
BEAWebLogic
Network
Gatekeeper™

Developer’s Guide for
Extended Web Services

Version 1.0
Document Revised: March 14, 2005

Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread, Top End,
Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign Manager for
WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA WebLogic Commerce Server, BEA WebLogic Enterprise,
BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic JRockit, BEA
WebLogic Log Central, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA
WebLogic Server Process Edition, BEA WebLogic WorkGroup Edition, BEA WebLogic Workshop, and Liquid
Computing are trademarks of BEA Systems, Inc. BEA Mission Critical Support is a service mark of BEA Systems, Inc.
All other company and product names may be the subject of intellectual property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Developer’s Guide for Extended Web Services 1

Contents

1. Introduction and Roadmap
Document Scope and Audience . 1-2

Guide to this Document . 1-2

Terminology. 1-2

Related Documentation . 1-3

2. Introduction and Overall Workflow
About WebLogic Network Gatekeeper Web Services applications 2-2

Architecture . 2-2

Web services applications . 2-4

Extended Web Services based applications . 2-5

Development environment . 2-5

Information exchange with the service provider . 2-6

Overall development workflows . 2-8

Client-side Web Services using XML based RPC . 2-9

Server-side Web Services using XML based RPC . 2-10

Example: Server-side Web Service. 2-11

Testing an application . 2-12

3. Using the Extended Web Services
About the Extended Web Services APIs . 3-2

WSDL files . 3-3

Workflow . 3-5

2 Developer’s Guide for Extended Web Services

Login and retrieve login ticket . 3-6

Define the security header . 3-7

Get hold of a Port . 3-8

Add security header . 3-8

Invoke a method. 3-9

Logout . 3-9

Access . 3-9

Messaging . 3-10

Charging . 3-10

Call . 3-11

Network triggered calls . 3-11

Application initiated calls . 3-12

Subscriber profile . 3-12

User interaction . 3-14

Call user interaction . 3-14

Message based user interaction . 3-14

User location . 3-15

Circle uncertainty shapes . 3-16

Ellipse uncertainty shapes . 3-16

Terminal altitude . 3-17

User status . 3-18

Exception handling . 3-18

Service-specific exceptions . 3-18

AccessException . 3-19

CommunicationException . 3-19

4. Extended Web Services Examples
About the examples. 4-2

Developer’s Guide for Extended Web Services 3

Send SMS . 4-2

Message Notifications . 4-4

Send MMS. 4-7

Poll for new messages . 4-8

Handling SOAP Attachments . 4-12

Encoding a multipart SOAP attachment. 4-13

Retrieving and Decoding a multipart SOAP attachment . 4-14

Get the location of a mobile terminal . 4-16

Application-initiated messaging user interaction . 4-19

Network-initiated messaging user interaction . 4-22

Setting up an application-initiated call . 4-26

Network-initiated call control . 4-30

Handling call-based user interaction . 4-34

Handling subscriber data . 4-37

Getting the status of a terminal . 4-40

Charge based on content . 4-42

A. References

4 Developer’s Guide for Extended Web Services

Developer’s Guide for Extended Web Services 1-1

C H A P T E R 1

Introduction and Roadmap

The following sections describe the audience for and organization of this document:

“Document Scope and Audience” on page 1-2

“Guide to this Document” on page 1-2

“Terminology” on page 1-2

“Related Documentation” on page 1-3

I n t roduct i on and Roadmap

1-2 Developer’s Guide for Extended Web Services

Document Scope and Audience
The purpose of this guide is to describe how to develop telecom-enabled applications based on
the Extended Web Services APIs and how to access and use the APIs/interfaces as offered by the
BEA WebLogic Network Gatekeeper.

This guide contains code fragments from example applications written in Java to illustrate
different aspects of the usage of the interfaces.

The purpose of this guide is not to describe Web Service development in general, but rather how
to use the specific interfaces.

All example code is Axis-specific.

Guide to this Document
The document contains the following chapters:

Chapter 1, “Introduction and Roadmap,” informs you about the structure and contents of
this document, the used writing conventions, and related documentation.

Chapter 2, “Introduction and Overall Workflow,” gives an introduction to the two main
types of WebLogic Network Gatekeeper Web services applications. It also tells you about
the programming environment and development workflows.

Chapter 3, “Using the Extended Web Services,” describes the Access service used for
session handling and the Extended Web Services service capabilities.

Chapter 4, “Extended Web Services Examples,” contains examples of usage of the
Extended Web Services.

Terminology
The following terms and acronyms are used in the document:

API —Application Programming Interface

CORBA —Common Object Request Broker Architecture

HTML —Hypertext Markup Language

MMS —Multimedia Message Service

RPC —Remote Procedure Call

ORB —Object Request Broker

Rela ted Documentat ion

Developer’s Guide for Extended Web Services 1-3

SMS —Short Message Service

SwA —SOAP with Attachments

WSDL —Web Services Definition Language

WSI-I —Web Services Interoperability

SPA —Service Provider API

XML —Extended Markup Language

Related Documentation
This Developer’s Guide is a part of the WebLogic Network Gatekeeper documentation set. The
following documents contain other types information:

API Description Extended Web Services for WebLogic Network Gatekeeper

The API description describes the Extended Web Services API.

I n t roduct i on and Roadmap

1-4 Developer’s Guide for Extended Web Services

Developer’s Guide for Extended Web Services 2-1

C H A P T E R 2

Introduction and Overall Workflow

The following sections introduce the development workflow for developing Extended Web
Services:

“About WebLogic Network Gatekeeper Web Services applications” on page 2-2

“Architecture” on page 2-2

“Development environment” on page 2-5

“Information exchange with the service provider” on page 2-6

“Overall development workflows” on page 2-8

“Testing an application” on page 2-12

In t roduct ion and Ove ra l l Work f l ow

2-2 Developer’s Guide for Extended Web Services

About WebLogic Network Gatekeeper Web Services
applications

WebLogic Network Gatekeeper Web Services applications are services offering their users
access to telecom functionality. The applications can access the telecom functionality through
two different Web services APIs. Which API to use depends on the application’s needs for
network functionality and means of access.

For applications that will provide standardized basic telecom functionality, it is recommended to
use the Parlay X APIs.

For applications with a need for more granular control, the Extended Web Services interfaces can
be used.

This guide describes how to develop Extended Web Services applications that connects to
WebLogic Network Gatekeeper. WebLogic Network Gatekeeper acts as a gateway to the
underlying telecom network.

Using the Extended Web Services Interfaces you can quickly develop powerful telecom-enabled
applications using any programming environment supporting Web Services.

Architecture
Figure 2-2, “Extended Web Services interfaces and JS2SE applications,” on page 2-4 illustrates
different ways of using the Web Services APIs as provided by WebLogic Network Gatekeeper,
as well as examples of different execution environments for applications.

Arch i tec ture

Developer’s Guide for Extended Web Services 2-3

There are two flavours of Web Services; XML-based RPC and WS-I.

J2SE

Appl Appl

Appl

SOAP/HTTP

.Net

Appl Appl

Appl

SOAP/HTTP

J2EE

Appl Appl

Appl

SOAP/HTTP

WebLogic Network Gatekeeper

ESPA

Figure 2-1 Extended Web Services interfaces on ESPA

Extended Web Services APIs

In t roduct ion and Ove ra l l Work f l ow

2-4 Developer’s Guide for Extended Web Services

Web services applications
Web services applications executes in an environment capable of handling Web Services.

The Web Services applications communicates with WebLogic Network Gatekeeper using
SOAP/HTTP.

WS-I

Figure 2-2 Extended Web Services interfaces and JS2SE applications

Appl

WS-I - Web Services Interoperability
Appl - Application

WSDL - Web Services Definition

Language

ESPA

SOAP/
HTTP

XML-RPC

Appl

XML RPC - Handles packaging of
 SOAP messages

Extended Web Services

WSDL

Extended Web Services APIs

WebLogic Network Gatekeeper

Deve lopment env i ronment

Developer’s Guide for Extended Web Services 2-5

Extended Web Services based applications
An Extended Web Services application

uses an API that can be extended.

benefits from a feature-rich API.

is state-oriented.

Development environment
Below is a description of an example development environment. Integrated programming
environments, like Visual Studio .Net can be used for development of Web Services applications,
but this guide uses a minimalistic approach. For the purpose of this guide, the following will do:

an ordinary text editor.

Java 2 SDK 1.4.2, see J2SE SDK, http://java.sun.com.

Axis 1.1, see Apache Axis, http://ws.apache.org/axis/.

JavaMail API 1.2, see JavaMail, http://java.sun.com, for messaging applications handling
multimedia messages.

The following files from the Axis distribution are used:

axis.jar

axis-ant.jar

commons-discovery.jar

commons-logging.jar

jaxrpc.jar

saaj.jar

wsdl4j.jar

The following JavaMail files are used:

mail.jar

activation.jar

In t roduct ion and Ove ra l l Work f l ow

2-6 Developer’s Guide for Extended Web Services

Information exchange with the service provider
Before an application is developed, the application developer and the service provider must
exchange information regarding resources.

The first step for the application developer is to define which resources to use, call, messaging,
location, status, payment etc. and to map these requirements to an APIs that corresponds to these
resources.

The next step is to exchange the information according to “Information exchange between
application developer and WebLogic Network Gatekeeper operator” on page 2-7.

In fo rmat i on exchange wi th the se rv ice p rov ider

Developer’s Guide for Extended Web Services 2-7

Table 2-1 Information exchange between application developer and WebLogic Network Gatekeeper
operator

Module Information to be provided by the

Application developer Service provider

Access Application ID.

Service provider ID.

Application Instance
Group ID.

Password for the
Application Instance
Group.

Call Control For application initiated
calls:
Any eventual restrictions
on allowed numbers.

For network initiated
calls:
Access number to the
application. Can be a
range of numbers.

Call User Interaction Details about IVRs, such
as access number,
announcement IDs, input
capabilities and so on.

Content Based Charging Currencies allowed, any
restrictions on allowed
maximum or minimum
values.

Messaging Access number to the
application.

Mailbox ID and
corresponding password.

In t roduct ion and Ove ra l l Work f l ow

2-8 Developer’s Guide for Extended Web Services

The WebLogic Network Gatekeeper operator must also communicate which services and
methods that are supported by the deployment.

In addition to this information, other information related to commercial, security, and privacy
regulations must also be exchanged. Examples includes:

Charging plans to use

Number of concurrent application instances.

Amount of usage of the different resources, for example allowed number of send SMS
requests.

Black/white listed addresses.

Allow/deny lists for user status and user location requests.

Overall development workflows
Below you find overall workflows for development of Web Services applications based on the
Extended Web Services interfaces.

Two main scenarios are identified:

Message User Interaction User information codes to
be used. Language codes.
User Interaction Codes
for network-initaed user
interaction sessions.

Subscriber Profile Properties that can be set
of get.

User Location Supported uncertainty
shapes.

User Status -

Table 2-1 Information exchange between application developer and WebLogic Network Gatekeeper
operator

Module Information to be provided by the

Application developer Service provider

Overa l l deve l opment work f lows

Developer’s Guide for Extended Web Services 2-9

WebLogic Network Gatekeeper acts as a server and the application is the client. In this
scenario, the application uses a Web Service provided by WebLogic Network Gatekeeper.

the application acts as a server and WebLogic Network Gatekeeper is the client. In this
scenario, the application in itself is the provider of a Web Service and WebLogic Network
Gatekeeper invokes methods on this Web Service.

Often, an application acts as both server and client.

The methods that the application invokes on WebLogic Network Gatekeeper are defined in
WSDL files, one for each service capability, where the name of the file reflects the capability.
Likewise are the methods that WebLogic Network Gatekeeper invokes on the application defined
in WSDL files, one for each service capability. The names of these files ends with “Listener”.

The method invocations are SOAP requests over HTTP, which means that the server part of the
application must be capable of handling SOAP requests.

