
BEA
 WebLogic
Adapter for
RDBMS

User Guide
Release 7.0
Document Date: October 2002

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Copyright © 2002 iWay Software. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

BEA WebLogic Adapter for RDBMS User Guide

Part Number Date

N/A October 2002

Table of Contents

About This Document
What You Need to Know .. vi
Related Information.. vii
Contact Us! .. viii
Documentation Conventions ... ix

1. Introducing the BEA WebLogic Adapter for RDBMS
Introduction ... 1-1
Event Adapter .. 1-2
Service Adapter ... 1-4

Supported Data Types .. 1-5
Local XA Transaction Support .. 1-6

2. Using the BEA Application Explorer With an RDBMS
Connecting to an RDBMS... 2-2
Connecting to an RDBMS Using an Existing Connection.............................. 2-10
Disconnecting from an RDBMS ... 2-13
Removing a Connection .. 2-17
Viewing Table-Based Metadata .. 2-18
Viewing Stored Procedures ... 2-20
Generating Event Schemas.. 2-24
Generating Service Schemas ... 2-31

Generating Service Schemas Under the SQL Statement Node................ 2-31
Generating Service Schemas Under the Parameterized SQL Statement

Node .. 2-41
BEA WebLogic Adapter for RDBMS User Guide iii

Combining Parameterized SQL Feature with Stored Procedures 2-55
Generating Schemas for Stored Procedures .. 2-55
 Removing Schemas .. 2-61

3. Defining an Application View
Defining a New Application View.. 3-1
Adding a Service Adapter to an Application View ... 3-7

Transaction Isolation Levels .. 3-13
Transaction Management ... 3-15

Deploying an Application View.. 3-16
Example: Issuing an SQL Query Request.. 3-21
Example: Issuing a Stored Procedure Request... 3-21
Working with Parameterized SQL ... 3-34

Adding an Event Adapter to an Application View.. 3-38
Handling Null Values .. 3-48

Null Values in Events... 3-48
Null Values in Services .. 3-50

Defining a Data Source ... 3-51

4. Service Adapter Examples
XML Schemas ... 4-2
Select Statement .. 4-5
Simple Insert Statement... 4-7
Delete Statement.. 4-9
Multi-Select Statements... 4-11
Update Statement... 4-13
Stored Procedure ... 4-14

Including Multiple SQL Statements in an XML Request 4-19

5. Event Adapter Examples
Simple Event Adapter.. 5-1
Setting up a Non-Destructive Read in the Event Adapter 5-5
Specifying Delete Keys in the Event Adapter... 5-9
BEA WebLogic Adapter for RDBMS User Guide iv

About This Document

The BEA WebLogic Adapter for RDBMS User Guide is organized as follows:

� Chapter 1, “Introducing the BEA WebLogic Adapter for RDBMS,” gives an
overview of the adapter and how it works.

� Chapter 2, “Using the BEA Application Explorer With an RDBMS,” describes
how to use the BEA Application Explorer with an RDBMS.

� Chapter 3, “Defining an Application View,” provides information on creating
and deploying appliction views that include the RDBMS Adatper.

� Chapter 4, “Service Adapter Examples,” provides service examples that use the
RDBMS service adapter.

� Chapter 5, “Event Adapter Examples,” provides event adapter examples that use
the RDBMS event adapter.
BEA WebLogic Adapter for RDBMS User Guide v

What You Need to Know

This document is written for system integrators who need to develop client-server
interfaces between RDBMS and third-party enterprise information system (EIS)
applications.

It provides information about using BEA WebLogic Adapter for RDBMS tools to
develop connections between a WebLogic Integration client and a RDBMS.

It is assumed that readers have a general understanding of Microsoft Windows and
UNIX systems as well as:

� Some experience using Enterprise Information System (EIS) and integration
products and an understanding of RDBMS and SQL products with which this
software will be integrating.

� Knowledge of EIS concepts.

� General knowledge of RDBMS concepts and configuration options.

� Specific business application knowledge of the target schema.

� Knowledge of integration processes and data models for the required application
area.

� General knowledge of BEA Integration architecture.

� General knowledge of XML concepts.

Extensive internal knowledge of the specific SQL environment is not required, but
may be helpful in learning about the BEA WebLogic Adapter for RDBMS.
vi BEA WebLogic Adapter for RDBMS User Guide

Related Information

The following documents provide additional information for the associated software
components:

� BEA WebLogic Adapter for RDBMS Installation and Configuration Guide

� BEA WebLogic Adapter for RDBMS Release Notes

� BEA WebLogic Server installation and user documentation, which is available at
the following URL:

http://edocs.bea.com/more_wls.html

� BEA WebLogic Integration installation and user documentation, which is
available at the following URL:

http://edocs.bea.com/more_wli.html

� Specific RDBMS installation and user documentation.
BEA WebLogic Adapter for RDBMS User Guide vii

Contact Us!

Your feedback on the BEA WebLogic Adapter for RDBMS documentation is
important to us. Send us e-mail at docsupport@bea.com if you have questions or
comments. Your comments will be reviewed directly by the BEA professionals who
create and update the BEA WebLogic Adapter for RDBMS documentation.

In your e-mail message, please indicate which version of the BEA WebLogic Adapter
for RDBMS documentation you are using.

If you have any questions about this version of BEA WebLogic Adapter for RDBMS,
or if you have problems installing and running BEA WebLogic Adapter for RDBMS,
contact BEA Customer Support through BEA WebSupport at www.bea.com. You can
also contact Customer Support by using the contact information provided on the
Customer Support Card, which is included in the product package.

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages
viii BEA WebLogic Adapter for RDBMS User Guide

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.
Example:
void commit ()

monospace
italic
text

Identifies variables in code.
Example:
String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.
Examples:
LPT1
SIGNON
OR
BEA WebLogic Adapter for RDBMS User Guide ix

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:
� That an argument can be repeated several times in a command line
� That the statement omits additional optional arguments
� That you can enter additional parameters, values, or other information
The ellipsis itself should never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
x BEA WebLogic Adapter for RDBMS User Guide

CHAPTER
Introducing the BEA
WebLogic Adapter for
RDBMS

This section gives an overview of the adapter and how it works. It includes the
following topics:

� Introduction

� Event Adapter

� Service Adapter

Introduction

Since most custom and packaged applications are built with relational databases,
RDBMS systems must be taken into consideration in any enterprise integration
strategy. The BEA WebLogic Adapter for RDBMS incorporates in-depth knowledge
of relational database query access, and transaction, replication, and copy management
technologies to optimize the use of databases with enterprise application systems.
BEA WebLogic Adapter for RDBMS User Guide 1-1

1 Introducing the BEA WebLogic Adapter for RDBMS
The BEA WebLogic Adapter for RDBMS enables integration with RDBMS systems
by functioning as a service adapter for accessing a database and as an event adapter for
listening to a database. In both cases, the query or stored procedure call is expressed in
XML. This provides a convenient and simple method for integrating databases with
enterprise applications using WebLogic Integration.

Key features of the BEA WebLogic Adapter for RDBMS include:

� Asynchronous, bi-directional message interactions between applications and
databases, including IBM DB2, IBM Informix, Microsoft SQL Server, Oracle,
and Sybase RDBMSs.

� The BEA Application Explorer, which makes use of metadata on database
servers to build application views (XML schemas for database events and SQL
requests or responses) that can be used in workflows.

� Integration of service (inbound) and event (outbound) operations in workflows.

� JDBC 2.0 standard SQL operations (DELETE, INSERT, SELECT, and
UPDATE) and the execution of stored procedures against DB2, Informix, MS
SQL Server, Oracle, and Sybase.

� Oracle object-relational extensions such as processing of nested tables and arrays
in accessing PL/SQL stored procedures, or supporting outbound database rows
on Oracle AQ queues.

Event Adapter

The event adapter supports the capture of events from applications that write to a
relational table. It captures the data and performs operations based on the content of
the rows. The event adapter reads one or more rows from the table and creates an XML
document representing the column data in each row. Additional business logic
facilities can then be applied to the constructed XML document, including
transformation, validation, security management, and application processing.
Transformations by business logic can include deleting rows or altering column
values. The resulting XML is formatted as an application view and sent as an event to
WebLogic Integration.
1-2 BEA WebLogic Adapter for RDBMS User Guide

Event Adapter
The event adapter can:

� Monitor data changes by repeatedly performing an SQL query. The event
adapter also supports customized user exits with Java classes to define custom
operations on the rowsets.

� Be configured to operate one row at a time or to operate on sets of data, only
sending events to a business process workflow when a specified minimum
number of rows become available in the source DBMS.

� Allow the configuration of an optional SQL post-query statement, which
performs certain DBMS operations after the adapter has sent the rowset
(formatted as XML) to a business process workflow. The default operation is to
delete the rows that have been transferred to the workflow. However, other
options may include moving the rows to an archive table or marking the rows
with an SQL UPDATE.

� Support complex configurations. For example, you may need to extract
information periodically from a base table and incorporate reference data from
an additional table. The base table and reference table cannot have records
deleted from them. In this case, the adapter uses a temporary table to maintain
the sequenced rows in the base table. The temporary table is seeded with a
starting value for the sequence. It holds the last value of the sequence field
processed by the event adapter, allowing multiple event operations to collect
updates while avoiding sending duplicates to a business process workflow.

� Support user-defined exits, which can be implemented for more complex
programming or external database operations. For example, an operating system
program may be executed to facilitate an import or export process within a
custom application.
BEA WebLogic Adapter for RDBMS User Guide 1-3

1 Introducing the BEA WebLogic Adapter for RDBMS
Service Adapter

The service adapter is a generic service that is capable of processing SQL statements
embedded in XML requests and forwarding them to an RDBMS. The RDBMS returns
the data to the adapter, which returns the data to the client.

Service adapters receive an XML request document from a client and invoke a specific
function in the target enterprise information system (EIS). The adapters receive request
messages and provide responses depending on the request. There are two possible
methods for invoking an RDBMS service adapter:

� Asynchronous. The client application issues a service request and then processes
it without waiting for the response.

� Synchronous. The client waits for the response before proceeding with further
processing.

WebLogic Integration supports both of these service adapter invocations, relieving
you from having to provide this functionality within your own application code.

The service adapter can:

� Receive service requests from an external client.

� Transform the XML request document into the EIS data format. The request
document conforms to the request XML schema for the service, which is based
on metadata in the EIS.

� Invoke the underlying function in the EIS and wait for its response.

� Transform the response from the EIS data format to an XML document that
conforms to the response XML schema for the service, which is based on
metadata in the EIS.
1-4 BEA WebLogic Adapter for RDBMS User Guide

Service Adapter
Supported Data Types

The following are data types that are supported with the BEA WebLogic Adapter for
RDBMS.

Table 1-1 Supported Data Types

Database Data Types Successfully Tested

Sybase � integer
� smallint
� char
� float
� double precision
� smalldatetime
� datetime
� varchar
� text
� real
� decimal
� numeric

Oracle � number
� date
� varchar2
� char
� float
� long
BEA WebLogic Adapter for RDBMS User Guide 1-5

1 Introducing the BEA WebLogic Adapter for RDBMS
Local XA Transaction Support

The LocalTransaction interface is exposed to adapter clients using the Common Client
Interface (CCI) Connection class. Currently, the application view interface does not
use the CCI LocalTransaction interface. To manage a local transaction, a user must
first acquire a LocalTransaction from the Connection object.

Local Transaction Management Contracts

A local transaction management contract is created when an adapter implements the
javax.resource.spi.LocalTransaction interface to provide support for local
transactions that are performed on the system's underlying resource manager. This type
of contract enables an application server to provide the infrastructure and run-time
environment for transaction management. Application components rely on this
transaction infrastructure to support their component-level transaction model.

For more information about transaction demarcation support, see the following URL:
http://java.sun.com/blueprints/guidelines
/designing_enterprise_applications/transaction_management
/platform/index.html

Connector Support for Local Transactions with No User-Defined Transaction
Demarcation

The following is a scenario for supporting application view local transactions within
the Application Integration Plug-in. This scenario is similar to TX_REQUIRES_NEW for
EJB transactions because the connector supports only local transactions.

In this scenario, the connector supports only local transactions and the WebLogic
Integration Studio does not explicitly demarcate the start and end of a local transaction.
WebLogic Integration allows the connector to participate in the global transaction by
providing an XA Wrapper around the LocalTransaction object. The XA Wrapper
handles all the method calls on the XAResource interface that cannot be delegated to
the LocalTransaction instance. WebLogic Integration allows only one non XA
resource in the transaction chain. As a result, a user can have only one application view
LocalTransaction within a workflow.

The BEA WebLogic Adapter for RDBMS supports XA local transactions.
1-6 BEA WebLogic Adapter for RDBMS User Guide

CHAPTER
Using the BEA
Application Explorer
With an RDBMS

This section describes how to use the BEA Application Explorer. The underlying
technology used to access and create the appropriate schemas differs for the individual
application systems being explored, but the user interface is consistent. In this section
the functionality of the BEA Application Explorer is presented using the BEA
WebLogic Adapter for RDBMS as an example.

