
BEA
 WebLogic
Adapter for
ISO15022™

User Guide
Release 7.0.3
Document Date: April 2003

Copyright

Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Copyright © 2003 iWay Software. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

BEA WebLogic Adapter for ISO15022 User Guide

Part Number Date

N/A April 2003

Table of Contents

About This Document
What You Need to Know .. viii

Related Information... viii

Contact Us! .. ix

Documentation Conventions ... ix

1. Introduction
Adapter Components ... 1-3

Overview ... 1-4

Validation ... 1-5

Inbound Messaging .. 1-5

Outbound Messaging.. 1-6

Configuring and Validating Documents.. 1-6

2. Creating and Configuring an Event Adapter
Creating an Application View Folder.. 2-1

Creating an Event Adapter Application View... 2-3

Configuring an Event Adapter Application View... 2-6

Testing Event Adapter Application Views.. 2-15

Testing Event Adapter Application Views.. 2-18

3. Creating and Configuring a Service Adapter
How to Create a Service Adapter .. 3-1

How to Configure a Service Adapter .. 3-4

Testing the BEA Service Adapter ... 3-12
BEA WebLogic Adapter for ISO15022 User Guide iii

4. Transforming Document Formats
Overview ... 4-1

Transforming SWIFT to XML .. 4-2

Transforming XML to XML ... 4-2

Transforming XML to SWIFT .. 4-3

5. Acknowledgement Handling
Acknowledgement Processing... 5-2

Validation ... 5-2

Document Tree ... 5-3

Acknowledgement Agent ... 5-3

Documents, Validation, and Acknowledgement ... 5-3

Acknowledgement Agent .. 5-4

Acknowledgement Message Handling .. 5-5

Creating an Acknowledgement Event .. 5-7

Testing Acknowledgement Message Handling .. 5-12

6. Using Tracing
Levels and Categories of Tracing .. 6-2

Tracing and Performance... 6-3

Creating Traces for Services and Events ... 6-3

Creating Traces for a Service ... 6-4

Creating or Modifying the WebLogic Framework Tracing Level for an Event
6-5

Creating Adapter Logs for an Event... 6-8

A. ISO15022 Rules System Adapter
Rules File .. A-2

General Rule Set ... A-4

isN.. A-4

isR.. A-5

isDate... A-5

isTime .. A-6

SWIFT Specific Rule Set ... A-6

isValidReference ... A-7
iv BEA WebLogic Adapter for ISO15022 User Guide

isValidISIN.. A-7

isNotPresent .. A-8

isValidMultiLine ... A-8

isSWIFTReal ... A-8

isSWIFTDate... A-9

IsValidSWIFTString ... A-10

Hexadecimal Representation of SWIFT Character Set........................... A-11

isSWIFTTime.. A-13

isValidMessageType ... A-13

checkValue .. A-14

checkCD.. A-15

checkRepetitive ... A-17

checkNodes ... A-17

checkChildSequence ... A-18

checkAddition ... A-19

checkRelation .. A-19

checkSegment.. A-20

Writing Rules in Java ... A-21

Writing Rule Search Routines in Java.. A-23

B. Linking the Adapter to a SWIFT Network
Batch File Transfer – FILE and FTP...B-2

Application Server – CAS MF ..B-3

Interactive – MQ Series...B-4
BEA WebLogic Adapter for ISO15022 User Guide v

vi BEA WebLogic Adapter for ISO15022 User Guide

About This Document

The BEA WebLogic Adapter for ISO15022 User Guide is organized as follows:

Chapter 1, “Introduction,” introduces the BEA WebLogic Adapter for ISO15022,
describes its features, and gives an overview of how it works.

Chapter 2, “Creating and Configuring an Event Adapter,” describes how
metadata is used and how application views are created.

Chapter 3, “Creating and Configuring a Service Adapter,” describes how to add
services and events to application views.

Chapter 4, “Transforming Document Formats,” describes how events are
incorporated into workflow design.

Chapter 5, “Acknowledgement Handling,” describes the Acknowledgement
process.

Appendix A, “ISO15022 Rules System Adapter,” describes how documents are
to be validated against sets of rules.

Appendix B, “Linking the Adapter to a SWIFT Network,” describes the
connecting of business applications to SWIFTAlliance.
BEA WebLogic Adapter for ISO15022 User Guide vii

What You Need to Know

This document is written for system integrators who develop client interfaces between
ISO15022 and other applications. It describes how to use the BEA WebLogic Adapter
for ISO15022 and how to develop application environments with specific focus on
message integration. It is assumed that readers know Web technologies and have a
general understanding of Microsoft Windows and UNIX systems.

Related Information

The following documents provide additional information for the associated software
components:

BEA WebLogic Adapter for ISO15022 Installation and Configuration Guide

BEA WebLogic Adapter for ISO15022 Release Notes

BEA Application Explorer Installation Guide

BEA WebLogic Server installation and user documentation, which is available at
the following URL:

http://edocs.bea.com/more_wls.html

BEA WebLogic Integration installation and user documentation, which is
available at the following URL:

http://edocs.bea.com/more_wli.html
viii BEA WebLogic Adapter for ISO15022 User Guide

Contact Us!

Your feedback on the BEA WebLogic Adapter for ISO15022 documentation is
important to us. Send us e-mail at docsupport@bea.com if you have questions or
comments. Your comments will be reviewed directly by the BEA professionals who
create and update the BEA WebLogic Adapter for ISO15022 documentation.

In your e-mail message, please indicate which version of the BEA WebLogic Adapter
for ISO15022 documentation you are using.

If you have any questions about this version of the BEA WebLogic Adapter for
ISO15022, or if you have problems using the BEA WebLogic Adapter for ISO15022,
contact BEA Customer Support through BEA WebSupport at www.bea.com. You can
also contact Customer Support by using the contact information provided on the
Customer Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.
BEA WebLogic Adapter for ISO15022 User Guide ix

mailto:docsupport@bea.com
www.bea.com

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Convention Item
x BEA WebLogic Adapter for ISO15022 User Guide

... Indicates one of the following in a command line:

That an argument can be repeated several times in a command line

That the statement omits additional optional arguments

That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
BEA WebLogic Adapter for ISO15022 User Guide xi

xii BEA WebLogic Adapter for ISO15022 User Guide

CHAPTER
1 Introduction

This section introduces the BEA WebLogic Adapter for ISO15022, describes its
features, and gives an overview of how it works. It includes the following topics:

Adapter Components

Overview

Configuring and Validating Documents

SWIFT networks carry messages between financial institutions and must originate or
arrive at financial institutions in a format described by a SWIFT message standard. In
2002, the SWIFT standards body moved from ISO Standard 7775 to ISO Standard
15022 and SWIFT documents began conforming to this standard.

The BEA WebLogic Adapter for ISO15022 transforms documents into XML format
and converts between message formats in 7775 format into 15022 format. The adapter
provides bi-directional transformation to ensure integration to and from 15022
compliant networks and applications.

With the XML document in the 15022 format, the information can be integrated into
back or front office 7775 standard systems using WebLogic Integration and all of the
BEA application and data adapters that are available from the adapter suite of products.

J2EE™ standard interfaces and protocols such as JCA™, JDBC™, and JMS™ are
also supported with the BEA WebLogic Adapter for ISO15022. The same adapters can
be used to obtain information necessary to populate SWIFT messages. For example,
you can use the BEA WebLogic Adapter for RDBMS updates in an RDBMS to trigger
a SQL query that returns an XML formatted answer set that can be mapped to a SWIFT
message.

Data dictionaries describe the SWIFT message format and are used to enable the
mapping of XML documents to SWIFT form and SWIFT messages to XML. After
structural integrity has been verified during the transformation stage, the BEA
WebLogic Adapter for ISO15022 performs validation, using a set of rules defined in
BEA WebLogic Adapter for ISO15022 User Guide 1-1

1 Introduction
an XML formatted rules file. Where applicable, acknowledgment documents are
returned to the sending application, but only if the incoming document is structurally
valid. If the content validation fails, an error code is returned in the acknowledgement
document, if one is expected.

You can use the adapter to exchange SWIFT formatted documents over any one of the
supported transport protocols with WebLogic Integration to provide a tightly
integrated application infrastructure. The multiprotocol support of the adapter allows
for the greatest flexibility in application integration from Web-based form submission
to guaranteed delivery using WebSphere MQSeries.

MQSeries messaging products support application integration by sending and
receiving data as messages that allow business applications to exchange information
across different platforms. They account for network interfaces, assure “once only”
delivery of messages, deal with communication protocols, dynamically distribute
workload across available resources, handle recovery after system problems, and help
make programs portable. This allows programmers to use their skills to handle key
business requirements, instead of wrestling with underlying network complexities.

The BEA WebLogic Adapter for ISO15022 provides:

Multi-protocol support for integration with any form of application system or
standardized message handling system.

Message transfer between SWIFT message handling systems and WebLogic
Integration.

Service and event adapter integration operation providing end-to-end business
process management using SWIFT formatted messages and XML schema
defined business processes.

Support for custom and standard SWIFT message formats with automatic
generation of transforms into a common XML business process environment.

SWIFT format conversion paths from ISO 7775 to 15022 and from ISO 15022
to 7775.

The adapter provides pre-packaged support for 15022 standard documents, but does
not provide out-of-the-box the ability to customize those formats. Please contact BEA
professional services if you need to customize these formats.
1-2 BEA WebLogic Adapter for ISO15022 User Guide

Adapter Components
Adapter Components

The BEA WebLogic Adapter for ISO15022 is packaged with the components required
to integrate SWIFT message information into an existing ISO 7775 systems
environment. The following components are supplied with the adapter:

WebLogic Integration Application Views. This is the backbone of the BEA
WebLogic Adapter for ISO15022. WebLogic Integration is the host for the
adapter and can be used to host a multitude of BEA adapters. This architecture
enables easy integration spanning multiple protocols (for example, SWIFT and
MQ Series) and back-end systems and/or data sources.

BEA WebLogic Adapter for ISO15022 kit. The BEA WebLogic Adapter for
ISO15022 kit is a set of components that enable the integration of SWIFT
message formats into an environment. The following list details the components
supplied with the kit:

XML schemas (.xsd). These describe the SWIFT messages for event and
service processing.

Data dictionaries (.dic). These describe the SWIFT format messages to the
BEA WebLogic Adapter for ISO15022.

Transformation templates (.xch). These are the maps that are created using
the transformation templates configured to convert SWIFT to XML and
XML to SWIFT and between ISO 7775 and ISO 15022 standard message
formats.

Rules files (.xml). Rules files are XML documents that are used to apply
business rules to the SWIFT XML file (either post or prior to conversion).
The rules files are built to the SWIFT standards specification and are
customizable to apply customer and/or partner specific rules.

Code sets (.txt). Currency and country (ISO standard) code set tables are
provided for validation using the rules engine.
BEA WebLogic Adapter for ISO15022 User Guide 1-3

1 Introduction
Overview

The BEA WebLogic Adapter for ISO15022 provides transport protocol,
transformation, and document validation support. It can receive and emit SWIFT
formatted documents over any supported protocol, transform the documents into XML
standard format, and validate the document against a suite of SWIFT rules.

When the BEA WebLogic Adapter for ISO15022 receives a document, it processes the
document in a number of ways. The BEA WebLogic Adapter for ISO15022 supports
bi-directional transformation using XML as the intermediate format across a number
of transport protocols. The adapter is supplied with templates to convert SWIFT
message types to XML. Schemas are supplied to SWIFT format.

The SWIFT documents are described using data dictionaries supplied with the adapter.
The data dictionaries conform to the SWIFT standards and are updated with each
year’s amendments, and the format for describing data elements conform to the
standards in the books. These dictionaries are in XML format and can be edited to
tailor messages to individual bank and/or market standards.

Receipt of SWIFT messages has been implemented as an event adapter within
WebLogic Integration. Emission of SWIFT messages has been implemented as a
service adapter. These adapters provide a number of processing options that you can
configure with the design-time WebLogic Integration Application View.

Transformation services. XML is quickly becoming the standard for exchanging
information between applications; it is invaluable in integrating disparate
applications. The BEA WebLogic Adapter for SWIFT automatically recognizes
the SWIFT message types and converts them into the XML equivalent. The
adapter provides the full suite of message formats and their associated XML
Schema Definitions (.xsd files).

Document validation rules. During the analysis of an incoming SWIFT message,
the system validates the message against the associated SWIFT rule. Validation
rule specifications are stored in XML files that are freely accessible in the
directory structure. Keeping each rule in an external file facilitates the
maintenance of existing rules and provides an easy way to add new ones. You
can also create new rules by writing custom Java code.
1-4 BEA WebLogic Adapter for ISO15022 User Guide

Overview
Message acknowledgment. Message receipt and message validation may be
configured to generate message validation. A validation response may be emitted
on any of the supported transports.

