurs.

Note: If user_name, client_name, or system_password is NULL or empty, or exceeds
30 characters, the subsequent authenticate method invocation raises the
CORBA::BAD_PARAM exception.

Note: The user_password and user_data parameters are mutually exclusive, depending
on the requirements of the authentication service used in the configuration of the BEA
Tuxedo domain. The default authentication service expects a user password. A
customized authentication service may require user data. If both user_password and
user_data are specified, the subsequent authentication call raises the
CORBA::BAD_PARAM exception.

Description

This method is a helper function that creates authentication data and attributes to be used by
DITobj_PrincipalAuthenticator.authenticate.

Note: This method raises CORBA::BAD_INV_ORDER if it is called with an invalid
SecurityCurrent object.

Return Values
None.

DITobj_PrincipalAuthenticator.continue_authentication

Synopsis
Always returns Security::AuthenticationStatus::SecAuthFailure.

MIDL Mapping
HRESULT continue_authentication(

 [in] VARIANT response_data,

 [in,out] DISecurityLevel2_Credentials** creds,

 [out] VARIANT* continuation_data,

 [out] VARIANT* auth_specific_data,

16-10 Using Security in CORBA Applications

 [in,out,optional] VARIANT* exceptionInfo,

 [out,retval] Security_AuthenticationStatus* returnValue);

Automation Mapping
Function continue_authentication(response_data,

 creds As DISecurityLevel2_Credentials, continuation_data,

 auth_specific_data, [exceptionInfo]) As

 Security_AuthenticationStatus

Description
Because the BEA Tuxedo software does authentication in one step, this method always fails and
returns Security::AuthenticationStatus::SecAuthFailure.

Return Values
Always returns SecAuthFailure.

DITobj_PrincipalAuthenticator.get_auth_type

Synopsis
Gets the type of authentication expected by the BEA Tuxedo domain.

MIDL Mapping
HRESULT get_auth_type(

 [in, out, optional] VARIANT* exceptionInfo,

 [out, retval] Tobj_AuthType* returnValue);

Automation Mapping
Function get_auth_type([exceptionInfo]) As Tobj_AuthType

Argument
exceptioninfo

An optional input argument that allows the client application to get additional exception
data if an error occurs.

Description
This method returns the type of authentication expected by the BEA Tuxedo domain.

Method Desc r ip t ions

Using Security in CORBA Applications 16-11

Note: This method raises CORBA::BAD_INV_ORDER if it is called with an invalid
SecurityCurrent object.

Returned Values
A reference to the Tobj_AuthType enumeration. The following table describes the valid return
values.

DITobj_PrincipalAuthenticator.logon

Synopsis
Logs in to the BEA Tuxedo domain. The correct input parameters depend on the authentication
level.

Return Value Meaning

TOBJ_NOAUTH No authentication is needed; however, the client
application can still authenticate itself by specifying
a username and a client application name. No
password is required.

To specify this level of security, specify the NONE
value for the SECURITY parameter in the
RESOURCES section of the UBBCONFIG file.

TOBJ_SYSAUTH The client application must authenticate itself to the
BEA Tuxedo domain, and must specify a username,
a name, and a password for the client application.

To specify this level of security, specify the APP_PW
value for the SECURITY parameter in the
RESOURCES section of the UBBCONFIG file.

TOBJ_APPAUTH The client application must provide proof material
that authenticates the client application to the BEA
Tuxedo domain.The proof material may be a
password or a digital certificate.

To specify this level of security, specify the
USER_AUTH value for the SECURITY parameter in
the RESOURCES section of the UBBCONFIG file.

16-12 Using Security in CORBA Applications

MIDL Mapping
HRESULT logon(

 [in] BSTR user_name,

 [in] BSTR client_name,

 [in] BSTR system_password,

 [in] BSTR user_password,

 [in] VARIANT user_data,

 [in,out,optional] VARIANT* exceptionInfo,

 [out,retval] Security_AuthenticationStatus*

 returnValue);

Automation Mapping
Function logon(user_name As String, client_name As String,

 system_password As String, user_password As String,

 user_data, [exceptionInfo]) As Security_AuthenticationStatus

Description
For remote CORBA client applications, this method authenticates the client application via the
IIOP Listener/Handler so that the remote client application can access a BEA Tuxedo domain.
This method is functionally equivalent to DITobj_PrincipalAuthenticator.authenticate,
but the parameters are oriented to security.

