
BEA
WebLogic
Adapter for
.NET ®

User Guide
Version 8.1.2
Document Revised: January 2004

Copyright
Copyright © 2004 BEA Systems, Inc. All Rights Reserved.

Portions Copyright © 2004 iWay Software. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA
Systems License Agreement and may be used or copied only in accordance with the terms of that agreement.
It is against the law to copy the software except as specifically allowed in the agreement. This document
may not, in whole or in part, be copied photocopied, reproduced, translated, or reduced to any electronic
medium or machine readable form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights
Clause at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause
at NASA FAR supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on
the part of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS”
WITHOUT WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems
DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE
USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS
OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA
WebLogic Express, BEA WebLogic Integration, BEA WebLogic Personalization Server, BEA WebLogic
Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA WebLogic Workshop and How Business
Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

BEA WebLogic Adapter for .NET User Guide iii

Contents

About This Document
Who Should Read This Documentation. .vii

Additional Information . viii

How to Use This Document. ix

Contact Us! . ix

Documentation Conventions . xi

1. Introducing the BEA WebLogic Adapter for .NET
About the BEA WebLogic Adapter for .NET . 1-1

About the .NET Framework . 1-2

.NET Assemblies . 1-2

Custom Attributes . 1-3

Microsoft Message Queue . 1-3

About the Architecture of the BEA WebLogic Adapter for .NET 1-4

Supported .NET Operations for Application Integration . 1-5

Supported Services . 1-5

Supported Events . 1-5

Benefits of the Adapter for .NET . 1-6

Getting Started With the Adapter for .NET . 1-6

Step 1: Design the Application Integration Solution . 1-7

Step 2: Determine the Required .NET Business Workflows 1-7

Step 3: Generate Schemas for .NET Integration Objects . 1-8

iv BEA WebLogic Adapter for .NET User Guide

Step 4: Define Application Views and Configure Services and Events. 1-8

Step 5: Integrate Your Application With Other BEA Software Components 1-9

Step 6: Deploy the Solution to the Production Environment. 1-9

2. Generating Schemas for .NET Integration Objects
Before You Begin . 2-2

About Creating Schemas. 2-2

About the Types of Schemas You Must Generate . 2-2

Service Requests . 2-3

Service Responses. 2-3

Events . 2-3

About the BEA Application Explorer . 2-3

About the Process for Defining Schemas Using the BEA Application Explorer . . . 2-4

Configuring Your .NET Application for Application Explorer Inquiry 2-4

Starting the BEA Application Explorer . 2-7

Setting the Session Path . 2-8

Managing .NET Connections . 2-8

Creating a New Connection . 2-9

Using an Existing Connection . 2-9

Disconnecting from .NET . 2-10

Removing Connections . 2-10

Creating Schemas for Services Using the BEA Application Explorer 2-10

Creating Schemas for Services and Events Manually. 2-12

About Schema Repositories . 2-13

Creating a Schema Repository. 2-13

Naming Schema Repositories . 2-13

Creating a Manifest.xml File . 2-14

Creating Schemas. 2-15

BEA WebLogic Adapter for .NET User Guide v

Configuring Schemas for MSMQ . 2-16

Sample Schema File . 2-16

Removing Schemas in the BEA Application Explorer . 2-20

Next Steps . 2-20

3. Defining Application Views for .NET
How to Use This Document . 3-2

Before You Begin . 3-2

About Application Views . 3-3

About Defining Application Views. 3-3

Defining Service Connection Parameters . 3-5

Setting Service Properties . 3-6

DotNet Service . 3-7

MSMQ Service. 3-8

Common Service and Event Settings . 3-9

Setting Event Properties . 3-10

MSMQ Event . 3-10

Defining Event Connection Parameters. 3-12

Testing Services. 3-13

Testing a dotNetService . 3-14

Testing an MSMQ Service . 3-16

Testing Events Using a Service . 3-19

Index

vi BEA WebLogic Adapter for .NET User Guide

BEA WebLogic Adapter for .NET User Guide vii

About This Document

This document describes how to use the BEA WebLogic Adapter for .NET. This document is
organized as follows:

Chapter 1, “Introducing the BEA WebLogic Adapter for .NET,” describes the adapter, how
it relates to both .NET objects and WebLogic Integration.

Chapter 2, “Generating Schemas for .NET Integration Objects,” describes how to generate
schemas for your .NET objects.

Chapter 3, “Defining Application Views for .NET,” describes application views and how to
use them to configure events and services.

Who Should Read This Documentation
This document is intended for the following members of an integration team:

Integration Specialists—Lead the integration design effort. Integration specialists have
expertise in defining the business and technical requirements of integration projects, and in
designing integration solutions that implement specific features of WebLogic Integration.
The skills of integration specialists include business and technical analysis, architecture
design, project management, and WebLogic Integration product knowledge.

Technical Analysts—Provide expertise in an organization’s information technology
infrastructure, including telecommunications, operating systems, applications, data
repositories, future technologies, and IT organizations. The skills of technical analysts
include technical analysis, application design, and information systems knowledge.

viii BEA WebLogic Adapter for .NET User Guide

Enterprise Information System (EIS) Specialists—Provide domain expertise in the systems
that are being integrated using WebLogic Integration adapters. The skills of EIS specialists
include technical analysis and application integration design.

System Administrators—Provide in-depth technical and operational knowledge about
databases and applications deployed in an organization. The skills of system administrators
include capacity and load analysis, performance analysis and tuning, deployment
topologies, and support planning.

Additional Information
To learn more about the software components associated with the adapter, see the following
documents:

BEA WebLogic Adapter for .NET Release Notes

http://edocs.bea.com/wladapters/dotnet/docs812/pdf/relnotes.pdf

BEA WebLogic Adapter for .NET Installation and Configuration Guide

http://edocs.bea.com/wladapters/dotnet/docs812/pdf/install.pdf

BEA Application Explorer Installation and Configuration Guide

http://edocs.bea.com/wladapters/bae/docs812/pdf/install.pdf

Introduction to the BEA WebLogic Adapters

http://edocs.bea.com/wladapters/docs81/pdf/intro.pdf

BEA WebLogic Adapters 8.1 Dev2Dev Product Documentation

http://dev2dev.bea.com/products/wladapters/index.jsp

Application Integration documentation

http://edocs.bea.com/wli/docs81/aiover/index.html

http://edocs.bea.com/wli/docs81/aiuser/index.html

BEA WebLogic Integration documentation

http://edocs.bea.com/wli/docs81/index.html

BEA WebLogic Platform documentation

http://edocs.bea.com/platform/docs81/index.html

.NET documentation

http://www.microsoft.com/net

http://edocs.bea.com/wladapters/dotnet/docs812/pdf/relnotes.pdf
http://edocs.bea.com/wladapters/dotnet/docs812/pdf/install.pdf
http://edocs.bea.com/wladapters/bae/docs812/pdf/install.pdf
http://edocs.bea.com/wladapters/docs81/pdf/intro.pdf
http://dev2dev.bea.com/products/wladapters/index.jsp
http://edocs.bea.com/wli/docs81/aiover/index.html
http://edocs.bea.com/wli/docs81/aiuser/index.html
http://edocs.bea.com/wli/docs81/index.html
http://edocs.bea.com/platform/docs81/index.html
http://www.microsoft.com/net

BEA WebLogic Adapter for .NET User Guide ix

How to Use This Document
This document is designed to be used in conjunction with Using the Application Integration
Design Console, available at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

Using the Application Integration Design Console descibes, in detail, the process of defining an
application view, which is a key part of making an adapter available to process designers and
other users. What Using the Application Integration Design Console does not cover is the specific
information about Adapter for .NET that you need to supply to complete the application view
definition. You will find that information in this document.

At each point in Using the Application Integration Design Console where you need to refer to
this document, you will see a note that directs you to a section in your adapter user guide, with a
link to the edocs page for adapters. The following roadmap illustration shows where you need to
refer from Using the Application Integration Design Console to this document.

Figure 1 Information Interlock with Using the Application Integration Design Console

Contact Us!
Your feedback on the BEA WebLogic Adapter for .NET documentation is important to us. Send
us e-mail at docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the BEA WebLogic Adapter
for .NET documentation.

In your e-mail message, please indicate that you are using the documentation for the BEA
WebLogic Adapter for .NET and the version of the documentation.

