
BEA
 WebLogic
Adapter for
HIPAA

User Guide
Release 7.0
Document Date: November 2002

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Copyright © 2002 iWay Software. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

BEA WebLogic Adapter for HIPAA User Guide

Part Number Date

N/A November 2002

Table of Contents

About This Document
What You Need to Know .. viii

Related Information... viii

Contact Us! .. ix

Documentation Conventions ...x

1. Introduction to HIPAA
The BEA WebLogic Adapter for HIPAA ... 1-3

WebLogic Integration and HIPAA.. 1-4

Document Conversion ... 1-5

The BEA WebLogic Adapter for HIPAA Toolkit .. 1-8

Rules Files ... 1-10

EDI to XML Transformation... 1-10

Event Transport Protocol Options.. 1-10

HIPAA Validation Processing... 1-11

Configuration... 1-12

2. Metadata, Schemas, and Repositories
Understanding Metadata.. 2-2

Schemas and Repositories ... 2-3

The Repository Manifest ... 2-4

Message Schemas, Rules, and Code Sets.. 2-5

Samples File ... 2-5

3. Defining an Application View for the BEA WebLogic Adapter
for HIPAA

Metadata .. 3-2
BEA WebLogic Adapter for HIPAA User Guide iii

Creating a New Application View... 3-3

4. Service and Event Configuration
Adding a Service to an Application View ... 4-2

Adding an Event to an Application View.. 4-8

Deploying an Application View .. 4-19

Testing Services and Events .. 4-21

5. BEA WebLogic Adapter for HIPAA Integration Using Business
Process Management

Business Process Management Functionality.. 5-1

6. Writing and Editing Rule Specification Files
Rule Specification Files... 6-2

Example: Creating a Simple Rule Specification File.......................... 6-2

Reference: Syntax for Writing Rules .. 6-3

Built-in HIPAA Rules ... 6-5

Condition Designator (cd=).. 6-5

Reference: Supported Designators .. 6-6

If/Then Date Format Rules... 6-7

HIPAA Rule Set .. 6-7

checkDTM.. 6-8

checkDTP ... 6-8

checkDMG ... 6-9

checkQTY... 6-9

checkCD ... 6-10

isN... 6-10

isR... 6-11

isDate.. 6-11

isTime ... 6-12

isFDATE... 6-12

checkLen... 6-13

checkUsage... 6-13

isCDate ... 6-15

checkList... 6-16
iv BEA WebLogic Adapter for HIPAA User Guide

Example: Resolving a Checklist File Alias in the Custom Dictionary
6-16

checkEQ ... 6-17

segXO... 6-17

compositeIntegrity.. 6-18

relationalIntegrity ... 6-18

loopSegCount ... 6-19

balance.. 6-19

tranBal .. 6-20

Rules In Java.. 6-20

Example: Writing Rules in Java.. 6-21

Writing Rule Search Routines in Java... 6-23

Example: Loading a Java File ... 6-24

7. Functional Acknowledgement Handling
Acknowledgement Processing... 7-2

Documents, Validation, and Acknowledgement.. 7-3

Acknowledgement Agent ... 7-5

Acknowledgement Message Handling... 7-6

Creating an Acknowledgement Event... 7-7

Testing Acknowledgement Message Handling................................. 7-14
BEA WebLogic Adapter for HIPAA User Guide v

vi BEA WebLogic Adapter for HIPAA User Guide

About This Document

The BEA WebLogic Adapter for HIPAA User Guide is organized as follows:

Chapter 1, “Introduction to HIPAA,” introduces the BEA WebLogic Adapter for
HIPAA, describes its features, and gives an overview of how it works.

Chapter 2, “Metadata, Schemas, and Repositories,” describes metadata, how to
name a schema repository and the schema manifest, how to create a schema,
how to store directory and template files for transformations.

Chapter 3, “Defining an Application View for the BEA WebLogic Adapter for
HIPAA,” describes how metadata is used and how application views are created.

Chapter 4, “Service and Event Configuration,” describes how to add services and
events to application views.

Chapter 5, “BEA WebLogic Adapter for HIPAA Integration Using Business
Process Management,” describes how events are incorporated into workflow
design.

Chapter 6, “Writing and Editing Rule Specification Files,” describes how rules
files work with the validation engine and how these files can be customized to
suit an enterprise’s needs.

Chapter 7, “Functional Acknowledgement Handling,” describes the process of
acknowledging a document after it has passed through validation.
BEA WebLogic Adapter for HIPAA User Guide vii

What You Need to Know

This document is written for system integrators who develop client interfaces between
HIPAA and other applications. It describes how to use the BEA WebLogic Adapter for
HIPAA and how to develop application environments with specific focus on message
integration. It is assumed that readers know Web technologies and have a general
understanding of Microsoft Windows and UNIX systems.

Related Information

The following documents provide additional information for the associated software
components:

BEA WebLogic Adapter for HIPAA Installation and Configuration Guide

BEA WebLogic Adapter for HIPAA Release Notes

BEA Application Explorer Installation Guide

BEA WebLogic Server installation and user documentation, which is available at
the following URL:

http://edocs.bea.com/more_wls.html

BEA WebLogic Integration installation and user documentation, which is
available at the following URL:

http://edocs.bea.com/more_wli.html
viii BEA WebLogic Adapter for HIPAA User Guide

Contact Us!

Your feedback on the BEA WebLogic Adapter for HIPAA documentation is important
to us. Send us e-mail at docsupport@bea.com if you have questions or comments.
Your comments will be reviewed directly by the BEA professionals who create and
update the BEA WebLogic Adapter for HIPAA documentation.

In your e-mail message, please indicate which version of the BEA WebLogic Adapter
for HIPAA documentation you are using.

If you have any questions about this version of the BEA WebLogic Adapter for
HIPAA, or if you have problems using the BEA WebLogic Adapter for HIPAA,
contact BEA Customer Support through BEA WebSupport at www.bea.com. You can
also contact Customer Support by using the contact information provided on the
Customer Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages
BEA WebLogic Adapter for HIPAA User Guide ix

mailto:docsupport@bea.com
www.bea.com

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR
x BEA WebLogic Adapter for HIPAA User Guide

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

That an argument can be repeated several times in a command line

That the statement omits additional optional arguments

That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
BEA WebLogic Adapter for HIPAA User Guide xi

xii BEA WebLogic Adapter for HIPAA User Guide

CHAPTER
1 Introduction to HIPAA

This section introduces the BEA WebLogic Adapter for HIPAA, describes its features,
and gives an overview of how it works. It includes the following topics:

The BEA WebLogic Adapter for HIPAA

WebLogic Integration and HIPAA

Document Conversion

The BEA WebLogic Adapter for HIPAA Toolkit

Rules Files

EDI to XML Transformation

HIPAA Validation Processing

Configuration

The Health Insurance Portability and Accountability Act (HIPAA) was enacted in
1996 and includes provisions for the following improvements in the US health care
system nationally:

Assurance of the portability of health plan coverage

Limitations on how pre-existing condition restrictions can be applied

Strict protection of a patient's right to privacy and confidentiality

Administrative simplification to reduce non-clinical health care operating costs
BEA WebLogic Adapter for HIPAA User Guide 1-1

1 Introduction to HIPAA
The impetus behind the fourth requirement was no less than the federal government's
objective of balancing the federal budget and the reduction of its spending deficit.
HIPAA helps support this macroeconomic objective, theoretically, by mandating the
use of standards whenever health care entities send automated transactions to one
another. That includes any entity doing business with HCFA (Health Care Financing
Administration) health care agencies—Medicare and Medicaid. These two entities
account for a large portion of the federal budget. Nearly every health care organization
in the United States does business with these two government sponsors of health
coverage.

Accordingly, in theory, any streamlining of business-to-business communications and
related processes would provide an operational cost savings to—among others—the
Federal Government’s health care branches. This is but one factor that has catalyzed a
push for HIPAA enactment and enforcement.

To make HIPAA work, the secretary of the Department of Health and Human Services
was required to adopt standards to support the Electronic Data Interchange (EDI) of
administrative and financial health care transactions primarily between health care
providers and plans. The choices were:

ANSI X12 for EDI in health care

October 1997 ASC X12 Standards Version 4, Release 1, Sub-release 0 (004010)

NCPDP for EDI Specific to Retail Pharmacies

NCPDP, Real-Time Transactions Version 5.1

NCPDP, Batch Transactions Version 1.0

Various medical and nonmedical code sets would be adopted for use in conjunction
with these standards.

The provisions for administrative simplification include the use of national identifiers
for the following key entities in health care:

Payers

Employers

Providers

Patients

The nomenclature for these identifiers has yet to be agreed upon.
1-2 BEA WebLogic Adapter for HIPAA User Guide

The BEA WebLogic Adapter for HIPAA
The provision for protection of a patient’s right to privacy and confidentiality has been
only vaguely defined in terms of precisely how that should be achieved when
information technology (IT) is involved.

HIPAA mandates present both business and information technology challenges. The
BEA WebLogic Adapter for HIPAA is designed to help meet the challenges of the
HIPAA mandate, by enabling accelerated integration of IT assets, thus allowing health
care enterprises to realize the business benefits of the HIPAA mandate.

The BEA WebLogic Adapter for HIPAA

The BEA WebLogic Adapter for HIPAA enables fast integration of HIPAA EDI
transactions into your existing environment. This kit enables developers to parse,
transform, validate, store, and integrate health care information into the existing
enterprise and pass information electronically to partners in HIPAA mandated form.
To enable fast integration, BEA not only has supplied a parser for the HIPAA EDI
documents, but also has supplied pre-built templates that enable developers to convert
EDI documents to XML form or XML documents into EDI form.

The schemas required for mapping to or from the EDI format and dictionaries are used
to describe the 12 HIPAA EDI transactions. These files are used by transformation
templates (.xch suffix) that map the conversion to and from XML. Rules, schemas,
dictionaries, and transformation templates can be customized, if the need arises. If a
dictionary changes, the new corresponding schema and transformation template can be
updated to reflect the change in the document by running a simple procedure. The
toolkit consists of three major components allowing integration of HIPAA into your
enterprise:

Optional protocol support for File, FTP, MQ Series, and HTTP

HIPAA toolkit containing:

HIPAA ASC X12N 4010 dictionaries

XML Schemas

Rules files and transformation templates

Event and service adapters
BEA WebLogic Adapter for HIPAA User Guide 1-3

1 Introduction to HIPAA
The adapter provides pre-packaged support for the HIPAA standard documents, but
does not provide out-of-the-box the ability to customize those formats. Please contact
BEA professional services if you need to customize these formats.

WebLogic Integration and HIPAA

WebLogic Integration is the hub of the BEA WebLogic Adapter for HIPAA. This
service performs the runtime transformation of the HIPAA transaction sets. The
adapter deploys and references transformation templates (.xchs) at run time. The
adapter also applies the pre-built rules to the transformed EDI document and builds the
functional acknowledgement or 997 documents.

Multiple protocol (optional adapter features) are configurable and transformation is
normally applied per event or service, that is, an event or service for a specific HIPAA
document type. The document read or write and conversion operations are
manipulated at the document level by simple and intuitive JSP pages in the WebLogic
Integration Application View Console.