Protocol emitting. The service adapter supports emitting SWIFT messages to
any of the supported transport protocols.

Validation

The SWIFT messages are validated in two ways. The first way is by using the
dictionaries. The dictionaries are used to parse the document and validate the structure
of the message type and tag structure. The second way is by the rules engine, which
provides content (domain and network) validation.

The SWIFT document is validated by use of a rule file in XML format. This file is an
XML document that applies pre-built rules based on the XML tag. These are
customizable, and users can write their own rules to apply extra business logic.

Depending on the direction (XML to SWIFT or SWIFT to XML), the content
validation occurs before or after structural validation. The following section explains
how transformation and validation works for both inbound (receiving a SWIFT
message) and outbound (creating a SWIFT message) processes.

Inbound Messaging

A configured listener picks up an inbound SWIFT message. The first step is the
pre-parse stage. Because the iXTE maps input and output using XML format, the
document must be converted to XML. This is where the transformation templates are
called to convert SWIFT format to XML.

After the content is in XML format, the content of the SWIFT document can be
validated based on supplied rules files. BEA supplies pre-built rules that apply
validation rules to tags or groups of tags in the XML document, specific to the SWIFT
green books.
BEA WebLogic Adapter for ISO15022 User Guide 1-5

1 Introduction
Outbound Messaging

In the outbound process used by the BEA WebLogic Adapter for ISO15022, an XML
document can be transformed to XML or to SWIFT ISO 15022 standard. This can be
from a custom XML or from a 7775 standard document. The transformations from
7775 to 15022 and back are supplied.

A document can be received, in XML format, and have business logic applied. The
rules engine then validates the document and transforms it into a SWIFT document at
the pre-emit stage in the process.

Configuring and Validating Documents

The BEA WebLogic Adapter for ISO15022 comes with a WebLogic JSP-based
console that allows authorized users to manage the engine. Listeners, validation rules,
and other configuration tasks can be performed here.

Validation occurs against the XML representation of the SWIFT documents.
Conversion to XML occurs first. At this stage, the SWIFT dictionaries are used, and
structural validation is applied.

Further network and content validation of the SWIFT documents using the BEA
WebLogic Adapter for ISO15022 is performed by a Rules Class, applying rules
defined in the rules files. These rules must be created, assigned to the adapter (that is,
an alias is created), and applied to the document. BEA supplies standard rules files that
validate a document based on the SWIFT 2001 supplied standards.

These files are pre-configured and known to the adapter and also have been related to
the documents to be validated. No configuration is required. If customized rules files
are used and applied to custom built transformation templates, see Appendix A,
“ISO15022 Rules System Adapter.” This section documents the standard rules and
SWIFT-specific rules supplied with the BEA WebLogic Adapter for ISO15022.

The Validation phase may or may not produce errors related to elements in the
document tree. After validation, the acknowledgement agent processing begins. This
phase allows for custom behavior based on the results of the document and its
1-6 BEA WebLogic Adapter for ISO15022 User Guide

Configuring and Validating Documents
validation results. For ISO15022 SWIFT messages, the default acknowledgement
agent is the XDSWIFTACKAgent. The acknowledgement process is described in
detail in Chapter 5, “Acknowledgement Handling.”
BEA WebLogic Adapter for ISO15022 User Guide 1-7

1 Introduction
1-8 BEA WebLogic Adapter for ISO15022 User Guide

CHAPTER
2 Creating and
Configuring an Event
Adapter

An event adapter is the inbound interface from an external protocol. For SWIFT ISO
15022, this may be an MQSeries resource manager (that is, from a Queue Manager and
its associated queues), FILE, FTP, TCP, and so forth. This section describes how
metadata is used and how application views are created. It includes the following
topics:

Creating an Application View Folder

Creating an Event Adapter Application View

Configuring an Event Adapter Application View

Testing Event Adapter Application Views

Testing Event Adapter Application Views

Creating an Application View Folder

Application views reside within WebLogic Integration. WebLogic Integration
provides you with a root folder in which you can store all of your application views. If
you wish, you can create additional folders to organize related application views into
groups.
BEA WebLogic Adapter for ISO15022 User Guide 2-1

2 Creating and Configuring an Event Adapter
To create an application view folder:

1. Log on to the WebLogic Integration Application View Console at the following
location:

http://appserver-host:port/wlai

Here appserver-host is the IP address or host name where the WebLogic
Integration Server is installed, and port is the socket on which the server is
listening. The port, if not changed during installation, defaults to 7001.

2. If prompted, enter a user name and password, as shown in the following figure.

Figure 2-1 Application View Logon

Note: If the user name is not system, it must be included in the adapter group.
For more information on adding the administrative server user name to the
adapter group, see the BEA WebLogic Adapter for ISO15022 Installation
and Configuration Guide.

3. Click Login.

The Application View Console opens.

Figure 2-2 Application View Console Window

4. Click the new folder icon.
2-2 BEA WebLogic Adapter for ISO15022 User Guide

Creating an Event Adapter Application View
The Add Folder page opens.

Figure 2-3 Application View Console: Add Folder

5. Type a name for the folder, and then click Save.

You have created the application view folder.

Creating an Event Adapter Application View

To create an event adapter application view:

1. Open the Application View Console, which is found at the following location:

http://host:port/wlai

Here, host is the TCP/IP address or DNS name where WebLogic Integration
Server is installed, and port is the socket on which the server is listening. The
default port at the time of installation is 7001.

The Application View Console opens.

Figure 2-4 Application View Console
BEA WebLogic Adapter for ISO15022 User Guide 2-3

2 Creating and Configuring an Event Adapter
2. Click Add Application View to create an application view for the adapter. The
Define New Application View dialog box opens. An application view enables a
set of business processes for this adapter's target EIS application. For more
information, see “Defining an Application View” in Using Application
Integration:

For WebLogic Integration 7.0, see
http://edocs.bea.com/wli/docs70/aiuser/2usrdef.htm

The Define New Application View page opens.

Figure 2-5 Application View Console: Define New Application View

3. Type a name and description for the application view.

4. Select BEA_ISO15022_1_0 from the Associated Adapter drop-down list:

5. Click OK.

The Configure Connection Parameters page opens.
2-4 BEA WebLogic Adapter for ISO15022 User Guide

Creating an Event Adapter Application View
Figure 2-6 Application View Console: Configure Connection Parameters

6. Type the name of the BEA WebLogic Adapter for ISO15022 session base
directory in the Session path box.

This directory holds your ISO15022 SWIFT schema information and contains
the subdirectory ISO15022/YourConnectionName.

For example, the session base directory might be
/bea/bse/sessions/default, with the schema repository—containing a
repository manifest and schemas—residing in
/bea/bse/sessions/default/ISO15022/Category5.

7. From the Connection name drop-down list, select the session name (also known
as the connection name).

8. Click Connect to EIS.

Note: You can access the Configure Connection Parameters page (displayed in the
previous step) when the application view is not deployed simply by selecting
the Reconfigure connection parameters link. If the application view is
deployed, you can access the page by first undeploying the application view.

The Application View Administration page opens.
BEA WebLogic Adapter for ISO15022 User Guide 2-5

2 Creating and Configuring an Event Adapter
Figure 2-7 Application View Console: Application View Administration

9. Click Save.

You have finished creating the application view for the event adapter.

Note that you must add an event, as described in “Configuring an Event Adapter
Application View” on page 2-6, before you can deploy the application view.

Configuring an Event Adapter Application
View

An event adapter application view contains all events that are expected to arrive at an
instance of the event adapter. You can add many events to an application view. Each
event has a schema for the arriving message (a message is also known as a document).
A service should be added for each event used by the application view.

To add an event to, and deploy, an event adapter application view:

1. Log on to the WebLogic Integration Application View Console at
//appserver-host:port/wlai.
2-6 BEA WebLogic Adapter for ISO15022 User Guide

Configuring an Event Adapter Application View
2. Select the folder in which this application view resides and then select the
application view.

3. In the Administration page of the WebLogic Integration Application View
Console, select Add Event.

The Add Event page opens.

Figure 2-8 Application View Console: Add Event - MQSeries

The BEA WebLogic Adapter for ISO15022 supports multiple protocols for
receiving its SWIFT messages.

4. In the Select drop-down list box, select the desired transport protocol.

The screen displays the associated parameters for the chosen protocol.

The properties in the previous window correspond to the MQSeries
communication and transformation settings that the event adapter uses. The
schema drop-down list corresponds to the list of events in the schema repository.
BEA WebLogic Adapter for ISO15022 User Guide 2-7

2 Creating and Configuring an Event Adapter
The following table describes the communication settings for the MQSeries
transport protocol.

Table 2-1 Event Properties - MQSeries

Property Description Type Sample
Value

Element

XSLT
Transform

Name of the XSLT stylesheet used
by the XSLT transform type in the
XML to XML transformation
phase.

For more information, see
Chapter 4, “Transforming
Document Formats.”

string <in_xslt>

Queue
Manager*

(Required)

Name of the MQSeries Queue
Manager to be used.

string OMBEA <manager>

Queue
Name

Queue on which request documents
are received.

string ISO15022.iO <queue>

Recycle
Interval

Interval between retrying
successful requests.

duration <recycle>

MQ Client
Host

For MQ Client only. Host on which
MQ Server is located.

string <host>

MQ Client
Port

For MQ Client only. Port number
to connect to an MQ Server.

integer <port>

MQ Client
Channel

For MQ Client only. Channel
between an MQ Client and MQ
Server.

string <channel>

Execution
Time
Limit

The length of time in seconds
before execution is terminated.

duration <maxlife>

Polling
Interval

The time in milliseconds. duration <timeout>
2-8 BEA WebLogic Adapter for ISO15022 User Guide

Configuring an Event Adapter Application View
For the File adapter, the following screen shows the applicable parameters:

Figure 2-9 Application View Console: Add Event - File

ackagent The agent responsible for
processing acknowledgement or
non-acknowledgement of ISO
SWIFT documents. The default
SWIFT acknowledgement agent
will generate an empty
acknowledgement document or
will list all failed validation rules in
the non-acknowledgement
document.

string <ackagent>

Table 2-1 Event Properties - MQSeries (Continued)

Property Description Type Sample
Value

Element
BEA WebLogic Adapter for ISO15022 User Guide 2-9

2 Creating and Configuring an Event Adapter
The following table describes the properties for File.

Table 2-2 Event Properties - File

Setting Meaning/Properties

XSLT Transform Name of the XSLT stylesheet used by the XSLT transform type in
the XML to XML transformation phase.

For more information, see Chapter 4, “Transforming Document
Formats.”

Location*

(*Required)

Type/Value: String

Description: The location and name of the file pattern for the
SWIFT documents.

File Suffix*

(*Required)

Type/Value: String

Description: Mandatory suffix of the input files.

Polling Interval Type/Value: Duration

Description: Time in milliseconds between polls.

Sort*

(*Required)

Type/Value: Boolean

Description: Flag to indicate whether the list of files pulled from the
location should be sorted for processing order.

Scan sub-directories Type/Value: Boolean

Description: Flag to indicate whether files should be read from
subdirectories.

File Read limit (per
scan)

Type/Value: Integer

Description: The number of files read per sweep of the File
directory location.

ackagent Type/Value: String

Description: The agent responsible for processing
acknowledgement or non-acknowledgement of ISO SWIFT
documents. The default SWIFT acknowledgement agent will
generate an empty acknowledgement document or will list all failed
validation rules in the non-acknowledgement document.

encoding Type/Value: String

Description: Document character set.
2-10 BEA WebLogic Adapter for ISO15022 User Guide

Configuring an Event Adapter Application View
For the FTP adapter, the following screen shows the applicable parameters:

Figure 2-10 Application View Console: Add Event - FTP

Table 2-3 Event Properties - FTP

Setting Meaning/Properties

XSLT Transform Name of the XSLT stylesheet used by the XSLT transform type in
the XML to XML transformation phase.

For more information, see Chapter 4, “Transforming Document
Formats.”

Host name*

(*Required)

Type/Value: String

Description: FTP target system.

Host port Type/Value: Integer

Description: Alternate port number.
BEA WebLogic Adapter for ISO15022 User Guide 2-11

2 Creating and Configuring an Event Adapter
5. Click Add. The Application View Administration page opens.

User ID*

(*Required)

Type/Value: String

Description: User account ID to use when connecting to protocol
host.

Password Type/Value: String

Description: Password for user account to use when connecting to
protocol host.

