
BEA
 WebLogic
Adapter for
CORBA™

User Guide
Release 7.0
Document Date: October 2002

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Copyright © 2002 iWay Software. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

BEA WebLogic Adapter for CORBA User Guide

Part Number Date

N/A October 2002

Table of Contents

About This Document
What You Need to Know ... vii

Related Information... viii

Contact Us! .. viii

Documentation Conventions ... ix

1. Introducing the BEA WebLogic Adapter for CORBA
Introduction ... 1-1

How the BEA WebLogic Adapter for CORBA Works..................................... 1-3

2. Using the BEA Application Explorer With CORBA
Overview ... 2-2

Connecting to an Object Request Broker .. 2-3

Creating Service Schemas ... 2-8

3. Creating an Application View for a CORBA Object
Overview ... 3-2

Creating an Application View Folder.. 3-2

Creating an Application View for a CORBA Object .. 3-4

Adding a CORBA Service to an Application View .. 3-10

Testing an Application View... 3-18

A. Using CORBA Implementations With the Adapter
Using JacORB With the BEA WebLogic Adapter for CORBA A-2

The JacORB Name Service... A-2

The JacORB Interface Repository... A-3

Building and Running the JacORB Request Broker A-3
BEA WebLogic Adapter for CORBA User Guide iii

Using Orbix2000 With the BEA WebLogic Adapter for CORBA A-6

Using VisiBroker for Java With the BEA WebLogic Adapter for CORBA A-7

B. Sample Files
Sample XML Request and Response Documents .. B-1

addGetReservation Request... B-3

addGetReservation Response .. B-4

AddReservation Request ... B-5

AddReservation Response... B-5

addReservationComplex Request.. B-6

addReservationComplex Response ... B-7

addReservationWithOut Request .. B-8

addReservationWithOut Response.. B-9

cancelReservation Request .. B-9

cancelReservation Response ... B-9

GetClubNames Request... B-10

GetClubNames Response .. B-10

getClubNames4 Request ... B-10

getClubNames4 Response ... B-11

GetClubPrices Request.. B-11

GetClubPrices Response ... B-12

GetClubPricesAsArray Request .. B-12

GetClubPricesAsArray Response.. B-13

GetReservation Request .. B-13

GetReservation Response.. B-14

getReservationAsOut Request... B-14

getReservationAsOut Response .. B-15

setCancel Request.. B-16

setCancel Response ... B-16

setClubPrices Request ... B-17

setClubPrices Response... B-17

setClubPricesAsArray Request ... B-18

setClubPricesAsArray Response ... B-18

setStatus Request ... B-19

setStatus Response... B-19
iv BEA WebLogic Adapter for CORBA User Guide

status Request ...B-19

status Response ..B-20

testOneDim Request...B-20

testOneDim Response ..B-20

testTwoDim Request ..B-21

testTwoDim Response..B-22

testTypes Request...B-22

testTypes Response ..B-23

Definitions for ClubMed Object..B-24

JacORB.properties File ..B-24

Build XML ...B-34

ClubMed.IDL File ..B-35

ClubServer.Java File ..B-36
BEA WebLogic Adapter for CORBA User Guide v

vi BEA WebLogic Adapter for CORBA User Guide

About This Document

The BEA WebLogic Adapter for CORBA User Guide is organized as follows:

Chapter 1, “Introducing the BEA WebLogic Adapter for CORBA,” introduces
the BEA WebLogic Adapter for CORBA, describes its features, and presents an
overview of how it works.

Chapter 2, “Using the BEA Application Explorer With CORBA,” describes how
to use the BEA Application Explorer to ceate service schemas.

Chapter 3, “Creating an Application View for a CORBA Object,” describes how
to create application views and add services to them.

Appendix A, “Using CORBA Implementations With the Adapter,” provides
details for Orbix2000, VisiBroker for Java, and JacORB.

Appendix B, “Sample Files,” describe the sample files provided with the adapter.

What You Need to Know

This document is written for system integrators who develop client interfaces between
CORBA and other applications. It describes how to use the BEA WebLogic Adapter
for CORBA and how to develop application environments with specific focus on
message integration. It is assumed that readers know Web technologies and have a
general understanding of Microsoft Windows and UNIX systems.
BEA WebLogic Adapter for CORBA User Guide vii

Related Information

The following documents provide additional information for the associated software
components:

BEA WebLogic Adapter for CORBA Installation and Configuration Guide

BEA WebLogic Adapter for CORBA Release Notes

BEA Application Explorer Installation and Configuration Guide

BEA WebLogic Server installation and user documentation, which is available at
the following URL:

http://edocs.bea.com/more_wls.html

BEA WebLogic Integration installation and user documentation, which is
available at the following URL:

http://edocs.bea.com/more_wli.html

Contact Us!

Your feedback on the BEA WebLogic Adapter for CORBA documentation is
important to us. Send us e-mail at docsupport@bea.com if you have questions or
comments. Your comments will be reviewed directly by the BEA professionals who
create and update the BEA WebLogic Adapter for CORBA documentation.

In your e-mail message, please indicate which version of the BEA WebLogic Adapter
for CORBA documentation you are using.

If you have any questions about this version of the BEA WebLogic Adapter for
CORBA, or if you have problems using the BEA WebLogic Adapter for CORBA,
contact BEA Customer Support through BEA WebSupport at www.bea.com. You can
also contact Customer Support by using the contact information provided on the
Customer Support Card, which is included in the product package.
viii BEA WebLogic Adapter for CORBA User Guide

mailto:docsupport@bea.com
www.bea.com

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()
BEA WebLogic Adapter for CORBA User Guide ix

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

That an argument can be repeated several times in a command line

That the statement omits additional optional arguments

That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
x BEA WebLogic Adapter for CORBA User Guide

CHAPTER
1 Introducing the BEA
WebLogic Adapter for
CORBA

This section introduces the BEA WebLogic Adapter for CORBA, describes its
features, and provides an overview of how it works. It includes the following topics:

Introduction

How the BEA WebLogic Adapter for CORBA Works

Introduction

A number of companies and application providers have used Common Object Request
Broker Architecture (CORBA) for internet and legacy C++ application development,
particularly before the popularity of Java or J2EE and XML or Web Service
architectures. The BEA WebLogic Adapter for CORBA integrates existing CORBA
services with WebLogic Server and WebLogic Integration so that existing IT
investments can be integrated into J2EE applications and deployed as Web services.

The BEA WebLogic Adapter for CORBA allows CORBA-based applications on
WebLogic Server and WebLogic Integration to communicate with other applications
integrated by the WebLogic Integration adapter suite. Access to CORBA
environments is provided through the adapter, which uses CORBA Interface
BEA WebLogic Adapter for CORBA User Guide 1-1

1 Introducing the BEA WebLogic Adapter for CORBA
Definition Language (IDL) entries to generate local, remote-based services.
Applications make calls to a remote service that, in turn, invokes a CORBA method
and receives return information from the CORBA method.

A CORBA object provides distributed object capability between applications in a
network. Although a CORBA object is implemented using a standard programming
language, each CORBA object has a clearly defined interface, defined using the
CORBA Interface Definition Language (IDL). The definition of a CORBA object is
consistent with the definition presented by the Object Management Group (OMG).
OMG has a number of specifications and documents that provide complete details on
objects. For more information, visit the OMG web site, located at http://www.omg.org.

The BEA WebLogic Adapter for CORBA provides a means to exchange real-time
business data between CORBA servers and other application, database, or external
business partner systems. The adapter allows for inbound and outbound processing
with CORBA.

The adapter uses WebLogic Integration and XML messages to allow non-CORBA
applications to communicate and exchange transactions with CORBA. Applications
that need to access CORBA data when a CORBA business event occurs use the adapter
in combination with WebLogic Integration application views, events, and business
process workflows to receive messages from CORBA. Applications that need to cause
a CORBA business event use the adapter in combination with WebLogic Integration
application views, services, and business process workflows to send request messages
to CORBA. If the request is for retrieving data from CORBA, then the adapter sends
the application a response message with the data.

The BEA WebLogic Adapter for CORBA provides these key features:

Support for several ORBs, such as JacORB, Orbix2000, and VisiBroker for Java.

Guaranteed synchronous and asynchronous bi-directional message interactions
between WebLogic Integration and an object request broker (ORB).

Data transfer between a business process running within WebLogic Integration
and an ORB.

Service adapter integration operations providing end-to-end business process
management using XML schemas.

BEA Application Explorer, which uses CORBA Object Manager metadata to
build XML schemas for application view services.
1-2 BEA WebLogic Adapter for CORBA User Guide

How the BEA WebLogic Adapter for CORBA Works
How the BEA WebLogic Adapter for CORBA
Works

When the BEA WebLogic Adapter for CORBA receives a request for a service, the
adapter converts the XML request document to a Dynamic Invocation Interface (DII)
call and sends it to the CORBA server using the Internet Inter-ORB Protocol (IIOP).
The response of the CORBA server is returned over IIOP. The adapter then formats
the response as an XML response document for WebLogic Integration.

To create an application view from a CORBA server, you provide the adapter with
configuration information for an Interoperable Naming Service (INS) and Interface
Repository (IFR). The BEA Application Explorer displays a list of available systems.
You can expand a system to display available servers and interfaces that were specified
using CORBA IDL. You can expand an interface and create XSD service schemas,
which are exported to WebLogic Integration as application views.

To communicate with the Naming Service and the Interface Repository, the adapter
uses CORBA APIs to retrieve Interface Object Repositories the first time they are
needed. When the application view schema is created, BEA Application Explorer uses
the adapter to retrieve the server’s definition from the Interface Repository. The
information is converted into XML schemas for use by WebLogic Integration. If a
server’s interface changes, you must refresh the definitions that the adapter is using in
order to avoid an out-of-date adapter run-time call, which would cause the call to fail
if the new interface is incompatible with the old one. To refresh the definitions, stop
the adapter processes from the WebLogic Integration console, and reload the new
definitions the next time you view the system in the BEA Application Explorer.
BEA WebLogic Adapter for CORBA User Guide 1-3

1 Introducing the BEA WebLogic Adapter for CORBA
1-4 BEA WebLogic Adapter for CORBA User Guide

CHAPTER
2 Using the BEA
Application Explorer
With CORBA

This section describes how to connect to an Object Request Broker and create service
schemas. It includes the following topics:

Overview

Connecting to an Object Request Broker

Creating Service Schemas
BEA WebLogic Adapter for CORBA User Guide 2-1

2 Using the BEA Application Explorer With CORBA
Overview

The BEA Application Explorer supports the creation of schemas based on specific
tables and resulting answer sets. To obtain metadata about the Object Request Broker
(ORB), the BEA Application Explorer connects to the Interface Repository. The BEA
WebLogic Adapter for CORBA extracts the definition of CORBA servers and
converts them to XML schemas and service XML request and response definitions.
You can see the original definitions of the CORBA servers using the BEA Application
Explorer.