When applying a transformation in a WebLogic Integration solution (using the BEA
WebLogic Adapter for HIPAA service and event application views), the EDI
document is sent to the workflow as XML for business processing.
1-4 BEA WebLogic Adapter for HIPAA User Guide

Document Conversion
Document Conversion

The BEA WebLogic Adapter for HIPAA runs an application view (service or event),
which is configured to transform HIPAA EDI documents to XML documents (and vice
versa), and validate the HIPAA documents (based on the published implementation
guides). The process involves the transformation of the incoming EDI document,
applying all the mapping rules that have been created at design time, using the
application view definition. After the document is transformed to XML, the level 1-5
validation tests are performed. The rules engine uses a rule file (supplied for each
transaction) that applies rules as per the implementation guide for each transaction.
After validation, a functional acknowledgement is created and can be routed back to
the originator of the transaction.

The process for converting XML to HIPAA is almost the reverse process, with an
exception if the XML document is built incorrectly prior to transformation to EDI
format.

The following diagrams show the steps for document conversion from:

1. EDI to XML

2. XML to EDI
BEA WebLogic Adapter for HIPAA User Guide 1-5

1 Introduction to HIPAA
Figure 1-1 Converting an EDI Document to an XML Document
1-6 BEA WebLogic Adapter for HIPAA User Guide

Document Conversion
Figure 1-2 Converting an XML Document to an EDI Document
BEA WebLogic Adapter for HIPAA User Guide 1-7

1 Introduction to HIPAA
The BEA WebLogic Adapter for HIPAA comes with a WebLogic-based JSP Console
page that allows authorized users to manage the adapter, protocol options, validation,
rules, and other configuration tasks.

The BEA WebLogic Adapter for HIPAA
Toolkit

The BEA WebLogic Adapter for HIPAA toolkit includes prebuilt XML to EDI and
EDI to XML templates for all of the 4010 HIPAA transaction sets.
1-8 BEA WebLogic Adapter for HIPAA User Guide

The BEA WebLogic Adapter for HIPAA Toolkit
Figure 1-3 Documents Supplied for XML to EDI and EDI to XML Translation

These documents must be stored under the %wlidomain% in the following directory
structure:

HIPAA\rules – Validation files (.xml)

HIPAA\xsd – Schemas for XML structure files (.xsd)

HIPAA\dic - Dictionary files (.dic)

HIPAA\codesets - codesets used for lookups by rules processing (.txt)

HIPAA\samples – Sample HIPAA EDI files and XML equivalents

HIPAA\templates – Transformation templates (.xch)
BEA WebLogic Adapter for HIPAA User Guide 1-9

1 Introduction to HIPAA
All of these documents are required to successfully transform and validate HIPAA EDI
documents (both to and from XML format). The BEA WebLogic Adapter for HIPAA
is pre-configured to apply transformation and validation based on the templates (.xch
files) and schemas (.xsd files) supplied.

The schemas are referenced in the supplied manifest.xml document that must be
located in the EIS folder required for configuration of events and services in the
Application View Console.

Rules Files

The rules files are prebuilt to apply the HIPAA mandated level 1–6 rules. Level 1–5
rules are pre-configured for any other rules, and custom rules can be built and added
to existing rules files. Rules are applied after the EDI document has been converted to
XML. They are associated with the converted document by the root tag of the
document. The BEA WebLogic Adapter for HIPAA is pre-configured to apply these
rules to the relevant document.

EDI to XML Transformation

Prebuilt templates are supplied to transform the HIPAA EDI documents to XML and
vice versa. Schemas and sample XML files are also supplied to assist you in the
development of transformations from non-XML format to HIPAA mandated EDI
form.

The workflow can be used to build templates of business processes to convert to
application-specific XML or EDI form.

Event Transport Protocol Options

The WebLogic JSP Console application view pages are used to configure the receipt
(based on incoming protocol) and transformation of a HIPAA document.
1-10 BEA WebLogic Adapter for HIPAA User Guide

HIPAA Validation Processing
Functional Acknowledgements (997) are created automatically (for the inbound or
event processing) and are then passed to WebLogic Integration for use or routing
through the workflow service.

HIPAA Validation Processing

The BEA WebLogic Adapter for HIPAA provides the capability to validate the
structure and content of incoming and outgoing documents. This goes beyond simply
checking the structure that may be expressed in a schema or DTD. It includes such
checks as content values, complex conditional dependencies of elements, and the
balancing of values.

Some industries have stringent rules regarding the format of exchanged documents and
the Validation Engine helps to meet these requirements without writing customized
code. An example is the health care field, where Health Insurance Portability and
Accountability Act (HIPAA) compliance involves validating that each document
exchanged meets every single rule defined in the Implementation Guide. Financial
documents, such as SWIFT (Society Worldwide for Interbank Financial Transactions)
represent another area where content validation is required.

Validation is accomplished by using the BEA WebLogic Adapter for HIPAA, which
includes a set of built-in validation rules. This set of rules provides complete coverage
for validating documents related to the adapter type (for example, HIPAA and
SWIFT). These rules are then invoked as defined by a Rule Specification file. A Rule
Specification file indicates exactly which built-in rule to invoke and to which elements
or segments in a document to apply the rule. These Rule Specification files are also
supplied for HIPAA and SWIFT, so validation is usually just a matter of
configuration.

The Rule Specifications are stored in XML format files that are freely accessible in the
BEA WebLogic Adapter for HIPAA directory structure. Keeping each rule in an
external file facilitates the maintenance of existing rules and provides an easy way to
add new ones.

It is also possible to create new rules by writing custom Java code.
BEA WebLogic Adapter for HIPAA User Guide 1-11

1 Introduction to HIPAA
Configuration

The transformation and validation of HIPAA documents relies on three reference files
that are used in the process. Dictionaries (.dic) files describe the structure of the EDI
format file. Transformation templates (.xch) are used in the conversion to or from
XML form. Rules files (.xml) apply pre-built rules, based in the ASC X12N 4010
Implementation guides. All of these files are customizable. If the dictionary is
changed, a utility can be run to amend the .xch files and create new schemas
accordingly.
1-12 BEA WebLogic Adapter for HIPAA User Guide

CHAPTER
2 Metadata, Schemas,
and Repositories

This section explains how metadata for your enterprise information system (EIS) is
described and used. After the metadata for your EIS is described, you can create and
deploy application views using the WebLogic Application View Console.

This section includes the following topics:

Understanding Metadata

Schemas and Repositories

The Repository Manifest

Message Schemas, Rules, and Code Sets
BEA WebLogic Adapter for HIPAA User Guide 2-1

2 Metadata, Schemas, and Repositories
Understanding Metadata

When you define an application view, you are creating an XML-based interface
between WebLogic Integration and an enterprise information system (EIS) or
application within your enterprise. The BEA WebLogic Adapter for HIPAA is used to
define a file-based interface to applications within and outside of the enterprise. Many
applications or information systems use file systems to store and share data. These files
contain information required by other applications, and this information can be fed via
the BEA WebLogic Adapter for HIPAA.

The BEA WebLogic Adapter for HIPAA can exploit multiple protocols to receive or
emit HIPAA messages. The adapter facilitates conversion to and from XML. XML can
be used within WebLogic Integration in business process workflow. WebLogic
Integration requires that XML versions of HIPAA documents match schemas
(provided) so that mapping for events or services can be enabled. Events and services
use this information to validate the documents (either post–HIPAA to XML
transformation or pre–XML to HIPAA transformation). The reference for an event or
service, to a schema or set of schemas, is provided in the manifest.xml file.

In the manifest.xml file, the schemaref tag indicates a schema instance and includes
the name to select from the schema drop-down list in the event and service JSP
console. The request and response tags relate to a service. A request tag represents the
XML being sent to the service. A response tag represents the response XML document
received from the service request. Event relates to the schema for the incoming
document (after conversion) to the event listener. Schemas and the related manifest
files are stored in a folder or directory in the local file system that is referred to as the
EIS repository. The repository location is required when creating an application view
from which events and services are configured. The EIS is set up automatically (and is
populated with the required schemas and manifest) when an application view is
defined.

Events are triggers to workflows. When a particular file arrives at a location, an event
can be triggered to read and convert, if necessary, to the XML format that conforms to
a particular schema, which then initiates a flow. Services are called from the workflow
to perform supported operations.
2-2 BEA WebLogic Adapter for HIPAA User Guide

Schemas and Repositories
Schemas and Repositories

You describe all the documents entering and exiting your WebLogic Integration
system using W3C XML schemas. These schemas describe each event arriving to and
propagating out of an event, and each request sent to and each response received from
a service. There is one schema for each event and two for each service (one for the
request, one for the response). The schemas are usually stored in files with an .xsd

extension.

Use the WebLogic Integration Application View Console to access events and services
and to assign a schema to each event, request, and response. Assign each application
view to a schema repository; several application views can be assigned to the same
repository.

BEA WebLogic Adapters all make use of a schema repository to store their schema
information and present it to the WebLogic Application View Console. The schema
repository is a directory containing:

A manifest file that describes the event and service schemas.

The corresponding schema descriptions.
BEA WebLogic Adapter for HIPAA User Guide 2-3

2 Metadata, Schemas, and Repositories
The Repository Manifest

Each schema repository has a manifest that describes the repository and its schemas.
This repository manifest is stored as an XML file named manifest.xml.

The following is an example of a sample manifest file showing relationships between
events and services and their related schemas.

The manifest file relates documents (through their schemas) to services and events.
The manifest exposes schema references to the event relating the required document
(via the root tag) to the corresponding schema. Schemas and manifests are stored in the
same directory, the repository root of the EIS. The following is an example of the a
manifest file with a description of the elements.

Listing 2-1 Sample Manifest File

<manifest>
<connection/>
<schemaref name=HIPAA270>

<request root=HIPAA270 file=HIPAA270.xsd/>
<response root=emitStatus file=fileEmit.xsd/>
<event root=HIPAA270 file=HIPAA270.xsd/>

</schemaref>
</manifest>

The manifest has a schema reference section, named schemaref. The schema reference
name is displayed in the schema drop-down list in the Add Service and Add Event
windows in the WebLogic Integration Application View Console. This sample
manifest has three schema references or schemaref tags; one for services only, one for
events only, and one for a combination of services and events.

Events require only one schema, defined by the event tag. This relates the root tag of
an XML document to a schema in the EIS repository. For services, two schemas are
required: one for the document being passed to the service, represented by the request
tag, and one for the expected response document received from the service operation,
represented by the response tag.
2-4 BEA WebLogic Adapter for HIPAA User Guide

Message Schemas, Rules, and Code Sets
Message Schemas, Rules, and Code Sets

The BEA WebLogic Adapter for HIPAA supports the exchange of XML and
non-XML messages with WebLogic Integration. In addition to converting/creating the
HIPAA documents, the BEA WebLogic Adapter for HIPAA validates the structure
and content. To enable this type of conversion and validation, message schemas, rules
files, and code sets (for lookups) are placed in the EIS repository that is created when
creating an application view. The root for the EIS is based on your version of HIPAA
(4010). Dictionaries, stored in the <EIS_Root>/4010/dictionaries directory,
describe the HIPAA messages. Rules files, stored in the <EIS_Root>/4010/rules
directory, initiate validation by applying rules to the data via xpath reference to
specific tags. Standard rules are supplied to check format (to validate data types) and
check data against code set files stored in the <EIS_Root>/4010/rules/code sets
directory. When an application view is created, the directory structures are created, and
the required metadata are stored in the the directories.