The BEA Application Explorer supports the creation of schemas based on specific
tables and resulting answer sets. To obtain the metadata about the relational database
management system (RDBMS) tables and answer sets, the BEA Application Explorer
connects to the RDBMS using the same JDBC drivers that the BEA WebLogic
Adapter for RDBMS uses.
BEA WebLogic Adapter for RDBMS User Guide 2-1

2 Using the BEA Application Explorer With an RDBMS
This section includes the following topics:

� Connecting to an RDBMS

� Connecting to an RDBMS Using an Existing Connection

� Disconnecting from an RDBMS

� Removing a Connection

� Viewing Table-Based Metadata

� Viewing Stored Procedures

� Generating Event Schemas

� Generating Service Schemas

� Combining Parameterized SQL Feature with Stored Procedures

� Generating Schemas for Stored Procedures

� Removing Schemas

Connecting to an RDBMS

Start the BEA Application Explorer by choosing Start�Programs�BEA Application
Explorer. When you first start the BEA Application Explorer, you can view the main
panes. The left pane displays all the adapters supported by the version of the BEA
Application Explorer being used.
2-2 BEA WebLogic Adapter for RDBMS User Guide

Connecting to an RDBMS
Figure 2-1 BEA Application Explorer Window
BEA WebLogic Adapter for RDBMS User Guide 2-3

2 Using the BEA Application Explorer With an RDBMS
To connect to a specific RDBMS, you must first create a new connection.

1. Start the BEA Application Explorer by choosing Start�Programs�BEA
Application Explorer.

The BEA Application Explorer opens.

2. Right-click the RDBMS node.

Figure 2-2 BEA Application Explorer - New Connection

3. Select the New Connection option to create a new connection.

Note: If a connection was previously created, see “Connecting to an RDBMS Using
an Existing Connection” on page 2-10.
2-4 BEA WebLogic Adapter for RDBMS User Guide

Connecting to an RDBMS
The New Connection prompt displays.

Figure 2-3 New Connection Name Input Window

4. Enter a name for the connection. Use a descriptive name, for example,
Oracle817.

The name entered is used to build a directory underneath the session path
specified, as well as to identify the connection.

Since the connection name is used as a directory name, it must be a valid
directory name for the operating system on which the connection and schema
information is stored. For example, the connection name !@#$%^&*() is invalid
on a Windows system.

5. Click OK.

The connection name is verified for the system. If you enter an invalid
connection name, a new input box opens and asks for the connection name to be
entered again.

Figure 2-4 Invalid Connection Name Message
BEA WebLogic Adapter for RDBMS User Guide 2-5

2 Using the BEA Application Explorer With an RDBMS
After you enter a valid connection name, the system prompts you for connection
information.

Figure 2-5 Relational Database Logon Window

6. From the drop-down list, select the appropriate JDBC driver to use and enter the
appropriate information for the connection, as follows:

� Database URL: The JDBC driver-specific URL used to connect to the
RDBMS.

� User: A valid user ID for the RDBMS.

� Password: The password associated with the user ID specified.

7. Click the Advanced tab.
2-6 BEA WebLogic Adapter for RDBMS User Guide

Connecting to an RDBMS
8. Select the schema to use, as shown in the following figure.

Figure 2-6 Relational Database Logon - Advanced Tab

9. Click OK.

If the parameters are correct and the RDBMS is available, a progress bar
displays, indicating that the RDBMS metadata is loading.

Figure 2-7 Loading Application Information Progress Indicator
BEA WebLogic Adapter for RDBMS User Guide 2-7

2 Using the BEA Application Explorer With an RDBMS
If there is a problem with the connection, a message appears.

Figure 2-8 Database Logon Error Message
2-8 BEA WebLogic Adapter for RDBMS User Guide

Connecting to an RDBMS
After the loading of the application (RDBMS) information is complete, the
connection appears as a node under the RDBMS node.

Figure 2-9 BEA Application Explorer - Connection Node
BEA WebLogic Adapter for RDBMS User Guide 2-9

2 Using the BEA Application Explorer With an RDBMS
Connecting to an RDBMS Using an Existing
Connection

When you first start the BEA Application Explorer, the main window opens. The left
pane displays all the adapters supported by the version of the BEA Application
Explorer you are using.

Figure 2-10 BEA Application Explorer Window
2-10 BEA WebLogic Adapter for RDBMS User Guide

Connecting to an RDBMS Using an Existing Connection
To connect to a specific RDBMS with an existing connection:

1. Start the BEA Application Explorer by choosing Start�Programs�BEA
Application Explorer.

The BEA Application Explorer opens.

2. Right-click the RDBMS node and select Existing Connection from the shortcut
menu.

A list of existing connections from which to choose opens.

Figure 2-11 BEA Application Explorer - Existing Connections

3. Select the desired connection.
BEA WebLogic Adapter for RDBMS User Guide 2-11

2 Using the BEA Application Explorer With an RDBMS
A confirmation window opens, showing the connection information being used.

Figure 2-12 Relational Database Logon Confirmation Window

4. If this is the correct connection, click OK. If not, click Cancel.

If the parameters are correct and the RDBMS is available, a progress bar
indicates that the RDBMS metadata is loading. If there is a problem with the
connection, an error message appears.
2-12 BEA WebLogic Adapter for RDBMS User Guide

Disconnecting from an RDBMS
After the application (RDBMS) information loads, the connection appears as a
node under the RDBMS node.

Figure 2-13 BEA Application Explorer - Connection Node

Disconnecting from an RDBMS

Although you can maintain multiple open connections to different RDBMSs and
applications, it is prudent to close connections when they are not being used. To close
a connection to an RDBMS:
BEA WebLogic Adapter for RDBMS User Guide 2-13

2 Using the BEA Application Explorer With an RDBMS
1. Start the BEA Application Explorer by choosing Start�Programs�BEA
Application Explorer.

2. When the BEA Application Explorer opens, right-click the connection node and
select Disconnect.

Figure 2-14 BEA Application Explorer - Disconnect Node Option
2-14 BEA WebLogic Adapter for RDBMS User Guide

Disconnecting from an RDBMS
Disconnecting from the RDBMS drops the connection with the RDBMS, but the

node remains. Note that the disconnected node has a different icon, ,
indicating that it is disconnected, as shown in the following figure.

Figure 2-15 BEA Application Explorer - Disconnected Node
BEA WebLogic Adapter for RDBMS User Guide 2-15

2 Using the BEA Application Explorer With an RDBMS
3. To re-establish the connection, right-click the disconnected node and select
Connect, as shown.

Figure 2-16 BEA Application Explorer - Node Reconnection
2-16 BEA WebLogic Adapter for RDBMS User Guide

Removing a Connection
Removing a Connection

To remove a connection from the existing connections list:

1. Start the BEA Application Explorer by choosing Start�Programs�BEA
Application Explorer.

2. When The BEA Application Explorer opens, right-click the desired connection
and select Remove.

Figure 2-17 BEA Application Explorer - Connection Removal
BEA WebLogic Adapter for RDBMS User Guide 2-17

2 Using the BEA Application Explorer With an RDBMS
The connection is closed, if open. The entry is removed from the available connection
list.

Viewing Table-Based Metadata

Viewing metadata is useful when creating schemas. For more information, see
“Generating Event Schemas” on page 2-24 and “Generating Service Schemas” on
page 2-31.

The BEA Application Explorer enables you to view the tables available in the
RDBMS. To view the available tables:

1. Start the BEA Application Explorer by choosing Start�Programs�BEA
Application Explorer.
2-18 BEA WebLogic Adapter for RDBMS User Guide

Viewing Table-Based Metadata
2. When the BEA Application Explorer opens, expand the table node under the
desired connection.

Figure 2-18 BEA Application Explorer - Expanded Table Node

3. Scroll down and select the specific table to review.

Note: The list of tables includes all tables on the RDBMS. It is possible that the user
ID used for the connection does not have access to the specified table. If this
is the case, the creation of schemas fails.

When you select a specific table by clicking it, the table metadata appears in
the right pane, as shown in the following figure. This information can be used
to determine the table (or tables) and fields to use when creating the schema.
BEA WebLogic Adapter for RDBMS User Guide 2-19

2 Using the BEA Application Explorer With an RDBMS
Figure 2-19 BEA Application Explorer - Table Metadata

Viewing Stored Procedures

Start the BEA Application Explorer by choosing Start�Programs�BEA Application
Explorer. When you first start the BEA Application Explorer, in the left pane you see
a list of all the adapters supported by the version of the BEA Application Explorer you
are using.
2-20 BEA WebLogic Adapter for RDBMS User Guide

Viewing Stored Procedures
Figure 2-20 BEA Application Explorer

1. From the BEA Application Explorer main menu, expand the RDBMS branch.

2. Connect to a back-end Oracle system. For more information on connecting to
back-end systems, see “Connecting to an RDBMS” on page 2-2 or “Connecting
to an RDBMS Using an Existing Connection” on page 2-10.
BEA WebLogic Adapter for RDBMS User Guide 2-21

2 Using the BEA Application Explorer With an RDBMS
3. Under the Connection name, expand the Stored Procedures branch by clicking
the icon next to Stored Procedures. All stored procedures available under the
schema you specified appear, as shown in the following figure.

Figure 2-21 BEA Application Explorer - Expanded Stored Procedures List
2-22 BEA WebLogic Adapter for RDBMS User Guide

Viewing Stored Procedures
4. Highlight a stored procedure to view its parameters, as shown in the following
figure.

Figure 2-22 BEA Application Explorer - Stored Procedure Parameters

The RESULTSETTESTMULT Stored Procedure contains three input parameters,
V_PRICE, V_RIC, and V_UPDATE, listed in the Field column.

Note: Output parameters are displayed without names in the field column.

For Oracle Stored Procedures returning result sets, the first parameter is
designated as a type REF_CURSOR. This is actually the returning result set.
BEA WebLogic Adapter for RDBMS User Guide 2-23

2 Using the BEA Application Explorer With an RDBMS
Generating Event Schemas

The generation of schemas is handled under the SQL statement node. To start the
process of generating an event schema:

1. Start the BEA Application Explorer by choosing Start�Programs�BEA
Application Explorer.

2. When the BEA Application Explorer opens, right-click the SQL statement node
and select Add SQL Statement, as shown in the following figure.

Figure 2-23 BEA Application Explorer - Add SQL Statement
2-24 BEA WebLogic Adapter for RDBMS User Guide

Generating Event Schemas
The SQL statement input box opens.

Figure 2-24 SQL Statement Name Input Box

3. Enter a name for the schema group being generated.

It is good practice to specify a name that describes the service. For example, a
name of CustomerInt would represent an event on the Customer Interface table
returning a Field format response document.

4. Click OK.

After the SQL statement node is added, you are ready to build schemas.
BEA WebLogic Adapter for RDBMS User Guide 2-25

2 Using the BEA Application Explorer With an RDBMS
5. To generate the schemas, right-click the SQL Statement and select the Create
Event Schema option, as shown in the following figure.

Figure 2-25 BEA Application Explorer - Create Event Schema
2-26 BEA WebLogic Adapter for RDBMS User Guide

Generating Event Schemas
A Test SQL window appears.

Figure 2-26 Test SQL Statement

6. In the top pane, type the SQL statement to be used by the application view
service.

The RDBMS listener allows the creation of events that utilize complex SQL
statements, including JOINs, WHEREs, and other verbs.

When entering the SQL statement, ensure you use the SQL generating the input
record for the event.

7. Click Run.

If there is a problem executing the SQL statement, the error message from the
RDBMS appears in an error window. When the SQL statement is correct, the
following window appears.
BEA WebLogic Adapter for RDBMS User Guide 2-27

2 Using the BEA Application Explorer With an RDBMS
Figure 2-27 Test SQL Results

The SQL can be modified and the statement re-run, or the Create Schema button
can be selected to produce the schema.

8. Click Create Schema.
2-28 BEA WebLogic Adapter for RDBMS User Guide

Generating Event Schemas
The Select Table Format window is displayed.

Figure 2-28 Select Table Format Window

9. Select a formatting option from the field format drop-down list. The value you
select must match the format used to generate the event adapter application view.

10. Click OK to create the schema.
BEA WebLogic Adapter for RDBMS User Guide 2-29

2 Using the BEA Application Explorer With an RDBMS
The right pane of the BEA Application Explorer displays the SQL statement
used, in addition to the Event, Request, and Response Schema tabs, as shown in
the following figure.

Figure 2-29 Schema Display

The schema is now generated and ready to use.
2-30 BEA WebLogic Adapter for RDBMS User Guide

Generating Service Schemas
Generating Service Schemas

You can generate service schemas for:

� SQL statements.

� Parameterized SQL statements.

There are significant differences between request schemas generated by an SQL
statement and a parameterized SQL statement. For more information about the use and
format of the SQL statement and parameterized SQL statement options, see Chapter 3,
“Defining an Application View.”

Generating Service Schemas Under the SQL Statement
Node

Generating service schemas under the SQL statement node produces the required
request and response schemas for building a service adapter application view. To
generate a service schema:

1. Start the BEA Application Explorer by choosing Start�Programs�BEA
Application Explorer.
BEA WebLogic Adapter for RDBMS User Guide 2-31

2 Using the BEA Application Explorer With an RDBMS
The BEA Application Explorer opens.

Figure 2-30 BEA Application Explorer - Add SQL Statement

2. Right-click the SQL Statements node and select Add SQL Statement.
2-32 BEA WebLogic Adapter for RDBMS User Guide

Generating Service Schemas
The SQL statement name input box appears.

Figure 2-31 SQL Statement Name Input Box

3. Provide a name for the schema group being generated.

It is good practice to specify a name that describes the service. For example, a
name of CustomerIntField would represent a request against the Customer
Interface table returning a Field format response document.

4. Click OK.

After the SQL statement node is built, you are ready to build schemas.
BEA WebLogic Adapter for RDBMS User Guide 2-33

2 Using the BEA Application Explorer With an RDBMS
Figure 2-32 BEA Application Explorer - Create Service Schemas

5. To generate the schemas, right-click the SQL statement and select the Create
Service Schemas option.
2-34 BEA WebLogic Adapter for RDBMS User Guide

Generating Service Schemas
A Test SQL window opens.

