
BEA
WebLogic
Adapter for
SWIFT ®

User Guide
Version 8.1.1
Document Date: October 2003

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Portions Copyright © 2003 iWay Software. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA
Systems License Agreement and may be used or copied only in accordance with the terms of that agreement.
It is against the law to copy the software except as specifically allowed in the agreement. This document
may not, in whole or in part, be copied photocopied, reproduced, translated, or reduced to any electronic
medium or machine readable form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights
Clause at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software
clause at DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause
at NASA FAR supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on
the part of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS”
WITHOUT WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems
DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE
USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS
OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA
WebLogic Express, BEA WebLogic Integration, BEA WebLogic Personalization Server, BEA WebLogic
Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA WebLogic Workshop and How Business
Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

BEA WebLogic Adapter for SWIFT User Guide iii

Contents

About This Document
Who Should Read This Documentation. .x

Additional Information .x

How to Use This Document. xi

Contact Us! .xii

Documentation Conventions .xii

1. Introducing the BEA WebLogic Adapter for SWIFT
About the BEA WebLogic Adapter for SWIFT . 1-1

Supported Features for Application Integration . 1-2

Supported Services . 1-2

Supported Events . 1-3

Benefits of the Adapter for SWIFT . 1-3

Components of the Adapter Kit . 1-4

SWIFT Document Validation . 1-5

Validation of Inbound SWIFT Documents . 1-5

Validation of Outbound SWIFT Documents . 1-6

Post-Validation Acknowledgements . 1-7

Getting Started With the Adapter for SWIFT . 1-8

Step 1: Design the Application Integration Solution . 1-8

Step 2: Determine the Required Business Processes for SWIFT Documents 1-9

Step 3: Generate Schemas and Define Document Transformations 1-9

iv BEA WebLogic Adapter for SWIFT User Guide

Step 4: Define Application Views and Configure Services and Events. 1-10

Step 5: Define Validation for SWIFT Documents . 1-10

Step 6: Integrate with Other BEA Software Components . 1-10

Step 7: Deploy the Solution to the Production Environment. 1-11

2. Transforming Document Formats
About Schemas . 2-1

Service Requests . 2-2

Service Responses . 2-2

Events. 2-2

About Document Format Transformations . 2-2

Transforming SWIFT to XML (Events Only) . 2-3

Transforming XML to SWIFT (Services Only). 2-3

About Schema Repositories . 2-3

Contents of the Schema Repository . 2-4

About the Repository Manifest . 2-5

Naming Schema Repositories . 2-6

Modifying the Repository . 2-7

Modify Repository on Disk . 2-7

Modify Repository and Update the EAR File . 2-8

Generating Transformation Templates and Document Schemas 2-8

About the Sample Utilities. 2-9

Extracting the Sample Utilities . 2-9

Generating Transformation Templates. 2-9

Generating Document Schemas . 2-10

Automatically Generating a Session Repository . 2-10

Next Steps . 2-10

BEA WebLogic Adapter for SWIFT User Guide v

3. Defining Application Views for SWIFT
How to Use This Document . 3-2

Before You Begin . 3-2

About Application Views . 3-3

About Defining Application Views. 3-3

Defining Service Connection Parameters . 3-5

Setting Service Properties . 3-6

MQ Service. 3-7

File Service. 3-8

FTP Service . 3-9

Common Service and Event Settings . 3-11

Setting Event Properties . 3-12

MQ Event . 3-13

File Event . 3-15

FTP Event. 3-17

TCP Event . 3-19

Defining Event Connection Parameters. 3-20

Testing Services. 3-23

Testing Events Using a Service . 3-26

Testing Events Manually . 3-28

A. Validation Rules
About the Rules File .A-2

<document> tag .A-3

<using> Tag .A-3

<rule> tag .A-3

Writing Rules in Java. .A-5

Writing Rule Search Routines in Java. .A-8

vi BEA WebLogic Adapter for SWIFT User Guide

General Validation Rules Reference . A-11

isN . A-11

isR . A-12

isDate . A-12

isTime. A-13

SWIFT Specific Rules Reference . A-14

isValidReference . A-15

isValidISIN. A-15

isNotPresent . A-15

isValidMultiLine . A-15

isSWIFTReal . A-16

isSWIFTDate . A-16

IsValidSWIFTString. A-17

SWIFT X Character Set . A-18

SWIFT Y Character Set . A-18

SWIFT Z Character Set . A-18

Hexadecimal Representation of SWIFT Character Set . A-19

isSWIFTTime. A-20

isValidMessageType. A-20

checkValue . A-21

Case 1 . A-21

Case 2 . A-22

Case 3 . A-22

Case 4 . A-22

Case 5 . A-22

Case 6 . A-22

Case 7 . A-22

checkCD. A-23

BEA WebLogic Adapter for SWIFT User Guide vii

Case 1 .A-23

Case 2 .A-24

Case 3 .A-24

Case 4 .A-24

Case 5 .A-24

Case 6 .A-24

checkRepetitive .A-24

checkNodes. .A-25

checkChildSequence. .A-25

Case 1 .A-26

Case 2 .A-26

checkAddition. .A-26

Case 1 .A-26

Case 2 .A-27

checkRelation .A-27

checkSegment. .A-28

B. Handling Acknowledgements
About Acknowledgement Processing . B-1

Processing Documents With Validation and Acknowledgement B-2

About the Acknowledgement Agent . B-3

Acknowledgement Message Handling . B-4

Creating an Acknowledgement Event . B-5

C. Linking Business Applications to SWIFTAlliance
Connecting Business Applications to SWIFTAlliance . C-1

Connectivity Options . C-2

Batch File Transfer – FILE and FTP . C-2

viii BEA WebLogic Adapter for SWIFT User Guide

Application Server – CAS MF. C-3

Interactive – MQ Series . C-4

D. Adapter Support for AS1 and AS2 Communications
About the AS1 and AS2 Standards . D-1

Comparison of AS1 (SMTP/e-mail) and AS2 (HTTPS). D-2

Adapter Support for AS1 and AS2 . D-3

Index

BEA WebLogic Adapter for SWIFT User Guide ix

About This Document

This document describes how to use the BEA WebLogic Adapter for SWIFT. This document is
organized as follows:

Chapter 1, “Introducing the BEA WebLogic Adapter for SWIFT,” describes the adapter
and how it relates to both SWIFT documents and WebLogic Integration.

Chapter 2, “Transforming Document Formats,” describes how to generate schemas and
define document transformations for your SWIFT and XML documents.

Chapter 3, “Defining Application Views for SWIFT,” describes application views and how
to configure events and services.

Appendix A, “Validation Rules,” describes how to encode a rules file, how to use the
built-in rules, and how to code specialized rules for validating SWIFT documents.

Appendix B, “Handling Acknowledgements,” describes the process of acknowledging a
SWIFT document after it has passed through validation.

Appendix C, “Linking Business Applications to SWIFTAlliance,” describes ways of
connecting business applications to SWIFTAlliance.

Appendix D, “Adapter Support for AS1 and AS2 Communications,” describes support for
AS1 and AS2 communications, which are specifications for the independent transport of
interchange documents over the Internet.

x BEA WebLogic Adapter for SWIFT User Guide

Who Should Read This Documentation
This document is intended for the following members of an integration team:

Integration Specialists—Lead the integration design effort. Integration specialists have
expertise in defining the business and technical requirements of integration projects, and in
designing integration solutions that implement specific features of WebLogic Integration.
The skills of integration specialists include business and technical analysis, architecture
design, project management, and WebLogic Integration product knowledge.

Technical Analysts—Provide expertise in an organization’s information technology
infrastructure, including telecommunications, operating systems, applications, data
repositories, future technologies, and IT organizations. The skills of technical analysts
include technical analysis, application design, and information systems knowledge.

Enterprise Information System (EIS) Specialists—Provide domain expertise in the systems
that are being integrated using WebLogic Integration adapters. The skills of EIS specialists
include technical analysis and application integration design.

System Administrators—Provide in-depth technical and operational knowledge about
databases and applications deployed in an organization. The skills of system administrators
include capacity and load analysis, performance analysis and tuning, deployment
topologies, and support planning.

Additional Information
To learn more about the software components associated with the adapter, see the following
documents:

BEA WebLogic Adapter for SWIFT Release Notes

http://edocs.bea.com/wladapters/swift/docs811/pdf/relnotes.pdf

BEA WebLogic Adapter for SWIFT Installation and Configuration Guide

http://edocs.bea.com/wladapters/swift/docs811/pdf/install.pdf

Introduction to the BEA WebLogic Adapters for WebLogic

http://edocs.bea.com/wladapters/docs81/index.html

BEA WebLogic Adapters 8.1 Dev2Dev Product Documentation

http://dev2dev.bea.com/products/wladapters/index.jsp

http://dev2dev.bea.com/products/wladapters/index.jsp
http://edocs.bea.com/wladapters/docs81/index.html
http://e-docs.bea.com/wladapters/swift/docs811/pdf/install.pdf
http://e-docs.bea.com/wladapters/swift/docs811/pdf/relnotes.pdf

BEA WebLogic Adapter for SWIFT User Guide xi

Application Integration documentation

http://edocs.bea.com/wli/docs81/aiover/index.html

http://edocs.bea.com/wli/docs81/aiuser/index.html

BEA WebLogic Integration documentation

http://edocs.bea.com/wli/docs81/index.html

BEA WebLogic Platform documentation

http://edocs.bea.com/platform/docs81/index.html

SWIFT documentation

http://www.swift.com

How to Use This Document
This document is designed to be used in conjunction with Using the Application Integration
Design Console, available at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

Using the Application Integration Design Console describes, in detail, the process of defining an
application view, which is a key part of making an adapter available to process designers and
other users. What Using the Application Integration Design Console does not cover is the specific
information about Adapter for SWIFT that you need to supply to complete the application view
definition. You will find that information in this document.

At each point in Using the Application Integration Design Console where you need to refer to
this document, you will see a note that directs you to a section in your adapter user guide, with a
link to the edocs page for adapters. The following roadmap illustration shows where you need to
refer from Using the Application Integration Design Console to this document.

Figure 1 Information Interlock with Using the Application Integration Design Console

http://edocs.bea.com/platform/docs81/index.html
http://edocs.bea.com/wli/docs81/index.html
http://www.swift.com
http://edocs.bea.com/wli/docs81/aiover/index.html
http://edocs.bea.com/wli/docs81/aiuser/index.html
http://edocs.bea.com/wli/docs81/aiuser/index.html

xii BEA WebLogic Adapter for SWIFT User Guide

Contact Us!
Your feedback on the BEA WebLogic Adapter for SWIFT documentation is important to us.
Send us e-mail at docsupport@bea.com if you have questions or comments. Your comments
will be reviewed directly by the BEA professionals who create and update the BEA WebLogic
Adapter for SWIFT documentation.

In your e-mail message, please indicate that you are using the documentation for BEA WebLogic
Adapter for SWIFT and the version of the documentation.

If you have any questions about this version of BEA WebLogic Adapter for SWIFT, or if you
have problems using the BEA WebLogic Adapter for SWIFT, contact BEA Customer Support
through BEA WebSUPPORT at www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card which is included in the product
package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions
The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

http://www.bea.com

BEA WebLogic Adapter for SWIFT User Guide xiii

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Convention Item

xiv BEA WebLogic Adapter for SWIFT User Guide

... Indicates one of the following in a command line:

• That an argument can be repeated several times in a command line

• That the statement omits additional optional arguments

• That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

BEA WebLogic Adapter for SWIFT User Guide 1-1

C H A P T E R 1

Introducing the BEA WebLogic Adapter
for SWIFT

This topic introduces the BEA WebLogic Adapter for SWIFT and describes how the adapter
enables integration with SWIFT documents and WebLogic Integration. This section includes the
following topics:

About the BEA WebLogic Adapter for SWIFT

Getting Started With the Adapter for SWIFT

SWIFT networks carry messages between financial institutions and must originate or arrive at
financial institutions in a SWIFT standard format.

About the BEA WebLogic Adapter for SWIFT
The BEA WebLogic Adapter for SWIFT transforms documents into XML format and XML
representations of SWIFT documents back into SWIFT format. After the information is in XML
format, it can be integrated into back or front office systems using BEA WebLogic Integration
and any of the BEA application and data adapters that are available from the adapter suite of
products. The same adapters can be used to obtain information that is required to populate SWIFT
documents, such as using the BEA WebLogic Adapter for RDBMS updates in an RDBMS to
trigger a SQL query that returns an XML formatted answer set that can be mapped to a SWIFT
document.