Samples File

Supplied with the BEA WebLogic Adapter for HIPAA are sample files (xml and edi

format) that can be used to help test that your environment is correctly set up and
working.
BEA WebLogic Adapter for HIPAA User Guide 2-5

2 Metadata, Schemas, and Repositories
2-6 BEA WebLogic Adapter for HIPAA User Guide

CHAPTER
3 Defining an
Application View for
the BEA WebLogic
Adapter for HIPAA

This section describes how metadata is used and how application views are created. It
includes the following topics:

Metadata

Creating a New Application View
BEA WebLogic Adapter for HIPAA User Guide 3-1

3 Defining an Application View for the BEA WebLogic Adapter for HIPAA
Metadata

When you define an application view, you are creating an XML-based interface
between WebLogic Server and a particular Enterprise Information System (EIS)
application within your enterprise. In the case of the BEA WebLogic Adapter for
HIPAA, this is a set of file schemas that your applications must create or respond to.

Each HIPAA document has an XML equivalent and for each of these HIPAA XML
documents there is a corresponding schema. Event and service adapters must be aware
of these schemas in order for them to process the document. The adapter uses a
manifest file (manifest.xml) to relate schemas to their XML counterparts. The
manifest file is located in the EIS repository that is selected when creating an
application view. For more information about establishing your EIS repository, see
Chapter 2, “Metadata, Schemas, and Repositories.”
3-2 BEA WebLogic Adapter for HIPAA User Guide

Creating a New Application View
Creating a New Application View

1. Open the Application View Console, which is found at the following location:

http://host:port/wlai

Here, host is the TCP/IP address or DNS name where WebLogic Integration
Server is installed, and port is the socket on which the server is listening. The
default port at the time of installation is 7001.

For more information, see “Logging On to the WebLogic Integration Application
View Console” in “Defining an Application View” in Using Application
Integration:

For WebLogic Integration 7.0, see
http://edocs.bea.com/wli/docs70/aiuser/2usrdef.htm

For WebLogic Integration 2.1, see
http://edocs.bea.com/wlintegration/v2_1sp/aiuser/2usrdef.htm

Figure 3-1 Application View Console - Logon

Note: If the user name is not system, it must be included in the adapter group.
For more information on adding the administrative server user name to the
adapter group, see the BEA WebLogic Adapter for HIPAA Installation
and Configuration Guide.
BEA WebLogic Adapter for HIPAA User Guide 3-3

3 Defining an Application View for the BEA WebLogic Adapter for HIPAA
2. Enter a user name and password and click Login. The Application View Console
opens.

Figure 3-2 Application View Console

3. Click Add Application View to create a new application view for the appropriate
adapter.

4. An application view enables a set of business processes for this adapter’s target
EIS application. For more detailed information, see Defining an Application
View” in Using Application Integration:

For WebLogic Integration 7.0, see
http://edocs.bea.com/wli/docs70/aiuser/2usrdef.htm

For WebLogic Integration 2.1, see
http://edocs.bea.com/wlintegration/v2_1sp/aiuser/2usrdef.htm

The Define New Application View window opens.
3-4 BEA WebLogic Adapter for HIPAA User Guide

Creating a New Application View
Figure 3-3 Define New Application View Window

5. In the Application View Name field, enter a name.

The name should describe the set of functions performed by this application.

Each application view name must be unique to its adapter. Valid characters are
a-z, A-Z, 0-9, and _ (underscore).

6. In the Description field, enter any relevant notes. These notes are viewed by users
when they use this application view in workflows using business process
management functionality.

7. From the Associated Adapter list, select the particular adapter to use to create this
application view.

8. Click OK.
BEA WebLogic Adapter for HIPAA User Guide 3-5

3 Defining an Application View for the BEA WebLogic Adapter for HIPAA
The Configure Connection Parameters page opens.

Figure 3-4 Configure Connection Parameters Window

The metadata for the HIPAA EIS is contained in the manifest.xml and

schemas provided with this product.

For more information on the session path and connection name, see Chapter 2,
“Metadata, Schemas, and Repositories.”

9. Enter the root and select the connection name (the application folder containing
schemas and the manifest file) from the drop-down list.

10. Click Connect to EIS to view the Application View Administration window.
3-6 BEA WebLogic Adapter for HIPAA User Guide

Creating a New Application View
Figure 3-5 Application View Administration Window
BEA WebLogic Adapter for HIPAA User Guide 3-7

3 Defining an Application View for the BEA WebLogic Adapter for HIPAA
3-8 BEA WebLogic Adapter for HIPAA User Guide

CHAPTER
4 Service and Event
Configuration

This section describes the configuration of services and events and shows the setting
options available for enabling the Enterprise Information System (EIS). It includes the
following topics:

Adding a Service to an Application View

Adding an Event to an Application View

Deploying an Application View

Testing Services and Events

After the EAR file, metadata repository, and application views are defined and
available to WebLogic Integration, services and events can be added to the newly
created application view.

For information about the EAR file, see the BEA WebLogic Adapter for HIPAA
Installation and Configuration Guide. For information about establishing your EIS
repository, see Chapter 2, “Metadata, Schemas, and Repositories.”

For information about defining application views, see Chapter 3, “Defining an
Application View for the BEA WebLogic Adapter for HIPAA.”
BEA WebLogic Adapter for HIPAA User Guide 4-1

4 Service and Event Configuration
Adding a Service to an Application View

After you create and configure an application view, add services that support the
application’s functions.

1. While the application view is open (and undeployed), select Administration from
the Configure Connection list in the left pane. The Application View
Administration window opens.

Figure 4-1 Application View Administration Window
4-2 BEA WebLogic Adapter for HIPAA User Guide

Adding a Service to an Application View
2. Click Add in the Services pane. The Add Service page opens.

Figure 4-2 Add Service Window

3. Enter a Name in the Unique Service Name field.

The name should describe the function performed by this service. Each service
name must be unique to its application view. Valid characters are a-z, A-Z, 0-9,
and _ (underscore).

4. Select the operation to be configured from the Select drop-down list. This list
includes: File System Write, FTP Write, MQEmit, TCPEmit, and HTTP. You can
configure only one operation per service.

For more information on configuration and deployment of transformation
templates, see Chapter 3, “Defining an Application View for the BEA WebLogic
Adapter for HIPAA.”

5. Select the protocol or format from the Transform Type drop-down list, and enter
the required values (required fields are marked with an asterisk). Descriptions of
the parameters for each operation are provided in the following tables:
BEA WebLogic Adapter for HIPAA User Guide 4-3

4 Service and Event Configuration
Table 4-1 File System Write

Setting Meaning/Properties

Transform Type Type/Value: Drop-down list

Description: Select the pre-built transformation template to apply to
the expected document. One per HIPAA document. All prefixed by
XML_to <DOCTYPE>.

directory*

(*Required)

Type/Value: Directory Path.

Description: Directory to which output messages are emitted.

output file
name/mask*

(*Required)

Type/Value: String

Description: The output file name (can contain a '*') that expands to
a timestamp.

A pound symbol can be used as a mask for a sequence count. Each
pound symbol represents a whole number integer value. For
example, File## counts up to 99 before restarting at 0, File###
counts up to 999 before restarting at 0, and so on.

Table 4-2 FTP Write

Setting Meaning/Properties

Transform Type Type/Value: Drop-down list

Description: Select the prebuilt transformation template to apply to
the expected document. One per HIPAA document. All prefixed by
XML_to <DOCTYPE>.

Host name*

(*Required)

Type/Value: String

Description: FTP target system.

Port number Type/Value: Numeric

Description: FTP target system port (leave empty for FTP default).

User ID*

(*Required)

Type/Value: String

Description: User account ID to use when connecting to protocol
host.
4-4 BEA WebLogic Adapter for HIPAA User Guide

Adding a Service to an Application View
Password*

(*Required)

Type/Value: String

Description: Password for user account to use when connecting to
protocol host.

destination*

(*Required)

Type/Value: String

Description: Directory to address on FTP target system.

output file name/mask Type/Value: String

Description: The output file name (can contain a '*'), expands to a
timestamp.

Retry Interval Type/Value: Duration - xxH:xxM:xxS (for example, 1h:2m:3s = 1
hour, 2 minutes, and 3 seconds).

Description: The maximum wait interval between retries when a
connection fails.

Maxtries Type/Value: String

Description: Number of retries for a failed attempt to write.

Table 4-3 MQEmit

Setting Meaning/Properties

Transform Type*
(*Required)

Type/Value: Drop-down list

Description: The transformation to be applied.

Queue manager*

(*Required)

Type/Sample Value: String / QM_BEA_HIPAA

Description: Name of the MQSeries Queue Manager to be used.

Queue name*

(*Required)

Type/Sample Value: String / TEST.iO

Description: Queue on which request documents are received.

MQ client host Type/Value: String

Description: For MQ Client only. Host on which MQ Server is
located.

Table 4-2 FTP Write (Continued)

Setting Meaning/Properties
BEA WebLogic Adapter for HIPAA User Guide 4-5

4 Service and Event Configuration
MQ client port Type/Value: Integer

Description: For MQ Client only. Port number to connect to an MQ
Server.

MQ client channel Type/Value: String

Description: For MQ Client only. Channel between an MQ Client
and MQ Server.

Polling Interval Type/Value: String. Duration, in the format nnH:nnM:nn. For
example, 1H:2M:3S (1 hour 2 minutes and 3 seconds)

Description: The maximum wait interval between checks for new
documents. The higher this value, the longer the interval, and the
fewer system resources that are used. The side effect of a high value
is that the worker thread will not be able to respond to a stop
command. If timeout is set to 0, the listener will run once and
terminate. Default is 2 seconds.

Table 4-4 TCPEmit

Setting Meaning/Properties

Transform Type*
(*Required)

Type/Value: Drop-down list

Description: The transformation to be applied.

TCP port*
(*Required)

Type/Sample Value: Integer / 12345

Description: TCP listening port

Allowable Client Host Type/Sample Value: String / HIPAAServ or 123.12.23.34

Description: Host name or host address of client restricted to
accessing this event adapter.

Character set
encoding*
(*Required)

Type/Sample Value: String / ISO-8859-1

Description: Document character set.

Table 4-3 MQEmit (Continued)

Setting Meaning/Properties
4-6 BEA WebLogic Adapter for HIPAA User Guide

Adding a Service to an Application View
The following figure shows the configuration of a File System Write operation:

Figure 4-3 Add Service Window (with settings)

Table 4-5 HTTP

Setting Meaning/Properties

Transform Type*

(*Required)

Type/Value: drop down

Description: Select from the transformation to be applied.

Character set
encoding*

(*Required)

Type/Value: String / ISO-8859-1

Description: Document character set.

Port*
(*Required)

Type/Value: Integer / 12345

Description: HTTP listener port.
BEA WebLogic Adapter for HIPAA User Guide 4-7

4 Service and Event Configuration
6. Select the schema required for this service.

The schema drop-down has a selection for each HIPAA document.

The selection must correspond to the Transform Type field.

7. Click Add.

At this point, the application view can be deployed or more services or events
can be configured. After the application view has been deployed, you can test
the service. For more information on deploying the application view, please refer
to “Deploying an Application View” on page 4-19. For more information on
testing the application view, see “Testing Services and Events” on page 4-21.

Adding an Event to an Application View

To add events to the application view, schemas must be present and mapped to the
BEA WebLogic Adapter for HIPAA EIS that is configured for the application view.
For more information on creating an application view, see Chapter 3, “Defining an
Application View for the BEA WebLogic Adapter for HIPAA.”