Figure 2-33 Test SQL Statement

6. In the top pane, type the SQL statement to be used by the application view
service.

7. Click Run.

If there is a problem executing the SQL statement, the error message from the
RDBMS appears in an error window.
BEA WebLogic Adapter for RDBMS User Guide 2-35

2 Using the BEA Application Explorer With an RDBMS
When the SQL statement is correct, the following window appears.

Figure 2-34 Test SQL Results

The SQL can be modified and the statement re-run, or the Create Schema button can
be selected to produce the schemas.
2-36 BEA WebLogic Adapter for RDBMS User Guide

Generating Service Schemas
Before the schemas are created, the systems prompts you for the format of the
response.

Figure 2-35 Select Response Format

8. Select a formatting option from the response format drop-down list. The value
selected must match the format value used to generate the application view
service, or the schema of the response document will not validate.

9. After a format is selected, click OK to produce the schemas.
BEA WebLogic Adapter for RDBMS User Guide 2-37

2 Using the BEA Application Explorer With an RDBMS
The right pane displays the SQL statement used, in addition to the Request and
Response Schema tabs.

Figure 2-36 Schema Display

10. To view the schema, click the desired tab at the top of the right pane.
2-38 BEA WebLogic Adapter for RDBMS User Guide

Generating Service Schemas
The following figure shows the request schema.

Figure 2-37 Request Schema
BEA WebLogic Adapter for RDBMS User Guide 2-39

2 Using the BEA Application Explorer With an RDBMS
The following figure shows the response schema.

Figure 2-38 Response Schema

The schemas are now generated and ready to use.
2-40 BEA WebLogic Adapter for RDBMS User Guide

Generating Service Schemas
Generating Service Schemas Under the Parameterized
SQL Statement Node

Generating schemas under the Parameterized SQL statement node produces the
required request and response schemas for building a service adapter application view.

To generate service schemas:

1. Start the BEA Application Explorer by choosing Start�Programs�BEA
Application Explorer.

2. When the BEA Application Explorer opens, open and expand an existing
connection.

3. Right-click the Parameterized SQL Statements node and choose Add
Parameterized SQL Statement.
BEA WebLogic Adapter for RDBMS User Guide 2-41

2 Using the BEA Application Explorer With an RDBMS
Figure 2-39 BEA Application Explorer - Add Parameterized SQL Statement

For more information on how to create and configure a connection, see
“Connecting to an RDBMS” on page 2-2.
2-42 BEA WebLogic Adapter for RDBMS User Guide

Generating Service Schemas
An input box prompts you for the name of the parameterized SQL statement.

Figure 2-40 Parameterized SQL Statement Name Input Box

a. Enter a name for the schema group that you are generating.

Note: It is good practice to specify a name that describes the service. For
example, the name PSQL might represent a parameterized request
against the PSQL table returning a field format response document.

b. Click OK.

You have created the parameterized SQL statement node, and you can generate
schemas.
BEA WebLogic Adapter for RDBMS User Guide 2-43

2 Using the BEA Application Explorer With an RDBMS
4. Right-click the new SQL Parameterized statement node and choose Create
Service Schemas.

Figure 2-41 BEA Application Explorer - Creating Service Schemas
2-44 BEA WebLogic Adapter for RDBMS User Guide

Generating Service Schemas
The Choose XML Request Schema dialog box appears.

Figure 2-42 RDBMS: Choose XML Request Schema Window

For this example, the following input XML is used (the corresponding schema is
not displayed):

Listing 2-1 Input XML Sample

<emplist>
<emp>

<name age='32'>Bess Armstrong</name>
<address>211 Chadwick Rd</address>
<citystatezip>New York, NY 10009</citystatezip>

</emp>
<emp>

<name age='40'>Merle Pensk</name>
<address>41 Church Rd</address>
<citystatezip>Marlboro, NJ 07601</citystatezip>

</emp>
</emplist>
BEA WebLogic Adapter for RDBMS User Guide 2-45

2 Using the BEA Application Explorer With an RDBMS
a. Click Browse and select the XML Input Schema Definition for the input XML
document.

The input XML document is the XML that contains the values that will be
used to substitute for the parameters.

b. Click the arrow for the Root Element drop-down to select the node in the XML
document that corresponds to the root node of the input XML document.

c. Click the arrow for the Response Format drop-down to select the response
format.

The choices are Column, Row, and Field, defined as defined in the following
tables:

Table 2-1 Format Definitions

Note: Due to the flexibility of parameterized SQL statement processing, the input
document can be in virtually any valid XML format, from a standards-based
format such as an OAGIS Business Object Document or xCBL document, to
a non-standards-based XML document, to the output of a previous task. To
support this flexibility, you must provide the predefined .xsd file and the root
name for the request document.

d. Click OK.

format*
(*Required)

Choose one of the following:
� row. The data that is produced is returned on a single line (per record) enclosed

in <row> tags.
� column. The data produced is returned field by field, and each field is enclosed

in <column> tags. The column tag has an attribute whose value is the name of
the field; for example,
<row>
<column name=”ID”>1000</column>
<column name=”First_Name”>Scott</column>

</row>

� field. The data produced is returned field by field, and each field is enclosed in
a tag that bears the field name; for example,
<row>
<ID>1000></column>
<FIRST_NAME>Scott</column>
</row>
2-46 BEA WebLogic Adapter for RDBMS User Guide

Generating Service Schemas
The Parameterized SQL Mapper window opens.

Figure 2-43 Parameterized SQL Mapper Window

This mapping tool can be used to map fields from an input XML document to
the parameterized SQL you will enter.

a. Highlight the root node for the input document in the Request Schema box and
click New.

The SQL Statement test box becomes active.
BEA WebLogic Adapter for RDBMS User Guide 2-47

2 Using the BEA Application Explorer With an RDBMS
Figure 2-44 Parameterized SQL Mapper with Active Test Box

b. In the active test box, enter a parameterized SQL statement.

Substitute question marks for parameters.

In this example, four fields (corresponding with four parameters) are being
inserted into the table called emptable (that is, table field names: Name,
Address, CityStateZip, and Age).
2-48 BEA WebLogic Adapter for RDBMS User Guide

Generating Service Schemas
Note: For combining stored procedures with parameterized SQL, issue a CALL
statement in the SQL statement box.

Syntax: CALL Stored_Procedure_Name(?,?,? and so forth). For example, the
following is a stored procedure named MyStoredProcedure that takes three
parameters:

Call MyStoredProcedure(?,?,?)

c. Click Add.

The Parameter Mappings dialog box becomes active.

Figure 2-45 Parameterized SQL Mapper - Active Parameter Mappings
BEA WebLogic Adapter for RDBMS User Guide 2-49

2 Using the BEA Application Explorer With an RDBMS
You now can map values taken from the sample XML to the four parameters
specified in the Parameterized SQL. For each parameter value there must be one
entry in the Parameter Mappings dialog box.

d. Click the SQL Type field in the Parameter Mappings box.

A drop-down list opens.

Figure 2-46 Parameterized SQL Mapper - Parameter Mappings Drop-Down

e. Select the SQL Type of the first parameter specified positionally from the
Parameterized SQL Statement.
2-50 BEA WebLogic Adapter for RDBMS User Guide

Generating Service Schemas
Figure 2-47 Parameterized SQL Mapper with Name Element Selected

f. Double-click the value in the Request Schema tree that corresponds to the
element name this parameter will map to, in this example, the Name element.
BEA WebLogic Adapter for RDBMS User Guide 2-51

2 Using the BEA Application Explorer With an RDBMS
The Schema Path field is now updated with the element selected relative to
the root node of the document, as shown in the following figure.

Figure 2-48 Parameterized SQL Mapper with Updated Element

g. Click Test Value and enter a sample value used to verify this type.

h. Click Add to map the next parameter. Repeat this step until all parameters are
mapped (in this case, four).
2-52 BEA WebLogic Adapter for RDBMS User Guide

Generating Service Schemas
Note: In this example, it is possible to map a parameter to an attribute by
selecting the @age entry from the Request Schema tree.

Figure 2-49 Parameterized SQL Mapper with @Age Entry Selected

5. After all the parameters are mapped, click Attach.
BEA WebLogic Adapter for RDBMS User Guide 2-53

2 Using the BEA Application Explorer With an RDBMS
A Details tab appears.

Figure 2-50 Detailed Parameterized SQL Statement

6. Click the Request Schema tab or the Response Schema tab to view the Request or
Response schema, respectively.

Note: For a further explanation on setting up and configuring a service for
Parameterized SQL as well as a discussion of target nodes, see Chapter 3,
“Defining an Application View.”
2-54 BEA WebLogic Adapter for RDBMS User Guide

Combining Parameterized SQL Feature with Stored Procedures
Combining Parameterized SQL Feature with
Stored Procedures

It is possible to combine the parameterized SQL feature and stored procedures. In
effect, this is done to set up a parameterized SQL statement that calls a stored
procedure.

For more information on how to combine the parameterized SQL feature and stored
procedures, see “Generating Service Schemas Under the Parameterized SQL
Statement Node” on page 2-41.

Generating Schemas for Stored Procedures

To create a service schema for a stored procedure for use with the BEA WebLogic
Adapter for RDBMS, perform the following steps:

1. Start the BEA Application Explorer by choosing Start�Programs�BEA
Application Explorer.
BEA WebLogic Adapter for RDBMS User Guide 2-55

2 Using the BEA Application Explorer With an RDBMS
The BEA Application Explorer opens.

Figure 2-51 BEA Application Explorer - Create Service Schemas

2. Right-click the stored procedure. Note that Create Event Schemas is not
available.

3. Select Create Service Schemas.
2-56 BEA WebLogic Adapter for RDBMS User Guide

Generating Schemas for Stored Procedures
The Create Service Schema window opens.

Figure 2-52 Create Service Schema Window

The Create Service Schema window shows all parameter markers denoted by a
“?”.

a. Replace each ? associated with an IN parameter with the value you want to call
the stored procedure.

Ignore all parameter markers (?’s) that represent OUT parameters.

For example you can enter 40, ‘TEST’, ‘2002-07-19’, as shown in the
following figure.

Figure 2-53 Create Service Schema - Test SQL Value
BEA WebLogic Adapter for RDBMS User Guide 2-57

2 Using the BEA Application Explorer With an RDBMS
b. Select Field, Column, or Row.

This determines the service response format for this stored procedure.

The value selected must match the format value used to generate the
application view service, or the schema of the request document does not
validate.

c. To execute the stored procedure, click Create Service Schema.

The stored procedure is run with the parameters entered.

The right pane of the Application Explorer displays the Details, Request
Schema, and Response Schema tabs as shown in the following figure.

Figure 2-54 BEA Application Explorer - Schema Display
2-58 BEA WebLogic Adapter for RDBMS User Guide

Generating Schemas for Stored Procedures
4. Click the Request Schema tab to see the request schema, as shown in the
following figure.

Figure 2-55 BEA Application Explorer - Request Schema Tab
BEA WebLogic Adapter for RDBMS User Guide 2-59

2 Using the BEA Application Explorer With an RDBMS
d. Click the Response Schema tab to see the response schema, as shown in the
following figure.

Figure 2-56 BEA Application Explorer - Response Tab

The schemas are now ready to use.
2-60 BEA WebLogic Adapter for RDBMS User Guide

Removing Schemas
 Removing Schemas

To remove a schema from an SQL Statement:

1. Start the BEA Application Explorer by choosing Start�Programs�BEA
Application Explorer.

The BEA Application Explorer opens.

Figure 2-57 BEA Application Explorer - Remove Schema Option

2. Right-click the desired SQL Statement.
BEA WebLogic Adapter for RDBMS User Guide 2-61

2 Using the BEA Application Explorer With an RDBMS
3. Select a remove schema option.

The schema(s) (service or event) is removed, and the manifest.xml file is
updated.

The right pane no longer displays the Request and Response Schema tabs for the
schema after you select Remove Service Schemas as shown in the following
figure.

Figure 2-58 BEA Application Explorer - Schema Removed
2-62 BEA WebLogic Adapter for RDBMS User Guide

CHAPTER
Defining an
Application View

This section provides information on creating and deploying application views that
include the BEA WebLogic Adapter for RDBMS. It includes the following topics:

� Defining a New Application View

� Adding a Service Adapter to an Application View

� Deploying an Application View

� Adding an Event Adapter to an Application View

� Handling Null Values

� Defining a Data Source

Defining a New Application View

When you define an application view, you create an XML-based interface between
WebLogic Server and a particular relational database management system (RDBMS)
within your enterprise. Once you create the application view, a business analyst can
create business processes that use the application view. For any adapter, you can create
any number of application views, each with any number of services and events.

Note: This procedure shows how to install and configure an Oracle implementation
of the RDBMS event and service adapter. When configuring other JDBC
drivers for other RDBMSs, the parameters you enter are different.
BEA WebLogic Adapter for RDBMS User Guide 3-1

3 Defining an Application View
To define an application view, perform the following steps:

1. Navigate your browser to the Application View Console - Logon screen. The
Application View Console can be found at http://host:port/wlai, here, host
is the IP address or DNS name on which WebLogic Server is installed, and port is
the socket on which the server is listening. The default port is 7001.