The BEA Application Explorer displays a tree of all defined systems. By drilling down
into the tree, you can determine which CORBA servers are available and how their
interfaces will appear. Before you can view a CORBA server, you must ensure that the
server is registered in the Naming Service and its IDL is loaded into the Interface
Repository (IFR). After creating a connection in the BEA Application Explorer, you
can use the Explorer to verify that the system definition was entered correctly.

Using the BEA WebLogic Adapter for CORBA, the BEA Application Explorer
populates each system folder with object data retrieved from both the Naming Service
and the Interface Repository. The contents of the Naming Service and Interface
Repository appear in the Interfaces folder and the Objects folder, respectively.

The Objects folder contains all the servers registered in the Naming Service. If you
expand a server you can see the interface that is implemented by that server. Expanding
this interface displays its methods, return arguments, and parameters. Additional
folders may appear under the Objects folder if additional modules were created. The
Interfaces folder displays a list of modules, appearing as folders. These IFR modules
represent the different work areas of CORBA.

The XML schema defines the format of XML requests and corresponding replies to
the service adapter. The schema is a language-neutral interface description in XML
format that declares the types, objects, and methods for the CORBA system.
Conceptually, the XML schema is the same as the CORBA IDL.

Note: Before creating schemas and application view services in the BEA WebLogic
Adapter for CORBA, you can save time by verifying that your ORB
infrastructure is properly configured, your server is registered in the Naming
Service, and your interface repository (IFR) is running and populated.
2-2 BEA WebLogic Adapter for CORBA User Guide

Connecting to an Object Request Broker
Connecting to an Object Request Broker

To connect to an Object Request Broker (ORB):

1. Start the BEA Application Explorer:

For JacORB, from the command line run ae.bat (on a Windows system) or
ae (on a UNIX system) under installation_directory/bin.

For all other ORBs, choose Start→Programs→BEA Application Explorer
(on a Windows system), or run shell script ae under
installation_directory/bin (on a UNIX system).

When you start the BEA Application Explorer, the left pane displays all the
adapters supported by your version.
BEA WebLogic Adapter for CORBA User Guide 2-3

2 Using the BEA Application Explorer With CORBA
2. From the File menu, choose Session to change the default session path.

Figure 2-1 Choosing Session in BEA Application Explorer

The Enter Session Path window opens, displaying the default session path.

The session path holds the schemas you that generate and your ORB connection
information:

session_path\corba\connection_name\schemas

3. If you want to accept the default session path, click OK. Otherwise, to specify a
different path, enter the path.

For example, you may want to specify a path for a particular project or for a
logical grouping of services and events.
2-4 BEA WebLogic Adapter for CORBA User Guide

Connecting to an Object Request Broker
Figure 2-2 Enter Session Path Dialog Box

4. You can define a new connection to an ORB or use an existing connection:

To define a new connection to an ORB, right-click CORBA→New
Connection. A dialog box opens prompting you for a connection name;
continue with step 5.

To use an existing connection, right click CORBA→Existing
Connection→your connection. The connection is displayed below the
CORBA node in the left pane; skip ahead to step 7.

Figure 2-3 Selecting a New Connection in BEA Application Explorer

5. Enter a connection name and click OK.

In the following figure, JacORB is the name of a logical connection.
BEA WebLogic Adapter for CORBA User Guide 2-5

2 Using the BEA Application Explorer With CORBA
Figure 2-4 New Connection Name Input Window

The ORB Logon window opens.

6. Select a CORBA Server and specify the name and path the Interface Repository
reference file.

This file contains the parameters required to connect to the CORBA system.

Note: The example presented here illustrates accessing JacORB services. For
other ORBs, there are additional parameters, such as Naming Service,
Host, Port, and Enable IIOP Tracing. For details, see your ORB
documentation.

Figure 2-5 ORB Logon Window

The BEA Application Explorer loads the application information and connects to
the ORB to extract the object definitions from the Interface Repository.

7. You can now expand the tree to browse the available objects. The following
figure shows all available business services in a JacORB sample system called
ClubMed.
2-6 BEA WebLogic Adapter for CORBA User Guide

Connecting to an Object Request Broker
Figure 2-6 Available Objects Window

For information about creating service schemas, see “Creating Service Schemas”
on page 8.
BEA WebLogic Adapter for CORBA User Guide 2-7

2 Using the BEA Application Explorer With CORBA
Creating Service Schemas

The BEA Application Explorer generates the following WebLogic Integration
schemas:

Service XML request schemas.

Service XML response schemas.

To create service schemas:

1. Open the BEA Application Explorer and browse an object.

2. Right-click the desired service and choose Create Service Schemas.
2-8 BEA WebLogic Adapter for CORBA User Guide

Creating Service Schemas
Figure 2-7 Service Schema Creation Window

The BEA Application Explorer accesses the CORBA Interface Repository via
IIOP and builds XSD schemas, which are then published to the WebLogic
Integration Repository. You can view the request and response schemas for the
CORBA interface object.

Request Schema and Response Schema tabs open in the right pane.

3. To view the request schema, click the Request Schema tab in the right pane.
BEA WebLogic Adapter for CORBA User Guide 2-9

2 Using the BEA Application Explorer With CORBA
Figure 2-8 Request Schema Tab

4. To view the response schema, click the Response Schema tab in the right pane.
2-10 BEA WebLogic Adapter for CORBA User Guide

Creating Service Schemas
Figure 2-9 Response Schema Tab

5. To view the manifest.xml file, choose View→View XML.

Figure 2-10 View XML Window

6. Click manifest.xml.

The manifest.xml file opens.
BEA WebLogic Adapter for CORBA User Guide 2-11

2 Using the BEA Application Explorer With CORBA
Figure 2-11 Sample manifest.xml Window

The BEA WebLogic Adapter for CORBA uses manifest.xml and the service
schemas to manage the interaction between an application view and the ORB.
2-12 BEA WebLogic Adapter for CORBA User Guide

CHAPTER
3 Creating an
Application View for a
CORBA Object

This section describes how to create application views and add services to them. It
includes the following topics:

Overview

Creating an Application View Folder

Creating an Application View for a CORBA Object

Adding a CORBA Service to an Application View

Testing an Application View
BEA WebLogic Adapter for CORBA User Guide 3-1

3 Creating an Application View for a CORBA Object
Overview

The BEA WebLogic Adapter for CORBA is a service adapter that is capable of
processing IIOP CORBA object methods embedded in XML requests, and forwarding
them to an Object Request Broker (ORB). The ORB object returns the data to the
adapter, which in turn returns it to the client.

A service adapter performs the following functions:

1. Receives a service request from an external client.

2. Transforms the XML request document, which conforms to the services’s request
schema, into an ORB-specific format.

3. Invokes the underlying ORB function and waits for a response.

4. Transforms the response from the ORB-specific data format to an XML
document that conforms to the service’s response schema.

A service can be invoked asynchronously or synchronously. When a service is invoked
asynchronously, the client application issues a service request and then proceeds with
other processing. The client application does not wait for a response. When a service
is invoked synchronously, the client waits for the response before proceeding with
further processing. WebLogic Integration supports both these invocation methods, so
you do not need to provide this functionality in your own application code.

Creating an Application View Folder

Application views reside within WebLogic Integration. WebLogic Integration
provides you with a root folder in which you can store all of your application views; if
you wish, you can create additional folders to organize related application views into
groups.
3-2 BEA WebLogic Adapter for CORBA User Guide

Creating an Application View Folder
To create an application view folder:

1. Log on to the WebLogic Integration Application View Console at
//appserver-host:port/wlai.

Here, appserver-host is the IP address or host name where the WebLogic
Integration Server is installed, and port is the socket on which the server is
listening. The port, if not changed during installation, defaults to 7001.

2. If prompted, enter a user name and password.

Note: If the user name is not system, it must be included in the adapter group.
For more information on adding the administrative server user name to the
adapter group, see the BEA WebLogic Adapter for CORBA Installation
and Configuration Guide.

3. Click Login.

The WebLogic Integration Application View Console opens.

Figure 3-1 Application View Console Main Window

4. Double-click the new folder icon. The Add Folder window opens.
BEA WebLogic Adapter for CORBA User Guide 3-3

3 Creating an Application View for a CORBA Object
Figure 3-2 Add Folder Window

5. Supply a name for the folder, and then click Save.

You have finished creating the application view folder. To create an application view,
see “Creating an Application View for a CORBA Object” on page 4.

Creating an Application View for a CORBA
Object

When you define an application view, you are creating an XML-based interface
between WebLogic Server and a particular CORBA Object Request Broker (ORB)
within your enterprise. Once you create the application view, a business analyst can
create business processes that use the application view. You can create any number of
application views, each with any number of services. For more information, see
“Defining an Application View” in Using Application Integration:
3-4 BEA WebLogic Adapter for CORBA User Guide

Creating an Application View for a CORBA Object
For WebLogic Integration 7.0, see

http://edocs.bea.com/wli/docs70/aiuser/2usrdef.htm

For WebLogic Integration 2.1, see

http://edocs.bea.com/wlintegration/v2_1sp/aiuser/2usrdef.htm

To create an application view:

1. Log on to the WebLogic Application View Console at
//appserver-host:port/wlai.

Here, appserver-host is the IP address or host name where the WebLogic
Integration Server is installed, and port is the socket on which the server is
listening. The port, if not changed during installation, defaults to 7001.

2. If prompted, enter a user name and password.

Note: If the user name is not system, it must be included in the adapter group.
For more information on adding the administrative server user name to the
adapter group, see the BEA WebLogic Adapter for CORBA Installation
and Configuration Guide.

3. Click Login.

The WebLogic Integration Application View Console opens.

Figure 3-3 Application View Console Window

4. Click Add Application View. The Define New Application View window opens.
BEA WebLogic Adapter for CORBA User Guide 3-5

3 Creating an Application View for a CORBA Object
Figure 3-4 Define New Application View Window

5. In the Application View Name field, enter a name.

The name should describe the set of functions performed by this application.
Each application view name must be unique to its adapter. Valid characters
include a-z, A-Z, 0-9, and the _ (underscore) character.