Location*

(*Required)

Type/Value: Directory path and file

Description: Location on FTP host to retrieve files from.You must
append the file suffix (extension) to the file or files specified in the
Location field. For example, you can enter a specific file such as
/path/to/my/ftp/directory/myfile.xml or a group of
files such as /path/to/my/ftp/directory/*.zip.

File Suffix Type/Value: String

Description: This field is no longer used. You must append the file
suffix to the file or files specified in the Location field.

Polling Interval Type/Value: Integer

Description: Time in milli-seconds between polls from the FTP
server.

ackagent Type/Value: String

Description: The agent responsible for processing
acknowledgement or non-acknowledgement of ISO SWIFT
documents. The default SWIFT acknowledgement agent will
generate an empty acknowledgement document or will list all failed
validation rules in the non-acknowledgement document.

Character set
encoding*

(*Required)

Type/Value: String

Description: Document character set.

Table 2-3 Event Properties - FTP

Setting Meaning/Properties
2-12 BEA WebLogic Adapter for ISO15022 User Guide

Configuring an Event Adapter Application View
Figure 2-11 Application View Console: Application View Administration

6. Click Continue.

The Deploy Application View page opens.

Figure 2-12 Application View Console: Deploy Application View

7. Modify event parameters, connection pool parameters, log configuration, and
security as necessary.

8. Click Deploy to save and deploy the event adapter.
BEA WebLogic Adapter for ISO15022 User Guide 2-13

2 Creating and Configuring an Event Adapter
In the WebLogic Server Log, you should see the following entries as the event
adapter deploys:

Figure 2-13 WebLogic Server Log

9. To validate that the application view was successfully deployed, go to the main
Application View Console page and select the folder in which you created the
application view. You should see the name of the new application view.

Figure 2-14 Application View Console: New Application View

You have finished configuring the event adapter application view.

You can confirm that you configured it correctly and that it can successfully receive
events using the instructions in “Testing Event Adapter Application Views” on page
2-15 and “Testing Event Adapter Application Views” on page 2-18.
2-14 BEA WebLogic Adapter for ISO15022 User Guide

Testing Event Adapter Application Views
Testing Event Adapter Application Views

To confirm that a deployed event adapter application view is correctly configured and
can receive events:

1. Log on to the WebLogic Integration Application View Console at
//appserver-host:port/wlai.

2. Select the folder in which the application view resides and then select the
application view.

The Summary page opens.

Figure 2-15 Application View Console: Summary Window

3. Click Test for one of the application view’s events.

The Test Event page opens:
BEA WebLogic Adapter for ISO15022 User Guide 2-15

2 Creating and Configuring an Event Adapter
Figure 2-16 Application View Console: Test Event Window

4. Enter 3000 (or a higher value) in the Time box. This provides a 30-second period
during which, in the following step, you can access the IBM MQSeries API
Exerciser (or your favorite utility) to manually invoke a request from MQSeries
to your event adapter.

5. Open the MQSeries API Exerciser and select the Queue Manager that you had
assigned to the event adapter in the Add Event page of the Application View
Console.

Figure 2-17 MQSeries API Exerciser: Queue Managers Tab

6. Click MQCONN.

7. Click the Queues tab.
2-16 BEA WebLogic Adapter for ISO15022 User Guide

Testing Event Adapter Application Views
Figure 2-18 MQSeries API Exerciser: Queues Tab

8. On the Queues tab, in the Selected Queue drop-down list, select the queue that
you had assigned to the event adapter in the in the Add Event page of the
Application View Console.

9. Click MQOPEN.

10. Click MQPUT.

The MQPUT dialog box appears.

Figure 2-19 MQPUT

11. Copy and paste a sample instance document that matches the schema for the
event that you are testing:

In the Application View Console, the Test Result page displays the event’s
result. If you wait longer than a minute and do not receive the event’s result, you
should assume that there is a problem with the event adapter application view.

12. Examine the WebLogic Server Log for information about the event’s activity.
BEA WebLogic Adapter for ISO15022 User Guide 2-17

2 Creating and Configuring an Event Adapter
Otherwise, you have now confirmed that the event adapter application view is
correctly configured and can receive events.

Testing Event Adapter Application Views

To confirm that a deployed event adapter application view is correctly configured and
can receive events:

1. Start the WebLogic Integration Studio.

On a Windows system, choose Start→Programs→BEA WebLogic
Platform 7.0→WebLogic Integration 7.0→Studio.

On a UNIX system, go to the WLI_HOME/bin directory and run the studio
command.

2. Log on to the WebLogic Integration Studio.

3. In the Organization pane, choose an organization to create a new business process
management workflow template.

4. Right-click Templates and select Create Template:

Figure 2-20 WebLogic Integration Studio - Create Template

5. Right-click the new template and select Create Template Definition:
2-18 BEA WebLogic Adapter for ISO15022 User Guide

Testing Event Adapter Application Views
Figure 2-21 WebLogic Integration Studio - Create Template Definition

The template appears in WebLogic Integration Studio:

Figure 2-22 WebLogic Integration Studio - New Template

6. Right-click the Start node and select Properties:

Figure 2-23 WebLogic Integration Studio - Start Node Properties

The Start Properties dialog box appears.
BEA WebLogic Adapter for ISO15022 User Guide 2-19

2 Creating and Configuring an Event Adapter
Figure 2-24 WebLogic Integration Studio - Start Properties

7. Select Event→AI Start.

8. In the event explorer, browse the application view folders and select the
application view that corresponds to the event adapter.

9. Open the event adapter and select the desired event:

10. Select <new> from the Event Document Variable drop-down list:
2-20 BEA WebLogic Adapter for ISO15022 User Guide

Testing Event Adapter Application Views
Figure 2-25 Start Properties Dialog Box - New Document Variable

The Variable Properties dialog box appears.

Figure 2-26 Variable Properties Dialog Box

11. Type a name for the new variable.

12. Select the variable type XML.

13. Check the Input and Output options in the Parameter group:
BEA WebLogic Adapter for ISO15022 User Guide 2-21

2 Creating and Configuring an Event Adapter
14. Click OK.

15. Right-click the template in WebLogic Integration Studio’s left pane and select
Save:

Figure 2-27 WebLogic Integration Studio - Save Template

16. Right-click the event definition folder and select Properties.

The Template Definition dialog box appears.

Figure 2-28 Template Definition Dialog Box

17. Ensure that Active is checked, and click OK.

You may now initiate events from your Enterprise Information System.

For the BEA WebLogic Adapter for ISO15022, you can create events through a
business application or through an MQSeries utility.

For example, you could use the PutMessage utility in MQSeries SupportPac
MA0J to put messages into a queue where the event adapter is configured.

The PutMessage utility assists in writing messages into the queue.
2-22 BEA WebLogic Adapter for ISO15022 User Guide

Testing Event Adapter Application Views
Figure 2-29 MQSeries PutMessage

1. Enter free-form text or source the data from a file.

2. Then specify a queue manager, queue name, and port for your locally accessible
MQ installation.

3. Select the message or message source file and click Put Message in Queue.

4. Return to WebLogic Integration Studio.

Figure 2-30 WebLogic Integration Studio - Event Definition Folder

5. Right-click the event definition folder and select Instances:
BEA WebLogic Adapter for ISO15022 User Guide 2-23

2 Creating and Configuring an Event Adapter
The Workflow Instances for your event definition appear.

You can now track execution of your workflow.

6. Select Started and click Refresh.

You should see a list of started work flows:

Figure 2-31 WebLogic Integration Studio - Workflow Instances

7. Right-click any instance of the workflow and select Variables.

The Workflow Variables dialog box appears.

Figure 2-32 Workflow Variables Dialog Box

8. Click View XML to see the entire contents of the workflow document.
2-24 BEA WebLogic Adapter for ISO15022 User Guide

CHAPTER
3 Creating and
Configuring a Service
Adapter

The service adapter for ISO15022 is WebLogic Integration’s interface to SWIFT ISO
15022 message systems. It enables your business processes to write output in SWIFT
ISO15022 or 7775 format. This section contains the following topics:

How to Create a Service Adapter

How to Configure a Service Adapter

Testing the BEA Service Adapter

How to Create a Service Adapter

The service adapter for ISO15022 is configured for all services that must send data in
SWIFT format (either from or to 15022 format).

1. Open the Application View Console, which is found at the following location:

http://host:port/wlai

Here, host is the TCP/IP address or DNS name where WebLogic Integration
Server is installed, and port is the socket on which the server is listening. The
default port at the time of installation is 7001.
BEA WebLogic Adapter for ISO15022 User Guide 3-1

3 Creating and Configuring a Service Adapter
2. If prompted, enter a user name and password, as shown in the following figure.

Figure 3-1 Application View Logon

Note: If the user name is not system, it must be included in the adapter group.
For more information on adding the administrative server user name to the
adapter group, see the BEA WebLogic Adapter for ISO15022 Installation
and Configuration Guide.

3. Click Login.

Figure 3-2 Application View Console

4. Click Add Application View to create an application view for the adapter. The
Define New Application View dialog box opens. An application view enables a
set of business processes for this adapter's target EIS application. For more
information, see “Defining an Application View” in Using Application
Integration:

For WebLogic Integration 7.0, see
http://edocs.bea.com/wli/docs70/aiuser/2usrdef.htm

The Define New Application View page opens.
3-2 BEA WebLogic Adapter for ISO15022 User Guide

How to Create a Service Adapter
Figure 3-3 Define New Application View

5. Type a name and description for the application view.

6. Select BEA_ISO15022_1_0 from the Associated Adapter list.

7. Click OK.

The Configure Connection Parameters page opens.

Figure 3-4 Configure Connection Parameters

8. Type the name of the BEA WebLogic Adapter for ISO15022 session base
directory in the Session path box.

This directory holds your SWIFT schema information and contains the
subdirectory ISO15022/YourConnectionName.
BEA WebLogic Adapter for ISO15022 User Guide 3-3

3 Creating and Configuring a Service Adapter
For example, the session base directory might be
d:\bea\bse\sessions\default, with the schema repository—containing a
repository manifest and schemas—residing in
/bea/bse/sessions/default/ISO15022/QMBEA.

9. From the Connection name drop-down list, select the session name (also known
as the connection name).

10. Click Connect to EIS. The Application View Administration page opens.

Note: You can access the Configure Connection Parameters page (displayed in the
previous step) when the application view is not deployed simply by selecting
the Reconfigure connection parameters link. If the application view is
deployed, you can access the page by first undeploying the application view.

How to Configure a Service Adapter

After you create and configure an application view, you can add services that support
the application’s functions. For information on creating the application view, see How
to Create a Service Adapter.

To add a service to an application view:

1. If it is not already open, open the application view to be modified.

For more information, see “Editing an Application View” in “Defining an
Application View” in Using Application Integration:

For WebLogic Integration 7.0, see
http://edocs.bea.com/wli/docs70/aiuser/2usrdef.htm

2. If the application view is deployed, you must undeploy it before adding the
service. See “Optional Step: Undeploying an Application View” in “Defining an
Application View” at the URL referenced in the previous step.

3. In the left pane, click Administration from the Configure Connection list.

The Application View Administration window opens.
3-4 BEA WebLogic Adapter for ISO15022 User Guide

How to Configure a Service Adapter
Figure 3-5 Application View Administration for ISO15022.Category5Service

1. From the Services pane of the Application View Administration page, select Add.

The Add Service page opens.

Figure 3-6 Add Service Window

2. Enter the required properties of XMLtoXML as described in the table that
follows.
BEA WebLogic Adapter for ISO15022 User Guide 3-5

3 Creating and Configuring a Service Adapter
The schema drop-down list corresponds to the manifest that describes all event
schemas.

For MQSeries, the following figure shows the parameters.

Table 3-1 XML to XML Service Properties

Property Description Type Sample
Value

Element

Transform Type*
(*Required)

The name of the
transformation template
file. Select from the
drop-down of available
types. For more
information, see
Chapter 4, “Transforming
Document Formats.”

drop
down

<in_xmlg>
3-6 BEA WebLogic Adapter for ISO15022 User Guide

How to Configure a Service Adapter
Figure 3-7 Add Service Window - MQEmit

3. Enter the required properties of MQSeries as described in the following
MQSeries Properties Table.

The properties correspond to the MQSeries communication settings that the
service adapter uses to communicate with MQSeries when writing messages to
the queues. They also correspond to the transform options described in
Chapter 4, “Transforming Document Formats.”

