‘.."‘

o 7
2 bea
L/

BEATuxedo

Tutorials for Developing
BEA Tuxedo ATMI
Applications

Version 9.0
Document Released: June 28, 2005

Copyright

Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread, Top End,
Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign Manager for
WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA WebLogic Commerce Server, BEA WebLogic Enterprise,
BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic JRockit, BEA
WebLogic Log Central, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA
WebLogic Server Process Edition, BEA WebLogic WorkGroup Edition, BEA WebLogic Workshop, and Liquid
Computing are trademarks of BEA Systems, Inc. BEA Mission Critical Support is a service mark of BEA Systems, Inc.
All other company and product names may be the subject of intellectual property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Contents

About This Document

What You Need to Know i e e xii
€-doCs Web Site . ..ot xii
How to Printthe Document it e xii
Contact Us! ..o e xii
Documentation CONVENtIONSo v vttt ettt e e e ettt e e eeens xiii

Developing a BEA Tuxedo Application

Before Developing Your BEA Tuxedo Applicationcovu.... 1-1
Creating a BEA Tuxedo ATMIClient. ottt 1-2

Client Tasks.ot 1-2
Creating a BEA Tuxedo ATMI Server ...t 1-3

Server Tasks 1-4
Using Typed Buffers in Your Application.c.o i, 1-5
Using BEA Tuxedo Messaging Paradigms in Your Application 1-6
Using the Request/Response Model (Synchronous Calls). 1-6
Using the Request/Response Model (Asynchronous Calls) 1-7
Using Nested Calls.o e e e et e 1-8
Using Forwarded Calls. o e e 1-9
Using Conversational Communicationounirerninenennenen... 1-10
Using Unsolicited Notification, 1-11
Using Event-based Communication.ouutiinirerninenennenen .. 1-12

Tutorials for Developing BEA Tuxedo ATMI Applications iii

Using Queue-based Communication.oouvrier e, 1-13

USINg TranSacCtionsottt ettt e e ettt et 1-15

Tutorial for simpapp, a Simple C Application

What Is SImpapp?o ot 2-1
Preparing simpapp Files and Resources i, .. 2-2
Before YouBegin. o 2-2
About This Tutorial e e 2-2
What You Will Learn.o e 2-3
Step 1: How to Copy the simpapp Files 2-3
Step 2: Examining and Compilingthe Client 2-4
How to Examine the Client i, 2-4
How to Compilethe Client 2-7
Step 3: Examining and Compiling the Server., 2-7
How to Examine the Server. i 2-7
How to Compilethe Server i 2-9
Step 4: Editing and Loading the Configuration File.............. 2-10
How to Edit the Configuration File o .. 2-10
How to Load the Configuration File 2-11
Step 5: How to Boot the Application iiiiiiennon... 2-12
Step 6: How to Execute the Run-time Application. 2-13
Step 7: How to Monitor the Run-time Application. 2-13
Step 8: How to Shut Down the Application 2-14

Tutorial for bankapp, a Full C Application

What Is bankapp? 3-1
About This Tutorial e 3-1
Familiarizing Yourself with bankapp 3-2

Tutorials for Developing BEA Tuxedo ATMI Applications

Exploring the Banking Application Files. 3-3
Examining the bankapp Clients. 0o 3-7
What Is the bankclt.c File?. 3-7
Howud(1) IsUsed inbankapp., 3-10

A Request/Response Client: audit.c.t 3-11

A Conversational Client: auditcon.c. i, 3-12

A Client that Monitors Events: bankmgr.c................................ 3-13
Examining the bankapp Servers and Services., 3-14
bankapp Request/Response Servers.oovvune .. 3-15
bankapp Conversational Servert 3-16
bankapp SeIVICESttt 3-16
Algorithms of bankapp Services. 3-18

Utilities Incorporated into SErvers . ..o, 3-24
Alternative Way to Code Servicesottt 3-24
Preparing bankapp Files and Resources, 3-26
Step 1: How to Set the Environment Variables. 3-26
Step 2: Building Servers inbankappttt 3-31
How to Build ACCT Server.ooutui e 3-32
How to Build the BAL Server 3-33
How to Build the BTADD Server.ot 3-34
How to Build the TLR Serverot 3-35
How to Build the XFER Server it 3-35
Servers Built in the bankapp.mk File.................................... 3-36
Step 3: Editing the bankapp Makefile............... 3-36
How to Edit the TUXDIR Parameter. i .. 3-36
How to Edit the APPDIR Parametero .. 3-37
How to Set the Resource Manager Parameters 3-37

Tutorials for Developing BEA Tuxedo ATMI Applications

How to Run the bankapp.mk File 3-37

Step 4: Creating the bankapp Database.t nennen... 3-38
How to Create the Database in SHM Mode. 3-38
How to Create the Database inMPMode 3-38

Step 5: Preparing for an XA-Compliant Resource Manager. 3-39
How to Change the bankvar File, 3-39
How to Change the bankapp Servicescciiiiiiieen... 3-39
How to Change the bankapp.mk File.................................... 3-40
How to Change crbank and crbankdb 3-40
How to Change the Configuration File 3-41

How to Integrate bankapp with Oracle (XA RM) for a Windows 2003 Platform 3-41

Step 6: How to Edit the Configuration File. 3-47

Steps 7 and 8: Creating a Binary Configuration File and Transaction Log File. 3-51
Before Creating the Binary Configuration File 3-51
How to Load the Configuration File 3-52
How to Create the Transaction Log (TLOG) File 3-52

Step 9: How to Create a Remote Service Connection on Each Machine 3-53
How to Stop the Listener Process (tlisten). 3-54
Sample tlisten Error Messages. oottt en et 3-54

Running bankapp.t 3-56

Step 1: How to Prepare to Boot.ot 3-56

Step 2: How to Bootbankapp i 3-58

Step 3: How to Populate the Database iiiiiiininnnn... 3-58

Step 4: How to Test bankapp Services, 3-59

Step 5: How to Shut Down bankapp. 3-60

Tutorial for CSIMPAPP, a Simple COBOL Application
What Is CSIMPAPP? 4-1

Tutorials for Developing BEA Tuxedo ATMI Applications

Preparing CSIMPAPP Files and Resources, 4-3

Before You Begin. 4-4
What You Will Learn 4-4
Step 1: How to Copy the CSIMPAPP Files, 4-4
Step 2: Examining and Compilingthe Client 4-6
How to Examinethe Client i, 4-6
How to Compilethe Client. i, 4-9
Step 3: Examining and Compiling the Server.coon.. 4-10
How to Examinethe Server i 4-10
How to Compilethe Server i 4-14
Step 4: Editing and Loading the Configuration File 4-14
How to Edit the Configuration File 4-14
How to Load the Configuration File 4-16
Step 5: How to Boot the Application. 0., 4-16
Step 6: How to Test the Run-time Application.c.covvunn.. 4-17
Step 7: How to Monitor the Run-time Application. 4-17
Step 8: How to Shut Down the Application, 4-18
Tutorial for STOCKAPP, a Full COBOL Application

What Is STOCKAPP? 5-1
Familiarizing Yourself with STOCKAPP. 5-2
Learning About the STOCKAPP Files oo 5-2
Exploring the Stock Application Files 5-3
Examining the STOCKAPP Clientscouiiniinninniniinen. 5-4
System Client Programs.ot 5-5
Typed Buffers.o 5-5

A Request/Response Client: BUY.cbl 5-5
BUY.cbl Source Codeo 5-6

Tutorials for Developing BEA Tuxedo ATMI Applications vii

viii

Building CLientst e e e 5-6

Examining the STOCKAPP Servers.ccoitiini i, 5-7
STOCKAPP SEIVICES. . . o\ vttt e et e e e e e e e e 5-7
Preparing STOCKAPP Files and Resources., 5-9
Step 1: How to Set Environment Variables 5-9
Additional Requirements ittt 5-12
Step 2: Building Servers in STOCKAPP 5-13
How to Build the BUYSELL Serverc.iiuiiiinineaen... 5-13
Servers Built in STOCKAPP.mk i 5-14
Step 3: Editing the STOCKAPP.mk File ion... 5-14
How to Edit the TUXDIR Parameter., 5-15
How to Edit the APPDIR Parameter, 5-15
How to Run the STOCKAPP.mk File i, 5-15
Step 4: How to Edit the Configuration File. 5-16
Step 5: Creating a Binary Configuration File 5-18
Before Creating the Binary Configuration File 5-18
How to Load the Configuration File 5-19
Running STOCKAPP. e e 5-20
Step 1: How to Prepare to Boot.ot 5-20
Step 2: How to Boot STOCKAPP. e 5-22
Step 3: How to Test STOCKAPP Services.ot 5-22
Step 4: How to Shut Down STOCKAPP 5-23

Tutorial for XMLSTOCKAPP: a C and C++ XML Parser
Application

What Is XMLSTOCKAPP? e 6-1
Familiarizing Yourself with XMLSTOCKAPP 6-2
Learning About the XMLSTOCKAPP Files..........., 6-2

Tutorials for Developing BEA Tuxedo ATMI Applications

A Request/Response Client: stock quote beas.xml...................... 6-3

See AlSO. . .ot 6-4
Examining the XMLSTOCKAPP Servers............c.oouiiiiiiin... 6-4
Preparing XMLSTOCKAPP Files and Resources, 6-4
Stepl: Copy the XMLSTOCKAPP Files to a New Directory 6-4
Step 2: Set Environment Variables. i 6-5
Additional Requirements.t 6-5
Step 3: Building Clientsottt e et 6-5
Step 4: Building Servers in XMLSTOCKAPP. 6-6
How to Build the stockxml and stockxml ¢ Servers 6-6