6. In the Description field, enter any relevant notes.

These notes are viewed by users when they use this application view in
workflows.
3-6 BEA WebLogic Adapter for CORBA User Guide

Creating an Application View for a CORBA Object
7. From the Associated Adapter drop-down list, select BEA_CORBA_1_0.ear (the
adapter ear file).

8. Click OK. The Configure Connection Parameters window opens.

Figure 3-5 Configure Connection Parameters Window
BEA WebLogic Adapter for CORBA User Guide 3-7

3 Creating an Application View for a CORBA Object
9. Enter the name of the BEA WebLogic Adapter for CORBA session path
(sometimes known as the session base directory).

This is the path that you specify when starting a BEA Application Explorer
session, as described in “Connecting to an Object Request Broker” in Chapter 2,
“Using the BEA Application Explorer With CORBA.” The session path holds
your ORB schema and connection information.

10. Select the session name—also known as the connection name—from the
Connection name drop-down list.

11. Click Connect to EIS. The Application View Administration window opens.
3-8 BEA WebLogic Adapter for CORBA User Guide

Creating an Application View for a CORBA Object
Figure 3-6 Application View Administration Window

12. Click Save.

You have finished creating the application view.

You can now add services that support the application’s functions, as described
in “Adding a CORBA Service to an Application View” on page 3-10. Note that
you must add a service before you deploy the new application view.
BEA WebLogic Adapter for CORBA User Guide 3-9

3 Creating an Application View for a CORBA Object
Adding a CORBA Service to an Application
View

To add a service to an application view:

1. If it is not already open, open the application view to be modified:

a. Log on to the WebLogic Application View Console at

//appserver-host:port/wlai

Here, appserver-host is the IP address or host name where the WebLogic
Integration Server is installed, and port is the socket on which the server is
listening. The port, if not changed during installation, defaults to 7001.

b. If prompted, enter a user name and password.

Note: If the user name is not system, it must be included in the adapter
group. For more information on adding the administrative server user
name to the adapter group, see the BEA WebLogic Adapter for
CORBA Installation and Configuration Guide.

c. Click Login.

The WebLogic Integration Application View Console opens.

d. Select the folder in which this application view resides, and then select the
application view.

The Administration window opens.
3-10 BEA WebLogic Adapter for CORBA User Guide

Adding a CORBA Service to an Application View
Figure 3-7 Application View Administration Window

2. If the application view is deployed, you must undeploy it before adding the
service. See “Optional Step: Undeploying an Application View” in “Defining an
Application View” in Using Application Integration:

For WebLogic Integration 7.0, see
http://edocs.bea.com/wli/docs70/aiuser/2usrdef.htm

For WebLogic Integration 2.1, see
http://edocs.bea.com/wlintegration/v2_1sp/aiuser/2usrdef.htm

3. Click Add Service in the left pane.

The Add Service window opens.
BEA WebLogic Adapter for CORBA User Guide 3-11

3 Creating an Application View for a CORBA Object
Figure 3-8 Add Service Window

4. Specify the service’s properties, which are described in the following table.
Required values are indicated with an asterisk (*).

Table 3-1 Service Properties

Property Description

Unique Service Name The name of the service that you are adding.

The name must be unique within the application view. Valid
characters include a-z, A-Z, 0-9, and underscore (_).
3-12 BEA WebLogic Adapter for CORBA User Guide

Adding a CORBA Service to an Application View
5. Click Add.

The Administration window opens.

Select The ORB to which the service request will be sent.

The Application View Console automatically populates
many of this window’s fields with appropriate values based
on the ORB that you choose.

interface repository file The name and path of the interface repository file.

The Application View Console automatically supplies this
value based on the ORB that you chose.

Object Name The name of the object (for example, bea.clubmed).

Vendor Specific ORB
Class

The vendor-specific ORB class.

The Application View Console automatically supplies this
value based on the ORB that you chose.

Vendor Specific ORB
Singleton Class

The vendor-specific ORB singleton class.

The Application View Console automatically supplies this
value based on the ORB that you chose.

Orb/Name Context The ORB’s name context.

Schema The name of the schema that describes this service.

Trace on/off Enables tracing for this service. Trace information is
displayed in the runtime console.

Deep Debug on/off Enables additional traces for deeper troubleshooting.

Logging on/off Enables logging for this service. The log is written to
BEA_FILE_1_0.log in the directory from which the
application was started.

Maximum Log Size Specify the maximum size of the log, in kilobytes.

Table 3-1 Service Properties (Continued)

Property Description
BEA WebLogic Adapter for CORBA User Guide 3-13

3 Creating an Application View for a CORBA Object
6. Click Continue.

The Deploy Application View window opens.

Figure 3-9 Deploy Application View Window
3-14 BEA WebLogic Adapter for CORBA User Guide

Adding a CORBA Service to an Application View
7. Update service parameters, connection pool parameters, log configuration, and
security as necessary. For more information about these, see “Defining an
Application View” in “Using Application Integration”:

For WebLogic Integration 7.0, see
http://edocs.bea.com/wli/docs70/aiuser/2usrdef.htm

For WebLogic Integration 2.1, see
http://edocs.bea.com/wlintegration/v2_1sp/aiuser/2usrdef.htm

8. Click Deploy to save and deploy the service.

The Summary window for the application view opens.
BEA WebLogic Adapter for CORBA User Guide 3-15

3 Creating an Application View for a CORBA Object
Figure 3-10 Summary for Application View Window

9. To view a summary of the service as deployed, select the service and click View
Summary.
3-16 BEA WebLogic Adapter for CORBA User Guide

Adding a CORBA Service to an Application View
A summary of the service is displayed in a new window.

Figure 3-11 Service Summary Window

You are now ready to test your application view, as described in “Testing an
Application View” on page 18.
BEA WebLogic Adapter for CORBA User Guide 3-17

3 Creating an Application View for a CORBA Object
Testing an Application View

To test that an application view service interacts properly with the BEA WebLogic
Adapter for CORBA:

1. If it is not already open, open the application view to be tested:

a. Log on to the WebLogic Application View Console at

//appserver-host:port/wlai

Here, appserver-host is the IP address or host name where the WebLogic
Integration Server is installed, and port is the socket on which the server is
listening. The port, if not changed during installation, defaults to 7001.

b. If prompted, enter a user name and password.

Note: If the user name is not system, it must be included in the adapter
group. For more information on adding the administrative server user
name to the adapter group, see the BEA WebLogic Adapter for
CORBA Installation and Configuration Guide.

c. Click Login.

The WebLogic Integration Application View Console opens.

d. Select the folder in which this application view resides, and then select the
application view.

The Summary window opens.
3-18 BEA WebLogic Adapter for CORBA User Guide

Testing an Application View
Figure 3-12 Displaying Services to Be Tested

2. Select the service you wan to test and click Test.

The Test Service window opens.
BEA WebLogic Adapter for CORBA User Guide 3-19

3 Creating an Application View for a CORBA Object
3. Enter a sample XML request document into the Test Service window, either by typing
it or by copying and pasting it into the window. You can create your own request, or
use one of the sample requests provided with the adapter and shown in
Appendix B, “Sample Files.”

The document should conform to the request schema of the service you are testing.
3-20 BEA WebLogic Adapter for CORBA User Guide

Testing an Application View
Figure 3-13 Entering a Request Into the Test Service Window

4. Click Test.
BEA WebLogic Adapter for CORBA User Guide 3-21

3 Creating an Application View for a CORBA Object
If the test is successful, the Test Result window displays both the request and the
response. The application view is successfully deployed.

Figure 3-14 Test Result Window
3-22 BEA WebLogic Adapter for CORBA User Guide

APPENDIX
A Using CORBA
Implementations With
the Adapter

This section provides details about using the BEA WebLogic Adapter for CORBA
with JacORB, Orbix2000, and VisiBroker for Java. It includes the following topics:

Using JacORB With the BEA WebLogic Adapter for CORBA

Using Orbix2000 With the BEA WebLogic Adapter for CORBA

Using VisiBroker for Java With the BEA WebLogic Adapter for CORBA
BEA WebLogic Adapter for CORBA User Guide A-1

A Using CORBA Implementations With the Adapter
Using JacORB With the BEA WebLogic
Adapter for CORBA

The BEA WebLogic Adapter for CORBA includes a sample ORB called JacORB.
JacORB is an open source Java implementation of the Object Management Group’s
CORBA specification. It is supplied with your software to enable you to test the
adapter.

JacORB is designed to comply with CORBA 2.3 Java language mapping, and supports
commonly used CORBA services. It runs on all platforms that implement the Java
Virtual Machine (JVM). JacORB is made available under the terms of the GNU
Library General Public License (LGPL). Commercial Support support is provided by
Object Computing Inc., a Sun Authorized Java Center and member of the OMG; for
more information, go to http://www.ociweb.com.

JacORB operates with any CORBA-compliant ORB over IIOP. In practice, JacORB
has been used successfully with at least the following ORBs: MICO, TAO, Orbacus,
Iona Orbix, Borland VisiBroker, ORBit, omniORB, Vitria C++ and Java. ORB
interoperability is made simple by using a foreign name service IOR in the file where
the BEA WebLogic Adapter for CORBA looks up the name server OAR. This can be
configured in the jacorb.properties file.

The JacORB Name Service

Name servers are used to locate objects using a human–readable reference (a name)
rather than a machine or network address. If objects providing a certain service are
looked up using the service name, clients are separated from the actual locations of the
objects that provide the service. The binding from name to service can be changed
without the client’s knowledge.

JacORB provides an implementation of the OMG’s Interoperable Naming Service
(INS), which supports the binding of names to object references (and looking up object
references using these names). It also allows clients to easily convert names to strings
and vice versa. The JacORB name service comprises two components: the name server
program, and a set of interfaces and classes used to access the service.
A-2 BEA WebLogic Adapter for CORBA User Guide

Using JacORB With the BEA WebLogic Adapter for CORBA
The JacORB Interface Repository

Run–time type information in CORBA is managed by the ORB’s Interface Repository
(IFR) component. It allows applications to request, inspect, and modify IDL type
information dynamically. For example, the IR enables applications to find out which
operations an object supports. Some ORBs may also need the IR to find out whether a
given object’s type is a subtype of another, but most ORBs can operate without the IR
by encoding this kind of type information in the helper classes generated by the IDL
compiler.