If your application is deployed, you must undeploy the application and then edit the
application view.

1. From the Application View Administration window, select Add in the event section
of the administration pane. See Figure 4-1, “Application View Administration
Window,” on page 4-2.

The Add Event window opens.
4-8 BEA WebLogic Adapter for HIPAA User Guide

Adding an Event to an Application View
Figure 4-4 Add Event Window

2. Enter a Unique Event Name and then configure the particular event protocol
required (select the option button to activate that protocol).

3. Select the event protocol required from the Select drop-down box.

You have the option to configure an event based on one of the following
protocols: File System, FTP, MQ, TCP, and HTTP.

4. Enter the required values (required fields are marked with an asterisk).
Descriptions of the parameters are provided in the following tables:
BEA WebLogic Adapter for HIPAA User Guide 4-9

4 Service and Event Configuration
Table 4-6 File System

Setting Meaning/Properties

Location*

(*Required)

Type/Value: Directory Path

Description: Directory where input messages are received. The
listener allows DOS-style file patterns for input selection. The file
input section of the configuration is now a file pattern in addition to
a directory. The user can enter a pattern as c:\xyz\ab*cd, WITHOUT
THE SUFFIX, which is handled by the suffix list entry.

If a pattern is used, the files are selected in order based on the suffix
and then the pattern. AB?CD selects ABxCD. AB*CD selects
ABxxxCD.

File Suffix*

(*Required)

Type/Value: String

Description: Limits input files to those with these extensions
(separated by a comma). For example, in XML, do not use '.'; -
means no extension.

Note: If the file suffix is zip, the unzipped files needs to conform to
the event schema or they fail. This function also works with
transform configured.

Character Set
Encoding*

(*Required)

Type/Value: String

Description: Sets the character set encoding to be used (default
value ISO-8859-1-US and Western Europe).

Polling interval Type/Value: Duration - xxH:xxM:xxS (for example, 1H:2M:3S = 1
hour, 2 minutes, and 3 seconds).

Description: The maximum wait interval between checks for new
documents. The higher this value, the longer the interval, and the
fewer system resources that are used. The side effect of a high value
is that the worker thread cannot respond to a stop command. If
timeout is set to 0, the listener runs once and terminates. Default is
2 seconds.

Sort Type/Value: Boolean (true or false)

Description: Sort by arrival. If set, sort incoming documents by
arrival time. Maintains sequence, but slows performance.

Scan sub-directories Type/Value: Boolean (true or false)

Description: Scans all subdirectories for documents to be
processed.
4-10 BEA WebLogic Adapter for HIPAA User Guide

Adding an Event to an Application View
File-read limit (per
scan)

Type/Value: Integer

Description: The number of files read per sweep of the File
directory location.

ackagent*
(*Required)

Type/Value: String

Description: The agent responsible for processing
acknowledgement or non-acknowledgement of HIPAA documents.
The default HIPAA acknowledgement agent will generate an empty
acknowledgement document or will list all failed validation rules in
the non-acknowledgement document.

protocol Type/Value: String

Description: Protocol on which to make ACK copies (Currently
only FILE is supported.)

to Type/Value: String

Description: Location for ACK to be sent; for example,
f:\fileout\ack.xml.

Transform Type Type/Value: Drop-down list

Description: Select the prebuilt transformation template to apply to
the expected document.

Table 4-7 FTP

Setting Meaning/Properties

User Id*

(*Required)

Type/Value: String

Description: User account to use when connecting to protocol host.

Password*

(*Required)

Type/Value: String

Description: Password for user account to use when connecting to
protocol host.

Table 4-6 File System (Continued)

Setting Meaning/Properties
BEA WebLogic Adapter for HIPAA User Guide 4-11

4 Service and Event Configuration
Host name*

(*Required)

Type/Value: String

Description: Name of host machine where listener contacts service
to obtain requests from.

Location*

(*Required)

Type/Value: Directory

Description: Directory on FTP host to retrieve files from.You must
append the file suffix (extension) to the file or files specified in the
Location field. For example, you can enter a specific file such as
/path/to/my/ftp/directory/myfile.xml or a group of
files such as /path/to/my/ftp/directory/*.zip.

File suffix Type/Value: String

Description: This field is no longer used. You must append the file
suffix to the file or files specified in the Location field.

Character Set
Encoding*

(*Required)

Type/Value: String

Description: Sets the character set encoding to be used (default
value ISO-8859-1 -US and Western Europe).

Polling interval Type/Value: Duration - xxH:xxM:xxS (for example, 1H:2M:3S = 1
hour, 2 minutes, and 3 seconds).

Description: The maximum wait interval between checks for new
documents. The higher this value, the longer the interval, and the
fewer system resources that are used. The side effect of a high value
is that the worker thread cannot respond to a stop command. If
timeout is set to 0, the listener runs once and terminates. Default is
2 seconds.

Scan sub-directories Type/Value: Boolean (true or false)

Description: Scans all subdirectories for documents to be
processed.

Transform Type Type/Value: Drop-down list

Description: Select the pre-built transformation template to apply to
the expected document. One per HIPAA document. All prefixed by
XML_to <DOCTYPE>.

Table 4-7 FTP (Continued)

Setting Meaning/Properties
4-12 BEA WebLogic Adapter for HIPAA User Guide

Adding an Event to an Application View
ackagent*
(*Required)

Type/Value: String

Description: The agent responsible for processing
acknowledgement or non-acknowledgement of HIPAA documents.
The default HIPAA acknowledgement agent will generate an empty
acknowledgement document or will list all failed validation rules in
the non-acknowledgement document.

protocol Type/Value: String

Description: Protocol on which to make ACK copies (Currently
only FILE is supported.)

to Type/Value: String

Description: Location for ACK to be sent; for example,
f:\fileout\ack.xml.

Table 4-8 MQ

Setting Meaning/Properties

Transform Type*
(*Required)

Type/Sample Value: Drop-down list

Description: Name of the MQSeries queue manager to be used.

Queue Manager*

(*Required)

Type/Sample Value: String / QM_BEA_HIPAA

Description: Name of the MQSeries queue manager to be used.

Queue Name*

(*Required)

Type/Sample Value: String / TEST.iO

Description: Queue on which request documents are received.

MQ Client Host Type/Sample Value: String

Description: For MQ client only. Host on which MQ Server is
located.

MQ client port Type/Value: Integer

Description: For MQ client only. Port number to connect to an MQ
server.

Table 4-7 FTP (Continued)

Setting Meaning/Properties
BEA WebLogic Adapter for HIPAA User Guide 4-13

4 Service and Event Configuration
MQ client channel Type/Value: String

Description: For MQ client only. Channel between an MQ client
and MQ server.

Polling interval Type/Sample Value: String duration in the format nnH:nnM:nnS /
1H:2M:3S
(1 hour, 2 minutes, 3 seconds)

Description: The maximum wait interval between checks for new
documents. The higher this value, the longer the interval, and the
fewer system resources that are used. The side effect of a high value
is that the worker thread cannot respond to a stop command. If
timeout is set to 0, the listener runs once and terminates. Default is 2
seconds.

ackagent*
(*Required)

Type/Value: String

Description: The agent responsible for processing
acknowledgement or non-acknowledgement of HIPAA documents.
The default HIPAA acknowledgement agent will generate an empty
acknowledgement document or will list all failed validation rules in
the non-acknowledgement document.

protocol Type/Value: String

Description: Protocol on which to make ACK copies (Currently
only FILE is supported.)

to Type/Value: String

Description: Location for ACK to be sent; for example,
f:\fileout\ack.xml.

Table 4-9 TCP

Setting Meaning/Properties

Transform Type*
(*Required)

Type/Sample Value: Drop-down list

Description: The transformation to be applied.

Table 4-8 MQ (Continued)

Setting Meaning/Properties
4-14 BEA WebLogic Adapter for HIPAA User Guide

Adding an Event to an Application View
TCP/IP port*
(*Required)

Type/Sample Value: Integer / 12345

Description: TCP listening port.

Allowable client host Type/Sample Value: String / HIPAAServ or 123.12.23.345

Description: Host name or host address of client restricted to
accessing this event adapter.

ackagent*
(*Required)

Type/Value: String

Description: The agent responsible for processing
acknowledgement or non-acknowledgement of HIPAA documents.
The default HIPAA acknowledgement agent will generate an empty
acknowledgement document or will list all failed validation rules in
the non-acknowledgement document.

protocol Type/Value: String

Description: Protocol on which to make ACK copies (Currently
only FILE is supported.)

to Type/Value: String

Description: Location for ACK to be sent; for example,
f:\fileout\ack.xml.

encoding*
(*Required)

Type/Sample Value: String / ISO-8859-1

Description: Document character set.

Table 4-10 HTTP

Setting Meaning/Properties

Transform Type*
(*Required)

Type/Sample Value: Drop-down list

Description: The transformation to be applied.

Character set
encoding*
(*Required)

Type/Sample Value: String / ISO-8859-1

Description: Document character set.

Port*

(*Required)

Type/Sample Value: Integer / 12345

Description: HTTP listener port.

Table 4-9 TCP (Continued)

Setting Meaning/Properties
BEA WebLogic Adapter for HIPAA User Guide 4-15

4 Service and Event Configuration
The following figure provides an example of a configured File System event.

ackagent*
(*Required)

Type/Value: String

Description: The agent responsible for processing
acknowledgement or non-acknowledgement of HIPAA documents.
The default HIPAA acknowledgement agent will generate an empty
acknowledgement document or will list all failed validation rules in
the non-acknowledgement document.

protocol Type/Value: String

Description: Protocol on which to make ACK copies (Currently
only FILE is supported.)

to Type/Value: String

Description: Location for ACK to be sent; for example,
f:\fileout\ack.xml.

Table 4-10 HTTP (Continued)

Setting Meaning/Properties
4-16 BEA WebLogic Adapter for HIPAA User Guide

Adding an Event to an Application View
Figure 4-5 Add Event Window (with settings)

5. Select the schema required for this event.The schema drop-down list has a
selection for each HIPAA document.

6. Click Add. After adding the event process, the Application View Administration
window is displayed.
BEA WebLogic Adapter for HIPAA User Guide 4-17

4 Service and Event Configuration
Figure 4-6 Application View Administration Window
\

7. Click Save to save your settings.

Deploy your application view (complete with configured events and/or services) by
following the steps described in “Deploying an Application View” on page 4-19. Then,
test your application view by following the steps described in “Testing Services and
Events” on page 4-21.
4-18 BEA WebLogic Adapter for HIPAA User Guide

Deploying an Application View
Deploying an Application View

You can deploy an application view when you have added at least one event or service
to it. You must deploy an application view before you can test its services and events
or use the application view in the WebLogic Server environment. For information on
adding a service to an application view, see “Adding a Service to an Application View”
on page 4-2. For more information on adding an event to an application view, see
“Adding an Event to an Application View” on page 4-8.

Application view deployment places relevant metadata about its services and events
into a run-time metadata repository. Deployment makes the application view available
to other WebLogic Server clients. This means business processes can interact with the
application view, and you can test the application view’s services and events.

After you configure a service or event, you can deploy your application view from the
Application View Administration window.

Figure 4-7 Application View Administration Window
BEA WebLogic Adapter for HIPAA User Guide 4-19

4 Service and Event Configuration
1. From the Application View Administration window, click Continue.

The Deploy Application View window opens.