See AlSO. . .ot 6-7
Step 5: How to Edit the ConfigurationFile 6-8
See AlSO. . .ot 6-9
Step 6: Creating a Binary Configuration File............................... 6-9
How to Load the Configuration File.................................. 6-9

See AlSO. . .ot 6-10
Running XMLSTOCKAPP e e e 6-10
Step 1: How to Prepareto Boot i 6-10
Step 2: How to Boot XMLSTOCKAPP. i 6-10
See AlSO. . .ot 6-11
Step 3: How to Test XMLSTOCKAPP Services 6-11
Step 4: How to Shut Down XMLSTOCKAPP. 6-11
See AlSO. . .ot 6-12

Tutorial for xmlfmlapp: A Full C XML/FML32 Conversion
Application

What Is xmlfmlapp? 7-2

Tutorials for Developing BEA Tuxedo ATMI Applications ix

Learning About the xmlfmlapp Files........... 7-3
TExamining the xmlfmlapp Client ciiiiiinin.... 7-3
Request/Response Clientoiiiiiirnniiinean... 7-4

See AlSO . .ot 7-4
Examining the xmlfmlapp Server 7-4
Preparing xmlfmlapp Files and Resources, 7-5
Step 1: Copy the xmlfmlapp Files to a New Directory 7-5
Step 2: Set Environment Variables. i 7-5
Additional Requirementsttt 7-6
Step 3: Create FML32 Field Table.o 7-6
Step 4: Build the xmlfmlapp Binaries 7-6
Step 5: Edit the Configuration File 7-7
See AlSO . .ot 7-8
Step 6: Create the Binary Configuration File. 7-8
Loading the Configuration File., 7-8

See AlSO . .ot 7-9
Running xmIfmlappot 7-9
Step 1: xmlfmlapp Boot Preparation, 7-9
Step 2: Bootxmlfmlapp. ... 7-10
See AlSO . .ot 7-10
Step 3: Test xmlfmlapp Services 7-10
Step 4: Shut Down xmlfmlapp. i 7-10
See AlSO . .ot 7-11

Tutorials for Developing BEA Tuxedo ATMI Applications

About This Document

This document describes how to run the BEA Tuxedo® ATMI sample applications.

This document includes the following topics:

Chapter 1, “Developing a BEA Tuxedo Application,” describes how to develop ATMI
client and server application using typed buffers and messaging paradigms.

Chapter 2, “Tutorial for simpapp, a Simple C Application,” describes how to run the
simpapp sample application.

Chapter 3, “Tutorial for bankapp, a Full C Application,” describes how to run the bankapp
sample application.

Chapter 4, “Tutorial for CSIMPAPP, a Simple COBOL Application,” describes how to run
the csimpapp sample application.

Chapter 5, “Tutorial for STOCKAPP, a Full COBOL Application,” describes how to run
the stockapp sample application.

Chapter 6, “Tutorial for XMLSTOCKAPP: a C and C++ XML Parser Application,”
describes how to run the XMLSTOCKAPP sample application which uses the Xerces
parser.

Chapter 7, “Tutorial for cstockapp: A Full C XML/FML32 Conversion Application,”
describes the cstockapp sample application .

Tutorials for Developing BEA Tuxedo ATMI Applications

Xi

What You Need to Know

This document is intended mainly for application developers. It describes how to develop ATMI
client and server applications and how to run the ATMI sample applications provided on the BEA
Tuxedo software.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the BEA Home
page, click on Product Documentation or go directly to the “e-docs” Product Documentation page
at http://www.e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using the File—
>Print option on your Web browser.

A PDF version of this document is available on the BEA Tuxedo documentation Home page on
the e-docs Web site (and also on the documentation CD). You can open the PDF in Adobe
Acrobat Reader and print the entire document (or a portion of it) in book format. To access the
PDFs, open the BEA Tuxedo documentation Home page, click the PDF files button and select
the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe Web site at
http://www.adobe.com/.

Contact Us!

Xii

Your feedback on the BEA Tuxedo documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be reviewed
directly by the BEA professionals who create and update the BEA Tuxedo documentation.

In your e-mail message, please indicate that you are using the documentation for the BEA Tuxedo
9.0 release.

If you have any questions about this version of BEA Tuxedo, or if you have problems installing
and running BEA Tuxedo, contact BEA Customer Support through BEA WebSupport at
www.bea.com. You can also contact Customer Support by using the contact information
provided on the Customer Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Tutorials for Developing BEA Tuxedo ATMI Applications

e Your name, e-mail address, phone number, and fax number

e Your company name and company address

e Your machine type and authorization codes

e The name and version of the product you are using

e A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention

Item

boldface text

Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.
italics Indicates emphasis or book titles.
monospace Indicates code samples, commands and their options, data structures and
text their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostream.h> void main () the pointer psz
chmod u+w *
\tux\data\ap
.doc
tux.doc
BITMAP
float
monospace Identifies significant words in code.
boldface Example:
text

void commit ()

Tutorials for Developing BEA Tuxedo ATMI Applications

xiii

Convention ltem

monospace Identifies variables in code.
italic

E le:
foxt xample

String expr

UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON

OR

{1 Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-0 name] [-f file-list]...
[-1 file-1list]...

Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Indicates one of the following in a command line:

» That an argument can be repeated several times in a command line

* That the statement omits additional optional arguments

» That you can enter additional parameters, values, or other information
The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-0 name] [-f file-Iist]...
[-1 file-list]...

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Xiv Tutorials for Developing BEA Tuxedo ATMI Applications

CHAPTERo

Developing a BEA Tuxedo Application

This topic includes the following sections:

e Before Developing Your BEA Tuxedo Application

Creating a BEA Tuxedo ATMI Client

Creating a BEA Tuxedo ATMI Server

Using Typed Buffers in Your Application

Using BEA Tuxedo Messaging Paradigms in Your Application

Before Developing Your BEA Tuxedo Application

Before you begin developing your BEA Tuxedo Application-to-Transaction Monitor Interface
(ATMI) application, it may be helpful to review the various concepts related to its design and the
tools that are available to you. These concepts include identifying clients or the various ways
input from the outside world is gathered and presented to your business for processing, and
identifying servers or the programs containing the business logic that process the input data. Also
important is reviewing the concept of typed buffers or how a client program allocates a memory
area before sending data to another program. Another concept worth reviewing is that of the BEA
Tuxedo messaging paradigms. ATMI client programs access the BEA Tuxedo system by calling
the ATMI library. Most calls in the ATMI library support these different communication styles
available to programmers, such as request/response and conversational. These are the building
blocks of every BEA Tuxedo application.

Tutorials for Developing BEA Tuxedo ATMI Applications 1-1

For more information about concepts, such as application queues, event-based communication,
and using ATMI, and on the tools available to you, refer to “Basic Architecture of the BEA
Tuxedo ATMI Environment” on page 2-2 in Introducing BEA Tuxedo ATMI. For information
about programming an application, refer to Programming BEA Tuxedo ATMI Applications Using
C and Programming BEA Tuxedo ATMI Applications Using COBOL.

Creating a BEA Tuxedo ATMI Client

Creating a BEA Tuxedo client is just like creating any other program in the C or C++
programming language. The BEA Tuxedo system provides you with a C-based programming
interface known as the BEA Tuxedo Application-to-Transaction Monitor Interface or ATMI. The
ATMI is an easy-to-use interface that enables the rapid development of BEA Tuxedo clients and
servers.

Note: BEA Tuxedo ATMI also supports a COBOL interface. (The examples shown here
illustrate the C/C++ APL.)

Client Tasks

Clients perform the following basic tasks:

e Clients may need to call tpchkauth () to determine the level of security required to join
an application. Possible responses are: no security enabled, application password enabled,
application authentication enabled, access control lists enabled, link-level encryption,
public key encryption, auditing. (This is optional depending on whether you are using
security levels.)

e Clients call tpinit () to connect to a BEA Tuxedo application. Any required security
information is passed to the application as arguments for tpinit ().

e Clients perform service requests.

e Clients call tpterm() to disconnect from a BEA Tuxedo application.

1-2 Tutorials for Developing BEA Tuxedo ATMI Applications

../int/intatm.htm#270481
../int/intatm.htm#270481

Creating a BEA Tuxedo ATMI Server

Figure 1-1 Tasks Performed by a Client

ATHMI
main ()
{
tpchkauth(); ———— Checks security level
tpinit(); ————— Connects to the BEA
do service call; TUXEDO application
tpterm(); .

Disconnects from the BEA

1 TUXEDO application

See Also

“Writing Clients” on page 4-1 in Programming BEA Tuxedo ATMI Applications Using C

“Administering Security” on page 2-1 in Using Security in CORBA Applications

“Using BEA Tuxedo Messaging Paradigms in Your Application” on page 1-6
e “What Are Typed Buffers?” on page 2-22 in Introducing BEA Tuxedo ATMI
e “What You Can Do Using the ATMI” on page 2-4 in Introducing BEA Tuxedo ATMI

Creating a BEA Tuxedo ATMI Server

Developers use the ATMI programming interface to create a BEA Tuxedo client and server.
However, BEA Tuxedo servers are not written by application developers as complete programs
(that is, with a standard main). Instead, application developers write a set of specific business
functions (known as services) that are compiled along with the BEA Tuxedo binaries to produce
a server executable.