Figure 3-1 Application View Console - Logon Window

2. Enter a valid WebLogic user name and password and click Login. For more
information, see “Logging On to the WebLogic Integration Application View
Console” in “Defining an Application View” in Using Application Integration:

� For WebLogic Integration 7.0, see
http://edocs.bea.com/wli/docs70/aiuser/2usrdef.htm

� For WebLogic Integration 2.1, see
http://edocs.bea.com/wlintegration/v2_1sp/aiuser/2usrdef.htm

Note: If the user name is not system, it must be included in the adapter group.
For more information on adding the administrative server user name to the
adapter group, see the BEA WebLogic Adapter for RDBMS Installation
and Configuration Guide.
3-2 BEA WebLogic Adapter for RDBMS User Guide

Defining a New Application View
Figure 3-2 Application View Console Window

3. Click Add Application View to create an application view for the adapter. An
application view enables a set of business processes for this adapter's target
enterprise information system (EIS) application. For more information, see
“Defining an Application View” in Using Application Integration:

� For WebLogic Integration 7.0, see
http://edocs.bea.com/wli/docs70/aiuser/2usrdef.htm

� For WebLogic Integration 2.1, see
http://edocs.bea.com/wlintegration/v2_1sp/aiuser/2usrdef.htm
BEA WebLogic Adapter for RDBMS User Guide 3-3

3 Defining an Application View
Figure 3-3 Define New Application View Window

4. In the Application View Name field, enter a name. The name should describe the
set of functions performed by this application. Each application view name must
be unique to its adapter. Valid characters include a-z, A-Z, 0-9, and the _
(underscore) character.

5. In the Description field, enter any relevant notes. These notes are displayed when
you use this application view to create workflows in WebLogic Integration
Studio.

6. From the Associated Adapter drop-down list, select BEA_RDBMS_1_0 and click
OK to create this application view. For important information on the
BEA_RDBMS_1_0.ear file, see the BEA WebLogic Adapter for RDBMS
Installation and Configuration Guide.

7. Click OK.
3-4 BEA WebLogic Adapter for RDBMS User Guide

Defining a New Application View
Figure 3-4 Configure Connection Parameters Window

8. In the Session path field, enter the location of the working directory established
for the BEA Application Explorer. For more information, see Chapter 2, “Using
the BEA Application Explorer With an RDBMS.”

9. In the Connection name field, select the name of the connection used for creating
schemas. The Application Explorer creates this folder for you.

10. Click Connect to EIS.
BEA WebLogic Adapter for RDBMS User Guide 3-5

3 Defining an Application View
11. Click Continue.

The Application View Administration window is displayed, as shown in the
following figure:

Figure 3-5 Application View Administration Window

At this point you can create event(s) and/or service(s).

� For more information on adding services, see “Adding a Service Adapter to
an Application View” on page 3-7.

� For more information on adding events, see “Adding an Event Adapter to an
Application View” on page 3-38.
3-6 BEA WebLogic Adapter for RDBMS User Guide

Adding a Service Adapter to an Application View
Adding a Service Adapter to an Application
View

After you create and configure an application view as described in “Defining a New
Application View” on page 3-1, add services that support the application’s functions.

For this example, create a DBMS service adapter. Information about other service
types is presented throughout this section.

1. While the Application View window is open, click Administration. The
Application View Administration window is displayed, as shown in the following
figure.
BEA WebLogic Adapter for RDBMS User Guide 3-7

3 Defining an Application View
Figure 3-6 Application View Administration Window

2. Click Add in the Services row.
3-8 BEA WebLogic Adapter for RDBMS User Guide

Adding a Service Adapter to an Application View
Figure 3-7 Add Service Window

3. Enter the following parameter information in the appropriate field:

Table 3-1 Service Properties

Parameter Definition

Unique Service Name*
(*Required)

This name must be unique to its application view. Valid characters include a-z, A-Z,
0-9, and the _ (underscore) character.

Select Choose DBMS as the listener.

user*
(*Required)

The RDBMS Application’s user ID authorized to access the Oracle Applications
system.

Password A password associated with the specified user ID.
BEA WebLogic Adapter for RDBMS User Guide 3-9

3 Defining an Application View
Isolation Level*
(*Required)

Note:
Before setting the
isolation level for a
service, check with your
database administrator.

Choose one of the following:
� asis. Does not specifically set an isolation level for the connection.
� readUncommitted. Does not prevent any read violation.
� readCommitted. Only data that has been committed by a transaction can be

read by other transactions. This level prohibits a transaction from reading a row
with uncommitted changes in it. This setting prevents a dirty read, but allows
non-repeatable reads and phantom reads.

� repeatableRead. Only data that has been committed by a transaction can be
read by other transactions, and multiple reads yield the same result as long as the
data has not been committed. This setting prevents dirty reads and
non-repeatable reads, but not phantom reads.

� Serializable. This setting is the highest isolation level, stipulating that all
transactions run serially to achieve maximum data integrity. This yields the
slowest performance and least concurrency. This setting prevents Dirty Reads,
Non-repeatable reads, and Phantom reads.

Note: For definitions of Dirty Read, Phantom Read, and Non-repeatable read, and
for more information on isolation levels, see “Transaction Isolation
Levels” on page 3-13.

format*
(*Required)

Choose one of the following:
� row. The data that is produced is returned on a single line (per record) enclosed

in <row> tags.
� column. The data produced is returned field by field, and each field is enclosed

in <column> tags. The column tag has an attribute whose value is the name of
the field; for example,
<row>
<column name=”ID”>1000</column>
<column name=”First_Name”>Scott</column>

</row>

� field. The data produced is returned field by field, and each field is enclosed in
a tag that bears the field name; for example,
<row>
<ID>1000></column>
<FIRST_NAME>Scott</column>
</row>

Table 3-1 Service Properties

Parameter Definition
3-10 BEA WebLogic Adapter for RDBMS User Guide

Adding a Service Adapter to an Application View
4. Click Add.

DRIVER*
(*Required)

The name of the JDBC Driver. For example, the Oracle JDBC driver is
oracle.jdbc.driver.OracleDriver.

URL*
(*Required)

The address (URL) for the connection to the RDBMS. For example, an
Oracle URL is jdbc:oracle:thin:@Oracle.ibi.com:app

Data_Source_Name The Data Source JNDI name for the JDBC connection pool to use for connecting to
the RDBMS system. If a value is present, the adapter will use the connection pool
to connect to the RDBMS. If no value is specified, connection will use the Driver,
URL, UserId and Password specified in the service.

Note: For more information on setting up a Data Source, see “Defining a Data
Source” on page 51.

DataSourceType Choose one of the following:
� ConnectionPoolDataSource. The connection name specified in the

Data_Source_Name field is used as a JNDI context for a WebLogic Integration
connection pool.

� XADatasource. The connection name specified in the Data_Source_Name field
is used as a JNDI context for an XADatasource whose transactions participate
in the WebLogic Integration XA transaction.

If the Data_Source_Name field is left blank, the adapter uses the user ID, password,
and URL to establish a plain JDBC 2.0 connection with the database.
If the Data Source_Name field is populated, the user ID, password, and URL are
ignored.

schema From the drop-down list, select the name of the schema that contains connection and
other related information about the service you are adding.

Table 3-1 Service Properties

Parameter Definition
BEA WebLogic Adapter for RDBMS User Guide 3-11

3 Defining an Application View
Figure 3-8 Application View Administration Window (Example Oracle Service)

5. If you are finished adding services or events, click the Continue button to deploy
the application view.

For more information on deploying and testing application views, see
“Deploying an Application View” on page 3-16.
3-12 BEA WebLogic Adapter for RDBMS User Guide

Adding a Service Adapter to an Application View
Transaction Isolation Levels

Transaction isolation levels, as defined in the ANSI SQL specification, are supported
by the JDBC standard. As such, the BEA WebLogic Adapter for RDBMS supports
transaction isolation to the level of the underlying RDBMS and its JDBC driver. For
more information on isolation levels, refer to the ANSI SQL specification.

Isolation levels manage the level of interference between transactions in a multi-user
database system. In an ideal world, all transactions would be serializable, meaning that
the same results would be produced whether transactions are run concurrently or in
series. Unfortunately, a high level of transaction isolation has significant performance
implications, and the level of isolation should be set according to the transaction needs.

The settings available for isolation levels for the BEA WebLogic Adapter for RDBMS
are as follows:

Note: For more information about where to establish isolation levels, see “Adding a
Service Adapter to an Application View” on page 3-7.

Table 3-2 Isolation Level Settings Available for BEA WebLogic Adapter for
RDBMS

Isolation Level Description

as is This level does not specifically set an isolation level for the
connection

Read Uncommitted Data that has been updated but not yet committed by a transaction
may be read by other transactions. This level does not prevent any
read violation. It allows a row changed by one transaction to be read
by another transaction before any changes in that row have been
committed. If any of the changes are rolled back, the second
transaction retrieves an invalid row.

Read Committed Only data that has been committed by a transaction can be read by
other transactions. This level prohibits a transaction from reading a
row with uncommitted changes in it.

Repeatable Read Only data that has been committed by a transaction can be read by
other transactions, and multiple reads yield the same result as long
as the data has not been committed.
BEA WebLogic Adapter for RDBMS User Guide 3-13

3 Defining an Application View
Three problems affect the multi-user database system:

� Dirty Reads

� Non-repeatable Reads

� Phantom Reads

Dirty Reads are common. In the Dirty Read, transaction A updates a row in a database,
but has not yet committed the update. Transaction B then reads the updated row. Due
to a problem in the first transaction, such as the failure of a second update in transaction
A, the original update is not committed and a rollback is issued. Transaction B reads a
record that was incorrect (Dirty).

Dirty Reads are prevented by selecting Read Committed, Repeatable Read, or
Serializable as an isolation level.

Another problem is the Non-Repeatable Read. In this case a transaction, transaction A,
reads a row from a database and continues on with its processing. After the initial read
by transaction A, another transaction, transaction B, updates the same row in the
database. Transaction A then rereads the row, but the row has changed, hence the read
is non-repeatable.

Non-Repeatable Read is prevented by selecting Repeatable Read or Serializable as an
isolation level.

In the case of a Phantom Read, a transaction, transaction A, reads a set of rows from a
database and continues with its processing. After the initial read by transaction A,
another transaction, transaction B, adds (or deletes) records that transaction A would
have received. If transaction A then re-reads the database, there are additional (or
missing) Phantom records.

Serializable This is the highest possible isolation level and ensures a transaction's
exclusive read-write access to data. It includes the conditions of
ReadCommitted and RepeatableRead. This setting is the highest
isolation level, stipulating that all transactions run serially to achieve
maximum data integrity. This yields the slowest performance and
least concurrency.

Table 3-2 Isolation Level Settings Available for BEA WebLogic Adapter for
RDBMS

Isolation Level Description
3-14 BEA WebLogic Adapter for RDBMS User Guide

Adding a Service Adapter to an Application View
Phantom Read is addressed only by selecting Serializable as an isolation level.

For information on how to set isolation levels, see “Transaction Isolation Levels” on
page 3-13.

Transaction Management

The BEA WebLogic Adapter for RDBMS supports transaction management in
WebLogic Integration. Transaction management enables the BEA WebLogic Adapter
for RDBMS to commit or rollback action, based on successful or unsuccessful actions
respectively, of subsequent tasks in the workflow.

To participate in transactions, the agent joins the transaction in progress by identifying
a class that exposes the XDTx interface. This class is identified to and joins the
transaction via the storeTx() method, using a transaction identifier that is passed into
the agent via the getTID() method. The class itself implements commit, rollback,
prepare, and canPrepare methods. The Java hashCode() method associates like classes
in the transaction manager.

The BEA WebLogic Adapter for RDBMS delegates the transaction control to the
transaction class. In the adapter, if the service adapter is determined to be running in a
transaction, getTID() returns a transaction id. Then, the agent does not commit or close
the connection but delegates this processing to the transaction class. If the service
adapter is not in a transaction, getTID() returns null. The agent performs the commit()
and close() prior to returning control to the workflow.

Note that the transaction class is invoked by the system after the BEA WebLogic
Adapter for RDBMS returns from the processing. Additional work on an RDBMS
must be performed by another task.

For more information on transaction management, see “Understanding the BPM
Transaction Model” in Programming BPM Client Applications:

� For WebLogic Integration 7.0, see
http://edocs.bea.com/wli/docs70/devclient/trans.htm

� For WebLogic Integration 2.1, see
http://edocs.bea.com/wlintegration/v2_1sp/devclient/trans.htm
BEA WebLogic Adapter for RDBMS User Guide 3-15

3 Defining an Application View
Deploying an Application View

You may deploy an application view when you have added at least one event or service
to it. You must deploy an application view before you can test its services and/or
events or use the application view in the WebLogic Server environment. Application
view deployment places relevant metadata about its services and events into a run-time
metadata repository. Deployment makes the application view available to other
WebLogic Server clients. This means business processes can interact with the
application view, and you can test the application view's services and events. To
deploy an application view, perform the following steps:

1. With the application view open, click Administration.

The Application Administration window is displayed.

2. To deploy the application view, click Deploy Application View. You can click the
Save button and deploy the application view at a later time.

The Deploy Application View window is displayed, as follows:

Note: To enable workflow functionality or other authorized clients to
asynchronously call the services (if any) of this application view, select the
Enable Asynchronous Service Invocation check box.
3-16 BEA WebLogic Adapter for RDBMS User Guide

Deploying an Application View
Figure 3-9 Deploy Application View Window (ORACLE Service to Server)

3. Click Deploy. The Summary for Application View Window opens.
BEA WebLogic Adapter for RDBMS User Guide 3-17

3 Defining an Application View
Figure 3-10 Summary for Application View Window (Example Oracle Service)

After you create and deploy an application view that contains services or events,
test the application view services. Testing evaluates whether or not the
application view service or event interacts properly with the target adapter.

4. To test the application view service, find the service or event in the current
Services or Events area and click the Test link.
3-18 BEA WebLogic Adapter for RDBMS User Guide

Deploying an Application View
The Test window is displayed.