When using Axis, the Simple Axis Server can be used as a SOAP engine during test. In a
production system can, for example, Axis in combination with Tomcat be used.

Client-side Web Services using XML based RPC
Below is an overall work sequence for developing telecom enabled Web Services using
XML-based RPC:

Figure 2-3 Subscribing for notifications

WebLogic
Network

Gatekeeper

The endpoint of the
application’s server side is
registered by the service
provider

Application
<Server side>

Application
<Client side> Publishes the web service

Invokes methods

Invokes methods

Publishes the Web Services

In t roduct ion and Ove ra l l Work f l ow

2-10 Developer’s Guide for Extended Web Services

1. Make sure to retrieve the necessary IDs for the resources the application will use from the
service provider. Examples are mailbox IDs, short numbers for network triggered applications
and so on.

2. Retrieve the WSDL file that handles user login.

3. Retrieve WSDL files for the telecom services to use.

4. Generate stubs/proxy classes for the language to implement the application in. Use a tool
that converts the WSDL into stubs for the preferred language. Examples of such tools are
WSDL2Java and Soap Toolkit.

5. Compile and create Jar-files from the Java stubs.

6. Use the generated APIs to add telecom functionality to the application.

7. Compile the application.

8. Test the application in a test environment, for example WebLogic Network Gatekeeper
Application Test Environment.

9. Connect the application to a WebLogic Network Gatekeeper with a connection to a live
telecom network.

Server-side Web Services using XML based RPC
Below is an overall work sequence for developing telecom enabled Web Services using
XML-based RPC:

1. Make sure to retrieve the necessary IDs for the resources the application will use from the
service provider. Examples are mailbox IDs, short numbers for network triggered applications
and so on.

2. Retrieve WSDL files for the telecom services to use.

3. Generate skeleton classes for the language to implement the application in. Use a tool that
converts the WSDL into stubs for the preferred language. Examples of such tools are
WSDL2Java and Soap Toolkit.

4. Compile and create Jar-files from the Java stubs.

5. Implement the generated interfaces and add telecom functionality to the application.

6. Adapt the generated WSDD file to bind the SOAP requests to the appropriate class.

7. Compile the application.

Overa l l deve l opment work f lows

Developer’s Guide for Extended Web Services 2-11

8. Deploy the application in an environment capable of decoding HTTP/SOAP messages.
Examples of such environments includes Axis.

9. Test the application in a test environment, for example WebLogic Network Gatekeeper
Application Test Environment.

10. Connect the application to a WebLogic Network Gatekeeper with a connection to a live
telecom network.

Example: Server-side Web Service
The example below shows how to define a web service that takes care of notifications on new
SMS:es from to the applications’ server side. The web service is the Messaging Listener
interface, containing the method newMessageAvailable(...).

The Simple Axis Server is used as deployment environment for the application.

Below is an outline on the procedure:

1. Generate Java skeletons from the WSDL files:

%java org.apache.axis.wsdl.WSDL2Java --server-side

--skeletonDeploy true MessagingListener.wsdl

Note: The Axis files must be in the classpath.

2. Compile and create Jar-files from the skeletons.

3. Move the empty implementation of the generated interfaces to the source directory of the
application.

In the example, the class is named MessagingListenerSoapBindingImpl. When
generating skeletons using WSDL2Java, the empty interface implementations are named
<Name of API>BindingImpl.

4. Adapt the generated Web Service Deployment Descriptor (WSDD) files to bind the SOAP
request to the appropriate class.

The WSDD files are used when deploying and undeploying services. Two files are
generated: deploy.wsdd and undeploy.wsdd.

In the example, the tag

<parameter name="className"
value="MessagingListenerSoapBindingSkeleton"/>

is replaced with

In t roduct ion and Ove ra l l Work f l ow

2-12 Developer’s Guide for Extended Web Services

<parameter name="className"
value="com.acme.apps.getmessageapp.MessageNotificationHandler"/>

in order to bind to the appropriate class.

5. Compile the application.

6. Verify that the application is deployed correctly by using a Web browser and point it to the
URL of the web service. In the case of Simple Axis Server, the deployed Web Services can
be found at the URL http://<host>:<port>/axis/services

7. Run the application. The adapted file deploy.wsdd is used when instantiating the Simple
Axis Server.

Testing an application
Figure 2-4, “Application test flow,” on page 2-13 shows the application test flow, from the
application developers’ functional test to deployment in a live network. An application developer
can perform functional tests using Weblogic Network Gatekeeper Application Test Environment.
The other tests in the flow are performed in cooperation between the application provider and the
service provider.

Test ing an appl i cat ion

Developer’s Guide for Extended Web Services 2-13

When an application shall be tested using Weblogic Network Gatekeeper Application Test
Environment (ATE), the application is connected to ATE, which emulates WebLogic Network
Gatekeeper. Before testing in a test telephony network, a network simulator can be used.

An overview of the relation between Weblogic Network Gatekeeper Application Test
Environment and WebLogic Network Gatekeeper is shown in Figure 2-5, “Weblogic Network
Gatekeeper Application Test Environment (ATE) in relation to WebLogic Network Gatekeeper,”
on page 2-14.

ATE

Application

Test
Network

Live
Network

Figure 2-4 Application test flow

Functional Test
Functional Test

+
Non-Functional Test

Network Test Operation

Application

Time

Application

Network

Application

Network
Simulator

 Gatekeeper
Network

 Gatekeeper
Network

 Gatekeeper

In t roduct ion and Ove ra l l Work f l ow

2-14 Developer’s Guide for Extended Web Services

For a applications based on Web Services, the applications uses the endpoints provided by
Weblogic Network Gatekeeper Application Test Environment during test. After successful
verification, the application uses endpoints provided by WebLogic Network Gatekeeper.

Network
Gatekeeper

OSA GW/
Network node

ATE

ATE
GUI

Execution.
Env. A

Connection to network via WebLogic Network Gatekeeper

Connection to test environment

Figure 2-5 Weblogic Network Gatekeeper Application Test Environment (ATE) in relation
to WebLogic Network Gatekeeper

Execution
Env. B

Developer’s Guide for Extended Web Services 3-1

C H A P T E R 3

Using the Extended Web Services

The following sections describe how to use the Extended Web Services APIs:

“About the Extended Web Services APIs” on page 3-2

“WSDL files” on page 3-3

“Workflow” on page 3-5

“Access” on page 3-9

“Messaging” on page 3-10

“Charging” on page 3-10

“Call” on page 3-11

“Subscriber profile” on page 3-12

“User interaction” on page 3-14

“User location” on page 3-15

“User status” on page 3-18

“Exception handling” on page 3-18

Us ing the Ex tended Web Se rv ices

3-2 Developer’s Guide for Extended Web Services

About the Extended Web Services APIs
The Extended Web Services interface offers a high-level abstraction of OSA/Parlay for use in a
web services environment. It offers a more granular control over resources in the telecom
network than Parlay X, and yet it provides the same low degree of complexity.

The API is designed for rapid application development. From an architectural point of view, the
implementation of the API resides on top of the service capabilitiy modules in WebLogic
Network Gatekeeper.

All applications accessing WebLogic Network Gatekeeper through the Web Services interfaces
uses a Kerberos type of service token-based authentication. The application is provided with a
user name (the application instance group ID) and a password. When an application wants access
to WebLogic Network Gatekeeper the application instance logs in using the user name and
password together with the application account ID and service provider ID to retrieve a service
token. This mechanism may be extended, as an option using, for example Passport or other
extended Kerberos Key Distribution Centre (KDC) authentication solutions. This is according to
the WSSE (Web Services Security) standard.

To run an Extended Web Services application, access to either WebLogic Network Gatekeeper
or Weblogic Network Gatekeeper Application Test Environment is needed, together with a set of
WSDL files defining the API, login credentials and IDs of resources to use. These are provided
by the service provider.

The interfaces are separated in different modules. Each main component is contained in a specific
module. The modules are:

Table 3-1 Information exchange between application developer and WebLogic Network Gatekeeper
operator

Module Defines

Access Methods for session handling between an application and
WebLogic Network Gatekeeper.

Call Control Methods for controlling and routing telephony calls.

Call User Interaction Methods for dialogue handling of between IVRs and
telephony users.

Content Based Charging Methods for handling charging based on content.

WSDL f i l es

Developer’s Guide for Extended Web Services 3-3

For detailed information on individual methods, see API Description Extended Web Services for
WebLogic Network Gatekeeper.

WSDL files
WebLogic Network Gatekeeper supports Extended Web Services interfaces using the SOAP
encoding (RPC encoding) approach.

By default, the WSDL files can be fetched from:

http://<URL to WebLogic Network Gatekeeper>/wespa/services (The Web Services, also
the endpoints)

The WSDL files for the northbound (Listener) interfaces can be fetched from
http://<URL to WebLogic Network Gatekeeper>/wespa/wsdl (definitions of the listener
interfaces)

Messaging Methods for handling sending and reception of SMS:es,
MMS:es and other messages.

Messaging User Interaction Methods for dialogue handling using SMS or USSD.

Subscriber Profile Methods for setting and getting application or end user data,
such as terminal capabilities and preferred currency.

User Location Methods for retrieving the geographical position of a mobile
terminal.

User Status Methods for retrieving information on the status of mobile
terminals.

Table 3-1 Information exchange between application developer and WebLogic Network Gatekeeper
operator

Module Defines

Us ing the Ex tended Web Se rv ices

3-4 Developer’s Guide for Extended Web Services

Module WSDL-file

Access Access

Call Control CallControl

Call Control listener CallControlListener

Call User Interaction CallUserInteraction

Call User Interaction listener CallUserInteractionListener

Content Based Charging ContentBasedCharging

Content Based Charging listener ContentBasedChargingListener

Messaging Messaging

Messaging listener MessagingListener

Messaging User Interaction MessagingUserInteraction

Messaging User Interaction
listener

UserInteractionListener

Network triggered User
Interaction listener

UserInteractionNetworkListener

Subscriber Profile SubscriberProfile

Subscriber Profile SubscriberProfileListener

User Location UserLocation

User Location listener UserLocationListener

User Status UserStatus

User Status listener UserStatusListener

Work f l ow

Developer’s Guide for Extended Web Services 3-5

For a description of the methods in each API, see API Description Extended Web Services for
WebLogic Network Gatekeeper.

Workflow
The main program control flow when executing applications based on the Extended Web
Services interfaces is described in pseudo code in Figure 3-1, “Application execution workflow,”
on page 3-6.

Us ing the Ex tended Web Se rv ices

3-6 Developer’s Guide for Extended Web Services

Login and retrieve login ticket
To use any Web Service provided by WebLogic Network Gatekeeper a login ticket is needed. A
login is needed to retrieve the ticket. The login ticket identifies the login session. This ticket is

Figure 3-1 Application execution workflow

START

Login and retrieve ticket

Invoke the method

Define the security header/

f Logout

END

a See “Login and retrieve login ticket” on page 3-6.

b See “Define the security header” on page 3-7.

c See “Get hold of a Port” on page 3-8.

d See “Add security header” on page 3-8.

e See “Invoke a method” on page 3-9.

f “Logout” on page 3-9

a

b

c

e

Get a handle to the Web Service port

Repeat for each
method to use

d Add the security header/

Repeat for each
API to use

usernameToken according to WSSE

usernameToken according to WSSE

Work f l ow

Developer’s Guide for Extended Web Services 3-7

valid until a logout is performed. The ticket is sent in each consecutive method invocation to
identify the originator of the invoker.

Details about locators, endpoints, so on are explained later in this section

Listing 3-1 Login

AccessService accessService = new AccessServiceLocator();

java.net.URL endpoint = new java.net.URL(wsdlUrl);

Access access = accessService.getAccess(endpoint);

String loginTicket = access.applicationLogin(spID,

appID,

appInstGroupID,

appInstGroupPassword);

The login ticket ID retrieved when invoking applicationLogin is used in each consecutive
invocation towards WebLogic Network Gatekeeper. See “Define the security header” on
page 3-7.