This section includes the following topics:

Supported Features for Application Integration

Supported Services

1-2 BEA WebLogic Adapter for SWIFT User Guide

Supported Events

Benefits of the Adapter for SWIFT

Components of the Adapter Kit

SWIFT Document Validation

Supported Features for Application Integration
The BEA WebLogic Adapter for SWIFT provides:

Multi-protocol support for integration with applications and standardized message handling
systems.

Message transfer between SWIFT Message Handling Systems and WebLogic Integration.

Service and event integration operation that provide end-to-end business process
management using SWIFT formatted messages and XML schema-defined business
processes.

Support for custom and standard SWIFT document formats with automatic generation of
transforms into a common XML business process environment.

The adapter provides pre-packaged support for standard SWIFT document formats, but does not
provide out-of-the-box the ability to customize those formats. Please contact BEA professional
services if you need to customize these formats.

Supported Services
The WebLogic Adapter for SWIFT supports the following types of services:

To learn more about configuring services, see “Setting Service Properties” on page 3-6.

Table 1-1 Services Supported by the WebLogic Adapter for SWIFT

Service Type Description

MQ service Sends a SWIFT message to an IBM MQSeries or WebSphere MQ queue.

File service Sends a SWIFT file to a specific directory on disk.

FTP service Sends a SWIFT file via FTP.

About the BEA WebLog ic Adapte r fo r SW IFT

BEA WebLogic Adapter for SWIFT User Guide 1-3

Supported Events
The WebLogic Adapter for SWIFT supports the following types of events:

To learn more about configuring events, see “Setting Event Properties” on page 3-12.

Benefits of the Adapter for SWIFT
The combination of the adapter and WebLogic Integration supplies everything you need to
integrate your business process and enterprise applications with your SWIFT documents. The
Adapter for SWIFT provides these benefits:

Integration can be achieved without custom coding.

Business processes can be started by events generated by SWIFT documents.

Business processes can request and receive SWIFT documents using services.

Adapter events and services are standards-based. The adapter services and events provide
extensions to the J2EE Connector Architecture (JCA) version 1.0 from Sun Microsystems,
Inc. To learn more about JCA, see the Sun JCA page at the following URL:

http://java.sun.com/j2ee/connector/

The adapter and WebLogic Integration solution is scalable. The BEA WebLogic Platform
provides clustering, load balancing, and resource pooling for a scalable solution. To learn
more about scalability, see the following URL:

http://edocs.bea.com/wls/docs81/cluster/index.html

Table 1-2 Events Supported by the WebLogic Adapter for SWIFT

Service Type Description

MQ Event Adapter picks up a SWIFT message from a specific IBM MQSeries or WebSphere
MQ queue

File Event Adapter picks up a SWIFT file from a specific directory on disk.

FTP Event Adapter picks up a SWIFT file via FTP.

TCP Event Adapter picks up a SWIFT file via TCP.

http://java.sun.com/j2ee/connector/
http://edocs.bea.com/wls/docs81/cluster/index.html

1-4 BEA WebLogic Adapter for SWIFT User Guide

The adapter and WebLogic Integration solution is secure, using the security features of the
BEA WebLogic Platform and the security of your SWIFT system. To learn more about
security, see the following URL:

http://edocs.bea.com/wls/docs81/secintro/index.html

Components of the Adapter Kit
The WebLogic Adapter for SWIFT distribution (BEA_SWIFT_8_1.ear) contains preconfigured
components that you can customize to support the integration of SWIFT document formats into
your environment.

To learn more about these components in the repository, see “Contents of the Schema
Repository” on page 2-4.

Note: To customize the WebLogic Adapter for SWIFT in your environment, you must
explicitly configure these components provided in the kit. For assistance, contact BEA
Customer Support through BEA WebSUPPORT at www.bea.com.

Table 1-3 Components of the WebLogic Adapter for SWIFT Kit

Component Description

XML schemas (.xsd) Describe the SWIFT documents for event and service processing.

Data dictionaries (.dic) Describe the SWIFT format messages to the BEA WebLogic Adapter for
SWIFT.

Transformation templates
(.xch)

Maps that are created using the transformation templates configured to
convert SWIFT to XML and XML to SWIFT.

Rules files (.xml) XML documents that are used to apply business rules to the SWIFT XML
file (either post or prior to conversion). The rules files conform to SWIFT
specifications and are customizable to apply customer and/or partner
specific rules. To learn more about rules, see Appendix A, “Validation
Rules.”

Code sets (.txt) Currency and country (ISO standard) code set tables are provided for
validation using the rules engine.

http://www.bea.com
http://edocs.bea.com/wls/docs81/secintro/index.html

About the BEA WebLog ic Adapte r fo r SW IFT

BEA WebLogic Adapter for SWIFT User Guide 1-5

SWIFT Document Validation
SWIFT documents are validated in two ways:

Dictionaries are used to parse the document and validate the structure of the message type
and tag structure.

SWIFT documents are described using data dictionaries supplied with the adapter. Data
dictionaries describe the XML format and are used to enable the mapping of XML
documents to SWIFT form and SWIFT documents to XML. The data dictionaries and the
format for describing data elements conform to SWIFT standards. These dictionaries are in
XML format and can be edited to tailor messages to individual bank and/or market
standards.

The rules engine provides content (domain and network) validation.

The SWIFT document is validated by use of a rule file in XML format. This file is an
XML document that applies pre-built rules based on the XML tag. These are customizable,
and users can write their own rules to apply extra business logic.

BEA supplies standard rules files that validate a document based on the SWIFT 2001,
2002, and 2003 supplied standards. These files are pre-configured and known to the
adapter and also have been related to the documents to be validated. No configuration is
required. If you use customized rules files and apply them to custom built transformation
templates, refer to Appendix A, “Validation Rules,” which describes the standard rules and
SWIFT-specific rules supplied with the BEA WebLogic Adapter for SWIFT.

Depending on the direction (XML-to-SWIFT or SWIFT-to-XML), the content validation occurs
before (XML-to-SWIFT) or after (SWIFT-to-XML) structural validation.

Validation of Inbound SWIFT Documents
In the event of an inbound SWIFT document, a configured listener picks up the SWIFT document
and then the following steps occur:

1. The adapter applies an encryption or decryption algorithm. This is a configurable process, and
you can use any Java™-based encryption processor.

2. The adapter performs the pre-parse stage in which the document (if not in XML format at
this stage) is converted to XML. At this stage, the pre-built (or customized) transformation
templates are called to convert SWIFT format to XML.

3. After structural integrity has been verified during the transformation stage, the adapter
performs content validation, using a set of rules defined in an XML formatted rules file.
After the message is in XML format, the content of the SWIFT document can be validated

1-6 BEA WebLogic Adapter for SWIFT User Guide

based on supplied (or customized) rules files. BEA supplies pre-built rules that apply
validation rules to tags or groups of tags in the XML document, specific to SWIFT
standards.

4. Where applicable, the adapter returns acknowledgment documents to the sending
application, but only if the incoming document is structurally valid. If the content validation
fails, an error code is returned in the acknowledgement document (when acknowledgement
is expected).

5. After it is parsed and validated, the XML document is processed accordingly. The process
flow can end here (for example, parse, convert, validate, and apply business logic).

Figure 1-1 Inbound Document Processing

Validation of Outbound SWIFT Documents
For outbound messages, a document can be received in XML format and have business logic
applied. The rules engine then validates the document and transforms it into a SWIFT document
at the pre-emit stage in the process.

About the BEA WebLog ic Adapte r fo r SW IFT

BEA WebLogic Adapter for SWIFT User Guide 1-7

Figure 1-2 Outbound Document Processing

Post-Validation Acknowledgements
The validation phase may or may not produce errors related to elements in the document tree.
After validation, the Acknowledgement Agent processing begins. This phase allows for custom
behavior based on the results of the document and its validation results. For SWIFT documents,
the default Acknowledgement agent is the XDSWIFTACKAgent. The acknowledgement process
is described in detail in Appendix B, “Handling Acknowledgements.”

1-8 BEA WebLogic Adapter for SWIFT User Guide

Getting Started With the Adapter for SWIFT
This section gives an overview of how to get started using the BEA WebLogic Adapter for
SWIFT within the context of an application integration solution. Integration with SWIFT
involves the following tasks:

Step 1: Design the Application Integration Solution

Step 2: Determine the Required Business Processes for SWIFT Documents

Step 3: Generate Schemas and Define Document Transformations

Step 4: Define Application Views and Configure Services and Events

Step 5: Define Validation for SWIFT Documents

Step 6: Integrate with Other BEA Software Components

Step 7: Deploy the Solution to the Production Environment

Step 1: Design the Application Integration Solution
The first step is to design an application integration solution, which includes (but is not limited
to) such tasks as:

Defining the overall scope of application integration.

Determining the business process(es) to integrate.

Determining which WebLogic Platform components will be involved in the integration,
such as web services or business processes designed in WebLogic Workshop, portals
created in WebLogic Portal, and so on.

Determining which external systems and technologies will be involved in the integration,
such as financial systems or other enterprise integration systems (EISs) that handle SWIFT
messages.

Determining which BEA WebLogic Adapters for WebLogic Integration will be required,
such as the BEA WebLogic Adapter for SWIFT and adapters for any related EISs. An
application integration solution can involve multiple adapters.

This step involves the expertise of business analysts, system integrators, and EIS specialists
(including SWIFT specialists). Note that an application integration solution can be part of a larger
integration solution.

Gett i ng S ta r t ed Wi th the Adapte r fo r SW IFT

BEA WebLogic Adapter for SWIFT User Guide 1-9

Step 2: Determine the Required Business Processes for SWIFT
Documents
Within the larger context of an application integration project, you must determine which specific
SWIFT documents and business processes are required to handle SWIFT documents for services
and events to support the business processes in the application integration solution. Or, if you are
invoking EIS-based business services or business components directly, rather than through a
business process, you must determine the tasks you need to complete.

Factors to consider include (but are not limited to):

Type of integration endpoints, business processes, and transport used to access the EIS that
handles the SWIFT documents.

Transactions involved in business processes

Logins required to access and perform the required operations

Whether operations are, from the adapter point of view:

– services, which notify the external system, via SWIFT documents, with requests for
action, and, in addition, whether such services should be processed synchronously or
asynchronously

– events, which are notifications from the external system, via SWIFT documents, that
trigger business processes

This step involves the expertise of EIS and SWIFT specialists, including analysts and
administrators.

Step 3: Generate Schemas and Define Document
Transformations
After identifying the SWIFT integration objects and business processes required for the
application integration solution, you must use utilities provided with the WebLogic Adapter for
SWIFT to generate the XML schemas and define document transformations that will be used to
manage SWIFT documents.

Services require two generated XML schemas: one for the request and another for the
response.

Events require a single generated XML schema to handle SWIFT documents sent by the
originating system.

1-10 BEA WebLogic Adapter for SWIFT User Guide

To learn more about schemas and transformations, see Chapter 2, “Transforming Document
Formats.”

Step 4: Define Application Views and Configure Services and
Events
After you create the schemas for your SWIFT services or events, you create an application view
that provides an XML-based interface between WebLogic Server and a particular EIS, such as
financial systems, within your enterprise that handles the SWIFT documents. If you are accessing
multiple EISs, you define a separate application view for each EIS that you want to access. To
provide different levels of security access (such as “guest” and “administrator”), define a separate
application view for each security level.

Once you define an application view, you can configure events and services in that application
view that employ the XML schemas that you created in “Step 3: Generate Schemas and Define
Document Transformations” on page 1-9. To learn more about generating schemas and defining
transformations, see Chapter 2, “Transforming Document Formats.”

To learn more about defining application views, see Chapter 3, “Defining Application Views for
SWIFT” in conjunction withUsing the Application Integration Design Console, at the following
URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

Step 5: Define Validation for SWIFT Documents
For inbound and outbound SWIFT documents, you can configure data dictionaries, specify
validation rules, and define acknowledgements to notify external systems of the validation
results. To learn more about SWIFT document validation, see “SWIFT Document Validation” on
page 1-5.