If you have any questions about this version of BEA WebLogic Adapter for .NET, or if you have
problems using the BEA WebLogic Adapter for .NET, contact BEA Customer Support through
BEA WebSUPPORT at www.bea.com. You can also contact Customer Support by using the

http://edocs.bea.com/wli/docs81/aiuser/index.html

x BEA WebLogic Adapter for .NET User Guide

contact information provided on the Customer Support Card which is included in the product
package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

BEA WebLogic Adapter for .NET User Guide xi

Documentation Conventions
The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

xii BEA WebLogic Adapter for .NET User Guide

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

• That an argument can be repeated several times in a command line

• That the statement omits additional optional arguments

• That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

C H A P T E R 1
Introducing the BEA WebLogic Adapter
for .NET
This section introduces the BEA WebLogic Adapter for .NET and describes how the adapter
enables integration with .NET business objects and WebLogic Integration.

It includes the following topics:

About the BEA WebLogic Adapter for .NET

Getting Started With the Adapter for .NET

About the BEA WebLogic Adapter for .NET
The BEA WebLogic Adapter for .NET connects to your .NET system so that you can easily use
your .NET data and functions within your business processes. The adapter provides scalable,
reliable, and secure access to your .NET system.

Note: Since .NET is a Windows component, this adapter is supported only on that platform.

This section includes the following topics:

About the .NET Framework

About the Architecture of the BEA WebLogic Adapter for .NET

Supported .NET Operations for Application Integration

Supported Services

Supported Events

Benefits of the Adapter for .NET
BEA WebLogic Adapter for .NET User Guide 1-1

About the .NET Framework
The Microsoft .NET Framework is a platform for building, deploying, and running Web Services
and applications. It provides a standards-based environment for integrating existing investments
with next-generation applications and services as well as the ability to solve the challenges of
deployment and operation of Internet-scale applications. The .NET Framework consists of three
main parts:

The common language runtime (CLR), which is the execution engine for .NET Framework
applications.

A hierarchical set of unified class libraries, which includes the Common Language
Specification (CLS), is a set of constructs and constraints that serves as a guide for library
writers and compiler writers. It enables programmers to use libraries from any language
supporting the CLS, and for those languages to integrate with each other. CLS is also
important to application developers who are writing code that will be used by other
developers. When developers design publicly accessible APIs following the rules of the
CLS, those APIs are easily used from all other programming languages that target the
common language runtime.

A componentized version of Active Server Pages called ASP.NET, which is a Web
development platform. ASP.NET server controls enable an HTML-like style of declarative
programming. Unlike classic ASP, which supports only interpreted VBScript and JScript,
ASP.NET supports multiple .NET languages (including built-in support for VB.NET, C#,
and JScript.NET).

.NET Assemblies
An assembly is the primary building block of a .NET Framework application. It is a collection of
one or more files built, versioned, and deployed as a single implementation unit (as one or more
files). All managed types and resources are marked either as accessible only within their
implementation unit or as accessible by code outside that unit. Assemblies also play a key role in
security. The code access security system uses information about the assembly to determine the
set of permissions that code in the assembly is granted.

Assemblies are self-describing by means of their manifest, which is an integral part of every
assembly. The manifest:

Establishes the assembly identity (in the form of a text name), version, culture, and digital
signature (if the assembly is to be shared across applications).

Defines what files (by name and file hash) make up the assembly implementation.
1-2 BEA WebLogic Adapter for .NET User Guide

About the BEA WebLog ic Adapte r fo r . NET
Specifies the types and resources that make up the assembly, including which are exported
from the assembly.

Itemizes the compile-time dependencies on other assemblies.

Specifies the set of permissions required for the assembly to run properly.

This information is used at run time to resolve references, enforce version binding policy, and
validate the integrity of loaded assemblies. The runtime can determine and locate the assembly
for any running object, since every type is loaded in the context of an assembly. Assemblies are
also the unit at which code access security permissions are applied. The identity evidence for each
assembly is considered separately when determining what permissions to grant the code it
contains.

In the .NET context, an executable takes the form of a portable executable (PE) file. The PE can
be loaded into memory and executed by the operating system loader. It can be either an .exe or a
.dll file. A PE file must be translated by the common language runtime into native code before it
can be executed by the operating system.

The file format used for executable programs and for files to be linked together to form
executable programs.

Custom Attributes
The common language runtime allows you to add keyword-like descriptive declarations, called
attributes, to annotate programming elements such as types, fields, methods, and properties.
Attributes are saved with the metadata of a Microsoft .NET Framework file and can be used to
describe your code to the runtime or to affect application behavior at run time.

The BEA WebLogic Adapter for .NET uses custom attributes to act as markers to expose
methods and classes in your target .NET application and provide the invocation specifications for
each exposed method. The BEA Application Explorer generates metadata from the exposed
classes and methods to construct service (inbound) schemas.

Microsoft Message Queue
The BEA WebLogic Adapter for .NET also includes support for service (inbound) and event
(outbound) adapter integration operations through the use of the Microsoft Message Queue
(MSMQ).

Microsoft Message Queuing is a messaging infrastructure and a development tool for creating
distributed messaging applications for Microsoft Windows operating systems. The adapter makes
BEA WebLogic Adapter for .NET User Guide 1-3

use of the message queue to exchange information with any .NET application. This gives you the
flexibility to interact with any .NET application that can interact with a message queue.

When your target .NET application generates messages that arrive on a queue, the adapter detects
that as an event. For services, the adapter can place data on a queue for processing by your .NET
application.

About the Architecture of the BEA WebLogic Adapter for .NET
The following diagram shows the run-time architecture of the BEA WebLogic Adapter for .NET
when performing services that interact directly with your .NET application.

Figure 1-1 Service Run Time

The adapter uses custom DLLs and java classes to ensure seamless integration with your .NET
application.

Target .NET assembly contains the classes and methods that are explored at design time by
the BEA Application Explorer or invoked at runtime.

iwclr.dll is a .NET assembly that contains functionality to explore assemblies at design
time, load and invoke classes and methods at runtime, and implement the custom attributes
used for assembly annotation.

iwdotnet.dll exports the JNI methods required by the Java classes that implement
adapter and acts as a common language runtime host.

iwdotnet.jar supplies the classes necessary for adapter implementation in the BEA
WebLogic environment.
1-4 BEA WebLogic Adapter for .NET User Guide

About the BEA WebLog ic Adapte r fo r . NET
The following diagram shows the run-time architecture of the BEA WebLogic Adapter for .NET
when using MSMQ to integrate with a .NET application. The adapter places and listens for
messages on the Microsoft Message queue.

Figure 1-2 Runtime Services and Events Using MSMQ

Supported .NET Operations for Application Integration
The Adapter for .NET supports synchronous and asynchronous, bi-directional message
interactions for .NET Business Services, Business Components, and Integration Objects.

It provides integration with the following .NET operations:

Access to .NET integration objects using XML to handle both services and events

Access to MSMQ queues for services and events

Supported Services
The Adapter for .NET supports two types of services: DotNet service and MSMQ service. In each
case, the adapter sends a file to .NET to cause a .NET business event.

These are the services supported by Adapter for .NET:

DotNet service

MSMQ service, which sends a file to a Microsoft Message Queue queue.

Supported Events
The Adapter for .NET supports one type of event: MSMQ event. When an event occurs, the
adapter picks up a file from the MSMQ queue and passes it to an event variable within a business
process.
BEA WebLogic Adapter for .NET User Guide 1-5

These are the events supported by Adapter for .NET.

MSMQ event, in which the adapter picks up a file from a specific MSMQ queue.

Benefits of the Adapter for .NET
The combination of the adapter and WebLogic Integration supplies everything you need to
integrate your workflows and enterprise applications with your .NET system. The Adapter for
.NET provides these benefits:

Integration can be achieved without custom coding.

Business processes can be started by events generated by .NET.

Business processes can request and receive data from your .NET system using services.

