
THEORY CENTER
A guide to using UML and Theory Center's eBusiness Smart™
Components to design and implement Enterprise Java Beans.

Modeling with
eBSCs

A G U I D E T O U S I N G U M L A N D T H E O R Y C E N T E R ' S E B U S I N E S S S M A R T C O M P O N E N T S
T O D E S I G N A N D I M P L E M E N T S E R V E R S I D E C O M P O N E N T S

Modeling with eBSCs

 1999 The Theory Center Inc.
All Rights Reserved

1 Winthrop Sq. • Boston MA 02110
Phone 617.457.5707 • Fax 617.262.0703

Introduction
Using UML to model Enterprise Java Beans.

 heory Center has developed an approach to creating Enterprise Java Beans(EJB) components by
modeling them using the Unified Modeling Language(UML) and then generating Java source code.
This technique utilizes a UML drawing tool, in this case Rational Rose™ , and creates an intermediate
file that describes that model. That file is transformed into the Java classes that make up one or more

EJBs.

Code generation from UML has long been recognized as a promising technology. This technique is powerful
because it allows the designer to model the components in a natural way without being concerned with
implementation-specific details.

Despite its promise, this technique has never been adopted widely for a number of reasons: The generated code
is often thought to be inferior, and there is no easy way to generate the implementation of the business logic;
Lack of round trip engineering support, which means that most tools can only be used to generate the first
attempt at the classes; and an associated problem, often times the model and the code become unsynchronized
and much of the model’s value is lost.

The Theory Center's utilities solve these problems by going a step further. The utilities do not assume a direct
mapping from the model to the underlying language constructs. The user models the business objects and the
SmartGenerator™ creates a set of classes that implements these objects with reference to the Enterprise
JavaBeans specification. Many of the laborious tasks of creating access methods and handling containment of
references is automatically handled. The SmartGenerator also uses intelligent algorithms to generate sensible
naming for collections and methods. In addition, it generates documentation for these classes using the same
intelligent naming scheme. Because the SmartGenerator embeds code markers, it is possible for developers to
add the business logic and then resynchronize those changes with the model. Figure 1 describes the steps in
the process so that you will have a frame of reference for the discussions that follow.

Chapter 1
T

 3

Rational Rose w/
Theory Script

Rose Model Files
(.mdl, .cat, .ptl)

Theory Model Defintions
(.tast)

Smart Generator

Java Files:
x.java

xImpl.java
xHome.java

xPk.java

EJB Deployment
xDD.txt)

Theory Centers eBSC
Defintion Process

Java IDE

Import into Project

Export from Project

Smart Generator reads in source
as it regenerates from the model
file. The existing implementation

code can then be maintained.

Java Files:
x.java

xImpl.class
xHome.class

xPk.class

EJB Compiler

Figure 1

This document takes a step by step approach to explain our technique to creating EJBs from UML. It does not
assume a familiarity with either of these topics and provides very introductory explanations of the key elements
of each. While knowledge of these specific technologies is not assumed, familiarity with the underlying
concepts of object-oriented design, distributed objects, and transaction services is.

There are a number of references in this document to various "Design Patterns" and "Analysis Patterns".
There is a welcome trend towards documenting these axiomatic solutions to common computer science
problems. Two books, that are titled as such, have taken steps to formally document these patterns and allow
us to simply refer to the patterns without going into detailed explanation. These and other resources related to
EJB and UML are listed in a bibliography at the end of this guide.

Conventions
Code samples are displayed in a fixed pitch font and are labeled as such. Where code samples of
generated code are included, most of the generated comments have been removed for simplicity.

Document Organization
Chapter 2, The Foundation, provides a brief overview of the classes and interfaces that will form the basis for
all of the EJBs that you will be creating.

 4

Chapter 3 , Modeling Concepts, is a brief review of the UML notations that are interpreted by Theory Center's
Smart Generator™ .

Chapter 4, Mapping UML to EJB, provides a detailed description of how Theory Center maps UML to EJB.

Chapter 5, Design Decisions, reviews some of the important design decisions and discusses their trade offs.

Appendix A, Using Rational Rose™ , talks specifically about how to install and use Theory Center's add-in for
Rose™ .

Appendix B, Foundation Examples, contains a simple model which illustrates the use of the foundation
package of Theory Center’s eBusiness Smart ™ components.

 5

The Foundation
Using the Foundation Package with Stereotypes.

 he foundation package is a set of classes from which Theory Center's components are built. These
classes provide the building blocks for the value added features of our components. Most of the
classes that are generated from the model are derived from classes in the Foundation package. To
simplify the complexity of the UML diagrams, the Foundation package relationships are described

through class stereotypes rather than inheritance. Each of these stereotypes is used to model certain behaviors
and implies the presence of additional methods. This chapter discusses the Foundation package from a
conceptual point of view so that users who are unfamiliar with Foundation topics can grasp them before using
them in modeling.

Belongings
A Belonging, the simplest form of eBusiness Smart Component, is a lightweight, local object that can be
serialized. A Belonging gets its name because it must "belong" to, or be acquired from, another object, typically
a Session or Entity. It must be serializable so that it can be persisted with the class to which it belongs and
passed remotely as a parameter.

One of the key characteristics of a Belonging is that it must be implemented using the Abstract Factory pattern.
This means that for each belonging there is a home class, an interface, and at least one implementation of that
interface. Because access to the object is through an interface, there is a guaranteed level of abstraction. This
provides a great deal of flexibility because it means that you can substitute implementations. You could, for
instance, make the object remote without changing the code that uses it. Alternatively, you might substitute
different business logic at runtime by changing the implementation returned by the home class.

Implementing all these classes by hand is lot of work. The Theory Center has simplified the process by
generating all of the necessary classes automatically. You can fully concentrate on modeling the attributes and
methods so that they fit the needs of your business.

Chapter 2
T

 6

Sessions
Session components (implented as Session EJBs) are used to model service-oriented objects. The key concept
is that a Session is an object that provides access to a service implemented in itself or somewhere else on the
network. Attributes of a session are used only to configure it for use during the lifecycle of that session. It is
important to note that the attributes of a Session are not persistent. The business methods are the most
important part of a Session.

Sessions provide a way of remotely implementing business logic, thus extending the reach of your client
application. For instance, when you need to perform an extended set of operations on a collection of remote
objects it often makes sense to create a "Manager". The Manager object can be co-located with the objects it
will be operating on. This will reduce the network overhead and latency.

Sessions are also commonly used to provide an interface to a legacy system or to a service that is pinned to a
specific piece of hardware. The remote interface allows the client software to access the remote device as if it
were local.

Finally, by wrapping a subsystem and factoring out the functions common to similar systems it is possible to
provide a level of redundancy. An example of this would be the case where there are multiple providers of
credit card validation services. These systems would likely have similar function but different implementations.
By creating a common interface to use the different implementations, it is possible to load balance between
them or substitute one for the other.