In essence, the IR is just another remotely accessible CORBA object that offers
operations to retrieve (and, theoretically, modify) type information. The IR manages
type information in a hierarchical containment structure that corresponds to constructs
within IDL specifications: modules contain definitions of interfaces, structures,
constants etc. Interfaces in turn contain definitions of exceptions, operations, attributes
and constants.

Building and Running the JacORB Request Broker

To build and run the JacORB Request Broker, perform the following steps. (You will
need ANT 1.4.1, a Java-based build tool.)

1. Unzip JacORB1_4_beta4-full.zip.

This file is found in BEA_CORBA_SAMPLES.zip in the adapter’s installation
directory. It creates the directory JacORB1_4_beta4 on the selected drive. For
example, if you unzip to drive D, the result is D:\JacORB1_4_beta4.

2. Unzip beacorba.zip in the directory JacORB1_4_beta4 that you created in
Step 1.

This file is found in BEA_CORBA_SAMPLES.zip in the adapter’s installation
directory.

3. Copy JacORB1_4_beta4\jacorb_properties.template and rename the copy
JacORB1_4_beta4\jacorb.properties.
BEA WebLogic Adapter for CORBA User Guide A-3

A Using CORBA Implementations With the Adapter
4. Edit the jacorb.properties file:

a. In the file’s Initial References Configuration section, uncomment this line:

#ORBInitRef.NameService=file:/d:/JacORB1_4_beta4/bea/ns_ref.txt

b. In the same line, replace d: with the drive and path into which you unzipped
your JacORB files.

c. If the next line—#ORBInitRef.NameService=file...—is uncommented,
comment it out.

5. Copy JacORB1_4_beta4\bea\jaco.bat into the JacORB\bin directory,
replacing JacORB1_4_beta4\bin\jaco.bat.

6. Edit JacORB1_4_beta4\bea\setenv-sample.bat to specify directories in the
following three statements:

set JAVA_HOME=jdk_directory
set JACORB_HOME=JacORB1_4_beta4_directory
set ANT_HOME=ant_tool_directory

Here, jdk_directory is the directory where your JDK resides,
JacORB1_4_beta4_directory is the directory where JacORB resides, and
ant_tool_directory is the directory where your ANT tool resides. For
example:

set JAVA_HOME=c:\jdk1.3
set JACORB_HOME=d:\JacORB1_4_beta4
set ANT_HOME=c:\jakarta-ant-1.4

7. Build the JacORB application. In a new DOS command window:

a. Execute d:JacORB1_4_beta4\bea\setenv-sample.bat

b. Execute d:JacORB1_4_beta4\bea\club\ant

Here, d: is the drive and path into which you unzipped your JacORB files.
A-4 BEA WebLogic Adapter for CORBA User Guide

Using JacORB With the BEA WebLogic Adapter for CORBA
8. Start the Interface Repository service. In a new DOS command window:

a. Execute JacORB1_4_beta4\bea\setenv-sample.bat

b. Execute the following command:

ir repository_class_path IOR_filename

Here, repository_class_ path is the path to your repository class files,
and IOR_filename is the name of the Interface Object Repository file. For
example,

JacORB1_4_beta4\bea\ir ..\classes ir_ref.txt

9. Start the name service. In a new DOS command window:

a. Execute d:\JacORB1_4_beta4\bea\setenv-sample.bat

Here, d: is the drive and path into which you unzipped your JacORB files.

b. Execute the following command:

ns [ins_filename][-p port] [-t timeout]

Here, ins_filename is the name of the Naming Service file specified in the
jacorb.properties file, port is the number of the port on which the
service is listening, and timeout is the server timeout. For example,

JacORB1_4_beta4\bea\ns ns_ref.txt

10. Start the Java interpreter explicitly by typing

a. Execute d:\JacORB1_4_beta4\bea\ setenv-sample.bat

Here, d: is the drive and path into which you unzipped your JacORB files.

b. Execute the following command:

jaco jacorb.naming.NameServer [filename][-p port][-t timeout]

Here, jacorb.naming.NameServer is the name of the Name Server,
filename is the name of the Naming Service file specified in the
jacorb.properties file, port is the number of the port on which the
service is listening, and timeout is the server timeout. For example,

JacORB1_4_beta4\bea\jaco bea.club.ClubServer
BEA WebLogic Adapter for CORBA User Guide A-5

A Using CORBA Implementations With the Adapter
Using Orbix2000 With the BEA WebLogic
Adapter for CORBA

The BEA WebLogic Adapter for CORBA supports Orbix 2000 Versions 1.2 and
communicates using IIOP version 1.1.

Orbix is a software environment for building and integrating distributed
object-oriented applications. Orbix is a full implementation of the Common Object
Request Broker Architecture (CORBA) from the Object Management Group (OMG).
Orbix fully supports CORBA version 2.3. For more information, see the Orbix 2000
Administrator’s Guide.

Orbix includes a CORBA IDL compiler, which is used by programmers to compile
interface definitions along with the client and server code. A client application
compiled in this way contains internal information about server objects. Clients use
this information to invoke the remote objects. Orbix provides an interface repository,
which enables clients to call operations on Interface Definition Language (IDL)
interfaces that are unknown at compile time. The interface repository (IFR) provides
centralized persistent storage of IDL interfaces. Orbix programs can query the
interface repository at runtime to obtain information about IDL definitions.

To verify that your Orbix server is registered in the Naming Service, enter the
following command at the command prompt:

itadmin ns list

Your server name should appear within a list of all the registered servers. If it is not in
the list, you must register your server.

To ensure your IFR is running and populated, you can view its contents using the
following command:

itadmin ifr list

This command lists all the currently scoped names, such as interfaces and types.

You can use the itadmin command to view the IDL definition of one of the current
scoped names, as follows:

itadmin ifr show current_scoped_name
A-6 BEA WebLogic Adapter for CORBA User Guide

Using VisiBroker for Java With the BEA WebLogic Adapter for CORBA
In order to populate the interface repository with IDL definitions, run the IDL compiler
with the -R option. For example, the following command populates the interface
repository with the IDL definitions in bank.idl:

idl -I. -I$(ART_IDL_DIR)\omg -R= bank.idl

For more information on the Orbix utilities and command line, see Section IV of the
Orbix 2000 Administrators Guide.

Using VisiBroker for Java With the BEA
WebLogic Adapter for CORBA

VisiBroker is a complete CORBA 2.3 Object Request Broker (ORB) that supports the
development, deployment, and management of distributed object applications across a
variety of hardware platforms and operating systems. In addition to VisiBroker (the
ORB), three other components are available with VisiBroker:

Naming Service, which allows you to associate one or more logical names with
an object implementation and to store those names in a namespace. It also lets
client applications use this service to obtain an object reference using the logical
name assigned to that object.

Event Service, which provides a facility that separates the communication
between objects. It provides a supplier-consumer communications model that
allows multiple supplier objects to send data asynchronously to multiple
consumer objects through an event channel.

Gatekeeper, which runs on a Web server and enables client programs to locate
and use objects that do not reside on the Web server and to receive callbacks,
even when firewalls are being used. The Gatekeeper can also be used as an
HTTP daemon, thereby eliminating the requirement for a separate HTTP server
during the application development phase.

The BEA WebLogic Adapter for CORBA supports VisiBroker for Java Version 4.5
and communicates using IIOP version 1.1. Applications created with VisiBroker for
Java can communicate with object implementations developed with VisiBroker for
C++
BEA WebLogic Adapter for CORBA User Guide A-7

A Using CORBA Implementations With the Adapter
VisiBroker requires the Java Development Kit (JDK) or the Java Runtime
Environment (JRE). You can obtain these tools from the Sun Microsystems Web site
(http://java.sun.com/). JRE version 1.2.2 or higher is required to run the
VisiBroker Console. You must install the JRE before you install VisiBroker. However,
VisiBroker supports any current version of Java for your applications.

The BEA WebLogic Adapter for CORBA requires that an IOR file be available to
locate the reference to the Interface Repository. However, VisiBroker's IOR file is not
automatically output to a file. Modify your IR startup procedure to automatically
output the startup IOR reference to a file. For example, use the following command to
automatically output the IOR reference to ir.ior:

irep myIr >ir.ior

VisiBroker configuration and run-time requirements for using the BEA WebLogic
Adapter for CORBA include:

The PATH environment variable must point to the VisiBroker libraries used by
BEA WebLogic Adapter for CORBA.

The VisiBroker jar file must be in the class path.

The IFR must be populated with the IDL of the objects for which you want to
create Web services.

The VisiBroker Naming Service and IFR must be running.

The CORBA servers you are going to use must be running or be set up to start
on demand.

For example, with VisiBroker you start the Interface Repository using the following
command:

irep myIr >ir.ior

Here, myIR is the startup IOR reference.

With VisiBroker you start the naming service using the following command:

$start nameserv NS_name

Here, NS_name is the name of the naming service.
A-8 BEA WebLogic Adapter for CORBA User Guide

Using VisiBroker for Java With the BEA WebLogic Adapter for CORBA
To verify that your server is registered in the Naming Service and your IFR is loaded:

1. Choose Start→Programs→VisiBroker→VisiBroker Console.

2. Expand VisiBroker ORB Services.

3. Expand the Naming Services folder or the IFR folder.

A list of the Naming Service or IFR objects should appear in the right pane.

Alternately, you can enter the following command at a command prompt:

osfind

This command finds the name of the server running the VisiBroker Naming Service.
It is usually the machine where VisiBroker is installed.