Arguments
user_name

The BEA Tuxedo username. This parameter is required for TOBJ_NOAUTH,
TOBJ_SYSAUTH, and TOBJ_APPAUTH authentication levels.

client_name

The name of the CORBA client application. This parameter is required for TOBJ_NOAUTH,
TOBJ_SYSAUTH, and TOBJ_APPAUTH authentication levels.

system_password

A password for the CORBA client application. This parameter is required for
TOBJ_SYSAUTH and TOBJ_APPAUTH authentication levels.

user_password

The user password (default authentication service). This parameter is required for the
TOBJ_APPAUTH authentication level.

Method Desc r ip t ions

Using Security in CORBA Applications 16-13

user_data

Application-specific data (custom authentication service). This parameter is required for
the TOBJ_APPAUTH authentication level.

Note: If user_name, client_name, or system_password is NULL or empty, or exceeds
30 characters, the subsequent authenticate method invocation raises the
CORBA::BAD_PARAM exception.

Note: If the authorization level is TOBJ_APPAUTH, only one of user_password or
user_data may be supplied.

exceptioninfo

An optional input argument that allows the client application to get additional exception
data if an error occurs.

Return Values
The following table describes the valid return values.

DITobj_PrincipalAuthenticator.logoff

Synopsis
Discards the current security context associated with the CORBA client application.

MIDL Mapping
HRESULT logoff([in, out, optional] VARIANT* exceptionInfo);

Return Value Meaning

Security::AuthenticationStatus::
SecAuthSuccess

The authentication succeeded.

Security::AuthenticationStatus::
SecAuthFailure

The authentication failed, or the client application was already
authenticated and did not call one of the following methods:
Tobj::PrincipalAuthenticator:logoff

Tobj_Bootstrap::destroy_current

16-14 Using Security in CORBA Applications

Automation Mapping
Sub logoff([exceptionInfo])

Description
This call discards the context associated with the CORBA client application, but does not close
the network connections to the BEA Tuxedo domain. Logoff also invalidates the current
credentials. After logging off, calls using existing object references fail if the authentication type
is not TOBJ_NOAUTH.

If the client application is currently authenticated to a BEA Tuxedo domain, calling
Tobj_Bootstrap.destroy_current() calls logoff implicitly.

Argument
exceptioninfo

An optional input argument that allows the client application to get additional exception
data if an error occurs.

Return Values
None.

DISecurityLevel2_Credentials
The DISecurityLevel2_Credentials object is a BEA implementation of the CORBA
Security model. In this release of the BEA Tuxedo software, the get_attributes() and
is_valid() methods are supported.

DISecurityLevel2_Credentials.get_attributes

Synopsis
Gets the attribute list attached to the credentials.

MIDL Mapping
HRESULT get_attributes(

 [in] VARIANT attributes,

 [in,out,optional] VARIANT* exceptionInfo,

 [out,retval] VARIANT* returnValue);

Method Desc r ip t ions

Using Security in CORBA Applications 16-15

Automation Mapping
Function get_attributes(attributes, [exceptionInfo])

Arguments
attributes

The set of security attributes (privilege attribute types) whose values are desired. If this
list is empty, all attributes are returned.

exceptioninfo

An optional input argument that allows the client application to get additional exception
data if an error occurs.

Description
This method returns the attribute list attached to the credentials of the client application. In the
list of attribute types, you are required to include only the type value(s) for the attributes you want
returned in the AttributeList. Attributes are not currently returned based on attribute family
or identities. In most cases, this is the same result you would get if you called
DISecurityLevel2.Current::get_attributes(), since there is only one valid set of
credentials in the client application at any instance in time. The results could be different if the
credentials are not currently in use.

Return Values
A variant containing an array of DISecurity_SecAttribute objects.

DISecurityLevel2_Credentials.is_valid

Synopsis
Checks the status of credentials.

MIDL Mapping
HRESULT is_valid(

 [out] IDispatch** expiry_time,

 [in,out,optional] VARIANT* exceptionInfo,

 [out,retval] VARIANT_BOOL* returnValue

16-16 Using Security in CORBA Applications

Automation Mapping
Function is_valid(expiry_time As Object,

 [exceptionInfo]) As Boolean

Description
This method returns TRUE if the credentials used are active at the time; that is, you did not call
DITobj_PrincipalAuthenticator.logoff or destroy_current. If this method is called
after DITobj_PrincipalAuthenticator.logoff(), FALSE is returned. If this method is
called after destroy_current(), the CORBA::BAD_INV_ORDER exception is raised.

Return Values
The output expiry_time as a DITimeBase_UtcT object set to max.