Adapter events and services are standards-based. The adapter services and events provide
extensions to the J2EE Connector Architecture (JCA) version 1.0 from Sun Microsystems,
Inc. For more information, see the Sun JCA page at the following URL:

http://java.sun.com/j2ee/connector/

The adapter and WebLogic Integration solution is scalable. The BEA WebLogic Platform
provides clustering, load balancing, and resource pooling for a scalable solution. For more
information about scalability, see the following URL:

http://edocs.bea.com/wls/docs81/cluster/index.html

The adapter and WebLogic Integration solution benefits from the fault-tolerant features of
the BEA WebLogic Platform. For more information about high availability, see the
following URL:

http://edocs.bea.com/wli/docs81/deploy/index.html

The adapter and WebLogic Integration solution is secure, using the security features of the
BEA WebLogic Platform and the security of your .NET system. For more information
about security, see the following URL:

http://edocs.bea.com/wls/docs81/secintro/index.html

Getting Started With the Adapter for .NET
This section gives an overview of how to get started using the BEA WebLogic Adapter for .NET
within the context of an application integration solution. Integration with .NET involves the
following tasks:
1-6 BEA WebLogic Adapter for .NET User Guide

http://java.sun.com/j2ee/connector/
http://edocs.bea.com/wls/docs81/cluster/index.html
http://edocs.bea.com/wli/docs81/deploy/index.html
http://edocs.bea.com/wls/docs81/secintro/index.html

Gett i ng S ta r t ed Wi th the Adapte r fo r . NET
Step 1: Design the Application Integration Solution

Step 2: Determine the Required .NET Business Workflows

Step 3: Generate Schemas for .NET Integration Objects

Step 4: Define Application Views and Configure Services and Events

Step 5: Integrate Your Application With Other BEA Software Components

Step 6: Deploy the Solution to the Production Environment

Step 1: Design the Application Integration Solution
The first step is to design an application integration solution, which includes (but is not limited
to) such tasks as:

Defining the overall scope of application integration.

Determining the business process(es) to integrate.

Determining which WebLogic Platform components will be involved in the integration,
such as web services or workflows designed in WebLogic Workshop, portals created in
WebLogic Portal, and so on.

Determining which external systems and technologies will be involved in the integration,
such as .NET systems and other EISs.

Determining which BEA WebLogic Adapters for WebLogic Integration will be required,
such as the BEA WebLogic Adapter for .NET. An application integration solution can
involve multiple adapters.

This step involves the expertise of business analysts, system integrators, and EIS specialists
(including .NET specialists). Note that an application integration solution can be part of a larger
integration solution.

Step 2: Determine the Required .NET Business Workflows
Within the larger context of an application integration project, you must determine which specific
.NET integration objects are required to handle services and events to support the business
processes in the application integration solution.

Factors to consider include (but are not limited to):
BEA WebLogic Adapter for .NET User Guide 1-7

Type of .NET integration objects, workflows, and transport used to access the .NET
system.

.NET transactions involved in business processes

Logins required to access .NET transports and perform the required operations

Whether operations are, from the adapter point of view:

– services, which notify the .NET system with a request for action, and, in addition,
whether such services should be processed synchronously or asynchronously

– events, which are notifications from the .NET system

This step involves the expertise of .NET specialists, including analysts and administrators.

Step 3: Generate Schemas for .NET Integration Objects
After identifying the .NET integration objects required for the application integration solution,
you must generate the XML schemas that will be used to exchange data with one or more .NET
systems:

Services require two XML schemas: one for the .NET request and another for the .NET
response.

Events require a single XML schema to handle the data sent by the .NET system.

You use the BEA Application Explorer tool to generate schemas for .NET operations, or you can
generate the schemas yourself. To learn more about schemas, see Chapter 2, “Generating
Schemas for .NET Integration Objects.”

Step 4: Define Application Views and Configure Services and
Events
After you create the schemas for your .NET services or events, you create an application view
that provides an XML-based interface between WebLogic Server and a particular .NET system
within your enterprise. If you are accessing multiple .NET systems, you define a separate
application view for each .NET system you want to access. To provide different levels of security
access (such as “guest” and “administrator”), define a separate application view for each security
level.

Once you define an application view, you can configure events and services in that application
view that employ the XML schemas that you created in “Step 3: Generate Schemas for .NET
1-8 BEA WebLogic Adapter for .NET User Guide

Gett i ng S ta r t ed Wi th the Adapte r fo r . NET
Integration Objects” on page 1-8. To learn more about generating schemas, see Chapter 2,
“Generating Schemas for .NET Integration Objects.”

To learn more about defining application views, see Chapter 3, “Defining Application Views for
.NET” in conjunction with Using the Application Integration Design Console, at the following
URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

Step 5: Integrate Your Application With Other BEA Software
Components
Once you have configured and published one or more application views for .NET integration, you
can integrate these application views into other BEA software components, such as workflows or
Web services created in BEA WebLogic Workshop, or portals built with BEA WebLogic Portal.

For more information, see Using the Application Integration Design Console, particularly
Chapter 3, “Using Application Views with Application Workflows,” at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

Step 6: Deploy the Solution to the Production Environment
After you have designed, built, and tested your application integration solution, you can deploy
it into a production environment. The following list describes some of the tasks involved in
deploying an application integration:

Design the deployment.

Deploy the required components of the BEA WebLogic Platform.

Install and deploy the BEA WebLogic Adapter for .NET as described in BEA WebLogic
Adapter for .NET Installation and Configuration Guide

Deploy your application views and schemas for .NET integration.

Verify business processes in the production environment.

Monitor and tune the deployment.
BEA WebLogic Adapter for .NET User Guide 1-9

http://edocs.bea.com/wli/docs81/aiuser/index.html
http://edocs.bea.com/wli/docs81/aiuser/index.html

1-10 BEA WebLogic Adapter for .NET User Guide

BEA WebLogic Adapter for .NET User Guide 2-1

C H A P T E R 2

Generating Schemas for .NET
Integration Objects

The Adapter for .NET uses XML documents to communicate with your .NET system’s
integration objects for both services and events. The format of these XML documents is
determined by schemas. For certain services, the format of these XML documents is determined
by schemas you generate using the BEA Application Explorer. For other services and for events,
you generate schemas manually.

This section explains how to generate schemas. It contains the following topics:

Before You Begin

About Creating Schemas

About the Types of Schemas You Must Generate

About the BEA Application Explorer

Starting the BEA Application Explorer

Setting the Session Path

Managing .NET Connections

Creating Schemas for Services Using the BEA Application Explorer

Creating Schemas for Services and Events Manually

Next Steps

2-2 BEA WebLogic Adapter for .NET User Guide

Before You Begin
Before you begin to generate schema for the Adapter for .NET, you must:

Download and install the BEA Application Explorer software. To learn more, see the BEA
Application Explorer Installation and Configuration Guide at the following URL:

http://edocs.bea.com/wladapters/docs81/index.html

Obtain the information necessary to connect to your .NET system. Contact your .NET
administrator for this information.

About Creating Schemas
The BEA WebLogic Adapter for .NET enables you to handle schemas created in two different
ways:

Service schemas created automatically by the BEA Application Explorer

The BEA Application Explorer creates service schemas for services that interact directly
with your target .NET application. These service schemas are generated by pointing
directly to the assembly directory of your .NET application. To learn more, see “Creating
Schemas for Services Using the BEA Application Explorer” on page 2-10.

Service and Event Schemas created manually

All events and services in which a message is placed on a queue for consumption by your
.NET application require that you manually create the schema. For example, if you are
creating a service for a .NET application for which you do not have access to the
assemblies, or if you are creating services that interact with a number of .NET applications
that pull information from a queue, you enable these services by manually creating the
service schemas. To learn more, see “Creating Schemas for Services and Events Manually”
on page 2-12.

About the Types of Schemas You Must Generate
Each service or event the Adapter for .NET uses must be defined by a schema. In order to use
services and events, you must generate XML schemas for:

Service Requests

Service Responses

Events

http://edocs.bea.com/wladapters/docs81/index.html

About the BEA Appl i ca t ion Exp lo re r

BEA WebLogic Adapter for .NET User Guide 2-3

Service Requests
Service requests are requests for action that your application makes to your .NET system.
Requests are defined by request schema. As part of the definition, the request schema defines the
input parameters required by the .NET system. The .NET system responds to the request with a
service response.

Service Responses
Service responses are the way the .NET system responds to a service request. A service response
schema defines this service response. Service requests always have corresponding responses.

Events
Events are generated by the .NET system as a result of activity on that system. You can use these
events to trigger an action in your application. For example, the .NET system may generate an
event when customer information is updated. If your application must do something when this
happens, your application is a consumer of this event. Events are defined by event schema.