Step 6: Integrate with Other BEA Software Components
Once you have configured and published one or more application views for SWIFT integration,
you can integrate these application views into other BEA software components, such as business
processes or web services created in BEA WebLogic Workshop, or portals built with BEA
WebLogic Portal.

To learn more about integration with other components, see Using the Application Integration
Design Console, particularly Chapter 3, “Using Application Views with Business Processes,” at
the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

Gett i ng S ta r t ed Wi th the Adapte r fo r SW IFT

BEA WebLogic Adapter for SWIFT User Guide 1-11

http://edocs.bea.com/wli/docs81/aiuser/3usruse.html

Step 7: Deploy the Solution to the Production Environment
After you have designed, built, and tested your application integration solution, you can deploy
it into a production environment. The following list describes some of the tasks involved in
deploying an application integration:

Design the deployment.

Deploy the required components of the BEA WebLogic Platform.

Install and deploy the BEA WebLogic Adapter for SWIFT as described in BEA WebLogic
Adapter for SWIFT Installation and Configuration Guide

Deploy your application views and schemas for SWIFT integration.

Verify business processes in the production environment.

Monitor and tune the deployment.

http://edocs.bea.com/wli/docs81/aiuser/index.html

1-12 BEA WebLogic Adapter for SWIFT User Guide

BEA WebLogic Adapter for SWIFT User Guide 2-1

C H A P T E R 2

Transforming Document Formats

This topic describes the process and mechanisms for transforming documents formats between
SWIFT and XML, and between XML and XML. It contains the following topics:

About Schemas

About Document Format Transformations

About Schema Repositories

Generating Transformation Templates and Document Schemas

Next Steps

About Schemas
Each service or event that the Adapter for SWIFT uses is defined by a schema. All of the
documents the adapter sends to, or receives from, the EIS must be defined by schemas.
The adapter uses the following schemas:

Service Requests

Service Responses

Events

2-2 BEA WebLogic Adapter for SWIFT User Guide

Service Requests
Service requests are requests for action that your application makes to your EIS. Requests are
defined by request schema. As part of the definition, the request schema defines the input
parameters required by the EIS. The EIS system responds to the request with a service response.

Service Responses
Service responses are the way the EIS responds to a service request. A service response schema
defines this service response. Service requests always have corresponding responses.

Events
Events are generated by the EIS as a result of publishing SWIFT documents. You can use these
events to trigger an action in your application. For example, the EIS may generate an event when
customer information is updated. If your application must do something when this happens, your
application is a consumer of this event. Events are defined by event schema.

About Document Format Transformations
Documents within WebLogic Integration are encoded in XML. However, you may need to
receive and generate SWIFT documents. The WebLogic Adapter for SWIFT supports the
following transformations:

Transforming SWIFT to XML (Events Only)

Transforming XML to SWIFT (Services Only)

You specify the type of transformation when adding an event or service to an application view,
as described in Chapter 3, “Defining Application Views for SWIFT.”

Note: For XML-to-XML transformations (applicable to events and services), you need to use
the Transformation Control in WebLogic Workshop. To learn more about the
Transformation Control, see “Guide to Data Transformation” in the WebLogic
Workshop online help system at:

http://edocs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguideIntro.html

http://edocs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguideIntro.html

About Schema Repos i t or ies

BEA WebLogic Adapter for SWIFT User Guide 2-3

Transforming SWIFT to XML (Events Only)
For events originating from SWIFT data sources, the WebLogic Adapter for SWIFT converts that
data to XML for processing using business processes. This conversion includes “pre-parsing” the
data into XML, which is then parsed itself for processing. SWIFT format messages arriving at the
adapter are processed by the SWIFT pre-parser, which determines the SWIFT document type,
and applies the correct SWIFT to XML format conversion.

Transforming XML to SWIFT (Services Only)
For services that interact with SWIFT data sources, the WebLogic Adapter for SWIFT converts
XML documents (for example, from business processes) to SWIFT standard format. This
conversion includes “pre-emitting” the data into the SWIFT, non-XML format, and then emitting
the data to the SWIFT message handling system (MHS).

The BEA WebLogic Adapter for SWIFT knows the document type by the root element of its
XML representation. From the root node, the correct XML to SWIFT transformation is
performed, and the non-XML SWIFT format is emitted on the configured service protocol (for
example, to an MQSeries Queue or File directory).

About Schema Repositories
This topic describes the schema repository, which stores schema information. It contains the
following topics:

Contents of the Schema Repository

About the Repository Manifest

Naming Schema Repositories

Modifying the Repository

2-4 BEA WebLogic Adapter for SWIFT User Guide

Contents of the Schema Repository
The BEA_SWIFT_8_1.ear file automatically generates repository directories and components.

A schema repository consists of the following elements:

Manifest file (manifest.xml) that describes the event and service schemas contained in
the repository. For an example, see /SWIFT/2003/manifest.xml.

Event and service schemas. For examples, see /SWIFT/2003/*.xsd.

The XML representations of the SWIFT documents within WebLogic Integration system
are described by corresponding W3C XML schemas. These schemas describe each event
arriving to and propagating out of an adapter. Schemas describe each request sent to and
each response received from an adapter. There is one schema for each event and two
schemas for each service (one for the request and one for the response). The schemas are
usually stored in files with an .xsd extension.

SWIFT document dictionaries. For examples, see /SWIFT/2003/dictionaries/*.dic.

SWIFT documents are described by dictionary files. For events, the adapter converts
SWIFT documents into XML on entry and, for services, converts from XML to SWIFT on
exit. Transformation from SWIFT to XML is described in “Transforming SWIFT to XML
(Events Only)” on page 2-3 and is based on a generalized transformation engine making
use of dictionaries and xch transformation templates stored in .xch files.

About Schema Repos i t or ies

BEA WebLogic Adapter for SWIFT User Guide 2-5

Transformation template for converting from and to SWIFT. For examples, see
/SWIFT/2003/templates/*.xch. To learn more about transformation templates, see
“Generating Transformation Templates and Document Schemas” on page 2-8.

Content and network validation rules for the validation and acknowledgement process. For
examples, see /SWIFT/2003/rules/*.xml. To learn more about validation rules, see
Appendix A, “Validation Rules.”

ISO code set for countries and currencies. For examples, see
/SWIFT/2003/rules/codeset/*.txt.

When you use the WebLogic Integration Application View Console to create an Application
View, a schema repository is automatically created for you. In addition, the Application View
creation process also creates a repository manifest and extracts the schemas into the repository.

Note: To implement the WebLogic Adapter for SWIFT in your environment, you must
explicitly configure these components provided in the kit. For assistance, contact BEA
Customer Support through BEA WebSUPPORT at www.bea.com.

About the Repository Manifest
Each schema repository has a manifest that describes the repository and its contents. The
repository manifest is an XML file named manifest.xml. This file is created automatically
when the repository is generated from the BEA_SWIFT_8_1.ear file.

The following is an example of a manifest file showing the relationships between events and
schemas and service request and response schemas.

Listing 2-1 Sample Repository Manifest (Portion Only)

</manifest>

<schemaref name="MT540">

<request root="SWIFTMT540" file="MT540.xsd"/>

<response root="emitStatus" file="EmitStatus.xsd"/>

<event root="SWIFTMT540" file="MT540.xsd"/>

</schemaref>

</manifest>

The repository has a connection section, which can be ignored for this adapter. It also has a
schema reference section, named schemaref. The schema reference name appears in the

http://www.bea.com

2-6 BEA WebLogic Adapter for SWIFT User Guide

drop-down list on the Add Service or Add Event screens in the WebLogic Integration Application
View Console. Each named schema reference can contain three schemas, one of each type.

Naming Schema Repositories
The schema repository has a three-part naming convention.

On UNIX:

session_base_directory/adapter/connection_name

On Windows:

session_base_directory\adapter\connection_name

where

For example, if the session base path is /usr/opt/bea/bse, the adapter type is SWIFT, and the
connection name is 2003, then the schema repository is the directory:

/usr/opt/bea/bse/SWIFT/2003

The BEA WebLogic Adapter for SWIFT comes pre-delivered with a repository for all SWIFT
Category 5 documents. During creation of an application view, this repository is generated from
the supplied BEA_SWIFT_8_1.ear file into the directory you choose. Each time a new
application view is created, the repository is generated from the BEA_SWIFT_8_1.ear file.

Table 2-1 Schema Repository Naming Convention

Name Description

session_base_directory Schema’s session base path, which represents a folder under which
multiple sessions of schemas can reside.

adapter Type of adapter (for example, SWIFT).

connection_name Name representing a particular instance of the adapter type. For
example, Securities may be a connection for a particular SWIFT
system, and Payments may be another; each of these systems having
different events and services relevant to them.

About Schema Repos i t or ies

BEA WebLogic Adapter for SWIFT User Guide 2-7

Modifying the Repository
During creation of the application view, the Session Path is supplied (see Figure 2-1), and any
supplied connection repositories are extracted to the location you specify.

Figure 2-1 Configure Connection Parameters

If a built-in manifest is found in the BEA_SWIFT_8_1.ear file, it is generated in the location you
specify. Any duplicate files are overwritten. The Connection name drop-down list box reflects
the contents of the directory after generation; that is, the contents of the built-in repository
described by the built-in manifest and any existing repository connections.

There are two methods for making changes to the repository available to an application view:

Modify repository on disk.

Modify repository and update the BEA_SWIFT_8_1.ear file.

Modify Repository on Disk
Modifications made on disk in the session path supplied to the application view are preserved if
they are in a directory representing a session that is not supplied with the BEA_SWIFT_8_1.ear
file. This first procedure allows changes made to the document descriptions, schemas,
transformation templates, rules, and rule code sets by ensuring that they exist in a directory that
will not be overwritten.

To make changes to the repository:

1. Copy or create a directory under the “session_path/SWIFT” location to reflect your desired
new custom connection repository (for example, 2003_Custom).

2. Create a new application view supplying the same session path. At this point, the new
connection (for example, 2003_Custom) appears in the list and will not be overwritten by
the original supplied connection repository.

2-8 BEA WebLogic Adapter for SWIFT User Guide

Modify Repository and Update the EAR File
This procedure ensures that modifications become a permanent feature of the product by updating
the supplied BEA_SWIFT_8_1.ear file.

To make changes to the repository:

1. Modify objects in the repository.

2. Load the BEA_SWIFT_8_1.ear file with the changed repository.

a. From the BEA_SWIFT_8_1.ear file, extract the shared.jar file.

b. From the extracted shared.jar file, extract the BEA_SWIFT_8_1.manifest.zip.

c. Replace/Update the files in BEA_SWIFT_8_1.manifest.zip with the modified objects
(manifest.xml, dictionaries, transformation templates, rules, and code sets).

d. Replace/Update the BEA_SWIFT_8_1.manifest.zip in the shared.jar.

e. Replace the shared.jar in the BEA_SWIFT_8_1.ear file.

At this point, whenever a new application view is created, your modified connection repository
will be generated out of the BEA_SWIFT_8_1.ear file (from the included shared.jar, from the
BEA_SWIFT_8_1.manifest.zip).

Generating Transformation Templates and Document Schemas
This topic describes the sample utilities provided with the BEA WebLogic Adapter for SWIFT
that generate transformation templates and document schemas. It includes the following sections:

About the Sample Utilities

Extracting the Sample Utilities

Generating Transformation Templates

Generating Document Schemas

Automatically Generating a Session Repository

Genera t ing T rans fo rmat ion Templa tes and Document Schemas

BEA WebLogic Adapter for SWIFT User Guide 2-9

About the Sample Utilities
The BEA WebLogic Adapter for SWIFT provides the following sample utilities in the
BEA_SWIFT_SAMPLES.zip file:

Extracting the Sample Utilities
The sample utilities are packed with the associated BEA_SWIFT_SAMPLES.zip file for the BEA
WebLogic Adapter for SWIFT. To make use of these utilities, you must extract the samples
directory from the zip file. From the directory containing the zip file, use WinZip or the following
Java jar command to extract the samples subdirectory:

jar -xvf BEA_SWIFT_SAMPLES.zip samples

This command creates a LIB subdirectory at the current location.

Generating Transformation Templates
The XCHZen.class utility class generates transformation templates to transform from SWIFT to
XML and from XML to SWIFT.