When a BEA Tuxedo server is booted, it continues running until it receives a shutdown message.
A typical BEA Tuxedo server may perform thousands of service calls before being shut down and
rebooted.

Tutorials for Developing BEA Tuxedo ATMI Applications 1-3

../pgc/pgclt.htm#248431
../sec/secadm.htm#665722
../int/intatm.htm#347351
../int/intatm.htm#147771

Server Tasks

e Application developers write the code and the BEA Tuxedo ATMI servers invoke the
tpsvrinit () function only when the BEA Tuxedo server is booted. Programmers use this
function to open an application resource (such as a database) for later use.

e Application developers write the code and the BEA Tuxedo ATMI servers invoke the
tpsvrdone () function only when the BEA Tuxedo server is shut down. Programmers use
this function to close any application resources opened by tpsvrinit ().

e Application developers write the code and the BEA Tuxedo ATMI servers request named
application services that process client requests. BEA Tuxedo ATMI clients do not call
servers by name; they call services. A BEA Tuxedo ATMI client does not “know” the
location of the server processing its request.

e ATMI servers call the tpreturn () function to end a service request and return a buffer, if
required, to the calling client.

Figure 1-2 Tasks Performed by a Server

ATHMI

tpsvrinit{} { . . . }¥——— Performed when
server is hooted

Servicel |

{

do work;

tpreturn():

1 Service routines

{
do work;
tpreturn{ J:

}
tpsvrdone(}{...}

Performed when server
shuts down

1-4 Tutorials for Developing BEA Tuxedo ATMI Applications

Using Typed Buffers in Your Application

See Also

“Writing Servers” on page 5-1 in Programming BEA Tuxedo ATMI Applications Using C

“Using BEA Tuxedo Messaging Paradigms in Your Application” on page 1-6

“What Are Typed Buffers?” on page 2-22 in Introducing BEA Tuxedo ATMI
e “What You Can Do Using the ATMI” on page 2-4 in Introducing BEA Tuxedo ATMI

Using Typed Buffers in Your Application

All communication in the BEA Tuxedo system is transmitted through typed buffers. The BEA
Tuxedo system offers application developers the choice of many different buffer types to
facilitate this communication. All buffers passed through the BEA Tuxedo system have special
headers, and must be allocated and freed through the BEA Tuxedo ATMI (tpalloc(),
tprealloc (), and tpfree ())

Figure 1-3 Different Types of Buffers

Client — Buffer - Server
— ™
vIBEW FML CARRAY
STRING [C structure) (fielded) (hinary) AL

CUSTOM- DEFINED

The typed buffers facility allows for generic well-defined processing to be implemented once a
buffer type is shared across any type of network and protocol and any type of CPU architecture
and operating system supported by the BEA Tuxedo system. The advantage of typed buffers in a
distributed environment is that they relieve your clients and servers from the details of preparing
data to be transferred between heterogeneous computers linked by various communications
networks. This affords an application programmer time to concentrate on their business logic,
instead of focusing attention on writing this facility into their own programs.

See Also

e “What Are Typed Buffers?” on page 2-22 in Introducing BEA Tuxedo ATMI

Tutorials for Developing BEA Tuxedo ATMI Applications 1-5

../pgc/pgserv.htm#248431
../int/intatm.htm#347351
../int/intatm.htm#147771
../int/intatm.htm#347351

Using BEA Tuxedo Messaging Paradigms in Your Application

The BEA Tuxedo ATMI offers several communication models that you can use in your
application:

e Using the Request/Response Model (Synchronous Calls)

Using the Request/Response Model (Asynchronous Calls)

e Using Nested Calls

Using Forwarded Calls

Using Conversational Communication

Using Unsolicited Notification

e Using Event-based Communication

Using Queue-based Communication

e Using Transactions

Using the Request/Response Model (Synchronous Calls)

1-6

To make a synchronous call, a BEA Tuxedo ATMI client uses the ATMI function tpcall () to
send a request to a BEA Tuxedo ATMI server. The function does not invoke a BEA Tuxedo
server by name; instead, it invokes a specified service, which is provided by any server that offers
the service and is available. The client then waits for the requested service to be performed. Until
it receives a reply to its request, the client is not available for any other work. In other words, the
client blocks until it receives a reply.

Figure 1-4 Using the Synchronous Request/Response Model

Tutorials for Developing BEA Tuxedo ATMI Applications

Using the Request/Response Model (Asynchronous Calls)

ATHMI

CLIENT SERVER
maini) W ()
{ {
tpinit(. . .); do work;
tpcall("X" ...), «— | tpreturn(...);
tpterm();
} }

See Also
e “Request/Response Communication” on page 2-10 in Introducing BEA Tuxedo ATMI

Using the Request/Response Model (Asynchronous Calls)

To make an asynchronous call, a client calls two ATMI functions: the tpacall (3c) function, to
request a service, and the tpgetrply (3c) function, to retrieve the reply. This method is
commonly used when a client can perform additional tasks after issuing a request and before

receiving a reply.

Tutorials for Developing BEA Tuxedo ATMI Applications 1-1

../int/intatm.htm#448612
../rf3c/rf3c.htm#3813413
../rf3c/rf3c.htm#2914213

Figure 1-5 Using Asynchronous Calls

ATMI

CLIENT SERVER
main(} X(...])
{ {
tpinit(. . .);
tpacall("X" . .); do work;
:Ipug;n::;l;{ " Hf_f_,tpreturn[A
tptermf };
b H

See Also

e “Request/Response Communication” on page 2-10 in Introducing BEA Tuxedo ATMI

Using Nested Calls

Services can act as BEA Tuxedo ATMI clients and call other BEA Tuxedo services. In other
words, you can request a service that, in turn, requests other services. For example, suppose a
BEA Tuxedo client calls service X and waits for a reply. Service X then calls service Y and also
waits for a reply. When service X receives a reply, it returns the reply to the calling client. This
method is efficient because service X can take the reply from service Y, do more work on it, and
modify the return buffer before sending a final reply back to the client.

1-8 Tutorials for Developing BEA Tuxedo ATMI Applications

../int/intatm.htm#448612

Using Forwarded Calls

Figure 1-6 Using Nested Calls

ATMI
CLIENT SERVER 1 SERVER 2
maini()
{
tpinit(); do work; do work;
tpcall("x" tpcall["r’ =5 | tpretumn. .
tpterm() tp returni :I
} } }
See Also

e “Nested Requests” on page 2-17 in Introducing BEA Tuxedo ATMI

Using Forwarded Calls

With call forwarding, a nested service can return a reply directly to an ATMI client without going
through the first service that was called, thereby freeing the first service to handle other requests.
This capability is useful when the first service is acting strictly as a delivery agent, without adding
data to the reply returned by the nested service.

To facilitate call forwarding, a service called by a client uses the tpforward (3c) function to pass
the request to another service Y. This is the only situation in which a BEA Tuxedo service can
end a service call without calling tpreturn (3c).

Call forwarding is transparent to the client. In other words, the same client code is valid for
service requests handled by one service and requests handled by more than one service.

Tutorials for Developing BEA Tuxedo ATMI Applications 1-9

../int/intatm.htm#574962
../rf3c/rf3c.htm#3074013
../rf3c/rf3c.htm#1975913

Figure 1-7 Using Forwarded Calls

ATMI

CLIENT SERVER 1 SERVER 2
main() X() Y()
{ { {
tpinit(); do work; do work;
tpeall{"X" 7. .); tpforward(™™"); tpreturni);
tpterm();
} } }

See Also

e “Forwarded Requests” on page 2-19 in Introducing BEA Tuxedo ATMI

Using Conversational Communication

If multiple buffers need to be sent between a BEA Tuxedo ATMI client and a BEA Tuxedo
service in a stateful manner, then the BEA Tuxedo conversation may be a suitable option.

Use BEA Tuxedo conversations judiciously because a server engaged in a conversation is
unavailable until the conversation has ended. To implement a conversation, incorporate the
following steps into your code:

1. The BEA Tuxedo client starts the conversation with the tpconnect () function.

2. The BEA Tuxedo client and the conversational server exchange buffers using the tpsend ()
and tprecv () functions. A special flag is set in the service calls to indicate which
participant has control of the conversation.

3. The conversation ends in normal conditions, when the server calls tpreturn () or the
tpdiscon () function.

1-10 Tutorials for Developing BEA Tuxedo ATMI Applications

../int/intatm.htm#540632

Using Unsolicited Notification

Figure 1-8 Using Conversations

ATMI
CLIENT SERVER
maini } X(...)
{ {
tpinit();
tpconnect("X" .". .); loop {
loop { tprecvireply . . . };

tpsend{data .”. .) tpsendidata . . .);
tprecwireply . ﬁ

.

tpreturn (... J;

tprecvireply . . .)

tptermi);
} }

See Also

e “Conversational Communication” on page 2-11 in Introducing BEA Tuxedo ATMI

Using Unsolicited Notification

To enable unsolicited notification, a BEA Tuxedo ATMI client creates an unsolicited message
handle using the tpsetunsol () function. To send an unsolicited message, a BEA Tuxedo client
or server can use either the tpnotify () function, to send a message to a single client, or the
tpbroadcast () function, to send a message to multiple clients at the same time. When a client
receives a message, the BEA Tuxedo system calls the client’s unsolicited handler function.