The login credentials; spID, appID, appInstGroupId, and appinstGoupPassword are provided by
the service provider.

Define the security header
The login ticket ID, as retrieved when logging in, is sent in the SOAP header together with a
username/password combination for each invocation of a web service method.

Listing 3-2 Define the security header

org.apache.axis.message.SOAPHeaderElement header =

new org.apache.axis.message.SOAPHeaderElement(wsdlUrl, "Security", "");

header.setActor("wsse:PasswordToken");

header.addAttribute(wsdlUrl, "Username", ""+userName);

Us ing the Ex tended Web Se rv ices

3-8 Developer’s Guide for Extended Web Services

header.addAttribute(wsdlUrl, "Password", ""+sessionId);

header.setMustUnderstand(true);

The login ticket is supplied in the Password attribute. The userName attribute is defined by the
service provider, normally in the format
<myUserName>@<myapplication>.

Axis 1.1 does not contain WSSE helper classes, so this is performed manually.

The header is defined upon the object representing the Web Service port to use. Also see “Add
security header” on page 3-8.

Get hold of a Port
Below is the code for getting hold of a port. The example is using the Messaging interface.

Listing 3-3 Get hold of a port

MessagingService messagingService = new MessagingServiceLocator();

java.net.URL endpoint = new java.net.URL(messagingWsdlUrl);

messaging = messagingService.getMessaging(endpoint);

The details on the parameters of the messaging API are described in API Description Extended
Web Services for WebLogic Network Gatekeeper.

Add security header
Adding the security header to a request is straightforward, as illustrated below. For information
on how create the header, see “Define the security header” on page 3-7.

Listing 3-4 Add security header

((org.apache.axis.client.Stub)sendSms).setHeader(header);

Access

Developer’s Guide for Extended Web Services 3-9

Invoke a method
Below it is illustrated how to get hold of a port. The example is using the Send SMS API.

Listing 3-5 Invoke a method

String mailboxTicket = messaging.openMailbox(myMailbox,

myMailboxPwd,

spID+appID+appInstGroupID);

The details on the parameters of the send SMS API are described in API Description Extended
Web Services for WebLogic Network Gatekeeper.

Logout
The logout destroys the login ticket.

Listing 3-6 Logout

access.applicationLogout(sessionId);

The login Ticket is destroyed and cannot be used in consecutive method invocations.

Access
The following functionality is provided:

Login an application to WebLogic Network Gatekeeper.

Logout an application from WebLogic Network Gatekeeper.

Change password.

For a description on how to use this API, see “Login and retrieve login ticket” on page 3-6 and
“Logout” on page 3-9. There is also support for changing the password.

Us ing the Ex tended Web Se rv ices

3-10 Developer’s Guide for Extended Web Services

Messaging
The messaging service capability makes it possible for an application to send, store, and receive
SMSes and Multi Media (MMS) messages. In addition, the service supports send lists, smart
messaging, EMS, and distribution of ring tones and logos. The send list feature allows for send
list distribution of messages.

An administrator creates mailboxes with INBOX and OUTBOX folders for each subscriber or
application. A mailbox structure is given in Figure 3-2.

An application is notified when a sent message has been successfully delivered to a recipient and
when the service receives a message in an INBOX related to the application. Old messages are
automatically removed from the mailboxes. The cleanup interval and age of messages to be
deleted are configurable.

Charging
The charging service capability makes it possible for an application to charge a subscriber based
on the content (content based charging) of a used service, for example a music video, rather than
based on the amount or time used. Reservation/payment in parts and immediate charging are
supported.

In immediate charging the amount is withdrawn from the subscriber’s account at the same time
the service is ordered.

To make sure the subscriber does not have to pay for a service not delivered, reservation/payment
in parts can be used. In this case, the charging service reserves the whole or a part of the amount
in the subscriber’s account. The amount is not withdrawn until it has been verified that the
subscriber has received the whole or a defined part of the service paid for. Reservation/payment

Mailbox

INBOX

OUTBOX

Figure 3-2 Mailbox structure

Cal l

Developer’s Guide for Extended Web Services 3-11

in parts can also be used by an application before delivering a service to make sure that the
amount to be charged is available on the subscriber’s account.

The charging service also supports adding money to subscriber accounts.

Call
The call service capability provides applications with functions for call routing, call management,
and call leg management. More than two call legs can be connected to a call simultaneously.

Two main usage scenarios for call control are identified; application initiated and network
triggered calls.

Network triggered calls
Network triggered call is used for applications where call set up is triggered from the network,
see Figure 3-3, “Example of a network triggered call,” on page 3-11.

The service contains functions that makes it possible for an application to provide:

advice of charge

call specific charging

Figure 3-3 Example of a network triggered call

OSA

Appl

Calling Party

Called Party

1.

2.

SSF

WebLogic
Network

Gatekeeper

Gateway

Us ing the Ex tended Web Se rv ices

3-12 Developer’s Guide for Extended Web Services

call re-routing

user interaction through announcements and voice prompts

Application initiated calls
Typical usage for application initiated calls are voice chat applications and different types of
click-to-call functionality in web and office applications. Figure 3-4, “Example of an application
initiated call,” on page 3-12 shows an example where a call is set up using a web based address
book application.

In addition, a call between two or more persons can be set up through an application interface.
During the call it is possible to add and remove participants through the interface. Also,
notifications when individual participants answers and hangs up can be presented.

Subscriber profile
The subscriber profile service makes it possible for an application to obtain and manage
application subscriber profiles. A subscriber profile consists of data related to a subscriber and

Address Book
Interface

Address Book

Figure 3-4 Example of an application initiated call

Initiating

Called Party
SSF

Application

WebLogic

OSA

1.

2.

3.Party

Network
Gatekeeper

Gateway

Subsc r iber p ro f i l e

Developer’s Guide for Extended Web Services 3-13

the subscriber’s telephony terminal, see Table 3-2 on page 13. The data marked as read-only in
the table can only be updated by the operator.

Table 3-2 Subscriber Profile Data

Data Description/Example

Name Subscriber name

Alias Alias to ensure the subscribers anonymity towards other users.

Address Complete postal address

Home phone -

Office phone -

Private mail Home e-mail

Office mail Office e-mail

Terminal ID IMSI number

Terminal vendor For example Nokia or Ericsson

Terminal model For example 6610 or T630

Screen size Character rows x columns

Colour terminal Yes/No

MMS terminal Yes/No

Fax number -

Group identity For example family, office location or work group

Gender Male/Female

Birth date In format YYYY-MM-DD

Nationality -

Mother tongue -

Us ing the Ex tended Web Se rv ices

3-14 Developer’s Guide for Extended Web Services

User interaction
The user interaction service makes it possible for an application to interact with call participant(s)
during a call or with messaging users during a messaging session. The application communicates
with call participant(s) through announcements or messages and with messaging users through
text messages.

Call user interaction
The call participant(s) communicate through speech or tone sending. That is, both speech
recognition and DTMF (using the terminal’s key set (0-9, *, #)) can be used. Announcements can
be purely informative or they can prompt a participant to reply through speech or sending DTMF
tones back to the application.

Message based user interaction
With message based user interaction, the application and the end users communicate through text
messages (SMSes or USSD messages).

SMS based user interaction provides application initiated SMSes with a transaction ID to connect
requesting/prompting SMSes with end user’s replies.

Currency -

Miscellaneous Any type of additional information

Last updated Date and time the account was last updated (read-only)

Updated by The user that updated the account (read-only)

Subscription type Type of subscription, Prepaid, Postpaid, Time Limited, or Free
(read-only)

Payment method Payment method: Credit card or Invoice (read-only)

Balance Account balance (read-only)

Application
subscriptions

List of subscribed applications (combinations of service provider
and application IDs) (read-only)

User l ocat ion

Developer’s Guide for Extended Web Services 3-15

USSD messages from an application can be purely informative or they can prompt the end user
to reply. USSD messages can also be used by the end user to initiate service sessions with
applications. When initiating service sessions or replying to an application generated USSD
message, the end user can only use the terminal’s key set (0-9, *, #). The application can use any
type of character supported by the end user’s terminal.

User location
The user location service capability makes it possible for an application to obtain the
geographical location of telephony terminals. The service supports:

single location requests

periodic location request

triggered location requests

Both single and periodic requests supports multiple destination addresses in one request.

The location can be specified as a base point (longitude, latitude) or as a descriptive (abstracted)
position. An abstracted position describes the user’s location in terms of:

Street address

Zip code

City

State

Area (operator defined)

Country

Network (operator defined)

Use of abstracted location information requires interaction with a geographic information system.

Using longitude and latitude, the location is specified as a base point (longitude, latitude) and a
geometrical area in which the telephony terminal is located. The geometrical area is referred to
as an uncertainty shape related to the base point. The uncertainty shapes are divided in to circles
and ellipses.

When supported in the network, extended location, the altitude, terminal type, and a time stamp
are also provided.

Us ing the Ex tended Web Se rv ices

3-16 Developer’s Guide for Extended Web Services

Also, the service supports provision of geographical information for a terminal, such as city or
street address, to applications.

Exactly what is available to the requesting applications is dependant on the underlying networks.

Circle uncertainty shapes
The circle uncertainty shapes are:

Circle

Circle sector

Circle arc

The circle sector is an extended case of the circle, and the circle arc is a extended case of the circle
sector, see Figure 3-5, “Circle uncertainty shape definitions,” on page 3-16.

Ellipse uncertainty shapes
The ellipse uncertainty shapes are:

Ellipse

Ellipse sector

Ellipse arc

r

a1

a2

Circle Circle Sector Circle Arc

BP - Base Point

R - Radius

a1 - Segment Start Angle

a2 - Segment End Angle

r - Inner Radius

+ +

Figure 3-5 Circle uncertainty shape definitions

R

BP

User l ocat ion

Developer’s Guide for Extended Web Services 3-17

The ellipse sector is an extended case of the ellipse, and the ellipse arc is a extended case of the
ellipse sector, see Figure 3-6, “Ellipse uncertainty shape definitions,” on page 3-17.

Terminal altitude
If the terminal’s altitude is provided, the actual terminal altitude is somewhere within a span
defined by the provided altitude value and two times the altitude uncertainty, see Figure 3-7,
“Terminal altitude definition,” on page 3-18.

a1

Ellipse Ellipse Sector Ellipse Arc

a - Angle of Semi Major

BP - Base Point

SMa - Semi Major

SMi - Semi Minor

a1 - Segment Start Angle

a2 - Segment End Angle

a

a2

sMa - Inner Semi Major

sMi - Inner Semi Minor

sMa

sMi+ +

Figure 3-6 Ellipse uncertainty shape definitions

SMa

SMi
BP

Us ing the Ex tended Web Se rv ices

3-18 Developer’s Guide for Extended Web Services

A positive altitude value means above sea level, whereas a negative value means below sea level.

User status
The user status service capability makes it possible for an application to obtain the status of fixed,
mobile and IP-based telephony terminals. Possible values are:

Reachable

Busy

Not reachable

The service supports single, periodic and triggered status request and as well as multiple
destination addresses in one request.

Exception handling
Currently, there are three different types of exceptions, as described below.

Service-specific exceptions
Service-specific exceptions, one or more for each service.

Altitude

Altitude - Altitude Uncertainty

Altitude + Altitude Uncertainty

Sea Level

Span of
Actual

Altitude

Figure 3-7 Terminal altitude definition

Except ion hand l ing

Developer’s Guide for Extended Web Services 3-19

AccessException
Access exceptions, which are thrown when something is wrong with the data related to an
operation. For instance, a user tries to retrieve a manager for a service that he or she is not allowed
to use.

CommunicationException
Communication exceptions, which are thrown when a disturbance occurs in the network between
the application and WebLogic Network Gatekeeper, or WebLogic Network Gatekeeper has lost
some objects related the session.