Entity
An Entity (implemented as an Entity EJB) is an object with staying power. Persistence is the key aspect of an
Entity object. In its simplest form, an instance of an entity could be the equivalent of a single row in a relational
database. This is an over-simplification because each Entity may include collections of attributes and
implement business methods.

Entities are representative of the attributes of which they are composed. This is what distinguishes them from
Sessions, which represent a collection of services. As a general rule Entities do not implement sophisticated
business logic, instead, they are the components that are acted upon.

Configurable Entity
In addition to the standard qualities associated with an EJB Entity, Theory Center provides dynamic
configuration. Dynamic configuration is the ability to add properties and methods at runtime and is provided
by the Configurable Entity. The Configurable interface allows the programmer to associate a named value with
the Entity. These values are persisted separately so that they are permanently associated with the object without
affecting the underlying schema.

 7

When the value stored in a Configurable Entity is a method, the result is the ability to exchange the
implementation of a method dynamically or a “Pluggable Method” which is the implementation of the
“Strategy” pattern.

Business Policy
Configurable Entities can be arranged in a hierarchy of successors. When such hierarchy is in place, a request
to retrieve a value from a Configurable Entity triggers an upward search through the hierarchy of successors
until a matching value is found or the top of the hierarchy is reached. This is the implementation of the "Chain
of Responsibility" design pattern.

The combination of “Pluggable Methods” and the hierarchy of succession is what Theory Center calls Business
Policy.

Workflow
For many business applications a simple mechanism to maintain internal state is all that is required to achieve a
basic level of workflow. The Theory Center provides such a capability for defining and verifying the states and
events that describe a business process. What this means to the developer is that they can represent this
process as a state diagram and then verify the legitimacy of business method invocations with a single method
call to ask for a transition. Adding a step is as simple as adding a new state. The engine will then enforce the
rule that this step must be taken without changes to existing code.

Smart Features
Theory Center has designed and integrated advanced features into their components. These Smart Features
considerably improve the ease of use and efficiency of the final system.

SmartKey
The EJB specification requires that for each Entity there is a class that represents the attributes of the primary
key of that class. This Primary Key class is used to find and test the equality of instances of Entity objects. To
accomplish these simple goals the EJB specification only requires that the Primary Key class must be
serializable.

The SmartKey interface extends this functionality and requires the implementation of the Comparable interface
from the java collection API. This is so that SmartKeys can be easily compared and stored in ordered lists.
The result is that it is easy to model relationships that require the ordering of Entities.

The toString method of a SmartKey simplifies the implementation of profiling and debugging code.

SmartHandle
The EJB specification provides for the passing of lightweight references to Enterprise Java Beans through the
use of Handles. A handle in EJB is an opaque type that can be converted to and from an EJB Object. A

 8

handle is required to implement a test for equality such that given two handles it is possible to determine if they
refer to the same Session or Entity object.

For a Theory Center Entity component it is possible to create a SmartHandle that includes the object’s
associated SmartKey. Because the SmartKey implements the Comparable interface it is possible to order a list
of smart handles without accessing the remote objects that they refer to. This simple mechanism greatly
improves performance.

SmartValue
Each Entity is composed of the attributes that describe it. In order to encapsulate the remote objects all
attributes must be read and written through accessor methods, typically named get<Attr> and set<Attr>.
This has the negative consequence that retrieving the attributes of an entity may result in many remote method
invocations. To alleviate this problem the Theory Center provides a convenience class, derived from
SmartValue, that contains a copy of all the top-level attributes.

 9

Modeling Concepts
A review of some key UML notations.

 he Unified Modeling Language describes objects and their relationships graphically. Theory Center
has adopted this industry standard as a mechanism for simplifying the design and implementation of
Enterprise Java Beans. Before we get into the details we will review some of the UML notation from a
higher level perspective. In this section we focus on the aspects of the notation that are of particular

interest to Theory Center's SmartGenerator™ Figure 2: Sample UML, will serve as an example .

Figure 2: Sample UML

 Chapter 3
T

 10

Classes and Stereotypes

Each of the rectangles in a diagram is a representation of a class in UML. There are generally three
compartments in each class box. A compartment may be left out if it is empty or if the details of the contents
are not pertinent to a particular diagram. The latter is often the case when an object from another package is
being reffered to.

The upper most box holds the class name and its stereotype. A stereotype is a "sub-classification" of an
element in the model. It is represented as the name of the stereotype enclosed in guillemets, as in
<<stereotype>>. In the UML pretty much anything can be tagged with a stereotype. In this case the Item
class is stereotyped as a Configurable Entity. This means that it would have the qualities of one as described in
the section Entity.

Attributes are listed in the second compartment. In UML the name of the attribute is specified first followed
by its type. The name and the type are separated by a colon. It is notable because it is different from the Java
language. It works well for object oriented modeling which is generally an iterative process. Often times a
designer will list the attributes of class with out specifying types the first time through. The same techinique
holds true when specifying the arguments to a method. Note that as already mentioned, attributes can be
decorated with a stereotype. The stereotype precedes the attribute and is embedded in guillemets as before.

The third and final compartment lists the methods. The only tricky thing here is that the return type is listed
after the closing parentheses and is separated from the class definition with a colon. Often times the display of
the parameters and the return value are supressed on the diagram because they consume a great deal of space.

When specifying attributes and methods it is possible in the UML to connote whether or not they are private,
protected, or public. The "tilted brick" icon to the left will have slight variations depending on this.

Name and Stereotype

Attributes

Methods

 11

Inheritance

Inheritance is depicted on a UML diagram as an unfilled arrow that points from the subclass towards its parent.
In this case the ItemPriceCalculationPolicy will have a calculatePrice method through inheritance. The subclass
will share all of the properties and attributes of its parent.

Aggregation

Aggregation is used to describe a containment relationship between classes. This is an alternative to simply
defining an attribute with the type of the class. In UML this means that the contained object shares a life cycle
with the containing object. That is to say that the containing object holds the only reference to it and is
responsible for removing the object upon when it, itself, is removed.

Aggregation is depicted in UML with a line that extends from the containing to the contained item. The line
begins with an oblong diamond that specifies a category of containment. A hollow diamond is used to show
that the object is being contained by reference. A solid diamond specifies that the object is contained by value.

It is also possible to specify a multiplicity for the object being contained. Options are 1 (one to one), 0..1
(optionally null for references), or 0..* (one to many). As with all other elements of the UML it is possible to

Inheritance

Aggregation

Multiplicity

 12

stereo type the relationship. It is also possible to name an aggregation, although there is no example of this in
the above diagram.

Packages

Packages are used to group classes and other packages in to a hierarchy. Each package will contains classes
and/or other packages. When the classes of one package use the classes of another this is depicted as a dotted
line with an arrow in the appropriate directions. This same "uses" notation can be applied to classes as well.

Mapping UML to EJB
A detailed description of how Theory Center maps UML to EJB

ow that we have reviewed both UML and EJB it is time to marry the two and desribe how a UML
diagram is transformed into eBusiness Smart Components. This chapter will describe in detail the
Java code that will be generated as the result of making specific notations in a UML diagram.