Figure 4-8 Deploy Application View Window

Note: To enable business process management functionality for other authorized
clients to asynchronously call the services (if any) of this application view,
select Enable Asynchronous Service Invocation.

2. To deploy the application view, click Deploy.

The Summary for Application View page opens.

Note: You may choose to click Save and deploy the BEA WebLogic Adapter for
HIPAA later.
4-20 BEA WebLogic Adapter for HIPAA User Guide

Testing Services and Events
After you create and deploy an application view, test the service and events. For more
information, see “Testing Services and Events” on page 4-21.

Testing Services and Events

You can test services and events after you create and deploy an application view.

To test a service:

1. In the Summary for Application View window, click Test for the configured
service.

2. When the Test pane opens prompting you for the test XML, enter the required
XML.

3. Click Test.

If your service has been configured correctly, you receive a response from the
file emit process with a status code of “0.”

Also, you see that the file has been written to the correct location.

After you have confirmed that the file has been written correctly (in the correct format
if transformation has been configured), your service adapter has been successfully
configured.

You can now employ the service in business process workflows or write custom code.
For more information, see “Using Application Views in the Studio” in Using
Application Integration:

For WebLogic Integration 7.0, see
http://edocs.bea.com/wli/docs70/aiuser/3usruse.htm

For WebLogic Integration 2.1, see
http://edocs.bea.com/wlintegration/v2_1sp/aiuser/3usruse.htm
BEA WebLogic Adapter for HIPAA User Guide 4-21

http://e-docs.bea.com/wli/docs70/aiuser/3usruse.htm
http://e-docs.bea.com/wlintegration/v2_1/aiuser/3usruse.htm

4 Service and Event Configuration
To test an event:

1. After you configure and deploy your event, click the Test link for the configured
event in the Summary for Application View Window.

2. Test the event using the workflow (that is, the workflow triggered by an event).
For more information, see Chapter 5, “BEA WebLogic Adapter for HIPAA
Integration Using Business Process Management.”
4-22 BEA WebLogic Adapter for HIPAA User Guide

CHAPTER
5 BEA WebLogic Adapter
for HIPAA Integration
Using Business Process
Management

This section describes how events are incorporated into workflow design. It includes
the following topic.

Business Process Management Functionality

Business Process Management Functionality

After successfully creating your application view, including services and events, you
can integrate it into a business process management workflow.
BEA WebLogic Adapter for HIPAA User Guide 5-1

5 BEA WebLogic Adapter for HIPAA Integration Using Business Process Management
The following window depicts a simple workflow design triggered by an event
described in Chapter 3, “Defining an Application View for the BEA WebLogic
Adapter for HIPAA.” The incoming event converts a document and utilizes a service
adapter to propagate the event to a file system. For example, an HIPAA 270 file taken
from an FTP directory is converted to XML. After processing using business process
management workflows, a HIPAA 271 response document is created and placed on a
local file system. The event responds to the HIPAA 270 document being placed on the
FTP site, then converts the document into XML format, and propagates it (using the
workflow) to the service adapter.

Figure 5-1 Workflow Design
5-2 BEA WebLogic Adapter for HIPAA User Guide

Business Process Management Functionality
The following listing depicts the example file used in this process. It is an example of
a 270 Eligibility Benefit Inquiry document.

Note: The first two lines in the following listing are a single line in the file.

Listing 5-1

ISA*00*1234567890*00*1234567890*ZZ*SUBMITTERS ID12*ZZ*RECEIVERS
ID123*010122*1253*U*00401*000000905*1*T*:~
GS*HS*SenderID*ReceiverID*20010122*1310*1*X*004010X092~
ST*270*1234~
BHT*0022*13*10001234*19990501*1319~
HL*1**20*1~
NM1*PR*2*ABCCOMPANY*****PI*842610001~
HL*2*1*21*1~
NM1*1P*1*JONES*MARCUS****SV*0202034~
REF*N5*129~
N3*55 HIGH STREET~
N4*SEATTLE*WA*00501~
PER*IC*MARYMURPHY*TE*2065551212*EX*3694*FX*2065551214~
HL*3*2*22*1~
TRN*1*93175-012547*9877281234~
NM1*IL*1*SMITH*ROBERT*B***MI*11122333301~
REF*1L*599119~
N3*29 FREMONT ST*APT# 1~
N4*PEACE*NY*10023~
DMG*D8*19430519*M~
HL*4*3*23*0~
TRN*1*93175-012547*9877281234*RADIOLOGY~
NM1*03*1*SMITH*MARYLOU~
REF*SY*003221234~
N3*29 FREMONT ST*APT# 1~
N4*PEACE*NY*10023~
DMG*D8*19781014*F~
INS*N*19~
DTP*472*D8*19990501~
EQ*81**FAM~
SE*28*1234~
GE*1*1~
IEA*1*000000905~
BEA WebLogic Adapter for HIPAA User Guide 5-3

5 BEA WebLogic Adapter for HIPAA Integration Using Business Process Management
Starting with the original document, this process consists of the following steps:

1. The document is placed into an FTP directory that had a BEA WebLogic Adapter
for HIPAA event configured to be triggered by the arrival of the 270 document.

The event has been pre-configured to apply an EDI to XML conversion, using
the event configuration JSP.

After the adapter completes the process, the workflow then propagates the XML
document onto the adapter service.

2. The workflow is configured to process the information and create the XML
document required for the XML to EDI (271) transformation and write to a local
file system.

3. After the service has completed its task, the emission report is returned to the
workflow.
5-4 BEA WebLogic Adapter for HIPAA User Guide

Business Process Management Functionality
Figure 5-2 Emission Report
BEA WebLogic Adapter for HIPAA User Guide 5-5

5 BEA WebLogic Adapter for HIPAA Integration Using Business Process Management
The following file is an example of the 271 Eligibility Benefit Response file written to
the output location.

ISA*00*1234567890*00*1234567890*ZZ*SUBMITTERS ID12*ZZ*RECEIVERS
ID123*010122*1253*U*00401*000000905*1*T*:~
GS*HB*SenderID*ReceiverID*20010122*1310*1*X*004010X092~
ST*271*1234~
BHT*0022*11*10001234*19990501*1319~
HL*1**20*1~
NM1*PR*2*ABCCOMPANY*****PI*842610001~
HL*2*1*21*1~
NM1*1P*1*JONES*MARCUS****SV*0202034~
REF*N5*129~
HL*3*2*22*1~
TRN*2*93175-012547*9877281234~
NM1*IL*1*SMITH*ROBERT B****MI*11122333301~
REF*1L*599119~
N3*29 FREMONT ST*APT# 1~
N4*PEACE*NY*10023~
DMG*D8*19430519*M~
HL*4*3*23*0~
TRN*2*93175-012547*9877281234*RADIOLOGY~
NM1*03*1*SMITH*MARYLOU~
REF*SY*003221234~
N3*29 FREMONT ST*APT # 1~
N4*PEACE*NY*10023~
DMG*D8*19881014*F~
INS*N*19~
DTP*472*D8*19950624~
EB*1*FAM*30*GP~
EB*B**81*GP***15****Y~
EB*L~
LS*2120~
NM1*P3*1*BROWN*TOM*D**JR*SV*222333444~
PER*IC*BILLING DEPT*TE*2065556666~
LE*2120~
SE*31*1234~
GE*1*1~
IEA*1*000000905~
5-6 BEA WebLogic Adapter for HIPAA User Guide

CHAPTER
6 Writing and Editing
Rule Specification Files

A complete set of validation rules is supplied with BEA format adapters such as the
BEA WebLogic Adapter for HIPAA. Sometimes you may be required to edit the
supplied Rule Specification files.

Validation may be applied to other types of documents by creating new Rule
Specification files for them. This section provides details on constructing or editing a
Rule Specification file and describes how rule files work with the validation engine
and how these files can be customized to suit an enterprise’s needs. It includes the
following topics:

Rule Specification Files

Built-in HIPAA Rules

HIPAA Rule Set

Rules In Java

Writing Rule Search Routines in Java
BEA WebLogic Adapter for HIPAA User Guide 6-1

6 Writing and Editing Rule Specification Files
Rule Specification Files

The Rule Specification file is an XML document. One file should exist for each
document type, as defined by its XML root element, to be validated. For clarity, the
root element of the rule file should match the root element of the document being
validated. Contained within the file are the individual rule elements.

A production Rule Specification likely has many <rule> elements—as many as are
required to completely validate the entire document. Building a complete Rule
Specification involves identifying each element to be validated and selecting the
appropriate rule for the type of validation required. For example, the checkList rule
validates that the element contains only values from the supplied list, and the isFDate
rule validates that the element value has the proper date format (CCYYMMDD).

Example: Creating a Simple Rule Specification File

The structure for a simple Rule Specification file might look like this:

<TestDoc>
<using class=”XDHipaaRules”>

<rule tag=”EL1” method=”checkList” code=”a,b,c”/>
<rule tag=”EL99” method=”isFDate” code=”RD8”/>

</using>
</TestDoc>

The options to this file are defined as follows:

<TestDoc> represents the XML type of the document to be validated.

<using class=”XDHipaaRules”> selects a global rule class to be used.

This option also eliminates the need to specify the class on each individual
<rule> element. In this case, the built-in HIPAA rule set, XDHipaaRules, is to be
used.

You may also write your own custom rule set in a Java class and specify it here.

<rule tag=”EL1” indicates that a rule is to be applied to the segment or
element called “EL1”.
6-2 BEA WebLogic Adapter for HIPAA User Guide

Rule Specification Files
method=”checkList” identifies the actual rule to be applied.

This is a method of the global class being used as specified above, in this case
“XDHipaaRules”.

The checkList rule validates that an element contains only values from a defined
list. There are many such built in rules (see the following Rule Table in
Reference: Syntax for Writing Rules).

code=”a,b,c” is a parameter that the rule uses.

In this case, checkList would validate that the SEG1 element contains values
from this list “a,b,c”.

Each rule has a different set of parameters. (see the following Rule Table in
Reference: Syntax for Writing Rules).

<rule tag=”EL99” method=”isFDate” code=”RD8”/> is another rule;
this one applied to an element named “EL99”.

The rule to be applied is isFDate, which checks that the element value contains a
date format.

In this case, the code attribute specifies which date format the value should be.

Reference: Syntax for Writing Rules

The following table lists the general syntax for writing rules.

Table 6-1 Rules Writing Syntax

Rule
Element

Attribute Description

<using> class= The Java program class containing all <rule>s within
the section, unless overridden by a class= attribute in
the <rule> entry itself.

<rule> tag= Names the right-most parts of the tag to which this rule
applies. The rule applies to any node of the document
that meets the tag criteria. For example, DTM causes
this rule to be applied to every DTM in the incoming
document. X.DTM applies to all DTM parts prefixed
by X. Tags are case sensitive. If omitted, stag must be
used.
BEA WebLogic Adapter for HIPAA User Guide 6-3

6 Writing and Editing Rule Specification Files
The rule tag and method attributes are required. The remaining attributes are
rule-specific, and their inclusion is based on the rule itself. The validation engine uses
the required tags to identify the rule in question and to identify the node or nodes of
the document to which it applies.

The rule document is located by the <validation> tag value in the dictionary’s system
section and is identified with the specific document in its <document> entry.