To generate a SWIFT-to-XML template, use the following command:

java XCHZen -os NT -NONXMLtoXML -dic YourDictionary.dic -xch
../templates/YourDictionarytoXML.xch

To generate an XML-to-SWIFT template, use the following command:

java XCHZen -os NT -XMLtoNONXML -dic YourDictionary.dic -xch
../templates/XMLtoYourDictionary.xch

where YourDictionary is the name of the dictionary you want to use.

Table 2-2 Utilities for Generating Transformation Templates and Document Schemas

Utility Description

XCHZen.class Utility class (in the LIB subdirectory) that generates a transformation template
from a SWIFT document described in a dictionary (.dic file).

XSDZen.class Utility class (in the LIB subdirectory) that generates a W3C XML schema for
the related XML document.

genswift.cmd Command script that automatically generates all transformation templates and
all W3C XML schemas for all dictionaries in a session repository.

2-10 BEA WebLogic Adapter for SWIFT User Guide

Generating Document Schemas
The XSDZen.class utility class generates W3C XML schemas for the XML representations of
the SWIFT documents. These schemas are based on the standard transformation performed by
the generated transformation templates described in the previous section, not on any custom
mapping that a user may have performed. To generate document schemas, use the following
command:

java XSDZen -noheader -dic dictionaries/YourDictionary -xsd

YourDictionary.dic

where YourDictionary is the name of the dictionary you want to use (the .dic extension is
required).

Automatically Generating a Session Repository
The genswift.cmd utility automatically regenerates all transformation templates and document
schemas for all sessions in a session path (see“Extracting the Sample Utilities” on page 2-9 for
instructions on extracting samples from the BEA_SWIFT_SAMPLES.ZIP file). From the session
path, the genswift.cmd utility traverses all directories under session_path/SWIFT and, for
each dictionary in the dictionary directory, generates an XML to SWIFT template, a SWIFT to
XML template, and a document schema for the XML representation.

To generate a session repository automatically, use the following command:

samples_path/genswift.cmd

where samples_path is the location of the samples directory extracted in the section “Extracting
the Sample Utilities” on page 2-9. At this point, you may follow the instructions in “Modify
Repository and Update the EAR File” on page 2-8 to make the results permanent for your
product.

Next Steps
After you have defined schemas for your events and services, the next step is to create an
application view. An application view makes the services and events available to applications.
To learn more about application views, see Chapter 3, “Defining Application Views for SWIFT.”

BEA WebLogic Adapter for SWIFT User Guide 3-1

C H A P T E R 3

Defining Application Views for SWIFT

An application view is a business-oriented interface to objects and operations within an EIS. This
section describes application views and contains the following topics:

How to Use This Document

Before You Begin

About Application Views

About Defining Application Views

Defining Service Connection Parameters

Setting Service Properties

Setting Event Properties

Defining Event Connection Parameters

Testing Services

Testing Events Using a Service

Testing Events Manually

3-2 BEA WebLogic Adapter for SWIFT User Guide

How to Use This Document
This document is designed to be used in conjunction with Using the Application Integration
Design Console, available at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

Using the Application Integration Design Console describes, in detail, the process of defining an
application view, which is a key part of making an adapter available to process designers and
other users. What Using the Application Integration Design Console does not cover is the specific
information—about connections to systems that handle SWIFT documents, as well as supported
services and events—that you must supply as part of the application view definition. You will
find that information in this section.

At each point in Using the Application Integration Design Console where you need to refer to
this document, you will see a note that directs you to a section in your adapter user guide, with a
link to the edocs page for adapters. The following road map illustration shows where you need to
refer from Using the Application Integration Design Console to this document.

Figure 3-1 Information Interlock with Using the Application Integration Design Console

Before You Begin
Before you define an application view, make sure you have:

Installed and deployed the adapter according to the instructions in BEA WebLogic Adapter
for SWIFT Installation and Configuration Guide.

Determined which business processes need to be supported by the application view. The
required business processes determine the types of services and events you include in your
application views. Therefore, you must gather information about the application’s business
requirements from the business analyst. Once you determine the necessary business
processes, you can define and test the appropriate services and events. To learn more about

http://edocs.bea.com/wli/docs81/aiuser/index.html

About App l i ca t i on Views

BEA WebLogic Adapter for SWIFT User Guide 3-3

defining and testing services and events, see “Getting Started With the Adapter for
SWIFT” on page 1-8.

Gathered the connection information for your SWIFT system. To learn more about the
connection information needed for your SWIFT system, see “Modifying the Repository”
on page 2-7.

About Application Views
An application view defines:

Connection information for the EIS, including login information, connection settings, and
so on.

Service invocations, including the information the EIS requires for the request, as well as
the request and response schemas associated with the service.

Event notifications, including the information the EIS publishes and the event schema for
inbound messages.

Typically, an application view is configured for a single business purpose and contains only the
services and events required for that purpose. An EIS might have multiple application views, each
defined for a different purpose.

About Defining Application Views
Defining an application view is a multi-step process described in Using the Application
Integration Design Console, available at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

The information you enter depends on the requirements of your business process and your EIS
system configuration. Figure 3-2 summarizes the procedure for defining and configuring an
application view.

http://edocs.bea.com/wli/docs81/aiuser/index.html

3-4 BEA WebLogic Adapter for SWIFT User Guide

Figure 3-2 Process for Defining and Configuring an Application View

To define an application view:

1. Log on to the WebLogic Integration Application View Console.

2. Define the application context by selecting an existing application or specifying a new
application name and root directory.

This application will be using the events and services you define in your application view.
The application view works within the context of this application.

3. Add folders as required to help you organize application views.

4. Define a new application view for your adapter.

5. Add a new connection service or select an existing one.

If you are adding a new connection, see “Defining Service Connection Parameters” on
page 3-5 for details about SWIFT requirements.

6. Add the events and services for this application view.

See the following sections for details about SWIFT requirements:

– “Setting Service Properties” on page 3-6

Def i n ing Se rv i ce Connect ion Paramete rs

BEA WebLogic Adapter for SWIFT User Guide 3-5

– “Setting Event Properties” on page 3-12

7. Perform final configuration tasks.

If you are adding an event connection, see “Defining Event Connection Parameters” on
page 3-20 for details about SWIFT requirements.

8. Test all services and events to make sure they can properly interact with the target EIS.

See the following sections for details about SWIFT requirements:

– “Testing Services” on page 3-23

– “Testing Events Using a Service” on page 3-26

– “Testing Events Manually” on page 3-28

9. Publish the application view to the target WebLogic Workshop application.

This is the application you specified in step 2. Publishing the application view allows
workflow developers within the target application to interact with the newly published
application view using an Application View control.

Defining Service Connection Parameters

This information applies to “Step 5A, Create a New Browsing Connection” in Using the
Application Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

The Select Browsing Connection page allows you to choose the type of connection factory to
associate with the application view. You can select a connection factory within an existing
instance of the adapter or create a connection factory within a new adapter instance. After you
enter a connection name and description, you use the Configure Connection Parameters page to
specify connection parameters for a connection factory.

To create a new browsing connection:

1. In the Create New Browsing Connections page, enter a connection name and description as
described in Using the Application Integration Design Console.

The Configure Connection Parameters page appears to allow you to configure the newly
created connection factory within the new adapter instance.

http://edocs.bea.com/wli/docs81/aiuser/index.html

3-6 BEA WebLogic Adapter for SWIFT User Guide

Note: A red asterisk () indicates that a field is required.

2. Specify a session path and connection name.

This information enables the application view to interact with the target EIS. You need
enter this information only once per application view.

3. Click Connect to EIS.

You return to the Create New Browsing Connections, where you can specify connection
pool parameters and logging levels. To learn more about configuring browsing
connections, see Using the Application Integration Design Console at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

Setting Service Properties

This information applies to “Step 6A, Add a Service to an Application View” in Using the
Application Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

WebLogic Adapter for SWIFT uses services to make requests for SWIFT messages. Emission of
SWIFT documents has been implemented as a service. A service consists of both a request and a
response. The Adapter for SWIFT supports the following services:

MQ Service

File Service

FTP Service

To learn more about these types of services, see “Supported Services” on page 1-2.

http://edocs.bea.com/wli/docs81/aiuser/index.html
http://edocs.bea.com/wli/docs81/aiuser/index.html

Set t ing Ser v i ce P rope r t ies

BEA WebLogic Adapter for SWIFT User Guide 3-7

MQ Service

This information applies to “Step 6A, Add a Service to an Application View” in Using the
Application Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

An MQ service sends a SWIFT document to an IBM MQSeries or WebSphere MQ queue.

To configure an MQ Service:

1. Enter a unique service name that describes the function the service performs.

2. Select MQEmit_SWIFT from the Select list.

The Add Services page displays the fields required for this service type.

Note: A red asterisk () indicates that a field is required.

The properties correspond to the MQSeries communication settings that the adapter uses to
communicate with MQSeries to write messages to the queues and with the transform
options described in “About Document Format Transformations” on page 2-2.

3. Enter the following information:

http://edocs.bea.com/wli/docs81/aiuser/index.html

3-8 BEA WebLogic Adapter for SWIFT User Guide

4. See “Common Service and Event Settings” on page 3-11 for information about selecting a
schema and configuring tracing.

File Service

This information applies to “Step 6A, Add a Service to an Application View” in Using the
Application Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

A File service sends a SWIFT document to a specific directory on disk.

To configure a File Service:

1. Enter a unique service name that describes the function the service performs.

2. Select FileEmitter_SWIFT from the Select list.

The Add Services page displays the fields required for this service type.

Table 3-1 MQSeries Service Properties

Property Description Type

Queue Manager Name of the MQSeries Queue Manager to be used. string

Queue Name Queue on which request documents are received. string

Correlation Id The correlation ID to set in the MQSeries message header. string

MQ Client Host For MQ Client only. Host on which MQ Server is located. string

MQ Client Port For MQ Client only. Port number to connect to an MQ Server. integer

MQ Client Channel For MQ Client only. Channel between an MQ Client and MQ
Server.

string

Polling Interval The time in milliseconds duration

http://edocs.bea.com/wli/docs81/aiuser/index.html

Set t ing Ser v i ce P rope r t ies

BEA WebLogic Adapter for SWIFT User Guide 3-9

Note: A red asterisk () indicates that a field is required.

3. Enter the following information:

4. See “Common Service and Event Settings” on page 3-11 for information about selecting a
schema and configuring tracing.

FTP Service

This information applies to “Step 6A, Add a Service to an Application View” in Using the
Application Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

An FTP service sends a SWIFT document through FTP to the target EIS.

To configure an FTP Service:

1. Enter a unique service name that describes the function the service performs.

2. Select FTPEmitter_SWIFT from the Select list.

The Add Services page displays the fields required for this service type.

Table 3-2 File Service Properties

Property Type / Value Description

directory Directory Path Directory to which output messages are emitted.

output file
name/mask

String The output file name (can contain a '*'), which gets expanded to
a timestamp.

A pound symbol can be used as a mask for a sequence count.
Each pound symbol represents a whole number integer value.
For example, File## counts up to 99 before restarting at 0,
File### counts up to 999 before restarting at 0, and so on.

http://edocs.bea.com/wli/docs81/aiuser/index.html

3-10 BEA WebLogic Adapter for SWIFT User Guide

Note: A red asterisk () indicates that a field is required.

3. Enter the following information:
.

Table 3-3 FTP Service Settings

Setting Type / Value Description

Host name String FTP target system.

Port number Numeric FTP target system port (leave empty for FTP default).

User Id String User account ID to use when connecting to the FTP host.

Password String Password for the user account to use when connecting to the
protocol host.

destination String Directory to address on the FTP target system.

output file
name/mask

String The output file name (can contain a '*'), which gets expanded to
a timestamp.

Retry Interval Retry Interval
Duration

The maximum wait interval between retries when a connection
fails. Retry interval duration in xxH:xxM:xxS format. For
example:

• 1H:2M:3S is 1 hour 2 minutes and 3 seconds

• 0H:0M:30S is 30 seconds

Maxtries Integer Maximum number of retry attempts if a write failure occurs.

Set t ing Ser v i ce P rope r t ies

BEA WebLogic Adapter for SWIFT User Guide 3-11

4. See “Common Service and Event Settings” on page 3-11 for information about selecting a
schema and configuring tracing.

Common Service and Event Settings

This information applies to “Step 6A, Add a Service to an Application View” in Using the
Application Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

You select a schema and select tracing options the same way for all services.