In a signal-based system, a client does not have to poll for unsolicited messages. However, in a
non-signal based system, a client must check for unsolicited messages using the tpchkunsol ()
function. Whenever a client makes a service request, tpchkunsol () is called implicitly.

Tutorials for Developing BEA Tuxedo ATMI Applications 1-1

../int/intatm.htm#968512

Figure 1-9 Handling Unsolicited Notification

ATMI

CLIENT SERVER
main()
{ ¥ i
tpinit(); {
tpsetunsol(“func'); tpnotify{msg);
tpterm(}; tpreturn(. . .J;
: }
func(..) {
i]ruce&e msg;

Note: Ifyoucall tpnotify () with the tpack flag bit set, you will receive an acknowledgement
of your request.

See Also

e “Unsolicited Communication” on page 2-15 in Introducing BEA Tuxedo ATMI

Using Event-based Communication

1-12

In event-based communication, events can also be posted to application queues, log files, and
system commands. Any BEA Tuxedo ATMI client can subscribe to a user-defined event using
the tpsubscribe () function and receive an unsolicited message whenever a BEA Tuxedo
service or client issues a tppost () function. ATMI clients can also subscribe to system-defined
events that are triggered whenever the BEA Tuxedo system detects the event. When a server dies,
for example, the .SysServerDied event is posted. No application server is needed to post this
event, because it is performed by the BEA Tuxedo system.

Tutorials for Developing BEA Tuxedo ATMI Applications

../int/intatm.htm#834752

Figure 1-10 Using Event-based Communication

See Also

ATMI
CLIENT
maini)
{
tpinit();
tpsetunsol{“func™); EventBroker

tpsubscribe("a"); ——

tpterm(J;

}

funci...)

{

process msiy;

}

Using Queue-based Communication

SERVER
)

{

do work;
tppost(“a”);

tpreturn{ . . .);

e “How Events Are Reported” on page 2-14 in Introducing BEA Tuxedo ATMI

Using Queue-bhased Communication

To interface with the /Q system, a BEA Tuxedo client uses two ATMI functions: tpenqueue (),
to put messages into the queue space, and tpdequeue (), to take messages out of the queue space.

The following model represents peer-to-peer asynchronous messaging. Here, a client enqueues a
message to a service using tpengueue (). Optionally, the names of a reply queue and a failure
queue can be included in the call to tpengueue (). The client can also specify a correlation
identifier value to accompany the message. This value is persistent across queues so that any
reply or failure message associated with the queued message can be identified when it is read
from the reply or the failure queue.

The client can use the default queue ordering (for example, a time after which the message should
be dequeued), or can specify an override of the default queue ordering (asking, for example, that

Tutorials for Developing BEA Tuxedo ATMI Applications 1-13

../int/intatm.htm#201283

1-14

this message be put at the top of the queue or ahead of another message on the queue). The call
to tpenqueue () sends the message to the TMQUEUE server, the message is queued to stable
storage, and an acknowledgment is sent to the client. The acknowledgment is not seen directly by
the client, but can be assumed when the client gets a successful return. (A failure return includes
information about the nature of the failure.) A message identifier assigned by the queue manager
is returned to the application. The identifier can be used to dequeue a specific message. It can also
be used in another tpenqueue () to identify a message on the queue ahead of the next message
to be enqueued.

Before an enqueued message is made available for dequeuing, the transaction in which the
message is enqueued must be committed successfully. A client uses tpdequeue () to dequeue
messages from the queue.

Figure 1-11 Peer-to-Peer Asynchronous Messaging Model

ATMI
CLIENT CLIENT
do work do work
do work tpenqueve()——» ——» tpdequeuer) do work
tpdequeue() «—— «——— tpengqueue()
do work do work

In the following graphic, forwarding a message to another server is illustrated.

The client enqueues a message intended for service X on the server. The service receives this
message when it is active and when the handling instructions for the message are met (for
example, the message can be encoded to be activated on Friday at 6 PM). Once the service is
completed, it returns the reply to the queue space, from which it can be retrieved by the client.

This system of queuing is transparent to services. In other words, the same application code is
used for a service, regardless of whether the service is invoked through queuing or direct service
invocation using tp (a)call.

Tutorials for Developing BEA Tuxedo ATMI Applications

Using Transactions

Figure 1-12 Using Queue Forwarding for Queue-based Service Invocation

ATMI

CLIENT SERVER

main() X(..)

{ TMQFORWARD {
tpinit{);

tpenqueue("X™); . —» tpdequeus(J> do work;
tpdequeve(reply); «——— 4—tpenqueue(L}ﬂcalltﬂtpreturn();

tpterm();

See Also

e “Message Queuing Communication” on page 2-12 Introducing BEA Tuxedo ATMI

Using Transactions
To implement transactions, an application programmer uses three ATMI functions:
e tpbegin () to start the transaction.
e tpcommit () to start the two-phase commit process.

e tpabort () to immediately cancel the transaction.

Any code placed outside the begin and commit/abort sequence is not included in the transaction.

In the following example, a client begins a transaction, requests two services, and then commits
the transaction. Because the service requests are made between the beginning and the
commitment of the transaction, both services join the transaction.

Tutorials for Developing BEA Tuxedo ATMI Applications 1-15

../int/intatm.htm#221252

Figure 1-13 Using Transactions

ATMI
CLIENT SERVERS DATABASES
main() X...)
{
{ doDBwork, __ , DB1
tpreturn{); «——— (Oracle)
tpinit(); !
tphegin();
tpeall("X" 7.);
tpeall(™™...);
tpcommit(); \
Y(...)
tpterm(); {
do DB work; __ | DB2.
1 tpreturni); «—— (Informix)

See Also

e “Tutorial for bankapp, a Full C Application” on page 3-1
e “Tutorial for CSIMPAPP, a Simple COBOL Application” on page 4-1
e “Tutorial for simpapp, a Simple C Application” on page 2-1

e “Tutorial for STOCKAPP, a Full COBOL Application” on page 5-1

1-16 Tutorials for Developing BEA Tuxedo ATMI Applications

GHAPTERa

Tutorial for simpapp, a Simple C
Application

This topic includes the following sections:
e What Is simpapp?

e Preparing simpapp Files and Resources
— Step 1: How to Copy the simpapp Files
— Step 2: Examining and Compiling the Client
— Step 3: Examining and Compiling the Server
— Step 4: Editing and Loading the Configuration File
— Step 5: How to Boot the Application
— Step 6: How to Execute the Run-time Application
— Step 7: How to Monitor the Run-time Application
— Step 8: How to Shut Down the Application

What Is simpapp?

simpapp is a sample ATMI application that includes one client and one server. This application
is distributed with the BEA Tuxedo software. The server performs only one service: it accepts a
lowercase alphabetic string from the client and returns the same string in uppercase.

Tutorials for Developing BEA Tuxedo ATMI Applications 2-1

Preparing simpapp Files and Resources

2-2

This topic is a tutorial that leads you, step-by-step, through the process of developing and running
a sample BEA Tuxedo ATMI application. The following flowchart summarizes the process.
Click on each task for instructions on completing that task.

Figure 2-1 simpapp Development Process

Step 1. Copy simpapp
files

|
Step 2. Examine and
campile the client

|
Step 3. Examine and
compile the server

|
Step 4. Edit and load the
configuratian file

|
Step 5. Bootthe
application

Step 6. Execute the run-
time application

|
Step 7. Maonitor the run-
time application

|
Step 8. Shut down the
application

Before You Begin

Before you can run this tutorial, the BEA Tuxedo ATMI client and server software must be
installed so that the files and commands referred to are available. If the installation has already
been done by someone else, you need to know the pathname of the directory in which the
software is installed (TUXDIR). You also need to have read and write permissions on the
directories and files in the BEA Tuxedo directory structure so you can copy simpapp files and
execute BEA Tuxedo commands.

About This Tutorial

The instructions for the simpapp tutorial are based on a UNIX system platform. While specific
platform instructions for the UNIX operating system environment remain largely the same,
instructions for performing tasks (such as copying simpapp files or setting environment

Tutorials for Developing BEA Tuxedo ATMI Applications

Step 1: How to Copy the simpapp Files

variables) on non-UNIX platforms (such as Windows 2003) may be different. For this reason, the
examples used in the tutorial may or may not provide reliable procedures for your platform.

What You Will Learn

After you complete this tutorial, you will be able to understand the tasks ATMI clients and servers
can perform, edit a configuration file for your own environment, and invoke tmadmin to check
on the activity of your application. You will understand the basic elements of all BEA Tuxedo
applications—client processes, server processes, and a configuration file—and you will know
how to use BEA Tuxedo system commands to manage your application.

Step 1: How to Copy the simpapp Files

1.

Note: The following instructions are based on a UNIX system platform. Instruction for
non-UNIX platforms, such as Windows 2003, may be different. Examples used in the
sample applications may vary significantly, depending on the specific platform.

Make a directory for simpapp and cd to it:

mkdir simpdir
cd simpdir

Note: This step is suggested so you can see the simpapp files you have at the start and the
additional files you create along the way. Use the standard shell (/bin/sh) or the
Korn shell; do not use csh.