Using Security in CORBA Applications Index-1

Index

A
administration steps

certificate authentication 3-18
link-level encryption 3-5
password authentication 3-9
the SSL protocol 3-12

ate 3-12
authentication

certificate 3-14
password 3-5

authorized users
defining 7-3

AUTHSRV
code example 7-2
configuring 7-2
described 3-5
use with password authentication 3-9

B
BEA Tuxedo domain

adding security to 9-6
building

Secure Simpapp sample application 10-2
Security sample application 10-2

C
certificate authentication

administration steps 3-18
C++ code example 9-13
configuration illustrated 3-21
described 3-14

development process 3-18
how it works 3-16
illustrated 3-15
programming steps 3-18
sample UBBCONFIG file 7-13
writing the client application 9-13

certificate authorities
defined 4-7
obtaining a digital certificate for 4-7

cipher suites
supported by the WLE product 2-10

compiling
client applications

Secure Simpapp sample application
10-6

concepts
certificate authentication 3-14
digital certificates 3-10
link-level encryption 3-2
password authentication 3-5
SSL protocol 3-9

configuring
a port for SSL communications 6-2
host matching 6-2
setting session renegotiation 6-6
setting the encyrption strength 6-4
the SSL protocol

CORBA C++ ORB 6-2
IIOP Listener/Handler 6-2

CORBA C++ client applications
starting

Secure Simpapp sample application
10-7

Index-2 Using Security in CORBA Applications

CORBA C++ ORB
defining a port for SSL communications 6-2
enabling host matching 6-3
setting the encryption strength 6-4

CORBA Java client applications
starting

Secure Simpapp sample application
10-7

CORBA module
described 13-2

CORBA Module IDL 13-2
CORBA Security model

accessing objects 12-3
administrative control 12-4
authenticating principals 12-3
components 12-4

Credentials object 12-7
PrincipalAuthenticator object 12-5
SecurityCurrent object 12-9

described 12-3
corbaloc 3-17
corbaloc URL Address format

described 9-4
corbalocs URL Address format

described 9-5
Credentials object

described 12-7
customer support contact information xiii

D
Data types

security module 13-4
development process

certificate authentication 3-18
password authentication 3-8
the SSL protocol 3-11

digital certificates
certificate authentication 3-14
SSL protocol 3-9, 3-10
troubleshooting 11-8

directory location of source files
Secure Simpapp sample application 10-2

documentation, where to find it xiii

E
eer 3-12
encryption

setting encryption strength 6-4
values 6-5

environment variables
JAVA_HOME 10-5
Secure Simpapp sample application 10-5
TUXDIR 10-5

F
file protections

Secure Simpapp sample application 10-4

H
host matching

enabling 6-2
values 6-3

I
IIOP Listener/Handler

configuring session renegotiation 6-6
defining a port for SSL communications 6-2
enabling host matching 6-3
SEC_PRINCIPAL_LOCATION parameter

6-7
SEC_PRINCIPAL_NAME parameter 6-6
SEC_PRINCIPAL_PASSVAR parameter

6-7
setting security parameters 6-6
setting the encryption strength 6-4
use with certificate authentication 3-14
use with the SSL protocol 3-10

Interoperable Naming Service

Using Security in CORBA Applications Index-3

using 9-15
invocation_options_required method

C++ code example 9-18
described 9-18

ISL command
configuring session renegotiation 6-6
enabling host matching 6-3
example 6-7
setting the encryption strength 6-4
specifying a port for SSL communications

6-2

J
JAVA_HOME parameter

Secure Simpapp sample application 10-5
joint client/server applications

using the SSL protocol 6-2

L
LDAP directory service

search filter file 4-4
use with CORBA security 4-3
use with the SSL protocol 3-11

LDAP Search Filter file
modifying 4-4
stanzas used by SSL protocol 4-5
stanzas used for certificate authentication

4-5
tags 4-5

link-level encryption
administration steps 3-5
described 3-2
development process 3-5

M
mpiling 10-7

N
ng 10-6

O
OMG IDL

CORBA module 13-2
Security Level 2 module 13-7
Security module 13-4
SecurityLevel 1 module 13-6
TimeBase module 13-2
Tobj module 13-7

P
password authentication

administration steps 3-8
application password 3-5
C++ example

SecurityLevel2 PrincipalAuthenticator
9-8

Tobj PrincipalAuthenticator 9-10
defining users and groups 3-9
described 3-5
development process 3-8
how it works 3-6
illustrated 3-6
interfaces explained 9-8
programming steps 3-8
sample UBBCONFIG file 7-9
system authentication 3-5
writing the client application 9-7

Peer Rules file
described 4-8
elements 4-9
example 4-8
syntax 4-9

PrincipalAuthenticator object
certificate authentication 12-6
CORBA extensions 12-6
described 12-5