Classes
Only classes in the model that are stereotyped as eBusiness Smart Component (eBSC) will result in the
generation of java classes. There is not a one to one mapping between each class in the UML model and Java.
In particular, all eBSCs are implemented using the Abstract Factory pattern. This means that there will be at
least one interface and two Java classes generated for each eBSC that is modeled in UML. In addition, each
Entity eBSC will have an associated Primary Key and Value class that is generated as well. The table below
describes the mapping of classes based on the class stereotype.

Stereotype Class Only Interface Home Impl PK Value

BSC.Belonging ü ü ü

BSC.Session ü ü ü

BSC.Entity ü ü ü ü ü

BSC.Workflow ü

BSC.BusinessPolicy ü

Chapter 4
N

 14

The naming convention for the generated classes is a follows:

• Class Only - The class will implement the respective interface and will be given the same name as the
class in the model.

• Interface - The interface will be given the same name as the class in the model.

• Home - The Home interface/class will be the class name with the word Home appended (e.g.
ItemHome). For the Session and Entity objects this will be an interface that is used by the EJB
Compiler to generate the home implementation.

• Implementation - The Implementation class will be the class name with the letters "Impl" appended
(e.g. ItemImpl).

• Primary Key - The Primary Key class will be the class name with the letters "Pk" appended (e.g.
ItemPk).

• Value - The Value class will be the class name with the letters "Value" appended (e.g. ItemValue).

Primary Key and Value
For Entity Components there are two special classes that are generated. The Primary Key class is a Java class
with public members for each of the attributes that are stereotyped as <<BSC.PrimaryKey>>. The primary
key class is used by the create and findByPrimaryKey methods of the generated home class. Code Sample 1:
Use of the PrimaryKey Class demonstrates usage of the primary key class.

Code Sample 1: Use of the PrimaryKey Class

public class OrderPk extends SmartKey implements java.io.Serializable
{
 public String key;

 public OrderPk()
 {
 super();
 }
 … more stuff here
}

public interface OrderHome extends SmartEJBHome
{

public Order create(theory.smart.ebusiness.order.OrderPk orderPk)
 throws CreateException, RemoteException;
Order findByPrimaryKey(theory.smart.ebusiness.order.OrderPk orderPk)

throws RemoteException, FinderException;
}

 15

The Value class is a Java class with public members for each of the attributes of the associated Entity. This
includes attributes that are specified through aggregation. This class is used by the generated Value accessor
methods. The purpose of these method is to simplify the retrieval of multiple attributes and reduce the
overhead associated with remote method invocation. Code Sample 2 describes the usage of Value objects in
Theory Center's generated code. Caution must be used when using the setByValue as there is no built in Entity
locking. When using the setByValue on an Entity object it is important to realize that the attributes which are
members of the primary key cannot and will not be updated. This is because as part of the identity of the
Entity they are immutable.

Interfaces, Homes, and Implementations
The Abstract Factory pattern requires that objects be accessed only through their interfaces and that the classes
that implement those interfaces be acquired only through a factory class. The factory class in the case of EJB is
referred to as a Home. This has slightly different implications for EJB components and Belongings.

When dealing with Session and Entity objects a separate tool --provided by the Application server vendor--
called the EJB compiler will be run and will create the appropriate proxies stubs and skeletons. At deployment

public class ItemValue extends SmartValue
{
 public String version;
 public String identifier;
 public String supplier;
 public String description;
 public theory.smart.axiom.units.Price price;
 public LinkedList qualities;

 protected ItemValue()
 {
 super();
 }
}

public interface Item extends ConfigurableEntity
{
 public ItemValue getItemByValue() throws RemoteException;
 public void setItemByValue(ItemValue value) throws RemoteException;

//…
}

Code Sample 2:Use of Value Objects

I tem S t u b Item S k ele ton Item I m p l

Item H o m e S k e l e t o n Item H o m e Item H o m e S t u b

Server Cl ient

 16

time the application server will be responsible for registering the home interface with the Java Naming and
Directory Interface(JNDI) so that users of the EJBs will be able to create and find them.

For Belongings, the home, interface, and implementation will reside wherever they are instantiated. Belongings
are always passed by value. When a belonging is used as the parameter to a method of a Session or Entity it will
be serialized and then reinstantiated on the server. To make this happen the Java class associated with the
belonging must be available in the class path on the server. The deployment implication is that the release of
these classes must be coordinated between the client and the server.

The home interface is where finder methods reside. A finder method is one that locates one or more
preexisting entities. Theory Center's SmartGenerator will automatically generate a finder method based on the
primaryKey as in Code Sample 1: Use of the PrimaryKey Class. There are often times when it is necessary to
create finders that search for entities based on the values of some other attributes. Adding an operation to the
main class and stereotyping it as <<BSC.Home.Operation>> will accomplish this. The resulting method will
be generated into the associated home class.

 17

Attributes
For each attribute that is specified in the model a pair of accessor methods are generated. The
get<AttributeName> method will retrieve the value of the attribute from the remote object and return it to the
client. The set<AttributeName> method will pass the attribute to the remote object where it will be updated.
In the case of an Entity the entire object will be marked as dirty such that the application server will know that

public interface Item extends ConfigurableEntity
{
 public String getSupplier() throws RemoteException;
 public String getIdentifier() throws RemoteException;
 public String getVersion() throws RemoteException;

 public String getDescription() throws RemoteException;
 public void setDescription(String description) throws RemoteException;
 public theory.smart.axiom.units.Price getPrice() throws RemoteException;
 public void setPrice(theory.smart.axiom.units.Price price) throws RemoteException;
}

public class ItemImpl extends ConfigurableEntityImpl
{
 public String version;
 public String identifier;
 public String supplier;

 public String description;
 public theory.smart.axiom.units.Price price;

 public String getDescription()
 {
 return (String) description;
 }
 public void setDescription(String description)
 {
 isDirty = true;
 this.description = (String) description;
 }
 public String getSupplier()
 {
 return supplier;
 }
 public String getIdentifier()
 {
 return identifier;
 }
 public String getVersion()
 {
 return version;
 }
 public theory.smart.axiom.units.Price getPrice()
 {
 return (theory.smart.axiom.units.Price) price.value();
 }
 public void setPrice(theory.smart.axiom.units.Price price)
 {
 isDirty = true;
 this.price = (theory.smart.axiom.units.Price) price.value();
 }
}

Code Sample 3: Generated Accessors

 18

the changed values need to be persisted in the database1. This is true of Sessions to a lesser degree in that many
application servers perform a serialization of Session beans for the purpose of optimizing the caching of
Sessions.

One obvious omission in this example is that there are no methods for setting attributes that are stereotyped as
part of the PrimaryKey for an entity. This is because those attributes are part of the identity of the object and
as such they are immutable, cannot be changed.

