
BEA WebLogic
Adapter for
MQSeries

User Guide

Release 7.1
Document Date: June 2003



Copyright

Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server,
BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

BEA WebLogic Adapter for MQSeries User Guide

Part Number Date

N/A June 2003



BEA WebLogic Adapter for MQSeries User Guide iii

Contents

About This Document
What You Need to Know .................................................................................. viii

e-docs Web Site................................................................................................. viii

Related Information........................................................................................... viii

Contact Us! .......................................................................................................... ix

Documentation Conventions .................................................................................x

1. Introducing the BEA WebLogic Adapter for MQSeries
About the BEA WebLogic Adapter for MQSeries............................................ 1-1

Supported Integration Capabilities............................................................. 1-2

Key Concepts..................................................................................................... 1-2

Application Views...................................................................................... 1-3

Services ...................................................................................................... 1-3

Events ......................................................................................................... 1-4

Schemas...................................................................................................... 1-5

2. Defining Application Views for the Adapter for MQSeries
Before You Begin.............................................................................................. 2-1

Defining and Deploying an Application View.................................................. 2-2

Step 1. Log On to the Application View Console...................................... 2-2

Step 2. Add a Folder................................................................................... 2-3

Step 3. Define an Application View........................................................... 2-4

Step 4. Establish an MQSeries Connection................................................ 2-5

Step 5. Add Services and Events................................................................ 2-9

Step 6. Deploy the Application View....................................................... 2-16

Step 7. Test Services and Events.............................................................. 2-16

Editing an Application View........................................................................... 2-30



iv BEA WebLogic Adapter for MQSeries User Guide

3. Using the Adapter for MQSeries
About TCP/IP Connections ............................................................................... 3-1

Implementing User Exits ............................................................................ 3-2

Using CCSID in MQ Connection............................................................... 3-3

About Transaction Services............................................................................... 3-4

About Content Filtering in Events..................................................................... 3-5

Sending and Receiving Messages...................................................................... 3-7

Sending a Datagram Message .................................................................... 3-7

Sending a Reply Message........................................................................... 3-8

Sending Messages to Remote Queues........................................................ 3-9

Sending Group Messages ........................................................................... 3-9

Sending Messages with MQRFH2 Header Information .......................... 3-13

About Receiving Group Messages ........................................................... 3-14

Using Data Formats in Services and Events............................................. 3-14

Handling MQ Message Descriptor Values in Services and Events ......... 3-16

Handling Request, Response Documents and MQMD Ids ...................... 3-17

Handling Errors and Exceptions............................................................... 3-17

4. Example of Using Services and Events
Service Example ................................................................................................ 4-2

Transaction Service - Begin ....................................................................... 4-2

SendMessage .............................................................................................. 4-3

SendRequest ............................................................................................... 4-5

GetMessage ................................................................................................ 4-6

Transaction Service - Commit.................................................................... 4-8

Event Example................................................................................................... 4-9

Event Response Document....................................................................... 4-10

A. Schema Formats of Services and Events
Service Schemas ............................................................................................... A-1

Transaction ................................................................................................ A-2

SendMessage ............................................................................................. A-3

SendRequest .............................................................................................. A-5

GetMessage ............................................................................................... A-8

Event Schema ................................................................................................. A-10



BEA WebLogic Adapter for MQSeries User Guide v

B. Logging Messages
About Logging...................................................................................................B-1

Levels of Logging..............................................................................................B-2

Logging and Performance .................................................................................B-2

C. Run-Time Parameter Values

D. Error Messages and Troubleshooting
Error Messages ................................................................................................. D-1

Troubleshooting Tips........................................................................................ D-4

Index



vi BEA WebLogic Adapter for MQSeries User Guide



BEA WebLogic Adapter for MQSeries User Guide vii

About This Document

This document explains how to use the BEA WebLogic Adapter for MQSeries to
integrate IBM MQSeries messages with BEA WebLogic Integration. It is organized as
follows:

Chapter 1, “Introducing the BEA WebLogic Adapter for MQSeries,” introduces
the BEA WebLogic Adapter for MQSeries and provides an overview of the
adapter’s functionality.

Chapter 2, “Defining Application Views for the Adapter for MQSeries,”
describes how to define the application views for the Adapter for MQSeries.

Chapter 3, “Using the Adapter for MQSeries,” describes in detail the services
and events that the Adapter for MQSeries offers.

Chapter 4, “Example of Using Services and Events,” illustrates examples of
using the Adapter for MQSeries.

Appendix A, “Schema Formats of Services and Events,” presents the formats for
service and event schema created by the adapter.

Appendix B, “Logging Messages,” provides information on logging levels and
categories.

Appendix C, “Run-Time Parameter Values,” details the run-time parameters used
for adapter services.

Appendix D, “Error Messages and Troubleshooting,” provides details on error
messages and troubleshooting tips.



viii BEA WebLogic Adapter for MQSeries User Guide

What You Need to Know

This document is written for system integrators who develop client interfaces between
MQSeries and other Web applications. It describes how to use the BEA WebLogic
Adapter for MQSeries to develop application environments with a special focus on
message integration.

It is assumed that you know Web technologies and have a general understanding of
MQSeries, Microsoft Windows, and UNIX systems.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the e-docs product
documentation page at http://e-docs.bea.com.

Related Information

The following WebLogic Integration documents contain information that is relevant to
using this product.

BEA WebLogic Adapter for MQSeries Installation and Configuration Guide at
http://edocs.bea.com/wladapters/mq/docs71/index.html

BEA WebLogic Adapter for MQSeries Release Notes at
http://edocs.bea.com/wladapters/mq/docs71/index.html

WebLogic Server installation and user documentation at
http://edocs.bea.com/more_wls.html

BEA WebLogic Integration installation and user documentation at
http://edocs.bea.com/more_wli.html

http://e-docs.bea.com
http://edocs.bea.com/wladapters/mq/docs71/index.html
http://edocs.bea.com/more_wls.html
http://edocs.bea.com/more_wli.html
http://edocs.bea.com/wladapters/mq/docs71/index.html
http://edocs.bea.com/wladapters/mq/docs703/index.html
http://edocs.bea.com/wladapters/mq/docs703/index.html
http://edocs.bea.com/more_wls.html
http://edocs.bea.com/more_wli.html


BEA WebLogic Adapter for MQSeries User Guide ix

This document assumes that you have in-depth knowledge of Workflow Design,
Workflow Templates, Worklists, and WebLogic Integration Studio.

If you do not have the required knowledge of workflows or the WebLogic Integration
Studio, see the following documents:

Using the WebLogic Integration Studio at
http://edocs.bea.com/wli/docs70/studio/index.htm

Learning to Use BPM with WebLogic Integration at
http://edocs.bea.com/wli/docs70/bpmtutor/index.htm

Contact Us!

Your feedback on the BEA WebLogic Adapter for MQSeries documentation is
important to us. Send us e-mail at docsupport@bea.com if you have questions or
comments. Your comments will be reviewed directly by the BEA professionals who
create and update the BEA WebLogic Adapter for MQSeries documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Adapter for MQSeries 7.1 release.

If you have any questions about this version of BEA WebLogic Adapter for MQSeries,
or if you have problems installing and running the product, contact BEA Customer
Support through BEA WebSupport at www.bea.com. You can also contact Customer
Support by using the contact information provided on the Customer Support Card,
which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

http://edocs.bea.com/wli/docs70/studio/index.htm
www.bea.com
http://edocs.bea.com/wli/docs70/bpmtutor/index.htm
www.bea.com


x BEA WebLogic Adapter for MQSeries User Guide

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands, and their options, data structures and
their members, data types, directories, and filenames and their extensions.

Examples:

#include <iostream.h> void main ( ) the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ( )

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR



BEA WebLogic Adapter for MQSeries User Guide xi

{} Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

That an argument can be repeated several times in a command line

That the statement omits additional optional arguments

That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item



xii BEA WebLogic Adapter for MQSeries User Guide



BEA WebLogic Adapter for MQSeries User Guide 1-1

CHAPTER

1 Introducing the BEA 
WebLogic Adapter for 
MQSeries

This section introduces the BEA WebLogic Adapter for MQSeries and explains the
key concepts. It contains the following topics:

About the BEA WebLogic Adapter for MQSeries

Key Concepts

About the BEA WebLogic Adapter for 
MQSeries

The BEA WebLogic Adapter for MQSeries integrates your IBM MQSeries messages
with WebLogic Integration. You can use the adapter to exchange XML, Binary, and
TEXT formats between your MQSeries resources and the WebLogic Integration.



1 Introducing the BEA WebLogic Adapter for MQSeries

1-2 BEA WebLogic Adapter for MQSeries User Guide

Supported Integration Capabilities

MQSeries messaging products support application integration by sending and
receiving data as messages that allow business applications to exchange information
across platforms. They account for network interfaces, delivery of messages, deal with
communication protocols, dynamically distribute workload across available resources,
handle recovery after system problems, and help make programs portable. This allows
programmers to use their skills to handle key business requirements, instead of
wrestling with underlying network complexities.

The BEA WebLogic Adapter for MQSeries provides:

Asynchronous, bi-directional message interactions between WebLogic
Integration and native IBM MQSeries managed queues.

Data transfer between a business process running within WebLogic Integration
and an MQSeries Queue Manager.

Services and events for end-to-end business process management using XML

schemas.

Key Concepts

This topic describes the following concepts, which you must understand before using
the BEA WebLogic Adapter for MQSeries:

Application Views

Services

Events

Schemas



Key Concepts

BEA WebLogic Adapter for MQSeries User Guide 1-3

Application Views

An application view is a business-oriented interface to objects and operations within
an EIS. Application views include the information needed to communicate with the
EIS, as well as configurations for services and events. Application views define:

Communication with the EIS, including connection settings, login credentials,
and so on.

Service invocations, including the information that the EIS requires for the
request, as well as the service request and response schemas associated with the
service.

Event notifications, including the information that the EIS publishes and the
event schemas for inbound messages.

An application view is typically configured for a single business purpose and contains
only the services or events required for that business purpose.

Application views provide a layer of abstraction between applications and the EIS,
making it easier for developers and non-programmers to access and maintain the
services and events exposed by the adapter.

Services 

Services are request/response communications with the EIS. Client applications
submit service requests to the EIS via the adapter, and the adapter returns the EIS
response back to the client. Responses can be either synchronous or asynchronous.
When an application receives a request to invoke a business service, the application
view invokes the service in the target application and responds with an XML document
that describes the results.

To define a service, you must define input requirements, output expectations, and an
interaction specification containing static secondary metadata about the request.

A service receives an XML request document from a client and invokes the associated
function in the underlying EIS. Services are consumers of messages. They may or may
not provide responses. A service may be invoked in either of two ways: synchronously
or asynchronously, in a workflow. When a synchronous service is used, the client waits



1 Introducing the BEA WebLogic Adapter for MQSeries

1-4 BEA WebLogic Adapter for MQSeries User Guide

for the response before proceeding with processing. When an asynchronous service is
used, the client application issues a service request and then proceeds with processing
without waiting for the response.

A service performs the following functions:

Receive service requests from an external client.

Transform an XML request document into the EIS-specific format. The request
document conforms to the request XML schema for the service.

Invoke the underlying function in the EIS and wait for a response from that
function.

Transform the response from the EIS-specific data format to an XML format that
conforms to the response XML schema for the service.

Events

Events are asynchronous, one-way messages received from an EIS. For example, the
adapter can receive a message from an MQ system. The adapter routes the EIS
message to the appropriate software component.

Events are triggers to workflows. When a particular message arrives in a queue, it
triggers an event to read the message, and convert it, if necessary, to an XML format
that matches the required schema. The event then initiates a workflow.

An event is an XML document published by an application view when an occurrence of
interest takes place within an EIS. Clients that want to be notified of events, request
such notification by registering with an application view. The application view then
acts as a broker between the target application and the client. When a client has
subscribed to events published by an application view, the application view notifies the
client whenever an event of interest occurs in the target application. Upon receiving
such notification, the event is passed as an XML document that describes the event.
Application views that publish events can also provide clients with the XML schema for
publishable events.

Events are designed to propagate information from an EIS to WebLogic Server. They
can be described as publishers of information.

Events running in a WebLogic Integration environment perform the following
functions:



Key Concepts

BEA WebLogic Adapter for MQSeries User Guide 1-5

Respond to events that occur inside the running EIS by extracting and storing
data about the event from the EIS.

Transform event data from an EIS-specific format to an XML document that
conforms to the XML schema for the event.

Propagate each event to an event context obtained from the application view by
using the event router.

Schemas

At run-time, the EIS and the adapter exchange service requests, service responses, and
events via XML documents. The adapter handles the data translation between XML
documents and the EIS format, using schemas that have been defined at design-time to
map the data between XML and the EIS format:

For service requests, the request arrives at the adapter in the form of an XML
document. The adapter uses the request schema associated with the service (as
defined in the application view) to translate the request to the format that the EIS
expects. Similarly, when the adapter receives the response back from the EIS, it
uses the response schema associated with the service to translate the response to
an XML document that the requesting application handles.