Table 3-2 MQSeries Service Properties

Property Description Type Sample
Value

Element

Queue Manager*
(*Required)

Name of the MQSeries
Queue Manager to be
used.

string QMBEA <manager>
BEA WebLogic Adapter for ISO15022 User Guide 3-7

3 Creating and Configuring a Service Adapter
Queue Name*
(*Required)

Queue on which request
documents are received.

string <queue>

Correlation Id The correlation ID to set
in the MQSeries
message header.

duration <correlid>

Retry Duration Maximum time that a
document can remain in
the retry pending queue.

duration <duration>

Retry Interval Interval between
retrying pending
requests.

duration <retry>

Recycle Interval Interval between
retrying successful
requests.

duration <recycle>

MQ Client Host For MQ Client only.
Host on which MQ
Server is located.

string <host>

MQ Client Port For MQ Client only.
Port number to connect
to an MQ Server.

integer <port>

MQ Client
Channel

For MQ Client only.
Channel between an
MQ Client and MQ
Server.

string <channel>

Execution Time
Limit

The length of time in
seconds before
execution is terminated.

duration <maxlife>

Polling Interval The time in
milliseconds.

duration <timeout>

Table 3-2 MQSeries Service Properties (Continued)

Property Description Type Sample
Value

Element
3-8 BEA WebLogic Adapter for ISO15022 User Guide

How to Configure a Service Adapter
The schema drop-down list corresponds to the manifest that describes all event
schemas.

For File, the following figure shows the applicable parameters:

Figure 3-8 Add Service - File

The following table presents the settings for the Add Service - File window.

For FTP, the following figure shows the applicable parameters:

Table 3-3 Service Properties - File

Setting Meaning/Properties

directory*

(*Required)

Type/Value: Directory Path

Description: Directory to which output messages are emitted.

output file name/mask*

(*Required)

Type/Value: String

Description: The output file name (can contain a '*'), which gets expanded to a
timestamp.

A pound symbol can be used as a mask for a sequence count. Each pound symbol
represents a whole number integer value. For example, File## counts up to 99 before
restarting at 0, File### counts up to 999 before restarting at 0, and so on.
BEA WebLogic Adapter for ISO15022 User Guide 3-9

3 Creating and Configuring a Service Adapter
Figure 3-9 Add Service - FTP

The following table presents the settings from the Add Service - FTP window.

Table 3-4 Service Properties - FTP

Setting Meaning/Properties

Host name*

(*Required)

Type/Value: String

Description: FTP target system.

Port number Type/Value: Numeric

Description: FTP target system port (leave empty for FTP default).

User ID*

(*Required)

Type/Value: String

Description: User account ID to use when connecting to the protocol host.

Password*

(*Required)

Type/Value: String

Description: Password for the user account to use when connecting to the protocol
host.
3-10 BEA WebLogic Adapter for ISO15022 User Guide

How to Configure a Service Adapter
4. Click Add and continue to the Deploy Application View page.

Figure 3-10 Deploy Application View Window

5. Make any changes that you require to the Deploy Application View page and
click Deploy.

destination*

(*Required)

Type/Value: String

Description: Directory to address on the FTP target system.

output file name/mask Type/Value: String

Description: The output file name (can contain a '*'), which gets expanded to a
timestamp.

Retry Interval Type/Value: Retry interval duration in xxH:xxM:xxS format. (for example,
1H:2M:3S, which is 1 hour 2 minutes and 3 seconds)

Description: The maximum wait interval between retries when a connection fails.

Maxtries Type/Value: String

Description: Number of retries for a failed attempt to write.

Table 3-4 Service Properties - FTP (Continued)

Setting Meaning/Properties
BEA WebLogic Adapter for ISO15022 User Guide 3-11

3 Creating and Configuring a Service Adapter
The Summary for Application View page opens on successful completion of the
Application View Deploy.

Figure 3-11 Summary for Application View

Testing the BEA Service Adapter

The service adapter emits a document to MQSeries and returns an emit status. You can
validate the arrival of the document on the queue by browsing the MQSeries resources
through IBM-supplied or custom tools. For example, on a Windows platform, you
could use MQSeries Explorer, a Microsoft MMC plug-in. Using MQSeries Explorer
to connect to and explore the queues on the Queue Manager, you can view the state of
the queue and browse the messages in it.

1. Confirm that the queue to which the service adapter sends messages is empty.

For example, using MQSeries Explorer, browse the applicable queue and check
the current queue depth, ensuring that it is zero.

a. To delete the existing queue messages, right-click and select All Tasks

b. Select Clear Messages.
3-12 BEA WebLogic Adapter for ISO15022 User Guide

Testing the BEA Service Adapter
Figure 3-12 Confirming an Empty Output Queue

2. From the Summary for Application View page, click Test.

Figure 3-13 Summary for Application View Window

3. Enter a sample XML document that matches the request schema for the
configured service.

For example, the SWIFT MT540 request schema has an instance document
similar to the following.

Figure 3-14 Instance Document

<?xml version="1.0" encoding="UTF-8" ?>

<SWIFTMT540>

<BASIC>
BEA WebLogic Adapter for ISO15022 User Guide 3-13

3 Creating and Configuring a Service Adapter
<APPID_Application_ID_>F</APPID_Application_ID_>

<SRVID_Service_ID_>01</SRVID_Service_ID_>

<LTBNK_Bank_>STRA</LTBNK_Bank_>

...

lines of document omitted

...

</SWIFTMT540>

4. Enter this document into the Service Test page by either typing or by copying and
pasting into the page.

Figure 3-15 Test Service Window

5. Select Test to send the request through the ISO15022 service adapter to the IBM
MQSeries Queue.

The response document should indicate the success of emitting to MQSeries. See
the following sample response.
3-14 BEA WebLogic Adapter for ISO15022 User Guide

Testing the BEA Service Adapter
Figure 3-16 Test Result Window - Request Successfully Sent

After transformation and formatting, the document should arrive on the
MQSeries queue.

Figure 3-17 MQSeries Queue Window

6. Check for the output document on the queue designated in configuring the
service.
BEA WebLogic Adapter for ISO15022 User Guide 3-15

3 Creating and Configuring a Service Adapter
a. Using MQSeries Explorer, browse to the appropriate queue.

b. Select Refresh.

The Current Depth should increase incrementally.

Current Depth should be at one if you cleared all messages first.

Figure 3-18 MQSeries Queue Window - Browse Messages

7. Select the appropriate queue.

8. Right-click and select Browse Messages.

You should see a window similar to the following Message Browser with a
column containing the data that the service adapter sent to MQSeries:

Figure 3-19 Message Browser Window
3-16 BEA WebLogic Adapter for ISO15022 User Guide

CHAPTER
4 Transforming
Document Formats

This section describes how events are incorporated into workflow design. It includes
the following topic:

Overview

Transforming SWIFT to XML

Transforming XML to XML

Transforming XML to SWIFT

Documents within WebLogic Integration are encoded in XML. However, you may
need to receive and generate non-XML data. BEA adapters support inbound
transformations for the event adapter and outbound transformations for the service
adapter. This section describes the transformation options available to you.

The BEA WebLogic Adapter for SWIFT provides SWIFT to XML transformation in
the event adapter and XML to SWIFT and XML to XML transforms in the service
adapter.

Overview

WebLogic Integration supports several transformation phases for converting data from
one format to another. Each phase offers several methods, or transforms, for
accomplishing the conversion.
BEA WebLogic Adapter for ISO15022 User Guide 4-1

4 Transforming Document Formats
There is one transformation phase in the process of an event adapter sending a message
from an Enterprise Information System to business process management workflows.

SWIFT format to XML.

There are two transformation phases in the process of a service adapter sending a
message from business process management workflows to a SWIFT message handling
system.

XML to XML.

XML to SWIFT format.

You specify the type of transformation when adding an event or service to an
application view.

Transforming SWIFT to XML

An event adapter that interfaces with SWIFT data sources must be capable of
converting that data to XML for processing by business process management
workflows. This conversion entails “pre-parsing” the data into XML. The XML is then
parsed for processing.

SWIFT format messages arriving at the event adapter are processed by the SWIFT
pre-parser, which determines the SWIFT message type and applies the correct SWIFT
to XML format conversion.

Transforming XML to XML

A service adapter may be required to convert data from one type of XML document to
another. You can choose the types of transform to accomplish this conversion by
choosing the appropriate schema.

For example, in the following XMLtoXML service, the type of transform required is
specified as 521_to_541.
4-2 BEA WebLogic Adapter for ISO15022 User Guide

Transforming XML to SWIFT
Figure 4-1 Application View Console - Add Service

The parameters for each type of transform are listed in the following table.

Transforming XML to SWIFT

A service adapter that interfaces with SWIFT data sources must be able to convert
XML documents (for example, from business process management) to SWIFT
standard format. This conversion entails the pre-emit conversion of the data into the
SWIFT, non-XML format, which is then emitted to the SWIFT message handling
system (MHS).

Table 4-1 XML to XML Transform Parameters

Parameter Value/Description/Example

Transform Type Type/Value: drop-down list

Description: The name of the transformation template file. Select from
the drop-down of available types.
BEA WebLogic Adapter for ISO15022 User Guide 4-3

4 Transforming Document Formats
4-4 BEA WebLogic Adapter for ISO15022 User Guide

CHAPTER
5 Acknowledgement
Handling

This section describes the process of acknowledging a document after it has passed
through validation. It includes the following topics:

Acknowledgement Processing

Documents, Validation, and Acknowledgement

Acknowledgement Agent

Acknowledgement Message Handling

Documents received by the BEA WebLogic Adapter for SWIFT are processed in
stages that include preparse, validate, transform, agent execute, and pre-emit. At any
phase, the document may generate errors and may or may not pass specific validation
rules. The validation engine and document validation rules are described in full in
Appendix A, “ISO15022 Rules System Adapter.”
BEA WebLogic Adapter for ISO15022 User Guide 5-1

5 Acknowledgement Handling
Acknowledgement Processing

The acknowledgement process indicates the receipt and validity of a received
document. The features which support the acknowledgement process are:

validation

document tree

acknowledgement agent

Validation

Validation is a specific stage in processing the document that occurs immediately after
the document arrives and is available in XML format (that is, after the XML structure
is available but before any other processing). The process of validation and the rules
used in validating a document are described in Appendix A, “ISO15022 Rules System
Adapter.”
5-2 BEA WebLogic Adapter for ISO15022 User Guide

Documents, Validation, and Acknowledgement
Document Tree

The document tree is the adapter’s representation of the XML document. The tree is
used during document processing and stores additional document or element level
information. Validation errors are stored in the document tree and are available to the
acknowledgement agent.

Acknowledgement Agent

The acknowledgement agent is responsible for determining what processing should
occur for a document, as represented in memory by the document tree, and contains
zero, one, or more validation errors. The agent determines what constitutes a good
document to which an “ACK,” or acknowledgement, should be sent. It may also
determine what constitutes a bad document to which a “NAK,” or
non-acknowledgement, should be sent. The agent also determines the content of the
ACK and the NAK.

Documents, Validation, and
Acknowledgement

Documents proceed from the adapter event listener to the emitter or event poster, and
are processed in stages.

With respect to validation and acknowledgement, the above document life cycle has
the following characteristics:

Validation occurs as soon as the document has been converted into XML.

Validation comprises both structural validation (described in dictionaries) and
content & network validation (described in Rules.xml files).

The validation processor (class) is defined at the document level or at the rule
level. (See Appendix A, “ISO15022 Rules System Adapter” for a description.)
An example of a validation processor is XDSWIFTRules.class.
BEA WebLogic Adapter for ISO15022 User Guide 5-3

5 Acknowledgement Handling
Validation (particular Dictionary and Rules.xml) is tied to a specific XML
document type (as defined in Deploy.xml).

If validation is defined for an XML document, an acknowledgement agent is
added to the agent vector (first in line) for processing during the document’s
agent execution phase. See “Acknowledgement Agent” on page 5-4 for a
discussion of acknowledgement agent determination.

Validation processing adds error elements to the document tree.

The acknowledgement agent processes the document using its document tree
including any validation errors added during the previous validation phase.

The output of the acknowledgement agent is independent of the output of the
document agent (they have different schema, separate threads of execution, and
so on).

Validation errors and document output are independent of one another. In other
words, a document may fail validation rules and have acknowledgements (ACK
or NAK) generated in the acknowledgement agent. However, the document is
still passed to its agent and sent to its output unless specific actions are taken
(that is, logic is coded). For example, if the copy agent is defined for the
particular document life cycle, the document is passed out and posted to the
event router even if there are errors.

Custom agents may be coded to alter behavior when validation errors are present
in the document tree.