To set common service settings:

1. In the Schema list, select the schema you want to use with this service.

To learn more about document format transformations, see Chapter 2, “Transforming
Document Formats.”

2. Configure tracing for this service.

Tracing displays runtime information in the console. You set the type and amount of
information you wish to capture as part of the final configuration tasks. This is described in
detail in Using the Application Integration Design Console.

.

Table 3-4 Log Settings for Services and Events

Setting Description

Trace Select to enable tracing for this service, or clear to disable
tracing.

Verbose Trace Select to enable verbose tracing for this service, or clear to
disable tracing.

http://edocs.bea.com/wli/docs81/aiuser/index.html

3-12 BEA WebLogic Adapter for SWIFT User Guide

3. Click Add to add the service.

To learn more about the next step, see Using the Application Integration Design Console at
the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

Setting Event Properties

This information applies to “Step 6B, Add an Event to an Application View” in Using the
Application Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

An event defines how your application responds to incoming SWIFT documents. The WebLogic
Adapter for SWIFT handles the receipt of SWIFT documents. The WebLogic Adapter for SWIFT
supports the following events:

MQ Event

File Event

FTP Event

TCP Event

To learn more about these types of events, see “Supported Events” on page 1-3.

Document Trace Select to enable document tracing for this service, or clear to
disable tracing.

root to transform template directory Root directory for document transformation templates (*.xch).

root to XML Style sheet directory Root directory for XML style sheets.

Table 3-4 Log Settings for Services and Events (Continued)

Setting Description

http://edocs.bea.com/wli/docs81/aiuser/index.html
http://edocs.bea.com/wli/docs81/aiuser/index.html

Set t ing Event P rope r t ies

BEA WebLogic Adapter for SWIFT User Guide 3-13

MQ Event

This information applies to “Step 6B, Add an Event to an Application View” in Using the
Application Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

In an MQ Event, the adapter picks up a SWIFT document from a specific IBM MQSeries or
WebSphere MQ queue and passes it to an event variable that is set in a business process.

To configure an MQ Event:

1. Enter a unique event name that describes the function the event performs.

2. Select MQ_SWIFT from the Select list.

The Add Events page displays the fields required for this event type.

Note: A red asterisk () indicates that a field is required.

3. Enter the following information:

http://edocs.bea.com/wli/docs81/aiuser/index.html

3-14 BEA WebLogic Adapter for SWIFT User Guide

4. See “Common Service and Event Settings” on page 3-11 for information about selecting a
schema and configuring tracing.

Table 3-5 MQSeries Event Properties

Property Description Type Sample
Value

Queue
Manager

Name of the MQSeries Queue Manager to be used. string OMBEA

Queue Name Queue where request documents are received. string TEST.iO

MQ Client
Host

For MQ Client only. Host on which MQ Server is located. string

MQ Client
Port

For MQ Client only. Port number to connect to an MQ Server. integer

MQ Client
Channel

For MQ Client only. Channel between an MQ Client and MQ
Server.

string

Polling
Interval

Indicates the frequency in seconds that the event returns control to
the WebLogic Server to determine if a stop or recycle of the event
has been requested. The event is constantly connected to the queue
to retrieve incoming messages. The default value is 2 seconds.

duration

ackagent The agent responsible for processing acknowledgement or
non-acknowledgment of SWIFT documents. The default
acknowledgment agent generates an empty acknowledgment
document or lists all failed validation rules in the
non-acknowledgment document.

string

Character Set
Encoding

Sets the character set encoding to be used. string

Set t ing Event P rope r t ies

BEA WebLogic Adapter for SWIFT User Guide 3-15

File Event

This information applies to “Step 6B, Add an Event to an Application View” in Using the
Application Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

In a File Event, the adapter picks up a SWIFT document from a specific location on disk and
passes it to an event variable that is set in a business process.

To configure a File Event:

1. Enter a unique event name that describes the function the event performs.

2. Select File_SWIFT from the Select list.

The Add Events page displays the fields required for this event type.

Note: A red asterisk () indicates that a field is required.

3. Enter the following information:

http://edocs.bea.com/wli/docs81/aiuser/index.html

3-16 BEA WebLogic Adapter for SWIFT User Guide

4. See “Common Service and Event Settings” on page 3-11 for information about selecting a
schema and configuring tracing.

Table 3-6 File Event Properties

Setting Type / Value Description

Location String Location and name of the file pattern for the SWIFT document.

File Suffix String Mandatory suffix of the input file.

Polling Interval Duration Indicates the frequency in seconds that the event returns control
to the WebLogic Server to determine if a stop or recycle of the
event has been requested. The event is constantly connected to
the queue to retrieve incoming messages. The default value is 2
seconds

Sort Boolean Flag to indicate whether the list of files pulled from the location
should be sorted for processing order.

Scan
sub-directories

Boolean Flag to indicate whether files should be read from
subdirectories.

File-read limit
(per scan)

Integer The number of files read per sweep of the File directory
location.

Copy to
Directory

String Directory to which the document being processed will be
copied. This allows you to keep copies of the documents.

ackagent String The agent responsible for processing acknowledgement or
non-acknowledgment of SWIFT documents. The default
acknowledgment agent generates an empty acknowledgment
document or lists all failed validation rules in the
non-acknowledgment document.

Character set
encoding

String Document character set.

Set t ing Event P rope r t ies

BEA WebLogic Adapter for SWIFT User Guide 3-17

FTP Event

This information applies to “Step 6B, Add an Event to an Application View” in Using the
Application Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

In an FTP Event, the adapter picks up a SWIFT document via FTP and passes it to an event
variable that is set in a business process.

To configure an FTP Event:

1. Enter a unique event name that describes the function the event performs.

2. Select FTP_SWIFT from the Select list.

The Add Events page displays the fields required for this event type.

Note: A red asterisk () indicates that a field is required.

3. Enter the following information:

http://edocs.bea.com/wli/docs81/aiuser/index.html

3-18 BEA WebLogic Adapter for SWIFT User Guide

4. See “Common Service and Event Settings” on page 3-11 for information about selecting a
schema and configuring tracing.

Table 3-7 FTP Event Properties

Setting Type / Value Description

Host name String FTP target system.

Host port Integer Alternate port number.

User ID String User account ID to use when connecting to protocol host.

Password String Password for user account to use when connecting to protocol host.

Location String Location on FTP server for source files.

File Suffix String Suffix of source files.

Polling Interval Duration Indicates the frequency in seconds that the event returns control to
the WebLogic Server to determine if a stop or recycle of the event
has been requested. The event is constantly connected to the queue
to retrieve incoming messages. The default value is 2 seconds.

ackagent String The agent responsible for processing acknowledgement or
non-acknowledgment of SWIFT documents. The default
acknowledgment agent generates an empty acknowledgment
document or lists all failed validation rules in the
non-acknowledgment document.

Character Set
Encoding

String Sets the character set encoding to be used.

Set t ing Event P rope r t ies

BEA WebLogic Adapter for SWIFT User Guide 3-19

TCP Event

This information applies to “Step 6B, Add an Event to an Application View” in Using the
Application Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

In a TCP Event, the adapter picks up a SWIFT document via TCP and passes it to an event
variable that is set in a business process.

To configure a TCP Event:

1. Enter a unique event name that describes the function the event performs.

2. Select TCP_SWIFT from the Select list.

The Add Events page displays the fields required for this event type.

Note: A red asterisk () indicates that a field is required.

3. Enter the following information:

Table 3-8 TCP Event Properties

Setting Type / Value Description

TCP/IP Port Integer TCP listening port.

Allowable Client
Host

String Host name or host address of client restricted to accessing events for
this adapter.

http://edocs.bea.com/wli/docs81/aiuser/index.html

3-20 BEA WebLogic Adapter for SWIFT User Guide

4. See “Common Service and Event Settings” on page 3-11 for information about selecting a
schema and configuring tracing.

Defining Event Connection Parameters

This information applies to “Step 7, Perform Final Configuration Tasks” in Using the Application
Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

Once you have finished adding services and events, you must perform some final configuration
tasks, including configuring event delivery connections, before testing the services and events.
You perform these configuration tasks from the Final Configuration and Testing page.

To define event connection parameters:

1. In Connections area on the Application View Administration page, click Select/Edit.

2. In the Event Connection area, click Select Existing to get a list of available connections.

ackagent String The agent responsible for processing acknowledgement or
non-acknowledgment of SWIFT documents. The default
acknowledgment agent generates an empty acknowledgment
document or lists all failed validation rules in the
non-acknowledgment document.

Character set
encoding

String Document character set.

Table 3-8 TCP Event Properties (Continued)

http://edocs.bea.com/wli/docs81/aiuser/index.html

Def in ing Event Connect ion Paramete rs

BEA WebLogic Adapter for SWIFT User Guide 3-21

3. Click the Event connection and click OK.

The Edit Event Adapter page allows you to define event parameters and configure the
information that will be logged for the connection factory.

Select one of the following settings for the log:

– Log errors and audit messages

– Log warnings, errors, and audit messages

– Log informational, warning, error, and audit messages

– Log all messages

Note: For maximum tracing, select Log all Messages. This is the recommended setting to use
when you are collecting debugging information for BEA support.

The log file (BEA_SWIFT_8_1.log) is stored in the directory from which the server was
started.

The following table describes the type of information that each logging message contains.

3-22 BEA WebLogic Adapter for SWIFT User Guide

4. On the Edit Event Adapter page, click the Define button.

The Configure Event Delivery Parameters page appears.

5. Enter the following information:

The event delivery parameters you enter on this page enable connection to your EIS and
are used when generating events. The parameters are specific to the associated adapter and
are defined in the wli-ra.xml file within the base adapter.

Table 3-9 Logging message categories

This type of message Contains

Audit Extremely important information related to the business processing performed
by an adapter.

Error Information about an error that has occurred in the adapter, which may affect
system stability.

Warning Information about a suspicious situation that has occurred. Although this is not
an error, it could have an impact on adapter operation.

Information Information about normal adapter operations.

Table 3-10 Event Connection Parameters

Parameter Description

Password Password for your WebLogic Server Administration Console user name.

SleepCount Number of seconds the adapter will wait between polling for events.

Username Your WebLogic Server Administration Console user name, defined in the
startWebLogic script.

Test ing Se rv ices

BEA WebLogic Adapter for SWIFT User Guide 3-23

6. Click Save to save your event delivery parameter settings. Click Continue to return to the
Edit Event Adapter page, and then click Back to return to the Final Configuration and
Testing page.

Testing Services

This information applies to “Step 8A, Test an Application View’s Services” in Using the
Application Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

The purpose of testing an application view service is to evaluate whether that service interacts
properly with the target EIS. When you test a service, you supply any inputs required to start the
service. For the Adapter for SWIFT, the input is in the form of a valid XML string that acts as
input for the service.

As an example, for MQEmit_Service, the adapter emits a document to MQSeries and returns an
emit status. You can validate the document’s arrival on the queue by browsing the MQSeries
resources through IBM-supplied or custom tools. For example, on a Windows platform, you
could use MQSeries Explorer, a Microsoft MMC plug-in utility. Using the MQSeries Explorer to
connect to the Queue Manager and explore the queues on the Queue Manager, you can view the
state of the queue and browse the messages in the queue.

To test SWIFT services:

1. Confirm that the queue is empty where the adapter will send messages.

For example, using MQSeries Explorer, browse the applicable queue and check the current
queue depth, ensuring that it is zero.

You can delete the existing queue messages by right-clicking and selecting All Tasks and
then Clear Messages.

http://edocs.bea.com/wli/docs81/aiuser/index.html

3-24 BEA WebLogic Adapter for SWIFT User Guide

2. In the Application View Administration page, click the Test link beside the service to be
tested.

The Test Services page appears.

3. Enter a sample XML document that matches the request schema for the configured service.
For example, the SWIFT MT540 request schema has an instance document similar to the
following:

<?xml version="1.0" encoding="UTF-8"?>
<SWIFTMT540>
 <BASIC>
 <APPID_Application_ID_>F</APPID_Application_ID_>
 <SRVID_Service_ID_>01</SRVID_Service_ID_>
 <LTBNK_Bank_>STRA</LTBNK_Bank_>
 ...
 lines of document omitted
 ...
</SWIFTMT540>

4. In the Test Service window, copy the appropriate XML strings from the SWIFT document
for your account.

5. Click Test.

The results appear in the Test Results window.