For event notifications, the inbound message arrives at the adapter in the format
that the EIS uses to publish the event. The adapter uses the event schema
associated with the event (as defined in the application view) to translate the
response to an XML document that the subscribed application handles.

The Adapter for MQSeries creates the schema you need when you define services and
events. To view the schemas that the adapter creates, see Appendix A, “Schema
Formats of Services and Events.”



1 Introducing the BEA WebLogic Adapter for MQSeries

1-6 BEA WebLogic Adapter for MQSeries User Guide



BEA WebLogic Adapter for MQSeries User Guide 2-1

CHAPTER

2 Defining Application 
Views for the Adapter 
for MQSeries 

This section explains how to define application views for the Adapter for MQSeries.
It contains the following topics:

Before You Begin

Defining and Deploying an Application View

Editing an Application View

Before You Begin

When you define an application view, you create an XML-based interface between
WebLogic Server and the Adapter for MQSeries. Once you create the application
view, a business analyst can use it to create business processes that use the application.
You can create as many application views for an adapter, each of which may contain
any number of services and events.

Note: Before you define an application view, determine which business processes
should be supported by the application view that you are configuring. The
required business processes determine the types of services and events you
include in your application views. Therefore, you must gather information



2 Defining Application Views for the Adapter for MQSeries

2-2 BEA WebLogic Adapter for MQSeries User Guide

about the application's business requirements from the business analyst. Once
you determine the necessary business processes, you can define and test the
appropriate services and events.

Defining and Deploying an Application 
View

This section explains how to define and deploy application views using an Adapter for
MQSeries.

This procedure consists of the following steps:

Step 1. Log On to the Application View Console

Step 2. Add a Folder

Step 3. Define an Application View

Step 4. Establish an MQSeries Connection

Step 5. Add Services and Events

Step 6. Deploy the Application View

Step 7. Test Services and Events

Note: Before performing the following steps, ensure that the WebLogic Integration
Server is running on your system.

Step 1. Log On to the Application View Console

The Application View Console displays all the application views in your WebLogic
Integration environment, organized in folders.

To log on to the Application View Console:

1. Open a new browser window.



Defining and Deploying an Application View

BEA WebLogic Adapter for MQSeries User Guide 2-3

2. Enter the URL for your system's Application View Console. The actual URL you
enter depends on your system. It should conform to the following format:

http://localhost:port/wlai

Here, localhost represents the IP address machine on which the WebLogic
Integration Server is running and port represents the listening port.

The Application View Console Logon page appears.

3. Enter your WebLogic Server username and password, and click Login. The
Application View Console page appears.

Figure 2-1 Application View Console

Step 2. Add a Folder

You organize the application views in folders. A single folder may contain both
applications views and other subfolders. Once you create a folder, you cannot move it
to another folder. Before you can remove a folder, you must first remove all
applications views and subfolders. Once you create an application view in a folder, you
can remove the application view, but you cannot move it to another folder. You can
add application views to existing folders.

To add a folder:

1. On the Application View Console page, click the New Folder icon. The Add Folder
page appears.

2. Enter a name in the New Folder field. Any valid Java Identifier is allowed to be
the name.



2 Defining Application Views for the Adapter for MQSeries

2-4 BEA WebLogic Adapter for MQSeries User Guide

3. Click Save. The newly created folder appears on the Application View Console
page.

Step 3. Define an Application View

You must define an application view and relate it to the adapter you are working with.
For more information about defining application views and using them in workflows,
see Using Application Integration:

For WebLogic Integration 7.0, see
http://edocs.bea.com/wli/docs70/aiuser/2usrdef.htm

For WebLogic Integration 2.1, see
http://edocs.bea.com/wlintegration/v2_1sp/aiuser/2usrdef.htm

To define an application view:

1. Click the newly created folder. It takes you to the page where you can add
application views to this folder.

2. Click Add Application View.

Note: Make sure you are working in the appropriate folder before performing this
step. Once you define an application view, you cannot move it to another
folder.

The Define New Application View page appears.



Defining and Deploying an Application View

BEA WebLogic Adapter for MQSeries User Guide 2-5

Figure 2-2 Define New Application View

Note: A red asterisk (*) indicates that a field is mandatory.

3. Enter a name for the application view. Generally, the name should indicate the
functions performed by this application. Each application view must be unique to
its Adapter. Example, my_mqseries_appview.

4. Select an adapter. Example, BEA_MQSERIES_7_1.

5. Click OK. The Select the Type of Connection page appears.

Step 4. Establish an MQSeries Connection

You can connect to MQSeries either by using a bindings connection or a TCP/IP
connection.You can choose the connection type on the Select the Type of Connection
page.



2 Defining Application Views for the Adapter for MQSeries

2-6 BEA WebLogic Adapter for MQSeries User Guide

Figure 2-3 Select the Type of Connection Page

You can choose one of the following types of MQ Connection:

Bindings Connection: provides an MQ Connection to the MQ Server running on
the system where the Adapter for MQSeries is installed. To learn more, see Step
4A. Connecting Through Bindings Connection Type.

TCP/IP Connection: provides the option of connecting to any MQ Server
running on the same network where the Adapter for MQSeries is installed. To
learn more, see Step 4B. Connecting Through TCP/IP Connection Type.

Step 4A. Connecting Through Bindings Connection Type

To establish a connection to MQSeries through bindings, do the following:

1. On the Select Type of Connection page, select Bindings Connection. The
Configure Local Bindings Connection page appears.

Figure 2-4 Configure Local Bindings Connection

Note: A red asterisk (*) indicates that a field is mandatory.



Defining and Deploying an Application View

BEA WebLogic Adapter for MQSeries User Guide 2-7

2. Enter the WebLogic User Name and Password.

3. Enter the name of the Queue Manager.

4. Click Connect to EIS. The Application View Administration page appears with
the summary of the connection.

Figure 2-5 Application View Administration - Local Bindings Connection
Summary

Step 4B. Connecting Through TCP/IP Connection Type

To learn more about the options available when you select a TCP/IP connection, see
“About TCP/IP Connections” on page 3-1.

To establish a connection to through TCP/IP:

1. On the Select Type of Connection page, select TCP/IP Connection. The Configure
TCP/IP Connection page appears.



2 Defining Application Views for the Adapter for MQSeries

2-8 BEA WebLogic Adapter for MQSeries User Guide

Figure 2-6 Configure TCP IP Connection

Note: A red asterisk (*) indicates that a field is mandatory.

2. Enter the WebLogic User Name and Password.

3. Select the check box if MQSeries requires an authorization.

Note: If you select this, the User Name and Password used here should be valid
on both the WebLogic Platform and the MQ Server.

4. Enter the name of the Queue Manager.

5. Enter the name of the host where the MQ Server is installed. Example, localhost.

6. Enter the name of the channel to connect to the Queue Manager.

7. Enter the port number of the Queue Manager. Example, 1414.

8. If you expect to exchange messages using a non-latin character set, enter the
character set ID from the CCSID Catalog.

CCSID defines the character set of character data in the message. Click the View
CCSID Catalog link for a list of character catalogs. To learn more, see “Using
CCSID in MQ Connection” on page 3-3.

9. Select the applicable User Exit Type and enter the relevant application name.
These are the user exits:



Defining and Deploying an Application View

BEA WebLogic Adapter for MQSeries User Guide 2-9

Send Exit: processes the message before sending it to a queue.

Receive Exit: processes the message after getting it from a queue.

Security Exit: performs a security check on the message.

To learn more about user exit types, see “Implementing User Exits” on page 3-2.

10. Click Connect to EIS. The Application View Administration page appears with
the summary of the connection.

Figure 2-7 Application View Administration - TCP/IP Connection Summary

Step 5. Add Services and Events

You can add services and events that support specific business processes. An
application view can have multiple services and events. The required business
processes determine the types of services and events you include in your application
view.

Step 5A. Add a Service to an Application View

You must consider the following points before you execute a workflow using Adapter
for MQSeries services:



2 Defining Application Views for the Adapter for MQSeries

2-10 BEA WebLogic Adapter for MQSeries User Guide

The SendMessage, SendRequest, and GetMessage services must always be a
part of an existing transaction scope.

Within a transaction scope, the SendMessage, SendRequest, and GetMessage
services can be invoked in any order.

Transaction boundary services (Begin and Commit/BackOut) are required for
sending and receiving messages.

To add a service:

1. On the Application View Administration page, click Add in the Services row. The
Add Service page appears.

Figure 2-8 Add Service

2. Select the Service Type and click Continue. A page for the service type you
select appears. The services provided by the Adapter for MQSeries are as
follows:

Transaction Services: begins and ends a transaction that can contain any
number of other services. To learn more about Transaction services, see
“About Transaction Services” on page 3-4.

SendMessage: sends a message to a specified queue.

SendRequest: sends a request message to a specific queue.

GetMessage: gets a message from a specified queue.

For specific instructions on configuring a GetMessage service, see “About
Configuring GetMessage Services” on page 2-13.

3. Enter a unique name for the service.



Defining and Deploying an Application View

BEA WebLogic Adapter for MQSeries User Guide 2-11

4. Select the message type from the drop-down list. The options are:

Datagram: for your messages where no reply is expected. This message type
is used for SendMessage services. For more information, see “Sending a
Datagram Message” on page 3-7.

Reply: for your reply messages. This message type is used for SendMessage
services. For more information, see “Sending a Reply Message” on page 3-8.

Request: for your message where a reply is expected. This message type is
used for SendRequest services.

5. Enter a valid queue name for the queue manager you are connecting to, for
Bindings connection. For a TCP/IP connection enter a valid queue name and
sender channel for the queue manager. For details on setting up a sender-receiver
channel to the remote queue manager, see “Sending Messages to Remote
Queues” on page 3-9.

Note: The instructions that follow apply to SendMessage and SendRequest services.
For instructions for configuring GetMessage services, see “About Configuring
GetMessage Services” on page 2-13.

6. Enter the expiration value for the message.

7. Select the message priority. You can select a number between 0 and 9, or
AsQueuedef (as defined in the queue).

8. Select the persistence policy. The available options are Persistent, NotPersistent, and
AsQueuedef.

9. If you expect to exchange messages using a non-latin character set, enter the
character set ID from the CCSID Catalog.

CCSID defines the character set of character data in the message. Click the View
CCSID Catalog link for a list of character catalogs. To learn more, see “Using
CCSID in MQ Connection” on page 3-3.

10. Enter a message user name that is authorized by the MQSeries Server and a
member of the MQ Administrator group.

11. Select a segmentation policy. If you select Allowed, the MQ Manager can
segment the message, if required. If you select NotAllowed, the message cannot
be segmented.

12. Select the relevant report messaging option:



2 Defining Application Views for the Adapter for MQSeries

2-12 BEA WebLogic Adapter for MQSeries User Guide

COA: Confirmation of Arrival, with some data or with full data.

COD: Confirmation of Delivery, with some data or with full data.

Exception report, with some data or with full data.

Expiration report, with some data or with full data.

13. If you select a report messaging option, enter the name of the queue where the
report should be sent. The default value is obtained from the queue manager to
which the connection is made.

Note: The reports go to the specified reply to queue if the user is authorized by
MQSeries. Otherwise, they go into the dead letter queue of the queue
manager where the message is sent. In any case, the COA report goes into
the specified Reply to Queue Name destination. For more information on
reports, see your MQSeries documentation.

14. Enter the queue manager to which the report should be sent. The default value is obtained
from the queue manager to which the connection is made. This is an optional field.

15. Select the applicable format for the message. The available options are None, String, and
MQRFH2. To view the format of MQRFH2, click View Format link.

Note: If you do not specify a value in run-time, the design-time value takes
precedence. If you specify both run-time and design-time values, the
run-time value takes precedence.

16. Enter the contents of the selected format. This field is mandatory if you select
MQRFH2 data format. To create the contents, use the MQRFH2 schema and
insert values in it. For more information, see Sending Messages with MQRFH2
Header Information.

17. Select the data format. If you specify the data format as TEXT or Binary during
design-time, you cannot specify the data format as XML during run-time.

18. Enter the schema of the XML data content. This is required only when you select
XML as the data format.

Note: The XML data content schema cannot be provided during run-time.

19. Click Add Service. The service is added to the application view.



Defining and Deploying an Application View

BEA WebLogic Adapter for MQSeries User Guide 2-13

About Configuring GetMessage Services

When you configure a GetMessage service, you specify the service name, service type,
description, and queue name the same as for a SendMessage or SendRequest service.

In addition, you specify a message consumption setting and a time out.

The Message Consumptions options are:

Browse – This option is only for Browsing a message. Even after the message is
read from the Queue it remains there intact.

Delete – This option is to fully consume the message as it is read. After the
message is read, it is permanently removed from the Queue.

Note: It is the MQ Administrator’s responsibility to periodically remove outdated
and unwanted messages from the Queue whenever the Browse is set as the
consumption type.

The Time Out is the maximum amount of time for which the application should pause
before getting a message. For unlimited waiting period, specify -1.