Acknowledgement Agent

The acknowledgement agent is defined by an <ackagent> entry. It can be defined at
the event or service level, in the document section of the Deploy.xml, or as an
attribute in the root element of the Rules.xml file. The search order is as follows:

1. The <document> section of the deploy.xml.

2. An attribute of the root element of the Rules.xml file.

3. The event or service listener definition using the Application View Console.
5-4 BEA WebLogic Adapter for ISO15022 User Guide

Acknowledgement Message Handling
For the BEA WebLogic Adapter for SWIFT, the default ackagent is the
XDSWIFTACKAgent. This is set or changed on the event or service configuration
screen.

Figure 5-1 Edit Event Window

Acknowledgement Message Handling

The validation engine performs the structural, content, and network validation rules
defined in the document specific dictionaries and rules.xml files. The
acknowledgement agent generates an acknowledgement message based on the
document tree which is a composite of the original XML document tree and validation
errors added by the validation engine. The results of the acknowledgement agent are
BEA WebLogic Adapter for ISO15022 User Guide 5-5

5 Acknowledgement Handling
dependent on the logic coded in the implementation class. For the BEA WebLogic
Adapter for SWIFT, the default implementation class is the
XDSWIFTACKAgent.class.

The following is a sample output with errors.

Listing 5-1 Sample Output

<?xml version="1.0" encoding="UTF-8" ?>

<eda>

<error code="-103" source="validator"
timestamp="2002-08-08T17:37:34Z">

Document failed validation: XD[FAIL] validation
error: checkList
[SWIFTMT541._541.E.E3.L_19A._19A.CURCD_Currency_Code_]: code is
missing

</error>

</eda>

The following schema for the results of this acknowledgement is the
XDSWIFTACKAgent.xsd .

Listing 5-2 XDSWIFTACKAgent.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

<xs:element name="Error" type="xs:string"/>

<xs:element name="SWIFTack">

<xs:complexType>

<xs:sequence>

<xs:element ref="Error" minOccurs="0"
maxOccurs="unbounded"/>

</xs:sequence>
5-6 BEA WebLogic Adapter for ISO15022 User Guide

Acknowledgement Message Handling
</xs:complexType>

</xs:element>

</xs:schema>

The acknowledgement message is generated separately from the document message.
After the acknowledgement agent completes execution, two messages traversing the
system attempt to be posted to the event router. For the message to be posted, an event
must be registered in the application view with the acknowledgement schema.

Creating an Acknowledgement Event

In addition to the application view event created for the document, there must be an
event created for the acknowledgement message generated by the acknowledgement
agent. The following procedure creates an event for the acknowledgements generated
by the XDSWIFTACKAgent.

1. Add an event in the WebLogic application view of the event adapter.
BEA WebLogic Adapter for ISO15022 User Guide 5-7

5 Acknowledgement Handling
Figure 5-2 Add Event Window - Adding an ACK_NAK Event

Note: The ackagent value is set to the desired acknowledgement agent (in this
example, the XDSWIFTACKAgent). Additionally, there is an ACKNAK schema in
the Schema drop down list box which handles both clean ACKs and error filled NAKs.

It is important that the event adapter’s protocol settings (in this case, MQSeries based)
are identical to those provided for the original event. If the settings are different, a
separate event listener is created, and the two events (document and associated ACK
or NAK) are not tied together. The ACKs or NAKs created by the document are not
seen by the event or schema combination created in this section.

2. Add, continue, and deploy the application view.

3. From WebLogic Integration Studio, create a new workflow template in the
Template Properties dialog box.
5-8 BEA WebLogic Adapter for ISO15022 User Guide

Acknowledgement Message Handling
Figure 5-3 Template Properties Dialog Box - Creating a Workflow Template

4. Give the template a name to indicate this workflow is for the acknowledgement
message.

5. Click OK.

6. For the new template, create a new template definition.

Figure 5-4 Template Definition - Creating an ACK or NAK Workflow Definition

7. Open the new template definition, select the Start object, and enter the properties.
BEA WebLogic Adapter for ISO15022 User Guide 5-9

5 Acknowledgement Handling
Figure 5-5 Start Properties Dialog Box - Event Definition

a. Select Event →AI Start.

b. Choose the SWIFT→SWIFTSecurityEvent→ACK_NAK event in the left AI
event pane.

c. Select the Start Organization to be the same as the Template Definition
Organization. (See Figure 5-3.)

d. Add a new Event Document Variable.
5-10 BEA WebLogic Adapter for ISO15022 User Guide

Acknowledgement Message Handling
Figure 5-6 Variable Properties Dialog Box - Add Start Variable

e. Select Input and Output parameter type.

8. Add an Action to the Done object.

a. Select the Done object.

b. Click Add an Action.

The Done Properties dialog box appears.

Figure 5-7 Done Properties Dialog Box - Marking Workflow as Done

c. Click the Actions tab and select Mark Workflow as done.

9. Click OK.

10. Right-click Message Definition in the left pane and select Save.

11. Ensure the workflow is active by selecting the Properties of the workflow
definition.
BEA WebLogic Adapter for ISO15022 User Guide 5-11

5 Acknowledgement Handling
Figure 5-8 Template Definition Properties

Testing Acknowledgement Message Handling

Having created a SWIFT event adapter with two registered events, a SWIFT message
event (for example, SWIFT MT540), and a SWIFT ACK or NAK message event, you
can view the document as it has been processed through the workflow in the WebLogic
Studio console.

Figure 5-9 WebLogic Integration Studio - Template Workflow Instances

1. Right-click Template and select Instances.

2. Select the instance of interest (that is, the instance generated by the bad message).

3. Right-click and select Workflow Variables:
5-12 BEA WebLogic Adapter for ISO15022 User Guide

Acknowledgement Message Handling
Figure 5-10 Workflow Variables

4. Click View XML to see the contents of the XML variable “Inspector”:

Figure 5-11 Workflow XML Variable
BEA WebLogic Adapter for ISO15022 User Guide 5-13

5 Acknowledgement Handling
5-14 BEA WebLogic Adapter for ISO15022 User Guide

6 Using Tracing

Tracing is an essential feature of an adapter. Most adapters integrate different
applications and do not interact with end users while processing data. Unlike a
front-end component, when an adapter encounters an error or a warning condition, the
adapter cannot stop processing and wait for an end user to respond.

Moreover, many business applications that are connected by adapters are
mission-critical. For example, an adapter might maintain an audit report of every
transaction with an EIS. Consequently, adapter components must provide both
accurate logging and auditing information. The adapter tracing and logging framework
is designed to accommodate both logging and auditing.

This section describes tracing for services and events. It contains the following topics:

Levels and Categories of Tracing

Tracing and Performance

Creating Traces for Services and Events
BEA WebLogic Adapter for ISO15022 User Guide 6-1

6 Using Tracing
Levels and Categories of Tracing

Tracing is provided by both the BEA adapter framework and by the BEA WebLogic
Adapter for IS0 15022. The BEA WebLogic Integration framework provides five
distinct levels of tracing:

The adapter framework provides three specialized categories of tracing:

Table 6-1

Level Indicates

AUDIT An extremely important log message related to the business
processing performed by an adapter. Messages with this
priority are always written to the log.

ERROR An error in the adapter. Error messages are internationalized
and localized for the user.

WARN A situation that is not an error, but that could cause problems in
the adapter. Warning messages are internationalized and
localized for the user.

INFO An informational message that is internationalized and
localized for the user.

DEBUG A debug message, that is, information used to determine how
the internal components work. Debug messages usually are not
internationalized.

Table 6-2

Level Indicates

Basic Trace Basic traces. Displays the input XML (up to 300 bytes) before
parsing, and shows the request being processed. The default setting
is off.

Verbose Trace More extensive traces. Displays configuration parameters used by
the adapter. The default setting is off.
6-2 BEA WebLogic Adapter for ISO15022 User Guide

Tracing and Performance
Note: To obtain the appropriate trace, both the level and the category must be
declared. In a debug situation, BEA Customer Support will request
(minimally) a Basic and a Verbose trace.

Tracing and Performance

The additional trace capabilities provided by the adapter are not strictly hierarchic;
rather they are categorized. These traces are designed to provide debugging help with
minimum effect on performance. All internal adapter traces are controlled through the
additional tracing settings, and all additional settings route their output to the standard
debug setting.

If you configure the adapter for additional settings and do not configure standard trace
settings, the traces are generated but never appear in output. This affects performance,
as the production of the trace continues even though you receive no benefit of the
additional trace information.

Creating Traces for Services and Events

This following topics discuss the steps required to create traces to diagnose adapter
problems.

Document Trace Displays the input document after it was analyzed and the response
document being returned. Because some documents are very large,
this trace category can severely affect performance and memory use.
The default setting is off.

Table 6-2

Level Indicates
BEA WebLogic Adapter for ISO15022 User Guide 6-3

6 Using Tracing
Creating Traces for a Service

To create traces for a service:

1. Create or modify the service.

2. Ensure that all of the adapter parameters are entered correctly.

Figure 6-1 Add Service window

3. Select the appropriate schema from the drop-down list.

4. Select the appropriate trace levels as described in Table 6-2: Trace, Verbose trace,
and Document trace.

5. Click Add to continue to the next configuration pane.

6. Click Continue to move to the next configuration pane.

The Deploy Application View window opens.

7. Navigate to the Log Configuration area and select the desired trace level.

This pane enables you to select the trace level for the BEA WebLogic
Integration framework.
6-4 BEA WebLogic Adapter for ISO15022 User Guide

Creating Traces for Services and Events
Figure 6-2 Deploy Application View window

For maximum tracing, select Log all Messages.

This is recommended to obtain optimum debugging information for BEA
support personnel.

Note: This causes all generated messages to be written to the log. You must
select the desired category as defined in Table 6-2 in the adapter to
generate the required messages.

8. Click Deploy (or Save) to set the trace settings and deploy the application view.

Traces are created the next time the service is invoked.

Traces are output to a file named BEA_IS015022_1_0.log in the WebLogic
Domain home directory.

Creating or Modifying the WebLogic Framework Tracing
Level for an Event

To create or modify the WebLogic framework tracing level for an event:
BEA WebLogic Adapter for ISO15022 User Guide 6-5

6 Using Tracing
1. Logon to the BEA WebLogic Server Console.

Figure 6-3 WebLogic Server Console

2. Select Web Applications.

3. Select BEA_IS015022_1_0_EventRouter.war.

4. Click Edit Web Application Deployment Descriptors.

5. When the following window opens, select Servlets.

6. In the folder below Servlets, select EventRouterServlet.

7. Select Parameters.

8. Select LogLevel.

Figure 6-4 WebLogic Server Console: Configuration

This pane enables you to select the trace level for the BEA WebLogic
Integration framework.

For maximum tracing, enter DEBUG. This is recommended to obtain optimum
debugging information for BEA support personnel.
6-6 BEA WebLogic Adapter for ISO15022 User Guide

Creating Traces for Services and Events
The following levels are valid:

9. Click Apply to save the newly entered trace level.

10. Click BEA_IS015022_1_0 EventRouter.

11. Click Persist to apply the logging changes.

This change need only be made once.

Table 6-3

Level Indicates

AUDIT An extremely important log message related to the business
processing performed by an adapter. Messages with this priority are
always written to the log.

ERROR An error in the adapter. Error messages are internationalized and
localized for the user.

WARN A situation that is not an error, but that could cause problems in the
adapter. Warning messages are internationalized and localized for
the user.

INFO An informational message that is internationalized and localized for
the user.

DEBUG A debug message, that is, information used to determine how the
internal components work. Debug messages usually are not
internationalized.
BEA WebLogic Adapter for ISO15022 User Guide 6-7

6 Using Tracing
It is set for all events associated with a given adapter.

12. Return to the WebLogic Server Console.

13. Select Applications from the WebLogic Server Console.

14. Select the adapter whose EventRouter you have modified in the previous steps.

15. Select the Deploy tab in the right pane.

The right pane displays the following adapter components:

BEA_IS015022_1_0.rar

BEA_IS015022_1_0.web.rar

BEA_IS015022_1_0_EventRouter.war.

Figure 6-5 WebLogic Server Console: Redeploy

16. Redeploy the EventRouter by clicking the Redeploy button to the right of
BEA_IS015022_1_0_EventRouter.war.

Creating Adapter Logs for an Event

To create adapter logs for an event:

1. Create or modify the event.

2. Ensure that all of the adapter parameters are entered correctly.
6-8 BEA WebLogic Adapter for ISO15022 User Guide

Creating Traces for Services and Events
Figure 6-6 Add Event Window

3. Select the appropriate schema from the drop-down list.

4. Select the appropriate trace levels as described in Table 6-2: Trace, Verbose trace,
and Document trace.

5. Click Add to continue to the next configuration pane.

6. Click Continue to move to the next configuration pane.

The Deploy Application View window opens.