Name May occur during

CallException Call session.

CallSetupException Call setup.

CallUIException User interaction session.

ContentBasedChargingException Invocation of all methods in Content based charging.

UserStatusException Retrieval of a user status report.

InformationException Invocation of all methods in Information.

UserLocationException Retrieval of a user status report

MessagingException Invocation of all methods in Messaging.

SubscriberProfileException Invocation of all methods in Subscriber profile.

Us ing the Ex tended Web Se rv ices

3-20 Developer’s Guide for Extended Web Services

Developer’s Guide for Extended Web Services 4-1

C H A P T E R 4

Extended Web Services Examples

The following sections describe the Extended Web Services examples:

“About the examples” on page 4-2

“Send SMS” on page 4-2

“Message Notifications” on page 4-4

“Send MMS” on page 4-7

“Poll for new messages” on page 4-8

“Handling SOAP Attachments” on page 4-12

“Get the location of a mobile terminal” on page 4-16

“Application-initiated messaging user interaction” on page 4-19

“Network-initiated messaging user interaction” on page 4-22

“Setting up an application-initiated call” on page 4-26

“Network-initiated call control” on page 4-30

“Handling call-based user interaction” on page 4-34

“Handling subscriber data” on page 4-37

“Getting the status of a terminal” on page 4-40

“Charge based on content” on page 4-42

Extended Web Serv i ces Examples

4-2 Developer’s Guide for Extended Web Services

About the examples
Below are a set of examples given that illustrates how to use the Extended Web Services
interfaces using AXIS and Java.

Send SMS
Get hold of the Messaging Web Service.

Listing 4-1 Get hold of the Messaging Service

MessagingService messagingService = new MessagingServiceLocator();

java.net.URL endpoint = new java.net.URL(messagingWsdlUrl);

messaging = messagingService.getMessaging(endpoint);

The security header is created as outlined in “Define the security header” on page 3-7 and the
header is added to the port.

Listing 4-2 Add the security header

header.setMustUnderstand(true);

((org.apache.axis.client.Stub)messaging).setHeader(header);

The mailbox is opened and an identifier ticket for the mailbox is returned.

Listing 4-3 Open the mailbox

String mailboxTicket;

mailboxTicket = messaging.openMailbox(myMailbox,

myMailboxPwd,

spID+appID+appInstGroupID);

Send SMS

Developer’s Guide for Extended Web Services 4-3

The messaging properties are defined and the method for sending SMSes is invoked.

The origAddress is a combination of the mailbox ID as given by the service provider, the
corresponding password and the originator address. The format is "tel:<mailboxID>", for
example "tel:50001".

serviceCode is operator-specific, it is used for charging purposes. The message is an ordinary
String. The last parameter is operator-specific.

One or more send results are returned, one for each destination address.

Listing 4-4 Define message properties and send the SMS

arrayofMessagingProperties[0] = new MessagingProperty();

arrayofMessagingProperties[0].setMessagingPropertyName

(MessagingPropertyName.MESSAGE_SENT_TO);

arrayofMessagingProperties[0].setValue(destAddress);

arrayofMessagingProperties[1] = new MessagingProperty();

arrayofMessagingProperties[1].setMessagingPropertyName

(MessagingPropertyName.MESSAGE_SENT_FROM);

arrayofMessagingProperties[1].setValue(origAddress);

arrayofMessageSendResult = messaging.sendSMS(mailboxTicket,

myMessage,

arrayofMessagingProperties,

serviceCode,

spID+appID+appInstGroupID);

The previously opened mailbox is closed. This destroys the mailbox ticket.

Listing 4-5 Close the mailbox

messaging.closeMailBox(mailboxTicket);

Extended Web Serv i ces Examples

4-4 Developer’s Guide for Extended Web Services

Below is outlined how the delivery status can be retrieved from the send result array.

Listing 4-6 Get delivery status

for (int i = 0; i < arrayofMessageSendResult.length; i++) {

System.out.println("Message ID: " +

arrayofMessageSendResult[i].getMessageID());

System.out.println("Destination address: " +

arrayofMessageSendResult[i].getAddress());

System.out.println("Status: " +

arrayofMessageSendResult[i].getSendStatus().getValue());

Message Notifications
Message notifications, notification on new messages, are sent asynchronously from WebLogic
Network Gatekeeper. This means that the application must implement a Web Service. The initial
thing is to start the Web Service server and deploy the implementation of the Web service into
the server. The deployment is made using a deployment descriptor that is automatically generated
when the Web Service java skeletons are generated. The deployment descriptor (deploy.wsdd) is
modified to refer to the class that implements the Web Service interface. This class is outlined in
Listing 4-8, “Implementation of the MessageNotificationHandler Web Service,” on page 4-5.
The class is based on the auto-generated class MessagingListenerSoapBindingImpl.

.

Listing 4-7 Start SimpleAxis server

 // start SimpleAxisServer

org.apache.axis.transport.http.SimpleAxisServerserver =

new org.apache.axis.transport.http.SimpleAxisServer();

System.out.println("Opening server on port: "+ port);

Message No t i f i cat ions

Developer’s Guide for Extended Web Services 4-5

ServerSocket ss = new ServerSocket(port);

server.setServerSocket(ss);

server.start();

System.out.println("Starting server...");

// Read the deployment description of the service

InputStream is = new FileInputStrem(deploymenDescriptorFileName);

// Now deploy our web service

org.apache.axis.client.AdminClient adminClient;

adminClient = new org.apache.axis.client.AdminClient();

System.out.println("Deploying receiver server web service...");

 adminClient.process(new org.apache.axis.utils.Options

(new String[] {"-ddd","-tlocal"}),

deploymentDescriptorStream);

System.out.println("Server started. Waiting for connections on: " + port);

The listener class implements the MessagingListener interface. A set of methods must be defined,
in the example there is only code in the newMessageAvailable method in order to outline how to
get handle the parameters. messageDescr contains information about the message itself. The
message ID is used to fetch the content of the SMS.

Listing 4-8 Implementation of the MessageNotificationHandler Web Service

public class MessageNotificationHandler implements MessagingListener{

public void deactivate(java.lang.String notificationTicket)

throws java.rmi.RemoteException {

}

public void newMessageAvailable(String notificationTicket,

String mailbox,

MailboxFolder folder,

Extended Web Serv i ces Examples

4-6 Developer’s Guide for Extended Web Services

MessageDescription messageDescr)

throws java.rmi.RemoteException {

System.out.println("->New Message arrived");

System.out.println("Mailbox " + mailbox);

System.out.println("Folder " + folder);

System.out.println("Message Description");

System.out.println("ID " + messageDescr.getMessageId());

System.out.println("Format " + messageDescr.getFormat());

}

public void messageDeliveryAck(String notificationTicket,

String messageId,

MessageStatusType messageStatus)

throws java.rmi.RemoteException {

System.out.println("->Message Delivery Ack");

}

When the listener is instantiated, the application enables notifications on certain criteria. In this
case the criteria is that a notification is sent to MessageNotificationHandler when a new message
arrives to a certain mailbox. The URL of the listener web service is supplied in order to inform
WebLogic Network Gatekeeper where the service resides.

Listing 4-9 Open a mailbox and enable notifications

String mailboxTicket;

mailboxTicket = messaging.openMailbox(myMailbox, myMailboxPwd,

spID+appID+appInstGroupID);

System.out.println("Mailbox Ticket retrieved");

notificationTicket = messaging.enableMessagingNotification

(receiveMessageWsdlUrl,

Send MMS

Developer’s Guide for Extended Web Services 4-7

myMailbox,

 myMailboxPwd,

notificationCriteria.NC_NEW_MESSAGE_ARRIVED,

serviceCode,

spID+appID+appInstGroupID);

Send MMS
First, a handle to the Messaging service is retrieved, the security header is added to the call object,
and the mailbox is opened as described in “Send SMS” on page 4-2. The

The contents of the MMS are sent as SOAP attachment in MIME format, consisting of several
attachment parts. The method defineattAchmentPart described in Listing 4-17, “Define an
attachment part,” on page 4-14. Each attachment part is added to the header of the object
representing the call.

Listing 4-10 Creating two attachment parts.

int index = 1;

AttachmentPart ap = new AttachmentPart();

ap = defineAttachmentPart("file:../img/afile.jpg",

"image/jpeg",

"afile",

index++);

((org.apache.axis.client.Stub)sendMms).addAttachment(ap);

ap = defineAttachmentPart("file:../img/anotherfile.jpg",

"image/jpeg",

"anotherfile",

index++);

((org.apache.axis.client.Stub)messaging).addAttachment(ap);

Extended Web Serv i ces Examples

4-8 Developer’s Guide for Extended Web Services

The messaging properties are defined in the same manner as when sending an SMS, see “Send
SMS” on page 4-2, and the additional message property MESSAGE_FORMAT, with the value
MESSAGE_FORMAT_MM is defined for MMS Messages.

Listing 4-11

arrayofMessagingProperties[0] = new MessagingProperty();

arrayofMessagingProperties[0].setMessagingPropertyName

(MessagingPropertyName.MESSAGE_SENT_TO);

arrayofMessagingProperties[0].setValue(destAddress);

arrayofMessagingProperties[1] = new MessagingProperty();

 arrayofMessagingProperties[1].setMessagingPropertyName

(MessagingPropertyName.MESSAGE_SENT_FROM);

 arrayofMessagingProperties[1].setValue(origAddress);

 arrayofMessagingProperties[2] = new MessagingProperty();

 arrayofMessagingProperties[2].setMessagingPropertyName

(MessagingPropertyName.MESSAGE_FORMAT);

 arrayofMessagingProperties[2].setValue

(MessageFormatType.MESSAGE_FORMAT_MM);

When the attachment parts have been defined, added to the call object and the message properties
have been defined, the MMS is sent. This method is very similar to the sendSMS method as
described in “Define message properties and send the SMS” on page 4-3. It is also possible to
retrieve the delivery status in the same way as described in “Get delivery status” on page 4-4.
FInally, the mailbox should be closed in the same manner as described in “Close the mailbox” on
page 4-3

Poll for new messages
An application can poll for new messages. A list of references to the unread messages are
returned. The messages are retrieved using these references

Po l l f o r new messages

Developer’s Guide for Extended Web Services 4-9

The normal procedure initial procedure is used as described in “Send SMS” on page 4-2; login,
retrieval of the messaging interface, definition of the security header, and opening of a mailbox.

The message descriptions are returned in a MesageDescription[]. In the example, each message
description is traversed. If a message is an SMS, the actual text is fetched via the messageID in
the message description. If it is an MMS, the format is MESSAGE_FORMAT_TEXT. An MMS
message requires a bit more processing to fetch the contents. The user-defined class
GetMMsApphandler implements this functionality in the method getMms.

Listing 4-12 Get message descriptions of new messages in a mailbox

arrayofMessageDescription = messaging.listNewMessages

(mailboxTicket,

MailboxFolder.MESSAGE_MAILBOX_INBOX,

spID+appID+appInstGroupID);

for (int i = 0; i < arrayofMessageDescription.length; i++) {

System.out.println("<> ");

System.out.println("Message ID " +

arrayofMessageDescription[i].getMessageId());

System.out.println("Message format " +

arrayofMessageDescription[i].getFormat());

if (arrayofMessageDescription[i].getFormat().toString() ==

"MESSAGE_FORMAT_TEXT"){

String messageText = messaging.getSMS

(mailboxTicket,

MailboxFolder.MESSAGE_MAILBOX_INBOX,

arrayofMessageDescription[i].getMessageId(),

spID+appID+appInstGroupID);

System.out.println("Message text " + messageText);

}

if (arrayofMessageDescription[i].getFormat().toString() ==

"MESSAGE_FORMAT_MM"){

GetMmsAppHandler mmsAppHandler = new GetMmsAppHandler();

Extended Web Serv i ces Examples

4-10 Developer’s Guide for Extended Web Services

mmsAppHandler.getMms(messagingService,

messaging,

mailboxTicket,

MailboxFolder.MESSAGE_MAILBOX_INBOX,

arrayofMessageDescription[i].getMessageId(),

spID+appID+appInstGroupID);

}

}

Listing 4-13 Definition of method getMms

public void getMms(MessagingServiceLocator messagingService,

Messaging messaging, String mailboxTicket,

MailboxFolder mailboxFolder, String messageId,

String requester) {

When the getMms method is invoked, the method getMMS is invoked and the SOAP attachment
is retrieved as described in “Get MMS and retrieve the SOAP attachment” on page 4-10.