When you configure a GetMessage service for TEXT or Binary Data formats, it will
not fetch messages of XML format. The application will throw a Resource Exception
on such occurrences. When a GetMessage service is configured for XML Data formats
it will not fetch messages of TEXT or Binary formats. The application will throw a
Resource Exception on such occurrences. At run-time, one or more or all of the
following values can be provided.

MessageId: The MessageId of the message that is to be received.

CorrelationId: The CorrelationId of the message that is to be received.

GroupId: The GroupId of the message that is to be received. For more
information, see “Sending Group Messages” on page 3-9.

A Message that matches these given IDs is received. If none of the above is provided,
the first message in the Queue is received.

Messages, also known as In-process replies, may be responses to previously sent
requests and/or subsequent messages in a group. For more information on the data
formats, see “Using Data Formats in Services and Events” on page 3-14.



2 Defining Application Views for the Adapter for MQSeries

2-14 BEA WebLogic Adapter for MQSeries User Guide

Step 5B. Add an Event to an Application View

You can use an Adapter for MQSeries event to monitor a queue for messages.
Messages can be received only from queues that are local to the queue manager to
which the connection is obtained and not from remote queues.

To add an event:

1. On the Application View Administration page, click Add in the Events row. The
Add Event page appears.

Figure 2-9 Add Event

Note: A red asterisk (*) indicates that a field is mandatory.

2. Enter a Unique Name for the event.

3. Select the type of connection from the drop-down list.

4. Enter the name of the Queue Manager.

5. Enter the name of the host required to connect to the Queue Manager.

Note: The host name should be a valid IP address on a non-Windows platform.
Example, 172.19.138.44. On Windows, it can be either an IP address or
a valid name. Example, QM_Host



Defining and Deploying an Application View

BEA WebLogic Adapter for MQSeries User Guide 2-15

6. Enter the name of the Queue Manager Channel. This entry is required only if the
connection type is TCP/IP.

7. Enter the port number of the Queue Manager. This entry is required only when
the connection type is TCP/IP.

8. Enter the name of the queue to monitor.

9. If you expect to exchange messages using a non-latin character set, enter the
character set ID from the CCSID Catalog.

CCSID defines the character set of character data in the message. Click the View
CCSID Catalog link for a list of character catalogs. To learn more, see “Using
CCSID in MQ Connection” on page 3-3.

10. Select the type of message consumption from the drop-down list.

Browse – This option is only for Browsing a message. Even after the
message is read from the Queue it remains there intact.

Delete – This option is to fully consume the message as it is read. After the
message is read, it is permanently removed from the Queue.

Note: It is the MQ Administrator’s responsibility to periodically remove
outdated and unwanted messages from the Queue whenever the Browse is
set as the consumption type.

11. Select the data format of the message from the drop-down list. For details, see
“Using Data Formats in Services and Events” on page 3-14

12. Select the Content Filter Required check box if you need content filtering. For
details, see “About Content Filtering in Events” on page 3-5.

13. Enter the class of the content filter. You should enter this only if you select the
Content Filter Required check box.

14. Click Add. The event is added to the application view.



2 Defining Application Views for the Adapter for MQSeries

2-16 BEA WebLogic Adapter for MQSeries User Guide

Step 6. Deploy the Application View

After adding the services and events, you must deploy the application view to use its
services and events in a workflow. If you want to reconfigure the application view, you
have to undeploy it and reconfigure. For details on reconfiguring an application view,
see “Editing an Application View” on page 2-30.

To deploy the application view, do the following:

1. After you add services and events, on the Application View Administration page,
click Continue. The Deploy Application View page appears.

Note: Before you deploy the application view, configure the log verbosity level
for the application view. For more details, see Appendix B, “Logging
Messages.”

2. Click Deploy. The application view is deployed.

Step 7. Test Services and Events

The purpose of testing an application view service is to evaluate whether or not that
service interacts properly with the MQSeries. After deploying an application view, you
can test the services and events in one of the following ways:

Using the Application View Console

Using WebLogic Integration Studio

Note: Before you test an application view, ensure that all the required services and
events are added to it and it has been deployed.

Step 7A. Test Services and Events Using the Application View Console

It's a good idea to test the functionality of an application view before you start using it
in workflow. You can do this using the Application View Console.

Note: Before you test an application view’s services, ensure that the application view
contains a Transaction service and other necessary services that form a part of
the transaction scope.



Defining and Deploying an Application View

BEA WebLogic Adapter for MQSeries User Guide 2-17

To test a service, see “Test Services in Application View Console” on page 2-17.

To test an event, see “Test Events in the Application View Console” on page 2-19.

Test Services in Application View Console

To confirm that a deployed application view’s services are correctly configured, you
must test it before using them in the workflow. You can test the SendMessage,
SendRequest, and GetMessage services.

To test an application view’s services, do the following:

1. Open the WebLogic Integration-Application View Console, and select a deployed
application view. The Summary for Application View page appears.

Figure 2-10 Summary for Application View

2. Click the Test link for one of the application view’s services (SendMessage,
SendRequest, and GetMessage).

The Test Service page for that service appears.



2 Defining Application Views for the Adapter for MQSeries

2-18 BEA WebLogic Adapter for MQSeries User Guide

Figure 2-11 Test Service

Note: A red asterisk (*) indicates that a field is mandatory.

3. Enter the name of the transaction service (that has been added to the selected
application view) in the Transaction Service Name field.

4. Enter a sample request document that matches the request schema for the service
to be tested, in the text box. For example,
<?xml version="1.0" encoding="UTF-8"?>
<SendPlainMessage>
<MessageDescriptor></MessageDescriptor>
<Data>
<Format>TEXT</Format>
<Content>hello world</Content>
</Data>
</SendPlainMessage>

5. Click Test to execute the service. The Test Result page appears.



Defining and Deploying an Application View

BEA WebLogic Adapter for MQSeries User Guide 2-19

Figure 2-12 Test Result

You have now confirmed that the application view service is correctly
configured.

Test Events in the Application View Console

To confirm that a deployed application view’s events are correctly configured, you
must test it before using them in the workflow. You can test an event through a service
or manually. Each of these is described in the following steps.

To test an event, do the following:

1. Open the WebLogic Integration-Application View Console, and click the
application view bearing deployed status.The Summary for Application View page
appears.



2 Defining Application Views for the Adapter for MQSeries

2-20 BEA WebLogic Adapter for MQSeries User Guide

Figure 2-13 Summary for Application View

2. Click the Test link for one of the application view’s events. The Test Event page
appears.

Figure 2-14 Test Event

3. To test the event through a service, do the following:

a. Select Service, and select the service from the drop-down list. The Test Service
page appears as shown in the figure “Test Service” on page 2-18.

b. Enter the name of the transaction service (that has been added to the selected
application view) in the Transaction Service Name field.



Defining and Deploying an Application View

BEA WebLogic Adapter for MQSeries User Guide 2-21

c. Enter a sample Request Document that matches the Request Schema for the
selected service, in the text area.

d. Click Test to test the event using a service. The Test Result page appears.

4. To test the event directly, do the following

a. Select Manual and enter the waiting period in the Time (in milliseconds) in the
field.

b. Click Test to test the event. The Test Result page appears.

Note: If the duration of waiting is lesser than the actual time required to pick
the message from the Queue, the Result page will display the Timed
Out message. In such case, you will have to increase the waiting period
specified in the Time field.

You have now confirmed that the application view is correctly configured and
can receive events.

Note: If you wait longer than the specified period and do not receive the event’s
result, you should assume that there is a problem with the application view
event. Examine the WebLogic Server log for information about the event’s
activity.

Step 7B. Test Services and Events Using WebLogic Integration Studio

You can test events and services separately, using the WebLogic Integration Studio.
Before you begin testing services and events, you must complete the tasks described
in the following steps.

Note: The information provided here assumes that you have in-depth knowledge of
Workflow Design, Workflow Templates, Worklists, and WebLogic
Integration Studio.

If you do not have the required knowledge of workflows or the WebLogic
Integration Studio, see the following documents:

Using the WebLogic Integration Studio at
http://edocs.bea.com/wli/docs70/studio/index.htm

Learning to Use BPM with WebLogic Integration at
http://edocs.bea.com/wli/docs70/bpmtutor/index.htm

Before you test an application views’s services and events, do the following:

http://edocs.bea.com/wli/docs70/studio/index.htm
http://edocs.bea.com/wli/docs70/bpmtutor/index.htm


2 Defining Application Views for the Adapter for MQSeries

2-22 BEA WebLogic Adapter for MQSeries User Guide

1. Create the necessary Request Documents for the services that you want to test. You
can create the Request Documents using the Request Schema available for that
service.

2. Log on to the WebLogic Integration Studio, using a valid user name, password,
and server URL. The WebLogic Integration Studio appears.

Figure 2-15 WebLogic Integration Studio

3. In the left pane of WebLogic Integration Studio, from the Organizaton drop-down
list, select the relevant organization.

4. In the left pane, right-click the Templates folder and select Create Template. The
Template Properties dialog box appears.

Figure 2-16 Template Properties Dialog Box

5. On the General tab, in the Name field, enter a name for the template, and click
OK. The new template (MQ Adapter) appears in the Templates folder, on the left
pane of the WebLogic Integration Studio.

6. Right-click the newly created template, and select Create Template Definition.
The Template Definition MQ Adapter dialog box appears.



Defining and Deploying an Application View

BEA WebLogic Adapter for MQSeries User Guide 2-23

Figure 2-17 Template Definition Dialog Box

7. Do one of the following:

To specify the expiry date for the workflow, select the Expiry check box, and
from the drop-down calendar, select the desired date. Click OK.

To retain the default expiry date, click OK.

The Template Definition dialog box closes, and the Template Definition is
created inside the newly created template folder, displaying the creation date and
time.

The Workflow Design window appears in the right pane.

Figure 2-18 Workflow Design Window

8. Test the service or event.

To learn about testing services, see “Test Services in WebLogic Integration
Studio” on page 2-24.

To learn about testing events, see “Test Events in WebLogic Integration
Studio” on page 2-28.



2 Defining Application Views for the Adapter for MQSeries

2-24 BEA WebLogic Adapter for MQSeries User Guide

Test Services in WebLogic Integration Studio

Before you test services, you must have done the following:

Created the necessary Request Documents for the services that you want to test.

Created and defined templates in the WebLogic Integration Studio.

Created relevant variables which are required to execute the workflow.

To test an application view’s services, do the following:

1. On the Workflow Design window, right-click Task 1 and select Properties. The
Task Properties dialog box appears.

2. Select the Executed tab.

Figure 2-19 Task Properties Dialog Box

3. Click Add. The Add Action dialog box appears.

Figure 2-20 Add Action Dialog Box

4. Double-click the AI Actions folder, select Call Application View Service, and
click OK. The Call Service dialog box appears.



Defining and Deploying an Application View

BEA WebLogic Adapter for MQSeries User Guide 2-25

Figure 2-21 Call Service Dialog Box

5. Select the service that you want to add. The name of the selected service appears
in the Name field.

6. Click Set to set the Request Document Variable. The Service Request Template
dialog box appears.

Figure 2-22 Service Request Template Dialog Box

7. Click the Open Folder icon on the toolbar and select the Request Document you
created. Click Yes to save the XML file to an XML template. The Service Request
Document is added in the form of a template.

8. Click OK. The Service Request Template dialog box closes.



2 Defining Application Views for the Adapter for MQSeries

2-26 BEA WebLogic Adapter for MQSeries User Guide

9. Select the relevant variable from the Request Document Variable list. If there are
no variables, create a new variable using the Variable Properties dialog box.

Figure 2-23 Variable Properties Dialog Box

10. In the Call Service dialog box, do one of the following:

To process the next service only after receiving the response of the first
service processing, click Synchronous and select the Response Document
Variable from the drop-down list.

To process the next service without waiting for the response of the first
service processing, click Asynchronous and select the Request ID Variable
from the drop-down list.

For details on Synchronous and Asynchronous processing, see “Services” on
page 1-3.

Note: If there are no variables, create a new variable and select it.

11. Click OK. The Call Service dialog box closes, and the Task Properties dialog box
appears.

Note: Repeat steps 3 to 11 to add other services to the Task node.

12. Select the required tasks and use the up and down arrows to arrange them in
sequence for execution. You can change the order depending upon the workflow
requirements. The arranged tasks are shown in the following figure.



Defining and Deploying an Application View

BEA WebLogic Adapter for MQSeries User Guide 2-27

Figure 2-24 Task Properties Dialog Box with Actions

13. Click OK. The Task Properties dialog box closes.

14. In the left pane of WebLogic Integration Studio, right-click the Template
Definition and select Properties. The Template Definition dialog box appears.

Figure 2-25 Template Definition Dialog Box with Active Check Box

15. Select the Active check box, and click OK. The Template Definition is activated
and the Template Definition dialog box closes.

Caution: To make changes to the template, do the following:

a. Open the Template Definition dialog box, deselect the Active check box and
click OK. The Template Definition is deactivated and the Template Definition
dialog box closes.

b. Make changes to the Template, open the Template Definition dialog box again,
select the Active check box, and click OK. The Template Definition is activated
and the Template Definition dialog box closes.