Accessors are generated for belongings as well. The call to an accessor of a belonging is a direct call to the
implementation object.

All of the attributes must be serializable. This also ensures that they can be persisted.

Aggregation
Aggregation allows for the defintion of an attribute of a class by drawing a line between it and another class
which will be a included as a member. The following rules describe the allowable notations:

• A Belonging may only be contained by value (solid diamond).

• An Entity may only be contained by reference (hollow diamond). In such cases the attribute is stored
as a SmartHandle.

• A Workflow is similar to a belonging and is always contained by value. A workflow is persisted using a
WorkflowContext.

• A BusinessPolicy is similar to a belonging and is always contained by value. At present the accessors
for the BusinessPolicy must be explicitly specified as business methods.

• If an aggregation is named, that name will be used when generating the accessors for that attribute.
This is necessary so that multiple relationships to the same class can be modeled.

• If an aggregation is not named the accessors will be generated based on the name of the class that is
being contained.

• Multiplicity may be defined as described in the section on Collections and Iterators.

Collections and Iterators
One of the most challenging issues when designing distributed object systems is implementing one to many
relationships between objects. When modeling eBSC in UML such relationships are described by stereotyping

1 While the "isDirty" attribute is specific to BEA WebLogic™ , it is expected that most application servers will support similar functionality.

 19

either an attribute or an aggregation with a multiplicity of zero or more. Theory Center has based the collection
mechanisms on the Java 1.2 collection API. When an aggregation relationship is stereotyped as a particular
collection type, the internal attribute reflects that choice and the appropriate accessors are generated. The table
below describes the options, a brief description of their usage, and the JDK 1.2 class upon which their
implementation is based. The JDK documentation will provide significantly more detail as to the features of
each collection type.

Table 1: Collection Stereotype Mappings

BSC.Collection.Set A collection that contains no duplicates in
which there is no implied ordering.

java.util.Collection.TreeSet

BSC.Collection.Array

An ordered collection that is stored as
contiguous elements. This allows for optimal
random access so that operations like re-sorting
can be executed quickly.

java.util.Collection.ArrayList

BSC.Collection.List An ordered list that optimizes insertions at the
ends.

java.util.Collection.LinkedList

BSC.Collection.Map A collection that is indexed by string and
optimized for quick lookup. Iteration will be in
ascending order according to the natural sort
method.

java.util.Collection.TreeMap

 The accessors for collections are generated for each stereotype as described in Table 2: Generated Accessors
by Stereotype. This table uses a short hand syntax to convey which accessors are generated when a given
stereotype is chosen. The token <Attribute> is replaced by the name of the attribute or aggregation as
specified in the model. In the case of methods that accept or return a collection, the type is stereotype specific
as defined in Table 1: Collection Stereotype Mappings. The details of the parameters and return values are
implied so that the table itself can be concise. While there is no true inheritance relationship, it should be
considered that Set serves as a basis for Array, which is a basis for List. Map is different in that it supports
lookup by key.

All collections support the use of RemoteIterators. A RemoteIterator is stored on the server and is used to
selectively retrieve the members of a collection. Their use requires overhead and they should be used only
when appropriate. One such case arises when the contents of the collection are large and the client wishes to
retrieve only a subset of the collection at a time.

In the case where an aggregation to an entity is specified by value, an additional group of methods is generated.
These methods simplify the maintenance of the ownership relationship by ensuring that the underlying Entity is
removed from it's home in conjunction with the removal of its reference from the list. The converse, add by
value, is not supported because it would require that the containing entity be aware of the home of the entity to
be added.

 20

The Set provides methods for adding and removing attributes from a collection, it provides a "bag" type
collection mechanism. The Array provides random access methods and is optimized for random access by
integral position, for this reason it is especially useful when multiple sort orders are required. The List provides
random access but is optimized for adding at the ends; this makes it good candidate for use when stacks or
queues are called for.

The Map makes it possible to index a collection by a String.

Table 2: Generated Accessors by Stereotype

 Accessors Iterator Methods Entity by Value

Set

add<Attribute>
add<Attributes>(<CollectionType>)
contains<Attribute>
is<Attributes>Empty
removeAll<Attributes>
get<Attributes>():<CollectionType>

create<Attribute>Iterator
hasNext<Attribute>
getNext<Attribute>
remove<Attribute>At

remove<Attribute>ByValue
remove<Attributes>ByValueAt
removeAll<Attribute>ByValue

Array

<All of Set > +
add<Attribute>(int position,…)
set<Attribute>(int position, …)
get<Attribute>(int position)
get<Attributes>(int from, int to)
remove<Attribute>(int position)
indexOf<Attribute>
lastIndexOf<Attribute>

<All of Set> +
add<Attribute>At
set<Attribute>At
getNext<Attribute>
getPrevious<Attribute>
getNext<Attribute>Index
getPrevious<Attribute>Index

<All of Set> +
remove<Attribute>ByValue(int)

List

<All of Array> +
addFirst<Attribute>
addLast<Attribute>
getFirst<Attribute>
getLast<Attribute>
removeFirst<Attribute>
removeLast<Attribute>

<All of Array>

<All of Array> +
removeFirst<Attribute>ByValue
removeLast<Attribute>ByValue

Map

put<Attribute>(String key)
put<Attributes>(TreeMap)
get<Attribute>ByKey
get<Attributes>(String)
contains<Attribute>Key
contains<Attribute>Value
remove<Attribute>ByKey
removeAll<Attributes>

create<Attribute>Iterator
hasNext<Attribute>
getNext<Attribute>
remove<Attribute>At

<Accessors are defined using
WithKey instead of ByKey>

put<Attribute>ByValue
remove<Attribute>ByValueWithKey
removeAll<Attributes>ByValue

Design Decisions
A review of some important design decisions and their associated trade offs

ow that we have a solid understanding of the basics it time to discuss some of the choices that you
will need to make during the design process. While it would be nice to allow the modeler to design
without consideration for implementation details, the reality is that truly good designs take into
account deployment time issues.

Entities vs. Sessions
One of the most common issues when modeling EJB is related to legacy systems. These systems very typically
provide an API or message-based protocol to allow external systems to access their functionality. The tendency
in such cases is to simply model access to such systems as a Session component where each function in the API
is a method of the Session bean. In the case of legacy systems that store complex business data and
relationships, this is a mistake. In such cases it is best to model the internal objects as Entities where
appropriate. This will provide for a more understandable system definition that takes advantage of the
important caching and transaction services features of the EJB specification.

Implementing Business Logic in an Entity
In general, Session beans provide a sensible mechanism for implementing "workflow" related business logic.
Workflow in this case is logic that coordinates the usage of any number of Entity beans. This has the
performance-improving effect of reducing the network overhead associated with executing extended
operations remotely. In the case where an Entity bean needs to perform complex business logic on classes that
it references, it is best to implement that logic as a method of the Entity bean. This places the business logic
where it belongs, with the data that it is manipulating.