Index-4 Using Security in CORBA Applications

using in client applications 9-6
printing product documentation xiii
private keys

example 4-7
format 4-6
location 4-6

protocols
link-level encryption 3-2
SSL 3-9

R
related information xiii
runme command

description 10-6
files generated by 10-7

S
s 10-2
SEC_PRINCIPAL_LOCATION parameter

defined 6-7
SEC_PRINCIPAL_NAME parameter

defined 6-6
SEC_PRINCIPAL_PASSVAR parameter

defined 6-7
Secure Simpapp sample application

building 10-2
changing protection on files 10-4
compiling the Java client application 10-6
description 9-12
development process 9-12
loading the UBBCONFIG file 10-6
required environment variables 10-5
runme command 10-6
setting up the work directory 10-2
source files 10-2, 10-3
starting the Java client application 10-9
using the client applications 10-9

Security Level 2 module
described 13-7

Security module

described 13-4
SECURITY parameter

defining in UBBCONFIG file 7-6
setting for password authentication 3-9
values for 7-6

Security sample application
description 9-6
illustrated 9-6
location of files 9-7
PrincipalAuthenticator object 9-6
SecurityCurrent object 9-6

SecurityCurrent object
described 12-9
using in client applications 9-6

SecurityLevel 1 module
described 13-6

source files
Secure Simpapp sample application 10-3

SSL parameters
SEC_PRINCIPAL_LOCATION 3-12
SEC_PRINCIPAL_NAME 3-12
SEC_PRINCIPAL_PASSVAR 3-12

SSL protocol
administration steps 3-12
configuration illustrated 3-13
described 3-9
development process 3-11
how it works 3-10
requirements 3-11

support
technical xiii

T
taining 7-4
the 4-2
Third-party ORBs

using the Interoperable Naming Service
9-15

TimeBase module
described 13-2

Using Security in CORBA Applications Index-5

TimeBase Module IDL 13-2
tmboot command

Secure Simpapp sample application 10-9
tmloadcf command

Secure Simpapp sample application 10-6
Tobj module

described 13-7
tpgrpadd command

defining security groups 3-9, 7-4
tpusradd command

defining users for security 3-9, 7-4
troubleshooting

bootstrapping problems 11-5
callback objects 11-7
certificate authentication problems 11-4
configuration problems 11-6
digital certificates 11-8
IIOP Listener/Handler startup problems

11-6
ORB initialization problems 11-3
password authentication problems 11-4
tracing 11-2
Ulog file 11-2

Trusted Certificate Authority file
described 4-7
example 4-7

TUXCONFIG parameter
setenv file 10-5

TUXDIR parameter
Secure Simpapp sample application 10-5

U
UBBCONFIG 3-19
UBBCONFIG file

configuring the authentication server 7-2
defining a security level 7-6
defining link-level encryption 3-5
defining security parameters for the IIOP

Listener/Handler 6-7
example of certificate authentication 7-13

example of password authentication 7-9
link-level encryption 3-5
password authentication 3-9
Secure Simpapp sample application 10-6

URL Address formats
certifcate authentication 3-17
corbaloc 9-2, 9-4
corbalocs 9-2, 9-5
Host and Port 9-4
syntax 9-3

Index-6 Using Security in CORBA Applications

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	Part�I Security Concepts
	Overview of the CORBA Security Features
	Introduction to the SSL Technology
	Fundamentals of CORBA Security

	Overview of the CORBA Security Features
	The CORBA Security Features
	The CORBA Security Environment
	BEA Tuxedo Security SPIs

	Introduction to the SSL Technology
	The SSL Protocol
	Digital Certificates
	Certificate Authority
	Certificate Repositories
	A Public Key Infrastructure
	PKCS-5 and PKCS-8 Compliance
	Supported Public Key Algorithms
	Supported Symmetric Key Algorithms
	Supported Message Digest Algorithms
	Supported Cipher Suites
	Standards for Digital Certificates

	Fundamentals of CORBA Security
	Link-Level Encryption
	How LLE Works
	Encryption Key Size Negotiation
	Determining min-max Values
	Finding a Common Key Size

	WSL/WSH Connection Timeout During Initialization
	Development Process

	Password Authentication
	How Password Authentication Works
	Development Process for Password Authentication

	The SSL Protocol
	How the SSL Protocol Works
	Requirements for Using the SSL Protocol
	Development Process for the SSL Protocol

	Certificate Authentication
	How Certificate Authentication Works
	Development Process for Certificate Authentication

	Using an Authentication Plug-in
	Authorization
	Auditing
	PKI Plug-ins
	Commonly Asked Questions About the CORBA Security Features
	Do I Have to Change the Security in an Existing CORBA Application?
	Can I Use the SSL Protocol in an Existing CORBA Application?
	When Should I Use Certificate Authentication?