2 Defining Application Views for the Adapter for MQSeries

2-28 BEA WebLogic Adapter for MQSeries User Guide

This is to ensure that there is only one workflow process per active template at
any given time.

16. In the left pane of WebLogic Integration Studio, right-click the Template
Definition and select Save.

Note: An asterisk before the definition name indicates that the changes to that
folder have not been saved.

17. To test the services in a workflow, open the WebLogic Integration Worklist,
select the tasks and execute the workflow. The tasks when executed successfully,
indicate that they are functioning appropriately.

For more information about the WebLogic Integration Worklist, see Using the
WebLogic Integration JSP Worklist at

http://e-docs.bea.com/wli/docs70/jspwlist/index.htm

Once the services are tested successfully, you can start using them in workflows.

Test Events in WebLogic Integration Studio

Before you test event, you must have done the following:

Created and defined templates in the WebLogic Integration Studio.

Created relevant variables which are required to execute the workflow.

To test an application view’s events, do the following:

1. In the Workflow Design window, right-click the Start node, and select Properties.
The Start Properties dialog box appears.

2. Click Event, and select AI Start from the Event drop-down list.

http://e-docs.bea.com/wli/docs70/jspwlist/index.htm


Defining and Deploying an Application View

BEA WebLogic Adapter for MQSeries User Guide 2-29

Figure 2-26 Start Properties Dialog Box

The left side of the dialog box displays all the application views along with their
corresponding events that have been defined in the WebLogic Application
Integration.

3. Select the event you want to test. The name appears in the Name field.

4. Select an Event Document Variable from the drop-down list.

Note: If there are no variables, create a new variable and select it.

5. Select the relevant organization from the Start Organization drop-down list, and
click OK. The Start Properties dialog box closes.

On the Workflow Design window, the Start Node indicates the action setting, as
shown in the following figure.

Figure 2-27 Start Node with Event Action

6. In the left pane of WebLogic Integration Studio, right-click the Template
Definition and select Properties. The Template Definition dialog box appears.

7. Select the Active check box, and click OK. The Template Definition is activated
and the Template Definition dialog box closes.



2 Defining Application Views for the Adapter for MQSeries

2-30 BEA WebLogic Adapter for MQSeries User Guide

Caution: To make changes to the template, do the following:

a. Open the Template Definition dialog box, deselect the Active check box and
click OK. The Template Definition is deactivated and the Template Definition
dialog box closes.

b. Make changes to the Template, open the Template Definition dialog box again,
select the Active check box, and click OK. The Template Definition is activated
and the Template Definition dialog box closes.

This is to ensure that there is only one workflow process per active template at
any given time.

8. In the left pane of WebLogic Integration Studio, right-click the Template
Definition and select Save. The event is activated.

Note: An asterisk before the definition name indicates that the changes to that
folder have not been saved.

An event is confirmed to be functioning properly if the required messages entering the
Queue are picked up by the Event Manager in the Workflow Instances.

Once the events are tested successfully, you can start using them in workflows.

For more information about using WebLogic Integration Studio, see Learning to Use
BEA WebLogic Integration at http://edocs.bea.com/wli/docs70/bpmtutor/index.htm

Editing an Application View

After you deploy an application view, you may want to edit it. To do this, you must
undeploy the application view, reconfigure the connection parameters, and add,
remove, or edit services and events.

To edit an existing application view:

1. Open the WebLogic Integration - Application View Console, and click the
deployed application view. The Summary for Application View page appears.

http://edocs.bea.com/wli/docs70/bpmtutor/index.htm
http://edocs.bea.com/wli/docs70/bpmtutor/index.htm
http://edocs.bea.com/wli/docs70/bpmtutor/index.htm
http://edocs.bea.com/wli/docs70/bpmtutor/index.htm


Editing an Application View

BEA WebLogic Adapter for MQSeries User Guide 2-31

Figure 2-28 Summary for Application View

2. Click Undeploy and click Confirm. The Summary for Application View page
(with Edit/Remove options) appears.

3. Click Edit. The Application View Administration page appears.



2 Defining Application Views for the Adapter for MQSeries

2-32 BEA WebLogic Adapter for MQSeries User Guide

Figure 2-29 Application View Administration

4. Do one of the following:

To reconfigure the application view's connection parameters, click the
Reconfigure connection parameters link.

To add services or events, click Add in the Service/Event row.

To remove a service or an event, click the Remove Service/Remove Event
link.

To edit a service or an event, click the corresponding Edit link, modify the
details on the relevant page and click Apply.

5. On the Application View Administration page, click Continue. The Deploy
Application View page appears.

6. Click Deploy. The application view is deployed and the corresponding details are
shown in the Summary for Application View page.



BEA WebLogic Adapter for MQSeries User Guide 3-1

CHAPTER

3 Using the Adapter for 
MQSeries

This section provides information on using the Adapter for MQSeries. It contains
detailed information on the services and events of the adapter.

It is organized as follows:

About TCP/IP Connections

About Transaction Services

About Content Filtering in Events

Sending and Receiving Messages

About TCP/IP Connections

This section described options available when you use a TCP/IP connection. It
includes the following topics:

Implementing User Exits

Using CCSID in MQ Connection



3 Using the Adapter for MQSeries

3-2 BEA WebLogic Adapter for MQSeries User Guide

Implementing User Exits

The Adapter for MQSeries provides an option to implement user exits. This is
applicable only to TCP/IP MQ Connections. The available exits are:

Send Exit: processes the message before sending it to a queue.

Receive Exit: processes the message after getting it from a queue.

Security Exit: performs a security check on the message.

The corresponding Java MQSeries exit interfaces that should be implemented are:
MQSendExit, MQReceiveExit, and MQSecurityExit.

These exits can be configured to the MQ Connection when a TCP/IP MQ Connection
is established for the adapter. During design-time, you can choose one or more of the
available exits. For each exit selected, you should provide an ExitAppName. This
ExitAppName should be a fully qualified Name of the Class that implements the
corresponding Java MQSeries Exit interface. It should also be ensured that this Class
is available in the CLASSPATH of the Application Server on which the Adapter for
MQSeries is deployed.

For more information on these interfaces, see your MQSeries documentation.

To implement a user exit:

Note: This is an example on implementing Send Exit.

1. Create a user exit class as follows:

package com.bea.UserExit;

import com.ibm.mq.MQSendExit;

public class UserSendExit implements MQSendExit {

public UserSendExit()

{

}

public byte[] sendExit(MQChannelExit
channelExit,MQChannelDefinition channelDefnition,byte[]
agentBuffer)

{

// Your code goes here



About TCP/IP Connections

BEA WebLogic Adapter for MQSeries User Guide 3-3

return agentBuffer;

}

}

The name of this User Exit is UserSendExit. Similarly, for a Receive Exit, the
class should implement MQReceiveExit, and for a Security Exit, the class
should implement MQSecurityExit.

2. Compile this class and create a JAR for the class file, for example
senduserexit.jar.

3. Set the CLASSPATH for this JAR.

To know how to set the CLASSPATH, see BEA WebLogic Adapter for MQSeries
Installation and Configuration Guide at

http://edocs.bea.com/wladapters/mq/docs71/index.html

4. In the TCP/IP MQ Connection Page when you choose Send Exit, provide the
fully qualified class name of the User Exit.
For example, com.bea.UserExit.UserSendExit.

Using CCSID in MQ Connection

CCSID defines the character set of character data in the message.While obtaining an
MQ Connection for the adapter’s services and events, you can set a CCSID to establish
the MQ Connection. This option is available only for TCP/IP MQ Connection.

When you get a message from a queue, you should compare the value of the
CodedCharSetId field with the value that your application is expecting. If the two
values differ, you may need to convert any character data in the message or use a
data-conversion message exit if one is available.

To view the available CCSID values, click the CCSID Catalog link on the TCP/IP
Type Connection page and event configuration page.

Note: While selecting a CCSID, ensure that the selected CCSID has a language
support in the operating system on which the MQ Server is installed.

For more information on CCSID, see your MQSeries documentation or contact the
MQ Administrator.

http://edocs.bea.com/wladapters/mq/docs71/index.html


3 Using the Adapter for MQSeries

3-4 BEA WebLogic Adapter for MQSeries User Guide

About Transaction Services

The transaction service in the Adapter for MQSeries, exposes transaction handling
capabilities to the invoking Client Application. This capability makes it easier to
maintain a workflow within which a sequence of service invocations on the Adapter
can be done to complete a business process. It is mandatory that all the Send and Get
services are part of an existing Transaction Scope. You can create such a transaction
scope by using the transaction service.

The transaction service provides three options:

Begin: begins a transaction with the associated MQ Connection.

Commit: ends a transaction scope and save the changes made since the
beginning of the transaction scope.

BackOut: ends a transaction scope and rolls back the changes made since the
beginning of the transaction scope.

Note: The transaction boundary services (Begin and Commit/BackOut) are
mandatory for sending and receiving messages. A SendMessage service by
itself, will never result in a message being placed on the queue.

During run-time, one of these values can be given in the TransactionFunction tag in
the Request Document for a transaction service.

Note: The invoking client application manages the transaction. If an exception
occurs at runtime, the client application should call a Transaction BackOut to
roll back the changes that might have occurred since the start of the current
Transaction scope.

You invoke a service with a transaction scope. Transaction Begin is the first service,
and Transaction Commit is the last, and you can have as many services as you want in
the middle.

While executing Begin Transaction, the application checks if a Transaction Scope
already exists. If it does, it throws a javax.resource.ResourceException. When
any other service is invoked, the application checks if a Transaction Scope exists. If it
does not, it throws a javax.resource.ResourceException, and the service
invocation is terminated.



About Content Filtering in Events

BEA WebLogic Adapter for MQSeries User Guide 3-5

If the service execution is not successful again, a
javax.resource.ResourceException is thrown, and the service invocation is
terminated.

Each of the SendMessage, SendRequest, and GetMessage service types can be
invoked within a Transaction Scope iteratively, in any sequence.

If the Sequence of Executions are successful, the Client can invoke a transaction
commit service to save the process changes permanently.

If a ResourceException is thrown during the Execution process, the Client can invoke
a transaction backout to roll back the changes that happened since the start of the
current Transaction Scope.

About Content Filtering in Events

One of the features of the Adapter for MQSeries is the Content Filtering option,
available in events. Using this feature, you can filter the messages in a Queue, based
on the contents of the message.

You can do this by specifying an optional payload filter, which consists of a string of
characters, including case-sensitive wildcards. Upon receiving a message, you can
consume the message off the queue (delete it) or merely read it and leave it on the
queue (known as browsing). You can set the queue and the queue manager destination
parameters from whom you receive messages.

While configuring an event, select Yes for the Content Filtering option. If you select
this, you should provide a fully qualified name of a Class that extends the
com.bea.adapter.mqseries.AbstractContentFilter Class. This Class is
available in contentfilter.jar which can be extracted from the EAR file of the
Adapter for MQSeries.

You should overwrite the Abstract matchContent function in this Abstract Class by
implementing the Content Filtering logic. You should also ensure that this Class is
available in the CLASSPATH of the Application Server on which the Adapter for
MQSeries is deployed.



3 Using the Adapter for MQSeries

3-6 BEA WebLogic Adapter for MQSeries User Guide

At the time of executing the event, the message obtained from the Queue is passed on
to this function as an input and depending upon the Boolean value returned by this
function, the application creates an event for this message.

Such an event is an XML document describing the MQMD attributes of the message and
the application data.

To implement Content Filtering for an event, do the following:

1. Extract the contentfilter.jar from the EAR of the Adapter for MQSeries and
include it in the environment where the Content Filtering Code will be developed.

2. Create a Content Filter class extending it to
com.bea.adapter.mqseries.AbstractContentFilter.

3. Create a Sample Content Filter Class Code:

package com.bea.adapter.mqseries.contentfilter;

import com.bea.adapter.mqseries.utils.AbstractContentFilter;

public class ContentFilter extends AbstractContentFilter{

public ContentFilter ()
{
}
public boolean matchContent(byte[]message)
{
boolean isMatching = false;
//Filtering logic to go here. isMatching to be made ‘true’ if the
message meets the filtering logic.

return isMatching;
}

4. Compile this class and create a JAR with a name, for example,
mycontentfilter.jar.

5. Include this JAR file in the CLASSPATH of the Start Server script. For more
information on setting the Classpath, see “Set the CLASSPATH” in BEA
WebLogic Adapter for MQSeries Installation and Configuration Guide (for
WebLogic Integration 7.0 or 2.1, as applicable).

6. Open Command Prompt to start the Server.

7. While configuring the event in the application view, choose Content Filtering.



Sending and Receiving Messages

BEA WebLogic Adapter for MQSeries User Guide 3-7

8. Give the fully qualified class name of the Content Filter. For example,
com.bea.adapter.mqseries.contentfilter.ContentFilter.