Figure 3-11 Test Service Window (Oracle)
BEA WebLogic Adapter for RDBMS User Guide 3-19

3 Defining an Application View
5. Enter the appropriate XML for the RDBMS service adapter.

The format for the XML is:

<connection>
 <sql>
 <query>your sql statement here</query>
 </sql>
 <sql>
 <query>your subsequent sql statement here</query>
 </sql>
</connection>

6. Click Test. The test request is executed and the Test Results window is displayed.

Figure 3-12 Test Results Window (Oracle)
3-20 BEA WebLogic Adapter for RDBMS User Guide

Deploying an Application View
If the test is successful, the Test Result window displays the input XML and the
result set. This confirms that the application view service is successfully
deployed. You can now employ the service in business process workflows or
write custom code. For more information, see “Using Application Views in the
Studio” in Using Application Integration:

� For WebLogic Integration 7.0, see
http://edocs.bea.com/wli/docs70/aiuser/3usruse.htm

� For WebLogic Integration 2.1, see
http://edocs.bea.com/wlintegration/v2_1sp/aiuser/3usruse.htm

If the test fails, the Test Result window displays a timed out message.

Example: Issuing an SQL Query Request

The Request document in the following example connects to a data source (using the
connect information specified in the service configuration) and issues a simple SQL
query. This document also specifies that the Field Agent executes the request:

<sql>
 <query>
select * from stock_prices
 </query>
</sql>

Example: Issuing a Stored Procedure Request

The service adapter can execute stored procedures against Sybase, Oracle, DB2,
Informix, and MS SQL Server. Because DBMS manufacturers produce JDBC agents
with varying degrees of functionality, stored procedures can be executed in several
different ways within the service adapter. Depending on the DBMS being selected and
the return of a result set, the listener type selected from the Add Service window can
change.

This example consists of two parts: stored procedures for use with Sybase and stored
procedures for use with Oracle, which itself contains a number of smaller examples.

Note: Oracle subprograms (stored procedures) can be called whether they reside as
functions, stored procedures, or stored procedures located within packages.
BEA WebLogic Adapter for RDBMS User Guide 3-21

http://e-docs.bea.com/wlintegration/v2_1/aiuser/3usruse.htm
http://e-docs.bea.com/wli/docs70/aiuser/3usruse.htm

3 Defining an Application View
Stored Procedures for Use with Sybase

Stored procedures returning result sets are called from the same services as those that
do not return result sets. To set this up, add a service as you normally would and select
the DBMS Listener from the Add Service window.

The format for calling the procedure is as follows:

<sql>
 <query>
 exec stored_procedure_name(@param_variable1 = value1,
 @param_variable2 = value2,… etc)
 </query>
<sql>

The elements of the procedure call are defined as follows:

� stored_procedure_name is the name of the stored procedure.

� @param_variable1 is the name of the first parameter.

� value1 is the value of the first parameter.

The value of @param_variablen is the name of the nth parameter to be passed and
valuen is the value of the nth parameter to be passed. The following is an example:

<sql>
 <query>
 exec PROC2(@l_name='REIS')
 </query>
</sql>

Stored Procedures for Use with Oracle

For Oracle stored procedures, a separate listener must be added to the Oracle service
that selects the Stored Procedure Results Listener.

To add a stored procedure service:

1. Add a service by following the steps in “Adding a Service Adapter to an
Application View” on page 3-7.
3-22 BEA WebLogic Adapter for RDBMS User Guide

Deploying an Application View
2. In the Add Service window, configure the parameters as shown in the following
figure and accompanying table.

Figure 3-13 Add Stored Procedure Service Window

Table 3-3 Add Stored Procedure Parameter and Value Definitions

Parameter Definition

Unique Service Name*
(*Required)

This name must be unique to its application view. Valid
characters include a-z, A-Z, 0-9, and the _ (underscore)
character.

Select Choose StoredProcedureResults.

userid*
(*Required)

The RDBMS Application’s user ID authorized to access the
Oracle Applications system.

Password A password associated with the specified user ID.
BEA WebLogic Adapter for RDBMS User Guide 3-23

3 Defining an Application View
Driver*
(*Required)

The name of the JDBC Driver. For example, the Oracle JDBC
driver is
oracle.jdbc.driver.OracleDriver.

URL*
(*Required)

The address (URL) for the connection to the RDBMS. For
example, an Oracle URL is
jdbc:oracle:thin:@Oracle.ibi.com:app

format*
(*Required)

Choose one of the following:
� row. The data that is produced is returned on a single line

(per record) enclosed in <row> tags.
� column. The data produced is returned field by field, and

each field is enclosed in <column> tags. The column tag has
an attribute whose value is the name of the field; for
example,
<row>
<column name=”ID”>1000</column>
<column name=”First_Name”>Scott</column>

</row>

� field. The data produced is returned field by field, and each
field is enclosed in a tag that bears the field name; for
example,
<row>
<ID>1000></column>
<FIRST_NAME>Scott</column>
</row>

Data_Source_Name The Data Source JNDI name for the JDBC connection pool to
use for connecting to the RDBMS system. If a value is present,
the adapter will use the connection pool to connect to the
RDBMS. If no value is specified, connection will use the Driver,
URL, UserId and Password specified in the service.

Note: For more information on setting up a Data Source, see
“Defining a Data Source” on page 51.

Table 3-3 Add Stored Procedure Parameter and Value Definitions

Parameter Definition
3-24 BEA WebLogic Adapter for RDBMS User Guide

Deploying an Application View
Format for XML Request to Execute a Stored Procedure

The format for the XML request to execute a stored procedure for Oracle is as follows:

<sp>
 <proc>Stored_Procedure_Name</proc>
 <parm>parmvalue1</parm>
 <parm>parmvalue2</parm>
 .
 .
 <parm>parmvalueN</parm>
</sp>

The elements of the request are defined as follows:

� Stored_Procedure_Name is the name of the PL/SQL stored procedure or
function.

� parmvalueN is the Nth positional (in or in/out) parameter of the PL/SQL stored
procedure or function.

DataSourceType Choose one of the following:
� ConnectionPoolDataSource. The connection name

specified in the Data_Source_Name field is used as a JNDI
context for a WebLogic Integration connection pool.

� XADatasource. The connection name specified in the
Data_Source_Name field is used as a JNDI context for an
XADatasource whose transactions participate in the
WebLogic Integration XA transaction.

If the Data_Source_Name field is left blank, the adapter uses the
user ID, password, and URL to establish a plain JDBC 2.0
connection with the database.
If the Data Source_Name field is populated, the user ID,
password, and URL are ignored.

schema From the drop-down list, select the name of the schema that
contains connection and other related information about the
service you are adding.

Table 3-3 Add Stored Procedure Parameter and Value Definitions

Parameter Definition
BEA WebLogic Adapter for RDBMS User Guide 3-25

3 Defining an Application View
Because all parameters are positional, they must be included in the XML Request. If a
parameter is to be omitted, an empty XML value must be used; that is,
<parmvalue2></parmvalue2>.

In/Out/In-Out parameters can be mixed positionally in the signature of the Oracle
Stored Procedure code. When calling the procedure from the XML request only in and
in-out parameters must be specified in the order in which they fall in the stored
procedure code.

Format for XML Request to Execute Multiple Stored Procedures

The format for the XML request to execute multiple stored procedures for Oracle is as
follows:

<connection>
 <sp>
 <proc> Stored_Procedure_Name</proc>
 <parm> parmvalue1</parm>
 <parm> parmvalue2</parm>
 .
 .
 <parm>parmvalueN</parm>
 </sp>
</connection>

The elements of the request are defined as follows:

� Stored_Procedure_Name is the name of the PL/SQL stored procedure or

function.

� parmvalueN is the Nth positional (in or in/out) parameter of the PL/SQL stored
procedure or function.

Format of the Output XML from a Stored Procedure

The format for the output XML from a stored procedure is as follows:

<response>
 <result format="std">
 <parameter>OutValue</parameter>
 <parameter name="parmvalue_name1">OutValue1</parameter>
 <parameter name="parmvalue_name2">OutValue2</parameter>
 .
 .
 <parameter name="parmvalue_nameN">OutValueN</parameter>
3-26 BEA WebLogic Adapter for RDBMS User Guide

Deploying an Application View
 </result>
</response>

The elements of output XML are as follows:

� parmvalue_nameN is the name of the Nth positional out parameter.

� OutValue is the returned result set or returned value of a stored procedure
function. When this returned value is a scalar type, it is enclosed in
<parameter></parameter> tags.

� OutValueN is the value or result associated with the Nth positional out parameter
of the PL/SQL stored procedure or function. If the out parameter is returning a
scalar value, the value will be enclosed in <parameter
name="parmvaluex_name">val</parameter> tags. If the out parameter being
returned is a result set, it will be enclosed in <resultset><colinfo><row>
tags.
BEA WebLogic Adapter for RDBMS User Guide 3-27

3 Defining an Application View
Example 1: XML Request with One Input Parameter (String)

<sp>
 <proc>PROCINOUT</proc>
 <parm>Test Input Parm</parm>

</sp>

Example 2: XML Request with Three Input Parameters (Integer, String, Date)

<sp>
 <proc>RESULTSETTESTMULT</proc>
 <parm>100</parm>
 <parm>Test String</parm>
 <parm>2001-09-31 00:00:00</parm>

</sp>

Example 3: Response XML from Function with Return Value

<?xml version="1.0"?>
<eda>
 <response>
 <timestamp>2002-10-10T20:29:20Z</timestamp>
 <cncresult>
 <result format="field">
 <parameter name="RETURN">tested</parameter>
 </result>
 </cncresult>
 <execstatus>0</execstatus>
 </response>
</eda>

Example 4: Response XML from Stored Procedure with One Return Value and One Out Parameter

<?xml version="1.0"?>
<eda>
 <response>
 <timestamp>2002-10-10T20:27:23Z</timestamp>
 <cncresult>
 <result format="field">
 <parameter name="RETURN">returned</parameter>
 <parameter name="Y">tested</parameter>
 </result>
 </cncresult>
 <execstatus>0</execstatus>
3-28 BEA WebLogic Adapter for RDBMS User Guide

Deploying an Application View
 </response>
</eda>

Example 5: Response from Request That Is Calling a Stored Procedure (Function) That Returns
One Parameter and Has One Out Parameter

PL/SQL:

CREATE OR REPLACE function funcout (yParm out char)

return char is

begin yParm := 'tested';

return 'returned'; end;

XML Request:

<sp>
 <proc>FUNCOUT</proc>

</sp>

XML Response:

<response>
 <result format="std">
 <parameter>returned</parameter>
 <parameter name="YPARM">tested<parameter>
 </result>
</response>

Example 6: PL/SQL Stored Procedure That Has One Input Parameter and Returns 2 Result Sets
Through Two Out Parameters

Note: For the following example returning a result set (cursor variable), an object
type REF CURSOR must be declared. There are multiple ways of doing this.
It can be done as an object type or declared in a package.
BEA WebLogic Adapter for RDBMS User Guide 3-29

3 Defining an Application View
The following code snippet when executed will create a package with the appropriate
type for the example:

CREATE OR REPLACE PACKAGE types
AS
 TYPE ref_cursor IS REF CURSOR;
END;

Stored procedure PL/SQL:

CREATE OR REPLACE procedure sp_get_stocks6(v_price IN NUMBER,
stock_cursor OUT types.ref_cursor, stock_cursor2 OUT
types.ref_cursor) IS

BEGIN
OPEN stock_cursor FOR SELECT ric,price,updated FROM stock_prices
WHERE price < v_price;

OPEN stock_cursor2 FOR SELECT ric,price,updated FROM stock_prices
WHERE price > v_price/2;

END;

XML Request:

<sp>
 <proc>SP_GET_STOCKS6</proc>

 <parm>25</parm>
</sp>

XML Response Output:

<?xml version="1.0"?>
<response>
 <result format="std">
 <resultset>
 <colinfo>
 <col length="6"
 offset="0"
 type="12">RIC</col>
 <col length="21"
 nullable="1"
 offset="6"
 type="2">PRICE</col>
 <col length="7"
 nullable="1"
 offset="27"
 type="93">UPDATED</col>
 </colinfo>
3-30 BEA WebLogic Adapter for RDBMS User Guide

Deploying an Application View
 <row>ttt 3 2002-08-20 00:00:00.0</row>
 <row>l 3 2002-08-08 00:00:00.0</row>
 <row>yyyy 0 2001-10-01 14:15:11.0</row>
 </resultset>
 <resultset>
 <colinfo>
 <col length="6"
 offset="0"
 type="12">RIC</col>
 <col length="21"
 nullable="1"
 offset="6"
 type="2">PRICE</col>
 <col length="7"
 nullable="1"
 offset="27"
 type="93">UPDATED</col>
 </colinfo>
 <row>TEST 40 2002-07-19 00:00:00.0</row>
 <row>ATTT 30 2002-03-04 00:00:00.0</row>
 <row>PPOO 30 2002-03-03 00:00:00.0</row>
 </resultset>
 </result>
</response>
BEA WebLogic Adapter for RDBMS User Guide 3-31

3 Defining an Application View
Execution of Stored Procedure Within a Test Service Window

The following figure shows a stored procedure within a test service window:

Figure 3-14 Execution of Stored Procedure Within a Test Service Window
3-32 BEA WebLogic Adapter for RDBMS User Guide

Deploying an Application View
The following are the data types supported for parameters in Oracle stored procedures.