About the BEA Application Explorer
The BEA Application Explorer uses information in your .NET assembly to generate the schemas
required to build application view services. The BEA Application Explorer cannot generate
schemas for:

events

services with assemblies to which you do not have access

services that use an MSMQ queue

You must create schemas for these events and services manually. To learn more about creating
schemas manually, see Creating Schemas for Services and Events Manually.

This section contains the following topics:

About the Process for Defining Schemas Using the BEA Application Explorer

Configuring Your .NET Application for Application Explorer Inquiry

2-4 BEA WebLogic Adapter for .NET User Guide

About the Process for Defining Schemas Using the BEA
Application Explorer
The process for defining XML schemas includes the following steps:

1. Configuring Your .NET Application for Application Explorer Inquiry

2. Starting the BEA Application Explorer.

3. Setting the Session Path.

The BEA Application Explorer uses this path to create the directory for the schemas.

4. Creating a New Connection or Using an Existing Connection.

5. Creating Schemas for Services Using the BEA Application Explorer and Creating Schemas
for Services and Events Manually.

Configuring Your .NET Application for Application Explorer
Inquiry
Before you use the BEA Application Explorer to create service schemas, you must configure each
target .NET application to enable class and method exploration. The Application Explorer creates
service schemas based on the classes and methods you expose in the application. The adapter
defines .NET custom attributes that act as markers for which methods are to be exposed and
provides the invocation specifications for each exposed method.

Note: You must configure each .NET application with which you want the adapter to exchange
data.

1. Locate the assembly for the .NET application for which you must generate metadata.

2. Open the assembly using the Microsoft Visual Studio .NET editor.

3. Import the iwclr.dll file into the assembly.

For example:

using System;
using System.Xml;
using System.Text;
using iwclr;

4. Revise the code to add the custom attributes, including the location of the method.

About the BEA Appl i ca t ion Exp lo re r

BEA WebLogic Adapter for .NET User Guide 2-5

Note: All the custom attributes are packaged in iwclr.dll and belong to the iwclr namespace.
Adding a reference to iwclr.dll on the local machine makes the attributes available to
any .NET project.

For example:

Listing 2-1 Sample DLL Code With Attributes Added

[AgentAttribute("Math Agent")]

public class Math

{

const String ADD_INPUT_SCHEMA = "<xs:schema

xmlns:xs=\"http://www.w3.org/2001/XMLSchema\">" +

"<xs:element name=\"add\">" +

"<xs:complexType>" +

"<xs:sequence>" +

"<xs:element maxOccurs=\"unbounded\" name=\"parm\"

type=\"xs:int\"/>" +

"</xs:sequence>" +

"</xs:complexType>" +

"</xs:element>" +

"</xs:schema>";

const String ADD_OUTPUT_SCHEMA = "<xs:schema

xmlns:xs=\"http://www.w3.org/2001/XMLSchema\">" +

"<xs:element name=\"total\" type=\"xs:int\"/>" +

"</xs:schema>";

public Math()

[ParamsInParamsOutAttribute("Computes the Square Root of a Real Number")]

 public double Sqrt (double number)

 {

 return System.Math.Sqrt(number);

 }

 [ParamsInParamsOutAttribute("Computes the sine of a decimal angle in

degrees")]

 public double Sine (double angle)

 {

 return System.Math.Sin(angle);

2-6 BEA WebLogic Adapter for .NET User Guide

 }

 [ParamsInParamsOutAttribute("Computes the cosine of a decimal angle

in degrees")]

 public double Cosine (double angle)

 {

 return System.Math.Cos(angle);

 }

 [ParamsInParamsOutAttribute("Computes the exponentiation a^b")]

 public double Exponent (double a , double b)

 {

 return System.Math.Pow(a, b);

 }

 [ParamsInParamsOutAttribute("Multiplies two Integers")]

 public int Multiply (int a , int b)

 {

 return a * b;

 }

 [ParamsInParamsOutAttribute("Multiplies two Floats")]

 public float Multiply (float a , float b)

 {

 return a * b;

 }

 [XmlInXmlOutAttribute("Adds one or more integers", "add",

ADD_INPUT_SCHEMA, "total", ADD_OUTPUT_SCHEMA)]

 public XmlElement Add(XmlElement input)

Note: For the following descriptions, simple types are any of the .NET primitive types (for
example, System.Int32, System.Byte, etc.) and System.String. An XML
document by definition is represented using an instance of the .NET
System.Xml.XmlDocument class.

Sta r t ing the BEA Appl i ca t ion Exp lo re r

BEA WebLogic Adapter for .NET User Guide 2-7

The attributes are defined as follows:

5. Save and recompile the assembly.

Starting the BEA Application Explorer
You use the BEA Application Explorer to generate service request schemas and service response
schemas. The schemas you create are published in the WebLogic Integration repository.

To start the BEA Application Explorer:

1. Open the BEA Application Explorer.

– In Windows, choose Windows Start→Programs→BEA Application Explorer.

The BEA Application Explorer window appears.

Table 2-1 Attributes and Their Use

Attribute Use

AgentAttribute Applied to classes that must be exposed.

ParamsInParamsOutAttribute Applied to methods that must be exposed, and have
only primitive types or structures or arrays that only
use primitive types, as input and output.

XMLInXMLOutAttribute Applied to methods that must be exposed and have
only an XML element as input and an XML element
as output.

ParameterAttribute Applied to give more descriptive information about
parameters that are simple types. For example, in a
class exposing a divide method, it makes sense to
know which of a pair of input parameters of type
System.Int32 is the denominator.

2-8 BEA WebLogic Adapter for .NET User Guide

Setting the Session Path
The session path determines the directory where the BEA Application Explorer places your
generated XML schemas and connection information. Your schemas are stored here:

session_path\dotnet\connection_name\schemas

Here, connection_name is the value you specify when you select a connection. To learn more
about selecting a connection, see “Managing .NET Connections.”

To set the session path:

1. From the File menu, choose Session.

The Enter Session Path window appears, displaying a default path.

2. Do one of the following:

– To accept the default session path, click OK.

– To specify a different path, enter the path and click OK.

Specifying a different path allows you to group your schema according to project, or
other logical group.

Managing .NET Connections
The BEA Application Explorer must connect to your .NET system before you can generate
schemas. Therefore, you must first define a connect to your .NET system.

This section includes the following topics:

Creating a New Connection

Using an Existing Connection

Disconnecting from .NET

Removing Connections

Manag ing . NET Connect ions

BEA WebLogic Adapter for .NET User Guide 2-9

Creating a New Connection
If you are creating a new connection, be sure to check that you have the correct information for
your .NET system.

To create a new connection:

1. In the left pane of the BEA Application Explorer window, under Applications right-click
.NET→New Connection.

The BEA Application Explorer prompts you for a connection name.

2. Enter a name for this connection and click OK.

3. Click OK.

The new connection appears under the dotnet node in the BEA Application Explorer
window. You can now view business objects and services, as well as all available
integration objects in your .NET system.

Using an Existing Connection
You can use an existing connection rather than creating a new one.

To use an existing .NET connection:

1. In the left pane of the BEA Application Explorer window, under Applications right-click
.NET→Existing Connection→your connection.

The connection appears below the .NET node.

Enter a name for this connection.

2-10 BEA WebLogic Adapter for .NET User Guide

2. If the connection parameters do not correspond to your system, edit them in the .NET
Logon Window.

3. Click OK.

Disconnecting from .NET
The BEA Application Explorer allows you to disconnect from .NET.

To disconnect from .NET:

In the left pane of the BEA Application Explorer, right-click on the connection. Choose
Disconnect.

This disconnects from .NET, and the connection icon change to indicate that is not currently
connected. To re-establish the connection, right-click on the connection and choose Connect.

Removing Connections
The BEA Application Explorer allows you to remove connections when you no longer need
them.

To remove a connection:

In the left pane of the BEA Application Explorer, right-click on the connection. Choose
Remove.

Creating Schemas for Services Using the BEA Application
Explorer

Services require two schemas, one for the request and one for the response. Services always have
these two schema, even if the response is not used by your application. If your service does not
have access to the .NET assembly, you must create the schema manually. Likewise, if your
service uses an MSMQ queue, you must create the schemas manually. To learn more about

Select a connection to use it.