Set and export environment variables:

TUXDIR=pathname of the BEA Tuxedo system root directory
TUXCONFIG=pathname of your present working directory/tuxconfig
PATH=$PATH: STUXDIR/bin
LD_LIBRARY_ PATH=$LD_LIBRARY PATH:S$TUXDIR/lib

export TUXDIR TUXCONFIG PATH LD_LIBRARY_ PATH

You need TUXDIR and PATH to be able to access files in the BEA Tuxedo system directory
structure and to execute BEA Tuxedo system commands. On Sun Solaris, /usr/5bin must
be the first directory in your PATH. With AIX on the RS/6000, use LIBPATH instead of
LD_LIBRARY_ PATH. On HP-UX on the HP 9000, use SHLIB_PATH instead of
LD_LIBRARY_PATH.

You need to set TUXCONFIG to be able to load the configuration file, described in “Step 4:
Editing and Loading the Configuration File” on page 2-10.

3. Copy the simpapp files:

Tutorials for Developing BEA Tuxedo ATMI Applications 2-3

cp STUXDIR/samples/atmi/simpapp/*

Note: It is best to begin with a copy of the files rather than the originals delivered with the
software because you will edit some of the files to make them executable.

. List the files:
S 1s
README env simpapp.nt ubbmp wsimpcl
README.as400 setenv.cmd simpcl.c ubbsimple
README.nt simpapp.mk simpserv.c ubbws
$

Note: Except for the README files, the other files are variations of simp* . * and ubb* files
for non-UNIX system platforms. The README files provide explanations of the other
files.

The three files that are central to the application are:
— simpcl.c—the source code for the client program.
— simpserv.c—the source code for the server program.

— ubbsimple—the text form of the configuration file for the application.

See Also

e “What Is simpapp?” on page 2-1

Step 2: Examining and Compiling the Client

How to Examine the Client

Review the ATMI client program source code:
$ more simpcl.c

The output is shown in the following listing.

Listing 2-1 Source Code of simpcl.c

U W N

2-4

#include <stdio.h>
#include "atmi.h" /* TUXEDO */

Tutorials for Developing BEA Tuxedo ATMI Applications

0 J o

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Step 2: Examining and Compiling the Client

#ifdef _ STDC_
main(int argc, char *argvl[])

#else

main(argc, argv)

int argc;
char *argvl[];
#endif
{
char *sendbuf, *rcvbuf;
int sendlen, rcvlen;
int ret;
if(arge !'= 2) {
fprintf (stderr, "Usage: simpcl string\n");
exit (1) ;
}
/* Attach to BEA TUXEDO as a Client Process */
if (tpinit((TPINIT *) NULL) == -1) {
fprintf (stderr, "Tpinit failed\n");
exit (1) ;
}
sendlen = strlen(argv[l]);
if ((sendbuf = (char *)tpalloc("STRING", NULL, sendlen+1))== NULL) {
fprintf (stderr, "Error allocating send buffer\n");
tpterm() ;
exit (1) ;
}
if ((rcvbuf = (char *)tpalloc("STRING", NULL, sendlen+1))== NULL) {

fprintf (stderr, "Error allocating receive buffer\n");
tpfree (sendbuf) ;
tpterm() ;
exit (1) ;
}
strcpy (sendbuf, argv[l]);
ret = tpcall ("TOUPPER", sendbuf, NULL, &rcvbuf, &rcvlen, 0);
if(ret == -1) {
fprintf (stderr, "Can't send request to service TOUPPER\n") ;
fprintf (stderr, "Tperrno = %d, %s\n", tperrno,
tmemsgs [tperrnol]) ;

tpfree (sendbuf) ;
tpfree (rcvbuf) ;
tpterm() ;
exit (1) ;

Tutorials for Developing BEA Tuxedo ATMI Applications 2-5

55 printf ("Returned string is: %s\n", rcvbuf);
56
57 /* Free Buffers & Detach from BEA TUXEDO */
58 tpfree (sendbuf) ;
59 tpfree (rcvbuf) ;
60 tpterm() ;
61 }
Table 2-1 Significant Lines in the simpcl.c Source Code

Line(s) File/Function Purpose

2 atmi.h Header file required whenever BEA Tuxedo ATMI
functions are used.

28 tpinit () The ATMI function used by a client program to join an
application.

33 tpalloc () The ATMI function used to allocate a typed buffer.
STRING is one of the five basic BEA Tuxedo buffer
types; NULL indicates there is no subtype argument.
The remaining argument, sendlen + 1, specifies the
length of the buffer plus 1 for the null character that
ends the string.

38 tpalloc () Allocates another buffer for the return message.

45 tpcall () Sends the message buffer to the TOUPPER service
specified in the first argument. Also includes the
address of the return buffer. tpcall () waits for a
return message.

35,41,52,60 tpterm() The ATMI function used to exit an application. A call
to tpterm () is used to exit the application before
exiting in response to an error condition (lines 36, 42,
and 53). The final call to tpterm () (line 60) is issued
after the message has been printed.

2-6 Tutorials for Developing BEA Tuxedo ATMI Applications

Step 3: Examining and Compiling the Server

Table 2-1 Significant Lines in the simpcl.c Source Code (Continued)

Line(s) File/Function

Purpose

40, 50, 51, 58, tpfree()
59

Frees allocated buffers. tpfree () is the functional

opposite of tpalloc ().

55 printf ()

The successful conclusion of the program. It prints out
the message returned from the server.

How to Compile the Client

1. Runbuildclient to compile the ATMI client program:

buildclient -o simpcl -f simpcl.c

The output file is simpcl and the input source file is simpcl.c.

2. Check the results:

S 1s -1
total 97
-rwxr-x--x 1 usrid
-rw-r----- 1 usrid
-rw-r----- 1 usrid
—rw-r----- 1 usrid

grpid
grpid
grpid
grpid

313091 May 28
1064 May 28
275 May 28
392 May 28

15
07
08
07

41
:51
:57
:51

simpcl
simpcl.c
simpserv.c
ubbsimple

As can be seen, we now have an executable module called simpcl. The size of simpcl

may vary.

See Also

e “What Is simpapp?” on page 2-1

® buildclient (1) in BEA Tuxedo Command Reference

e BEA Tuxedo ATMI C Function Reference

Step 3: Examining and Compiling the Server

How to Examine the Server

Review the ATMI server program source code.

$ more simpserv.c

Tutorials for Developing BEA Tuxedo ATMI Applications 2-1

../rfcm/rfcmd.htm#6066211

Listing 2-2 Source Code of simpserv.c

*/

/* #ident"@(#) apps/simpapp/simpserv.cS$SRevision: 1.1 $" */

1 #include <stdio.h>

2 #include <ctype.h>

3 #include <atmi.h>/* TUXEDO Header File */

4 #include <userlog.h>/* TUXEDO Header File */

5 /* tpsvrinit is executed when a server is booted, before it begins
processing requests. It is not necessary to have this function.
Also available is tpsvrdone (not used in this example), which is
called at server shutdown time.

9 */

10 #if defined(__STDC__) || defined(__cplusplus)

12 tpsvrinit (int argc, char *argvl[])
13 #else

14 tpsvrinit (argc, argv)

15 int argc;

16 char **argv;

17 #endif

18 {

19 /* Some compilers warn if argc and argv aren't used.
20 *x/

21 argc = argc;

22 argv = argv;

23 /* userlog writes to the central TUXEDO message log */
24 userlog("Welcome to the simple server");

25 return(0) ;

26 }

27 /* This function performs the actual service requested by the client.
Its argument is a structure containing, among other things, a pointer
to the data buffer, and the length of the data buffer.

30 */

31 #ifdef _ cplusplus

32 extern "C"

33 #endif

34 void

35 #if defined(__STDC__) ||

36 TOUPPER (TPSVCINFO *rgst)

37 #else

38 TOUPPER(rgst)

39 TPSVCINFO *rgst;

40 #endif

41 {

defined(___cplusplus)

2-8 Tutorials for Developing BEA Tuxedo ATMI Applications

42
43
44
45
46
47
48 '}

int 1i;

for(i = 0;
rgst->datali]

Step 3: Examining and Compiling the Server

i < rgst->len-1; i++)

= toupper (rgst->datalil) ;

/* Return the transformed buffer to the requestor. */

tpreturn (TPSUCCESS,

rgst->data, OL, 0);

Table 2-2 Significant Parts of the simpserv.c Source Code

Line(s)

File/Function

Purpose

Whole file

A BEA Tuxedo server does not contain amain (). The
main () is provided by the BEA Tuxedo system when
the server is built.

12

tpsvrinit ()

This subroutine is called during server initialization,
that is, before the server begins processing service
requests. A default subroutine (provided by the BEA
Tuxedo system) writes a message to USERLOG
indicating that the server has been booted.
userlog (3c) is a log used by the BEA Tuxedo
system and can be used by applications.

38

TOUPPER ()

The declaration of a service (the only one offered by
simpserv). The sole argument expected by the
service is a pointer to a TPSVCINFO structure, which
contains the data string to be converted to uppercase.

45

for loop

Converts the input to uppercase by repeated calls to
TOUPPER

49

tpreturn ()

Returns the converted string to the client with the
TPSUCCESS flag set.

How to Compile the Server

1. Runbuildserver to compile the ATMI server program:

buildserver -o simpserv -f simpserv.c -s TOUPPER

Tutorials for Developing BEA Tuxedo ATMI Applications 2-9

The executable file to be created is named simpserv and simpserv.c is the input source
file. The -s TOUPPER option specifies the service to be advertised when the server is
booted.