Table 3-4 Supported Data Types for Oracle Stored Procedure Parameters

Data Type Supported Types

All Scalar Types BINARY INTEGER
DEC
DECIMAL
DOUBLE PRECISION
FLOAT
INT
INTEGER
NATURAL
NATURALN1
NUMBER
NUMERIC
PLS INTEGER
POSITIVE
POSITIVEN
REAL
SIGNTYPE
SMALLINT
CHAR
CHARACTER
LONG
NCHAR
NVARCHAR2
STRING
VARCHAR2
VARCHAR
BOOLEAN
DATE

Data Types for Output
Parameters

All scalar types (as listed above)
Result sets (REF_CURSOR)

Note: Result sets that are defined in PL/SQL type definitions are not supported
at this time.

Composite Type Structures This data type is not supported at this time.
BEA WebLogic Adapter for RDBMS User Guide 3-33

3 Defining an Application View
Working with Parameterized SQL

The ParameterizedSQL option is designed to receive an XML structure and place
specific values inside a predefined parameterized SQL statement. XML structure can
become quite complex and can contain identical XML tag names under different
nodes. To more easily identify the proper node “starting” point for parameter insertion,
a second parameter, called Target_Nodes, is provided.

Figure 3-15 Add Parameterized SQL Service
3-34 BEA WebLogic Adapter for RDBMS User Guide

Deploying an Application View
Table 3-5 Add Parameterized SQL Parameters

Parameter Definition

Unique Service
Name *
(*Required)

This name must be unique to its application view. Valid characters include a-z,
A-Z, 0-9, and the _ (underscore) character.

Select Select ParameterizedSQL from the drop-down list.

format*
(*Required)

Choose one of the following:
� row. The data that is produced is returned on a single line (per record) enclosed in

<row> tags.
� column. The data produced is returned field by field, and each field is enclosed in

<column> tags. The column tag has an attribute whose value is the name of the field;
for example,
<row>
<column name=”ID”>1000</column>
<column name=”First_Name”>Scott</column>

</row>

� field. The data produced is returned field by field, and each field is enclosed in a tag
that bears the field name; for example,
<row>
<ID>1000></column>
<FIRST_NAME>Scott</column>
</row>

Propname Name of Properties Group (default is “NULL”)
BEA WebLogic Adapter for RDBMS User Guide 3-35

3 Defining an Application View
Isolation Level*
(*Required)

Note:
Before setting the
isolation level for a
service, check with
your database
administrator.

Choose one of the following:
� asis. Does not specifically set an isolation level for the connection.
� readUncommitted. Does not prevent any read violation.
� readCommitted. Only data that has been committed by a transaction can be read by

other transactions. This level prohibits a transaction from reading a row with
uncommitted changes in it. This setting prevents a dirty read, but allows non-repeatable
reads and phantom reads.

� repeatableRead. Only data that has been committed by a transaction can be read by
other transactions, and multiple reads yield the same result as long as the data has not
been committed. This setting prevents dirty reads and non-repeatable reads, but not
phantom reads.

� Serializable. This setting is the highest isolation level, stipulating that all transactions
run serially to achieve maximum data integrity. This yields the slowest performance
and least concurrency. This setting prevents Dirty Reads, Non-repeatable reads, and
Phantom reads.

Note: For definitions of Dirty Read, Phantom Read, and Non-repeatable read, and for
more information on isolation levels, see “Transaction Isolation Levels” on page
3-13.

URL*
(*Required)

The address (URL) for the connection to the RDBMS. For example, an Oracle
URL is jdbc:oracle:thin:@Oracle.ibi.com:app

user*
(*Required)

The RDBMS Application’s user ID authorized to access the Oracle Applications
system.

Password A password associated with the specified user ID.

DRIVER*
(*Required)

The name of the JDBC Driver. For example, the Oracle JDBC driver is
oracle.jdbc.driver.OracleDriver.

Data Source Name The Data Source JNDI name for the JDBC connection pool to use for connecting to the
RDBMS system. If a value is present, the adapter will use the connection pool to connect
to the RDBMS. If no value is specified, connection will use the Driver, URL, UserId and
Password specified in the service.

Note: For more information on setting up a Data Source, see “Defining a Data Source”
on page 51.

Parameter Definition
3-36 BEA WebLogic Adapter for RDBMS User Guide

Deploying an Application View
DataSourceType Choose one of the following:
� ConnectionPoolDataSource. The connection name specified in the

Data_Source_Name field is used as a JNDI context for a WebLogic Integration
connection pool.

� XADatasource. The connection name specified in the Data_Source_Name field is
used as a JNDI context for an XADatasource whose transactions participate in the
WebLogic Integration XA transaction.

If the Data_Source_Name field is left blank, the adapter uses the user ID, password, and
URL to establish a plain JDBC 2.0 connection with the database.
If the Data Source_Name field is populated, the user ID, password, and URL are ignored.

Schema From the drop-down list, select the name of the schema that contains connection and other
related information about the service you are adding.

Parameter Definition
BEA WebLogic Adapter for RDBMS User Guide 3-37

3 Defining an Application View
Adding an Event Adapter to an Application
View

The event adapter supports the polling of relational tables for incoming data inserted
by any process, trigger, or method. It captures any incoming data (to specified tables)
and performs operations based on the contents of the rows. This highly configurable
event adapter, when triggered, reads one or more rows from the table and creates an
XML document representing the column data in each row. Standard business logic
facilities are then applied to the constructed XML documents, which include
transformation, validation, security management, and application processing. Each
row in the table is deleted (optional) or updated if the business logic has properly
completed.

Note: The event adapter requires the JDBC technology-based driver for the database
being monitored. Please contact your DBMS vendor to obtain the appropriate
JDBC driver.

After you create and configure an application view, you can add the event adapter. For
information on creating an application view, see “Defining a New Application View”
on page 3-1.

1. While the Application View Console is open, click Administration. The
Application View Administration window displays, as shown in the following
figure:
3-38 BEA WebLogic Adapter for RDBMS User Guide

Adding an Event Adapter to an Application View
Figure 3-16 Application View Administration Window - Event Adapter

2. Click Add in the Events row.

The Add Event window displays.
BEA WebLogic Adapter for RDBMS User Guide 3-39

3 Defining an Application View
Figure 3-17 Add Event Window
3-40 BEA WebLogic Adapter for RDBMS User Guide

Adding an Event Adapter to an Application View
3. Enter the parameter information required to poll on an RDBMS table:

Table 3-6 RDBMS Add Event Parameters

Parameter Description

Unique Event Name*
(*Required)

This name must be unique to its application view. Valid characters include a-z,
A-Z, 0-9, and the _ (underscore) character.

encoding Enter the following value: ISO-8859-1.

Driver*
(*Required)

Vendor-specific JDBC driver for access to the database. This parameter requires a
fully-qualified name.

url*
(*Required)

A database URL (or JDBC URL) is a platform-independent way of addressing a
database. A database/JDBC URL has the following form:

jdbc:[subprotocol]:[node]/[databaseName]

User Name Valid user name for access to the database.

Password Valid password associated with the user name for access to the database.

Format *
(*Required)

Choose one of the following:
� column. The data produced is returned field by field, and each field is enclosed in

<column> tags. The column tag has an attribute whose value is the name of the field;
for example,
<row>
<column name=”ID”>1000</column>
<column name=”First_Name”>Scott</column>

</row>

� field. The data produced is returned field by field, and each field is enclosed in a tag
that bears the field name; for example,
<row>
<ID>1000></column>
<FIRST_NAME>Scott</column>
</row>

Maximum Rows Number of data rows to be retrieved from the database table in a single operation. For
example, if five were specified, then up to five rows are read and processed in a single
operation. In most circumstances, you should not allow this parameter to exceed the
number of parallel threads available for execution.
BEA WebLogic Adapter for RDBMS User Guide 3-41

3 Defining an Application View
Note: All events and related SQL must be entered through the BEA Application
Explorer. For more information, see Chapter 2, “Using the BEA Application
Explorer With an RDBMS.”

SQL Post-Query SQL Query that is executed after the initial query request.
If this parameter is not configured, the following command is executed:

DELETE field1,field2... from table_name
This parameter should not be configured if the RDBMS event adapter exit is configured.
Two types of operators are available: ?fieldname and ^fieldname.
� The ?fieldname will evaluate at run time to ?fieldname= value.
� The ^fieldname will evaluate at run time to value.
A SQL Post query using the ? can be used in an update statement as follows: update
tablename where ?fieldname.
For example, update stock_prices_temp where ?RIC.
A SQL Post Query using the ^ can be used in an insert statement as follows:
Insert into tablename values (^fieldname1, ^fieldname2,
^fieldname3).
For example, Insert into stock_prices_temp values (^RIC, ̂ PRICE,
^UPDATED).

Delete Keys Comma separated list of keys used in the DELETE statement. A delete operates on keys,
so you should enter the table's key columns in this parameter.

Polling Interval Interval in seconds at which the database is monitored for new rows. If this parameter
is not configured, the default value is two seconds.

Data_Source_Name The Data Source JNDI name for the JDBC connection pool to use for connecting to the
RDBMS system. If a value is present, the adapter will use the connection pool to
connect to the RDBMS. If no value is specified, connection will use the Driver, URL,
UserId and Password specified in the service.

Note: For more information on setting up a data source, see “Defining a Data Source”
on page 3-51.

Schema From the drop-down list, select the name of the schema that contains
connection and other related information about the event you are adding.

Table 3-6 RDBMS Add Event Parameters

Parameter Description
3-42 BEA WebLogic Adapter for RDBMS User Guide

Adding an Event Adapter to an Application View
Note that you specified the parameterized SQL statement when you generated
the event schema; for more information about generating event schemas, see
Chapter 2, “Using the BEA Application Explorer With an RDBMS.”

4. Click Add to proceed with the adding event process.

The Application View Administration window is displayed:

Figure 3-18 Application View Administration Window - Event Adapter
BEA WebLogic Adapter for RDBMS User Guide 3-43

3 Defining an Application View
5. Click Continue.

Figure 3-19 Deploy Application View Oracle Events to Servers Window

6. Click Deploy to deploy the application view.

For more information on deploying and testing application views, see
“Deploying an Application View” on page 3-16.
3-44 BEA WebLogic Adapter for RDBMS User Guide

Adding an Event Adapter to an Application View
Figure 3-20 Event Summary Window

7. After you create and deploy an application view that contains events, test the
application view event. Testing evaluates whether the application view event
interacts properly with the RDBMS system.

8. To test an application view, find the event in the Current Events area, and click
Test for that event.
BEA WebLogic Adapter for RDBMS User Guide 3-45

3 Defining an Application View
Figure 3-21 Test Event Window

9. Enter a time, in milliseconds, for the test to wait for an incoming event. When
you are ready to initiate the event, click the Test button.
3-46 BEA WebLogic Adapter for RDBMS User Guide

Adding an Event Adapter to an Application View
Figure 3-22 Test Result Window

If the test is successful, the Test Result window displays the input XML and the
result set. This confirms that the application view event is successfully deployed.
You can now employ the event in business process workflows or write custom
code. For more information, see “Using Application Views in the Studio” in
Using Application Integration:

� For WebLogic Integration 7.0, see
http://edocs.bea.com/wli/docs70/aiuser/3usruse.htm

� For WebLogic Integration 2.1, see
http://edocs.bea.com/wlintegration/v2_1sp/aiuser/3usruse.htm

Note: If the test fails, the Test Result window displays a timed out message.
BEA WebLogic Adapter for RDBMS User Guide 3-47

http://e-docs.bea.com/wli/docs70/aiuser/3usruse.htm
http://e-docs.bea.com/wlintegration/v2_1/aiuser/3usruse.htm

3 Defining an Application View
Handling Null Values

Relational databases support the notion of null values in a data field. On the event side,
it is sometimes important to ascertain whether a field contains a null value, or is simply
an empty string. On the service side, it is important to properly set null values when
performing an insert or update.

Null Values in Events

For events, null values in the data being read are denoted in the result document by the
attribute null='y'. The following table depicts the behavior of the BEA WebLogic
Adapter for RDBMS in handling null values for events.

The attribute "null" is used to indicate fields containing a null value. For the Field and
Column formats, the null attribute is set to 'y' in the case of a nullable field containing
a null value. The following is an example of XML, in the Field format, containing
fields representing the valid combinations from the above table.

Table 3-7 Handling Null Values for Events

Database Value Database
Nullable

XML Value XML
Attribute

Spaces Yes Spaces

Spaces No Spaces

Null Yes None null=’y’

Null No N/A N/A

Empty Yes None

Empty No None

Text Yes Text

Text No Text
3-48 BEA WebLogic Adapter for RDBMS User Guide

Handling Null Values
Listing 3-1 XML Generated by an Event

<RDBMS table="testnulls">
 <row>
 <SPACESNull type="1"> </SPACESNull> spaces/nullable
 <SPACESNNull type="1"> </SPACESNNull> spaces/not nullable
 <NULLFIELD type="1" null="y"/> null/nullable
 <EmptyFieldNull type="1"/> empty/nullable
 <EmptyFieldNotNull type="1"/> empty/not nullable
 <TextNull type="1">Text </TextNull> text/nullable
 <TextNNull type="1">Text </TextNull> text/not nullable
 </row>
</RDBMS>

The following is an example of XML, in the Column format, containing fields
representing the valid combinations from the above table.