Creat ing Schemas f or Serv i ces Us ing the BEA Appl i ca t ion Exp lo re r

BEA WebLogic Adapter for .NET User Guide 2-11

creating service schemas manually, see “Creating Schemas for Services and Events Manually”
on page 2-12.

To create a schema for a service:

1. Start BEA Application Explorer. To learn more, see “Starting the BEA Application Explorer”
on page 2-7.

2. Set the session path. This determines where the BEA Application Explorer places your
schemas. To learn more, see “Setting the Session Path” on page 2-8.

3. Select or create a connection to .NET. To learn more, see “Managing .NET Connections”
on page 2-8.

4. Expand the tree under Applications → .NET → connection name → Integration Objects to see
the items for which you may create a schema. If you cannot expand the tree beneath .NET,
you have not set a connection for .NET.

5. Select the method for this schema.

6. Right-click the item for which you wish to create the schema and choose Create Service
Schemas.

Note: For your MSMQ service schemas to work properly, you must do some additional
configuration. To learn about this configuration, see “Configuring Schemas for
MSMQ” on page 2-16.

Expand the list of integration objects.

Select a method for this schema.

2-12 BEA WebLogic Adapter for .NET User Guide

The BEA Application Explorer displays tabs that show the request and response schemas.

The BEA Application Explorer creates a directory structure within the working directory
you identified earlier. In this example, the working directory is C:\BEA\BEASCHEMAS.

Within this directory, the BEA Application Explorer creates a folder called DOTNET as well
as subfolders to hold the schemas for each configured .NET connection. In this example,
the schemas were created in the folder called DotNetTest, and the BEA Application
Explorer adds the following items to the folder C:\BEAschemas\DOTNET\DotNetTest:

manifest.xml

service_Math_dll_Math_Math_Add.xsd

service_Math_dll_Math_Math_Add_response.xsd

You have successfully created service request and response schemas for this .NET application.

Creating Schemas for Services and Events Manually
The BEA Application Explorer creates schemas for some .NET services. However there are
several times when you must create schemas manually:

You don’t have access to the assembly for your .NET service

Your service posts information to an MSMQ queue

You are using an event. All event schemas must be created manually.

If you use the BEA Application Explorer to create service schemas, use the repository created in
that process to store these manually-created schemas. This is the most convenient way to create
the repository. If you do not use the BEA Application Explorer to create service schemas, you
must create the repository manually.

This topic contains the following subtopics:

About Schema Repositories

Creat ing Schemas fo r Se rv i ces and Events Manua l l y

BEA WebLogic Adapter for .NET User Guide 2-13

Creating a Schema Repository

Creating Schemas

About Schema Repositories
A schema repository consists of the following elements:

Manifest file (manifest.xml) that describes the event and service schemas contained in
the repository. For example, c:\BEAschemas\DotNet\.

Event and service schemas. The schemas files have an xsd extension.

Schemas describe each event arriving to and propagating out of an adapter. Schemas
describe each request sent to and each response received from an adapter. There is one
schema for each event, and there are two schemas for each service (one for the request and
one for the response).

Creating a Schema Repository
Creating a repository includes the following tasks:

Naming Schema Repositories

Creating a Manifest.xml File

Naming Schema Repositories
The schema repository is a directory. It has a three-part naming convention. For example, on
Windows a repository name is as follows:

session_base_directory\adapter\connection_name

Table 2-2 Schema Repository Naming Convention

Name Description

session_base_directory The schema’s session base path, which represents a
folder under which multiple sessions of schemas may
be held.

2-14 BEA WebLogic Adapter for .NET User Guide

For example, if the session base path is D:\bea\bse, the adapter type is .NET, and the connection
name is WebApp1, then the schema repository is the directory:

D:\bea\bse\DotNet\WebApp1

If you do not already have a repository of the correct name created by the BEA Application
Explorer, you must create the directory yourself.

Creating a Manifest.xml File
The manifest file relates documents (through their schemas) to services and events. The manifest
exposes schema references to the event relating the required document (via the root tag) to the
corresponding schema. Schemas and manifests are stored in the same directory, the repository
root. Each repository must have a manifest.

The following is an example of a manifest file showing the relationships between event schemas
and service request and response schemas.

Listing 2-2 Sample Maniftest.xml File

<?xml version="1.0" encoding="ISO-8859-1" ?>

<manifest>

<connection>

<directory>D:\DOTNET\DotNet\Assemblies</directory>

<recursive>false</recursive>

</connection>

<schemaref name="EXCEL_ADDR_IN">

<event root="workbook" file="Headers.xsd"/>

<request root="workbook" file="Headers.xsd"/>

<response root="emitStatus"

adapter The type of adapter (for example, .NET or SAP).

connection_name The name representing a particular instance of the
adapter. For example, WebApp1 can be a connection
for a particular .NET application, and WebApp2 can
be another; each of these systems having different
relevant events and services, and/or security access.

Name Description

Creat ing Schemas fo r Se rv i ces and Events Manua l l y

BEA WebLogic Adapter for .NET User Guide 2-15

file="service_MSMQ_response.xsd"/>

</schemaref>

<schemaref name="Math_dll_Math_Math_Add" alias="Math.dll_Math_Math_Add">

<request root="add" file="service_Math_dll_Math_Math_Add.xsd"/>

<response root="total"

file="service_Math_dll_Math_Math_Add_response.xsd"/>

</schemaref>

<schemaref name="Math_dll_Math_Math_Cosine"

alias="Math.dll_Math_Math_Cosine">

<request root="Cosine" file="service_Math_dll_Math_Math_Cosine.xsd"/>

<response root="CosineResponse"

file="service_Math_dll_Math_Math_Cosine_response.xsd"/>

</schemaref>

</manifest>

The manifest has a connection section that specifies the path to the directory where the assemblies
for your target application are stored. This can be ignored if you do not use the BEA Application
Explorer to generate service schemas. This section is created if you use the BEA Application
Explorer to create service schemas for services that connect directly to your .NET application.

The manifest also has a schema reference section, named schemaref. The schema reference
name appears in the drop-down list on the Add Service or Add Event screens in the WebLogic
Integration Application View Console. Each named schema reference can contain three schemas,
one of each type.

Creating Schemas
Schemas describe the rules of the XML documents that traverse WebLogic Integration. You can
generate a schema manually or by using a schema-generating tool. The following samples
demonstrate the kind of schema that you must create for each service that must emit XML
documents to a Microsoft Message Queue and for each event that pulls XML documents from a
Microsoft Message Queue. An instance document based on that schema follows the following
sample schema.

Note: The namespace prefix in the manifest file must be xsd:.

2-16 BEA WebLogic Adapter for .NET User Guide

Configuring Schemas for MSMQ
After you have created your MSMQ schemas, you must do some more configuration for them.
This applies to both MSMQ services and MSMQ events.

To create schemas for MSMQ:

1. Create the schemas using the BEA Application Explorer. To learn more about using the BEA
Application Explorer, see “Creating Schemas for Services Using the BEA Application
Explorer” on page 2-10.

2. In the BEA_DOTNET_SAMPLES.zip file included in the adapter distribution, find the
following files:

– Headers.xsd

– manifest.xml

– service_MSMQ_response.xsd

To get a copy of the samples, go to the following URL:

http://commerce.bea.com/products/weblogicadapters/wl_adapter_home.jsp

3. Extract these files to the directory where you created the schemas in Step 1. This is typically
session_base_directory\DOTNET.

This creates a directory named session_base_directory\DOTNET\msmq which contains
the schemas and manifest file.

Sample Schema File
The following event schema is referenced in the manifest file listed in “Creating a Manifest.xml
File” on page 2-14.