2. Check the results:

$ 1s -1

total 97

-rwxr-x--x 1 usrid grpid 313091 May 28 15:41 simpcl
-rw-r----- 1 usrid grpid 1064 May 28 07:51 simpcl.c
-rwxr-x--x 1 usrid grpid 358369 May 29 09:00 simpserv
-rw-r----- 1 wusrid grpid 275 May 28 08:57 simpserv.c
-ITW-Y-———-— 1 wusrid grpid 392 May 28 07:51 ubbsimple

You now have an executable module called simpserv.

See Also

e “What Is simpapp?” on page 2-1
e buildserver (1) in BEA Tuxedo Command Reference

o BEA Tuxedo ATMI C Function Reference
Step 4: Editing and Loading the Configuration File
How to Edit the Configuration File

1. In a text editor, familiarize yourself with ubbsimple, which is the configuration file for
simpapp.

Listing 2-3 The simpapp Configuration File

1$

2

3 #Skeleton UBBCONFIG file for the BEA Tuxedo Simple Application.
4 #Replace the <bracketed> items with the appropriate values.

5 RESOURCES

6 IPCKEY <Replace with valid IPC Key greater than 32,768>
7

8 #Example:

9

10 #IPCKEY 62345

11

2-10 Tutorials for Developing BEA Tuxedo ATMI Applications

../rfcm/rfcmd.htm#6083611

Step 4: Editing and Loading the Configuration File

12 MASTER simple

13 MAXACCESSERS 5

14 MAXSERVERS 5

15 MAXSERVICES 10

16 MODEL SHM

17 LDBAL N

18

19 *MACHINES

20

21 DEFAULT:

22

23 APPDIR="<Replace with the current pathname>"
24 TUXCONFIG="<Replace with TUXCONFIG Pathname>"
25 TUXDIR="<Root directory of Tuxedo (not /)>"
26 #Example:

27 # APPDIR="/usr/me/simpdir"

28 # TUXCONFIG="/usr/me/simpdir/tuxconfig"

29 # TUXDIR="/usr/tuxedo"

30

31 <Machine-name> LMID=simple
32 #Example:

33 #tuxmach LMID=simple

34 *GROUPS

35 GROUP1

36 LMID=simple GRPNO=1 OPENINFO=NONE
37

38 *SERVERS

39 DEFAULT:

40 CLOPT="-A"

41 simpserv SRVGRP=GROUP1 SRVID=1
42 *SERVICES

43 TOUPPER

2. For each <string> (that is, for each string shown between angle brackets), substitute an
appropriate value.

How to Load the Configuration File

1. Run tmloadcf to load the configuration file:

$ tmloadcf ubbsimple
Initialize TUXCONFIG file: /usr/me/simpdir/tuxconfig [y, gl ? vy
$

2. Check the results:

Tutorials for Developing BEA Tuxedo ATMI Applications 2-11

$ 1s -1

total 216

-rwxr-x--x 1 usrid grpid 313091 May 28 15:41 simpcl
-rw-r----- 1 usrid grpid 1064 May 28 07:51 simpcl.c
-rwxr-x--x 1 usrid grpid 358369 May 29 09:00 simpserv
-rw-r----- 1 usrid grpid 275 May 28 08:57 simpserv.c
-rw-r----- 1 usrid grpid 106496 May 29 09:27 tuxconfig
-rw-r----- 1 usrid grpid 382 May 29 09:26 ubbsimple

You now have a file called TuxcoNFIG. The TUXCONFIG file is a new file under the control of the
BEA Tuxedo system.

See Also

e “What Is simpapp?” on page 2-1
e tmloadcf (1) in the BEA Tuxedo Command Reference

® UBBCONFIG (5) in the File Formats, Data Descriptions, MIBs, and System Processes
Reference

Step 3: How to Boot the Application

1. Execute tmboot to bring up the application:

S tmboot
Boot all admin and server processes? (y/n): y
Booting all admin and server processes in /usr/me/simpdir/tuxconfig
Booting all admin processes
exec BBL -A:
process id=24223 ... Started.

Booting server processes

exec simpserv -A
process id=24257 ... Started.
2 processes started.

$

The BBL is the administrative process that monitors the shared memory structures in the
application. simpserv is the simpapp server that runs continuously, awaiting requests.

See Also

e “What Is simpapp?” on page 2-1

e tmboot (1) in the BEA Tuxedo Command Reference

2-12 Tutorials for Developing BEA Tuxedo ATMI Applications

../rfcm/rfcmd.htm#9061611
../rf5/rf5.htm#365105
../rfcm/rfcmd.htm#5173411

Step 6: How to Execute the Run-time Application

e “How to Boot the Application” on page 1-8 in Administering a BEA Tuxedo Application at
Run Time

Step 6: How to Execute the Run-time Application
To execute your simpapp, have the client submit a request.

$ simpcl “hello, world”
Returned string is: HELLO, WORLD

See Also

e “What Is simpapp?” on page 2-1

Step 7: How to Monitor the Run-time Application

As the administrator, you can use the tmadmin command interpreter to check an application and
make dynamic changes. To run tmadmin, you must have the TUXCONFIG environment variable
set.

tmadmin can interpret and run over 50 commands. For a complete list, see tmadmin (1). The
following uses two of the tmadmin commands.
1. Enter the following command:

$ tmadmin

The following lines are displayed:

tmadmin - Copyright (c) 1999 BEA Systems, Inc. All rights reserved.
>

Note: The greater-than sign (>) is the tmadmin prompt.
2. Enter the printserver (psr) command to display information about servers:

> psr
a.out Name Queue Name Grp Name ID RgDone Load Done Current Service

BBL 531993 simple 0 0
simpserv 00001.00001 GROUP1 1 0
>

3. Enter the printservice (psc) command to display information about the services:
> psc

Service Name Routine Name a.out Name Grp Name ID Machine # Done Status

Tutorials for Developing BEA Tuxedo ATMI Applications 2-13

../ada/adboot.htm#550051
../rfcm/rfcmd.htm#2554911

TOUPPER TOUPPER simpserv GROUP1 1 simple - AVAIL
>

See Also

e “What Is simpapp?” on page 2-1

e tmadmin (1) in the BEA Tuxedo Command Reference

Step 8: How to Shut Down the Application

1. Run tmshutdown to bring down the application:

$ tmshutdown

Shutdown all admin and server processes? (y/n): y

Shutting down all admin and server processes in /usr/me/simpdir/tuxconfig
Shutting down server processes

Server Id = 1 Group Id = GROUP1 Machine = simple: shutdown succeeded.
Shutting down admin processes

Server Id = 0 Group Id = simple Machine = simple: shutdown succeeded.
2 processes stopped.

$

2. Check the uLoG:

$ cat ULOG*

$

113837 .tuxmach!tmloadcf.10261: CMDTUX_CAT:879: A new file system has been
created. (size = 32 4096-byte blocks)
113842.tuxmach!tmloadcf.10261: CMDTUX_CAT:871: TUXCONFIG file
/usr/me/simpdir/tuxconfig has been created
113908.tuxmach!BBL.10768: LIBTUX_CAT:262: std main starting
113913.tuxmach!simpserv.10925: LIBTUX_CAT:262: std main starting
113913 .tuxmach!simpserv.10925: Welcome to the simple server
114009.tuxmach!simpserv.10925: LIBTUX_CAT:522: Default tpsvrdone /()
function used.

114012 .tuxmach!BBL.10768: CMDTUX_CAT:26: Exiting system

See Also

e “What Is simpapp?” on page 2-1
e tmshutdown (1) in the BEA Tuxedo Command Reference

e userlog(3c) in the BEA Tuxedo ATMI C Function Reference

2-14 Tutorials for Developing BEA Tuxedo ATMI Applications

../rfcm/rfcmd.htm#2554911
../rfcm/rfcmd.htm#5331611
../rf3c/rf3c.htm#7980613

Step 8: How to Shut Down the Application

e “How to Shut Down Your Application” on page 1-11 in Administering a BEA Tuxedo
Application at Run Time

e “What Is the User Log (ULOG)?” on page 2-15 in Administering a BEA Tuxedo
Application at Run Time

Tutorials for Developing BEA Tuxedo ATMI Applications 2-15

../ada/adboot.htm#720351
../ada/admon.htm#976531

2-16 Tutorials for Developing BEA Tuxedo ATMI Applications

CHAPTERa

Tutorial for bankapp, a Full C
Application

This topic includes the following sections:
e What Is bankapp?
e Familiarizing Yourself with bankapp
e Preparing bankapp Files and Resources

e Running bankapp

What Is bankapp?

bankapp is a sample ATMI banking application that is provided with the BEA Tuxedo software.
The application performs the following banking functions: opens and closes accounts, retrieves
account balances, deposits or withdraws money from an account, and transfers monies from one
account to another.

About This Tutorial

This tutorial leads you, step-by-step, through the procedure you must perform to develop the
bankapp application. Once you have “developed” bankapp through this tutorial, you will be
ready to start developing applications of your own.

Tutorials for Developing BEA Tuxedo ATMI Applications 3-1

The bankapp tutorial is presented in three sections:
e Familiarizing Yourself with bankapp
e Preparing bankapp Files and Resources

e Running bankapp

Note: This information has been written for UNIX and Windows 2003 system users with some
experience in application development, administration, or system programming. We
assume some familiarity with the BEA Tuxedo software.