9. Add the event and deploy the application view.

Sending and Receiving Messages

This section discusses in detail, the features of the adapter that you can use while
sending and receiving messages. These features are classified under the following
headings:

Sending a Datagram Message

Sending a Reply Message

Sending Messages to Remote Queues

Sending Group Messages

Sending Messages with MQRFH2 Header Information

About Receiving Group Messages

Using Data Formats in Services and Events

Handling MQ Message Descriptor Values in Services and Events

Handling Request, Response Documents and MQMD Ids

Handling Errors and Exceptions

Sending a Datagram Message

You can send a Datagram message using the SendMessage service.

Segmentation is allowed only while sending a Datagram message, to allow the Queue
Manager manage the segmentation of large messages. This is same for sending a Reply
and a Request message.



3 Using the Adapter for MQSeries

3-8 BEA WebLogic Adapter for MQSeries User Guide

Before sending a Datagram message, do the following in the Request Document:

Configure the Message Descriptor data that you want to override. For details,
see “Handling MQ Message Descriptor Values in Services and Events” on page
3-16.

Under the Data tag, do the following:

Provide the required format: TEXT/Binary/XML. You can provide XML
only if you selected it during design-time.

Provide the Application data that you want to send to the Queue. This is
mandatory. The application data should not be empty.

You can use the same SendMessage service to send as many number of Datagram
messages as the Destination Queue can hold.

For details on the Destination Queue’s message holding capacity, contact your MQ
Server Administrator.

Sending a Reply Message

You can send a Reply message using the SendMessage service.

Segmentation is allowed only while sending a Reply message, to allow the Queue
Manager manage the segmentation of large messages. This is same for sending a
Datagram and a Request message.

Before sending a Reply message, do the following in the Request Document:

Configure the Message Descriptor data that you want to override. For details,
see “Handling MQ Message Descriptor Values in Services and Events” on page
3-16.

Under the Data tag, provide the required format: TEXT/Binary/XML. You can
provide XML only if it was selected during design-time.

Provide the CorrelationId of the Reply message. This is mandatory and must
be given as part of the Request Document.

Provide the MessageId. It is optional. If you do not provide the MessageId, the
MessageId of the reply message is generated by the queue manager. This Id will
be a hexadecimal value in String representation.



Sending and Receiving Messages

BEA WebLogic Adapter for MQSeries User Guide 3-9

Provide the MQRFH2 data if applicable. For more information, see “Sending
Messages with MQRFH2 Header Information” on page 3-13.

Provide the application data that you want to send to the queue. This is
mandatory. The application data should not be empty.

You can use the same SendMessage service to send as many number of Reply
Messages as possible that the Destination Queue can hold.

For details on the Destination Queue’s message holding capacity, contact your MQ
Server Administrator.

Sending Messages to Remote Queues

The Adapter for MQSeries provides an option of sending messages to a Remote
Queue. Once an MQ Connection is obtained on a specified Queue Manager, either in
Bindings mode or TCP IP mode, you can send a message to a queue that is remote to
this MQ Manager. This MQ Manager must have a queue definition of the Remote
Queue. Moreover, there should be a Transmission Queue, a Sender Channel
configured on this Queue Manager, and a Receiver Channel configured on the Remote
Queue Manager where the Remote Queue resides.

Note: The Adapter for MQSeries does not support getting messages from remote
queues.

Sending Group Messages

A Group Message is a set of messages that follows a sequence.

The Group Messaging facility shares a common GroupId and a Message Sequence
Number (MsgSeqNumber) that increments sequentially for all the messages being sent.
You must provide these two inputs to send a Group Message. You have two options of
doing this:

Use the GroupId and MsgSeqNumber generated by the MQ Server for the first
message in the Group’s Response Document as well as for the subsequent
messages in the group. Increment the MsgSeqNumber obtained from the
Response of the previous group message by 1 and use it as the MsgSeqNumber



3 Using the Adapter for MQSeries

3-10 BEA WebLogic Adapter for MQSeries User Guide

for the next message in the group. Continue incrementing the MsgSeqNumber
for each subsequent message.

The second option it to provide a GroupId and MsgSeqNumber of your choice
for all the messages in the group. GroupId should remain the same for all
subsequent messages but increment the MsgSeqNumber by 1 for each
subsequent message.

Note: While using this option, ensure that the GroupId used is unique for this
group within the queue, to which the messages are sent.

The Adapter for MQSeries provides an option to send Group Messages using
SendMessage and SendRequest services.

The Request Schema of these services has the following tags which are used to send
Group messages.

<xsd:element name="GroupMessageOptions" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="IsFirstMessage" type="xsd:boolean"
minOccurs="0"/>
<xsd:element name="IsLastMessage" type="xsd:boolean"
minOccurs="0"/>
<xsd:element name="IsIntermediateMessage" type="xsd:boolean"
minOccurs="0"/>
<xsd:element name="GroupId" type="xsd:string" minOccurs="0"/>
<xsd:element name="MsgSeqNumber" type="xsd:string" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

The GroupMessageOptions tag is Optional in the Request Document and becomes
mandatory when a Group Message is opted.

While sending Group Messages you should make the following settings depending
upon the sequence of messages you send:

Sending the First Message: While sending the First message in the Group to the
Queue, the value of IsFirstMessage should be True.

The GroupId is optional, but if the value is provided, it is used as the GroupId
for all subsequent group Messages in the Queue. If not, the MQ Server generates
a value and it is returned to the user in the Response Document. Similarly,
MsgSeqNumber is another element that is optional for the First Message. This



Sending and Receiving Messages

BEA WebLogic Adapter for MQSeries User Guide 3-11

value or the MQ Server generated value is returned to the user in the Response
Document.

Sending Intermediate messages: While sending an Intermediate message in the
Group to the Queue, the value of IsIntermediateMessage should be True.

The GroupId is a mandatory element and should be the value that was returned
in the Response Document after the First message was sent. Otherwise, a New
Group will be created for this Message. Similarly, MsgSeqNumber is also a
mandatory element and should be the incremented value of the MsgSeqNumber
that was returned in the Response Document of the previous message in the
group.

Sending the Last message: While sending the Last message in the Group to the
Queue, the value of IsLastMessage needs to be True.

The GroupId is a mandatory element and should be the value that was returned
in the Response Document after the First message was sent. Otherwise, a New
Group will be created for this Message. Similarly, MsgSeqNumber is also a
mandatory element and should be the incremented value of the MsgSeqNumber
that was returned in the Response Document of the previous message in the
group.

For more information on Group message concepts, see your MQSeries documentation.

Sending Group Messages in a Workflow

You can send group messages in two different ways, by:

Executing Services Programmatically in a Workflow

You can use the GroupId generated by the MQSeries Server. You do not have to
provide the GroupId and MsgSeqNumber for the first message in the group. In
such case, the workflow requires an additional logic to pick the GroupId and
MsgSeqNumber from the first message’s Response Document and set the
GroupId as input in the subsequent SendMessage and SendRequest services’
Request Documents. However, the MsgSeqNumber should be an incremented
value of the previous message’s MsgSeqNumber.

Executing Services from a Worklist

You specify the GroupId and MsgSeqNumber within the GroupId and
MsgSeqNumber tags respectively. You do this within the Request Document of
the first message and also all the subsequent messages. You should ensure that



3 Using the Adapter for MQSeries

3-12 BEA WebLogic Adapter for MQSeries User Guide

the GroupId used is unique for the group within the queue to which the
messages are lined up.

Executing Services Programmatically in a Workflow

To execute services programmatically in a workflow, do the following:

1. Determine the type of message that you want to send
(Datagram/Reply/Request).

2. Create an application view. For details, see Chapter 2, “Defining Application
Views for the Adapter for MQSeries.”

3. Add a Transaction service to start and stop the Transaction Scope during
execution.

4. Add the required services, for example, SendMessage.

5. Deploy the application view.

6. Create a Template in the WebLogic Integration Studio.

7. Add the configured services to the Task node in the sequence required. The
sequence should always start with a Transaction Begin and end with a
Transaction Commit or Transaction BackOut.

8. Provide an additional logic which will pick the GroupId and MsgSeqNumber
from the first message’s Response Document and set the same GroupId in the
subsequent service’s Request Documents, as input. The MsgSeqNumber should
be an incremented value of the previous message’s MsgSeqNumber.

Note: In this case, do not provide the GroupId and MsgSeqNumber for the first
message in the group.

9. Create the Request Documents corresponding to each message in the group.

10. Invoke the added service iteratively, and for each iterative call, associate the
message in the Request Document with the corresponding GroupId,
MessageSequence Number, and MessageId specified in their respective tags.

The group messages are sent when you execute the workflow.

Executing Services from a Worklist

To execute services directly from a worklist, do the following:



Sending and Receiving Messages

BEA WebLogic Adapter for MQSeries User Guide 3-13

1. Determine the type of message that you want to send
(Datagram/Reply/Request).

2. Create an application view. For details, see Chapter 2, “Defining Application
Views for the Adapter for MQSeries.”

3. Add a transaction service to start and stop the Transaction Scope during
execution.

4. Add the required services, for example, SendMessage.

5. Deploy the application view.

6. Create a Template in the WebLogic Integration Studio.

7. Add the configured services to the Task node in the sequence required. The
sequence should always start with a Transaction Begin and end with a
Transaction Commit or Transaction BackOut.

8. Provide the GroupId and MsgSeqNumber of your choice. You should ensure that
the GroupId is unique for this group and is used for the first message and also all
the subsequent messages. However, for the MsgSeqNumber of each subsequent
message, you have to provide a new MsgSeqNumber, with an incremented value
of the previous message’s MsgSeqNumber.

9. Create the Request Documents corresponding to each message in the group.

10. Invoke the added service iteratively, and for each iterative call, associate the
message in the Request Document with the corresponding GroupId,
MessageSequence Number, and MessageId specified in their respective tags.

The group messages are sent when you execute the workflow.

Sending Messages with MQRFH2 Header Information

The Adapter for MQSeries provides an option to include MQRFH2 Header Information
along with application data. You can do this in SendMessage and SendRequest
services.

To use this option, you must configure the service at design-time with a MQRFH2 format
and the MQRFH2 Header Information should be provided in the following structure:

<MQRFH2>



3 Using the Adapter for MQSeries

3-14 BEA WebLogic Adapter for MQSeries User Guide

<Encoding></Encoding>
<CodedCharSetID></CodedCharSetID>
<Format></Format>
<NameValueCCSID></NameValueCCSID>
<NameValueDatan></NameValueDatan>

</MQRFH2>

The MQMD format can also be overridden during run-time to MQRFH2. If this is done,
then the MQRFH2Header Information has to be provided in the Request Document with
valid data for the Format tag under Message Descriptor tag.

While retrieving messages bearing MQRFH2 Header Information, the application by
default receives the MQRFH2 Header Information and the Application Data separately,
and provides them as part of the Response Document. For details, see the Response
Schema under “GetMessage”.

About Receiving Group Messages

The GetMessage service and the events can be used to receive group messages from
Queue.

In Get Message, the GroupId of the required message should be provided in the
Request Document. The First Message in that Group is received and returned to the
User.

In events, all the messages in the queue are received and given back to the invoking
application.

When Content Filtering is opted, only those messages are received that meet the
filtering criteria.

Using Data Formats in Services and Events

The Adapter for MQSeries supports TEXT, Binary, and XML stat formats.

The following conditions apply in using these data formats.

TEXT – This format can be changed to binary at run-time.

Binary – This format can be changed to text at run-time.



Sending and Receiving Messages

BEA WebLogic Adapter for MQSeries User Guide 3-15

XML – During design-time, you should provide the schema for the XML
application data. This data format can be opted during run-time only if it was
opted during design-time.

SendMessage and SendRequest XML Data Formats

This XML application data needs to be given within the contents tag of the Request
Document. For example, consider the following XML application data:

<?xml version="1.0" encoding="UTF-8"?>

<root>
<elm1>
<elm2>abcd</elm2>
</elm1>
<elm3>efg</elm3>
</root>

The Request Document format, which should contain the XML application data, will
have the following format:

<?xml version="1.0" encoding="UTF-8"?>

<ServiceName>
<MessageDescriptor>

<ExpirationPolicy>5000</ExpirationPolicy>
<Priority>8</Priority>
<PersistPolicy>Persistent</PersistPolicy>
<CharacterSet>813</CharacterSet>

</MessageDescriptor>
<Data>

<Format>XML</Format>
<Content>

<root>
<elm1>
<elm2>abcd</elm2>
</elm1>
<elm3>efg</elm3>
</root>
</Content>
</Data>
</ServiceName>

If the XML Application data is not provided within the Request Document format as
mentioned, the application will throw an exception and the service will not be
executed.



3 Using the Adapter for MQSeries

3-16 BEA WebLogic Adapter for MQSeries User Guide

The ServiceName tags must be the name of the service you are working with. The
XML inside the content tag must match the XML schema you enter while designing a
service with XML Data Format.

GetMessage XML Data Formats

You can configure a GetMessage service at design-time, in one of the mentioned Data
formats. Additionally, you can also change this Data format to any of the remaining
two Data formats in the Request Document, during design-time.