7. Navigate to the Log Configuration area and select the desired trace level.

This pane enables you to select the trace level for the BEA WebLogic
Integration framework.
BEA WebLogic Adapter for ISO15022 User Guide 6-9

6 Using Tracing
Figure 6-7 Deploy Application View window

For maximum tracing, select Log all Messages. This is recommended to obtain
optimum debugging information for BEA support personnel.

8. Click Deploy (or Save) to set the trace settings and deploy the application view.

Traces are created the next time the event occurs.

Traces are output to a file named BEA_IS015022_1_0.log in the WebLogic
Domain home directory.
6-10 BEA WebLogic Adapter for ISO15022 User Guide

APPENDIX
A ISO15022 Rules
System Adapter

Document validation enables any document to be validated against sets of rules
specified on a per-document basis. The rules are encoded in a rules file that is
addressed through the system document dictionary.

Rules apply to document nodes in the XML tree, and (optionally) to their children.
Built-in rules can be specified in any combination, and specialized rules can be coded
in Java and loaded by the engine, as required.

The following topics discuss how to encode a rules file, how to use the built-in rules,
and how to code specialized rules. BEA provides a complete set of built-in rules as
needed to validate SWIFT documents. The last section of this document describes how
to write rules in Java for special situations. The following topics discuss how to encode
a rules file, how to use the built-in rules, and how to code specialized rules:

Rules File

General Rule Set

SWIFT Specific Rule Set

Writing Rules in Java

Writing Rule Search Routines in Java
BEA WebLogic Adapter for ISO15022 User Guide A-1

A ISO15022 Rules System Adapter
Rules File

The rules file is an XML document. One file should exist for each document to be
validated. The outer tag should be the document name and under this tag are rule tags,
which may be enclosed within USING tags. For example, for a SWIFTMT540, the file
(reduced considerably) might look like this:

<SWIFTMT540>
<BASIC>

<APPID_Application_ID_>F</APPID_Application_ID_>
...

</INFO>
</TRAILER>

</SWIFTMT540>

The rules document is an XML document tied into the BEA WebLogic Adapter for
SWIFT through <validation> tags, which associate one or more rule documents
with the specific document entry. The outer tag of the rules document should be
explanatory, describing the type of document, but the actual tag is ignored. The rule
document itself is a structure containing specific rule applications.

All attributes of rules must be specified in lowercase.

The document entry is the outer tag of the rules file. The name, document, is arbitrary
and may be replaced with any meaningful XML-legal name.

Table 6-4 <document> entry

Attribute Use

ackagent The Java program class to call to construct the acknowledgement. For the
BEA WebLogic Adapter for SWIFT, this class is the
XDSWIFTACKAgent.class. The actual agent to be used is selected in a
search order:

1. The document specification in the repository.

2. This attribute of the outer tag of the rule file.

3. The listener configuration.

As soon as an ackagent is located, it is selected for use, and the search ends.
A-2 BEA WebLogic Adapter for ISO15022 User Guide

Rules File
The <rule> tag and method attributes are required. The remaining attributes are
rule-specific, and their inclusion is based on the rule itself. The validator uses the
required tags to identify the rule in question and to identify the node or nodes of the
document to which it applies. Common <rule> tags are:

Table 6-5 <using> entry

Attribute Use

class The Java program class contains all <rule>s within the section, unless
overridden by a class=attribute in the <rule> entry itself.

other Any unrecognized attribute is passed to each rule in the rule’s attributes. For
example, to apply the radix=’,’ attribute to all rules, specify it here rather
than on each rule. Rules that do not use the radix attribute would ignore it.

Table 6-6 <rule> entry

Attribute Use

tag Names the right-most parts of the tag to which this rule applies. The rule
applies to any node of the document that meets the tag criteria. For example,
Document Table Model (DTM) would cause this rule to be applied to every
DTM in the incoming document. X.DTM applies to all DTM parts prefixed by
X. Tags are case sensitive. If omitted, a stag must be used.

stag This is a specification subsection tag.

name The rule’s identification, which should be a unique name. This is used in trace
messages to specify which rule caused a violation. If omitted, no unique
identification can be given.

class The rule class to which this rule belongs. This corresponds to a Java object
class, and each rule is a method of the class. If this is omitted, the class from
the enclosing USING tag is used.

method The specific rule.

usage Specify usage=M (mandatory) to check that there is a value in the identified
node. This check is applied before the actual rule logic is executed.
BEA WebLogic Adapter for ISO15022 User Guide A-3

A ISO15022 Rules System Adapter
The rule document is located by the <validation> tag value in the dictionary’s
system section and is identified with the specific document in its <document> entry.
Rules validation is performed for document input (<in_validation>) and/or output
(<out_validation>). If several tags are found in the document description, each
rules validation is performed in the order in which the tags are found.

A section of the dictionary that illustrates this follows.

<system>
<validation package="SWIFT">

<name package="SWIFT"
file="templates/SWIFT/rules/SWIFTMT100rules.xml">100RULES</name>

</validation>
</system>

<document> package="SWIFT">SWIFTMT100
<in_validation>100RULES</in_validation>

</document>

General Rule Set

The engine provides general rules for use by any rule set. The rules are located in
com.ibi.edaqm.XDRuleBase, which extends com.ibi.edaqm.XDRuleClass, the
base of all rules. Your own rule class should extend XDRuleBase instead of
EXRuleClass. The general rules include:

isN

isR

isDate

isTime

isN

isN validates that a node is numeric with an optional leading sign.

<rule tag="xx" method="isN” />
A-4 BEA WebLogic Adapter for ISO15022 User Guide

General Rule Set
isR

isR validates that a node is numeric with an optional leading sign and a single decimal
point.

<rule tag="xx" class="XDSWIFTRules" method="isR” />

isDate

isDate validates that a node is in CCYYMMDD format.

<rule tag="xx" class="XDSWIFTRules" method="isDate” />

Table 6-7 isN

Attribute Meaning

Min Minimum number of digits required, not including sign. Optional.

Max Maximum number of digits permitted, not including sign. Optional.

Table 6-8 isR

Attribute Meaning

Min Minimum number of digits required, not including sign or radix. Optional.

Max Maximum number of digits permitted, not including sign or radix. Optional.

Radix A single character to be used to separate the decimal parts of the real value.
The default is a period character. The radix attribute can be taken from the
USING entry.

Table 6-9 isDate

Attribute Meaning

Min Minimum number of positions required. If omitted, 8 is assumed.
BEA WebLogic Adapter for ISO15022 User Guide A-5

A ISO15022 Rules System Adapter
isTime

isTime validates that a node is in HHMM[SS] format.

<rule tag="xx" method="isTime” />

SWIFT Specific Rule Set

The SWIFT specific rules available include:

isValidReference

isValidISIN

isNotPresent

isValidMultiLine

isSWIFTReal

isSWIFTDate

isValidSWIFTString

isSWIFTTime

isValidMessageType

Max Maximum positions permitted. If omitted, 8 is assumed.

Table 6-9 isDate (Continued)

Attribute Meaning

Table 6-10 isTime

Attribute Meaning

None None.
A-6 BEA WebLogic Adapter for ISO15022 User Guide

SWIFT Specific Rule Set
checkValue

checkCD

checkRepetitive

checkNodes

checkChildSequence

checkAddition

checkRelation

checkSegment

isValidReference

isValidReference validates the value with the following validations:

The first character should not be /.

The last character should not be /.

At any place no two / should come together.

<rule tag="(node to check)" method="isValidReference"
errorcode=”(error code)”/>

isValidISIN

isValidISIN validates the value with the following validations:

The first four characters should be ISIN.

The fifth character should be a space.

The maximum characters should be 17 including the ISIN and the space which
follows it.

<rule tag="(node to check)" method="isValidISIN" errorcode=”(error
code)”/>
BEA WebLogic Adapter for ISO15022 User Guide A-7

A ISO15022 Rules System Adapter
Warning: The format of the ISIN given in the input is valid. The validity of the ISIN
can be checked in the SWIFT ISIN directory.

isNotPresent

isNotPresent validates whether or not the value is present.

<rule tag="(node to check)" method="isNotPresent"
errorcode=”(error code)”/>

isValidMultiLine

isValidMultiLine validates whether or not the value is present.

The value should be alphanumeric.

The line ends with a carriage return and a new line character.

<rule tag="(node to check)" method="isMultiLine" line=”3” min=”2”
max=”10” errorcode=”(error code)”/>

isSWIFTReal

isSWIFTReal validates the value with the following validations:

Table 6-11 isValidMultiLine

Attribute Meaning

Line Number of valid lines. The minimum number of lines is one (1).

Min Minimum number of characters.

Max Maximum number of characters.

Errorcode The error code for the rule.
A-8 BEA WebLogic Adapter for ISO15022 User Guide

SWIFT Specific Rule Set
The value is checked for real numbers with at least one character before the
decimal point (the decimal point is “,”).

The value is checked for having a mandatory decimal point.

Note: The decimal comma is included in the maximum length.

<rule tag="(node to check)" method="isSWIFTReal" min=”2” max=”10”
errorcode=”(error code)”/>

isSWIFTDate

isSWIFTDate validates the date according to the format specified in the attribute.
The following are valid formats:

date1 : MMDD.

date2 : YYMMDD.

date3 : YYMM.

date4 : YYYYMMDD.

date5 : date4 + value date (the year should be between 1980 and 2060).

<rule tag="node to check" method="isSWIFTDate" format=”date1” />

Table 6-12 isSWIFTReal

Attribute Meaning

Min Minimum number of characters.

Max Maximum number of characters.

Errorcode The error code for the rule.

Table 6-13 isSWIFTDate

Attribute Meaning

Format The format of the date to check against.

Errorcode The error code for the rule.
BEA WebLogic Adapter for ISO15022 User Guide A-9

A ISO15022 Rules System Adapter
IsValidSWIFTString

isValidSWIFTString validates the value according to the format specified.

The valid values of the format are:

x—The S.W.I.F.T X character list.

y—The S.W.I.F.T Y character list.

z—The S.W.I.F.T Z character list.

c—Alphanumeric capital letters and digits only.

a—Alphabetic capital letters only.

h—Hexadecimal characters only.

e—Blank spaces.

Exceptions to this rule are:

A value cannot have blank spaces alone.

A value cannot have CrLf characters alone.

isValidSWIFTString validates each and every digit and/or character against the
standard SWIFT recognized X character list.

Table 6-14 SWIFT X Character Set

Character Set

A to Z (uppercase)

a to z (lowercase)

0 to 9

/ (forward slash), - (minus sign),? (question mark), : (colon), ((left parenthesis),) (right
parenthesis), . (point), , (comma), ’(right single quote), + (plus sign), SPACE, CrLf (line feed,
new line, and carriage return characters)
A-10 BEA WebLogic Adapter for ISO15022 User Guide

SWIFT Specific Rule Set
Hexadecimal Representation of SWIFT Character Set

SWIFT characters can be comprised of hexadecimal characters. These representations
are different from regular IBM hexadecimal representations of characters.

Table 6-15 SWIFT Y Character Set

Character Set

A to Z (uppercase)

0 to 9

/ (forward slash), - (minus sign), ? (question mark), : (colon), ((left parenthesis),) (right
parenthesis), . (point), (comma), ’(right single quote), + (plus sign), SPACE, = (equal to)

! (exclamation mark), ” (right quotes), % (percentage), & (ampersand), * (asterisk),
; (semi-colon), < (left V bracket), >(right V bracket)

Table 6-16 SWIFT Z Character Set

Character Set

A to Z (uppercase)

a to z (lowercase)

0 to 9

/ (forward slash), - (minus sign), ? (question mark), : (colon), ((left parenthesis),) (right
parenthesis), . (point), , (comma), ’ (right single quote), + (plus sign), SPACE, Cr Lf (line
feed, new line, and carriage return), = (equal to), @ ,#, { (left brace)

! (exclamation mark),” (right quotes), % (percentage), & (ampersand), * (asterisk),
;(semi-colon), < (left V bracket), >(right V bracket)
BEA WebLogic Adapter for ISO15022 User Guide A-11

A ISO15022 Rules System Adapter
Figure 6-8 Hexadecimal Representation of SWIFT Character Set

For example, an Lf character can be depicted as 25, an & can be depicted as 50, and an
! can be depicted as 4f.

<rule tag="(node to check)" method="isValidSWIFTString" type=”x”
errorcode=”(error code)”/>

Table 6-17 isValidSWIFTString

Attribute Meaning

Type The type of string format to check against.