Listing 2-3 Sample Schema File

<?xml version="1.0" encoding="UTF-8"?>

<!--W3C Schema generated by XML Spy v4.3 U (http://www.xmlspy.com)-->

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

 <xsd:element name="Sheet1">

 <xsd:complexType>

 <xsd:sequence>

http://commerce.bea.com/products/weblogicadapters/wl_adapter_home.jsp

Creat ing Schemas fo r Se rv i ces and Events Manua l l y

BEA WebLogic Adapter for .NET User Guide 2-17

 <xsd:element ref="row" maxOccurs="unbounded"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="col1" type="xsd:string"/>

 <xsd:element name="col2" type="xsd:string"/>

 <xsd:element name="col3">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="Lord"/>

 <xsd:enumeration value="Mr"/>

 <xsd:enumeration value="Mrs"/>

 <xsd:enumeration value="Sir"/>

 <xsd:enumeration value="TITLE"/>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="col4" type="xsd:string"/>

 <xsd:element name="col5" type="xsd:string"/>

 <xsd:element name="col6" type="xsd:string"/>

 <xsd:element name="col7">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="COUNTRY"/>

 <xsd:enumeration value="Jamaica"/>

 <xsd:enumeration value="UK"/>

 <xsd:enumeration value="USA"/>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 <xsd:element name="row">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="col1"/>

 <xsd:element ref="col2"/>

 <xsd:element ref="col3"/>

 <xsd:element ref="col4"/>

 <xsd:element ref="col5"/>

2-18 BEA WebLogic Adapter for .NET User Guide

 <xsd:element ref="col6"/>

 <xsd:element ref="col7"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

 <xsd:element name="workbook">

 <xsd:complexType>

 <xsd:sequence>

 <xsd:element ref="Sheet1"/>

 </xsd:sequence>

 </xsd:complexType>

 </xsd:element>

</xsd:schema>

The following listing is an example of an instance document based on the previous schema:

Listing 2-4 Sample XML Instance Document

<?xml version="1.0" encoding="ISO-8859-1"?>

<workbook>

<Sheet1>

<row>

<col1>FIRST NAME</col1>

<col2>LAST NAME</col2>

<col3>TITLE</col3>

<col4>ADDRESS</col4>

<col5>CITY</col5>

<col6>STATE</col6>

<col7>COUNTRY</col7>

</row>

<row>

<col1>Paul</col1>

<col2>Fearon</col2>

<col3>Mr</col3>

<col4>2 Penn Plaza</col4>

Creat ing Schemas fo r Se rv i ces and Events Manua l l y

BEA WebLogic Adapter for .NET User Guide 2-19

<col5>New York</col5>

<col6>New York</col6>

<col7>USA</col7>

</row>

<row>

<col1>Jeff</col1>

<col2>Paoletti</col2>

<col3>Sir</col3>

<col4>2 Penn Plaza</col4>

<col5>New York</col5>

<col6>New York</col6>

<col7>USA</col7>

</row>

<row>

<col1>Jonathon</col1>

<col2>Platt</col2>

<col3>Lord</col3>

<col4>Wembley Point, Harrow Road</col4>

<col5>London</col5>

<col6>MIDDX</col6>

<col7>UK</col7>

</row>

<row>

<col1>Eileen</col1>

<col2>Anderson</col2>

<col3>Mrs</col3>

<col4>Belle Plain</col4>

<col5>Maypen</col5>

<col6>Clarendon</col6>

<col7>Jamaica</col7>

</row>

</Sheet1>

</workbook>

2-20 BEA WebLogic Adapter for .NET User Guide

Removing Schemas in the BEA Application Explorer
To remove a schema:

1. Right-click on an integration object for which there is at least one schema.

If there is an event schema defined for this integration object, the menu has a Remove
Event Schemas option.

If there are service schemas defined for this integration object, the menu has a Remove
Event Schema option.

2. Choose the appropriate option.

Next Steps
After you have defined schemas for your events and services, the next step is to create an
application view. An application view makes the services and events available to applications. To
learn more about application views, see Defining Application Views for .NET.

BEA WebLogic Adapter for .NET User Guide 3-1

C H A P T E R 3

Defining Application Views for .NET

An application view is a business-oriented interface to objects and operations within an EIS.

This section presents the following topics:

How to Use This Document

Before You Begin

About Application Views

About Defining Application Views

Defining Service Connection Parameters

Setting Service Properties

Setting Event Properties

Defining Event Connection Parameters

Testing Services

Testing Events Using a Service

3-2 BEA WebLogic Adapter for .NET User Guide

How to Use This Document
This document is designed to be used in conjunction with Using the Application Integration
Design Console, available at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

Using the Application Integration Design Console describes, in detail, the process of defining an
application view, which is a key part of making an adapter available to process designers and
other users. What Using the Application Integration Design Console does not cover is the specific
information—about connections to your .NET system, as well as supported services and events—
that you must supply as part of the application view definition. You will find that information in
this section.

At each point in Using the Application Integration Design Console where you need to refer to
this document, you will see a note that directs you to a section in your adapter user guide, with a
link to the edocs page for adapters. The following road map illustration shows where you need to
refer from Using the Application Integration Design Console to this document.

Figure 3-1 Information Interlock with Using the Application Integration Design Console

Before You Begin
Before you define an application view, make sure you have:

Installed and deployed the adapter according to the instructions in BEA WebLogic Adapter
for .NET Installation and Configuration Guide.

Determined which business processes need to be supported by the application view. The
required business processes determine the types of services and events you include in your
application views. Therefore, you must gather information about the application’s business
requirements from the business analyst. Once you determine the necessary business

http://edocs.bea.com/wli/docs81/aiuser/index.html

About App l i ca t i on Views

BEA WebLogic Adapter for .NET User Guide 3-3

processes, you can define and test the appropriate services and events. For more
information, see “Getting Started With the Adapter for .NET” on page 1-6.

Gathered the connection information for your .NET system. To learn more about the
connection information needed for your .NET system, see your .NET system administrator.

About Application Views
An application view defines:

Connection information for the EIS, including login information, connection settings, and
so on.

Service invocations, including the information the EIS requires for this request, as well as
the request and response schemas associated with the service.

Event notifications, including the information the EIS publishes and the event schema for
inbound messages.

Typically, an application view is configured for a single business purpose and contains only the
services and events required for that purpose. An EIS might have multiple application views, each
defined for a different purpose.

About Defining Application Views
Defining an application view is a multi-step process described in Using the Application
Integration Design Console, available at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

The information you enter depends on the requirements of your business process and your EIS
system configuration. Figure 3-2 summarizes the procedure for defining and configuring an
application view.

http://edocs.bea.com/wli/docs81/aiuser/index.html

3-4 BEA WebLogic Adapter for .NET User Guide

Figure 3-2 Process for Defining and Configuring an Application View

To define an application view:

1. Log on to the WebLogic Integration Application View Console.

2. Define the application context by selecting an existing application or specifying a new
application name and root directory.

This application will be using the events and services you define in your application view.
The application view works within the context of this application.

3. Add folders as required to help you organize application views.

4. Define a new application view for your adapter.

5. Add a new connection service or select an existing one.

If you are adding a new connection service, see “Defining Service Connection Parameters”
on page 3-5 for details about .NET requirements.

6. Add the events and services for this application view.

See the following sections for details about .NET requirements:

– “Setting Service Properties” on page 3-6

Def i n ing Se rv i ce Connect ion Paramete rs

BEA WebLogic Adapter for .NET User Guide 3-5

– “Setting Event Properties” on page 3-10

7. Perform final configuration tasks.

If you are adding an event connection, see “Defining Event Connection Parameters” on
page 3-12 for details about .NET requirements.

8. Test all services and events to make sure they can properly interact with the target .NET
system.

See the following sections for details about .NET requirements:

– “Testing Services” on page 3-13

– “Testing Events Using a Service” on page 3-19

9. Publish the application view to the target WebLogic Workshop application.

This is the application you specified in step 2. Publishing the application view allows
workflow developers within the target application to interact with the newly published
application view using an Application View control.

Defining Service Connection Parameters

This information applies to “Step 5A, Create a New Browsing Connection” in Using the
Application Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

The Select Browsing Connection page allows you to choose the type of connection factory to
associate with the application view. You can select a connection factory within an existing
instance of the adapter or create a connection factory within a new adapter instance.

After you enter a connection name and description, you use the Configure Connection Parameters
page to specify connection parameters for a connection factory.

To create a new browsing connection:

Click to create a new
connection factory

Existing connection
factories will be here.

http://edocs.bea.com/wli/docs81/aiuser/index.html

3-6 BEA WebLogic Adapter for .NET User Guide

1. In the Create New Browsing Connections page, enter a connection name and description as
described in Using the Application Integration Design Console.

The Configure Connection Parameters page appears to allow you to configure the newly
created connection factory within the new adapter instance.