<rule> stag= For HIPAA documents, this is a specification
subsection tag. This tag is explained in “Built-in
HIPAA Rules” on page 5.

<rule> name= The rule’s identification, which should be a unique
name. This is used in trace messages to specify which
rule caused a violation. If omitted, no unique
identification can be given.

<rule> class= The rule class to which this rule belongs. This
corresponds to a Java object class, and each rule is a
method of the class. If this is omitted, the class from the
enclosing USING tag is used.

<rule> method= The specific rule.

<rule> usage= Specify usage=M (mandatory) to specify that there
must be a value in the identified node. This check is
applied before the actual rule logic is executed.

Table 6-1 Rules Writing Syntax (Continued)

Rule
Element

Attribute Description
6-4 BEA WebLogic Adapter for HIPAA User Guide

Built-in HIPAA Rules
Built-in HIPAA Rules

The Validation Engine provides a set of HIPAA rules (class=XDHipaaRules) that can
be used to validate most HIPAA situations. These rules can be applied to any part of
the incoming document. The rules make use of a standard set of attributes, as well as
specialized attributes. Where the standard attributes are used, they are listed by name
and not further described under each rule.

For HIPAA documents, the tag= attribute used to position the rule has been joined by
a stag= (specification tag) attribute. One or the other may be used. Stag= positions to
a specification section at the appropriate subchild. For example, stag=BPR04 applies
the rule to the fourth child of every BPR in the document.

Either tag= or stag= specification allows subsection specification by appending
:<subsection> to the end of the tag. Subsections are base 1. For example, if the value
of a field, ABC03 is HC:123:XY, to apply the isN rule to the 123 subsection, the
address would be stag=ABC03:2. Regardless of the subfield separator character
(specified in character 104 of the ISA segment), the colon is used in the addressing tag.

Condition Designator (cd=)

The standard X12 relational condition designators are supported in a list of
designators. A fuller discussion of condition designators is found in ASC X12N
Insurance Subcommittee Implementation Guide, section A. The rules engine accepts a
list of standard designators separated by commas and/or blanks, for example:

<rule .. cd=”R020305, C0403, P0506” … >

There is no limit to the number of designators that can be specified. The designators
are applied in order, and the first failure causes document rejection. Presence to the
rule engine means that a child element of the parent exists and that it has a value. A
child with no value is considered not present.
BEA WebLogic Adapter for HIPAA User Guide 6-5

6 Writing and Editing Rule Specification Files
Reference: Supported Designators

Table 6-2 Supported Designators

Condition Code Meaning Definition

P Paired or Multiple If any element in the
relational condition
is present, then all of
the specified
elements must be
present.

R Required At least one of the elements in the
condition must be present.

E Exclusion Not more than one of the elements
specified in the condition can be
present.

C Conditional If the first element in the condition
list is present, then all other
elements must be present.
Elements not specified as the first
element of the condition may
appear without requiring that the
first element be present. The
element order in the condition is
not critical beyond the first
element.

L List Conditional If the first element in
the condition is
present, then at least
one of the remaining
elements must be
present. The element
order in the condition
is not critical beyond
the first element.
6-6 BEA WebLogic Adapter for HIPAA User Guide

HIPAA Rule Set
If/Then Date Format Rules

Some segments contain a triplet consisting of a subfield:

1. A code.

2. A date or time format such as RD8.

3. A date or time value encoded as per the designated format.

The allowed format depends on the code. To accommodate this, the code= attribute can
be an if/then set:

code="if/then, if/then….”

The if and then clauses allow several items, separated by a |. If the code is in the if list,
then the format must be in the then list. If it is not in the if list, the rule steps to the next
if list. For example:

code=”416|19/D8|RD8, 22/TM, 77/”

To omit the then clause, use nothing after the ‘/’. This would signify that if the type is
77, in the previous example, then no date format or date is to be checked.

HIPAA Rule Set

Rules available for HIPAA validation include rules for single data items and rules for
groups of documents. When encoding rules, use the highest-level rule possible. For
example, use the DTM rules for a DTM rather than building the rules up from
checkCD and checklist. Unless shown otherwise, rules are within XDHipaaRules
which can be specified in a using tag.
BEA WebLogic Adapter for HIPAA User Guide 6-7

6 Writing and Editing Rule Specification Files
checkDTM

checkDTM validates a generic DTM segment. The date is validated as per
specification.

<rule tag="_835.DTM" method="checkDTM" code="102,307,582/N"/>

checkDTP

checkDTP validates a generic DTP segment. The date is validated as per specification.

<rule tag="DTP" method="checkDTP" code="405"

Table 6-3 checkDTM

Attribute Meaning

cd See “Condition Designator (cd=)” on page 6-5.

code The value of the DTM01 element within the DTM must be one of
the codes in the list. For example:

<rule … code=”405, 412” …>

The addition of a /N after a code means that the date field must be
null. Otherwise the date must not be null.

Table 6-4 checkDTP

Attribute Meaning

cd See “Condition Designator (cd=)” on page 6-5.

code An if/then list for the 01/02/03 type/format/date-time subelements.
See “If/Then Date Format Rules” on page 7 for format of an if/then
list.
6-8 BEA WebLogic Adapter for HIPAA User Guide

HIPAA Rule Set
checkDMG

checkDMG validates a generic DMG segment. The date is validated as per
specification.

<rule tag="DMG" method="checkDMG" />

checkQTY

checkQTY validates a quantity of type and measure.

<rule tag="_2110.QTY" method="checkQTY"
code="NE,ZK,ZL,ZM,ZN,ZO" cd="R0204,E0204"/>

Table 6-5 checkDMG

Attribute Meaning

cd See “Condition Designator (cd=)” on page 6-5.

Table 6-6 checkQTY

Attribute Meaning

cd See “Condition Designator (cd=)” on page 6-5.

code The value of the QTY01 element within the QTY must be one of the
codes in the list.
BEA WebLogic Adapter for HIPAA User Guide 6-9

6 Writing and Editing Rule Specification Files
checkCD

checkCD validates that a node has appropriate sub nodes.

<rule tag="NM1 method="checkCD” cd="P0809, C1110"/>

isN

isN validates that a node is numeric with an optional leading sign.

<rule tag="xx" method="isN” />

Table 6-7 checkCD

Attribute Meaning

cd See “Condition Designator (cd=)” on page 6-5.

Table 6-8 isN

Attribute Meaning

min Minimum number of digits required, not including sign. Optional.

max Maximum number of digits permitted, not including sign. Optional.
6-10 BEA WebLogic Adapter for HIPAA User Guide

HIPAA Rule Set
isR

isR validates that a node is numeric with optional leading sign and a single decimal
point.

<rule tag="xx" class="XDHipaaRules" method="isR” />

isDate

isDate validates that a node is a CCYYMMDD format.

<rule tag="xx" class="XDHipaaRules" method="isDate” />

Table 6-9 isR

Attribute Meaning

min Minimum number of digits required, not including sign or radix.
Optional.

max Maximum number of digits permitted, not including sign or radix.
Optional.

Table 6-10 isR

Attribute Meaning

min Minimum number of positions required. If omitted, 8 is assumed.

max Maximum positions permitted. If omitted, 8 is assumed.
BEA WebLogic Adapter for HIPAA User Guide 6-11

6 Writing and Editing Rule Specification Files
isTime

isTime validates that a node is in HHMM[SS] format.

<rule tag="xx" method="isTime” />

isFDATE

isFDate validates that a node has a proper date qualifier format such as RD8, based on
the code list. If the qualifier is in the list, then the next field must be a date in the format
as defined by the qualifier. If the date is null, the rule is successful.

<rule stag=CR603 method="isFDate” code=”RD8” />

This example checks that the date value in field CR604 is formatted as per CR603.

Table 6-11 isTime

Attribute Meaning

None Not applicable.

Table 6-12 isFDATE

Attribute Meaning

code List of valid qualifiers.
6-12 BEA WebLogic Adapter for HIPAA User Guide

HIPAA Rule Set
checkLen

checkLen validates that a node is of sufficient size (length). Note that many rules
provide minimum and maximum checking. In such cases, do not use this rule as it is
redundant.

<rule stag=HI03:3 method="checkLen” min=”2” max=”8” />

checkUsage

checkUsage validates the elements or components of a segment for presence according
to a pattern. The patterns validate the code in the independent variable. The tag= or
stag= attribute can be used to locate the section to which the rule applies. The domain=
attribute specifies whether elements or components are to be tested. The following are
three examples:

<rule name=”simpler” tag="NAM" method="checkUsage" code=”1=BK /
S2 + R3, 3 ! BR + 5=KK / N2 + S3”/>

<rule name=”any” tag="NAM" method="checkUsage" code=”1=?/ S2 +
R3”/>

<rule name="complex" tag="QQ" method="checkUsage" code="2:3=CD +
((1=XX | 3=BP) | 1=AB)/R1 + (N3:1 | R:2)" />

In the “simpler” example, the value of the NAM element is under examination. If the
value in child 1 contains BK, then check the usages of components 2 and 3. If the value
in component 3 is NOT BR, and the value in component 5 is KK, then component 2
must be null, and component 3 may be null.

In the “any” example, 1=?/xxx means that if field 1 has any code but is not empty, then
the remainder of the rule is evaluated.

Table 6-13 checkLen

Attribute Meaning

min Minimum number of characters. Optional. If omitted, no check is performed.

max Maximum number of characters. Optional. If omitted, no check is performed.
BEA WebLogic Adapter for HIPAA User Guide 6-13

6 Writing and Editing Rule Specification Files
The “complex” example demonstrates that nested logical conditions are allowed on
either the if or the then side of the equation.

The values to be checked are expressed as <child>:<part> where either is optional. If
<child> addressing is used, 03 in SVC which is the third child of the SVC segment,
then, while a stag could address SVC03, the tag should be used to address the SVC
directly.

Note that + is used for “and” to avoid the need to escape the & entity.

Table 6-14 checkUsage

Attribute Meaning

Code The if/then validation criteria in the form
code := <item> [,<item>]*

item := <if_exp>[+ | <if_exp>]*/<then_spec> [+ |
<then_spec>]*
if_exp := <position><op><value>
then_spec := <action><position>
position := child | :composite | child:composite
child := integer
composite := integer
op := ! | =

An if clause’s <value> of ? means that the then side applies regardless of the
code value.

<action> codes

R A value in the field is required and must not be null.

N The value in the field must be null, or the field must be
missing.

S The field may contain either a value or a null.
6-14 BEA WebLogic Adapter for HIPAA User Guide

HIPAA Rule Set
isCDate

isCDate validates that a node has a proper date qualifier format such as RD8, based on
the code list. If the qualifier is in the list, then the next field must be a date in the format
as defined by the qualifier. This differs from isFDate() in that it uses portions of the
value field of the node for data, rather than following data fields.

<rule stag=CR603 method="isCDate” code=”RD8” format=”3”,
value=”4”/>

Table 6-15 isCDate

Attribute Meaning

code List of valid qualifiers or if/then list if type= used.

format Subfield number (base 1) containing the format position to be checked.

value Subfield number (base 1) containing the date value to be checked.

type Optional. If used, the code must be an if/then format (see above) rather than a
simple list. The type= attribute identifies the piece (base 1) containing the
qualifier to test against the if side of the if/then rule.
BEA WebLogic Adapter for HIPAA User Guide 6-15

6 Writing and Editing Rule Specification Files
checkList

checkList validates that the content of a field is in the list. This must address a single
field. The list may be explicitly defined or in a supplied file.