For more information, refer to VisiBroker for Java Installation Guide, available at

http://info.borland.com/techpubs/books/vbj/vbj45/framesetindex.html
BEA WebLogic Adapter for CORBA User Guide A-9

A Using CORBA Implementations With the Adapter
A-10 BEA WebLogic Adapter for CORBA User Guide

APPENDIX
B Sample Files

This section describe the sample files delivered with the software. It includes the
following topics:

Sample XML Request and Response Documents

Definitions for ClubMed Object

Sample XML Request and Response
Documents

This section includes the following sample request and response documents:

addGetReservation Request

addGetReservation Responses

AddReservation Request

AddReservation Response

addReservationComplex Request

addReservationComplex Response

addReservationWithOut Request

addReservationWithOut Response

cancelReservation Request
BEA WebLogic Adapter for CORBA User Guide B-1

B Sample Files
cancelReservation Response

GetClubNames Request

GetClubNames Response

getClubNames4 Request

getClubNames4 Response

GetClubPrices Request

GetClubPrices Response

GetClubPricesAsArray Request

GetClubPricesAsArray Response

GetReservation Request

GetReservation Response

getReservationAsOut Request

getReservationAsOut Response

setCancel Request

setCancel Response

setClubPrices Request

setClubPrices Response

setClubPricesAsArray Request

setClubPricesAsArray Response

setStatus Request

setStatus Response

status Request

status Response

testOneDim Request

testOneDim Response
B-2 BEA WebLogic Adapter for CORBA User Guide

Sample XML Request and Response Documents
testTwoDim Request

testTwoDim Response

testTypes Request

testTypes Response

addGetReservation Request

Listing B-1 addGetReservation Request

<bea.club.ClubMed.addGetReservation>
<club>BAMBU</club>
<resvData>

<fname>Bill</fname>;
<lname>Wales</lname>
<weekDate>Monday</weekDate>
<street>Big Bungalow</street>
<city>High End</city>
<state>WA</state>
<zip>99990</zip>
<phone>123-123-3456</phone>
<totalFare>5000.0</totalFare>
<partyAdults>2</partyAdults>
<partyChildren>2</partyChildren>
<date>2001-09-21</date>
<resv>1000</resv>

</resvData>
</bea.club.ClubMed.addGetReservation>
BEA WebLogic Adapter for CORBA User Guide B-3

B Sample Files
addGetReservation Response

Listing B-2 addGetReservation Response

<?xml version="1.0" encoding="ISO-8859-1" ?>
<bea.club.ClubMed.addGetReservation>
<return>1002</return>

<resvData>
<fname>Bill</fname>
<lname>Wales</lname>
<weekDate>Monday</weekDate>
<street>Big Bungalow</street>
<city>High End</city>
<state>WA</state>
<zip>99990</zip>
<phone>123-123-3456</phone>
<totalFare>5000.0</totalFare>
<partyAdults>2</partyAdults>
<partyChildren>2</partyChildren>
<date>2001-09-21</date>
<resv>1000</resv>

</resvData>
</bea.club.ClubMed.addGetReservation>
B-4 BEA WebLogic Adapter for CORBA User Guide

Sample XML Request and Response Documents
AddReservation Request

Listing B-3 AddReservation Request

<bea.club.ClubMed.addReservation>
<club>BAMBU</club>
<resvData>

<fname>Bill</fname>;
<lname>Wales</lname>
<weekDate>Monday</weekDate>
<address>Big Bungalow</address>
<city>High End</city>
<state>WA</state>
<zip>99990</zip>
<phone>123-123-3456</phone>
<totalFare>5000.0</totalFare>
<partyAdults>2</partyAdults>
<partyChildren>2</partyChildren>
<date>2001-09-21</date>

</resvData>
</bea.club.ClubMed.addReservation>

AddReservation Response

Listing B-4 AddReservation Response

<?xml version="1.0"?>
<bea.club.ClubMed.addReservation>
<return>1001</return>

</bea.club.ClubMed.addReservation>
BEA WebLogic Adapter for CORBA User Guide B-5

B Sample Files
addReservationComplex Request

Listing B-5 addReservationComplex Request

<bea.club.ClubMed.addReservationComplex>
<club>BAMBU</club>
<resvData>

<addr>
<fname>Bill</fname>;
<lname>Wales</lname>
<street>Big Bungalow</street>
<city>High End</city>
<state>WA</state>
<zip>99990</zip>
<phone>123-123-3456</phone>
<prices>

<bea.club.pricesStruct>
<date>2002-11-23</date>
<adultFare>88</adultFare>
<childFare>50</childFare>

</bea.club.pricesStruct>
<bea.club.pricesStruct>
<date>2002-11-24</date>
<adultFare>88</adultFare>
<childFare>50</childFare>

</bea.club.pricesStruct>
<bea.club.pricesStruct>
<date>2002-11-25</date>
<adultFare>88</adultFare>
<childFare>50</childFare>

</bea.club.pricesStruct>
<bea.club.pricesStruct>
<date>2002-11-26</date>
<adultFare>88</adultFare>
<childFare>50</childFare>

</bea.club.pricesStruct>
</prices>

</addr>
<totalFare>5000.0</totalFare>
<partyAdults>2</partyAdults>
<partyChildren>2</partyChildren>
<date>2001-09-21</date>
<clubs>
<item>BAMBU</item>
<item>RIU PALACE</item>

</clubs>
B-6 BEA WebLogic Adapter for CORBA User Guide

Sample XML Request and Response Documents
</resvData>
</bea.club.ClubMed.addReservationComplex>

addReservationComplex Response

Listing B-6 addReservationComplex Response

<?xml version="1.0" encoding="ISO-8859-1" ?>
<bea.club.ClubMed.addReservationComplex>
<return>1000</return>
<resvData>

<addr>
<fname>Bill</fname>
<lname>Wales</lname>
<street>Big Bungalow</street>
<city>High End</city>
<state>WA</state>
<zip>99990</zip>
<phone>123-123-3456</phone>
<prices>
<bea.club.pricesArray>

<date>2002-11-23</date>
<adultFare>88</adultFare>
<childFare>50</childFare>

</bea.club.pricesArray>
<bea.club.pricesArray>

<date>2002-11-24</date>
<adultFare>88</adultFare>
<childFare>50</childFare>

</bea.club.pricesArray>
<bea.club.pricesArray>

<date>2002-11-25</date>
<adultFare>88</adultFare>
<childFare>50</childFare>

</bea.club.pricesArray>
<bea.club.pricesArray>

<date>2002-11-26</date>
<adultFare>88</adultFare>
<childFare>50</childFare>

</bea.club.pricesArray>
</prices>

</addr>
<totalFare>5000.0</totalFare>
BEA WebLogic Adapter for CORBA User Guide B-7

B Sample Files
<partyAdults>2</partyAdults>
<partyChildren>2</partyChildren>
<date>2001-09-21</date>
<clubs>
<item>BAMBU</item>
<item>RIU PALACE</item>

</clubs>
</resvData>

</bea.club.ClubMed.addReservationComplex>

addReservationWithOut Request

Listing B-7 addReservationWithOut Request

<bea.club.ClubMed.addReservationWithOut>
<club>BAMBU</club>
<resvData>

<fname>Bill</fname>;
<lname>Wales</lname>
<weekDate>Monday</weekDate>
<street>Big Bungalow</street>
<city>High End</city>
<state>WA</state>
<zip>99990</zip>
<phone>123-123-3456</phone>
<totalFare>5000.0</totalFare>
<partyAdults>2</partyAdults>
<partyChildren>2</partyChildren>
<date>2001-09-21</date>
<resv>0</resv>

</resvData>
</bea.club.ClubMed.addReservationWithOut>
B-8 BEA WebLogic Adapter for CORBA User Guide

Sample XML Request and Response Documents
addReservationWithOut Response

Listing B-8 addReservationWithOut Response

<?xml version="1.0" encoding="ISO-8859-1" ?>
<bea.club.ClubMed.addReservationWithOut>
<num>1004</num>

</bea.club.ClubMed.addReservationWithOut>

cancelReservation Request

Listing B-9 cancelReservation Request

<bea.club.ClubMed.cancelReservation>
<resv>1000</resv>

</bea.club.ClubMed.cancelReservation>

cancelReservation Response

Listing B-10 cancelReservation Response

<?xml version="1.0" encoding="ISO-8859-1" ?>
<bea.club.ClubMed.cancelReservation>
<return>false</return>

</bea.club.ClubMed.cancelReservation>
BEA WebLogic Adapter for CORBA User Guide B-9

B Sample Files
GetClubNames Request

Listing B-11 GetClubNames Request

<bea.club.ClubMed.getClubNames>
</bea.club.ClubMed.getClubNames>

GetClubNames Response

Listing B-12 GetClubNames Response

<?xml version="1.0"?>
<bea.club.ClubMed.getClubNames>
<bea.club.clubNamesSeq>

<return>BAMBU</return>
<return>NAEBO</return>
<return>RIO PALACE</return>

</bea.club.clubNamesSeq>
</bea.club.ClubMed.getClubNames>

getClubNames4 Request

Listing B-13 getClubNames4 Request

<bea.club.ClubMed.getClubNames4>
</bea.club.ClubMed.getClubNames4>
B-10 BEA WebLogic Adapter for CORBA User Guide

Sample XML Request and Response Documents
getClubNames4 Response

Listing B-14 getClubNames4 Response

<?xml version="1.0" encoding="ISO-8859-1" ?>
<bea.club.ClubMed.getClubNames4>
<return>

<item>BAMBU</item>
<item>NAEBO</item>
<item>RIU PALACE</item>

</return>
</bea.club.ClubMed.getClubNames4>

GetClubPrices Request

Listing B-15 GetClubPrices Request

<bea.club.ClubMed.getClubPrices>
<club>BAMBU</club>

</bea.club.ClubMed.getClubPrices>
BEA WebLogic Adapter for CORBA User Guide B-11

B Sample Files
GetClubPrices Response

Listing B-16 GetClubPrices Response

<?xml version="1.0"?>
<bea.club.ClubMed.getClubPrices>
<bea.club.pricesSeq>

<bea.club.pricesStruct>
<date>2002-11-23</date>
<adultFare>88</adultFare>
<childFare>50</childFare>

</bea.club.pricesStruct>
<bea.club.pricesStruct>
<date>2002-11-24</date>
<adultFare>88</adultFare>
<childFare>50</childFare>

</bea.club.pricesStruct>
<bea.club.pricesStruct>
<date>2002-11-25</date>
<adultFare>80</adultFare>
<childFare>45</childFare>

</bea.club.pricesStruct>
<bea.club.pricesStruct>
<date>2002-11-26</date>
<adultFare>80</adultFare>
<childFare>45</childFare>

</bea.club.pricesStruct>
</bea.club.pricesSeq>

</bea.club.ClubMed.getClubPrices>

GetClubPricesAsArray Request

Listing B-17 GetClubPricesAsArray Request

<bea.club.ClubMed.getClubPricesAsArray>
<club>BAMBU</club>

</bea.club.ClubMed.getClubPricesAsArray>
B-12 BEA WebLogic Adapter for CORBA User Guide

Sample XML Request and Response Documents
GetClubPricesAsArray Response

Listing B-18 GetClubPricesAsArray Response

<?xml version="1.0"?>
<bea.club.ClubMed.getClubPricesAsArray>
<bea.club.pricesArray>

<bea.club.pricesStruct>
<date>2002-11-23</date>
<adultFare>88</adultFare>
<childFare>50</childFare>

</bea.club.pricesStruct>
<bea.club.pricesStruct>
<date>2002-11-24</date>
<adultFare>88</adultFare>
<childFare>50</childFare>