Modeling from a Message Specification
There is a strong trend in the industry to translate message specifications, particularly XML DTDs, directly into
business objects. While this may be convenient, it may not result in a clean description of the business objects.

Chapter 5
N

 22

This is similar to attempt to model a system based solely on the API. A better approach is to consider a
message specification as providing insight into a single users perspective of the system. One approach is to
consider the messages as method invocations to one or more underlying business objects. The contents of the
message can then be modeled as attributes of various underlying objects.

Changing Method Signatures
If you change the signature of a method it will not be properly managed by the SmartGenerator. This is
because the round trip engineering feature works by matching the exact signature of the method and the
parameters. If a generated method is no longer present in the model it will simply be deleted, along with the
associated implementation. To avoid this you must make matching changes in the model and the source code.
As a consequence it is extremely important to consider the parameters to methods up front so as to avoid this
problem.

Rational Rose™ for Modeling eBSC
Installing and Using Theory Center's Rational Rose Add In.

heory Center has developed an Add In for Rational Rose™ that will allow you to use it as platform for
Modeling eBusiness Smart Components. This appendix describes the process by which Rose™ is
used to execute the concepts described throughout this document.

 Installation
If Rational Rose is already installed in the target Windows platform, the Rose eSC Link is installed as part of
JumpStart. If Rational Rose is not already installed at the time of the JumpStart installation, the Link will not be
installed. The process to install the link in the latter case is to reinstall JumpStart after installing Rational Rose.

The “Add-Ins/Add-In Manager” menu option will contain a checkable option for “Theory Center”. When this
option is checked the Theory Center Tools menu and stereotypes will be available for any model. eBSC
stereotypes are associated with the appropriate object types and will be available where appropriate.

Creating a New Project
When you start Rational Rose it will present a list of new types of models you can create. To model using
eBusiness Smart Components select “Theory Center eBSC”. This will create an eBSC template model you can
use.

Appendix A
T

 24

Foundation Examples
Data Modeling with the Foundation Package of Theory Center’s eBusiness Smart ™
Components

he Foundation Package provides the building blocks for the value-added features of
eBusiness Smart ™ Components. This appendix contains a simple model which
illustrates the use of the foundation package.

Prerequisites

To fully understand this appendix, you should be familiar with the JumpStart design,
implementation, and deployment cycle as described in the JumpStart Technical Tour. You should
also be familiar with the modeling concepts discussed in previous chapters of this document.

Scenario
Imagine a magical land called EJB where mystical creatures called HumanBeans live. The land of
EJB has a strong economy because HumanBeans like to collect and count BeanieToys.
HumanBeans socialize and collect their BeanieToys on ShoppingTrips.

On a typical ShoppingTrip, three HumanBeans named JoeBean, MaryBean, and EthylBean buy
some BeanieToys. JoeBean buys three BeanBags, two BeanieBabies, and a JellyBean. MaryBean
bean buys one GreenBean and five CoffeeBeans. EthylBean buys two BeanBags, and one
BeanieHat. The next day, the three friends go on another ShoppingTrip and add more
BeanieToys to their collection.

How do we use eBusiness Smart ™ Components to model the magical land of EJB?

UML Model
Lets examine the happenings in the land of EJB in a little more detail:

Appendix B
T

 25

§ BeanieToys are collected and counted by HumanBeans. HumanBeans only care about
the name of the BeanieToy (JellyBean, BeanBag, CoffeeBean, etc.), and how many are
owned.

§ HumanBeans are identified by their name (JoeBean, MaryBean, EthylBean).
HumanBeans remember their collection of BeanieToys from day to day and add to it on
ShoppingTrips.

§ ShoppingTrips are where HumanBeans gather to buy BeanieToys. The only way a
HumanBean can buy a BeanieToy is through a ShoppingTrip. Although ShoppingTrips
may be repeated from day to day, nothing about a prior ShoppingTrip influences the next
ShoppingTrip.

BeanieToys, HumanBeans, and ShoppingTrips each have distinct characteristics and
activities. We can model each of them as a class in our UML Model of the magical land of EJB.

In UML, the class description of a BeanieToy looks like:

This class description says that the BeanieToy has two attributes, a name and a count..
BeanieToys perform no activities so the class has no methods.

In UML, the class description of a HumanBean looks like:

This class description says that a HumanBean has two attributes, its name and an aggregation of
many BeanieToys. Note the “by value” relationship indicated by the solid diamond on the
aggregation line.

 26

In UML, the class description of the ShoppingTrip looks like:

This class description says that a ShoppingTrip has one attribute, an aggregation of many
HumanBeans. It also has two methods, void findAFriend(String humanBeanName) and void
buyABeanieToy(String humanBeanName, String toyName). These methods are used to collect
HumanBeans on a ShoppingTrip, and allow them to buy BeanieToys. Note the “by reference”
relationship indicated by the hollow diamond. This means that HumanBeans exist outside the
context of the shopping trip.

UML and eBSC
How do we include eBusiness Smart ™ Components in our model?

Lets look a little further at our software requirements:

§ BeanieToys belong to HumanBeans. They must persist as long as the HumanBean
who owns them persists.

§ HumanBeans persist from day to day. They are distinguished by their name. They
possess no sophisticated logic and must be on a ShoppingTrip to fulfill their mission, to
buy BeanieToys.

§ ShoppingTrips have no identifying attributes. They possess services to aggregate
HumanBeans and allow them to buy BeanieToys.

 27

Chapter 2 of this document introduced several classes from the foundation package of Theory
Center’s eBusiness Smart ™ Components. Recall three of these classes:

§ Belonging: is a lightweight, local variable that can be serialized. It “belongs to” another
object such as an Entity or Session, and may be persisted with the class to which it
belongs.

§ Entity: the key aspect of this class is persistence. They do not implement complex
business logic, but rather represent a unique instance of attributes and other data.

§ Session: a session component models a service object. The business methods are the
most important part of the Session, because they allow access to the services provided by
the session.

Based on this review, we can see a BeanieToy has the characteristics of a Belonging. The
BeanieToy should persist with the HumanBean that contains it. The BeanieToy has no activity
outside the context of its HumanBean.

The HumanBean has the characteristics of an Entity. HumanBeans have no complex logic, but
do have attributes and must persist to shop another day.

The ShoppingTrip has the characteristics of the Session. The emphasis of the ShoppingTrip is
the services it provides, to collect HumanBeans and enable them to buy BeanieToys.

In UML, we apply the eBSC stereotypes to our classes. The magical world of EJB now looks like:

 28

Theory Center’s eBusiness Smart ™ Components help with two additional requirements of our
software design:

§ Entity Primary Key: the Enterprise JavaBeans specification requires that for each Entity
there is a class that represents the attributes of the primary key of that class. Since the
name of each HumanBean is its identifier, we apply the BSC.PrimaryKey stereotype on
the name attribute of HumanBean.

§ Characterizing Aggregation: eBusiness Smart ™ Components allow several ways to
characterize containment: List, Array, Map, and Set. The BSC.Map stereotype defines
Map containment: the contained object is accessed via a key. We characterize both
aggregations in our model using the BSC.Map stereotype. We also provide a name for
each aggregation.