<rule tag="NM1. _01_Entity_Identifier_Code_" method="checkList”
code="BD,BS,FI,MC,PC,SL,UP,XX"/>

<rule tag="NM1. _01_Entity_Identifier_Code_" method="checkList”
code="@ZIPCODES"/>

Example: Resolving a Checklist File Alias in the Custom Dictionary

This is the syntax required when using the checkList function with a file.

<system>
<preload>
<name

file="XDRuleListFile(C:\\HipaaCodes\\ZipCodes.txt)">ZIPCODES</nam
e>
</preload>

<system>

The checkList supports a provided procedure named XDRuleListFile() that accepts a
single parameter of the file name. The file must consist of a series of codes separated
by blanks, commas or new lines. For example, to use a rule that employs one of these
built-in code lists, enter the procedure into the dictionary using the console or add a
<preload> entry to the <system> area of the dictionary. See the example in “Writing
Rule Search Routines in Java” on page 6-23.

Table 6-16 checkList

Attribute Meaning

code One of the following:

1. A list of comma separated codes.

2. The @ symbol to specify a file that contains the list. The name
supplied is an alias that must be resolved in the Custom
Dictionary <system><preload> section (see the example that
follows this table).

3. The name of a code list search routine.

Code list search routines are Java classes that extend XDRuleList().
6-16 BEA WebLogic Adapter for HIPAA User Guide

HIPAA Rule Set
checkEQ

checkEQ validates that if element a is present, element b must be present and equal to
a. The elements a and b must be stags.

<rule tag="root" method="checkEQ” a="BPR10” b=”TRB03”/>

segXO

segXO exclusive or segment a or b may be present, but not both.

<rule tag="root" method="segXO” a="MIA” b=”MOA”/>

Table 6-17 checkEQ

Attribute Meaning

a Value that triggers the rule.

b Value that must be equal to a if a is present and has a value.

Table 6-18 segXO

Attribute Meaning

a First value.

b Second value.
BEA WebLogic Adapter for HIPAA User Guide 6-17

6 Writing and Editing Rule Specification Files
compositeIntegrity

compositeIntegrity, given a tag addressed element of a segment such as HI01:1, then
subsequent elements in the parallel elements such as HI02:1, must be from an if/then
list.

<rule stag=”HI01:1” method="compositeIntegrity” code=”BR | XY/BR,
BP/AB|CD” />

relationalIntegrity

relationalIntegrity, given a tag addressed element of a segment such as NM101, then
subsequent elements such as NM1xx, must be from an if/then list.

<rule stag=”NM101” method="relationalIntegrity” code=”BR | BK /
02.BR, BP/06.AB|CD, BP/03.XX” />

so that if 01 is BR, then NM102 must be BR. If 01 is BP, then NM106 must be AB or
CD, and NM03 must be XX.

If the addressed sibling is missing or has no value, then the rule passes.

Table 6-19 compositeIntegrity

Attribute Meaning

code Value of the independent variable sets the then list for subsequent elements.

Table 6-20 relationalIntegrity

Attribute Meaning

code Value of the independent variable sets the then list for subsequent elements.
6-18 BEA WebLogic Adapter for HIPAA User Guide

HIPAA Rule Set
loopSegCount

loopSegCount, given a loop tag such as 1001A (which is the parent of 1001A.NM1s),
then subsequent NM1 elements must be in a count list.

<rule tag=”1001A” child=”NM101” method="loopSegCount”
code=”BR/1-1, BP/2-5 , CC/0-1” />

This means that if there is a BR in the NM101, then there must be 1 instance of NM101
with BR. If NM101 is BP, there can be at most 5 instances of NM101 with BP, and
there must be at least 2 instances. If the code is CC, then there can be 1 instance, but it
is not required. If the value is not in the list, ignore it.

Note that this rule addresses the segment loop, not the data elements.

balance

balance balances a left term with a right term. The components must be children of the
tag of the rule. Simple arithmetic is supported (plus, minus, one level of parenthesis).

<rule tag="_2110" method="balance" left="SVC03"
right="SVC02-(CAS03+CAS06+CAS09+CAS12+CAS15+CAS18)"/>

Table 6-21 loopSegCount

Attribute Meaning

code Value of the independent variable sets the than list for subsequent elements.
The format of an element of the code is <val>/<min>-<max>.

Table 6-22 balance

Attribute Meaning

left Value node for the left side of the equation.

right Expression for the right side of the equation.
BEA WebLogic Adapter for HIPAA User Guide 6-19

6 Writing and Editing Rule Specification Files
tranBal

tranBal is a specialized HIPAA 835 rule.

BPR02 = CLP04 – (PLB04+PLB06+PLB08+PLB10+PLB12)
<rule tag="root" class="XDHipaa835" method="tranBal”/>

Rules In Java

Rules can be written in Java, loaded by the system at startup, and applied by
specification in a rule. A rule class extends XDRuleClass, and can make use of any of
its services. Each public method in the rule class that meets the rule signature can be
applied by name as a rule. The rule methods can make use of service methods in the
parental XDRuleClass.

In this example, a node is checked to determine whether its value is the word identified
by the value= attribute. If not, it is an error.

Table 6-23 tranBal

Attribute Meaning

No attributes No parameters
6-20 BEA WebLogic Adapter for HIPAA User Guide

Rules In Java
On entry to the rule, the following parameters are passed:

Example: Writing Rules in Java

This section describes how to write rules in Java for special situations.

import java.util.*;
import com.ibi.edaqm.*;
public class XDMyRules extends XDRuleClass
{

public XDMyRules()
{
}
public void specialRule(XDNode node, String value,

HashMap attributes)
throws XDException

{
trace(XD.TRACE_DEBUG, "specialRule called with parms: " +

node.getFullName() + ", " + attributes.toString());
String testValue = (String)attributes.get(“value”);
if (value.equals(testValue))
{

node.setAssociatedVector(new XDEDIError(4, 0,
error,”explanation”));

throw new XDException(XD.RULE, XD.RULE_VIOLATION,"node
value "+value+” is not 'Value'");

}
}

}

Rule violations should throw an XDException describing the violation.

Table 6-24 Rules in Java

Parameter Description

Node The node identified by the tag attribute in the rule. The rule method is
called once for each node that matches the tag specification.

Value The data value of the addressed node. This differs from the
node.getValue() return if the tag contained a subfield address (for example,
tag=x:2).

Attributes A HashMap of rule attributes. The rule method can check for any attributes
that it desires. A HashMap is a fast implementation of a Hashtable that
does not serialize.
BEA WebLogic Adapter for HIPAA User Guide 6-21

6 Writing and Editing Rule Specification Files
The parental class provides a group of services to assist in preparing rules:

Rules can also use all methods in XDNode to address the values in the passed node and
the tree in general.

Rule violations must be returned as XDExceptions of class XD.RULE. Two causes are
available: XD.RULE_SYNTAX if the rule is in error, and XD.RULE_VIOLATION if
the data violates the rule. Syntax errors cause the document to be aborted, as it is
presumed that rules should have been debugged. Violations should be posted to the
node by the rule, and the engine continues to process the document. Violations are
traced by the engine and affect the later acknowledgement generation.

The error itself is posted to the node through the standard XDNode service
setAssociatedVector(Object o) which records an object with the node. The special
EDIError object, shown above, contains four elements:

Method Purpose

Boolean
isYYYYMMDD(String
date)

Validates that a date is formatted correctly.

Boolean isInList(String
list, String value)

The value must be in the list.

void trace(int level, String
msg)

The text of the message is written to the system trace file. The
level should be XD.TRACE_DEBUG, XD.TRACE_ERROR,
or XD.TRACE_ALL.

Element Meaning

Class Class of the error. Should be 4 for a syntax error, resulting in an AK4.

Reserved Must be 0.

Error code Code to be returned in the AKx (997).

Explanation A string explaining the error, for use when tracing .
6-22 BEA WebLogic Adapter for HIPAA User Guide

Writing Rule Search Routines in Java
Writing Rule Search Routines in Java

A short list can be searched by built-in rule engine code. A long list, where the values
in the list are not obtained from the attribute directly but from an external source,
require a rule list searcher tailored to the source. Lists can be obtained from a:

Simple file

Database with values loaded at startup

Database with an access at each search request

Each list could require its own search logic, tailored to the source and format of the list
itself. To accommodate this, the rule engine allows list-specific search routines to be
developed and added to the system. These routines load at system initialization, and
terminate at system shutdown. Each must offer a search method that determines
whether the passed value is valid.

Search routines must extend the XDRuleList class, which is part of the edaqm package:
com.ibi.edaqm.XDRuleClass. The routine must offer three methods in the manner
common to all XD extensions:

init(String[] args) is called once at system initialization.

term() is called once at system shutdown. It is not guaranteed to be called.

search(String value) is called when the rule is executed.

The Rule List search code is identified in the <preload> section of the <system> area
of the dictionary. The Preloads console page manages this section.

<preload>
<name file="RuleFileList(c:\ziplist.txt)"

comment="validates zip codes">ziplist</name>
</preload>

This specifies that a rule can be written

<rule tag=”xxx” code=”@ziplist” method=”checklist”/>

that names the preloaded routine. This routine could load a list from a text file.
BEA WebLogic Adapter for HIPAA User Guide 6-23

6 Writing and Editing Rule Specification Files
Example: Loading a Java File

The following is an example of loading a file containing codes:

import com.ibi.edaqm.*;
import java.util.*;
import java.io.*;
/**
* A rule list handler is a routine called to enable users search lists during
execution
* or the checkList rule. checkList() is a generally available rule to test whether
the
* contents of a document field are valid. The rule list handler is invoked when
* the code= attribute indicates the name of a coder routine rather than a simple
list.<P>
* For example, <I>code="@list1"</I> will cause the search routine of the list1
class to
* be invoked.<P>
* The file read by this procedure consists of tokens separated by new line, white
space or commas.
*/
public class XDRuleListFile extends XDRuleList
{

String[] list;
ArrayList al = new ArrayList(127);
public XDRuleListFile()
{
}
/**
* The init method is called when a rule is loaded. It can perform any

necessary
* initialization, and can store any persistent information in the object

store.
*

* @param parms Array of parameter string passed within the start command
init-name(parms).

*/
public void init(String[] parms) throws XDException
{

if (parms == null)
{

throw new XDException(XD.RULE, XD.RULE_SYNTAX, "no
parms sent to " + name);

}
try
{

File f = new File(parms[0]);
FileInputStream fs = new FileInputStream(f);
6-24 BEA WebLogic Adapter for HIPAA User Guide

Writing Rule Search Routines in Java
long len = f.length();
byte[] b = new byte[(int)len];
fs.read(b);
fs.close();
String data = new String(b);
StringTokenizer st = new StringTokenizer(data, ",

" + XD.NEWLINE);
while (st.hasMoreTokens())
{

String part = st.nextToken();
al.add(part);

}
}
catch (FileNotFoundException e)
{
throw new XDException(XD.RULE, XD.RULE_SYNTAX, "list

file "+parms[0] + " not found");
}
catch (IOException eio)
{

throw new XDException(XD.RULE, XD.RULE_SYNTAX,
eio.toString());

}
}
/**
* The term() method is called when the worker is terminated.