Min Minimum number of characters.

Max Maximum number of characters.

Errorcode The error code for the rule.
A-12 BEA WebLogic Adapter for ISO15022 User Guide

SWIFT Specific Rule Set
isSWIFTTime

isSWIFTTime validates the value according to the format specified.

The valid values of the format are:

time1: HHMM.

time2: HHMMSS.

time3: HHMMSSsss (where sss stands for microseconds).

<rule tag="(node to check)" method="isValidSWIFTTime"
format=”time1” errorcode=”(error code)”/>

isValidMessageType

isValidMessageType validates the message type value.

The message type value should be greater than 100 and less than 999.

There is an exception if the message is one of the following sets:

101,102,204,206,207,256,303,304,405,416,503,504,505,506,507,527,569, or 575.

A warning message indicating that sending or receiving one of the above messages
requires a MUG registration, and that special validation is required as per individual
MUG standards, is sent to the console and/or logged in the trace file.

<rule tag="(node to check)" method="isValidMessageType"
errorcode=”(error code)”/>

Table 6-18 isSWIFTTime

Attribute Meaning

Format The type of date format to check against.

Errorcode The error code for the rule.
BEA WebLogic Adapter for ISO15022 User Guide A-13

A ISO15022 Rules System Adapter
checkValue

checkValue validates the elements or components of a segment for presence
according to a pattern. The patterns validate the code in the independent variable. The
tag= and tagset= attribute can be used to locate the section to which the rule applies.

Case 1 <rule tag=”Parent of A and B” method=”checkValue” tagset=”A,B”
code=”1=@reasonList/2=@statusList” errorcode=”(error code)”/>

If the Value of A is one of the code set ‘reasonList,’ then the value of B should be one
of the code set of statusList.

Case 2 <rule tag=”Parent of A and B” method=”checkValue” tagset=”A,B”
code=”1=x;y;z/2=a;b;c” errorcode=”(error code)” />

If the Value of A is one of the set {x,y,z}, then Value of B should be one of the set {a,
b, c}.

Case 3 <rule tag=”Parent of A and B” method=”checkValue” tagset=”A,B”
code=”1!?/2=?” errorcode=”(error code)” />

If element A is not present, element B should be present.

Case 4 <rule tag=”Parent of A,B” method=”checkValue” tagset=”A,B”
code=”1=?/2=?,1!?/2!?” errorcode=”(error code)”/>

Table 6-19 isValidMessageType

Attribute Meaning

Errorcode The error code for the rule.

Table 6-20 CheckValue

Attribute Meaning

Tagset List of nodes to check against.

Code The expression used to validate the elements.

Errorcode The error code for the rule.
A-14 BEA WebLogic Adapter for ISO15022 User Guide

SWIFT Specific Rule Set
Either A and B should be present, or A and B should not be present.

Case 5 <rule tag=”Parent of A,B, C” method=”checkValue” tagset=”A,B,C”
code=”1=?/2!?+3!?,1!?/2=?+3=?” errorcode=”(error code)”/>

Either element A or (B and C) must be present.

Case 6 <rule tag =”Parent of x,y,z,A,B” method=”checkValue”
tagset=”x,y,z,A,B” code=”1=?|2=?|3=?/4=?+5=? errorcode=”(error
code)”/>

If any of the elements x, y, and z are present, then element A and element B must be
present.

Case 7 <rule tag = “Parent of A, X, Y, Z, x, y, z, …” method = “checkValue”
tagset = “A, X, Y, Z, x, y, z, …” Code = “1=XXX +
(2=?|3=?|4=?…)/5=?|6=?|7=?… errorcode=”(error code)”/>

If element A contains the word XXX and any of the elements {X,Y,Z,X1,Y1,Z1,…}
are present, then any of the elements {x,y,z,x1,y1,z1….} should be present.

checkCD

checkCD validates that a node has appropriate sub nodes. The valid codes and
definitions of the codes are as follows:

Table 6-21 checkCD Valid Codes

Condition
Code

Meaning Definition

R Required At least one of the elements in the condition must
be present.

E Exclusion Not more than one of the elements specified in the
condition can be present.

G Repetitive Sequence

Related

The first element must be present if there are no
repetitive sequences of the second or third element.

F Repetitive Sequence

Related

The first element must be present if there are
repetitive sequences of the second element.
BEA WebLogic Adapter for ISO15022 User Guide A-15

A ISO15022 Rules System Adapter
Case 1 <rule tag=”Parent of A and B” method=”checkCD” tagset=”A,B”
cd=”E0102” errorcode=”(error code)”/>

Mutually exclusive A and B.

Case 2 <rule tag=”Parent of A,B” method=”checkCD” tagset=”A,B” cd=”R0102”
errorcode=”(error code)”/>

Either element A or element B or both must be present.

Case 3 <rule tag=”Parent of A,B, C” method=”checkCD” tagset=”A,B,C”
cd=”G010203” errorcode=”(error code)”/>

Element A must be present if there are no repetitive sequences B or C (this is applicable
to MT 573).

Case 4 <rule tag=”Parent of A,B” method=”checkCD” tagset=”A,B” cd=”F0102”
errorcode=”(error code)”/>

Element A must be present if there are repetitive sequences of element B (two or more
times).

V Multiple Occurrences

Related

If the first element is present and the second
element is present at least once, then the value of
all the occurrences of the second element should be
equal to the first element.

M Mandatory One of the children of the specified elements must
contain a value.

Table 6-22 checkCD

Attribute Meaning

Tagset List of nodes to check against.

Cd The expression used to validate the elements.

Errorcode The error code for the rule.

Table 6-21 checkCD Valid Codes (Continued)

Condition
Code

Meaning Definition
A-16 BEA WebLogic Adapter for ISO15022 User Guide

SWIFT Specific Rule Set
Case 5 <rule tag=”Parent of A,B” method=”checkCD” tagset=”A,B” cd=”V0102”
errorcode=”(error code)” />

If element A is present and there is at least one element B, then the value of all
occurrences of element B should be equal to the value of element A.

Case 6 <rule tag=”Parent of A,B” method=”checkCD” tagset=”A,B” cd=”M0102”
errorcode=”(error code)” />

One of the children from element A and element B must contain a value.

checkRepetitive

checkRepetitive validates that the value of the specified element should be the same
in all occurrences if the specified element is used or present repetitively.

<rule tag=”(Root of the document)” search=”A” errorcode=”(error
code)”/>

Note: A is the name of the actual node (not a fully qualified name). It is specified the
root of the document, instead of the parent of A, because this rule searches the
entire document for A.

checkNodes

checkNodes validates either one or more of elements from a set A, A1, … of nodes must
be present or one or more of the set B, B1, … of nodes must be present, but not elements
from both sets. For example, {A, A1, A2, …,} and {B, B1, B2, …} are two sets
of nodes defined. Only nodes from one of the sets can exist. If node A and node B exists,
then the rule fails.

Table 6-23 checkRepetitive

Attribute Meaning

Search The node to search for and check.

Errorcode The error code for the rule.
BEA WebLogic Adapter for ISO15022 User Guide A-17

A ISO15022 Rules System Adapter
<rule tag=”Parent of A,A1,…B,B1,…” method=”checkNodes”
tagset=”A,A1,A2,A3,…;B,B1,B2,B3……” errorcode=”(error code)” />

checkChildSequence

checkChildSequence checks for a specified node for its occurrences, and the
presence of other nodes is based upon it.

Case 1 <rule tag=”Parent of A” method=”checkChildSequence” start = A
pattern= B errorcode=”(error code)” />

If the tag A is repetitive and is present two or more times, then tag B should be one of
the children of tag A.

Case 2 <rule tag=”Parent of A” method=”checkChildSequence” start = “A”
pattern= “B1,B2,B3….” errorcode=”(error code)” />

If the tag A is repetitive and is present two or more times, then one of the tags
{B1,B2,B3,….} must be present.

Table 6-24 checkNodes

Attribute Meaning

Tagset The two sets of nodes to check separated by a semicolon (;).

Errorcode The error code for the rule.

Table 6-25 checkChildSequence

Attribute Meaning

Start Node to check if it is repetitive.

Pattern The expression used to validate the elements.

Errorcode The error code for the rule.
A-18 BEA WebLogic Adapter for ISO15022 User Guide

SWIFT Specific Rule Set
checkAddition

checkAddition validates the value of a specified element to be equal to the sum of
all values of another element.

Case 1 <rule tag=”Parent of A, B, C” method=”checkAddition” tagset=”A,B,C”
errorcode=”(error code)” />

The value of element A should be equal to the sum of all values of element B (they are
repetitive optionally) or the sum of all values of element C (they are repetitive
optionally).

The validation applies only if the element A exists in the incoming SWIFT message.
If the element A exists, then at least one of the elements of B should exist or at least
one of the elements of C should exist.

Case 2 <rule tag=”Parent of A, B” method=”checkAddition” tagset=”A,B,C”
errorcode=”(error code)” />

The value of element A should be equal to the sum of all values of element B (they are
repetitive optionally).

The validation applies only if the element A exists in the incoming message. If the
element A exists, then at least one element B should exist.

checkRelation

checkRelation validates whether element A or one or more of the set {x,y,z,…} is
present, then element B should be present and must be succeeding all occurrences of A
or one or more of the set {x,y,z…}. The converse is also true.

Table 6-26 checkAddition

Attribute Meaning

Tagset List of nodes to check.

Errorcode The error code for the rule.
BEA WebLogic Adapter for ISO15022 User Guide A-19

A ISO15022 Rules System Adapter
<rule tag=”Parent of A,B,x,y,z,.,.,” method=”checkRelation”
tagset=”A” taglist=”x,y,z” find=”B” errorcode=”(error code)” />

checkSegment

Segment D is mandatory when in any occurrence of segment C, sub-segment C1 is
present, and the sub-segment C1a is not present.

Note: C1a is the child of C1. When specified in the rule, specify the node with its full
name.

<rule tag=”Parent of C,C1,C1a,D” method=”checkSegment” parent=”C”
subseq=”C.C1” child=”C.C1.C1a” check=”D” errorcode=”(error code)”
/>

Table 6-27 checkRelation

Attribute Meaning

Tagset Node to check.

Taglist List of nodes to check.

Find Node to find to see if it should be present.

Errorcode The error code for the rule.

Table 6-28 checkSegment

Attribute Meaning

Parent The parent node.

Subseq The sub-segment node.

Child The child node.

Check The node to check if present.

Errorcode The error code for the rule.
A-20 BEA WebLogic Adapter for ISO15022 User Guide

Writing Rules in Java
Writing Rules in Java

Rules can be written in Java, loaded by the system at startup, and applied by
specification in a rule. A rule class extends XDRuleClass and can make use of any of
its services. Each public method in the rule class that meets the rule signature can be
applied by name as a rule. The rule methods can make use of service methods in the
parental XDRuleClass.

In this example, a node is checked to determine whether its value is the word identified
by the value= attribute. If not, it is an error.

The following parameters are passed:

Listing A-1 Node Checking Example

import java.util.*;
import com.ibi.edaqm.*;
public class XDMyRules extends XDRuleClass
{

public XDMyRules()
{

}
public void specialRule(XDNode node, String value,

HashMap attributes)
throws XDException

Table 6-29 Parameters Passed In Method That Checks Node

Parameter Meaning

Node The node identified by the tag attribute in the rule. The rule
method will be called once for each node that matches the tag
specification.

Value The data value of the addressed node. This differs from the
node.getValue() return if the tag contained a subfield
address (for example, tag=x:2).

Attributes A HashMap of rule attributes. The rule method can check for
any attributes that it requires. A HashMap is a fast
implementation of a Hashtable that does not serialize.
BEA WebLogic Adapter for ISO15022 User Guide A-21

A ISO15022 Rules System Adapter
{
trace(XD.TRACE_DEBUG, "specialRule called with parms: " +

node.getFullName() + ", " + attributes.toString());
String testValue = (String)attributes.get(“value”);
if (value.equals(testValue))
{

node.setAssociatedVector(new XDEDIError(4, 0,
error,”explanation”));

throw new XDException(XD.RULE, XD.RULE_VIOLATION,"node
value
"+value+” is not 'Value'");

}
}

}

Rule violations should throw an XDException describing the violation.

The parental class provides a group of services to assist in preparing rules:

Rules can also use all methods in XDNode to address the values in the passed node and
the tree in general.

Table 1-30 Services for Preparing Rules

Method Purpose

Boolean is YYYYMMDD
(string date).

Validates that a date is formatted correctly.

Boolean is InList
(string list,
string value).

The value must be in the list.

Void trace (int
level, string msg).