Familiarizing Yourself with bankapp

Instructions in this sample application are automated for your convenience through shell scripts
that work in a UNIX or Windows 2003 environment: RUNME . sh and RUNME . cmd. The associated
readme files discuss how to run these files. Go through these files to understand the procedure
more thoroughly and then follow these step-by-step instructions to help you set up and manage a
distributed application.

bankapp uses a demo relational database delivered with the software that enables you to use the
sample application. Various commands and SQL code within the sample application (included
for demo purposes only) provide access to the database.

This documentation provides a tour of the files, client, and services that make up the bankapp
application. Click on any of the following activities for more information about that part of the
tour.

Learning about the
hankapp files

Examining the bankapp
clients

Examining the bankapp
SEIVErs

3-2 Tutorials for Developing BEA Tuxedo ATMI Applications

Learning About the bankapp Files

Learning About the bankapp Files

The files that make up the bankapp application are delivered in a directory called bankapp,
which is positioned as follows:

samples/
a\mi

haLkappf simll::lppaf

Exploring the Banking Application Files

The bankapp directory contains the following files:

e Five source files for service subroutines using embedded SQL statements

Eight C source files

One request/response client program (audit)
e One conversational server (AUDIT)

e One conversational client (auditcon)

Three servers (or files associated with servers)

Two files that generate data or transactions for the application

Miscellaneous files

Generic BEA Tuxedo application files (that is, files needed in any BEA Tuxedo
application)

Makefile for various add-ons

e Files provided to facilitate the use of bankapp as an example

The following table lists the files of the banking application. The table lists the source files
delivered with the BEA Tuxedo software, files that are generated when the bankapp . mk is run,
and a summary of the contents of each file.

Tutorials for Developing BEA Tuxedo ATMI Applications 3-3

Table 3-1 Description of the Banking Application Files

Source File Generated File Contents

ACCT.ec ACCT.c, ACCT.o, ACCT Contains two services: OPEN_ACCT and CLOSE_ACCT to
open and close accounts.

ACCTMGR. c ACCTMGR A server that subscribes to events and logs notifications.
Contains WATCHDOG and Q_OPENACCT_LOG services.

AUDITC.c AUDITC Contains a conversational server that handles service requests
from the client auditcon.

BAL.ec BAL.c, BAL.o, BAL Contains a set of services: ABAL, TBAL, ABAL_BID, and
TBAL_BID that allow the audit client to obtain bank-wide or
branch-wide account or teller balances.

BALC.ec BALC.c, BALC.o, BALC Contains two services: ABALC_BID, and TBALC_BID. These
services are the same as TBAL_BID and ABAL_BID, except
that TPSUCCESS is returned when a branch ID is not found,
which allows auditcon to continue running.

bankmgr.c bankmgr A client program that subscribes to events of special interest.

BTADD. ec BTADD.c, BTADD.o, Contains two services: BR_ADD and TLR_ADD for adding

BTADD branches and tellers to the database.

cracl.sh

A shell script that creates access control lists (ACL) to
demonstrate the access control security level.

crqueue.sh

A shell script that creates application queues for use in event
notification.

crusers.sh

A shell script that creates groups and users to demonstrate the
authentication security level.

event.flds

A field table file used in the event feature.

FILES - A descriptive list of all the files in bankapp.

README - Installation and boot procedures for all platforms except
Windows 2003.

README.nt - Installation and boot procedures for the Windows 2003

platform.

3-4 Tutorials for Developing BEA Tuxedo ATMI Applications

Learning About the bankapp Files

Source File Generated File Contents

README2 - Documentation of additions to bankapp that demonstrate
new features. The file is located in the
samples/atmi/bankapp directory.

README2 .nt - Documentation of additions to bankapp that demonstrate
new features for the Windows 2003 platform. The file is
located in the samples\atmi\bankapp directory.

RUNME . cmd An interactive script to build, configure, boot, and shut down
the application for Windows 2003.

RUNME. sh - An interactive script to build, configure, boot, and shut down
the application for UNIX.

showq. sh! - A shell script that displays the status and contents of a message
queue.

TLR.ec TLR.c, TLR.o, TLR Contains three services: WITHDRAWAL, DEPOSIT, and

INQUIRY.

usrevtf.sh

A shell script that creates an ENVFILE for the BEA Tuxedo
server TMUSREVT .

XFER.cC

XFER.o, XFER

Contains TRANSFER service.

aud.v

aud.V, aud.h

An FML view used to define the structure passed between the
audit client and the BAL server.

appinit.c

appinit.o

Contains customized versions of tpsvrinit () and
tpsvrdone () for all servers other than TLR.

audit.c

audit.o, audit

A client that obtains bank-wide or branch-wide account and
teller balances via the ABAL, TBAL, ABAL_BID, and
TBAL_BID services.

auditcon.c

auditcon

An interactive version of audit that uses conversations and four
services: ABAL, TBAL, ABALC_BID, and TBALC_BID.

bankapp .mk

An application makefile for UNIX.

bankapp.nt

An application makefile for Windows 2003.

Tutorials for Developing BEA Tuxedo ATMI Applications 3-5

Source File

Generated File

Contents

bank. flds bank.flds.h A field table file containing bank database fields and auxiliary
FML fields used by servers.

bank.h - Contains data definitions pertinent to multiple C programs in
the application.

bankvar - Contains some environment variables for bankapp. Other

environment variables are defined in ENVFILE, but because
ENVFILE is set from within bankvar, you can control the
entire environment for your application through bankvar.

crbank.sh crbank A shell script that creates databases for all banks when
bankapp is run in SHM mode.
crbankdb.sh crbankdb A shell script that creates a database for one server group.

crtlog.sh

crtlog, TLOG

A shell script that creates a UDL and a TLOG on the master site
and a UDL on the non-master sites.

driver.sh

driver

A shell script that drives the application by piping FML buffers
with transaction requests through ud (1).

envfile.sh

envfile, ENVFILE

A shell script that creates ENVFILE for use by tmloadcf.

gendata.c gendata A program that generates ud-readable requests to add ten
branches, thirty tellers, and two hundred accounts.

gentran.c gentran A program that generates ud-readable transaction requests
from four services: DEPOSIT, WITHDRAWAL, TRANSFER, and
INQUIRY.

populate.sh populate A shell script that populates the database by piping FML
buffers with requests to add branches, tellers, and accounts
through ud (1).

ubbmp TUXCONFIG A sample UBBCONFIG file for use in an MP mode
configuration.

ubbshm TUXCONFIG A sample UBBCONFIG file for use in a SHM-mode

configuration.

3-6 Tutorials for Developing BEA Tuxedo ATMI Applications

Examining the bankapp Clients

Source File Generated File Contents

util.c util.o A set of functions, such as getstrl (), that are commonly
used by services.

bankclt.c bankclt Client for bankapp.

See Also

e “Familiarizing Yourself with bankapp” on page 3-2
Examining the bankapp Clients
What Is the bankclt.c File?

The bankclt file contains the client program that requests BEA Tuxedo services from the
bankapp application. This client program is text-based and provides the following options:

e Balance Inquiry
e Withdrawal

e Deposit

e Transfer

e Open Account
e Close Account

e Exit Application

Each of these options, except Exit Application, calls a subroutine that performs the following
tasks:

1. Obtains the user input from the keyboard using the get_account (), get_amount (),
get_socsec (), get_phone (), and the get_val () functions.

2. Puts the values into a global FML buffer (*£bfr). (Some functions add more fields than
others. This is dependent on the information needed by the servers.)

Tutorials for Developing BEA Tuxedo ATMI Applications 3-1

3-8

3. Enables routines that make a request to the BEA Tuxedo system through the do_tpcall ()
function to invoke the required service. The following table lists the functions and the

services they invoke.

Table 3-2 Services Called by Function

Function Name Input FML Fields Output FML Fields Service Name
BALANCE () ACCOUNT_ID SBALANCE INQUIRY
WITHDRAWAL () ACCOUNT_ID SBALANCE WITHDRAWAL
SAMOUNT
DEPOSIT () ACCOUNT_ID SBALANCE DEPOSIT
SAMOUNT
TRANSFER () ACCOUNT_ID (0)! SBALANCE (0) TRANSFER
ACCOUNT_ID (1) SBALANCE (1)
SAMOUNT
OPEN_ACCT () LAST_NAME ACCOUNT_ID OPEN_ACCT
FIRST_NAME SBALANCE
MID INIT
SSN
ADDRESS
PHONE
ACCT_TYPE
BRANCH_TID
SAMOUNT
CLOSE_ACCT () ACCOUNT_ID SBALANCE CLOSE_ACCT

'The number in parentheses is the FML occurrence number for that field.

4. After the call completes successfully, each function gets the fields it needs from the returned

FML buffer and prints the results.

The do_tpcall () function (that begins on line 447 in bankclt .c) follows:

Listing 3-1 do_tpcall() in bankclt.c

/*
* This function does the tpcall to Tuxedo.