It is NOT guaranteed
* to be call, and applications should not rely upon this

method to update data bases or
* perform other critical operations.
*/
public void term()
{
}
/**
* Search the given value to determine whether it is in the

list.
*
* @param value String to test against the list
* @return true if found, false otherwise
*/
public boolean search(String value)
{

return al.contains(value);
}

}

BEA WebLogic Adapter for HIPAA User Guide 6-25

6 Writing and Editing Rule Specification Files
6-26 BEA WebLogic Adapter for HIPAA User Guide

CHAPTER
7 Functional
Acknowledgement
Handling

This section describes the process of acknowledging a document after it has passed
through validation and includes the following topic:

Acknowledgement Processing

Documents received by the BEA WebLogic Adapter for HIPAA are processed in
stages that include preparse, validate, transform, acknowledgement, and routing. At
any phase, the document may generate errors and may or may not pass specific
validation rules. The validation engine and document validation rules are described in
full in Chapter 6, “Writing and Editing Rule Specification Files.”
BEA WebLogic Adapter for HIPAA User Guide 7-1

7 Functional Acknowledgement Handling
Acknowledgement Processing

The Acknowledgement process is that which responds to receipt of a document to
indicate the receipt and validity of the received document. The features of the adapter
which support the Acknowledgement process are:

Validation

Validation is a specific stage in processing the document that occurs immediately after
the document arrives and is available in XML format (that is, after the XML structure
is available but before any other processing). The process of validation and the rules
used in validating a document are described in Chapter 6, “Writing and Editing Rule
Specification Files.”

Document Tree

The Document Tree is the adapter’s representation of the XML document. The tree is
used during document processing and stores additional document or element level
information. Validation errors are stored in the Document Tree and are available to the
Acknowledgement Agent.

Acknowledgement Agent

The Acknowledgement Agent is responsible for determining what processing is
required for a document, as represented in memory by the Document Tree, and
contains zero, one, or more validation errors. The agent creates the relevant functional
acknowledgement (997 document) accordingly, based on the results of the validation
process.
7-2 BEA WebLogic Adapter for HIPAA User Guide

Acknowledgement Processing
Documents, Validation, and Acknowledgement

Documents proceed from the Adapter Event Listener to the Event router and are
processed in stages. This processing is shown in the following diagram:

Figure 7-1 Document Lifecycle
BEA WebLogic Adapter for HIPAA User Guide 7-3

7 Functional Acknowledgement Handling
With respect to validation and acknowledgement, the previously illustrated document
lifecycle has the following characteristics:

Validation occurs as soon as the document has been converted into XML.

Validation comprises both structural validation (described in dictionaries) and
content and network validation (described in Rules.xml files).

The validation processor (class) is defined at the document level or at the rule
level. (See Chapter 6, “Writing and Editing Rule Specification Files” for a
description.) An example validation processor is the XDHIPAARules.class.

Validation processing adds Error elements into the Document Tree.

The Acknowledgement Agent processes the document through its Document
Tree, including any validation errors added during the previous validation phase.

The output of the Acknowledgement Agent is independent of the output of the
Document Agent (that is, different schema, separate thread of execution, and so
forth).

Validation errors and document output are independent of one another. In other
words, a document may fail validation rules and have acknowledgements
generated in the Acknowledgement Agent. However, the document is still passed
to its agent and sent to its output unless specific actions are taken (that is, logic
is coded).

Acknowledgement processing can be customized to alter behavior when
validation errors are present in the Document Tree.
7-4 BEA WebLogic Adapter for HIPAA User Guide

Acknowledgement Processing
Acknowledgement Agent

The Acknowledgement Agent is defined by the acknowledgement agent setting
defined in the event JSP page. This is defaulted to the supplied acknowledgement
agent provided with the product (HIPAA_997).

Figure 7-2 Edit Event
BEA WebLogic Adapter for HIPAA User Guide 7-5

7 Functional Acknowledgement Handling
Acknowledgement Message Handling

The validation engine performs the content validation rules defined in the document
specific rules.xml files. The Acknowledgement Agent generates an
acknowledgement message based on the Document Tree. The message is a composite
of the original XML document tree and any validation errors added by the validation
engine. The results of the Acknowledgement Agent are dependent on the logic coded
in the implementation class. For the BEA WebLogic Adapter for HIPAA, the default
implementation class is the XDHIPAAACKAgent.class exposed as HIPAA_997.

The following is a sample output with errors:

Listing 7-1 Sample Output with Errors

<?xml version="1.0" encoding="UTF-8" ?>
<eda>

<error code="-103" source="validator"
timestamp="2002-08-08T17:37:34Z">Document failed validation:
XD[FAIL] validation error: checkList [HIPAA835._835.DTM_]: code is
missing</error>
</eda>
7-6 BEA WebLogic Adapter for HIPAA User Guide

Acknowledgement Processing
The schema for the results of this acknowledgement is the HIPAA_ACK.xsd illustrated
by the following:

Listing 7-2 Acknowledgement Result Schema

<?xml version="1.0" encoding="UTF-8"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

<xs:element name="Error" type="xs:string"/>
<xs:element name="HIPAAack">

<xs:complexType>
<xs:sequence>

<xs:element ref="Error" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>
</xs:schema>

The Acknowledgement Message is generated separately from the document message.
After the Acknowledgement Agent completes execution, there are two messages
traversing the system that attempt to be posted to the event router. For the message to
be posted, an event must be registered in the application view with the
acknowledgement schema.

Creating an Acknowledgement Event

In addition to the application view event created for the document, there must be an
event created for the Acknowledgement Message generated by the Acknowledgement
Agent. The following procedure creates an event for the acknowledgements generated
by the HIPAA_997 agent.

1. Add an event in the WebLogic Application View of the event adapter.
BEA WebLogic Adapter for HIPAA User Guide 7-7

7 Functional Acknowledgement Handling
Figure 7-3 Adding a Functional Acknowledgement Event to the Event Adapter

Note: The ackagent value is set to the desired Acknowledgement Agent (the default
is set to HIPAA_997). Additionally, there is a 997 schema in the schema
drop-down list.

It is important that the event adapter’s protocol settings (in this case,
MQSeries-based) are identical to those provided for the original event. If the
settings are different, a separate Event Listener is created, and the two events
(document and associated Functional Acknowledgement) are not tied
together.
7-8 BEA WebLogic Adapter for HIPAA User Guide

Acknowledgement Processing
The Functional Acknowledgements created by the document are not seen by
the event or schema combination created in this section. If you do not require
the acknowledgement to be passed with the converted document to the
workflow, you can opt to post the acknowledgement to be written to a file
system. This is done by selecting the protocol option of FILE and setting the
Path option to the path or filename mask, where the acknowledgement file is
written. The protocol and path options must be omitted if passing the
acknowledgement to the workflow.

2. Add, continue, and deploy the application view.

3. From WebLogic Integration Studio, create a new WorkFlow Template.

Figure 7-4 Template Properties Dialog Box

4. When the Template Properties dialog box appears, enter a name for the template
that indicates this workflow is for the Acknowledgement Message.

5. Click OK.

6. When the Template Definition dialog box opens, create a new Template
Definition.

7. Click OK.
BEA WebLogic Adapter for HIPAA User Guide 7-9

7 Functional Acknowledgement Handling
Figure 7-5 Template Definition Dialog Box
7-10 BEA WebLogic Adapter for HIPAA User Guide

Acknowledgement Processing
8. Open the new Template Definition, select the Start object, and complete the
properties.

Figure 7-6 Event Definition Start Properties

a. Select Start →AI Event.
BEA WebLogic Adapter for HIPAA User Guide 7-11

7 Functional Acknowledgement Handling
b. Select HIPAA→HIPAASecurityEvent→Functional Acknowledgment event in
the left AI event pane.

c. Choose the Start Organization to be the same as the Template Definition
Organization.

d. Add a new Event Document Variable.

Figure 7-7 Add Start Variable
7-12 BEA WebLogic Adapter for HIPAA User Guide

Acknowledgement Processing
e. Choose Input and Output parameter type.

9. Add an Action to the Done object.

a. Choose the Done object.

b. Click Add an Action.

c. Select Task Actions and choose Mark Workflow as Done.

Figure 7-8 Done Properties Dialog Box - Mark Workflow as done

10. Click OK in the Done Properties dialog box.

11. Right-click Message Definition in the left pane and select Save.

12. Ensure the workflow is active by selecting the Properties of the Workflow
Definition.
BEA WebLogic Adapter for HIPAA User Guide 7-13

7 Functional Acknowledgement Handling
Figure 7-9 Template Definition Properties

Testing Acknowledgement Message Handling

Having created a HIPAA event adapter with two registered events, a HIPAA message
event (for example, HIPAA 270) and a HIPAA Functional Acknowledgment message
event, you may view the document as it has been processed through the workflow in
the WebLogic Studio console.
7-14 BEA WebLogic Adapter for HIPAA User Guide

Acknowledgement Processing
1. Right-click Templates and select Instances.

Figure 7-10 Template Workflow Instances

2. Choose the instance of interest (that is, the instance generated by the bad
message).

3. Right-click and select Workflow Variables:
BEA WebLogic Adapter for HIPAA User Guide 7-15

7 Functional Acknowledgement Handling
Figure 7-11 Workflow Variables Dialog Box

4. Click View XML to see the contents of the XML variable “Inspector”:

Figure 7-12 Workflow XML Variable
7-16 BEA WebLogic Adapter for HIPAA User Guide

	About This Document
	What You Need to Know
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction to HIPAA
	The BEA WebLogic Adapter for HIPAA
	WebLogic Integration and HIPAA
	Document Conversion
	The BEA WebLogic Adapter for HIPAA Toolkit
	Rules Files
	EDI to XML Transformation
	Event Transport Protocol Options

	HIPAA Validation Processing
	Configuration

	2 Metadata, Schemas, and Repositories
	Understanding Metadata
	Schemas and Repositories
	The Repository Manifest
	Message Schemas, Rules, and Code Sets
	Samples File

	3 Defining an Application View for the BEA WebLogic Adapter for HIPAA
	Metadata
	Creating a New Application View

	4 Service and Event Configuration
	Adding a Service to an Application View
	Adding an Event to an Application View
	Deploying an Application View
	Testing Services and Events

	5 BEA WebLogic Adapter for HIPAA Integration Using Business Process Management
	Business Process Management Functionality

	6 Writing and Editing Rule Specification Files
	Rule Specification Files
	Example: Creating a Simple Rule Specification File
	Reference: Syntax for Writing Rules

	Built-in HIPAA Rules
	Condition Designator (cd=)
	Reference: Supported Designators

	If/Then Date Format Rules

	HIPAA Rule Set
	checkDTM
	checkDTP
	checkDMG
	checkQTY
	checkCD
	isN
	isR
	isDate
	isTime
	isFDATE
	checkLen
	checkUsage
	isCDate
	checkList
	Example: Resolving a Checklist File Alias in the Custom Dictionary

	checkEQ
	segXO
	compositeIntegrity
	relationalIntegrity
	loopSegCount
	balance
	tranBal

	Rules In Java
	Example: Writing Rules in Java

	Writing Rule Search Routines in Java
	Example: Loading a Java File

	7 Functional Acknowledgement Handling
	Acknowledgement Processing
	Documents, Validation, and Acknowledgement
	Acknowledgement Agent
	Acknowledgement Message Handling
	Creating an Acknowledgement Event
	Testing Acknowledgement Message Handling