The response document should indicate the success of emitting to MQSeries, as shown in
the following example:

Test ing Se rv ices

BEA WebLogic Adapter for SWIFT User Guide 3-25

After transformation and formatting, the document should have arrived on the MQSeries
queue. If you are testing an MQ service, you can also check your MQSeries Explorer for
results (select Queue Managers>MyQueueManager>Queues). If the service ran correctly,
the queue now contains the SWIFT message.

6. Check for the output document on the queue designated in configuring the service.

a. Using MQSeries Explorer, browse to the appropriate queue.

b. Select Refresh:

The Current Depth should be incremented.

There should be one if you cleared all messages first.

3-26 BEA WebLogic Adapter for SWIFT User Guide

7. Select the appropriate queue.

8. Right-click and select Browse Messages.

You should see a window similar to the following Message Browser with a column
containing the data sent by the SWIFT adapter.

Testing Events Using a Service

This information applies to “Step 8B, Test an Application View’s Events” in Using the
Application Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

The purpose of testing an application view event is to make sure that the adapter correctly handles
events generated by SWIFT. When you test an event, you can trigger the event using a service or
manually.

To test an event:

1. In the Application View Administration page, click the Test link below the Services row.

The Test Events page appears.

http://edocs.bea.com/wli/docs81/aiuser/index.html

Tes t ing Events Us ing a Se rv ice

BEA WebLogic Adapter for SWIFT User Guide 3-27

2. Click Test for the required Event to display a screen similar to the following:

3. Select Service and select a service that triggers the event you are testing.

4. In the Time field, enter a reasonable period of time to wait, specified in milliseconds, before
the test times out (One second = 1000 milliseconds. One minute = 60,000 milliseconds.).

5. Click Test and enter the XML string needed to trigger the service.

The service is executed.

– If the test succeeds, the Test Result page appears, showing the event document and the
service output document.

3-28 BEA WebLogic Adapter for SWIFT User Guide

– If the test fails, the Test Result page displays only a Timed Out message.

Testing Events Manually

This information applies to “Step 8B, Test an Application View’s Events” in Using the
Application Integration Design Console, at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/index.html

To test an event manually:

1. Select Manual.

2. In the Time field, enter a reasonable period of time to wait, specified in milliseconds, before
the test times out (One second = 1000 milliseconds. One minute = 60,000 milliseconds.).

3. Click Test. The test waits for an event to trigger it.

http://edocs.bea.com/wli/docs81/aiuser/index.html

Tes t ing Events Manua l l y

BEA WebLogic Adapter for SWIFT User Guide 3-29

4. Submit a valid SWIFT file into the expected File System directory, FTP location, or MQ
Series Queue.

5. Either of the following should occur:

– If the test succeeds, the Test Result page appears. This page displays the event
document from the application, the service input document, and the service output
document.

– If the test fails or takes too long, the Test Result page appears, showing a Timed Out
message.

3-30 BEA WebLogic Adapter for SWIFT User Guide

BEA WebLogic Adapter for SWIFT User Guide A-1

A P P E N D I X A

Validation Rules

Document validation enables any document to be validated against sets of rules specified on a
per-document basis. The rules are encoded in a rules file that is addressed through the system
document dictionary. Rules apply to document nodes in the XML tree, and (optionally) to their
children. Built-in rules can be specified in any combination, and specialized rules can be coded
in Java and loaded by the engine, as required.

BEA provides a complete set of built-in rules as needed to validate SWIFT documents. The
following topics describe how to encode a rules file, how to use the built-in rules, and how to code
specialized rules:

About the Rules File

Writing Rules in Java

Writing Rule Search Routines in Java

General Validation Rules Reference

SWIFT Specific Rules Reference

Val idat ion Ru les

A-2 BEA WebLogic Adapter for SWIFT User Guide

About the Rules File
The rules file is an XML document. One file should exist for each document to be validated.
The outer tag should be the <document> tag and under this tag are <rule> tags, which may be
enclosed within <using> tags. For example, for SWIFTMT540, a portion of the rules file might
look like this:

Listing A-1 Portion of Sample Rules File for SWIFTMT540

<!-- SWIFT Standards Version : SWIFT 2003 -->

<SWIFTMT540>

<using class="com.ibi.swift.XDSWIFTRules" radix=",">

<!-- Schema Validation for Domain,Tag Syntax and Structural

Validations -->

<rule name="checkSchema" tag="SWIFTMT540" full="no"

method="checkSchema" schema="/SWIFT/schemas/MT540.xsd" />

<!-- Network Validations -->

<rule name="R190" tag="SWIFTMT540._540.A.A1._22F"

method="checkValue" tagset="QUALF_Qualifier_,INDCR_Indicator_"

code="1=LINK/2=AFTE;BEFO;INFO;WITH" errorcode="T20"/>

...

</using>

</SWIFTMT540>

The rules document is an XML document tied into the BEA WebLogic Adapter for SWIFT
through <validation> tags, which associate one or more rule documents with the specific
document entry. The outer tag of the rules document should be explanatory, describing the type
of document, but the actual tag is ignored. The rule document itself is a structure containing
specific rule applications. All attributes of rules must be specified in lowercase.

Note: For assistance with customizing rules files, contact BEA Customer Support through BEA
WebSUPPORT at www.bea.com.

http://www.bea.com

About the Ru les F i l e

BEA WebLogic Adapter for SWIFT User Guide A-3

<document> tag
The <document> tag is the outer tag of the rules file. The name, document, is arbitrary and may
be replaced with any meaningful XML-legal name.

<using> Tag

<rule> tag
The <rule> tag and method attributes are required. The remaining attributes are rule-specific,
and their inclusion is based on the rule itself. The validator uses the required tags to identify the
rule in question and to identify the node or nodes of the document to which it applies. Common
<rule> tags include:

Table A-1 <document> tag

Attribute Use

ackagent Java program class called to construct the acknowledgement. For the BEA WebLogic
Adapter for SWIFT, this class is the XDSWIFTACKAgent.class. The actual agent to
be used is selected in a search order:

1. The document specification in the repository.

2. This attribute of the outer tag of the rule file.

3. The listener configuration.

As soon as an ackagent is located, it is selected for use, and the search ends.

Table A-2 <using> tag

Attribute Use

class Java program class contains all <rule>s within the section, unless overridden by a
class=attribute in the <rule> entry itself.

other Any unrecognized attribute is passed to each rule in the rule’s attributes. For example, to
apply the radix=’,’ attribute to all rules, specify it here rather than on each rule. Rules
that do not use the radix attribute ignore it.

Val idat ion Ru les

A-4 BEA WebLogic Adapter for SWIFT User Guide

The rule document is located by the <validation> tag value in the dictionary’s system section
and is identified with the specific document in its <document> entry. Rules validation is
performed for document input (<in_validation>) and/or output (<out_validation>). If
several tags are found in the document description, each rules validation is performed in the order
in which the tags are found, as shown in the following example:

Listing A-2 Section of a Dictionary That Defines Precedence for Rules Files

 <system>

 <validation package="SWIFT">

 <name package="SWIFT" file="rules/SWIFTMT100rules.xml">

 100RULES

 </name>

 </validation>

 </system>

 <document package="SWIFT">

Table A-3 <rule> Tag

Attribute Description

tag Names the right-most parts of the tag to which this rule applies. The rule applies to any
node of the document that meets the tag criteria. For example, Document Table Model
(DTM) would cause this rule to be applied to every DTM in the incoming document.
X.DTM applies to all DTM parts prefixed by X. Tags are case sensitive. If omitted, an
stag must be used.

stag This is a specification subsection tag.

name Rule’s identification, which should be a unique name. This is used in trace messages to
specify which rule caused a violation. If omitted, no unique identification can be given.

class Rule class to which this rule belongs. This corresponds to a Java object class, and each
rule is a method of the class. If this is omitted, the class from the enclosing <using> tag
is used.

method Specific rule.

usage Specify usage=M (mandatory) to check that there is a value in the identified node. This
check is applied before the actual rule logic is executed.

Wri t i ng Ru les i n Java

BEA WebLogic Adapter for SWIFT User Guide A-5

 SWIFTMT100

 <in_validation>

 100RULES

 </in_validation>

 </document>

Writing Rules in Java
Rules can be written in Java, loaded by the system at startup, and applied by specification in a
rule. A rule class extends XDRuleClass and can make use of any of its services. Each public
method in the rule class that meets the rule signature can be applied by name as a rule. The rule
methods can make use of service methods in the parental XDRuleClass.

In this example, a node is checked to determine whether its value is the word identified by the
value= attribute. If not, it is an error.

The following parameters are passed:

Listing A-3 Node Checking Example

import java.util.*;

import com.ibi.edaqm.*;

public class XDMyRules extends XDRuleClass

{

Table A-4 Parameters Passed in Rules

Parameter Description

Node Node identified by the tag attribute in the rule. The rule method
will be called once for each node that matches the tag
specification.

Value Data value of the addressed node. This differs from the
node.getValue() return if the tag contained a subfield address
(for example, tag=x:2).

Attributes HashMap of rule attributes. The rule method can check for any
attributes that it requires. A HashMap is a fast implementation
of a Hashtable that does not serialize.

Val idat ion Ru les

A-6 BEA WebLogic Adapter for SWIFT User Guide

 public XDMyRules()

 {

 }

 public void specialRule(XDNode node, String value,

 HashMap attributes)

 throws XDException

 {

 trace(XD.TRACE_DEBUG, "specialRule called with parms: " +

 node.getFullName() + ", " + attributes.toString());

 String testValue = (String)attributes.get(“value”);

 if (value.equals(testValue))

 {

 node.setAssociatedVector(new XDEDIError(4, 0, error,”explanation”));

 throw new XDException(XD.RULE, XD.RULE_VIOLATION,"node value

"+value+” is not 'Value'");

 }

 }

}

Rule violations should throw an XDException describing the violation.

The parental class provides a group of services to assist in preparing rules:

Table A-5 Services for Preparing Rules

Method Purpose

Boolean is YYYYMMDD
(string date).

Validates that a date is formatted correctly.

Wri t i ng Ru les i n Java

BEA WebLogic Adapter for SWIFT User Guide A-7

Rules can also use all methods in XDNode to address the values in the passed node and the tree
in general.

Rule violations must be returned as XDExceptions of class XD.RULE. Two causes are available,
XD.RULE_SYNTAX if the rule is in error, and XD.RULE_VIOLATION if the data violates the
rule. Syntax errors cause the document to be aborted, as it is presumed that rules should have been
debugged. Violations should be posted to the node by the rule, and the engine continues to
process the document. Violations are traced by the engine and affect the later acknowledgement
generation.

The error itself is posted to the node by the standard XDNode service
setAssociatedVector(Object o) which records an object with the node. The special
EDIError object contains the following elements:

Boolean is InList (string
list, string value).

Value must be in the list.

Void trace (int level, string
msg).

Text of the message is written to the system trace file. The
level should be one of the following values:

• XD.TRACE_DEBUG

• XD.TRACE_ERROR

• XD.TRACE_ALL

Table A-6 Elements in the EDIError Object

Element Description

Class Class of the error. Should be 4 for a syntax error, resulting in an AK4.

Reserved Must be 0.

Error code Code to be returned in the ack AKx (997).

Explanation String explaining the error, for tracing use.

Table A-5 Services for Preparing Rules (Continued)

Method Purpose

Val idat ion Ru les

A-8 BEA WebLogic Adapter for SWIFT User Guide

Writing Rule Search Routines in Java
Short lists can be searched by built-in rule engine code. Longer lists, in which the values in the
list are obtained not from the attribute directly, but instead from an external source, require a rule
list searcher tailored to the source. Lists might be obtained from:

A simple file.

A database with values loaded at startup.

A database with an access at each search request.

Each list might require its own search logic, tailored to the source and format of the list itself. To
accommodate this, the rule engine allows list-specific search routines to be developed and added
to the system. These routines are loaded at system initialization and terminated at system
shutdown. Each must offer a search method that determines whether the passed value is valid.

Search routines must extend the XDRuleList class that is part of the edaqm package:
com.ibi.edaqm.XDRuleClass. The routine must offer these methods in the manner common
to all XD extensions:

init(String args) is called once at system initialization.

term() is called once at system termination. It is not guaranteed that it is called.

search(String value) is called when the rule is executed.