</bea.club.pricesStruct>
<bea.club.pricesStruct>
<date>2002-11-25</date>
<adultFare>80</adultFare>
<childFare>45</childFare>

</bea.club.pricesStruct>
<bea.club.pricesStruct>
<date>2002-11-26</date>
<adultFare>80</adultFare>
<childFare>45</childFare>

</bea.club.pricesStruct>
</bea.club.pricesArray>

</bea.club.ClubMed.getClubPricesAsArray>

GetReservation Request

Listing B-19 GetReservation Request

<bea.club.ClubMed.getReservation>
<resv>1001</resv>

</bea.club.ClubMed.getReservation>
BEA WebLogic Adapter for CORBA User Guide B-13

B Sample Files
GetReservation Response

Listing B-20 GetReservation Response

<?xml version="1.0"?>
<bea.club.ClubMed.getReservation>
<bea.club.resvStruct>

<fname>Bill</fname>
<lname>Wales</lname>
<weekDate>Monday</weekDate>
<address>Big Bungalow</address>
<city>High End</city>
<state>WA</state>
<zip>99990</zip>
<phone>123-123-3456</phone>
<totalFare>5000.0</totalFare>
<partyAdults>2</partyAdults>
<partyChildren>2</partyChildren>
<date>2001-09-21</date>

</bea.club.resvStruct>
</bea.club.ClubMed.getReservation>

getReservationAsOut Request

Listing B-21 getReservationAsOut Request

<bea.club.ClubMed.getReservationAsOut>
<resv>1000</resv>

</bea.club.ClubMed.getReservationAsOut>
B-14 BEA WebLogic Adapter for CORBA User Guide

Sample XML Request and Response Documents
getReservationAsOut Response

Listing B-22 getReservationAsOut Response

<?xml version="1.0" encoding="ISO-8859-1" ?>
<bea.club.ClubMed.getReservationAsOut>
<resvData>

<addr>
<fname>Bill</fname>
<lname>Wales</lname>
<street>Big Bungalow</street>
<city>High End</city>
<state>WA</state>
<zip>99990</zip>
<phone>123-123-3456</phone>
<prices>
<bea.club.pricesArray>

<date>2002-11-23</date>
<adultFare>88</adultFare>
<childFare>50</childFare>

</bea.club.pricesArray>
<bea.club.pricesArray>

<date>2002-11-24</date>
<adultFare>88</adultFare>
<childFare>50</childFare>

</bea.club.pricesArray>
<bea.club.pricesArray>

<date>2002-11-25</date>
<adultFare>88</adultFare>
<childFare>50</childFare>

</bea.club.pricesArray>
<bea.club.pricesArray>

<date>2002-11-26</date>
<adultFare>88</adultFare>
<childFare>50</childFare>

</bea.club.pricesArray>
</prices>

</addr>
<totalFare>5000.0</totalFare>
<partyAdults>2</partyAdults>
<partyChildren>2</partyChildren>
<date>2001-09-21</date>
<clubs>
<item>BAMBU</item>
<item>RIU PALACE</item>

</clubs>
BEA WebLogic Adapter for CORBA User Guide B-15

B Sample Files
</resvData>
</bea.club.ClubMed.getReservationAsOut>

setCancel Request

Listing B-23 setCancel Request

<bea.club.ClubMed.setCancel>
<resv>1000</resv>
<cancel>false</cancel>

</bea.club.ClubMed.setCancel>

setCancel Response

Listing B-24 setCancel Response

<?xml version="1.0" encoding="ISO-8859-1" ?>
<bea.club.ClubMed.setCancel/>
B-16 BEA WebLogic Adapter for CORBA User Guide

Sample XML Request and Response Documents
setClubPrices Request

Listing B-25 setClubPrices Request

<bea.club.ClubMed.setClubPrices>
<club>BAMBU</club>
<prices>

<bea.club.pricesStruct>
<date>2002-11-23</date>
<adultFare>88</adultFare>

<childFare>50</childFare>
</bea.club.pricesStruct>
<bea.club.pricesStruct>
<date>2002-11-24</date>
<adultFare>88</adultFare>
<childFare>50</childFare>

</bea.club.pricesStruct>
</prices>

</bea.club.ClubMed.setClubPrices>

setClubPrices Response

Listing B-26 setClubPrices Response

<?xml version="1.0" encoding="ISO-8859-1" ?>
<bea.club.ClubMed.setClubPrices/>
BEA WebLogic Adapter for CORBA User Guide B-17

B Sample Files
setClubPricesAsArray Request

Listing B-27 setClubPricesAsArray Request

<bea.club.ClubMed.setClubPricesAsArray>
<club>BAMBU</club>
<prices>

<bea.club.pricesStruct>
<date>2002-11-23</date>
<adultFare>88</adultFare>
<childFare>50</childFare>

</bea.club.pricesStruct>
<bea.club.pricesStruct>
<date>2002-11-24</date>
<adultFare>88</adultFare>
<childFare>50</childFare>

</bea.club.pricesStruct>
<bea.club.pricesStruct>
<date>2002-11-24</date>
<adultFare>88</adultFare>
<childFare>50</childFare>

</bea.club.pricesStruct>
<bea.club.pricesStruct>
<date>2002-11-24</date>
<adultFare>88</adultFare>
<childFare>50</childFare>

</bea.club.pricesStruct>
</prices>

</bea.club.ClubMed.setClubPricesAsArray>

setClubPricesAsArray Response

Listing B-28 setClubPricesAsArray Response

<?xml version="1.0" encoding="ISO-8859-1" ?>
<bea.club.ClubMed.setClubPricesAsArray/>
B-18 BEA WebLogic Adapter for CORBA User Guide

Sample XML Request and Response Documents
setStatus Request

Listing B-29 setStatus Request

<bea.club.ClubMed.setStatus>
<resv>1000</resv>
<cod>CANCELED</cod>

</bea.club.ClubMed.setStatus>

setStatus Response

Listing B-30 setStatus Response

<?xml version="1.0" encoding="ISO-8859-1" ?>
<bea.club.ClubMed.setStatus/>

status Request

Listing B-31 status Request

<bea.club.ClubMed.status>
<resv>1000</resv>

</bea.club.ClubMed.status>
BEA WebLogic Adapter for CORBA User Guide B-19

B Sample Files
status Response

Listing B-32 status Response

<?xml version="1.0" encoding="ISO-8859-1" ?>
<bea.club.ClubMed.status>
<return>PROCESSED</return>

</bea.club.ClubMed.status>

testOneDim Request

Listing B-33 testOneDim Request

<bea.club.ClubMed.testOneDim>
<par>

<item>1</item>
<item>2</item>
<item>3</item>

</par>
</bea.club.ClubMed.testOneDim>

testOneDim Response

Listing B-34 testOneDim Response

<?xml version="1.0" encoding="ISO-8859-1" ?>
<bea.club.ClubMed.testOneDim>
<par>

<item>1</item>
<item>2</item>
<item>3</item>

</par>
</bea.club.ClubMed.testOneDim>
B-20 BEA WebLogic Adapter for CORBA User Guide

Sample XML Request and Response Documents
testTwoDim Request

Listing B-35 testTwoDim Request

<bea.club.ClubMed.testTwoDim>
<par>

<bea.club.twoDim_row>
<item>one</item>
<item>two</item>
<item>three</item>
<item>four</item>
<item>five</item>

</bea.club.twoDim_row>
<bea.club.twoDim_row>
<item>one</item>
<item>two</item>
<item>three</item>
<item>four</item>
<item>five</item>

</bea.club.twoDim_row>
<bea.club.twoDim_row>
<item>one</item>
<item>two</item>
<item>three</item>
<item>four</item>
<item>five</item>

</bea.club.twoDim_row>
</par>

</bea.club.ClubMed.testTwoDim>
BEA WebLogic Adapter for CORBA User Guide B-21

B Sample Files
testTwoDim Response

Listing B-36 testTwoDim Response

<?xml version="1.0" encoding="ISO-8859-1" ?>
<bea.club.ClubMed.testTwoDim>
<par>

<bea.club.twoDim_row>
<item>one</item>
<item>two</item>
<item>three</item>
<item>four</item>
<item>five</item>

</bea.club.twoDim_row>
<bea.club.twoDim_row>
<item>one</item>
<item>two</item>
<item>three</item>
<item>four</item>
<item>five</item>

</bea.club.twoDim_row>
<bea.club.twoDim_row>
<item>one</item>
<item>two</item>
<item>three</item>
<item>four</item>
<item>five</item>

</bea.club.twoDim_row>
</par>

</bea.club.ClubMed.testTwoDim>

testTypes Request

Listing B-37 testTypes Request

<bea.club.ClubMed.testTypes>
<all>

<t1>string10</t1>
<t2>1000</t2>
<t3>1000999</t3>
B-22 BEA WebLogic Adapter for CORBA User Guide

Sample XML Request and Response Documents
<t4>12345</t4>
<t5>99999999</t5>
<t6>1.234</t6>
<t7>98765.1234</t7>
<t8>c</t8>
<t9>false</t9>
<t10>34</t10>
<t11>w</t11>
<t14>123456789012899</t14>
<t15>12345678901289999</t15>

</all>
</bea.club.ClubMed.testTypes>

testTypes Response

Listing B-38 testTypes Response

<?xml version="1.0" encoding="ISO-8859-1" ?>
<bea.club.ClubMed.testTypes>
<all>

<t1>string10</t1>
<t2>1000</t2>
<t3>1000999</t3>
<t4>12345</t4>
<t5>99999999</t5>
<t6>1.234</t6>
<t7>98765.1234</t7>
<t8>c</t8>
<t9>false</t9>
<t10>34</t10>
<t11>w</t11>
<t14>123456789012899</t14>
<t15>12345678901289999</t15>

</all>
</bea.club.ClubMed.testTypes>
BEA WebLogic Adapter for CORBA User Guide B-23

B Sample Files
Definitions for ClubMed Object

The BEA WebLogic Adapter for CORBA provides the sample ClubMed object to
enable you to test the adapter.

JacORB.properties File

The following listing reflects the JacORB.properties file after you have edited it
according to the instructions in “Building and Running the JacORB Request Broker”
in “Using JacORB With the BEA WebLogic Adapter for CORBA” in Appendix A,
“Using CORBA Implementations With the Adapter.”