Listing 4-14 Get MMS and retrieve the SOAP attachment

try {

messaging.getMMS(mailboxTicket, mailboxFolder, messageId, requester);

} catch (Throwable e) {

// Do some error processing

System.out.println("Caught exception (get MMS): " + e.getMessage());

e.printStackTrace();

}

try {

// Get the context of the SOAP message

Po l l f o r new messages

Developer’s Guide for Extended Web Services 4-11

MessageContext context =

messagingService.getCall().getMessageContext();

// Get the last response message.

org.apache.axis.Message reqMsg = context.getResponseMessage();

// Get the SOAP attachmnents

m_attachments = reqMsg.getAttachmentsImpl();

System.out.println("Number of attachments: " +

m_attachments.getAttachmentCount());

} catch (Throwable e) {

// Do some error processing

System.out.println("Caught exception (getAttachments): " +

e.getMessage());

}

The content is retrieved from the attachment as described in “Retrieve the content from a SOAP
attachment” on page 4-11. In this case, each attachment is saved under a unique filename.

Listing 4-15 Retrieve the content from a SOAP attachment

java.util.Collection c = m_attachments.getAttachments();

Iterator it = c.iterator();

// For each attachment

while(it.hasNext()){

org.apache.axis.attachments.AttachmentPart p =

(org.apache.axis.attachments.AttachmentPart)it.next();

javax.activation.DataHandler dh= p.getDataHandler();

BufferedInputStream bis = new BufferedInputStream(dh.getInputStream());

ByteArrayOutputStream bos = new ByteArrayOutputStream();

while (bis.available() > 0) {

Extended Web Serv i ces Examples

4-12 Developer’s Guide for Extended Web Services

bos.write(bis.read());

}

byte[] pmsg = bos.toByteArray();

System.out.println("Message Length: "+pmsg.length);

System.out.println("Content Type: "+p.getContentType());

System.out.println("Content ID: "+p.getContentId());

// Convert mime identifier to file extension

String type = p.getContentType().substring

1+p.getContentType().lastIndexOf("/",

p.getContentType().length()));

// Save attachment as file

FileOutputStream fos = new FileOutputStream("Message_" + messageId +

" ID_" +

p.getContentId()+

"."+ type);

fos.write(pmsg);

fos.close();

}

Handling SOAP Attachments
When sending and receiving multimedia messages, the content is handled as attachments in
MIME or DIME using SwA, SOAP with Attachments. This technique combines SOAP with
MIME, allowing any arbitrary data to be included in a SOAP message.

An SwA message is identical with a normal SOAP message, but the header of the HTTP request
contains a Content-Type tag of type “multipart/related”, and the attachment block(s) after the
termination tag of the SOAP envelope.

Axis and Java Mail classes can be used to construct and deconstruct MIME/DIME SwA
messages.

Hand l ing SOAP A t tachments

Developer’s Guide for Extended Web Services 4-13

Encoding a multipart SOAP attachment
Listing 4-16, “Create an attachment,” on page 4-13 gives an example on how to create an
attachment and to add it to the SOAP header. Two attachment parts are created.

Listing 4-16 Create an attachment

SendMessageServiceLocator sendMmsService = new SendMessageServiceLocator();

java.net.URL endpoint = new java.net.URL(sendMmsWsdlUrl);

SendMessagePort sendMms = sendMmsService.getSendMessagePort(endpoint);

AttachmentPart ap = new AttachmentPart();

ap = defineAttachmentPart("file:../img/img1.jpg",

"image/jpeg",

"img1",

index++);

((org.apache.axis.client.Stub)sendMms).addAttachment(ap);

ap = defineAttachmentPart("file:../img/img2.jpg",

"image/jpeg",

"img2",

index++);

((org.apache.axis.client.Stub)sendMms).addAttachment(ap);

The method defineAttachmentPart is illustrated Listing 4-17, “Define an attachment part,” on
page 4-14. The method creates an attachment part. The method is invoked with the following
parameters:

String mmsInfo, the full URL to the attachment.

String contentType, the mime type.

String contentId, ID of attachment part, unique within the attachment.

int index, ID of attachment part, unique within the attachment.

Extended Web Serv i ces Examples

4-14 Developer’s Guide for Extended Web Services

Listing 4-17 Define an attachment part

private AttachmentPart defineAttachmentPart(String mmsInfo,

String contentType,

String contentId,

int index){

AttachmentPart apPart = new AttachmentPart();

try {

URL fileurl = new URL(mmsInfo);

BufferedInputStream bis =

new BufferedInputStream(fileurl.openStream());

apPart.setContent(bis, contentType);

apPart.setMimeHeader("Ordinal", String.valueOf(index));

//reference the attachment by contentId.

apPart.setContentId(contentId);

} catch (Exception ex) {

ex.printStackTrace();

}

return apPart;

}

Retrieving and Decoding a multipart SOAP attachment
In order to get a SOAP attachment, the response message is necessary since the SOAP attachment
is returned in as an attachment in the SOAP header of the HTTP response. In Listing 4-18, “Get
a response message,” on page 4-14, the response message is retrieved.

Listing 4-18 Get a response message

// Get the context of the SOAP message

Hand l ing SOAP A t tachments

Developer’s Guide for Extended Web Services 4-15

MessageContext context = receiveMmsService.getCall().getMessageContext();

// Get the last response message.

org.apache.axis.Message reqMsg = context.getResponseMessage();

When a handle to the response message is retrieved, the SOAP attachments can be fetched.

Listing 4-19 Get the SOAP attachments

Attachments attachments = reqMsg.getAttachmentsImpl();

java.util.Collection c = attachments.getAttachments();

Each attachment, and each attachment part, is traversed and decoded. In the example the
attachments are saved to file.

Listing 4-20 Extract the attachments

java.util.Collection c = attachments.getAttachments();

Iterator it = c.iterator();

// For each attachment

while(it.hasNext()){

org.apache.axis.attachments.AttachmentPart p =

(org.apache.axis.attachments.AttachmentPart)it.next();

javax.activation.DataHandler dh= p.getDataHandler();

BufferedInputStream bis = new BufferedInputStream(dh.getInputStream());

ByteArrayOutputStream bos = new ByteArrayOutputStream();

while (bis.available() > 0) {

bos.write(bis.read());

}

Extended Web Serv i ces Examples

4-16 Developer’s Guide for Extended Web Services

byte[] pmsg = bos.toByteArray();

System.out.println("Message Length: "+pmsg.length);

System.out.println("Content Type: "+p.getContentType());

System.out.println("Content ID: "+p.getContentId());

// Convert mime identifier to file extension

String type = p.getContentType().substring(

1+p.getContentType().lastIndexOf("/",

p.getContentType().length()));

// Save attachment as file

FileOutputStream fos = new FileOutputStream("ContentID_"

+p.getContentId()+ "."+

type);

fos.write(pmsg);

fos.close();

Get the location of a mobile terminal
The position of a mobile terminal can be retrieved both synchronously and asynchronously. The
returned position can be requested, and returned, as a geographical position, extend geographical
position, and as geo-coded information. See “User location” on page 3-15.

In this example, the location is requested using a synchronous request.

The normal procedure initial procedure is used as described in “Send SMS” on page 4-2; login,
retrieval of the interface, and definition of the security header is used. Naturally, the messaging
service capability is not used, instead is the user location service retrieved, as shown in
Listing 4-21, “Retrieve the user location interface,” on page 4-16.

Listing 4-21 Retrieve the user location interface

userLocationService = new UserLocationServiceLocator();

java.net.URL endpoint = new java.net.URL(userLocationWsdlUrl);

userLocation = userLocationService.getUserLocation(endpoint);

Get the l ocat i on o f a mobi l e t e rmina l

Developer’s Guide for Extended Web Services 4-17

The security header is added to the userLocation object, see below.

Listing 4-22 Add the security header to the userlocation object

((org.apache.axis.client.Stub)userLocation).setHeader(header);

The parameters are defined and the method for getting the position is invoked.

Listing 4-23 Get the location

String targetAddress = "tel:1234567";

String serviceCode = "cp_free";

String[] myAddresses = {targetAddress};

LocationResponseTime myRequestedResponseTime = new LocationResponseTime();

int mywaitTimeoutSeconds = 20;

myRequestedResponseTime.setResponseTimeIndicator(

LocationResponseTimeIndicator.LOW_DELAY);

LocationResult[] locationResultArray =

userLocation.getLocationWait(myAddresses,

mywaitTimeoutSeconds,

serviceCode,

spID+appID+appInstGroupID);

The result is returned as an array, with each element corresponding to an entry in myAddresses.
Each element is traversed and the location information is fetched.The type of information
retrieved, and how it is returned depends on the uncertainty shape given. The example illustrates
three shapes; circle, sector, and circle arc stripe. The uncertainty shapes based on ellipses are
handled in a similar manner.

Extended Web Serv i ces Examples

4-18 Developer’s Guide for Extended Web Services

Listing 4-24 Get the coordinates

for (int i = 0; i < locationResultArray.length; i++) {

System.out.println("Terminal " +locationResultArray[i].getAddress());

System.out.println("Latidute " +

locationResultArray[i].getTheLocation().getLatitude());

System.out.println("Longitude " +

locationResultArray[i].getTheLocation().getLongitude());

LocationUncertaintyShapeTypes locationUncertaintyShapeType =

locationResultArray[i].getTheLocation().

getShape().getLocationUncertaintyShapeType();

// Handle different types of positioning info differently

if (locationUncertaintyShapeType ==

LocationUncertaintyShapeTypes.CIRCLE) {

LocationUncertaintyShapeCircle locationUncertaintyShapeCircle =

(LocationUncertaintyShapeCircle)locationResultArray[i].

getTheLocation().getShape().getValue();

System.out.println("Uncertainty Shape Circle: radius " +

locationUncertaintyShapeCircle.getRadius());

}

else if (locationUncertaintyShapeType ==

LocationUncertaintyShapeTypes.CIRCLE_SECTOR) {

LocationUncertaintyShapeCircleSector

locationUncertaintyShapeCircleSector =

(LocationUncertaintyShapeCircleSector)locationResultArray[i].

getTheLocation().getShape().getValue();

 System.out.println("Uncertainty Shape Circle Sector: start angle:" +

locationUncertaintyShapeCircleSector.getSegmentStartAngle());

 System.out.println("segment end angle:" +

locationUncertaintyShapeCircleSector.getSegmentEndAngle());

 System.out.println("radius " +

locationUncertaintyShapeCircleSector.getCircle().getRadius());

Appl i cat ion- in i t ia ted messag ing user i n te ract ion

Developer’s Guide for Extended Web Services 4-19

}

else if (locationUncertaintyShapeType ==

LocationUncertaintyShapeTypes.CIRCLE_ARC_STRIPE){

LocationUncertaintyShapeCircleArcStripe

locationUncertaintyShapeCircleArcStripe =

(LocationUncertaintyShapeCircleArcStripe)locationResultArray[i].

getTheLocation().getShape().getValue();

LocationUncertaintyShapeCircleSector

locationUncertaintyShapeCircleSector =

(LocationUncertaintyShapeCircleSector)

locationUncertaintyShapeCircleArcStripe.getCircleSector();

System.out.println("Uncertainty Shape Circle Arc Stripe: " +

"segment start angle:" +

locationUncertaintyShapeCircleSector.getSegmentStartAngle());

System.out.println("segment end angle:" +

locationUncertaintyShapeCircleSector.getSegmentEndAngle());

System.out.println("radius " +

locationUncertaintyShapeCircleSector.getCircle().getRadius());

System.out.println("inner radius " +

locationUncertaintyShapeCircleArcStripe.getInnerRadius());

}

else{

System.out.println("Uncertainty shape other than cirular.");

}

}

Application-initiated messaging user interaction
In this example, a message is sent using the messaging user interaction interface and a reply of
the message is taken care of by the application.