Listing 3-2 Column-Formatted XML Generated by an Event

<RDBMS table="testnulls">
 <row>
 <col name”SPACESNull” type="1"> </SPACESNull> spaces/nullable
 <col name”SPACESNNull” type="1"> </SPACESNNull> spaces/not nullable
 <col name”NULLFIELD” type="1" null="y"/> null/nullable
 <col name”EmptyFieldNull” type="1"/> empty/nullable
 <col name”EmptyFieldNotNull” type="1"/> empty/not nullable
 <col name”TextNull” type="1">Text </TextNull> text/nullable
 <col name”TextNNull” type="1">Text </TextNull> text/not nullable
 </row>
</RDBMS>

When the RDBMS event is set to produce row formatted event documents, the null
attribute, on the <row> node, uses positional 0 and 1 values to designate the presence
of a null. The following is an example of XML, in the row format, containing three
fields, where two of the fields contain a null value. The colinfo node of the XML
contains metadata about the individual columns. The nullable='1' indicates that the
column is nullable. If the value was 0, then the column could not be null. In this
example, the ADDRESS and CITY columns are nullable and contain a null value.
BEA WebLogic Adapter for RDBMS User Guide 3-49

3 Defining an Application View
Listing 3-3 Columns Containing Null Values

<RDBMS table="aaa">
<colinfo>

<col length="35"
nullable="1"
offset="0"
type="12">NAME</col>

<col length="35"
nullable="1"
offset="35"
type="12">ADDRESS</col>

<col length="23"
nullable="1"
offset="70"
type="12">CITY</col>

</colinfo>
<row nulls="011">a

</RDBMS>

Null Values in Services

For services, you need to properly designate null values in order to insert those values
into the RDBMS. The BEA WebLogic Adapter for RDBMS propagates null values
into SQL under the following code.

<ttable>
 <NField/>
</ttable>

Here, the application view has a service that is defined with Target_Nodes set to

/ttable/

and SQL set to

INSERT INTO ANOTHER_TABLE VALUES('?ttable')

The resulting SQL sent to the RDBMS is:

INSERT INTO ANOTHER_TABLE VALUES(NULL)

For more information about using parameterized SQL with null values, see “Working
with Parameterized SQL.”
3-50 BEA WebLogic Adapter for RDBMS User Guide

Defining a Data Source
Defining a Data Source

WebLogic Server supports the establishment of connection pools and data sources.
The connection pool contains named groups of JDBC connections that are created
when the connection pool is registered, usually when starting up WebLogic Server.
The BEA WebLogic Adapter for RDBMS borrows a connection from the pool, uses it,
and then returns it to the pool by closing it. A data source object enables JDBC clients
to obtain a DBMS connection. Each data source object points to a connection pool.
The adapter uses the data source JNDI name to locate the appropriate connection pool.

Creating a Connection Pool

To create a connection pool, perform the following steps:

1. Navigate your browser to the WebLogic Server Administration Console. The
WebLogic Server Administration Console can be found at the following URL:
http://host:port/console.

Here, host is the IP address or DNS name of the machine on which WebLogic
Server is running, and port is the socket on which the server is listening.

The WebLogic Server Administration window displays.

2. In the left pane, choose Services and then JDBC and then Connection Pools from
the navigation tree.

The console displays the JDBC Connection Pools window.
BEA WebLogic Adapter for RDBMS User Guide 3-51

3 Defining an Application View
Figure 3-23 Connection Pools Window

3. To create a new connection pool, click the Configure a new JDBC Connection
Pool link.
3-52 BEA WebLogic Adapter for RDBMS User Guide

Defining a Data Source
The Create a new JDBCConnectionPool window opens.

Figure 3-24 Create a new JDBC Connection Pool Window

4. Enter the appropriate information into the JDBC connection pool fields.

5. Click Create.
BEA WebLogic Adapter for RDBMS User Guide 3-53

3 Defining an Application View
The following figure shows a connection to an Oracle database.

Figure 3-25 JDBC Connection Pool Window with Data

Creating a Data Source

To create a new data source, perform the following steps:

1. Navigate your browser to the WebLogic Server Administration Console. The
WebLogic Server Administration Console can be found at the following URL:
http://host:port/console.

Here, host is the IP address or DNS name of the machine on which WebLogic
Server is running, and port is the socket on which the server is listening.

The WebLogic Server Administration window displays.
3-54 BEA WebLogic Adapter for RDBMS User Guide

Defining a Data Source
2. In the left pane, choose Services and then JDBC and then Data Sources from the
navigation tree.

The console displays the JDBC Data Sources window.

Figure 3-26 JDBC Data Sources Window

3. Click the Configure a new JDBC Data Source link.
BEA WebLogic Adapter for RDBMS User Guide 3-55

3 Defining an Application View
The Create a new JDBCDataSource window opens.

Figure 3-27 Create a new JDBC Data Source Window

4. Enter the appropriate information into the JDBC data source fields.

5. Click Create.
3-56 BEA WebLogic Adapter for RDBMS User Guide

Defining a Data Source
The following figure shows a data source using the connection pool created in
the previous example.

Figure 3-28 JDBC Data Source Window with Data

Once created, the Data Source JNDI Name can be specified in Application View
Service. For more information on connection pools and data sources, see “JDBC
Components-Connection Pools, Data Sources, and MultiPools,” in “Managing JDBC
Connectivity” in the WebLogic Server Administration Guide:

� For WebLogic Server 7.0, see
http://edocs.bea.com/wls/docs70/adminguide/jdbc.html

� For WebLogic Server 6.1, see
http://edocs.bea.com/wls/docs61/adminguide/jdbc.html
BEA WebLogic Adapter for RDBMS User Guide 3-57

3 Defining an Application View
3-58 BEA WebLogic Adapter for RDBMS User Guide

CHAPTER
Service Adapter vice Adapter
Examples

This section provides service samples that use the service adapter and includes the
following examples:

� XML Schemas

� Select Statement

� Simple Insert Statement

� Delete Statement

� Multi-Select Statements

� Update Statement

� Stored Procedure

� Including Multiple SQL Statements in an XML Request
BEA WebLogic Adapter for RDBMS User Guide 4-1

4 Service Adapter Examples
XML Schemas

These examples use the service adapter and are shown with business process
management functionality.

The input XML schema for these examples is:

Listing 4-1 Input XML Schema

<?xml version="1.0" encoding="utf-16"?>
<xs:schema id="NewDataSet" xmlns=""
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
 <xs:element name="sql">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="query" type="xs:string" minOccurs="0" />
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 <xs:element name="NewDataSet" msdata:IsDataSet="true">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:element ref="sql" />
 </xs:choice>
 </xs:complexType>
 </xs:element>
</xs:schema>
4-2 BEA WebLogic Adapter for RDBMS User Guide

XML Schemas
The output XML schema for these examples is:

Listing 4-2 Output XML Schema

<?xml version="1.0" encoding="utf-16"?>
<xs:schema id="eda" xmlns="" xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
 <xs:element name="eda" msdata:IsDataSet="true">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="response">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="timestamp" type="xs:string" minOccurs="0" />
 <xs:element name="execstatus" type="xs:string" minOccurs="0" />
 <xs:element name="cncresult" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="result" minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="resultset" minOccurs="0"
maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="colinfo" minOccurs="0"
maxOccurs="unbounded">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="col" nillable="true"
minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent msdata:ColumnName="col_Text"
msdata:Ordinal="3">
 <xs:extension base="xs:string">
 <xs:attribute name="length"
type="xs:string" />
 <xs:attribute name="offset"
type="xs:string" />
 <xs:attribute name="type" type="xs:string" />
 <xs:attribute name="nullable"
type="xs:string" />
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
BEA WebLogic Adapter for RDBMS User Guide 4-3

4 Service Adapter Examples
 </xs:complexType>
 </xs:element>
 <xs:element name="row" nillable="true" minOccurs="0"
maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent msdata:ColumnName="row_Text"
msdata:Ordinal="0">
 <xs:extension base="xs:string">
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="format" type="xs:string" />
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:complexType>
 </xs:element>
 </xs:choice>
 </xs:complexType>
 </xs:element>
</xs:schema>
4-4 BEA WebLogic Adapter for RDBMS User Guide

Select Statement
Select Statement

The following example shows a Select statement:

Select * from Stock_prices;

Figure 4-1 Input as Seen in WebLogic Integration Studio Window
BEA WebLogic Adapter for RDBMS User Guide 4-5

4 Service Adapter Examples
Figure 4-2 Generated Output
4-6 BEA WebLogic Adapter for RDBMS User Guide

Simple Insert Statement
Simple Insert Statement

The following example shows a simple Insert statement:

Insert into stock_prices values('UPS',30,'16-JUL-2002')

Figure 4-3 Input as Seen in WebLogic Integration Studio Window

BEA WebLogic Adapter for RDBMS User Guide 4-7

4 Service Adapter Examples
Figure 4-4 Generated Output - WebLogic Integration Studio Window
4-8 BEA WebLogic Adapter for RDBMS User Guide

Delete Statement
Delete Statement

The following example shows a Delete statement:

delete from stock_prices where RIC='UPS'

Figure 4-5 Input as Seen in WebLogic Integration Studio Window
BEA WebLogic Adapter for RDBMS User Guide 4-9

4 Service Adapter Examples
Figure 4-6 Generated Output - WebLogic Integration Studio Window
4-10 BEA WebLogic Adapter for RDBMS User Guide

Multi-Select Statements
Multi-Select Statements

The following example shows a multi-select statement:

Select * from Stock_prices where RIC='IBM';

Figure 4-7 Input as Seen in WebLogic Integration Studio Window
BEA WebLogic Adapter for RDBMS User Guide 4-11

4 Service Adapter Examples
Select * from Stock_prices where RIC='AMZN';

Figure 4-8 Generated Output - WebLogic Integration Studio Window
4-12 BEA WebLogic Adapter for RDBMS User Guide

Update Statement
Update Statement

The following example shows an Update statement:

update Stock_prices set PRICE=44 where RIC='IBM';

Figure 4-9 Input as Seen in WebLogic Integration Studio Window
BEA WebLogic Adapter for RDBMS User Guide 4-13

4 Service Adapter Examples
Figure 4-10 Generated Output - WebLogic Integration Studio Window

Stored Procedure

Note: For the following example returning a result set (cursor variable), an object
type REF CURSOR must be declared. There are multiple ways of doing this.
It can be done as an object type or declared in a package.

The following code snippet when executed will create a package with the appropriate
type for the example:

CREATE OR REPLACE PACKAGE types
AS
 TYPE ref_cursor IS REF CURSOR;
END;
4-14 BEA WebLogic Adapter for RDBMS User Guide

Stored Procedure
The following example shows an Oracle stored procedure:

Listing 4-3 Oracle Stored Procedure

CREATE OR REPLACE FUNCTION sp_get_stocks(v_price IN NUMBER)
 RETURN types.ref_cursor
AS
 stock_cursor types.ref_cursor;
BEGIN
 OPEN stock_cursor FOR
 SELECT ric,price,updated FROM stock_prices
 WHERE price < v_price;

 RETURN stock_cursor;
END;

Listing 4-4 Oracle Input Schema

<?xml version="1.0" encoding="utf-16"?>
<xsd:schema id="NewDataSet" xmlns=""
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
 <xsd:element name="sp">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element name="proc" type="xsd:string" minOccurs="0" />
 <xsd:element name="param" type="xsd:string" minOccurs="0" />
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="NewDataSet" msdata:IsDataSet="true">
 <xsd:complexType>
 <xsd:choice maxOccurs="unbounded">
 <xsd:element ref="sp" />
 </xsd:choice>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>
BEA WebLogic Adapter for RDBMS User Guide 4-15

4 Service Adapter Examples
Listing 4-5 Oracle Output Schema

<?xml version="1.0" encoding="utf-16"?>
<xsd:schema id="eda" xmlns=""
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:msdata="urn:schemas-microsoft-com:xml-msdata">
 <xsd:element name="eda" msdata:IsDataSet="true">
<xsd:complexType>
<xsd:choice maxOccurs="unbounded">
<xsd:element name="response">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="timestamp" type="xsd:string" minOccurs="0" />
<xsd:element name="execstatus" type="xsd:string" minOccurs="0" />
<xsd:element name="cncresult" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="result" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="resultset" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="colinfo" minOccurs="0" maxOccurs="unbounded">
<xsd:complexType>
<xsd:sequence>
<xsd:element name="col" nillable="true" minOccurs="0"
maxOccurs="unbounded">
<xsd:complexType>
<xsd:simpleContent msdata:ColumnName="col_Text"
msdata:Ordinal="3">
<xsd:extension base="xsd:string">
<xsd:attribute name="length" type="xsd:string" />
<xsd:attribute name="offset" type="xsd:string" />
<xsd:attribute name="type" type="xsd:string" />
<xsd:attribute name="nullable" type="xsd:string" />
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>

<xsd:element name="row" nillable="true" minOccurs="0"
maxOccurs="unbounded">
<xsd:complexType>
<xsd:simpleContent msdata:ColumnName="row_Text"
4-16 BEA WebLogic Adapter for RDBMS User Guide

Stored Procedure
msdata:Ordinal="0">
<xsd:extension base="xsd:string">
</xsd:extension>
</xsd:simpleContent>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
<xsd:attribute name="format" type="xsd:string" />
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:sequence>
</xsd:complexType>
</xsd:element>
</xsd:choice>
</xsd:complexType>
</xsd:element>
</xsd:schema>

Figure 4-11 Input as Seen in WebLogic Integration Studio Window
BEA WebLogic Adapter for RDBMS User Guide 4-17

4 Service Adapter Examples
Figure 4-12 Generated Output - WebLogic Integration Studio Window
4-18 BEA WebLogic Adapter for RDBMS User Guide

Stored Procedure
Including Multiple SQL Statements in an XML Request

The following example illustrates how to include more than one SQL statement in an
XML request that you send to the service adapter. The format is similar to the format
for a single SQL statement, with the addition of a <connection> tag.