The Rule List search code is identified in the <preload> section of the <system> area of the
dictionary. The Preloads console page manages the following section:

<preload>

 <name file="RuleFileList(c:\ziplist.txt)" comment="validates zip

codes">ziplist</name>

</preload>

The rule tag specifies that a rule can be written:

<rule tag=”xxx” code=”@ziplist” method=”checklist”/>

that names the preloaded routine. This routine might load a list from a text file. A simplified
example procedure to load a file containing codes follows.

Wr i t ing Ru le Search Rout ines i n Java

BEA WebLogic Adapter for SWIFT User Guide A-9

Listing A-4 Loading a File Example

import com.ibi.edaqm.*;

import java.util.*;

import java.io.*;

/**

 * A rule list handler is a routine called to enable users search lists

during execution

 * or the checkList rule. checkList() is a generally available rule to test

whether the

 * contents of a document field are valid. The rule list handler is invoked

when

 * the code= attribute indicates the name of a coder routine rather than a

simple list.<P>

 * For example, <I>code="@list1"</I> will cause the search routine of the

list1 class to

 * be invoked.<P>

 * The file read by this procedure consists of tokens separated by new line,

white space or commas.

 */

public class XDRuleListFile extends XDRuleList

{

 String[] list;

 ArrayList al = new ArrayList(127);

 public XDRuleListFile()

 {

 }

 /**

 * The init method is called when a rule is loaded. It can perform

any necessary

 * initialization, and can store any persistent information in the

object store.

 *

 * @param parms Array of parameter string passed within the start

command init-name(parms).

 */

 public void init(String[] parms) throws XDException

 {

Val idat ion Ru les

A-10 BEA WebLogic Adapter for SWIFT User Guide

 if (parms == null)

 {

 throw new XDException(XD.RULE, XD.RULE_SYNTAX, "no parms

sent to " + name);

 }

 try

 {

 File f = new File(parms[0]);

 FileInputStream fs = new FileInputStream(f);

 long len = f.length();

 byte[] b = new byte[(int)len];

 fs.read(b);

 fs.close();

 String data = new String(b);

 StringTokenizer st = new StringTokenizer(data, ", " +

XD.NEWLINE);

 while (st.hasMoreTokens())

 {

 String part = st.nextToken();

 al.add(part);

 }

 }

 catch (FileNotFoundException e)

 {

 throw new XDException(XD.RULE, XD.RULE_SYNTAX, "list file

"+parms[0] + " not found");

 }

 catch (IOException eio)

 {

 throw new XDException(XD.RULE, XD.RULE_SYNTAX, eio.toString());

 }

 }

 /**

 * The term() method is called when the worker is terminated. It is

NOT guaranteed

 * to be call, and applications should not rely upon this method to

update data bases or

 * perform other critical operations.

Genera l Val ida t ion Ru les Re fe rence

BEA WebLogic Adapter for SWIFT User Guide A-11

 */

 public void term()

 {

 }

 /**

 * Search the given value to determine whether it is in the list.

 *

 * @param value String to test against the list

 * @return true if found, false otherwise

 */

 public boolean search(String value)

 {

 return al.contains(value);

 }

}

General Validation Rules Reference
The engine provides general rules for use by any rule set. The rules are located in
com.ibi.edaqm.XDRuleBase, which extends com.ibi.edaqm.XDRuleClass, the base of all
rules. Your own rule class should extend XDRuleBase instead of EXRuleClass. The following
rules are general rules:

isN

isR

isDate

isTime

isN
The isN rule validates that a node is numeric with an optional leading sign.

<rule tag="xx" method="isN” />

Val idat ion Ru les

A-12 BEA WebLogic Adapter for SWIFT User Guide

isR
The isR rule validates that a node is numeric with an optional leading sign and a single decimal
point.

<rule tag="xx" class="XDSWIFTRules" method="isR” />

isDate
The isDate rule validates that a node is in CCYYMMDD format.

<rule tag="xx" class="XDSWIFTRules" method="isDate” />

Table A-7 isN Attributes

Attribute Meaning

Min Minimum number of digits required, not including sign. Optional.

Max Maximum number of digits permitted, not including sign. Optional.

Table A-8 isR Attributes

Attribute Meaning

Min Minimum number of digits required, not including sign or radix. Optional.

Max Maximum number of digits permitted, not including sign or radix. Optional.

Radix Single character to be used to separate the decimal parts of the real value. The default is
a period character. The radix attribute can be taken from the USING entry.

Table A-9 isDate Attributes

Attribute Meaning

Min Minimum number of positions required. If omitted, 8 is assumed.

Max Maximum positions permitted. If omitted, 8 is assumed.

Genera l Val ida t ion Ru les Re fe rence

BEA WebLogic Adapter for SWIFT User Guide A-13

isTime
The isTime rule validates that a node is in HHMM[SS] format.

<rule tag="xx" method="isTime” />

Table A-10 isTime Attributes

Attribute Meaning

 None None.

Val idat ion Ru les

A-14 BEA WebLogic Adapter for SWIFT User Guide

SWIFT Specific Rules Reference
The following rules are specific to SWIFT:

isValidReference

isValidISIN

isNotPresent

isValidMultiLine

isSWIFTReal

isSWIFTDate

IsValidSWIFTString

isSWIFTTime

isValidMessageType

checkValue

checkCD

checkRepetitive

checkNodes

checkChildSequence

checkAddition

checkRelation

checkSegment

SWIFT Spec i f i c Ru les Re fe rence

BEA WebLogic Adapter for SWIFT User Guide A-15

isValidReference
The isValidReference rule validates the value with the following validations:

The first character should not be /.

The last character should not be /.

At any place no two / should come together.

<rule tag="(node to check)" method="isValidReference" errorcode=”(error

code)”/>

isValidISIN
The isValidISIN rule validates the value with the following validations:

The first four characters should be ISIN.

The fifth character should be a space.

The maximum characters should be 17 including the ISIN and the space that follows it.

<rule tag="(node to check)" method="isValidISIN" errorcode=”(error code)”/>

Warning: The format of the ISIN given in the input is valid. The validity of the ISIN can be
checked in the SWIFT ISIN directory.

isNotPresent
The IsNotPresent rule validates whether or not the value is present.

<rule tag="(node to check)" method="isNotPresent" errorcode=”(error

code)”/>

isValidMultiLine
The isValidMultiLine rule validates whether or not the value is present.

The value should be alphanumeric.

The line ends with a carriage return and a new line character.

<rule tag="(node to check)" method="isMultiLine" line=”3” min=”2” max=”10”

errorcode=”(error code)”/>

Val idat ion Ru les

A-16 BEA WebLogic Adapter for SWIFT User Guide

isSWIFTReal
The isSWIFTReal rule validates the value with the following validations:

The value is checked for real numbers with at least one character before the decimal point
(the decimal point is “,”).

The value is checked for having a mandatory decimal point.

Note: The decimal comma is included in the maximum length.

<rule tag="(node to check)" method="isSWIFTReal" min=”2” max=”10”

errorcode=”(error code)”/>

isSWIFTDate
The isSWIFTDate rule validates the date according to the format specified in the attribute. The
following are valid formats:

date1: MMDD

date2: YYMMDD

Table A-11 isValidMultiLine Attributes

Attribute Meaning

Line Number of valid lines. The minimum number of lines is 1.

Min Minimum number of characters.

Max Maximum number of characters.

Errorcode Error code for the rule.

Table A-12 isSWIFTReal Attributes

Attribute Description

Min Minimum number of characters.

Max Maximum number of characters.

Errorcode Error code for the rule.

SWIFT Spec i f i c Ru les Re fe rence

BEA WebLogic Adapter for SWIFT User Guide A-17

date3: YYMM

date4: YYYYMMDD

date5: date4 + value date (the year should be between 1980 and 2060)

<rule tag="node to check" method="isSWIFTDate" format=”date1” />

IsValidSWIFTString
The isValidSWIFTString rule validates the value according to the format specified.

The following table describes the valid values of the format:

Exceptions to this rule are:

A value cannot have blank spaces alone.

A value cannot have CrLf characters alone.

Table A-13 isSWIFTDate Attributes

Attribute Meaning

Format Format of the date to check against.

Errorcode Error code for the rule.

Table A-14 Valid Values for isValidSWIFTString

Value Description

x S.W.I.F.T X character list.

y S.W.I.F.T Y character list.

z S.W.I.F.T Z character list.

c Alphanumeric capital letters and digits only.

a Alphabetic capital letters only.

h Hexadecimal characters only.

e Blank spaces.

Val idat ion Ru les

A-18 BEA WebLogic Adapter for SWIFT User Guide

This function validates each and every digit and/or character against the standard SWIFT
recognized X character list.

SWIFT X Character Set

SWIFT Y Character Set

SWIFT Z Character Set

SWIFT X Character Set

A to Z (uppercase)

a to z (lowercase)

0 to 9

/ (forward slash), - (minus sign), ? (question mark), : (colon), ((left parenthesis),) (right
parenthesis), . (point), , (comma), ’(right single quote), + (plus sign), SPACE, CrLf (line feed,
new line, and carriage return characters)

SWIFT Y Character Set

A to Z (uppercase)

0 to 9

/ (forward slash), - (minus sign), ? (question mark), : (colon), ((left parenthesis),) (right
parenthesis), . (point), (comma), ’(right single quote), + (plus sign), SPACE, = (equal to)

! (exclamation mark), ” (right quotes), % (percentage), & (ampersand), * (asterisk),
; (semi-colon), < (left V bracket), >(right V bracket)

SWIFT Z Character Set

A to Z (uppercase)

a to z (lowercase)

0 to 9

SWIFT Spec i f i c Ru les Re fe rence

BEA WebLogic Adapter for SWIFT User Guide A-19

Hexadecimal Representation of SWIFT Character Set
SWIFT characters can be comprised of hexadecimal characters. These representations are
different from regular IBM hexadecimal representations of characters.

For example, an Lf character can be depicted as 25, an & can be depicted as 50, and an ! can be
depicted as 4f.

<rule tag="(node to check)" method="isValidSWIFTString" type=”x”

errorcode=”(error code)”/>

/ (forward slash), - (minus sign), ? (question mark), : (colon), ((left parenthesis),) (right
parenthesis), . (point), , (comma), ’ (right single quote), + (plus sign), SPACE, Cr Lf (line
feed, new line, and carriage return), = (equal to), @ ,#, { (left brace)

! (exclamation mark),” (right quotes), % (percentage), & (ampersand), * (asterisk),
;(semi-colon), < (left V bracket), >(right V bracket)

SWIFT Z Character Set

Val idat ion Ru les

A-20 BEA WebLogic Adapter for SWIFT User Guide

isSWIFTTime
The isSWIFTTime rule validates the value according to the format specified.

The valid values of the format are:

time1: HHMM.

time2: HHMMSS.

time3: HHMMSSsss (where sss stands for microseconds).

<rule tag="(node to check)" method="isValidSWIFTTime" format=”time1”

errorcode=”(error code)”/>

isValidMessageType
The isValidMessageType rule validates the message type value.

The message type value should be greater than 100 and less than 999.

There is an exception if the message is one of the following sets:

101,102,204,206,207,256,303,304,405,416,503,504,505,506,507,527,569, or 575.

Table A-15 isValidSWIFTString Attributes

Attribute Meaning

Type Type of string format to check against.

Min Minimum number of characters.

Max Maximum number of characters.

Errorcode Error code for the rule.

Table A-16 isSWIFTTime Attributes

Attribute Meaning

Format Type of date format to check against.

Errorcode Error code for the rule.

SWIFT Spec i f i c Ru les Re fe rence

BEA WebLogic Adapter for SWIFT User Guide A-21

A warning message indicating that sending or receiving one of the above messages requires a
MUG (ISO 7775 Message User Group) registration and that special validation is required as per
individual MUG standards is sent to the console and/or logged in the trace file.

All SWIFT Adapter users are enrolled in MUG.

<rule tag="(node to check)" method="isValidMessageType" errorcode=”(error

code)”/>

You can learn more about the ISO 7775 MUG at:

http://www.swift.com/index.cfm?item_id=41974

checkValue
The checkValue rule validates the elements or components of a segment for presence according
to a pattern. The patterns validate the code in the independent variable. The tag= and tagset=
attribute can be used to locate the section to which the rule applies.