In the example, the reply is requested using a synchronous request.

Extended Web Serv i ces Examples

4-20 Developer’s Guide for Extended Web Services

The standard initial procedure as described in “Send SMS” on page 4-2; login, retrieval of the
interface, and definition of the security header is used. The messaging service capability is not
used, instead the user interaction service is retrieved, as shown in Listing 4-25, “Retrieve the user
interaction interface,” on page 4-20.

Listing 4-25 Retrieve the user interaction interface

UserInteractionService userInteractionService =

new UserInteractionServiceLocator();

java.net.URL endpoint = new java.net.URL(messagingUserInteractionWsdlUrl);

userInteraction = userInteractionService.

getMessagingUserInteraction(endpoint);

The security header is added to the userInformation object.

Listing 4-26 Add the security header to the userlnteraction object

((org.apache.axis.client.Stub)userInteraction).setHeader(header);

A user interaction session is created. The returned identifier (uiTicket) for the session is used in
each subsequent call within the session. The parameter destAddress defines to which address a
subsequent message shall be distributed. The format of the address must be in URI-format
(tel:<address>).

Listing 4-27 Create a user interaction session

uiTicket = userInteraction.createUI(destAddress);

Appl i cat ion- in i t ia ted messag ing user i n te ract ion

Developer’s Guide for Extended Web Services 4-21

The type of information and the information to send to the telephony terminal is defined. In
Listing 4-28, “Define the data to send to the terminal,” on page 4-21, the type is
UI_INFO_DATA, and the information is a string. No data encoding scheme is defined.

Listing 4-28 Define the data to send to the terminal

UserInformation info = new UserInformation();

info.setUserInformationType(UserInformationType.UI_INFO_DATA);

UserInformationData userInformationData = new UserInformationData();

userInformationData.setInfoData("Do you wish to proceed? Y or N");

userInformationData.setInfoDataEncodingScheme("");

info.setValue(userInformationData);

Finally, the information is sent to the terminal as described in Listing 4-29, “Send the data and
wait for a reply,” on page 4-21. In this case a synchronous method call is used. The ticket
identifying the session is supplied, together with data defined in Listing 4-28, “Define the data to
send to the terminal,” on page 4-21.

The parameters minLength, maxLength, endSequence, startTimeOut, and language are not used
when using the message based user interaction service. The parameter waitTimeOut defines, in
seconds, for how long the synchronous request shall wait before an answer arrives from the
terminal the information was sent to. If this time is exceeded, a UIException is thrown.

The parameters serviceCode and requesterID are defined by the operator.

The answer collected is returned in the string collectedInfo.

Listing 4-29 Send the data and wait for a reply

int minLength = 0;

int maxLength = 0;

String endSequence = "";

int startTimeOut = 0;

Extended Web Serv i ces Examples

4-22 Developer’s Guide for Extended Web Services

int interCharTimeout = 0;

String language = "";

int waitTimeOut = 180;

String serviceCode = "A service code";

String requesterID = "A requester ID";

String collectedInfo = userInteraction.sendInfoAndCollectWait(

uiTicket,

info,

minLength,

maxLength,

endSequence,

startTimeOut,

interCharTimeout,

language,

waitTimeOut,

serviceCode,

requesterID);

When the user interaction session is over, it is closed and the application logs out.

Listing 4-30 Close user interaction session and logout

userInteraction.closeUI(uiTicket);

myLoginSession.logout(sessionId);

Network-initiated messaging user interaction
In this example, a message is sent from a terminal. The incoming message arrives to the
application via the network-initiated messaging user interaction listener interface. When the
message arrives, the application sends a response back to the terminal via the messaging user
interaction Web Service.

Network- in i t ia ted messag ing user i n te ract ion

Developer’s Guide for Extended Web Services 4-23

Notifications on network-initiated user interaction sessions are sent asynchronously from
WebLogic Network Gatekeeper. This means that the application must implement a Web Service.
The initial thing is to start the Web Service server and deploy the implementation of the Web
service into the server. The deployment is performed using a deployment descriptor that is
automatically generated when the Web Service java skeletons are generated. The deployment
descriptor (deploy.wsdd) is modified to refer to the class that implements the Web Service
interface. This class is outlined in Listing 4-33, “Declaration of the class implementing the
listener interface,” on page 4-24 and Listing 4-34, “Implementation of processUINotification,”
on page 4-25. The class is based on the auto-generated class
UserInteractionNetworkListenerSoapBindingImpl.

The normal initial procedure is used as described in “Send SMS” on page 4-2; login, retrieval of
the interface, and definition of the security header is used. The messaging service capability is
not used, instead is the User Interaction service retrieved, as shown in Listing 4-25, “Retrieve the
user interaction interface,” on page 4-20 and the security header is added as described in
Listing 4-26, “Add the security header to the userlnteraction object,” on page 4-20.

First, the Simple Axis server is started and the WSDD file describing the Web service is deployed
as outlined in Listing 4-7, “Start SimpleAxis server,” on page 4-4.

When the Web Service is deployed, its endpoint (URL) must be registered in WebLogic Network
Gatekeeper as outlined in Listing 4-31, “Registering the listener for network initiated user
interaction sessions,” on page 4-24. The listener is registered on the object representing the user
interaction Web Service.

The URL is registered together with notification criteria. All criteria must be fulfilled in order to
distribute a notification from WebLogic Network Gatekeeper to the application. The criteria is
expressed in the parameters aPartyAddressExpression, bPartyAddressExpression, and
userInteractionCode.

The address expressions allows for wildcards (* and ?). The format of the addresses must be in
URI-format (tel:<address>). The parameter userInteractionCode is defined by the operator.

The parameters serviceCode and requesterID are defined by the operator.

An ID for the notification listener is returned. This ID is supplied in every notification to the
listener interface to correlate the listener with a notification. It is also used when the notification
listener is removed.

Extended Web Serv i ces Examples

4-24 Developer’s Guide for Extended Web Services

Listing 4-31 Registering the listener for network initiated user interaction sessions

String listenerID = userInteraction.addNetworkUIListener(

notificationWsdlUrl,

aPartyAddressExpression,

bPartyAddressExpression,

userInteractionCode,

serviceCode,

requesterID);

When the application is not interested in receiving notifications, it de-registers the notification
listener as described in Listing 4-32, “Removing the notification listener,” on page 4-24.

Listing 4-32 Removing the notification listener

userInteraction.removeNetworkUIListener(listenerID, requesterID);

The class implementing the network-initiated user interaction interface is declared as below.

Listing 4-33 Declaration of the class implementing the listener interface

public class MessagingUINwInitListener implements

UserInteractionNetworkListener {

The method processUINotification, as described in Listing 4-34, “Implementation of
processUINotification,” on page 4-25, is invoked when a user interaction session has been
initiated from the network via WebLogic Network Gatekeeper.

In the example below, a reply is sent back to the party initiating the user interaction session using
the synchronous method sendInfoWait. The ticket identifying the user interaction session
(uiTicket) is created in WebLogic Network Gatekeeper, and the reply must be sent using the same
ticket. The call to sendInfoWait is performed on the object representing the user interaction Web

Network- in i t ia ted messag ing user i n te ract ion

Developer’s Guide for Extended Web Services 4-25

Service. Note that the call to sendInfoWait is only used to illustrate that a response should be
performed using the object representing the user interaction Web service, and that the uiTicket
used is the ticket retrieved as a parameter in processUINotification. In a live production
environment, a separate thread should be created in combination with a call to the asynchronous
method sendInfo.

Listing 4-34 Implementation of processUINotification

public void processUINotification(String notificationTicket,

String uiTicket,

String originator,

String destination,

String userInteractionCode,

UIEventDataTypeCode dataTypeCode,

String dataString)

throws java.rmi.RemoteException {

System.out.println("Got a processUINotification ");

System.out.println(" Notification Ticket " + notificationTicket);

System.out.println(" UI ticket " + uiTicket);

System.out.println(" Originator " + originator);

System.out.println(" Destination " + destination);

System.out.println(" UI Code " + userInteractionCode);

System.out.println(" DataTypeCode " + dataTypeCode.getValue());

System.out.println(" DataTypeCode " + dataString);

UserInformation info = new UserInformation();

info.setUserInformationType(UserInformationType.UI_INFO_DATA);

UserInformationData userInformationData = new UserInformationData();

userInformationData.setInfoData("A reply");

info.setValue(userInformationData);

userInformationData.setInfoDataEncodingScheme("");

Extended Web Serv i ces Examples

4-26 Developer’s Guide for Extended Web Services

MessagingUINwInitAppHandler.userInteraction.sendInfoWait(uiTicket,

info,

0,

"",

15,

"cp_free,

"an ID");

}

Setting up an application-initiated call
A call can be set up between two or more parties from an application using the Call control Web
Service. The methods relevant for Call control are described in API Description Extended Web
Services for WebLogic Network Gatekeeper.

In the example below, a call between two parties is set up from the application.

The normal initial procedure is used as described in “Send SMS” on page 4-2; login, retrieval of
the interface, and definition of the security header is used. Naturally, the messaging service
capability is not used, instead is the Call control service retrieved, as shown in Listing 4-35,
“Retrieve the call control interface,” on page 4-26.

Listing 4-35 Retrieve the call control interface

CallControlService callControlService = new CallControlServiceLocator();

java.net.URL endpoint = new java.net.URL(callControlWsdlUrl);

callControl = callControlService.getCallControl(endpoint);

The security header is added to the userLocation object, see below.

Listing 4-36 Add the security header to the callControl object

((org.apache.axis.client.Stub)callControl).setHeader(header);

Set t ing up an app l i cat i on- in i t ia ted ca l l

Developer’s Guide for Extended Web Services 4-27

First, the data about the call, such as originator is defined, as defined in Listing 4-37, “Defining
the originator of the call and set up the first call leg,” on page 4-27. Since the synchronous method
is used, a timeout value is supplied. A callTicket, representing the call is returned. The method
returns when the originator has gone off-hook, and the call processing continues as outlined in
Listing 4-38, “Setting up the second call leg,” on page 4-28.

Listing 4-37 Defining the originator of the call and set up the first call leg

String callTicket ="";

String originator = "tel:1234567";

int timeout = 10;

String requesterID = "An ID";

String serviceCode = "cp_free";

try {

callTicket = callControl.createCall(originator,

timeout,

serviceCode,

requesterID);

System.out.println("Originator for call created: " + originator);

}

catch (CallSetupException e) {

System.out.println("CallSetupException");

System.out.println("Caught exception: " + e.getMessage());

}

catch (CallException e) {

System.out.println("CallException");

System.out.println("Caught exception: " + e.getMessage());

}

Extended Web Serv i ces Examples

4-28 Developer’s Guide for Extended Web Services

catch (GeneralException e) {

System.out.println("GeneralException");

System.out.println("Caught exception: " + e.getMessage());

}

catch (Throwable e) {

System.out.println("Other exception");

System.out.println("Caught exception: " + e.getMessage());

}

When the originator of the call and data about the call is created, the second call leg is set up and
the second participant in the call is added. The callTicket retrieved when the call was created is
used.