Note: A red asterisk () indicates that a field is required.

2. Specify a session path and connection name.

This information enables the application view to interact with the target .NET system. You
need enter this information only once per application view.

3. Click Connect to EIS.

You return to the Create New Browsing Connections, where you can specify connection
pool parameters and logging levels. For more information, see Using the Application
Integration Design Console at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

Setting Service Properties

This information applies to “Step 6A, Add a Service to an Application View” in Using the
Application Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

Adapter for .NET uses services to make requests of the .NET system. A service consists of both
a request and a response. The Adapter for .NET supports the following services:

DotNet Service

MSMQ Service

Specify a session path.
Specify a connection.

http://edocs.bea.com/wli/docs81/aiuser/index.html
http://edocs.bea.com/wli/docs81/aiuser/index.html

Set t ing Ser v i ce P rope r t ies

BEA WebLogic Adapter for .NET User Guide 3-7

DotNet Service

This information applies to “Step 6A, Add a Service to an Application View” in Using the
Application Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

After you create and configure an application view, you can add services that support the
application’s functions.

To configure a DotNet Service:

1. Enter a unique service name that describes the function the service performs.

2. Select dotNetService from the Select list.

The Add Services page displays the fields required for this service type.

Note: A red asterisk () indicates that a field is required.

3. Enter the following information:

4. See “Common Service and Event Settings” on page 3-9 for information about selecting a
schema and configuring tracing.

Table 3-1 DotNet Service Parameters

Parameter Description

directory Directory where the assemblies for your target .NET application are stored.

http://edocs.bea.com/wli/docs81/aiuser/index.html

3-8 BEA WebLogic Adapter for .NET User Guide

MSMQ Service

This information applies to “Step 6A, Add a Service to an Application View” in Using the
Application Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

After you create and configure an application view, you can add services that support the
application’s functions.

To configure an MSMQ Service:

1. Enter a unique service name that describes the function the service performs.

2. Select MSMQEmitter from the Select list.

The Add Services page displays the fields required for this service type.

Note: A red asterisk () indicates that a field is required.

3. Enter the following information:

Table 3-2 MSMQ Service Parameters

Parameter Description

Queue Name The name of the Microsoft Message queue on which to post the messages.

Correlation ID The correlation ID used in the MSMQ message header.

Priority Sets the priority of the message in the message queue and can be used to
determine the order in which messages are retrieved from the queue; 0 is
the lowest priority, and 9 is the highest priority.

http://edocs.bea.com/wli/docs81/aiuser/index.html

Set t ing Ser v i ce P rope r t ies

BEA WebLogic Adapter for .NET User Guide 3-9

4. See “Common Service and Event Settings” on page 3-9 for information about selecting a
schema and configuring tracing.

Common Service and Event Settings

This information applies to “Step 6A, Add a Service to an Application View” in Using the
Application Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

You select a schema and select tracing options the same way for all services.

To set common service settings:

1. In the Schema list, select the schema you want to use with this service.

For more information, see Chapter 2, “Generating Schemas for .NET Integration Objects.”

For MSMQ services and events, use the schema Headers.xsd. To learn more about MSMQ
schemas, see “Configuring Schemas for MSMQ” on page 2-16.

2. Configure logging and tracing for this service, as follows:

Logging captures information from your adapter and writes it in a log file. Tracing displays
runtime information in the console. You set the type and amount of information you wish
to capture as part of the final configuration tasks. This is described in detail in Using the
Application Integration Design Console.

a. Select the Trace on/off check box to enable tracing for this service. Trace information
appears in the runtime console.

a. Select the Verbose Trace on/off check box to enable more detailed tracing for this service.

a. Select the Document Trace on/off check box to enable inclusion of all documents sent or
received by the adapter in the trace for this service.

3. Click Add to add the service or event.

http://edocs.bea.com/wli/docs81/aiuser/index.html

3-10 BEA WebLogic Adapter for .NET User Guide

For more information about the next step, see Using the Application Integration Design
Console at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

Setting Event Properties

This information applies to “Step 6B, Add an Event to an Application View” in Using the
Application Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

An event defines how your application responds to events generated by .NET. The Adapter for
.NET supports the following events:

MSMQ Event

MSMQ Event

This information applies to “Step 6B, Add an Event to an Application View” in Using the
Application Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

In a MSMQ event, the adapter picks up a message from a specific Microsoft Message queue.

To configure an MSMQ Event:

1. Enter a unique event name that describes the function the event performs.

The Add Events page displays the fields required for this event type.

http://edocs.bea.com/wli/docs81/aiuser/index.html
http://edocs.bea.com/wli/docs81/aiuser/index.html
http://edocs.bea.com/wli/docs81/aiuser/index.html

Set t ing Event P rope r t ies

BEA WebLogic Adapter for .NET User Guide 3-11

Note: A red asterisk () indicates that a field is required.

2. Enter the following information:

3. See “Common Service and Event Settings” on page 3-9 for information about selecting a
schema and configuring tracing.

Table 3-3 MQEvent Parameters

Parameter Description

Queue Name The name of the Microsoft Message queue that the adapter for .NET polls
for events.

Message ID Filter Filters messages so that only messages with the ID specified are pulled
from the queue.

Correlation ID Filter The CorrelationId of the message to be received.

Polling Interval The maximum wait interval (in the format nnH:nnM:nnS) between checks
for new documents. The higher this value, the longer the interval,and the
fewer system resources that are used. However, with a high value, the
worker thread cannot respond to a stop command. If timeout is set to 0, the
listener runs once and terminates. Default is 2 seconds.

Character Set Encoding The character set encoding for inbound documents, for example, UTF-8.

Error Queue The name of the error queue to be used for dead letters.

Error Correlation ID The correlation ID used in the MSMQ error message header.

Error Message Priority Sets the priority of the error message; 0 is the lowest, and 9 is the highest.

3-12 BEA WebLogic Adapter for .NET User Guide

Defining Event Connection Parameters

This information applies to “Step 7, Perform Final Configuration Tasks” in Using the Application
Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

Once you have finished adding services and events and have saved your application view, you
must perform some final configuration tasks, including configuring event delivery connections,
before testing the services and events. You perform these configuration tasks from the Final
Configuration and Testing page.

To define event connection parameters:

1. In Connections area on the Application View Administration page, click Select/Edit.

2. In the Event Connection area, click Event to edit the default event connection.

The Configure Event Delivery Parameters page appears.

Note: A red asterisk () indicates that a field is required.

3. Enter the following information:

Table 3-4 Event Connection Parameters

Parameter Description

username Your WebLogic Server Administration Console user name, defined in the
startWebLogic script

password The password for your WebLogic Server Administration Console user name

SleepCount The number of seconds the adapter will wait between polling for events

Enter connection information
for your system.

http://edocs.bea.com/wli/docs81/aiuser/index.html

Test ing Se rv ices

BEA WebLogic Adapter for .NET User Guide 3-13

The event delivery parameters you enter on this page enable connection to your .NET
system and are used when generating events. The parameters are specific to the associated
adapter and are defined in the wli-ra.xml file within the base adapter.

4. Click Save to save your event delivery parameter settings. Click Continue to return to the
Edit Event Adapter page, and then click Back to return to the Final Configuration and
Testing page.

The Edit Event Adapter page allows you to define event parameters and configure the
information that will be logged for the connection factory. Select one of the following
settings for the log:

– Log errors and audit messages

– Log warnings, errors, and audit messages

– Log informational, warning, error, and audit messages

– Log all messages

Note: For maximum tracing, select Log all Messages. This is the recommended setting to use
when you are collecting debugging information for BEA support.

The table that follows describes the type of information that each logging message
contains.

Testing Services

Table 3-5 Logging message categories

This type of message Contains

Audit Extremely important information related to the business processing
performed by an adapter.

Error Information about an error that has occurred in the adapter, which may
affect system stability.

Warning Information about a suspicious situation that has occurred. Although
this is not an error, it could have an impact on adapter operation.

Information Information about normal adapter operations.

3-14 BEA WebLogic Adapter for .NET User Guide

This information applies to “Step 8A, Test an Application View’s Services” in Using the
Application Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

The purpose of testing an application view service is to evaluate whether that service interacts
properly with the target .NET system. When you test a service, you supply any inputs required to
start the service. For the Adapter for .NET, the input is in the form of a valid XML string that acts
as input for the service.