The final UML for the land of EJB looks like:

Under The Hood with eBSC
Generate your own Smart ™ Components

Use the JumpStart TechnicalTour as a guide through this process.

1. Create a new package called examples.umlebsc in the Theory Center's EBusiness
Smart Rational Rose model, smart.mdl.

 29

2. Add the ShoppingTrip, BeanieToy, and HumanBean classes to the examples.umlebsc
package. When you have completed this step, your Rational Rose model should look
like the final UML Diagram in the previous section.

3. Export the model from Rational Rose using the Theory Center’s plugin. Use the
SmartGenerator to generate source code for the three new classes.

The SmartGenerator creates the following files:

Class File Use in Sun’s
EJB
Specification

Description

BeanieToy BeanieToy.java n/a Local, serializable interface that specifies
the BeanieToy class.

 BeanieToyHome.java n/a Factory for instantiating BeanieToys

 BeanieToyImpl.java n/a Implementation of the BeanieToy
interface. This implementation is used
by the BeanieToyHome factory to
create BeanieToys.

HumanBean HumanBean.java Remote
Interface

Specification of HumanBean class.

 HumanBeanHome.java Home
Interface

Factory for instantiating and managing
the life-cycle of HumanBeans.

 HumanBeanImpl.java Bean Class Server-side implementation of a
HumanBean.

 HumanBeanPk.java Primary Key Unique key for locating an instance of a
HumanBean.

 HumanBeanValue.java n/a Convenience class with top-level
attributes of a HumanBean

ShoppingTrip ShoppingTrip.java Remote
Interface

Specification of ShoppingTripClass

 ShoppingTripHome.java Home
Interface

Factory for instantiating and managing
the life-cycle of HumanBeans.

 ShoppingTripImpl.java Bean
Class

Server-side implementation of a
ShoppingTrip.

 30

Under the hood of the BeanieToy

Examine the file BeanieToy.java:

public interface BeanieToy extends Belonging
{
 public String getName();
 public void setName(String name);
 public int getCount();
 public void setCount(int count);
}

Notice the following:

1. The set<attribute> and a get<attribute> method for each attribute from our model.

2. The Belonging interface requires that all subclasses implement the java.util.Comparable
interface and implement java.io.Serializable.

Examine the file BeanieToyImpl.java:

public class BeanieToyImpl extends BelongingImpl implements BeanieToy
{
 public String name;
 public int count;

 protected BeanieToyImpl()
 {
 super();
 name = "";
 count = 0;
 }
 public String getName()
 {
 return (String) name;
 }
 public void setName(String name)
 {
 isDirty = true;
 this.name = (String) name;
 }
 public int getCount()
 {
 return (int) count;
 }
 public void setCount(int count)
 {
 isDirty = true;
 this.count = (int) count;
 }

 public Belonging value()
 {
 examples.umlebsc.BeanieToy aCopy = examples.umlebsc.BeanieToyHome.create();

 aCopy.setName(name);
 aCopy.setCount(count);
 return aCopy;
 }

 public int compareTo(Object o)
 {
 int result = 0;
 if (o instanceof BeanieToy == false)
 {

 31

 throw new ClassCastException();
 }
 BeanieToy target = (BeanieToy) o;
 result = this.name.compareTo(target.getName());
 if (result == 0)
 {
 result = (this.count == target.getCount())
 ? 0 : (this.count < target.getCount()) ? -1 : 1;
 }
 return result;
 }
}

Notice the following:

1. The BelongingImpl superclass provides a protected attribute isDirty, which is set to true
whenever an attribute is set.

2. The implementation has an attribute variable for each attribute in the class.

3. The get<attribute> and set<attribute> methods.

4. The default constructor is protected. This visibility ensures only the BeanieToyHome
class calls the constructor.

5. The implementation of the java.util.Comparable interface.

6. That the method value() returns a copy of this BeanieToy.

Examine the file BeanieToyHome.java:

public class BeanieToyHome implements SmartHome, java.io.Serializable
{
 public static BeanieToy create()
 {
 return new BeanieToyImpl();
 }
}

Notice the single create() method instantiates a new BeanieToyImpl() and returns it as the
BeanieToy interface.

Under the hood of the HumanBean
Examine the file HumanBean.java:

public interface HumanBean extends Entity
{
 public HumanBeanValue getHumanBeanByValue() throws RemoteException;
 public void setHumanBeanByValue(HumanBeanValue value) throws RemoteException;

 public String getName() throws RemoteException;

 32

 public RemoteIterator createBeanieToysIterator() throws RemoteException;
 public void removeBeanieToysAt(RemoteIterator rit) throws RemoteException;

 public boolean containsBeanieToysKey(String key) throws RemoteException;
 public boolean containsBeanieToysValue(examples.umlebsc.BeanieToy BeanieToys) throws
RemoteException;

 public examples.umlebsc.BeanieToy getBeanieToysByKey(String key) throws RemoteException;
 public TreeMap getBeanieToyses() throws RemoteException;
 public examples.umlebsc.BeanieToy getNextBeanieToys(RemoteIterator rit) throws
RemoteException;
 public int getNumberOfBeanieToyses() throws RemoteException;
 public boolean hasNextBeanieToys(RemoteIterator rit) throws RemoteException;
 public boolean isBeanieToysesEmpty() throws RemoteException;
 public void putBeanieToys(String key, examples.umlebsc.BeanieToy BeanieToys) throws
RemoteException;
 public void putBeanieToyses(TreeMap BeanieToyses) throws RemoteException;
 public void removeAllBeanieToyses() throws RemoteException;
 public examples.umlebsc.BeanieToy removeBeanieToysByKey(String key) throws RemoteException;

}

Notice the following:

1. By inheriting from theory.smart.foundation.Entity, the HumanBean implements
java.io.Serializable and javax.ejb.EJBObject.

2. The convenience methods getHumanBeingByValue() and setHumanBeanByValue() allow
access to all the attributes of a HumanBean through one remote function call.

3. Read-only access to the name attribute via getName(). Recall the <<BSC.PrimaryKey>>
stereotype we applied to HumanBean.name in the UML diagram. No corresponding
setName() method was generated for this attribute because the primary key of an entity
cannot be changed.

4. Implementation of the BeanieToys aggregation includes a RemoteIterator and methods
that correspond to many methods in java.util.Map interface.