The format for a request having multiple SQL statements is:

Listing 4-6 XML Format for Request with Multiple SQL Statements

<connection>
 <sql>
 <query>
 SQL STATEMENT1
 </query>
 </sql>
 <sql>
 <query>
 SQL STATEMENT2
 </query>
 </sql>
 .
 .
 <sql>
 <query>
 SQL STATEMENTn
 </query>
 </sql>
</connection>
BEA WebLogic Adapter for RDBMS User Guide 4-19

4 Service Adapter Examples
For example, you can include two statements that insert two records into a
Stock_Prices table as follows:

Listing 4-7 Sample Request with Multiple SQL Statements

<connection>
 <sql>
 <query>
 insert into stock_prices values('TICK1',30,'16-JUL-2002')

 </query>
 </sql>
 <sql>
 <query>
 insert into stock_prices values('TICK2',120,'16-JUL-2002')

 </query>
 </sql>
</connection>
4-20 BEA WebLogic Adapter for RDBMS User Guide

Stored Procedure
The following figure shows the request running in the WebLogic Integration Test
Tool:

Figure 4-13 XML Request with Multiple SQL Statements - Input and Output
Windows
BEA WebLogic Adapter for RDBMS User Guide 4-21

4 Service Adapter Examples
4-22 BEA WebLogic Adapter for RDBMS User Guide

CHAPTER
Event Adapter
Examples

This section provides event adapter examples that use the event adapter and includes
the following examples:

� Simple Event Adapter

� Setting up a Non-Destructive Read in the Event Adapter

� Specifying Delete Keys in the Event Adapter

Simple Event Adapter

In this example, the properties of a simple event listener are described. It is assumed
that you are familiar with the process of setting up an application view and deploying
an adapter event.
BEA WebLogic Adapter for RDBMS User Guide 5-1

5 Event Adapter Examples
The event adapter polls a specified RDBMS table for data. In this example, the table
is STOCK_PRICES. If found, the data is formatted in an XML response. The record in
the RDBMS is then deleted from the table.

Listing 5-1 Sample Schema for Simple Event Adapter

SQL> describe stock_prices

Name Null? Type
--- -------- -----------
RIC NOT NULL VARCHAR2(6)
PRICE NUMBER(7,2)
UPDATED DATE

The following is the Manifest for this example:

Listing 5-2 Sample Manifest for Simple Event Adapter

<manifest><connection>
<user>EDARPK</user>
<password> </password>
<driver>oracle.jdbc.driver.OracleDriver</driver>
<url>jdbc:oracle:thin:@Oracle11i.ibi.com:1523:vis</url>
</connection>
 <schemaref name="oracle">
 <request root="sql" file="StockPricesTemp.xsd" />
 <response root="sql" file="StockPricesTemp.xsd" />
 </schemaref>
</manifest>
5-2 BEA WebLogic Adapter for RDBMS User Guide

Simple Event Adapter
The following is a schema of an example event (StockPricesTemp.xsd):

Listing 5-3 Schema of StockPricesTemp.xsd

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">
 <xsd:element name="RDBMS">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="row"/>
 </xsd:sequence>
 <xsd:attribute name="table" type="xsd:string"
use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="PRICE">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:extension base="xsd:byte">
 <xsd:attribute name="type" type="xsd:byte"
use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="RIC">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
 <xsd:attribute name="type" type="xsd:byte"
use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="UPDATED">
 <xsd:complexType>
 <xsd:attribute name="type" type="xsd:byte"
use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="row">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="RIC"/>
BEA WebLogic Adapter for RDBMS User Guide 5-3

5 Event Adapter Examples
 <xsd:element ref="PRICE"/>
 <xsd:element ref="UPDATED"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Figure 5-1 Add Event Window

The event properties for this JSP page are as follows:
5-4 BEA WebLogic Adapter for RDBMS User Guide

Setting up a Non-Destructive Read in the Event Adapter
� Encoding. ISO-8859-1

� Driver. JDBC Driver. For example,

oracle.jdbc.driver.OracleDriver

� URL. URL of RDBMS. For example,

jdbc:oracle:thin:@Oracle11i.ibi.com:1523:vis

� User Name. User name that is registered with the back-end RDBMS.

� Password. The Oracle Applications user ID authorized to access the Oracle
Applications system.

� Table. STOCK_PRICES

� Maximum Rows. 1

� SQL Query. (empty)

� SQL Post Query. (empty)

� Delete Keys. (empty)

� Polling Interval. Interval in seconds.

Setting up a Non-Destructive Read in the
Event Adapter

The following example describes how to detect incoming data into a table without a
destructive read. This example requires two tables that are named trans_event and
last_trans.

Trans_event is the table that has the incoming data that you want to detect.
Last_trans is a table that contains the last value of the primary key read from the
trans_event table. Last_trans is to contain a single row, single value and must be
set up prior to configuring the BEA WebLogic Adapter for RDBMS. The last_trans
table field must have the same name as the primary key in the trans_event table. This
key must be unique and sortable.
BEA WebLogic Adapter for RDBMS User Guide 5-5

5 Event Adapter Examples
The table schemas for this example are:

Listing 5-4 Sample Schema for Non-Destructive Read

SQL> describe trans_event

Name Null? Type
-- -------- --------------

EVENT_ID NOT NULL NUMBER(38)
LAST_NAME VARCHAR2(50)
TRANS_ID CHAR(2)

SQL> describe last_trans
Name Null? Type
--- ------- -------------
EVENT_ID NUMBER

The last_trans single field value must be seeded with the starting value of the
primary key.

The event adapter generates XML event documents for each record found in the
trans_event table with a primary key greater than the value found in the
last_trans table.

To set up the event listener for this example, you must establish an application view.
5-6 BEA WebLogic Adapter for RDBMS User Guide

Setting up a Non-Destructive Read in the Event Adapter
Figure 5-2 Edit Event Window

The event properties for this JSP page are as follows:

� Encoding. ISO-8859-1

� Driver. JDBC Driver. For example,

oracle.jdbc.driver.OracleDriver

� URL. URL of RDBMS. For example,

jdbc:oracle:thin:@Oracle11i.ibi.com:1523:vis

� User Name. User name that is registered with the back-end RDBMS.
BEA WebLogic Adapter for RDBMS User Guide 5-7

5 Event Adapter Examples
� Password. Password of the user name.

� Table. Table name containing the value of the highest primary key processed.
For example: LAST_TRANS

� Maximum Rows. 1

� SQL Query. SELECT * FROM TRANS_EVENT WHERE EVENT_ID>(select
EVENT_ID from LAST_TRANS.EVENT_ID)

� SQL Post Query. UPDATE LAST_TRANS SET ?EVENT_ID

� Delete Keys. (empty)

� Polling Interval. Interval in seconds.

The following is the manifest for this example:

Listing 5-5 Sample Manifest for Non-Destructive Read

<manifest><connection>
<user>EDARPK2</user>
<password></password>
<driver>oracle.jdbc.driver.OracleDriver</driver>
<url>jdbc:oracle:thin:@Oracle11i.ibi.com:1523:vis</url>
</connection>
 <schemaref name="oracle">
 <event root="RDBMS" file="EventComplex.xsd" />
 </schemaref>
</manifest>

The following is a schema of an example event (EventComplex.xsd):

Listing 5-6 Schema of EventComplex.xsd

<?xml version="1.0" enc
oding="UTF-8"?>
<xsd:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">
 <xsd:element name="EVENT_ID">
 <xsd:complexType>
5-8 BEA WebLogic Adapter for RDBMS User Guide

Specifying Delete Keys in the Event Adapter
 <xsd:attribute name="type" type="xsd:byte"
use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="LAST_NAME">
 <xsd:complexType>
 <xsd:attribute name="type" type="xsd:byte"
use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="OracleSQL">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="row"/>
 </xsd:sequence>
 <xsd:attribute name="table" type="xsd:string"
use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="TRANS_ID">
 <xsd:complexType>
 <xsd:attribute name="type" type="xsd:byte"
use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="row">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="EVENT_ID"/>
 <xsd:element ref="LAST_NAME"/>
 <xsd:element ref="TRANS_ID"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>

Specifying Delete Keys in the Event Adapter

During a destructive read in the event adapter, the deletion of the record from the
database is accomplished through the adapter’s dynamic creation of a delete statement
containing all of the keys from the record along with the row values.
BEA WebLogic Adapter for RDBMS User Guide 5-9

5 Event Adapter Examples
For the STOCK_PRICES example, this would be as follows:

Delete from STOCK_PRICES where
 RIC="value"
 PRICES=value
 UPDATED=date value.

This would be inefficient (and can be avoided) if the record contains a primary key.
Under the delete keys in the event properties, you can specify the keys to use when the
event adapter dynamically creates and executes the delete statement.

In the example table STOCK_PRICES, the primary key is the RIC field. For the adapter
to dynamically create a delete statement like the following:

Delete from STOCK_PRICES where RIC= "value"

you must specify the RIC field in the Event Properties window (as seen below in the
Delete Keys field) when setting up the event adapter for this event.
5-10 BEA WebLogic Adapter for RDBMS User Guide

Specifying Delete Keys in the Event Adapter
Figure 5-3 Add Event Window
BEA WebLogic Adapter for RDBMS User Guide 5-11

5 Event Adapter Examples
The event properties for this JSP page are as follows:

� Encoding. ISO-8859-1

� Driver. JDBC Driver. For example,

oracle.jdbc.driver.OracleDriver

� URL. URL of RDBMS. For example,

jdbc:oracle:thin:@Oracle11i.ibi.com:1523:vis

� User Name. User name that is registered with the back-end RDBMS.

� Password. Password of the user name.

� Table. STOCK_PRICES

� Maximum Rows. 1

� SQL Query. (empty)

� SQL Post Query. (empty)

� Delete Keys. (RIC)

� Polling Interval. Interval in seconds.

The schema for the STOCK_PRICES table (in this example) is as follows:

Listing 5-7 Sample Schema for Specifying Delete Keys

SQL> describe stock_prices
Name Null? Type
-- -------- ----------------

RIC NOT NULL VARCHAR2(6)
PRICE NUMBER(7,2)
UPDATED DATE
5-12 BEA WebLogic Adapter for RDBMS User Guide

Specifying Delete Keys in the Event Adapter
The following is the manifest for this example:

Listing 5-8 Sample Manifest for Specifying Delete Keys

<manifest><connection>
<user>EDARPK</user>
<password></password>
<driver>oracle.jdbc.driver.OracleDriver</driver>
<url>jdbc:oracle:thin:@Oracle11i.ibi.com:1523:vis</url>
</connection>
 <schemaref name="OracleRDBMSStockPrices">
 <event root="RDBMS" file="StockPricesTemp.xsd" />
 </schemaref>
</manifest>

The following is a schema of an example event (StockPricesTemp.xsd):

Listing 5-9 Schema of StockPricesTemp.xsd

<?xml version="1.0" encoding="UTF-8"?><xsd:schema
xmlns:xsd="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">
 <xsd:element name="RDBMS">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="row"/>
 </xsd:sequence>
 <xsd:attribute name="table" type="xsd:string"
use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="PRICE">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:extension base="xsd:byte">
 <xsd:attribute name="type" type="xsd:byte"
use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="RIC">
 <xsd:complexType>
 <xsd:simpleContent>
 <xsd:extension base="xsd:string">
BEA WebLogic Adapter for RDBMS User Guide 5-13

5 Event Adapter Examples
 <xsd:attribute name="type" type="xsd:byte"
use="required"/>
 </xsd:extension>
 </xsd:simpleContent>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="UPDATED">
 <xsd:complexType>
 <xsd:attribute name="type" type="xsd:byte"
use="required"/>
 </xsd:complexType>
 </xsd:element>
 <xsd:element name="row">
 <xsd:complexType>
 <xsd:sequence>
 <xsd:element ref="RIC"/>
 <xsd:element ref="PRICE"/>
 <xsd:element ref="UPDATED"/>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:element>
</xsd:schema>
5-14 BEA WebLogic Adapter for RDBMS User Guide

	About This Document
	What You Need to Know
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introducing the BEA WebLogic Adapter for RDBMS
	Introduction
	Event Adapter
	Service Adapter
	Supported Data Types
	Local XA Transaction Support
	Local Transaction Management Contracts
	Connector Support for Local Transactions with No User-Defined Transaction Demarcation

	2 Using the BEA Application Explorer With an RDBMS
	Connecting to an RDBMS
	Connecting to an RDBMS Using an Existing Connection
	Disconnecting from an RDBMS
	Removing a Connection
	Viewing Table-Based Metadata
	Viewing Stored Procedures
	Generating Event Schemas
	Generating Service Schemas
	Generating Service Schemas Under the SQL Statement Node
	Generating Service Schemas Under the Parameterized SQL Statement Node

	Combining Parameterized SQL Feature with Stored Procedures
	Generating Schemas for Stored Procedures
	Removing Schemas

	3 Defining an Application View
	Defining a New Application View
	Adding a Service Adapter to an Application View
	Transaction Isolation Levels
	Transaction Management

	Deploying an Application View
	Example: Issuing an SQL Query Request
	Example: Issuing a Stored Procedure Request
	Stored Procedures for Use with Sybase
	Stored Procedures for Use with Oracle

	Working with Parameterized SQL

	Adding an Event Adapter to an Application View
	Handling Null Values
	Null Values in Events
	Null Values in Services

	Defining a Data Source
	Creating a Connection Pool
	Creating a Data Source

	4 Service Adapter Examples
	XML Schemas
	Select Statement
	Simple Insert Statement
	Delete Statement
	Multi-Select Statements
	Update Statement
	Stored Procedure
	Including Multiple SQL Statements in an XML Request

	5 Event Adapter Examples
	Simple Event Adapter
	Setting up a Non-Destructive Read in the Event Adapter
	Specifying Delete Keys in the Event Adapter