You can test both types of .NET services:

Testing a dotNetService

To learn more about testing a DotNet service, see “Testing a dotNetService” on page 3-14.

Testing an MSMQ Service

To learn more about testing a MSMQ service, see “Testing an MSMQ Service” on
page 3-16.

Note: You can test an application view only if it is deployed and only if it contains at least one
event or service.

Testing a dotNetService
To test a DotNet service that interacts directly with a target .NET application:

1. In the Summary for Application View page, click the Test link beside the service to be tested.

The Test Services page opens.

http://edocs.bea.com/wli/docs81/aiuser/index.html

Test ing Se rv ices

BEA WebLogic Adapter for .NET User Guide 3-15

2. Enter the sample request document that matches the request schema for the selected service,
for example,

<?xml version="1.0" encoding="UTF-8"?>

<!--Sample XML file generated by XMLSPY v5 rel. 4 U
(http://www.xmlspy.com)-->

<add xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="C:\BEAschemas\DOTNET\DotNetTest\service_
Math_dll_Math_Math_Add.xsd"
location="/Math.dll/Math.Math/Add(System.Xml.XmlElement)">

<parm>1</parm>

<parm>2</parm>

<parm>3</parm>

</add>

3. Click Test.

The Test Results page displays the XML Response document generated after a successful
execution.

3-16 BEA WebLogic Adapter for .NET User Guide

Testing an MSMQ Service
To test an MSMQ Service:

1. In the Summary for Application View page, click the Test link beside the service to be tested.

Test ing Se rv ices

BEA WebLogic Adapter for .NET User Guide 3-17

The Test Services page opens.

2. Enter the sample request document that matches the request schema for the selected service,
for example,

<?xml version="1.0" encoding="ISO-8859-1"

?><workbook><Sheet1><row><col1>FIRST NAME</col1><col2>LAST

NAME</col2><col3>TITLE</col3><col4>ADDRESS</col4><col5>CITY</col5><col6>ST

ATE</col6><col7>COUNTRY</col7>

</row><row><col1>Paul</col1><col2>Fearon</col2><col3>Mr</col3><col4>2 Penn

Plaza</col4><col5>New York</col5><col6>New York</col6><col7>USA</col7>

</row><row><col1>Jeff</col1><col2>Paoletti</col2><col3>Sir</col3><col4>2

Penn Plaza</col4><col5>Springfield</col5><col6>New

York</col6><col7>USA</col7>

</row><row><col1>Jonathon</col1><col2>Platt</col2><col3>Mr</col3><col4>Wem

bley Point, Harrow

Road</col4><col5>London</col5><col6>MIDDX</col6><col7>UK</col7>

</row><row><col1>Eileen</col1><col2>Anderson</col2><col3>Mrs</col3><col4>B

elle

Plain</col4><col5>Maypen</col5><col6>Clarendon</col6><col7>Jamaica</col7><

/row>

3-18 BEA WebLogic Adapter for .NET User Guide

 </Sheet1></workbook>

3. Click Test.

The results appear in the WebLogic test window.

The Test Results page displays the XML Response document generated after a successful
execution.

The message appears on the Microsoft Message Queue supplied during the service configuration.
Check the queue for the message.

Tes t ing Events Us ing a Se rv ice

BEA WebLogic Adapter for .NET User Guide 3-19

Testing Events Using a Service
This information applies to “Step 8B, Test an Application View’s Events” in Defining an
Application View in Using the Application Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/2usrdef.html

The purpose of testing an application view event is to enure that the adapter correctly handles
events generated by your target .NET application. When you test an event, you can trigger the
event using a service or manually.

Note: You can test an application view only if it is deployed and only if it contains at least one
event or service. To learn more about deploying an application view, see Deploying
WebLogic Integration Solutions.

To test an MSMQ Event using a service:

1. In the Application View Administration page, click the Test link beside the event to be tested.

The Test Events page opens.

3-20 BEA WebLogic Adapter for .NET User Guide

2. Click Service and select a service that triggers the event you are testing.

3. In the Time field, enter a reasonable period of time to wait, specified in milliseconds, before
the test times out (One second = 1000 milliseconds. One minute = 60,000 milliseconds.).

4. Click Test and enter the XML string needed to trigger the service.

The service is executed.

Tes t ing Events Us ing a Se rv ice

BEA WebLogic Adapter for .NET User Guide 3-21

– If the test succeeds, the Test Result page opens. It shows the event document, the
service input document, and the service output document.

– If the test fails, the Test Result page displays only a Timed Out message.

3-22 BEA WebLogic Adapter for .NET User Guide

BEA WebLogic Adapter for .NET User Guide I-1

Index

Symbols
.NET Assemblies

described 1-2
.NET framework

described 1-2

A
adapter

benefits 1-6
Application Explorer

about the BEA Application Explorer 2-3
starting 2-7

application views
adding events to 3-10
adding services to 3-6
events, adding 3-10
final configuration tasks 3-12
overview of defining 3-3
preparing to define 3-2
services, adding 3-6
services, testing 3-13
testing services 3-13

ASP.NET
described 1-2

auditing events 3-13

B
BEA WebLogic Adapter for .NET, overview
of 1-1
benefits of adapter 1-6

C
common language runtime (CLR)

described 1-2
Common Language Specification (CLS)

described 1-2
connections

creating a new connection 2-9
editing an existing connection 2-9

Custom Attributes
described 1-3

customer support contact information ix

D
default session path, changing 2-8
defining schemas 2-4
DotNet service

configuring 3-7

E
events

about 2-3
adding to application views 3-10
auditing 3-13

G
getting started 1-6

L
logging 3-13

M
Microsoft Message Queue

described 1-3
MSMQ event

configuring 3-10

1-2 BEA WebLogic Adapter for .NET User Guide

P
product support ix

R
related information viii

S
schemas

defining 2-4
events 2-3
service requests 2-3
service responses 2-3

service requests 2-3
service responses 2-3
services

adding to application views 3-6
testing 3-13

session path, changing 2-8
support ix
supported operations 1-5

T
technical support ix

	Copyright
	About This Document
	Who Should Read This Documentation
	Additional Information
	How to Use This Document
	Contact Us!
	Documentation Conventions

	Introducing the BEA WebLogic Adapter for .NET
	About the BEA WebLogic Adapter for .NET
	About the .NET Framework
	.NET Assemblies
	Custom Attributes
	Microsoft Message Queue

	About the Architecture of the BEA WebLogic Adapter for .NET
	Supported .NET Operations for Application Integration
	Supported Services
	Supported Events
	Benefits of the Adapter for .NET

	Getting Started With the Adapter for .NET
	Step 1: Design the Application Integration Solution
	Step 2: Determine the Required .NET Business Workflows
	Step 3: Generate Schemas for .NET Integration Objects
	Step 4: Define Application Views and Configure Services and Events
	Step 5: Integrate Your Application With Other BEA Software Components
	Step 6: Deploy the Solution to the Production Environment

	Generating Schemas for .NET Integration Objects
	Before You Begin
	About Creating Schemas
	About the Types of Schemas You Must Generate
	Service Requests
	Service Responses
	Events

	About the BEA Application Explorer
	About the Process for Defining Schemas Using the BEA Application Explorer
	Configuring Your .NET Application for Application Explorer Inquiry

	Starting the BEA Application Explorer
	Setting the Session Path
	Managing .NET Connections
	Creating a New Connection
	Using an Existing Connection
	Disconnecting from .NET
	Removing Connections

	Creating Schemas for Services Using the BEA Application Explorer
	Creating Schemas for Services and Events Manually
	About Schema Repositories
	Creating a Schema Repository
	Naming Schema Repositories
	Creating a Manifest.xml File

	Creating Schemas
	Configuring Schemas for MSMQ
	Sample Schema File

	Removing Schemas in the BEA Application Explorer

	Next Steps

	Defining Application Views for .NET
	How to Use This Document
	Before You Begin
	About Application Views
	About Defining Application Views
	Defining Service Connection Parameters
	Setting Service Properties
	DotNet Service
	MSMQ Service
	Common Service and Event Settings

	Setting Event Properties
	MSMQ Event

	Defining Event Connection Parameters
	Testing Services
	Testing a dotNetService
	Testing an MSMQ Service

	Testing Events Using a Service

	Index