The text of the message is written to the system trace file. The
level should be one of the following values:

XD.TRACE_DEBUG

XD.TRACE_ERROR

XD.TRACE_ALL
A-22 BEA WebLogic Adapter for ISO15022 User Guide

Writing Rule Search Routines in Java
Rule violations must be returned as XDExceptions of class XD.RULE. Two causes are
available, XD.RULE_SYNTAX if the rule is in error, and XD.RULE_VIOLATION if the data
violates the rule. Syntax errors cause the document to be aborted, as it is presumed that
rules should have been debugged. Violations should be posted to the node by the rule,
and the engine continues to process the document. Violations are traced by the engine
and affect the later acknowledgement generation.

The error itself is posted to the node by the standard XDNode service
setAssociatedVector(Object o) which records an object with the node. The
special EDIError object contains the elements:

Writing Rule Search Routines in Java

Short lists can be searched by built-in rule engine code. Longer lists, in which the
values in the list are obtained not from the attribute directly, but instead from an
external source, require a rule list searcher tailored to the source. Lists might be
obtained from:

A simple file.

A database with values loaded at startup.

A database with an access at each search request.

Table 1-31 Elements in the EDIError Object

Element Description

Class Class of the error. Should be 4 for a syntax error, resulting in an AK4.

Reserved Must be 0.

Error code Code to be returned in the ack AKx (997).

Explanation A string explaining the error, for tracing use.
BEA WebLogic Adapter for ISO15022 User Guide A-23

A ISO15022 Rules System Adapter
Each list might require its own search logic, tailored to the source and format of the list
itself. To accommodate this, the rule engine allows list-specific search routines to be
developed and added to the system. These routines are loaded at system initialization
and terminated at system shutdown. Each must offer a search method that determines
whether the passed value is valid.

Search routines must extend the XDRuleList class that is part of the edaqm package:
com.ibi.edaqm.XDRuleClass. The routine must offer these methods in the manner
common to all XD extensions:

init(String args) is called once at system initialization.

term() is called once at system termination. It is not guaranteed that it is called.

search(String value) is called when the rule is executed.

The Rule List search code is identified in the <preload> section of the <system> area
of the dictionary. The Preloads console page manages this section.

<preload>
<name file="RuleFileList(c:\ziplist.txt)"

comment="validates zip codes">ziplist</name>
</preload>

The <rule> tag specifies that a rule can be written:

<rule tag=”xxx” code=”@ziplist” method=”checklist”/>

that names the preloaded routine. This routine might load a list from a text file. A
simplified example procedure to load a file containing codes follows:

Listing A-2 Loading a File Example

import com.ibi.edaqm.*;
import java.util.*;
import java.io.*;
/**
* A rule list handler is a routine called to enable users search lists during
execution
* or the checkList rule. checkList() is a generally available rule to test whether
the
* contents of a document field are valid. The rule list handler is invoked when
* the code= attribute indicates the name of a coder routine rather than a simple
list.<P>
* For example, <I>code="@list1"</I> will cause the search routine of the list1
A-24 BEA WebLogic Adapter for ISO15022 User Guide

Writing Rule Search Routines in Java
class to
* be invoked.<P>
* The file read by this procedure consists of tokens separated by new line, white
space or commas.
*/
public class XDRuleListFile extends XDRuleList
{

String[] list;
ArrayList al = new ArrayList(127);
public XDRuleListFile()
{
}
/**
* The init method is called when a rule is loaded. It can perform any

necessary
* initialization, and can store any persistent information in the object

store.
*
* @param parms Array of parameter string passed within the start command

init-name(parms).
*/
public void init(String[] parms) throws XDException
{

if (parms == null)
{

throw new XDException(XD.RULE, XD.RULE_SYNTAX, "no parms sent to
" + name);

}

try
{

File f = new File(parms[0]);
FileInputStream fs = new FileInputStream(f);
long len = f.length();
byte[] b = new byte[(int)len];
fs.read(b);
fs.close();
String data = new String(b);
StringTokenizer st = new StringTokenizer(data, ", " +

XD.NEWLINE);

while (st.hasMoreTokens())
{

String part = st.nextToken();
al.add(part);

}
}
catch (FileNotFoundException e)
BEA WebLogic Adapter for ISO15022 User Guide A-25

A ISO15022 Rules System Adapter
{
throw new XDException(XD.RULE, XD.RULE_SYNTAX, "list file

"+parms[0] + " not found");

}
catch (IOException eio)
{

throw new XDException(XD.RULE, XD.RULE_SYNTAX, eio.toString());
}

}
/**
* The term() method is called when the worker is terminated. It is NOT

guaranteed
* to be call, and applications should not rely upon this method to update

data bases or
* perform other critical operations.
*/
public void term()
{

}

/**
* Search the given value to determine whether it is in the list.
*
* @param value String to test against the list
* @return true if found, false otherwise
*/
public boolean search(String value)
{

return al.contains(value);
}

}

A-26 BEA WebLogic Adapter for ISO15022 User Guide

APPENDIX
B Linking the Adapter to
a SWIFT Network

This section describes the connecting of business applications to SWIFTAlliance. It
includes the following topics:

Batch File Transfer – FILE and FTP

Application Server – CAS MF

Interactive – MQ Series

SWIFT allows the connecting of business applications to SWIFTAlliance which can
be done in different ways:

Manual File Transfer: S.W.I.F.T. messages are exchanged between the business
application and SWIFTAlliance in batch files, and with operator intervention on
(either and/or both) the business application and the SWIFTAlliance.

Automated File Transfer: S.W.I.F.T. messages are exchanged between the
business application and SWIFTAlliance in batch files, without operator
intervention, that is, the file transfer operation is automated on (either or/and
both) SWIFTAlliance and Business Application.

Interactive: Unlike file transfer operation mode, S.W.I.F.T. messages are
exchanged real time (via a conversational protocol) between the business
application and SWIFTAlliance on an individual basis and without operator
intervention on both SWIFTAlliance and Business Application.

The BEA WebLogic Adapter for SWIFT supports all three options when used in
conjunction with other BEA adapters such as FTP, File, TCP/IP, and MQ Series. The
following table summarizes the connectivity options:
BEA WebLogic Adapter for ISO15022 User Guide B-1

B Linking the Adapter to a SWIFT Network
Batch File Transfer – FILE and FTP

The File Transfer method permits batch file transfer with message partners. This
method permits both automated and manual invocation of communication sessions,
either with or without the use of parameter files. For each message format the
communication media may be diskettes or files, that is, read or write a batch message
file from, or to a directory in a local or remote file system.

The following message file formats are supported:

DOS-PCC is used for batch input and output of messages. The DOS-PCC
connection method permits you to read or write an ST200 DOS message file.

RJE (Remote Job Entry) is used for batch input and output of messages in
ST200 RJE format.

MERVA/2 batch transfer (from/to mainframes) in IBM MERVA/2 format.

CAS (Common Application Server) format.

Table 1-32 Connectivity Options for BEA WebLogic Adapters

Mode BEA Adapter 3rd Party Software

File Transfer BEA WebLogic Adapter for
SWIFT

BEA WebLogic Adapter for
File

None specific but could be application
– for example, MERVA or BESS

Application Server BEA WebLogic Adapter for
SWIFT

BEA TCP/IP Adapter

'AI MXA TCP-IP'

CASmf Application Server

Interactive BEA WebLogic Adapter for
SWIFT

BEA WebLogic Adapter for
MQSeries

MQSA

SWIFT Alliance Toolkit Runtime
B-2 BEA WebLogic Adapter for ISO15022 User Guide

Application Server – CAS MF
Application Server – CAS MF

The SWIFT Common Application Server (CAS) defines how data can be exchanged
between SWIFTAlliance and financial applications via a conversational protocol. The
specifications are common to both SWIFTAlliance and ST400, thus allowing smooth
ST400 migration to SWIFTAlliance.

CAS supports TCP/IP and SNA LU6.2 as a networking protocol. Application
developers need not know the CAS protocol. The CASmf software package provides
APIs to the financial application developers. It hides all communication and data
formatting aspects enabling developers to concentrate on the application functions.
APIs exist to open/close/abort a session and send/receive data.

CASmf is available on the following platforms:

AIX

HP/UX

SunOS

Windows NT

AS400

Open VMS for VAX and Alpha

CASmf uses TCP/IP as the communication protocol. It can run on the same system as
SWIFTAlliance. CASmf can handle several simultaneous application sessions. The
BEA WebLogic Adapter for SWIFT can use TCP/IP Adapter for processing events
and services between WebLogic Integration and SWIFT CASmf applications. The
option 'AI MXA TCP-IP' must be licensed on SWIFTAlliance.
BEA WebLogic Adapter for ISO15022 User Guide B-3

B Linking the Adapter to a SWIFT Network
Interactive – MQ Series

The MQSeries Interface for SWIFTAlliance (MQSA) software provides a reliable
communication between financial applications and SWIFTAlliance through IBM
MQSeries. It enables S.W.I.F.T. messages exchange between SWIFTAlliance and
financial applications. The MQSA software is based on the SWIFTAlliance
Development Toolkit referenced as ADK in this document. It uses ADK functions to
communicate with SWIFTAlliance and MQSeries functions to access message
queuing services.

The MQSeries Interface for SWIFTAlliance is available for SWIFTAlliance Access
running on Windows NT and UNIX. IBM MQSeries messaging software enables
business applications to exchange information across different operating system
platforms in a way that is straightforward and easy for programmers to implement.

MQSeries is available on different platforms (Windows NT, UNIX, OS/400,
MVS/ESA, and so forth). The applications are shielded from the mechanics of the
underlying communications. With MQSeries, the exchange of messages between the
sending and receiving program is time independent. This means that the sending and
receiving applications are de-coupled so that the sender can continue processing
without having to wait for the receiver to acknowledge the receipt of the message.

The MQSA software enables fast integration of user applications with SWIFTAlliance
Access. It is composed of two ADK components, and they must be installed as any
other ADK component. The components must be registered in SWIFTAlliance. The
purpose of the registration is to make the component known to SWIFTAlliance. The
registration adds component data to the SWIFTAlliance database. The MQSA
software is limited to the exchange of S.W.I.F.T. messages, S.W.I.F.T. ack/nacks and
recording of events in the SWIFTAlliance journal. It can handles multiple MQSeries
queues for the connection with the user application(s).

The BEA WebLogic Adapter for SWIFT and BEA WebLogic Adapter for MQSeries
provide connectivity to SWIFT network using SWIFT Alliance MQSA. The
SWIFTAlliance Toolkit run-time license is required to run the MQSA software.
B-4 BEA WebLogic Adapter for ISO15022 User Guide

	About This Document
	What You Need to Know
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction
	Adapter Components
	Overview
	Validation
	Inbound Messaging
	Outbound Messaging

	Configuring and Validating Documents

	2 Creating and Configuring an Event Adapter
	Creating an Application View Folder
	Creating an Event Adapter Application View
	Configuring an Event Adapter Application View
	Testing Event Adapter Application Views
	Testing Event Adapter Application Views

	3 Creating and Configuring a Service Adapter
	How to Create a Service Adapter
	How to Configure a Service Adapter
	Testing the BEA Service Adapter

	4 Transforming Document Formats
	Overview
	Transforming SWIFT to XML
	Transforming XML to XML
	Transforming XML to SWIFT

	5 Acknowledgement Handling
	Acknowledgement Processing
	Validation
	Document Tree
	Acknowledgement Agent

	Documents, Validation, and Acknowledgement
	Acknowledgement Agent
	Acknowledgement Message Handling
	Creating an Acknowledgement Event
	Testing Acknowledgement Message Handling

	6 Using Tracing
	Levels and Categories of Tracing
	Tracing and Performance
	Creating Traces for Services and Events
	Creating Traces for a Service
	Creating or Modifying the WebLogic Framework Tracing Level for an Event
	Creating Adapter Logs for an Event

	A ISO15022 Rules System Adapter
	Rules File
	General Rule Set
	isN
	isR
	isDate
	isTime

	SWIFT Specific Rule Set
	isValidReference
	isValidISIN
	isNotPresent
	isValidMultiLine
	isSWIFTReal
	isSWIFTDate
	IsValidSWIFTString
	Hexadecimal Representation of SWIFT Character Set
	isSWIFTTime
	isValidMessageType
	checkValue
	checkCD
	checkRepetitive
	checkNodes
	checkChildSequence
	checkAddition
	checkRelation
	checkSegment

	Writing Rules in Java
	Writing Rule Search Routines in Java

	B Linking the Adapter to a SWIFT Network
	Batch File Transfer – FILE and FTP
	Application Server – CAS MF
	Interactive – MQ Series