Tutorials for Developing BEA Tuxedo ATMI Applications

Examining the bankapp Clients

*/
static int
do_tpcall (char *service)

{

long len;

char *server_status;

/* Begin a Global transaction */
if (tpbegin (30, 0) == -1) {

(void) fprintf (stderr, "ERROR: tpbegin failed (%s)\n",

tpstrerror (tperrno)) ;
return(-1) ;
}
/* Request the service with the user data */
if (tpcall (service, (char *)fbfr, 0, (char **)&fbfr, &len,

0) == -1) {
if (tperrno== TPESVCFAIL && fbfr != NULL &&
(server_status=Ffind (fbfr, STATLIN,0,0)) != 0) {

/* Server returned failure */
(void) fprintf (stderr, "%s returns failure
(%s)\n",

service, server_status) ;

}
else {
(void) fprintf (stderr,
"ERROR: %s failed (%s)\n", service,
tpstrerror (tperrno)) ;
}

/* Abort the transaction */
(void) tpabort(0);
return(-1);
}
/* Commit the transaction */
if (tpcommit (0) < 0) {
(void) fprintf (stderr, "ERROR: tpcommit failed
(%s)\n",

tpstrerror (tperrno)) ;

Tutorials for Developing BEA Tuxedo ATMI Applications

3-10

return(-1) ;
}

return(0) ;

The do_tpcall () function performs the following tasks:

e Begins a global transaction by calling tpbegin (), which ensures that all work is done as a
single unit.

e Calls tpcall () with the requested service name (char *service) and the supplied FML
buffer (the global *£bfr pointer).

e If tpcall () fails with a server-indicated failure (TPSVCERR), it prints the message from
the server in the STATLIN FML field. The transaction is rolled back with tpabort () and it
returns -1.

e If tpcall () fails with any other error, it prints the error message and rolls back the
transaction with tpabort () and returns -1.

e If tpcall () succeeds, it commits the transaction using tpcommit () and returns O.

Note: The unsolfcen () function is invoked if there is an unsolicited message to the client. It
only supports STRING buffer types and prints the message.

How ud(1) Is Used in bankapp

bankapp uses the BEA Tuxedo program ud (1), which allows fielded buffers to be read from
standard input and sent to a service. In the sample application, ud is used by both the populate
and driver programs:

e In populate, a program called gendata passes service requests to ud with customer
account information to be entered in the bankapp database.

e In driver, the data flow is similar, but the program is gentran and the purpose is to pass
transactions to the application to simulate an active system.

Tutorials for Developing BEA Tuxedo ATMI Applications

Examining the bankapp Clients

A Request/Response Client: audit.c

audit is a request/response client program that makes branch-wide or bank-wide balance
inquiries, using the services: ABAL, TBAL, ABAL_BID, and TBAL_BID. You can invoke it in two
ways:

e audit [-a | -t]—prints the bank-wide total value of all accounts, or bank-wide cash
supply of all tellers. Option -a or -t must be specified to indicate whether account
balances or teller balances are to be tallied.

® audit [-a | -t] branch_ ID—prints the branch-wide total value of all accounts, or
branch-wide cash supply of all tellers, for branch denoted by branch_1D. Option -a or -t
must be specified to indicate whether account balances or teller balances are to be tallied.

The source code for audit contains two major parts: main () and a subroutine called sum_bal ().
BEA Tuxedo ATMI functions are used in both parts. The program uses a vIEW typed buffer and
a structure that is defined in the aud . h header file. The source code for the structure can be found
in the view description file, aud.v.

The following pseudo-code shows the algorithm for the program.

Listing 3-2 audit Pseudo-code

main ()
{
Parse command-line options with getopt();
Join application with tpinit();
Begin global transaction with tpbegin();
If (branch_ID specified) {
Allocate buffer for service requests with tpalloc();
Place branch_ID into the aud structure;
Do tpcall() to "ABAL_BID" or "TBAL_BID";
Print balance for branch_ID;
Free buffer with tpfree();
}
else /* branch_ID not specified */
call subroutine sum_bal () ;
Commit global transaction with tpcommit () ;
Leave application with tpterm() ;
}
sum_bal ()
}
Allocate buffer for service requests with tpalloc();
For (each of several representative branch_ID's,

Tutorials for Developing BEA Tuxedo ATMI Applications 3-11

3-12

one for each site)
Do tpacall() to "ABAL" or "TBAL";
For (each representative branch_ID) {
Do tpgetrply() wtith TPGETANY flag set
to retrieve replies;
Add balance to total;
Print total balance;
}
Free buffer with tpfree();

Following is a summary of the two main parts of the audit source code.
In the programs main ():

1. /* Join application */

2. /* Start global transaction */

3. /* Create buffer and set data pointer */

4. /* Do tpcall */

5. /* Commit global transaction */

6. /* Leave application /*

In the subroutine sum_bal:

1. /* Create buffer and set data pointer */
2. /* Do tpacall */

3. /* Do tpgetrply to retrieve answers to questions */

A Conversational Client: auditcon.c

auditcon is a conversational version of the audi t program. The source code for auditcon uses
the ATMI functions for conversational communication: tpconnect () to establish the
connection between the client and service, tpsend () to send a message, and tprecv () to

receive a message.

The following pseudo-code shows the algorithm for the program.

Tutorials for Developing BEA Tuxedo ATMI Applications

Examining the bankapp Clients

Listing 3-3 auditcon Pseudo-code

main ()

Join the application
Begin a transaction
Open a connection to conversational service AUDITC
Do until user says to quit: {
Query user for input
Send service request
Receive response
Print response on user's terminal
Prompt for further input

}

Commit transaction
Leave the application

A Client that Monitors Events: bankmgr.c

bankmgr is included with bankapp as an example of a client that is designed to run constantly.
It subscribes to application-defined events of special interest, such as the opening of a new
account or a withdrawal above $10,000. (The bankmgr . c client is more fully described in the
README? file of bankapp and in the bankmgr . ¢ code itself.)

Tutorials for Developing BEA Tuxedo ATMI Applications 3-13

See Also
e “Familiarizing Yourself with bankapp” on page 3-2
e “What You Can Do Using the ATMI” on page 2-4 in Introducing BEA Tuxedo ATMI

e “What Are the BEA Tuxedo ATMI Messaging Paradigms?” on page 2-9 in Introducing
BEA Tuxedo ATMI

e “What Is bankapp?” on page 3-1
e “What Are Typed Buffers?” on page 2-22 in Introducing BEA Tuxedo ATMI

e “Using Event-based Communication” on page 1-12
e BEA Tuxedo Command Reference
e BEA Tuxedo ATMI C Function Reference

Examining the bankapp Servers and Services

This topic provides the following information:
e A description of the servers and services delivered with bankapp.

A description of how the services are link-edited into servers.

Pseudo-code for each service that is either accessed by the BEA Tuxedo bankclt.c, or
the application client, audit.c.

Descriptions of the relationships between the bankapp services and servers.

Descriptions of the buildserver (1) command options used to compile and build each
server with the main () defined by the BEA Tuxedo system.

e An alternative method for structuring servers.

Servers are executable processes that offer one or more services. In the BEA Tuxedo system, they
continually accept requests (from processes acting as clients) and dispatch them to the
appropriate services. Services are subroutines of C language code written specifically for an
application. BEA Tuxedo’s applications are written to make services available and capable of
accessing resource managers. Service routines must be written by BEA Tuxedo application

programmers.

3-14 Tutorials for Developing BEA Tuxedo ATMI Applications

../int/intatm.htm#147771
../int/intatm.htm#263081
../int/intatm.htm#347351

Examining the bankapp Servers and Services

All bankapp services are coded in C with embedded SQL except for the TRANSFER service,
which does not interact directly with the database. The TRANSFER service is offered by the XFER
server and is a C program (that is, its source file is a . c file rather than a . ec file).

All bankapp services of bankapp use functions provided in the Application-to-Transaction
Management Interface (ATMI) for performing the following tasks:

e Managing typed buffers

e Communicating synchronously or asynchronously with other services

Defining global transactions

Generically accessing a resource manager

Sending replies back to clients

bankapp Request/Response Servers

Five bankapp servers operate in request/response mode. Four of the five use embedded SQL
statements to access a resource manager; the names of the source files for these servers (located
in the bankapp sample application subdirectory), include a . ec filename extension.

The fifth server, XFER, for transfer, makes no calls to the resource manager itself; it calls the
WITHDRAWAL and DEPOSIT services (offered by the TLR server) to transfer funds between
accounts. The source file for XFER is a . c file, because XFER makes no resource manager calls
and contains no embedded SQL statements.

This Server Provides this Functionality

BTADD. ec Allows branch and teller records to be added to the appropriate
database from any site.

ACCT.ec Provides customer representative services, namely the opening
and closing of accounts (OPEN_ACCT and CLOSE_ACCT).

TLR.ec Provides teller services, namely WITHDRAWAL, DEPOSIT, and
INQUIRY. Each TLR process identifies itself as an actual teller
in the TELLER file, via the user-defined -T option on the
server’s command line.

Tutorials for Developing BEA Tuxedo ATMI Applications 3-15

3-16

This Server Provides this Functionality

XFER.c Provides fund transfers for accounts anywhere in the database.
BAL.ec Calculates the account for all branches of the database or for a
specified branch.

bankapp Conversational Server

AUDITC is an example of a conversational server. It offers one service, which is also called
AUDITC. The conversational client, auditcon, establishes a connection to AUDITC and sends it
requests for auditing information.

AUDITC evaluates requests and calls an appropriate service (ABAL, TBAL, ABAL_BID, Or
TBAL_BID) to get the appropriate information. When a reply is received from the service called,
AUDITC sends it back to auditcon. A service in a conversational server can make calls to
request/response services. It can also initiate connections to other conversational servers, but this
functionality is not provided by AubnITC.

bankapp Services

bankapp offers 12 request/response services. The name of each bankapp service matches the
name of a C function in the source code of a server.

This Service Offered by this ~ With this Input Performs this Function

Server
BR_ADD BTADD FML buffer * Adds a new branch record
TLR_ADD BTADD FML buffer * Adds a new teller record
OPE