Examine the file HumanBeanImpl.java:

public class HumanBeanImpl extends EntityImpl
{
 public String name;

 public TreeMap BeanieToyses;
 private TreeMap BeanieToysIterators = new TreeMap(SmartComparator.getInstance());

 public HumanBeanImpl() throws CreateException
 {
 super();
 }
 public HumanBeanValue getHumanBeanByValue() throws RemoteException
 {
 HumanBeanValue value = new HumanBeanValue();
 value.name = name;
 value.BeanieToyses = getBeanieToyses();
 return value;
 }

 public void setHumanBeanByValue(HumanBeanValue value) throws RemoteException
 {

 33

 removeAllBeanieToyses();
 putBeanieToyses(value.BeanieToyses);
 }

 public void ejbCreate(examples.umlebsc.HumanBeanPk humanBeanPk) throws CreateException
 {
 super.ejbCreate((SmartKey) humanBeanPk);

 name = humanBeanPk.name;

 BeanieToyses = new TreeMap(SmartComparator.getInstance());
 }

 public void ejbPostCreate(examples.umlebsc.HumanBeanPk humanBeanPk) throws CreateException
 {
 super.ejbPostCreate((SmartKey) humanBeanPk);
 }

 public void ejbLoad() throws java.rmi.RemoteException
 {
 super.ejbLoad();
 }

 public void ejbStore() throws java.rmi.RemoteException
 {
 super.ejbStore();
 }

 public void ejbRemove() throws java.rmi.RemoteException, javax.ejb.RemoveException
 {
 super.ejbRemove();
 }

 public void ejbActivate() throws java.rmi.RemoteException
 {
 super.ejbActivate();
 }

 public void ejbPassivate() throws java.rmi.RemoteException
 {
 super.ejbPassivate();
 }

 public void setEntityContext(EntityContext ctx) throws java.rmi.RemoteException
 {
 super.setEntityContext(ctx);
 }

 public void unsetEntityContext() throws java.rmi.RemoteException
 {
 super.unsetEntityContext();
 }

 public String getName()
 {
 return name;
 }

 public boolean containsBeanieToysKey(String key)
 {
 return BeanieToyses.containsKey(key);
 }
 public boolean containsBeanieToysValue(examples.umlebsc.BeanieToy BeanieToys)
 {
 return BeanieToyses.containsValue(BeanieToys);
 }
 public RemoteIterator createBeanieToysIterator()
 {
 Iterator it = BeanieToyses.values().iterator();
 RemoteIterator rit = new RemoteIterator(it);

 34

 BeanieToysIterators.put(rit, it);
 return rit;
 }
 public examples.umlebsc.BeanieToy getBeanieToysByKey(String key)
 {
 return (examples.umlebsc.BeanieToy) BeanieToyses.get(key);
 }
 public TreeMap getBeanieToyses()
 {
 TreeMap map = new TreeMap(SmartComparator.getInstance());
 map.putAll(BeanieToyses);
 return map;
 }
 public examples.umlebsc.BeanieToy getNextBeanieToys(RemoteIterator rit)
 {
 Iterator it = (Iterator) BeanieToysIterators.get(rit);
 return (examples.umlebsc.BeanieToy) it.next();
 }
 public int getNumberOfBeanieToyses()
 {
 return BeanieToyses.size();
 }
 public boolean hasNextBeanieToys(RemoteIterator rit)
 {
 Iterator it = (Iterator) BeanieToysIterators.get(rit);
 return it.hasNext();
 }
 public boolean isBeanieToysesEmpty()
 {
 return BeanieToyses.isEmpty();
 }
 public void putBeanieToys(String key, examples.umlebsc.BeanieToy BeanieToys)
 {
 isDirty = true;
 BeanieToyses.put(key, BeanieToys);
 }
 public void putBeanieToyses(TreeMap BeanieToyses)
 {
 this.BeanieToyses.putAll(BeanieToyses);
 isDirty = true;
 }
 public void removeAllBeanieToyses()
 {
 isDirty = true;
 BeanieToyses.clear();
 }
 public void removeBeanieToysAt(RemoteIterator rit)
 {
 isDirty = true;
 Iterator it = (Iterator) BeanieToysIterators.get(rit);
 it.remove();
 }
 public examples.umlebsc.BeanieToy removeBeanieToysByKey(String key)
 {
 isDirty = true;
 return (examples.umlebsc.BeanieToy) BeanieToyses.remove(key);
 }

Notice the following:

1. Through the EntityImpl abstract class, HumanBeanImpl inherits two fields, boolean
isDirty and EntityContext ctx. isDirty is set whenever an attribute changes. (There are
no changeable attributes in the HumanBean.)

2. The implementation has an attribute variable for each attribute in the class.

 35

3. Implementations required by Sun's EJB Specification:

§ setEntityContext() and unsetEntityContext() methods.

§ The methods ejbCreate(), ejbPostCreate(), ejbLoad(), ejbStore(),
ejbRemove(), ejbActivate(), ejbPassivate().

Examine the file HumanBeanHome.java:

public interface HumanBeanHome extends SmartEJBHome
{
 public HumanBean create(examples.umlebsc.HumanBeanPk humanBeanPk) throws CreateException,
RemoteException;
 HumanBean findByPrimaryKey(examples.umlebsc.HumanBeanPk humanBeanPk) throws
RemoteException, FinderException;
}

Notice the following:

1. HumanBeanHome is an interface as required by Sun's EJB Specification.

2. The methods create(examples.umlebsc.HumanBeanPk humanBeanPk) and
findByPrimaryKey(examples.umlebsc.HumanBeanPk humanBeanPk) as required by Sun's EJB
Specification. Note these methods use the generated HumanBeanPk class as the primary
key.

Examine the file HumanBeanPk.java:

public class HumanBeanPk extends theory.smart.foundation.SmartKey implements
java.io.Serializable
{
 public String name;
 public HumanBeanPk()
 {
 super();
 }
 public HumanBeanPk(String name)
 {
 super();

 this.name = name;
 }
 public int compareTo(Object o)
 {
 if (o instanceof HumanBeanPk == false)
 {
 throw new ClassCastException();
 }
 int result = 0;
 HumanBeanPk target = (HumanBeanPk) o;
 result = this.name.compareTo(target.name);
 return result;
 }
 public String toString()
 {
 return "" + name;
 }

 36

Notice the following:

1. By inheriting from theory.smart.foundation.SmartKey, HumanBeanPk implements the
java.io.Serializable interface.

2. HumanBeanPk has a field for each attribute that comprises the primary key of
HumanBean.

3. The implementation of the java.util.Comparable interface.

4. The toString() method returns the primary key.

Examine the file HumanBeanValue.java.

public class HumanBeanValue extends SmartValue
{
 public String name;
 public TreeMap BeanieToyses;

 protected HumanBeanValue()
 {
 }
}

Notice the following:

1. By inheriting from theory.smart.foundation.SmartValue, implements the
java.io.Serializable interface.

2. Public fields for each attribute in HumanBean, including the BeanieToys aggregation.

3. The constructor is protected, helping to ensure the HumanBeanValue is only instantiated
by a HumanBeanImpl.

Under the hood of the ShoppingTrip:
Examine the file ShoppingTrip.java:

public interface ShoppingTrip extends Session
{
 public boolean containsHumanBeansKey(String key) throws RemoteException;
 public boolean containsHumanBeansValue(examples.umlebsc.HumanBean HumanBeans) throws
RemoteException;
 public RemoteIterator createHumanBeansIterator() throws RemoteException;
 public examples.umlebsc.HumanBean getHumanBeansByKey(String key) throws RemoteException;
 public TreeMap getHumanBeanses() throws RemoteException;
 public examples.umlebsc.HumanBean getNextHumanBeans(RemoteIterator rit) throws
RemoteException;
 public int getNumberOfHumanBeanses() throws RemoteException;
 public boolean hasNextHumanBeans(RemoteIterator rit) throws RemoteException;
 public boolean isHumanBeansesEmpty() throws RemoteException;
 public void putHumanBeans(String key, examples.umlebsc.HumanBean HumanBeans) throws
RemoteException;

 37

 public void putHumanBeanses(TreeMap HumanBeanses) throws RemoteException;
 public void removeAllHumanBeanses() throws RemoteException;
 public void removeHumanBeansAt(RemoteIterator rit) throws RemoteException;
 public examples.umlebsc.HumanBean removeHumanBeansByKey(String key) throws RemoteException;

 public void findAFriend(String humanBeanName, argname) throws RemoteException
 public void buyABeanieToy (String humanBeanName, String toyName) throws RemoteException
}

Notice the following:

1. By inheriting from theory.smart.foundation.Session, the ShoppingTrip is serializable and
implements java.ejb.EJBObject.

2. Since ShoppingTrip has no attributes except the HumanBeans aggregation, there are no
get<attribute> and set<attribute> methods.

3. The RemoteIterator and additional methods for accessing the HumanBeans aggregation.

4. The service methods findAFriend() and buyABeanieToy().

5. Since ShoppingTrip is stereotyped as a <<BSC.Session>>, there is no support for a primary
key.

Examine the file ShoppingTripImpl.java:

public class ShoppingTripImpl extends SessionImpl
{
 public TreeMap HumanBeanses;
 private TreeMap HumanBeansIterators = new TreeMap(SmartComparator.getInstance());

 public ShoppingTripImpl() throws CreateException
 {
 super();
 }
 public void ejbCreate() throws CreateException
 {
 super.ejbCreate();
 HumanBeanses = new TreeMap(SmartComparator.getInstance());
 }
 public void ejbPostCreate() throws CreateException
 {
 super.ejbPostCreate();
 }
 public void ejbActivate() throws java.rmi.RemoteException
 {
 super.ejbActivate();
 }

 public void ejbPassivate() throws java.rmi.RemoteException
 {
 super.ejbPassivate();
 }

 public void ejbRemove() throws java.rmi.RemoteException
 {
 super.ejbRemove();
 }

 public void setSessionContext(SessionContext ctx) throws java.rmi.RemoteException
 {
 super.setSessionContext(ctx);
 }
 public boolean containsHumanBeansKey(String key)

 38

 {
 return HumanBeanses.containsKey(key);
 }
 public boolean containsHumanBeansValue(examples.umlebsc.HumanBean HumanBeans)
 {
 try
 {
 return HumanBeanses.containsValue(new SmartHandle(HumanBeans));
 }
 catch (Exception e)
 {
 return false;
 }
 }
 public RemoteIterator createHumanBeansIterator()
 {
 Iterator it = HumanBeanses.values().iterator();
 RemoteIterator rit = new RemoteIterator(it);
 HumanBeansIterators.put(rit, it);
 return rit;
 }
 public examples.umlebsc.HumanBean getHumanBeansByKey(String key) throws
java.rmi.RemoteException
 {
 SmartHandle sh = (SmartHandle) HumanBeanses.get(key);
 if (sh == null)
 {
 return null;
 }
 else
 {
 return (examples.umlebsc.HumanBean) sh.getHandle().getEJBObject();
 }
 }
 public TreeMap getHumanBeanses()
 {
 TreeMap map = new TreeMap(SmartComparator.getInstance());
 map.putAll(HumanBeanses);
 return map;
 }
 public examples.umlebsc.HumanBean getNextHumanBeans(RemoteIterator rit) throws
java.rmi.RemoteException
 {
 ListIterator it = (ListIterator) HumanBeansIterators.get(rit);
 SmartHandle sh = (SmartHandle) it.next();
 return (examples.umlebsc.HumanBean) sh.getHandle().getEJBObject();
 }
 public int getNumberOfHumanBeanses()
 {
 return HumanBeanses.size();
 }
 public boolean hasNextHumanBeans(RemoteIterator rit)
 {
 Iterator it = (Iterator) HumanBeansIterators.get(rit);
 return it.hasNext();
 }
 public boolean isHumanBeansesEmpty()
 {
 return HumanBeanses.isEmpty();
 }
 public void putHumanBeans(String key, examples.umlebsc.HumanBean HumanBeans) throws
java.rmi.RemoteException
 {
 isDirty = true;
 HumanBeanses.put(key, new SmartHandle(HumanBeans));
 }
 public void putHumanBeanses(TreeMap HumanBeanses)
 {
 this.HumanBeanses.putAll(HumanBeanses);
 isDirty = true;
 }

 39

 public void removeAllHumanBeanses()
 {
 if (HumanBeanses.size() > 0)
 {
 isDirty = true;
 HumanBeanses.clear();
 }
 }
 public void removeHumanBeansAt(RemoteIterator rit)
 {
 isDirty = true;
 Iterator it = (Iterator) HumanBeansIterators.get(rit);
 it.remove();
 }
 public examples.umlebsc.HumanBean removeHumanBeansByKey(String key) throws
java.rmi.RemoteException
 {
 isDirty = true;
 SmartHandle sh = (SmartHandle) HumanBeanses.remove(key);
 if (sh == null)
 {
 return null;
 }
 return (examples.umlebsc.HumanBean) sh.getHandle().getEJBObject();
 }
 public void findAFriend(String humanBeanName, argname) throws java.rmi.RemoteException
 {
 return ;
 }
 public void buyABeanieToy(String humanBeanName, String toyName) throws
java.rmi.RemoteException
 {
 return ;
 }

Notice the following:

1. Through the EntityImpl abstract class, ShoppingTripImpl inherits two fields, boolean
isDirty and SessionCtx ctx. isDirty is set whenever an attribute changes. (There are
no changeable attributes in the HumanBean.)

2. Implementations required by Sun's EJB Specification:

§ The methods ejbCreate(), ejbPostCreate(), ejbLoad(), ejbStore(), ejbRemove(),
ejbActivate(), ejbPassivate().

3. The implementation of findAFriend() and buyABeanieToy() are the only user-required
coding.

Examine the file ShoppingTripHome.java:

public interface ShoppingTripHome extends SmartEJBHome
{
 public ShoppingTrip create() throws CreateException, RemoteException;
}

Notice the following:

 40

1. ShoppingTripHome is an interface as required by Sun's EJB Specification.

2. The method create() and findByPrimaryKey(examples.umlebsc.HumanBeanPk
humanBeanPk) as required by Sun's EJB Specification. Note there is no support for
primary keys.