Event XML Data Formats

You can configure an event at design-time, in one of the mentioned data formats.

Handling MQ Message Descriptor Values in Services and 
Events

You can use MQ Message Descriptor (MQMD) attributes when you configure services
and events. In the SendMessage and SendRequest services, at design-time, you can
configure the message descriptor attributes for the message. The Request Schema of
SendRequest and SendMessage has a MessageDescriptor tag.

The MQMD attribute values that can be overridden at run-time are as follows:

ExpirationPolicy

Priority

PersistPolicy

CharacterSet

Format

The Response Document for GetMessage service and the event document provides a
detailed description of the MQMD attribute values.

For more information, see the corresponding Request Schema and Response Schema
for each service.



Sending and Receiving Messages

BEA WebLogic Adapter for MQSeries User Guide 3-17

Note: If any of the MQMD values are either wrongly mentioned or omitted (both
design-time and run-time), the application will take the default values.

For a list of default MQMD values, see your MQSeries documentation.

Handling Request, Response Documents and MQMD Ids

You should create a Request Document with the required run-time attributes and
passed as an input during each service invocation. You should ensure that the Request
Document is in full accordance with the Request Schema for the specific service.
Otherwise, the application will throw an exception and the invocation will be aborted.

There is no Request Document for events. For each event created, an event document
is generated by the application. This has a MQMD part where the message descriptors are
provided and a data part where the application data and header information are
provided.

The integration examples given in this document provide the Request Document that
use the service name as the Root element. This is not mandatory. The application
accepts any well formed document with any Root element name and valid values to
execute a service.

A Response Document is generated by the application for each service.

Note: You can view the Request Schema and the Response Schema for each service
on the Summary for Application View page.

MQMD Ids such as MessageId, CorrelationId, GroupId are hexadecimal values
in String representation. When providing an Id in the request document, ensure that it
is valid.

Handling Errors and Exceptions

If an MQ Exception occurs during the execution of a service, the Application builds a
Response Document with Status - FAILURE. Additionally, an Error tag displays the
MQ Reason Code for the Exception, Completion Code and MQ Description for the
MQ Reason Code.



3 Using the Adapter for MQSeries

3-18 BEA WebLogic Adapter for MQSeries User Guide

For Exceptions other than MQ Exceptions, a
javax.resource.ResourceException is thrown back to the invoking Exception. It
is the client application’s responsibility to call a Transaction BackOut, to roll back the
changes that had occurred since the start of the current Transaction Scope. This should
be done to safeguard the application data.



BEA WebLogic Adapter for MQSeries User Guide 4-1

CHAPTER

4 Example of Using 
Services and Events

This section illustrates how the services and events of the Adapter for MQSeries
function in a given scenario. The illustrations focus on the parameters that are specified
for each service and event during design-time, the corresponding request documents
used, and the related response documents that are generated during run-time, after the
workflow is executed in the WebLogic Integration Studio.

It contains the following topics:

Service Example

Event Example

The information provided here assumes that you have in-depth knowledge of
Workflow Design, Workflow Templates, Worklists, and WebLogic Integration
Studio.

If you do not have the required knowledge of workflows or the WebLogic Integration
Studio, see the following documents:

Using the WebLogic Integration Studio at
http://edocs.bea.com/wli/docs70/studio/index.htm

Learning to Use BPM with WebLogic Integration at
http://edocs.bea.com/wli/docs70/bpmtutor/index.htm

http://edocs.bea.com/wli/docs70/studio/index.htm
http://edocs.bea.com/wli/docs70/bpmtutor/index.htm


4 Example of Using Services and Events

4-2 BEA WebLogic Adapter for MQSeries User Guide

Service Example

The service example involves a scenario where a set of services are invoked as part of
a transaction scope from within a workflow instance, in a given sequence:

Transaction Begin→SendMessage→SendRequest→GetMessage→Transaction
Commit.

The information in the following paragraphs, contains the configuration details of each
service during design-time, in the given sequence, and the corresponding Request
Document and Response Document formats generated during run-time. The Request
Documents and Response Documents contain the configuration details that you set
during run-time.

Note: The Response Document is generated only after a workflow is executed, using
the WebLogic Integration Studio.

Transaction Service - Begin

Set the following values for the Transaction service in the Transaction option. For
details, see “About Transaction Services” on page 3-4.

The Request Document for this service and the corresponding Response Document
generated by the adapter are as follows:

Field Name Value

Unique Service Name TransactionBegin

Description To start a Transaction Scope.



Service Example

BEA WebLogic Adapter for MQSeries User Guide 4-3

Request Document

<?xml version="1.0" encoding="UTF-8"?>
<TransactionBegin>
<TransactionFunction>Begin</TransactionFunction>
</TransactionBegin>

Response Document

<?xml version="1.0" encoding="UTF-8"?>
<TransactionBegin>
<Result>
<Status>SUCCESS</Status></Result></TransactionBegin>

SendMessage

Set the following values for the Send Message service in the SendMessage option.

Field Name Value

Unique Service Name SendPlainMessage

Service Type SendMessage

Description Send a Datagram Message

Message Type Datagram

Queue Name Queue_0251

Expiration Policy 6000

Message Priority 7

Persistence Policy NotPersistent

Character Set 819

Message User admin

Segmentation Policy NotAllowed



4 Example of Using Services and Events

4-4 BEA WebLogic Adapter for MQSeries User Guide

The Request Document for this service and the corresponding Response Document
generated by the adapter are as follows:

Request Document

<?xml version="1.0" encoding="UTF-8"?>
<SendPlainMessage>
<MessageDescriptor></MessageDescriptor>
<Data>
<Format>TEXT</Format>
<Content>hello world</Content>
</Data>
</SendPlainMessage>

Response Document

<?xml version="1.0" encoding="UTF-8"?>
<SendPlainMessage>
<Result>
<MessageId>414D5120514D5F746174615F746F77659472C83E12600000</Mess
ageId>
<Status>SUCCESS</Status>
</Result></SendPlainMessage>

Report Messaging Options - COA None

Report Messaging Options - COD None

Report Messaging Options - Exception None

Report Messaging Options - Expiration None

Format None

Data Format TEXT

Field Name Value



Service Example

BEA WebLogic Adapter for MQSeries User Guide 4-5

SendRequest

Set the following values for the SendRequest service in the SendRequest option.

The Request Document for this service and the corresponding Response Document
generated by the adapter are as follows:

Field Name Example

Unique Service Name SendRequestMessage

Service Type SendRequest

Description Send a Datagram Request

Message Type SendRequest

Local/Remote Queue Name Queue_02545

Expiration Policy 6000

Message Priority 5

Persistence Policy NotPersistent

Character Set 819

Message User admin

Segmentation Policy Notallowed

Report Messaging Options - COA None

Report Messaging Options - COD None

Report Messaging Options - Exception None

Report Messaging Options - Expiration None

Reply To Queue Name Queue_reply

Format None

Data Format TEXT



4 Example of Using Services and Events

4-6 BEA WebLogic Adapter for MQSeries User Guide

Request Document

<?xml version="1.0" encoding="UTF-8"?>
<SendRequestMessage>
<MessageDescriptor></MessageDescriptor>
<Data>
<Format>TEXT</Format>
<Content>hello world</Content>
</Data>
</SendRequestMessage>

Response Document

<?xml version="1.0" encoding="UTF-8"?>
<SendRequestMessage>
<Result>
<MessageId>414D5120514D5F746174615F746F77659472C83E22600000</Mess
ageId>
<Status>SUCCESS</Status>
</Result></SendRequestMessage>

GetMessage

Set the following values for the GetMessage service in the GetMessage option.

Field Name Example

Unique Service Name GetMessage

Service Type GetMessage

Description Getting the Message

Queue Name Queue_02554

Message Consumption Browse

Time Out 6000

Data Format TEXT



Service Example

BEA WebLogic Adapter for MQSeries User Guide 4-7

The Request Document for this service and the corresponding Response Document
generated by the adapter are as follows:

Request Document

<?xml version="1.0" encoding="UTF-8"?>
<GetPlainMessage>
<MessageId>414D5120514D5F746174615F746F77659472C83ED2400000</Mess
ageId>
<DataFormat>TEXT</DataFormat>
</GetPlainMessage>

Response Document

<?xml version="1.0" encoding="UTF-8"?>
<GetPlainMessage>
<Result>
<Status>SUCCESS</Status>
<GetInfo>
<QueueName>test</QueueName>
<MessageConsumption>Browse</MessageConsumption>
</GetInfo>
<PayLoad>
<MQMD>
<MessageType>Datagram</MessageType>
<MessageId>414D5120514D5F746174615F746F77659472C83ED2400000</Mess
ageId>
<CorrelationId></CorrelationId>
<GroupId></GroupId>
<Format>MQSTR</Format>
<ReplyToQueueName></ReplyToQueueName>
<ReplyToQueueManagerName>QM_tata_tower1</ReplyToQueueManagerName>
<UserId>Administrato</UserId>
<ApplicationIdData></ApplicationIdData>
<PutApplicationName>C:\WINNT\System32\MMC.EXE</PutApplicationName
>
<PutDateTime>21/5/2003 - 11:48:59</PutDateTime>
<ApplicationOriginData></ApplicationOriginData>
</MQMD>
<Message>
<MQRFH2_Contents></MQRFH2_Contents>
<Data>
<Content>Hello world</Content></Data>



4 Example of Using Services and Events

4-8 BEA WebLogic Adapter for MQSeries User Guide

</Message>
</PayLoad>

</Result></GetPlainMessage>

Transaction Service - Commit

Set the following values for the Transaction service in the Transaction option.

The Request Document for this service and the corresponding Response Document
generated by the adapter are as follows:

Request Document

<?xml version="1.0" encoding="UTF-8"?>
< TransactionCommit >
<TransactionFunction>Commit</TransactionFunction>

</TransactionCommit>

Response Document

<?xml version="1.0" encoding="UTF-8"?>
<TransactionCommit>
<Result>

<Status>SUCCESS</Status></Result></TransactionCommit>

Field Name Value

Unique Service Name TransactionCommit

Description To end a Transaction Scope



Event Example

BEA WebLogic Adapter for MQSeries User Guide 4-9

Event Example

The event example involves a scenario where an event is configured to get activated
once it receives a message in the Queue. Once an event is activated, and it successfully
reads the message, an Event Response Document is generated for the message received
in the Queue.

Set the following values for the event in the event option. For details, see “Step 5B.
Add an Event to an Application View” on page 2-14.

The Response Document for this service generated by the adapter is as follows:

Field Name Example

Unique Event Name Sample Event

Description To receive messages

Connection Type TCP

Queue Manager QM_sytem_0255

Queue Manager Host localhost

Queue Manager Channel sys_0125

Queue Manager Port 1414

Queue Manager CCSID 819

Queue To Monitor Queue_MT_0051

Message Consumption Browse

Data Format TEXT

Content Filter Required No



4 Example of Using Services and Events

4-10 BEA WebLogic Adapter for MQSeries User Guide

Event Response Document

<SampleEvent>
<EventInfo>
<QueueName>test</QueueName>
<MessageConsumption>browse</MessageConsumption>
</EventInfo>
<PayLoad>
<MQMD>
<MessageType>DATAGRAM</MessageType>
<MessageId>414D5120514D5F746174615F746F77659472C83ED2400000</Mess
ageIdD>
<CorrelationId></CorrelationId>
<GroupId></GroupId>
<Format>MQSTR</Format>
<ReplyToQueueName></ReplyToQueueName>
<ReplyToQueueManagerName>QM_tata_tower1</ReplyToQueueManagerName>
<UserId>Administrato</UserId>
<ApplicationIdData></ApplicationIdData>
<PutApplicationName>C:\WINNT\System32\MMC.EXE</PutApplicationName
>
<PutDateTime>21/5/2003 - 11:48:59</PutDateTime>
<ApplicationOriginData></ApplicationOriginData>
</MQMD>
<Message>
<MQRFH2_Contents>
<StrucId></StrucId>
<Version></Version>
<StrucLength></StrucLength>
<Encoding></Encoding>
<CodedCharSetId></CodedCharSetId>
<Format></Format>
<Flags></Flags>
<NameValueCCSID></NameValueCCSID>
<NameValueLengthn></NameValueLengthn>
<NameValueDatan></NameValueDatan>
</MQRFH2_Contents>
<Data>Hello world</Data>
</Message>
</PayLoad>
</SampleEvent>



BEA WebLogic Adapter for MQSeries User Guide A-1

APPENDIX

A Schema Formats of 
Services and Events

This section contains the schema formats of the services and events of the Adapter for
MQSeries. These are of two types: Request Schema and Response Schema. The
Request Schema is used to prepare the Request Document and the Response Schema
is used by the adapter to generate Response Document.

It contains the following topics:

Service Schemas

Event Schema

To view both the types of schemas, click the corresponding link on the Application
View Administration page of the Application View Console.

For details on the Request Document and Response Documents for the schemas
discussed here, see Chapter 4, “Example of Using Services and Events.”