Listing B-39 JacORB.properties File

##
JacORB configuration options
##

##
#
Initial references configuration
#
##

#
URLs where IORs are stored (used in orb.resolve_initial_service())
DO EDIT these! (Only those that you are planning to use,
of course ;-).
#
The ORBInitRef references are created on ORB startup time. In the
cases of the services themselves, this may lead to exceptions being
displayed (because the services aren’t up yet). These exceptions
are handled properly and cause no harm!

#ORBInitRef.NameService=corbaloc::160.45.110.41:38693/StandardNS/NameServer%2DP
OA/_root
ORBInitRef.NameService=file:/d:/JacORB1_4_beta4/bea/ns_ref.txt
#ORBInitRef.NameService=http://www.x.y.z/~user/NS_Ref
#ORBInitRef.TradingService=http://www.x.y.z/~user/TraderRef
B-24 BEA WebLogic Adapter for CORBA User Guide

Definitions for ClubMed Object
JacORB-specific URLs
jacorb.ProxyServerURL=http://www.x.y.z/~user/Appligator_Ref

##################################
#
ORB version number output
#
##################################

if on, the ORB’s version number is printed
any time the ORB is initialized
jacorb.orb.print_version=on

##################################
#
Debug output configuration
#
##################################

use (java) jacorb.util.CAD to generate an apropriate
verbosity level
0 = off
1 = important messages and exceptions
2 = informational messages and exceptions
>= 3 = debug-level output (may confuse the unaware user :-)
jacorb.verbosity=1

where does output go? Terminal is default
#jacorb.logfile=LOGFILEPATH

hexdump outgoing messages
jacorb.debug.dump_outgoing_messages=off

hexdump incoming messages
jacorb.debug.dump_incoming_messages=off

##
#
WARNING: The following properties should
only be edited by the expert user. They
can be left untouched in most cases!
#
##
BEA WebLogic Adapter for CORBA User Guide B-25

B Sample Files
################################
#
Basic ORB Configuration
#
################################

the GIOP minor version number to use for newly created IORs
jacorb.giop_minor_version=2

number of retries if connection cannot directly be established
jacorb.retries=5

how many msecs. do we wait between retries
jacorb.retry_interval=500

size of network buffers for outgoing messages
jacorb.outbuf_size=2048

log2 of maximum buffer size managed by the internal
buffer manager.
#
This is NOT the maximum buffer size that
can be used, but just the largest size of buffers that
will be kept and managed. This value will be added to
an internal constant of 5, so the real value in bytes
is 2**(5+maxManagedBufSize-1). You only need to increase this
value if you are dealing with LOTS of LARGE data structures.
You may decrease it to make the buffer manager release large
buffers immediately rather than keeping them for later
reuse.
jacorb.maxManagedBufSize=18

client-side timeout, set no non-zero to stop blocking
after so many msecs.
#jacorb.connection.client_timeout=0

max time a server keeps a connection open if nothing happens
#jacorb.connection.server_timeout=10000

#jacorb.reference_caching=off

#
The following property specifies the class which is used for
reference caching. WeakHashtable uses WeakReferences, so entries
get gc’ed if only the Hashtable has a reference to them. This
is useful if you have many references to short-living non-persistent
CORBA objects. It is only available for java 1.2 and above.
#
On the other hand the standard Hashtable keeps the references until
B-26 BEA WebLogic Adapter for CORBA User Guide

Definitions for ClubMed Object
they are explicitely deleted by calling _release(). This is useful
for persistent and long-living CORBA objects.
#
#jacorb.hashtable_class=org.jacorb.util.WeakHashtable
#
jacorb.hashtable_class=java.util.Hashtable

use GIOP 1.2 byte order markers (since CORBA 2.4-5)
jacorb.use_bom=off

add additional IIOP 1.0 profiles even if we are using IIOP 1.2
jacorb.giop.add_1_0_profiles=off

###
#
Socket Factories
#
###

A factory design pattern is used for the creation of sockets and server
sockets.
The jacorb.net.socket_factory property can be used to configure
a socket factory that must implement the operations defined in the
interface org.jacorb.orb.factory.SocketFactory.
The jacorb.net.server_socket_factory property can be used to configure a
server socket factory that must implement the operations defined in the
interface org.jacorb.orb.factory.ServerSocketFactory.
#
#jacorb.net.socket_factory=org.jacorb.orb.factory.DefaultSocketFactory
#jacorb.net.server_socket_factory=org.jacorb.orb.factory.DefaultServerSocketFac
tory
#
An additional socket factory is supported that allows for the configuration
of maximum and minimum port numbers that can be used. This can be used to
enable firewall traversal via a fixed port range. To use this socket factory
configure the following two properties.
#
#jacorb.net.socket_factory.port.min
#jacorb.net.socket_factory.port.max

###
#
BiDirectional GIOP
#
###

uncomment this initializer if you want to use BiDirectional GIOP

#org.omg.PortableInterceptor.ORBInitializerClass.bidir_init=org.jacorb.orb.conn
BEA WebLogic Adapter for CORBA User Guide B-27

B Sample Files
ection.BiDirConnectionInitializer

###
#
Proxy address in IOR
#
###

#
with these two properties it is possible to
tell the ORB what IP/port IORs should contain,
if the ServerSockets IP/port can’t be used
(e.g. for traffic through a firewall).
#
WARNING: this is just "dumb" replacing, so you
have to take care of your configuration!
#

#jacorb.ior_proxy_host=1.2.3.4
#jacorb.ior_proxy_port=4711

###
#
The Object Adapter Internet Address
#
###

IP address on multi-homed host (this gets encoded in
object references). NOTE: Adresses like 127.0.0.X
will only be accessible from the same machine!
#OAIAddr=1.2.3.4
#OAPort=4711

################################
#
Appligator Configuration
#
################################
if your applets don’t need appligator, switch this off
jacorb.use_appligator=off

############################
#
Default Interceptors
Please leave them in!
B-28 BEA WebLogic Adapter for CORBA User Guide

Definitions for ClubMed Object
#
############################
org.omg.PortableInterceptor.ORBInitializerClass.standard_init=org.jacorb.orb.st
andardInterceptors.IORInterceptorInitializer

###
#
Implementation Repository Configuration
#
###
Switch off to avoid contacting the ImR on every server start-up
jacorb.use_imr=off

if set to "on", servers that don’t already have an entry on their
first call to the imr, will get automatically registered. Otherwise,
an UnknownServer exception is thrown.
jacorb.imr.allow_auto_register=off

if set to "on", the imr will try to "ping" every object reference,
that it is going to return. If the reference is not alive, TRANSIENT
is thrown.
jacorb.imr.check_object_liveness=off

ORBInitRef.ImplementationRepository=http://www.x.y.z/~user/ImR_Ref

jacorb.imr.table_file=Z:\table.dat
jacorb.imr.backup_file=z:\backup.dat
jacorb.imr.ior_file=/home/bwana/brose/public_html/ImR_Ref
jacorb.imr.timeout=
jacorb.imr.no_of_poas=
jacorb.imr.no_of_servers=

how many millis should the imr wait, until a connection from an
application client is terminated. Default is 2000.
jacorb.imr.connection_timeout=2000

the implementation name, should be set to a different
name in the code of persistent servers
jacorb.implname=StandardImplName

#
This is supposed to be a generic startup string for everything
that calls Runtime.exec(). Might be replaced by jaco[.bat].
#
jacorb.java_exec=java -Dorg.omg.CORBA.ORBClass=org.jacorb.orb.ORB
-Dorg.omg.CORBA.ORBSingletonClass=org.jacorb.orb.ORBSingleton
BEA WebLogic Adapter for CORBA User Guide B-29

B Sample Files
#########################
#
SSL Configuration
#
#########################

#
The port number used by SSL, will be dynmically assigned
by default
#

#OASSLPort=4711

This interceptor must be set if programs need access to
certificates using the CORBA Security API, SSL works also
without this interceptor

#org.omg.PortableInterceptor.ORBInitializerClass.ForwardInit=org.jacorb.securit
y.ssl.SecurityServiceInitializer

qualified classname of access decision object
jacorb.security.access_decision=org.jacorb.security.level2.AccessDecisionImpl

list of qualified classnames of principal authenticator objects,
separated by commas (no whitespaces!). The first entry (that can
be successfully created) will be available through the
principal_authenticator property.
jacorb.security.principal_authenticator=org.jacorb.security.level2.PrincipalAut
henticatorImpl

the qualified classname of the ssl socket factory class
#jacorb.ssl.socket_factory=org.jacorb.security.ssl.sun_jsse.SSLSocketFactory
jacorb.ssl.socket_factory=org.jacorb.security.ssl.iaik.SSLSocketFactory

the qualified classname of the ssl server socket factory class
#jacorb.ssl.server_socket_factory=org.jacorb.security.ssl.sun_jsse.SSLServerSoc
ketFactory
jacorb.ssl.server_socket_factory=org.jacorb.security.ssl.iaik.SSLServerSocketFa
ctory

exchange ssl client server roles to enforce client authentication, but
attention: this causes problems with peers that not prepared to handle
this role change
jacorb.security.change_ssl_roles=off

IIOP/SSL parameters (numbers are hex values, without the leading "0x"):
B-30 BEA WebLogic Adapter for CORBA User Guide

Definitions for ClubMed Object
NoProtection = 1
EstablishTrustInClient = 40
EstablishTrustInTarget = 20
mutual authentication = 60
please see the programming guide for more explanation

jacorb.security.support_ssl=off

jacorb.security.ssl.client.supported_options=0
jacorb.security.ssl.client.required_options=0

jacorb.security.ssl.server.supported_options=0
jacorb.security.ssl.server.required_options=0

#
If set, the following two values will be placed in the IOR, if
"corbaloc:ssliop" ssliop.
#
If not set, only EstablishTrustInTarget is used for both supported
and required options. EstablishTrustInClient is not set, and the
rest of the Association Options aren’t currently used anyway.
#jacorb.security.ssl.corbaloc_ssliop.supported_options=0
#jacorb.security.ssl.corbaloc_ssliop.required_options=0

The name and location of the keystore. This may be absolute or
relative to the home directory.
#
NOTE (for Sun JSSE users): The "javax.net.ssl.trustStore[Password]"
properties don’t seem to take effect, so you may want to add trusted
certificates to "normal" keystores. In this case, please set the
property "jacorb.security.jsse.trustees_from_ks"is to "on", so trusted
certificates are taken from the keystore instead of a dedicated
truststore.
jacorb.security.keystore=
jacorb.security.keystore_password=