	Part�II Security Adminstration
	Managing Public Key Security
	Configuring Link-Level Encryption
	Configuring the SSL Protocol
	Configuring Authentication
	Configuring Security Plug-ins

	Managing Public Key Security
	Requirements for Using Public Key Security
	Who Needs Digital Certificates and Private/Private Key Pairs?
	Requesting a Digital Certificate
	Publishing Certificates in the LDAP Directory Service
	Editing the LDAP Search Filter File
	Storing the Private Keys in a Common Location
	Defining the Trusted Certificate Authorities
	Creating a Peer Rules File

	Configuring Link-Level Encryption
	Understanding min and max Values
	Verifying the Installed Version of LLE
	Configuring LLE on CORBA Application Links

	Configuring the SSL Protocol
	Setting Parameters for the SSL Protocol
	Defining a Port for SSL Network Connections
	Enabling Host Matching
	Setting the Encryption Strength
	Setting the Interval for Session Renegotiation
	Defining Security Parameters for the IIOP Listener/Handler
	Example of Setting Parameters on the ISL System Process
	Example of Setting Command-line Options on the CORBA C++ ORB

	Configuring Authentication
	Configuring the Authentication Server
	Defining Authorized Users
	Defining a Security Level
	Configuring Application Password Security
	Configuring Password Authentication
	Sample UBBCONFIG File for Password Authentication
	Configuring Certificate Authentication
	Sample UBBCONFIG File for Certificate Authentication
	Configuring Access Control
	Configuring Optional ACL Security
	Configuring Mandatory ACL Security
	Setting ACL Policy Between CORBA Applications
	Impersonating the Remote Domain Gateway
	Example DMCONFIG Entries for ACL Policy

	Configuring Security to Interoperate with Older WebLogic Enterprise Client Applications

	Configuring Security Plug-ins
	Registering the Security Plug-ins (SPIs)

	Writing a CORBA Application That Implements Security
	Using the Bootstrapping Mechanism
	Using the Host and Port Address Format
	Using the corbaloc URL Address Format
	Using the corbalocs URL Address Format

	Using Password Authentication
	The Security Sample Application
	Writing the Client Application
	C++ Code Example That Uses the SecurityLevel2::PrincipalAuthenticator::authenticate() Method
	C++ Code Example That Uses the Tobj::PrincipalAuthenticator::logon() Method

	Using Certificate Authentication
	The Secure Simpapp Sample Application
	Writing the CORBA Client Application
	C++ Code Example of Certificate Authentication

	Using the Interoperable Naming Service Mechanism
	Protecting the Client Credentials

	Using the Invocations_Options_Required() Method

	Building and Running the CORBA Sample Applications
	Building and Running the Security Sample Application
	Building and Running the Secure Simpapp Sample Application
	Step 1: Copy the Files for the Secure Simpapp Sample Application into a Work Directory
	Step 2: Change the Protection Attribute on the Files for the Secure Simpapp Sample Application
	Step 3: Verify the Settings of the Environment Variables
	Step 4: Execute the runme Command
	Using the Secure Simpapp Sample Application

	Troubleshooting
	Using ULOGS and ORB Tracing
	CORBA::ORB_init Problems
	Password Authentication Problems
	Certificate Authentication Problems
	Tobj::Bootstrap:: resolve_initial_references Problems
	IIOP Listener/Handler Startup Problems
	Configuration Problems
	Problems with Using Callbacks Objects with the SSL Protocol
	Troubleshooting Tips for Digital Certificates

	CORBA Security APIs
	The CORBA Security Model
	Authentication of Principals
	Controlling Access to Objects
	Administrative Control

	Functional Components of the CORBA Security Environment
	The Principal Authenticator Object
	Using the Principal Authenticator Object with Certificate Authentication
	BEA Tuxedo Extensions to the Principal Authenticator Object

	The Credentials Object
	The SecurityCurrent Object

	Security Modules
	CORBA Module
	TimeBase Module
	Security Module
	Security Level 1 Module
	Security Level 2 Module
	Tobj Module

	C++ Security Reference
	SecurityLevel2::Credentials
	SecurityLevel2::PrincipalAuthenticator

	Java Security Reference
	Automation Security Reference
	Method Descriptions
	DISecurityLevel2_Current
	DITobj_PrincipalAuthenticator
	DISecurityLevel2_Credentials

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