Listing 4-38 Setting up the second call leg

String participant = "tel:2345678";

try {

callControl.addParticipantWait(callTicket,

participant,

timeout);

System.out.println("Participant added: " + participant);

}

catch (CallSetupException e) {

System.out.println("CallSetupException");

System.out.println("Caught exception: " + e.getMessage());

}

catch (CallException e) {

System.out.println("CallException");

System.out.println("Caught exception: " + e.getMessage());

Set t ing up an app l i cat i on- in i t ia ted ca l l

Developer’s Guide for Extended Web Services 4-29

}

catch (GeneralException e) {

System.out.println("GeneralException ");

System.out.println("Caught exception: " + e.getMessage());

}

catch (Throwable e) {

System.out.println("Other exception");

System.out.println("Caught exception: " + e.getMessage());

}

When the second call leg has been set up, the call is deassigned to the network as outlined in
Listing 4-39, “Deassign the call to the network,” on page 4-29. From this point the call is no
longer controlled by the application, although it may be supervised.

Listing 4-39 Deassign the call to the network

try {

callControl.deassign(callTicket);

System.out.println("Call deassigned");

}

catch (CallException e) {

System.out.println("CallException");

System.out.println("Caught exception: " + e.getMessage());

}

catch (GeneralException e) {

System.out.println("GeneralException");

System.out.println("Caught exception: " + e.getMessage());

}

Extended Web Serv i ces Examples

4-30 Developer’s Guide for Extended Web Services

catch (Throwable e) {

System.out.println("Other exception");

System.out.println("Caught exception: " + e.getMessage());

}

Network-initiated call control
In this example, a call attempt is made from a terminal. A notification about the call setup attempt
arrives to the application via the network-initiated call control listener interface. When the
notification arrives, the application sends a response back to the terminal via the Call control Web
Service.

Notifications on network-initiated call attempts are sent asynchronously from WebLogic
Network Gatekeeper. This means that the application must implement a Web Service. The initial
thing is to start the Web Service server and deploy the implementation of the Web service into
the server. The deployment is performed using a deployment descriptor that is automatically
generated when the Web Service java skeletons are generated. The deployment descriptor
(deploy.wsdd) is modified to refer to the class that implements the Web Service interface. This
class is outlined in Listing 4-33, “Declaration of the class implementing the listener interface,”
on page 4-24 and Listing 4-34, “Implementation of processUINotification,” on page 4-25. The
class is based on the auto-generated class UserInteractionNetworkListenerSoapBindingImpl.

The normal initial procedure is used as described in “Send SMS” on page 4-2; login, retrieval of
the interface, and definition of the security header is used. The messaging service capability is
not used, instead is the User Interaction service retrieved, as shown in Listing 4-25, “Retrieve the
user interaction interface,” on page 4-20 and the security header is added as described in
Listing 4-26, “Add the security header to the userlnteraction object,” on page 4-20.

First, the Simple Axis server is started and the WSDD file describing the Web service is deployed
as outlined in Listing 4-7, “Start SimpleAxis server,” on page 4-4.

When the Web Service is deployed, its endpoint (URL) must be registered in WebLogic Network
Gatekeeper as outlined in Listing 4-31, “Registering the listener for network initiated user
interaction sessions,” on page 4-24. The listener is registered on the object representing the user
interaction Web Service.

The URL is registered together with notification criteria. All criteria must be fulfilled in order to
distribute a notification from WebLogic Network Gatekeeper to the application. The criteria is

Network- in i t ia ted ca l l cont ro l

Developer’s Guide for Extended Web Services 4-31

expressed in the parameters aPartyAddressExpression, bPartyAddressExpression, and
userInteractionCode.

The address expressions allows for wildcards (* and ?). The format of the addresses must be in
URI-format (tel:<address>). The parameter userInteractionCode is defined by the operator.

The parameters serviceCode and requesterID are defined by the operator.

An ID for the notification listener is returned. This ID is supplied in every notification to the
listener interface to correlate the listener with a notification. It is also used when the notification
listener is removed.

Listing 4-40 Registering the listener for network initiated call control

java.lang.String aPartyAddressExpression = "tel:*";

java.lang.String bPartyAddressExpression = "tel:*";

CallEventCriteria[] eventCriteria = new CallEventCriteria[1];

System.out.println("Created Call event criteria array");

eventCriteria[0] = new CallEventCriteria();

eventCriteria[0].setEvent(NetworkCallEvent.ADDRESS_ANALYSED);

eventCriteria[0].setMonitorMode(CallMonitorMode.INTERRUPT);

String listenerID;

listenerID = callControl.addNetworkCallListener(notificationWsdlUrl,

aPartyAddressExpression,

bPartyAddressExpression,

eventCriteria,

serviceCode,

requesterID);

When the application is not interested in receiving notifications, it de-registers the notification
listener as described in Listing 4-32, “Removing the notification listener,” on page 4-24.

Extended Web Serv i ces Examples

4-32 Developer’s Guide for Extended Web Services

Listing 4-41 Removing the notification listener

callControl.removeNetworkCallListener(listenerID)

The class implementing the network-initiated call control interface is declared as below.

Listing 4-42 Declaration of the class implementing the listener interface

public class CallNwInitListener implements NetworkCallListener {

The method processCall, as described in Listing 4-43, “Implementation of processCall,” on
page 4-32, is invoked when the monitor mode of the call is INTERRUPTED, that is the call is
owned by the application and it can be manipulated. The method processNotification, as
described in Listing 4-44, “Implementation of processNotification,” on page 4-33, is invoked
when the monitor mode of the call is NOTIFY, that is the call is not owned by the application and
it can only be monitored and not be manipulated by the application. The monitor mode is defined
when the listener is registered, see Listing 4-40, “Registering the listener for network initiated
call control,” on page 4-31.

processCall receives notifications on calls in monitor mode INTERRUPT. The ticket identifying
the call (callTicket) is created in WebLogic Network Gatekeeper, and subsequent actions on the
call must be performed using the same ticket.

Listing 4-43 Implementation of processCall

public void processCall(String listenerTicket,

String callTicket,

String originator,

String participant,

NetworkCallEvent event)

throws java.rmi.RemoteException {

System.out.println("Got a processCall ");

System.out.println(" Call Ticket " + callTicket);

Network- in i t ia ted ca l l cont ro l

Developer’s Guide for Extended Web Services 4-33

System.out.println(" Originator " + originator);

System.out.println(" Participant " + participant);

System.out.println(" Network Call Event " + event.getValue());

}

processNotification receives notifications on calls in monitor mode NOTIFY

Listing 4-44 Implementation of processNotification

public void processNotification(String listenerTicket,

String originator,

String participant,

NetworkCallEvent event)

throws java.rmi.RemoteException {

System.out.println("Got a processNotification ");

System.out.println(" Listener Ticket " + listenerTicket);

System.out.println(" Originator " + originator);

System.out.println(" Participant " + participant);

System.out.println(" Network Call Event " + event.getValue());

}

The parameter event holds information on the type of event in the network that resulted in the call
to the network-initiated call control interface.

When the application is no longer interested in receiving notifications, the listener must be
removed as outlined in Listing 4-45, “Removing the listener,” on page 4-33.

Listing 4-45 Removing the listener

callControl.removeNetworkCallListener(listenerID);

Extended Web Serv i ces Examples

4-34 Developer’s Guide for Extended Web Services

Handling call-based user interaction
Call-based user interaction sessions use resources such as voice-prompt machines (IVRs) in the
telecom network. When using call-based user interaction these resources are addressed from the
application.

Call-based user interaction is always used together with the Call control Web Service, since the
user interaction part takes advantage of existing call legs, created by the Call control Web
Service, and routes the call legs to the IVRS.

The methods relevant for Call user interaction are described in API Description Extended Web
Services for WebLogic Network Gatekeeper.

In the example below, an existing call is created as described in “Setting up an
application-initiated call” on page 4-26.

The normal initial procedure is used as described in “Send SMS” on page 4-2; login, retrieval of
the interface, and definition of the security header is used. Naturally, the messaging service
capability is not used, instead is the Call user interaction service retrieved, as shown in
Listing 4-46, “Retrieve the call user interaction interface,” on page 4-34.

Listing 4-46 Retrieve the call user interaction interface

CallUserInteractionService callUserInteractionService =

new CallUserInteractionServiceLocator();

java.net.URL endpoint =

new java.net.URL(callUserInteractionWsdlUrl);

callUserInteraction =

callUserInteractionService.getCallUserInteraction(endpoint);

The security header is added to the callUserInteraction object, see below.

Handl ing ca l l -based user i n te ract ion

Developer’s Guide for Extended Web Services 4-35

Listing 4-47 Add the security header to the callUserInteraction object

((org.apache.axis.client.Stub)callUserInteraction).setHeader(header);

Assuming that a call leg is setup to a party, and that the ticket identifying the call (callTicket) is
available, a call user interaction session is created as described in.Listing 4-48, “Create the call
user interaction session,” on page 4-35. For information on how to retrieve a call ticket, see
Listing 4-37, “Defining the originator of the call and set up the first call leg,” on page 4-27. The
session is also created with a participant, or originator. Using “tel:*” when creating the sessions
means that all call legs will be involved in the session. That is, the party in the existing call that
shall interact with the IVR.

Listing 4-48 Create the call user interaction session

String originator = "tel:1234567";

callUiTicket = callUserInteraction.createCallUserInteraction(callTicket,

originator);

When the callUITicket identifying the session is available, the application can set up a connection
to the IVR. First, data about the IVR, such as type of identifier supplied, and the relevant data for
the type of identifier. In Listing 4-49, “Defining data about the IVR,” on page 4-35, the type of
identifier for the announcement to be played is a UI_INFO_ID, which indicates that the
accompanying data is an ID of the resource to use. The actual ID is also supplied.

Listing 4-49 Defining data about the IVR

UserInformation info = new UserInformation();

info.setUserInformationType(UserInformationType.UI_INFO_ID);

Integer informationID = new Integer(132);

info.setValue((java.lang.Object)informationID);

Extended Web Serv i ces Examples

4-36 Developer’s Guide for Extended Web Services

The synchronous method sendInfoAndCollectWait is invoked as described in Listing 4-50,
“Setting up the user interaction dialogue,” on page 4-36. This method sends information to the
IVR on which an announcement to be played, and also instructs the IVR to collect input from the
terminal, for example via DTMF. Since the synchronous method is used, a timeout value for the
whole dialogue is supplied in the parameter waitTimeoutSeconds. Other time-out parameters are
also supplied, together with information on maximum and minimum length of the input, and an
optional end sequence if variable length input is used. A typical example of an end sequence is a
hash mark (#). A string, representing the input retrieved from the terminal is returned. Which
input parameters that shall be used is dependant on the functionality available in the IVR used.

Listing 4-50 Setting up the user interaction dialogue

int minimumLength = 0;

int maximumLength = 100;

String endSequence = "#";

int startTimeoutSeconds = 20;

int interCharTimeoutSeconds = 5;

int waitTimeoutSeconds = 20;

String language = "EN";

System.out.println("Calling sendInfoAndCollectWait");

System.out.println("callUiTicket: " + callUiTicket);

System.out.println("info.getUserInformationType(): " +

info.getUserInformationType();

System.out.println("info.getValue(): " + info.getValue());

collectedInfo = callUserInteraction.sendInfoAndCollectWait(callUiTicket,

info,

minimumLength,

maximumLength,

endSequence,

startTimeoutSeconds,

interCharTimeoutSeconds,

Hand l ing subscr ibe r data

Developer’s Guide for Extended Web Services 4-37

language,

waitTimeoutSeconds,

serviceCode,

requesterID);

System.out.println("InformationCollected from User " + collectedInfo);

Finally, the user interaction session between the IVR and the terminal is closed as outlined in
Listing 4-51, “Close the user interaction session,” on page 4-37.