Service Schemas

The Service schemas are categorized under the following headings:

Transaction

SendMessage

SendRequest



A Schema Formats of Services and Events

A-2 BEA WebLogic Adapter for MQSeries User Guide

GetMessage

Transaction 

The schema formats of the Transaction service are as follows:

Request Schema Format

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="send">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="TransactionFunction" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Response Schema Format

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="send">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Result">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Status" type="xsd:string"/>
<xsd:element name="Error" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="CompletionCode" type="xsd:string"/>
<xsd:element name="ReasonCode" type="xsd:string"/>
<xsd:element name="ReasonCodeDescription" type="xsd:string"/>
<xsd:element name="Trace" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>



Service Schemas

BEA WebLogic Adapter for MQSeries User Guide A-3

</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

SendMessage

The schema formats of the SendMessage service are as follows:

Request Schema Format

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="sendmsg">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="MessageDescriptor">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="ExpirationPolicy" type="xsd:string"
minOccurs="0"/>
<xsd:element name="Priority" type="xsd:string" minOccurs="0"/>
<xsd:element name="PersistPolicy" type="xsd:string"
minOccurs="0"/>
<xsd:element name="CharacterSet" type="xsd:string" minOccurs="0"/>
<xsd:element name="Format" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="MQRFH2" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Encoding" type="xsd:long"/>
<xsd:element name="CodedCharSetId" type="xsd:long"/>
<xsd:element name="Format" type="xsd:string"/>
<xsd:element name="NameValueCCSID" type="xsd:long"/>
<xsd:element name="NameValueDatan" type="xsd:long"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>



A Schema Formats of Services and Events

A-4 BEA WebLogic Adapter for MQSeries User Guide

</xsd:complexType>
</xsd:element>
<xsd:element name="GroupMessageOptions" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="IsFirstMessage" type="xsd:boolean"
minOccurs="0"/>
<xsd:element name="IsLastMessage" type="xsd:boolean"
minOccurs="0"/>
<xsd:element name="IsIntermediateMessage" type="xsd:boolean"
minOccurs="0"/>
<xsd:element name="GroupId" type="xsd:string" minOccurs="0"/>
<xsd:element name="MsgSeqNumber" type="xsd:string" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="MessageId" type="xsd:string" minOccurs="0"/>
<xsd:element name="CorrelationId" type="xsd:string"
minOccurs="0"/>
<xsd:element name="Data">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Format" type="xsd:string"/>
<xsd:element name="Content" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Response Schema Format

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="sendmsg">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Result">
<xsd:complexType>
<xsd:sequence>



Service Schemas

BEA WebLogic Adapter for MQSeries User Guide A-5

<xsd:element name="MessageId" type="xsd:string"/>
<xsd:element name="Status" type="xsd:string"/>
<xsd:element name="Error" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="CompletionCode" type="xsd:string"/>
<xsd:element name="ReasonCode" type="xsd:string"/>
<xsd:element name="ReasonCodeDescription" type="xsd:string"/>
<xsd:element name="Trace" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="GroupMessage" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="GroupId" type="xsd:string" minOccurs="0"/>
<xsd:element name="MessageSeqNumber" type="xsd:string"
minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

SendRequest

The schema formats of the SendRequest service are as follows:

Request Schema Format

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="sendreq">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="MessageDescriptor">
<xsd:complexType>



A Schema Formats of Services and Events

A-6 BEA WebLogic Adapter for MQSeries User Guide

<xsd:sequence>
<xsd:element name="ExpirationPolicy" type="xsd:string"
minOccurs="0"/>
<xsd:element name="Priority" type="xsd:string" minOccurs="0"/>
<xsd:element name="PersistPolicy" type="xsd:string"
minOccurs="0"/>
<xsd:element name="CharacterSet" type="xsd:string" minOccurs="0"/>
<xsd:element name="Format" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="MQRFH2" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Encoding" type="xsd:long"/>
<xsd:element name="CodedCharSetId" type="xsd:long"/>
<xsd:element name="Format" type="xsd:string"/>
<xsd:element name="NameValueCCSID" type="xsd:long"/>
<xsd:element name="NameValueDatan" type="xsd:long"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="GroupMessageOptions" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="IsFirstMessage" type="xsd:boolean"
minOccurs="0"/>
<xsd:element name="IsLastMessage" type="xsd:boolean"
minOccurs="0"/>
<xsd:element name="IsIntermediateMessage" type="xsd:boolean"
minOccurs="0"/>
<xsd:element name="GroupId" type="xsd:string" minOccurs="0"/>
<xsd:element name="MsgSeqNumber" type="xsd:string" minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="Data">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Format" type="xsd:string"/>
<xsd:element name="Content" type="xsd:string"/>



Service Schemas

BEA WebLogic Adapter for MQSeries User Guide A-7

</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

</xsd:schema>

Response Schema Format

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="sendreq">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Result">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="MessageId" type="xsd:string"/>
<xsd:element name="Status" type="xsd:string"/>
<xsd:element name="Error" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="CompletionCode" type="xsd:string"/>
<xsd:element name="ReasonCode" type="xsd:string"/>
<xsd:element name="ReasonCodeDescription" type="xsd:string"/>
<xsd:element name="Trace" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="GroupMessage" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="GroupId" type="xsd:string" minOccurs="0"/>
<xsd:element name="MessageSeqNumber" type="xsd:string"
minOccurs="0"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>



A Schema Formats of Services and Events

A-8 BEA WebLogic Adapter for MQSeries User Guide

</xsd:complexType>
</xsd:element>
</xsd:schema>

GetMessage

The schema formats of the GetMessage service are as follows:

Request Schema Format

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="getmsg">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="MessageId" type="xsd:string" minOccurs="0"/>
<xsd:element name="CorrelationId" type="xsd:string"
minOccurs="0"/>
<xsd:element name="GroupId" type="xsd:string" minOccurs="0"/>
<xsd:element name="DataFormat" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Response Schema Format

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="getmsg">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Result">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Status" type="xsd:string"/>
<xsd:element name="Error" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="CompletionCode" type="xsd:string"/>
<xsd:element name="ReasonCode" type="xsd:string"/>
<xsd:element name="ReasonCodeDescription" type="xsd:string"/>



Service Schemas

BEA WebLogic Adapter for MQSeries User Guide A-9

<xsd:element name="Trace" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="GetInfo">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="QueueName" type="xsd:string"/>
<xsd:element name="MessageConsumption" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="PayLoad">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="MQMD">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="MessageType" type="xsd:string"/>
<xsd:element name="MessageId" type="xsd:normalizedString"/>
<xsd:element name="CorrelationId" type="xsd:normalizedString"/>
<xsd:element name="GroupId" type="xsd:normalizedString"/>
<xsd:element name="Format" type="xsd:normalizedString"/>
<xsd:element name="ReplyToQueueName" type="xsd:string"/>
<xsd:element name="ReplyToQueueManagerName" type="xsd:string"/>
<xsd:element name="UserId" type="xsd:string"/>
<xsd:element name="ApplicationIdData" type="xsd:string"/>
<xsd:element name="PutApplicationName" type="xsd:string"/>
<xsd:element name="PutDateTime" type="xsd:string"/>
<xsd:element name="ApplicationOriginData" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="Message">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="MQRFH2_Contents" minOccurs="0">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="StrucId" type="xsd:string"/>
<xsd:element name="Version" type="xsd:long"/>
<xsd:element name="StrucLength" type="xsd:long"/>
<xsd:element name="Encoding" type="xsd:long"/>
<xsd:element name="CodedCharSetId" type="xsd:long"/>
<xsd:element name="Format" type="xsd:string"/>
<xsd:element name="Flags" type="xsd:long"/>



A Schema Formats of Services and Events

A-10 BEA WebLogic Adapter for MQSeries User Guide

<xsd:element name="NameValueCCSID" type="xsd:long"/>
<xsd:element name="NameValueLengthn" type="xsd:long"/>
<xsd:element name="NameValueDatan" type="xsd:long"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="Data">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="Content" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Event Schema

This is the event schema used to generate an Event Response Document. To see the
Event Response Document, see Chapter 4, “Example of Using Services and Events.”

<?xml version="1.0" encoding="UTF-8"?>
<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema">
<xsd:element name="event">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="EventInfo">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="QueueName" type="xsd:string"/>



Event Schema

BEA WebLogic Adapter for MQSeries User Guide A-11

<xsd:element name="MessageConsumption" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="PayLoad">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="MQMD">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="MessageType" type="xsd:string"/>
<xsd:element name="MessageId" type="xsd:normalizedString"/>
<xsd:element name="CorrelationId" type="xsd:normalizedString"/>
<xsd:element name="GroupId" type="xsd:normalizedString"/>
<xsd:element name="Format" type="xsd:normalizedString"/>
<xsd:element name="ReplyToQueueName" type="xsd:string"/>
<xsd:element name="ReplyToQueueManagerName" type="xsd:string"/>
<xsd:element name="UserId" type="xsd:string"/>
<xsd:element name="ApplicationIdData" type="xsd:string"/>
<xsd:element name="PutApplicationName" type="xsd:string"/>
<xsd:element name="PutDateTime" type="xsd:string"/>
<xsd:element name="ApplicationOriginData" type="xsd:string"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="Message">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="MQRFH2_Contents">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="StrucId" type="xsd:string"/>
<xsd:element name="Version" type="xsd:long"/>
<xsd:element name="StrucLength" type="xsd:long"/>
<xsd:element name="Encoding" type="xsd:long"/>
<xsd:element name="CodedCharSetId" type="xsd:long"/>
<xsd:element name="Format" type="xsd:string"/>
<xsd:element name="Flags" type="xsd:long"/>
<xsd:element name="NameValueCCSID" type="xsd:long"/>
<xsd:element name="NameValueLengthn" type="xsd:long"/>
<xsd:element name="NameValueDatan" type="xsd:long"/>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
<xsd:element name="Data" type="xsd:string"/>
</xsd:sequence>



A Schema Formats of Services and Events

A-12 BEA WebLogic Adapter for MQSeries User Guide

</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:schema>



BEA WebLogic Adapter for MQSeries User Guide B-1

APPENDIX

B Logging Messages

This section describes the logging for services and events. It contains the following
topics:

About Logging

Levels of Logging

Logging and Performance

You set the log while deploying an application view. To know where to make the
settings, see “Step 6. Deploy the Application View” on page 2-16.

About Logging 

Logging is an essential feature of an adapter. Most adapters are used to integrate
different applications and do not interact with end-users while processing data. Unlike
a front-end component, when an adapter encounters an error or warning condition, it
cannot stop processing and wait for an end-user to respond.

Many business applications that are connected by adapters are mission-critical. For
example, an adapter might be required to keep an audit report of every transaction with
an EIS. Consequently, adapter components should provide both accurate logging and
auditing information. The adapter logging framework is designed to accommodate
both logging and auditing.



B Logging Messages

B-2 BEA WebLogic Adapter for MQSeries User Guide

Levels of Logging

Logging is provided by both the BEA adapter framework and by the BEA WebLogic
Adapter for MQSeries.

The BEA WebLogic Integration framework provides five distinct levels of logging:

Logging and Performance

The additional logging capabilities provided by the adapter are categorized and not
strictly hierarchic. These loggings are designed to provide help in debugging with
minimum effect on performance. All internal adapter loggings are controlled through
the additional logging settings, and all additional settings route their output to the
standard debug setting.

If you configure the adapter for additional settings and do not configure standard
logging settings, the logs are generated but never appear in output. This affects
performance, because the production of the logging continues even though you receive
no benefit of the additional logging information.

Table B-1 Logging Level Definitions

This Level Indicates

AUDIT Extremely important information related to the business processing
performed by an adapter.

ERROR Information about an error that has occurred in the adapter, which
may affect system stability.

WARNING Information about a suspicious situation that has occurred. Although
this is not an error, it could have an impact on adapter operation.

INFORMATION Information about normal adapter operations.

DEBUG Information used to determine how the adapter works internally.



BEA WebLogic Adapter for MQSeries User Guide C-1

APPENDIX

C Run-Time Parameter 
Values

The run-time parameter values of the request schema for each service are tabulated as
follows:

Table C-1 Run-Time Parameter Values

Field Name Description Permitted Values

Transaction Service

Transaction
Function

Mandatory tag Begin, Commit, BackOut

Send Message and Send Request Service

Expiration
Policy

Optional tag Any integer value (1/10th of a second)

Priority Optional tag Any value between 0 to 9 or AsQueueDef

PersistPolicy Optional tag Persistent, NotPersistent,
AsQueueDef

CharacterSet Optional tag Refer CharacterSetCatalog link on
SendRequest and SendMessage page
during design-time

Format Optional tag None, String, MQRFH2

MQRFH2 Optional tag, mandatory when the Format is
MQRFH2

Encoding, CodedCharSetId,
Format, NameValueCCSID,
NameValueDatan



C Run-Time Parameter Values

C-2 BEA WebLogic Adapter for MQSeries User Guide

Encoding Mandatory when MQRFH2 tag is used Integer representing a valid encoding

CodedCharSetI
D

Mandatory only when MQRFH2 tag is used Integer representing a valid
CharacterSet

Format Mandatory only when MQRFH2 tag is used Any valid format recognized by MQSeries

NameValueCC
SID

Mandatory only when MQRFH2 tag is used Integer representing a valid
CharacterSet

NameValueDat
an

Mandatory only when MQRFH2 tag is used An XML string

GroupMessage
Options

Optional tag, mandatory if Group Messaging is
required

IsFirstMessage Optional, Mandatory tag only for first message
in the group. Value should be True.