#
IAIK specific settings
#

files with public key certs of trusted CAs
#
WARNING: If no CA certs are present, the IAIK chain verifier will
accept ALL otherwise valid chains!
#
jacorb.security.trustees=

the name of the default key alias to look up in the keystore
BEA WebLogic Adapter for CORBA User Guide B-31

B Sample Files
jacorb.security.default_user=
jacorb.security.default_password=

have iaiks ssl classes print debug output to stdout
jacorb.security.iaik_debug=off

#
Sun JSSE specific settings
#
Use the keystore to take trusted certs from.
jacorb.security.jsse.trustees_from_ks=off

A comma-separated (no whitespaces!) list of cipher suite names. See
the JSSE docs on how to obtain the correct cipher suite strings
jacorb.security.ssl.server.cipher_suites=
jacorb.security.ssl.client.cipher_suites=

#########################
#
POA Configuration
#
#########################

displays a GUI monitoring tool for servers
jacorb.poa.monitoring=off

thread pool configuration for request processing
jacorb.poa.thread_pool_max=20
jacorb.poa.thread_pool_min=5

if set, request processing threads in thePOA
will run at this priority. If not set or invalid,
MAX_PRIORITY will be used.
#jacorb.poa.thread_priority=

size of the request queue, clients will receive Corba.TRANSIENT
exceptions if load exceeds this limit
jacorb.poa.queue_max=100

##
#
Trader configuration, please see
src/trading/README.PROPERTIES for
explanation
#
##
B-32 BEA WebLogic Adapter for CORBA User Guide

Definitions for ClubMed Object
jtrader.util.max_threads=10
jtrader.util.min_threads=1
jtrader.util.query_timeout=5000
jtrader.impl.cache_max=100

boolean values, e.g. true / false
#jtrader.modifiable_properties=
#jtrader.dynamic_properties=
#jtrader.proxy_offers=

jtrader.debug=false
jtrader.debug_verbosity=3

#integer values
jtrader.def_search_card=
jtrader.max_search_card=
jtrader.def_match_card=
jtrader.max_match_card=
jtrader.def_return_card=
jtrader.max_return_card=
jtrader.max_list=
jtrader.def_hop_count=
jtrader.max_hop_count=

#FollowOptions
#always=2
#if_no_local=1
#local_only=0
jtrader.def_follow_policy=
jtrader.max_follow_policy=
jtrader.max_link_follow_policy=

any other custom properties can be added here.
These are available through the API (call
jacorb.orb.Environment.getProperty())
BEA WebLogic Adapter for CORBA User Guide B-33

B Sample Files
Build XML

This file enables you to build the sample JacORB application referred to in “Building
and Running the JacORB Request Broker” in “Using JacORB With the BEA
WebLogic Adapter for CORBA” in Appendix A, “Using CORBA Implementations
With the Adapter.”

Listing B-40 Build XML

<?xml version="1.0"?>

<project name="bea" default="all" basedir="../..">

<!-- == -->
<!-- build file -->
<!-- == -->

<target name="init">
<property name="name" value="club"/>
<property name="dirs.base" value="${basedir}"/>
<property name="classdir" value="${dirs.base}/classes"/>
<property name="lib" value="${dirs.base}/lib"/>
<property name="include" value="${dirs.base}/idl"/>
<property name="idlflags" value="-I${include}/omg -ir -d

${dirs.base}/bea/${name}/generated"/>
</target>

<target name="all" depends="init,idl">
<javac srcdir="${dirs.base}/bea/${name}/generated"

destdir="${classdir}"
includes="**/*.java"
/>

<javac srcdir="${dirs.base}/bea/${name}"
destdir="${classdir}"

includes="*.java"
/>

</target>

<target name="idl" depends="init">
<java classname="org.jacorb.idl.parser"

fork="yes"
classpath="${lib}/idl.jar;${java.class.path}">
B-34 BEA WebLogic Adapter for CORBA User Guide

Definitions for ClubMed Object
<arg line="${idlflags}
${dirs.base}/bea/${name}/clubmed.idl"/>

</java>
</target>

<target name="clean" depends="init">
<delete dir="${classdir}/bea/${name}"/>
<delete dir="${dirs.base}/bea/${name}/generated"/>

</target>

</project>

ClubMed.IDL File

The clubmed.idl file displays the Interface Repository in IDL.

Listing B-41 ClubMed.IDL File

// ClubMed.idl
module bea
{
module club
{
struct pricesStruct
{
string date;
short adultFare;
short childFare;

};
typedef sequence<pricesStruct> pricesSeq;

typedef sequence<string> clubNamesSeq;

typedef long resvNo;

typedef pricesStruct pricesArray[4];

struct resvStruct
{
string fname;
string lname;
BEA WebLogic Adapter for CORBA User Guide B-35

B Sample Files
string weekDate;
string address;
string city;
string state;
string zip;
string phone;
string totalFare;
short partyAdults;
short partyChildren;
string date;

};

interface ClubMed
{

exception ClubException
{
string reason;

};
pricesSeq getClubPrices(in string club);
pricesArray getClubPricesAsArray(in string club);
resvNo addReservation(in string club, in resvStruct resvData);
resvStruct getReservation(in resvNo resv);
clubNamesSeq getClubNames();

};

};
};

ClubServer.Java File

The ClubServer.java file displays the Interface Repository in Java.

Listing B-42 ClubServer.Java File

// The package containing our stubs.
package bea.club;

import java.util.*;

// HelloServer will use the naming service.
import org.omg.CosNaming.*;
// All CORBA applications need these classes.
B-36 BEA WebLogic Adapter for CORBA User Guide

Definitions for ClubMed Object
import org.omg.CORBA.*;

public class ClubServer
{
public static void main(String args[]) {
// Create and initialize the ORB
Properties props = new Properties();
props.setProperty("org.omg.CORBA.ORBClass", "org.jacorb.orb.ORB");
props.setProperty("org.omg.CORBA.ORBSingletonClass",

"org.jacorb.orb.ORBSingleton");
ORB orb = ORB.init(args, props);

try {
org.omg.PortableServer.POA poa =

org.omg.PortableServer.POAHelper.narrow(orb.resolve_initial_references("RootPOA
"));

poa.the_POAManager().activate();

org.omg.CORBA.Object o = poa.servant_to_reference(new ClubsServant());

// use the naming service

NamingContextExt nc =

NamingContextExtHelper.narrow(orb.resolve_initial_references("NameService"));
nc.bind(nc.to_name("bea.clubmed"), o);

orb.run();

} catch(Exception e) {
System.err.println("ERROR: " + e);
e.printStackTrace(System.out);

}
}

}

class ClubsServant extends ClubMedPOA
{
private int resNum = 999;
private Map map = new HashMap();

public pricesStruct[] getClubPrices (String club) {
pricesStruct[] prices = new pricesStruct[4];
prices[0] = new pricesStruct("2002-11-23", (short)88, (short)50);
prices[1] = new pricesStruct("2002-11-24", (short)88, (short)50);
prices[2] = new pricesStruct("2002-11-25", (short)80, (short)45);
prices[3] = new pricesStruct("2002-11-26", (short)80, (short)45);
return prices;
BEA WebLogic Adapter for CORBA User Guide B-37

B Sample Files
}

public pricesStruct[] getClubPricesAsArray(String club) {
pricesStruct[] prices = new pricesStruct[4];
prices[0] = new pricesStruct("2002-11-23", (short)88, (short)50);
prices[1] = new pricesStruct("2002-11-24", (short)88, (short)50);
prices[2] = new pricesStruct("2002-11-25", (short)80, (short)45);
prices[3] = new pricesStruct("2002-11-26", (short)80, (short)45);
return prices;

}

public String[] getClubNames() {
return new String[] {"BAMBU", "NAEBO", "RIO PALACE" };

}

public int addReservation (String club, resvStruct resvData) {
System.out.println(club);
System.out.println(resvData.address);
System.out.println(resvData.city);
System.out.println(resvData.date);
System.out.println(resvData.fname);
System.out.println(resvData.lname);
System.out.println(resvData.partyAdults);
System.out.println(resvData.partyChildren);
System.out.println(resvData.phone);
System.out.println(resvData.weekDate);
System.out.println(resvData.zip);
System.out.println(resvData.totalFare);
map.put(new Integer(++resNum), resvData);
return resNum;

}

public resvStruct getReservation (int resv) {
resvStruct resvData = (resvStruct)map.get(new Integer(resv));
System.out.println("Returning: " + resvData);
return resvData;

}

public boolean cancelReservation (int resv) {
return false;

}

}

B-38 BEA WebLogic Adapter for CORBA User Guide

	About This Document
	What You Need to Know
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introducing the BEA WebLogic Adapter for CORBA
	Introduction
	How the BEA WebLogic Adapter for CORBA Works

	2 Using the BEA Application Explorer With CORBA
	Overview
	Connecting to an Object Request Broker
	Creating Service Schemas

	3 Creating an Application View for a CORBA Object
	Overview
	Creating an Application View Folder
	Creating an Application View for a CORBA Object
	Adding a CORBA Service to an Application View
	Testing an Application View

	A Using CORBA Implementations With the Adapter
	Using JacORB With the BEA WebLogic Adapter for CORBA
	The JacORB Name Service
	The JacORB Interface Repository
	Building and Running the JacORB Request Broker

	Using Orbix2000 With the BEA WebLogic Adapter for CORBA
	Using VisiBroker for Java With the BEA WebLogic Adapter for CORBA

	B Sample Files
	Sample XML Request and Response Documents
	addGetReservation Request
	addGetReservation Response
	AddReservation Request
	AddReservation Response
	addReservationComplex Request
	addReservationComplex Response
	addReservationWithOut Request
	addReservationWithOut Response
	cancelReservation Request
	cancelReservation Response
	GetClubNames Request
	GetClubNames Response
	getClubNames4 Request
	getClubNames4 Response
	GetClubPrices Request
	GetClubPrices Response
	GetClubPricesAsArray Request
	GetClubPricesAsArray Response
	GetReservation Request
	GetReservation Response
	getReservationAsOut Request
	getReservationAsOut Response
	setCancel Request
	setCancel Response
	setClubPrices Request
	setClubPrices Response
	setClubPricesAsArray Request
	setClubPricesAsArray Response
	setStatus Request
	setStatus Response
	status Request
	status Response
	testOneDim Request
	testOneDim Response
	testTwoDim Request
	testTwoDim Response
	testTypes Request
	testTypes Response

	Definitions for ClubMed Object
	JacORB.properties File
	Build XML
	ClubMed.IDL File
	ClubServer.Java File