Listing 4-51 Close the user interaction session

callUserInteraction.close(callUiTicket);

Handling subscriber data
The Subscriber profile Web service allows for setting and retrieving data related to subscribers.
The methods relevant for Subscriber Profile are described in API Description Extended Web
Services for WebLogic Network Gatekeeper.

In the example below, data about a subscriber is added and retrieved.

The normal initial procedure is used as described in “Send SMS” on page 4-2; login, retrieval of
the interface, and definition of the security header is used. Naturally, the messaging service
capability is not used, instead is the Subscriber profile service retrieved, as shown in Listing 4-52,
“Retrieve the subscriber profile service,” on page 4-37.

Listing 4-52 Retrieve the subscriber profile service

SubscriberProfileService subscriberProfileService = new

SubscriberProfileServiceLocator();

java.net.URL endpoint = new java.net.URL(subscriberProfileWsdlUrl);

subscriberProfile = subscriberProfileService.

getSubscriberProfile(endpoint);

Extended Web Serv i ces Examples

4-38 Developer’s Guide for Extended Web Services

The security header is added to the subscriberProfile object, see below.

Listing 4-53 Add the security header to the subscriberProfile object

(((org.apache.axis.client.Stub)subscriberProfile).setHeader(header);

First, the data to be set is defined. The data is defined as name-value pairs, as outlined in
Listing 4-54, “Define and store the data,” on page 4-38. The data to be set in this example are
Street address, payment method to use and if the terminal supports MMS. The data is keyed on
the parameter address.

Listing 4-54 Define and store the data

Property[] properties = new Property[3];

properties[0] = new Property();

properties[0].setPropertyType(PropertyTypes.ADDRESS);

properties[0].setAddress("Elm Street 32, Dodge City");

properties[1] = new Property();

properties[1].setPropertyType(PropertyTypes.MMS_ENABLED_TERMINAL);

java.lang.Boolean mmsEnabledTerminal = new java.lang.Boolean(true);

properties[1].setMmsEnabledTerminal(mmsEnabledTerminal);

properties[2] = new Property();

properties[2].setPropertyType(PropertyTypes.PAYMENT_METHOD);

PaymentMethod paymentMethod = new PaymentMethod();

paymentMethod.setPaymentType(PaymentType.INVOICE);

Short invoicenumber = new Short((short()1);

paymentMethod.setValue(invoicenumber);

properties[2].setPaymentMethod(paymentMethod);

String address = "tel:12345678";

Hand l ing subscr ibe r data

Developer’s Guide for Extended Web Services 4-39

int waitTimeoutSeconds = 10;

System.out.println("About to set Subscriber Profile ");

subscriberProfile.setSubscriberPropertyWait(address,

properties,

waitTimeoutSeconds,

serviceCode,

requesterID);

When data shall be retrieved using the subscriber profile database, the same type of mechanism
applies as when storing data. A set of name-value pairs representing the data to be fetched is
defined. The set of name-value pairs are assembled in an array and the array is a parameter in the
method call.

The data is retrieved in an array, also as name-value pairs.

Listing 4-55 Retrieve data

PropertyTypes[] propertyTypes = new PropertyTypes[2];

propertyTypes[0] = PropertyTypes.ADDRESS;

propertyTypes[1] = PropertyTypes.MMS_ENABLED_TERMINAL;

Property[] someProperties;

someProperties = subscriberProfile.getSubscriberPropertyWait(

address,

propertyTypes,

waitTimeoutSeconds,

serviceCode,

requesterID);

for (int i = 0; i<someProperties.length; i++) {

if (someProperties[i].getPropertyType() ==

PropertyTypes.MMS_ENABLED_TERMINAL) {

System.out.println("MMS Enabled Terminal: "+

someProperties[i].getMmsEnabledTerminal());

Extended Web Serv i ces Examples

4-40 Developer’s Guide for Extended Web Services

}

if (someProperties[i].getPropertyType() == PropertyTypes.ADDRESS) {

System.out.println("Address : " + someProperties[i].getAddress());

}

}

Getting the status of a terminal
The User status Web service allows for getting the status of one or more terminals. The methods
relevant for User Status are described in API Description Extended Web Services for WebLogic
Network Gatekeeper.

In the example below, the status of one single terminal is retrieved.

The normal initial procedure is used as described in “Send SMS” on page 4-2; login, retrieval of
the interface, and definition of the security header is used. Naturally, the messaging service
capability is not used, instead is the User status service retrieved, as shown in Listing 4-56,
“Retrieve the user status service,” on page 4-40.

Listing 4-56 Retrieve the user status service

UserStatusService userStatusService = new UserStatusServiceLocator();

java.net.URL endpoint = new java.net.URL(userStatusWsdlUrl);

userStatus = userStatusService.getUserStatus(endpoint);

The security header is added to the userStatus object, see below.

Listing 4-57 Add the security header to the userStatus object

(((org.apache.axis.client.Stub)userStatus).setHeader(header);

Get t ing the s ta tus o f a te rmina l

Developer’s Guide for Extended Web Services 4-41

The status of several terminals can be retrieved in one single method invocation. In this case only
one status request is performed. Since an synchronous request is used, a timeout value is defined.

Listing 4-58 Retrieve status information

String [] addresses;

addresses = new String[1];

String user = "tel:1234567";

addresses[0] = user;

int waitTimeoutSeconds = 15;

StatusResult[] statusResult = userStatus.getStatusWait(

addresses,

waitTimeoutSeconds,

serviceCode,

requesterID);

The status result is returned in an array, with one entry per terminal as outlined in Listing 4-59,
“Traverse returned data,” on page 4-41. Not only is the status of the terminal retrieved, but also
the outcome of the actual status request and the type of terminal if this information is reported
from the network.

Listing 4-59 Traverse returned data

for (int i = 0; i<statusResult.length; i++) {

System.out.println("User : "+ statusResult[i].getAddress());

System.out.println("Status of status request : "+

statusResult[i].getReqStatus().getValue());

System.out.println("Status of terminal: "+

statusResult[i].getUserStatus().getAStatusIndicator());

System.out.println("Terminal type: "+

statusResult[i].getUserStatus().getATerminalType().getValue());

Extended Web Serv i ces Examples

4-42 Developer’s Guide for Extended Web Services

}

Charge based on content
The Charging Web service allows for reserving amounts and volumes from an end-users account,
and to debit and credit the reservations. Direct debit and credit is also supported. The methods
relevant for Charging are described in API Description Extended Web Services for WebLogic
Network Gatekeeper.

In the example below, a charging session is created, and a reservation is made. An amount is
debited, and the session is queried about the amount left in the reservation.

The normal initial procedure is used as described in “Send SMS” on page 4-2; login, retrieval of
the interface, and definition of the security header is used. Naturally, the messaging service
capability is not used, instead is the Content based charging service retrieved, as shown in
Listing 4-60, “Retrieve the charging service,” on page 4-42.

Listing 4-60 Retrieve the charging service

ContentBasedChargingService contentBasedChargingService = new

ContentBasedChargingServiceLocator();

java.net.URL endpoint = new java.net.URL(ContentBasedChargingWsdlUrl);

contentBasedCharging = contentBasedChargingService.

getContentBasedCharging(endpoint);

The security header is added to the contentBasedCharging object, see below.

Listing 4-61 Add the security header to the contentBasedCharging object

(((org.apache.axis.client.Stub)contentBasedCharging).setHeader(header);

Charge based on content

Developer’s Guide for Extended Web Services 4-43

First, a charging session is created as outlined in Listing 4-62, “Create charging session,” on
page 4-43. All subsequent charging operations are performed in this session. The session is
identified by a session ID, holding data such as charging session ticket. The session identifier is
returned when the session is created. The session is created with the address of the party to charge,
given in the parameter address. Other parameters are provided by the operator.

Listing 4-62 Create charging session

String merchantId ="merchant_id";

String address ="tel:462222222";

CorrelationID corrId = new CorrelationID();

String requesterId = "Requester ID";

int correlation = 1;

int corrType = 1;

corrId.setCorrelation(correlation);

corrId.setCorrType(corrType);

cSessionID = contentBasedCharging.createChargingSession(merchantId,

accountId,

address,

corrId,

serviceCode,

 requesterId);

An amount is reserved from the party to charge’s account as outlined in Listing 4-63, “Reserve
amount,” on page 4-44. Meta data, such as currency is also given. A request number is used in all
charging operations. All charging operations take a request number as input parameter. Since this
reservation is the first, the initial request number is fetched from the charging session identifier.
The charging ticket is also fetched from the charging session identifier. The request number to be
used in the next operation in the session is returned.

Extended Web Serv i ces Examples

4-44 Developer’s Guide for Extended Web Services

Listing 4-63 Reserve amount

float amountReserve = 2;

String currency = "SEK";

String description = "A descriptive text";

nextReqNo = contentBasedCharging.reserveAmountWait(

cSessionID.getChargingTicket(),

amountReserve,

currency,

description,

cSessionID.getInitialRequestNumber()) ;

An amount is debited from the reservation as outlined in Listing 4-64, “Debit amount,” on
page 4-44. When setting the parameter releaseAmount to True, the reservation is released, and
hence is the reserved amount zero after this reservation, although the reservation was on 2 SEK
and the debited amount was 1 SEK.

Listing 4-64 Debit amount

float amountDebit = 1;

boolean releaseAmount = true;

nextReqNo = contentBasedCharging.debitAmountWait(

cSessionID.getChargingTicket(),

amountDebit,

currency,

description,

nextReqNo,

releaseAmount);

The amount left in the reservation can be checked as outlined in Listing 4-65, “Check amount left
in reservation,” on page 4-45.

Charge based on content

Developer’s Guide for Extended Web Services 4-45

Listing 4-65 Check amount left in reservation

amountLeft = contentBasedCharging.getAmountLeftWait(

cSessionID.getChargingTicket());

The charging session is terminated as outlined in Listing 4-66, “Close charging session,” on
page 4-45.

Listing 4-66 Close charging session

contentBasedCharging.close(cSessionID.getChargingTicket());

Extended Web Serv i ces Examples

4-46 Developer’s Guide for Extended Web Services

Developer’s Guide for Extended Web Services 5-1

A P P E N D I X A

References

API Description Extended Web Services for WebLogic Network Gatekeeper

Apache Axis, http://ws.apache.org/axis/

J2SE SDK, http://java.sun.com

JavaMail, http://java.sun.com

Refe rences

5-2 Developer’s Guide for Extended Web Services

	Introduction and Roadmap
	Document Scope and Audience
	Guide to this Document
	Terminology
	Related Documentation

	Introduction and Overall Workflow
	About WebLogic Network Gatekeeper Web Services applications
	Architecture
	Web services applications
	Extended Web Services based applications

	Development environment
	Information exchange with the service provider
	Overall development workflows
	Client-side Web Services using XML based RPC
	Server-side Web Services using XML based RPC
	Example: Server-side Web Service

	Testing an application

	Using the Extended Web Services
	About the Extended Web Services APIs
	WSDL files
	Workflow
	Login and retrieve login ticket
	Define the security header
	Get hold of a Port
	Add security header
	Invoke a method
	Logout

	Access
	Messaging
	Charging
	Call
	Network triggered calls
	Application initiated calls

	Subscriber profile
	User interaction
	Call user interaction
	Message based user interaction

	User location
	Circle uncertainty shapes
	Ellipse uncertainty shapes
	Terminal altitude

	User status
	Exception handling
	Service-specific exceptions
	AccessException
	CommunicationException

	Extended Web Services Examples
	About the examples
	Send SMS
	Message Notifications
	Send MMS
	Poll for new messages
	Handling SOAP Attachments
	Encoding a multipart SOAP attachment
	Retrieving and Decoding a multipart SOAP attachment

	Get the location of a mobile terminal
	Application-initiated messaging user interaction
	Network-initiated messaging user interaction
	Setting up an application-initiated call
	Network-initiated call control
	Handling call-based user interaction
	Handling subscriber data
	Getting the status of a terminal
	Charge based on content

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