True

IsLastMessage Optional, Mandatory tag only for Last Message.
Value should be True.

True

IsIntermediate
Message

Optional, Mandatory tag only for Intermediate
Messages. Value should be True.

True

GroupId Optional tag for first message. Mandatory for
Intermediate and Last Message.

A valid hexadecimal GroupId in string
format

MsgSeqNumber Optional tag for first message. Mandatory for
Intermediate and Last message.

Positive Integer

MessageID Optional tag A valid hexadecimal MessageId in string
format

CorrelationID Mandatory tag for reply message. Not required
for Datagram and Request Messages.

A valid hexadecimal CorrelationId in
string format

Data Mandatory tag, format, and content tags are
mandatory

Format and Content tags

Format Mandatory tag TEXT, Binary, XML

Content Mandatory tag Application data in String

Table C-1 Run-Time Parameter Values (Continued)

Field Name Description Permitted Values



BEA WebLogic Adapter for MQSeries User Guide C-3

Get Message Service

MessageID Optional tag A valid hexadecimal MessageId in string
format

CorrelationID Optional tag A valid hexadecimal CorrelationId in
string format

GroupID Optional tag A valid hexadecimal GroupId in string
format

Data Format Mandatory tag TEXT, Binary, XML

Table C-1 Run-Time Parameter Values (Continued)

Field Name Description Permitted Values



C Run-Time Parameter Values

C-4 BEA WebLogic Adapter for MQSeries User Guide



BEA WebLogic Adapter for MQSeries User Guide D-1

APPENDIX

D Error Messages and 
Troubleshooting

This section lists error messages that you may encounter while using the BEA
WebLogic Adapter for MQSeries. It describes what may have generated each error
message, and what you can do to resolve the problem. It also contains troubleshooting
tips on failures related to Service execution.

Error Messages

The error messages along with suitable solutions to counter them, are tabulated as
follows:

Error javax.resource.spi.EISSystemException: An exceptional
condition was encountered when <username> attempted to
open a connection to the EIS; Message catalog not found

Source MQSeries Connection - Bindings

Description This MQSeries error occurs when an invalid Queue Manager Name is
entered.



D Error Messages and Troubleshooting

D-2 BEA WebLogic Adapter for MQSeries User Guide

Action 1. Check the Name of the Queue Manager. Verify it with the one that
is available in the MQ Server.

2. Check whether the MQ Server is installed on the system on which
the Adapter for MQSeries is installed.

For details on configuring Connection Parameters, see “Step 4.
Establish an MQSeries Connection,” in Chapter 2, “Defining
Application Views for the Adapter for MQSeries.”

Error javax.resource.spi.EISSystemException: An exceptional
condition was encountered when <username> attempted to
open a connection to the EIS; Message catalog not found

Source MQSeries Connection - TCP/IP

Description This MQSeries error occurs when an invalid Queue Manager Name is
entered.

Action 1. Check the Name of the Queue Manager. Verify it with the one that
is available in the MQ Server.

2. Compare the Name of the Queue Manager Host, Queue Manager
Channel and Queue Manager Port number with the ones that are
available in the MQ Server.

3. Check if the CCSID is entered appropriately (check its presence in
the CCSID Catalog). If it is entered, check the Language Support
that is required for the CCSID entered and ensure that it is
available on the system (the one you are trying to establish a
connection with) on which the MQ Server is installed.

For details on configuring Connection Parameters, see “Step 4.
Establish an MQSeries Connection,” in Chapter 2, “Defining
Application Views for the Adapter for MQSeries.”

Consult your MQ Server Administrator for more details.

Error javax.resource.spi.EISSystemException: An exceptional
condition was encountered when <username> attempted to
open a connection to the EIS; Message catalog not found



Error Messages

BEA WebLogic Adapter for MQSeries User Guide D-3

Error javax.resource.spi.EISSystemException: An exceptional
condition was encountered when <username> attempted to
open a connection to the EIS; <name of the User Exit Class
entered by the User>

Source MQSeries Connection - TCP/IP

Description This MQSeries error occurs when you configure the User Exits
incorrectly.

Action Check if one or more of the User Exits have been opted. If yes, check
whether the App Name entered for the displayed User Exit. If yes,
check whether the Exit App Name Class Name is available in the
execution environment.

For details on using User Exits, see “Implementing User Exits,” in
Chapter 3, “Using the Adapter for MQSeries.”

Error Absence of an Event Response Document

Source Events

Description The expected Event Response Document is not generated after
executing a workflow instance.

Action 1. Check if the event is configured to the correct Queue.

2. Check for a message in the Queue.

3. Verify if the Connection parameters are appropriate.

4. Check if the right data format is chosen. Also check if the expected
Message’s data format and the one configured to, match.

5. Check if Content Filtering has been opted for. If yes, is the
Content Filter Class name correct and is it available in the
execution environment where the Adapter for MQSeries is
deployed.

6. Check if the Content Filter was developed correctly.



D Error Messages and Troubleshooting

D-4 BEA WebLogic Adapter for MQSeries User Guide

Troubleshooting Tips

These troubleshooting tips will be helpful in solving problems that you might
encounter while executing the Services.

Check if the Service executed is a part of the Transaction Scope.

Check if the TransactionFunction Begin was invoked earlier. If not check
whether TransactionFunction Commit or BackOut was invoked before the
TransactionFunction Begin.

Ensure to match the Request Document with the corresponding Request Schema.

Find out if the mandatory tags and their values are provided in the Request
Document.

Check if the Queue Name provided in the Service configuration, is a valid one.

Check the message holding capacity of the Queue to which the Service has been
configured. This is applicable for both SendMessage and SendRequest Services.

Check if the timeout period set in GetMessage is long enough for the
Application to retrieve the message.

Check whether the Queue in GetMessage received an expected message.

Confirm the presence of CorrelationId in the Request Document of
SendMessage Service with message type - Reply.

Check the validity of the MQRFH2 contents in confirmation with the MQRFH2
schema. This is applicable for both SendMessage and SendRequest Services.

Check if the data format provided in the Service is XML. If yes, check whether
the XML Application Data provided in the Request Document matches with the
XML Data Schema provided while configuring the Service.

Check if the data format in the Request Document is XML. If yes, check if it
was selected while configuring the Service during design-time.

Check if the GroupId and MsgSeqNumber (for Group Messaging), provided for
the Last and Intermediate Messages in the Group, are valid. This is applicable
for SendMessage and SendRequest Services.



Troubleshooting Tips

BEA WebLogic Adapter for MQSeries User Guide D-5

Check if the Message User is authorized by the MQ Server. This is applicable
when the Reports (COD, Exception, and Expiration) of SendMessage and
SendRequest Services are not delivered to the specified ‘Reply to Queue’
address.

For details on configuring Services, see “Step 5. Add Services and Events” on page 2-9
For details on Messaging, see “Sending and Receiving Messages” on page 3-7



D Error Messages and Troubleshooting

D-6 BEA WebLogic Adapter for MQSeries User Guide



BEA WebLogic Adapter for MQSeries User Guide I-1

Index

A
about logging B-1
About the BEA WebLogic Adapter for

MQSeries 1-1
about this document vii
Adapter for MQSeries

using 3-1
adding a folder 2-3
application view

adding a service 2-9
adding an event 2-14
defining 2-4
deploying 2-16

Application View Console, log on 2-2
application view testing

events 2-28
services 2-24

application views
defining 2-1

B
BEA

customer support ix
Product Documentation viii
WebSupport ix

BEA WebLogic Adapter for MQSeries,
introducing 1-1

bindings connection 2-6

C
CCSID catalog 3-3
connection

local bindings 2-6
TCP IP 2-6

contacting BEA ix
content filtering in events 3-5
conventions, documentation x

D
data formats, using 3-14
defining application views

and deploying 2-2
before you begin 2-1
prerequisites to 2-1
procedure 2-2

documentation conventions x

E
e-docs web site viii
error handling 3-17
error messages D-1
establishing an MQSeries Connection 2-5
event response document 4-10
events

described 1-4
functions of 1-4

events, content filtering 3-5
examples, MQSeries integration 4-1
exception handling 3-17



I-2 BEA WebLogic Adapter for MQSeries User Guide

F
functions

events 1-4
services 1-4

G
getmessage

request document 4-7
response document 4-7

H
handling errors and exceptions 3-17

I
input requirements 1-3

K
key concepts 1-2

L
logging B-1

about B-1
categories B-2
levels B-2

logging and performance B-2

M
MQSeries Connection

using CCSID in 3-3
MQSeries Integration

event example 4-9
service example 4-2

MQSeries messaging products 1-2

N
node, start 2-28

O
output expectations 1-3

R
receiving group messages 3-14
related documents viii
response schema format

getmessage A-8
sendmessage A-4
sendrequest A-7
transaction A-2

run-time parameters A-1

S
schemas 1-5
sending a message

datagram 3-7
reply 3-8
to remote queue 3-9
with MQRFH2 header information 3-13

sending group messages 3-9
sendmessage

request document 4-4
response document 4-4

sendrequest
response document 4-6

service example
getmessage 4-6
sendmessage 4-3
sendrequest 4-5
transaction service begin 4-2
transaction service commit 4-8

services
described 1-3
functions of 1-4
transaction 3-4

services and events, testing 2-21
start node 2-28
support, technical ix
supported data types 1-2



BEA WebLogic Adapter for MQSeries User Guide I-3

supported integration capabilities 1-2
supported versions 1-2

T
TCP IP connection 2-6
template

creating 2-22
definition 2-22
properties 2-22

testing services and events 2-21
transaction

backout 3-4
begin 3-4
commit 3-4

transaction service begin
request document 4-3
response document 4-3

transaction service commit
request document 4-8
response document 4-8

troubleshooting D-1

U
user exits

receive exits 2-9, 3-2
security exit 2-9, 3-2
send exit 2-9, 3-2

user exits, implementing 3-2
using Adapter for MQSeries 3-1



I-4 BEA WebLogic Adapter for MQSeries User Guide


	Contents
	About This Document
	What You Need to Know
	e-docs Web Site
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introducing the BEA WebLogic Adapter for MQSeries
	About the BEA WebLogic Adapter for MQSeries
	Supported Integration Capabilities

	Key Concepts
	Application Views
	Services
	Events
	Schemas


	2 Defining Application Views for the Adapter for MQSeries
	Before You Begin
	Defining and Deploying an Application View
	Step 1. Log On to the Application View Console
	Step 2. Add a Folder
	Step 3. Define an Application View
	Step 4. Establish an MQSeries Connection
	Step 4A. Connecting Through Bindings Connection Type
	Step 4B. Connecting Through TCP/IP Connection Type

	Step 5. Add Services and Events
	Step 5A. Add a Service to an Application View
	Step 5B. Add an Event to an Application View

	Step 6. Deploy the Application View
	Step 7. Test Services and Events
	Step 7A. Test Services and Events Using the Application View Console
	Step 7B. Test Services and Events Using WebLogic Integration Studio


	Editing an Application View

	3 Using the Adapter for MQSeries
	About TCP/IP Connections
	Implementing User Exits
	Using CCSID in MQ Connection

	About Transaction Services
	About Content Filtering in Events
	Sending and Receiving Messages
	Sending a Datagram Message
	Sending a Reply Message
	Sending Messages to Remote Queues
	Sending Group Messages
	Sending Group Messages in a Workflow

	Sending Messages with MQRFH2 Header Information
	About Receiving Group Messages
	Using Data Formats in Services and Events
	SendMessage and SendRequest XML Data Formats
	GetMessage XML Data Formats
	Event XML Data Formats

	Handling MQ Message Descriptor Values in Services and Events
	Handling Request, Response Documents and MQMD Ids
	Handling Errors and Exceptions


	4 Example of Using Services and Events
	Service Example
	Transaction Service - Begin
	Request Document
	Response Document

	SendMessage
	Request Document
	Response Document

	SendRequest
	Request Document
	Response Document

	GetMessage
	Request Document
	Response Document

	Transaction Service - Commit
	Request Document
	Response Document


	Event Example
	Event Response Document


	A Schema Formats of Services and Events
	Service Schemas
	Transaction
	Request Schema Format
	Response Schema Format

	SendMessage
	Request Schema Format
	Response Schema Format

	SendRequest
	Request Schema Format
	Response Schema Format

	GetMessage
	Request Schema Format
	Response Schema Format


	Event Schema

	B Logging Messages
	About Logging
	Levels of Logging
	Logging and Performance

	C Run-Time Parameter Values
	D Error Messages and Troubleshooting
	Error Messages
	Troubleshooting Tips

	Index