Case 1
<rule tag=”Parent of A and B” method=”checkValue” tagset=”A,B”

code=”1=@reasonList/2=@statusList” errorcode=”(error code)”/>

If the Value of A is one of the code set ‘reasonList,’ then the value of B should be one of the code
set of statusList.

Table A-17 isValidMessageType Attribute

Attribute Meaning

Errorcode Error code for the rule.

Table A-18 checkValue Attributes

Attribute Meaning

Tagset List of nodes to check against.

Code Expression used to validate the elements.

Errorcode Error code for the rule.

Val idat ion Ru les

A-22 BEA WebLogic Adapter for SWIFT User Guide

Case 2
<rule tag=”Parent of A and B” method=”checkValue” tagset=”A,B”

code=”1=x;y;z/2=a;b;c” errorcode=”(error code)” />

If the Value of A is one of the set {x,y,z}, then Value of B should be one of the set {a, b, c}.

Case 3
<rule tag=”Parent of A and B” method=”checkValue” tagset=”A,B”

code=”1!?/2=?” errorcode=”(error code)” />

If element A is not present, element B should be present.

Case 4
<rule tag=”Parent of A,B” method=”checkValue” tagset=”A,B”

code=”1=?/2=?,1!?/2!?” errorcode=”(error code)”/>

Either A and B should be present, or A and B should not be present.

Case 5
<rule tag=”Parent of A,B, C” method=”checkValue” tagset=”A,B,C”

code=”1=?/2!?+3!?,1!?/2=?+3=?” errorcode=”(error code)”/>

Either element A or (B and C) must be present.

Case 6
<rule tag =”Parent of x,y,z,A,B” method=”checkValue” tagset=”x,y,z,A,B”

code=”1=?|2=?|3=?/4=?+5=? errorcode=”(error code)”/>

If any of the elements x, y, and z are present, then element A and element B must be present.

Case 7
<rule tag = “Parent of A, X, Y, Z, x, y, z, …” method = “checkValue” tagset

= “A, X, Y, Z, x, y, z, …” Code = “1=XXX + (2=?|3=?|4=?…)/5=?|6=?|7=?…

errorcode=”(error code)”/>

If element A contains the word XXX and any of the elements {X,Y,Z,X1,Y1,Z1,…} are present,
then any of the elements {x,y,z,x1,y1,z1….} should be present.

SWIFT Spec i f i c Ru les Re fe rence

BEA WebLogic Adapter for SWIFT User Guide A-23

checkCD
The checkCD rule validates that a node has appropriate sub nodes. The valid codes and definitions
of the codes are as follows:

Case 1
<rule tag=”Parent of A and B” method=”checkCD” tagset=”A,B” cd=”E0102”

errorcode=”(error code)”/>

Table A-19 checkCD Valid Codes

Condition
Code

Meaning Definition

R Required At least one of the elements in the condition must be present.

E Exclusion Not more than one of the elements specified in the condition can
be present.

G Repetitive Sequence

Related

First element must be present if there are no repetitive sequences
of the second or third element.

F Repetitive Sequence

Related

First element must be present if there are repetitive sequences of
the second element.

V Multiple
Occurrences

Related

If the first element is present and the second element is present at
least once, then the value of all the occurrences of the second
element should be equal to the first element.

M Mandatory One of the children of the specified elements must contain a value.

Table A-20 checkCD Attributes

Attribute Meaning

Tagset List of nodes to check against.

Cd Expression used to validate the elements.

Errorcode Error code for the rule.

Val idat ion Ru les

A-24 BEA WebLogic Adapter for SWIFT User Guide

Mutually exclusive A and B.

Case 2
<rule tag=”Parent of A,B” method=”checkCD” tagset=”A,B” cd=”R0102”

errorcode=”(error code)”/>

Either element A or element B or both must be present.

Case 3
<rule tag=”Parent of A,B, C” method=”checkCD” tagset=”A,B,C” cd=”G010203”

errorcode=”(error code)”/>

Element A must be present if there are no repetitive sequences B or C (this is applicable to MT
573).

Case 4
<rule tag=”Parent of A,B” method=”checkCD” tagset=”A,B” cd=”F0102”

errorcode=”(error code)”/>

Element A must be present if there are repetitive sequences of element B (two or more times).

Case 5
<rule tag=”Parent of A,B” method=”checkCD” tagset=”A,B” cd=”V0102”

errorcode=”(error code)” />

If element A is present and there is at least one element B, then the value of all occurrences of
element B should be equal to the value of element A.

Case 6
<rule tag=”Parent of A,B” method=”checkCD” tagset=”A,B” cd=”M0102”

errorcode=”(error code)” />

One of the children from element A and element B must contain a value.

checkRepetitive
The checkRepetitive rule validates that the value of the specified element should be the same
in all occurrences if the specified element is used or present repetitively.

<rule tag=”(Root of the document)” search=”A” errorcode=”(error code)”/>

SWIFT Spec i f i c Ru les Re fe rence

BEA WebLogic Adapter for SWIFT User Guide A-25

Note: A is the name of the actual node (not a fully qualified name). It is specified the root of
the document, instead of the parent of A, because this rule searches the entire document
for A.

checkNodes
The checkNodes rule validates either one or more of elements from a set A, A1, … of nodes must
be present or one or more of the set B, B1, … of nodes must be present, but not elements from
both sets. For example, {A, A1, A2, …} and {B, B1, B2, …} are two sets of nodes defined. Only
nodes from one of the sets can exist. If node A and node B exists, then the rule fails.

<rule tag=”Parent of A,A1,…B,B1,…” method=”checkNodes”

tagset=”A,A1,A2,A3,…;B,B1,B2,B3……” errorcode=”(error code)” />

checkChildSequence
The checkChildSequence rule checks for a specified node for its occurrences, and the presence
of other nodes is based upon it.

Table A-21 checkRepetitive Attributes

Attribute Meaning

Search Node to search for and check.

Errorcode Error code for the rule.

Table A-22 checkNodes Attributes

Attribute Meaning

Tagset Two sets of nodes to check separated by “;”.

Errorcode Error code for the rule.

Table A-23 checkChildSequence Attributes

Attribute Meaning

Start Node to check if it is repetitive.

Val idat ion Ru les

A-26 BEA WebLogic Adapter for SWIFT User Guide

Case 1
<rule tag=”Parent of A” method=”checkChildSequence” start = A pattern= B

errorcode=”(error code)” />

If tag A is repetitive and is present two or more times, then tag B should be one of the children of
tag A.

Case 2
<rule tag=”Parent of A” method=”checkChildSequence” start = “A” pattern=

“B1,B2,B3….” errorcode=”(error code)” />

If tag A is repetitive and is present two or more times, then one of the tags {B1,B2,B3,….} must
be present.

checkAddition
The checkAddition rule validates the value of a specified element to be equal to the sum of all
values of another element.

Case 1
<rule tag=”Parent of A, B, C” method=”checkAddition” tagset=”A,B,C”

errorcode=”(error code)” />

Pattern Expression used to validate the elements.

Errorcode Error code for the rule.

Table A-24 checkAddition

Attribute Meaning

Tagset List of nodes to check.

Errorcode Error code for the rule.

Table A-23 checkChildSequence Attributes (Continued)

Attribute Meaning

SWIFT Spec i f i c Ru les Re fe rence

BEA WebLogic Adapter for SWIFT User Guide A-27

The value of element A should be equal to the sum of all values of element B (they are repetitive
optionally) or the sum of all values of element C (they are repetitive optionally).

The validation applies only if the element A exists in the incoming SWIFT document. If the
element A exists, then at least one of the elements of B should exist or at least one of the elements
of C should exist.

Case 2
<rule tag=”Parent of A, B” method=”checkAddition” tagset=”A,B,C”

errorcode=”(error code)” />

The value of element A should be equal to the sum of all values of element B (they are repetitive
optionally).

The validation applies only if the element A exists in the incoming message. If the element A
exists, then at least one element B should exist.

checkRelation
The checkRelation rule validates whether element A or one or more of the set {x,y,z,…} is
present, then element B should be present and must be succeeding all occurrences of A or one or
more of the set {x,y,z…}. The converse is also true.

<rule tag=”Parent of A,B,x,y,z,.,.,” method=”checkRelation” tagset=”A”

taglist=”x,y,z” find=”B” errorcode=”(error code)” />

Table A-25 checkRelation Attributes

Attribute Meaning

Tagset Node to check.

Taglist List of nodes to check.

Find Node to find to see if it should be present.

Errorcode Error code for the rule.

Val idat ion Ru les

A-28 BEA WebLogic Adapter for SWIFT User Guide

checkSegment
Segment D is mandatory when in any occurrence of segment C, sub-segment C1 is present, and
the sub-segment C1a is not present.

Note: C1a is the child of C1. When specified in the rule, specify the node with its full name.

<rule tag=”Parent of C,C1,C1a,D” method=”checkSegment” parent=”C”

subseq=”C.C1” child=”C.C1.C1a” check=”D” errorcode=”(error code)” />

Table A-26 checkSegment Attributes

Attribute Meaning

Parent Parent node.

Subseq Sub-segment node.

Child Child node.

Check Node to check if present.

Errorcode Error code for the rule.

BEA WebLogic Adapter for SWIFT User Guide B-1

A P P E N D I X B

Handling Acknowledgements

This section describes the process of acknowledging a document after it has passed through
validation and includes the following topics:

About Acknowledgement Processing

Processing Documents With Validation and Acknowledgement

About the Acknowledgement Agent

Acknowledgement Message Handling

Documents received by the BEA WebLogic Adapter for SWIFT are processed in stages that
include preparse, validate, transform, agent execute, and pre-emit. At any phase, the document
might generate errors and might not pass specific validation rules. The validation engine and
document validation rules are described in full in Appendix A, “Validation Rules.”

About Acknowledgement Processing
The acknowledgement process indicates the receipt and validity of the received document. The
WebLogic Adapter for SWIFT provides the following features that support the acknowledgement
process:

Validation

Validation is a specific stage in processing the document that occurs immediately after the
document arrives, is available in XML format, and before any other processing. The
process of validation and the rules used in validating a document are described in
Appendix A, “Validation Rules.”

Handl ing Acknowledgements

B-2 BEA WebLogic Adapter for SWIFT User Guide

Document Tree

The document tree is the adapter’s representation of the XML document. The tree is used
during document processing and stores additional document or element level information.
Validation errors are stored in the document tree and are available to the acknowledgement
agent.

Acknowledgement Agent

The acknowledgement agent is responsible for determining what processing should occur
for a document, as represented in memory by the document tree, and contains zero, one, or
more validation errors. The agent determines what constitutes a good document, to which
an acknowledgement (ACK) should be sent. The agent also determines what constitutes a
bad document, to which a non-acknowledgement (NAK) should be sent. The agent
determines the content of the acknowledgement or non-acknowledgement.

Processing Documents With Validation and Acknowledgement
Documents proceed from the adapter event listener to the emitter or event poster and are
processed in stages, as shown in the following figure:

Figure B-1 Document Life Cycle

With respect to validation and acknowledgement, the above document life cycle has the
following characteristics:

About the Acknowl edgement Agent

BEA WebLogic Adapter for SWIFT User Guide B-3

Validation occurs as soon as the document has been converted into XML.

Validation includes both structural validation (described in dictionaries) and content and
network validation (described in rules XML files).

The validation processor (class) is defined at the document level or at the rule level, as
described in Appendix A, “Validation Rules.” An example of a validation processor is
XDSWIFTRules.class.

Validation (particular dictionary and rules XML file) is tied to a specific XML document
type.

If validation is defined for an XML document, an acknowledgement agent is added to the
agent vector (first in line) for processing during the document’s agent execution phase. For
a discussion of acknowledgement agent determination, see “About the Acknowledgement
Agent” on page B-3.

Validation processing adds error elements to the document tree.

The acknowledgement agent processes the document via its document tree, including any
validation errors added during the previous validation phase.

The output of the acknowledgement agent is independent of the output of the document
agent (they have different schema, separate threads of execution, and so on).

Validation errors and document output are independent of one another. A document may
fail validation rules and have acknowledgements or non-acknowledgements generated in
the acknowledgement agent. However, the document is still passed to its agent and sent to
its output unless other specific actions are taken (logic is coded). For example, if the copy
agent is defined for the particular document life cycle, the document is passed out and
posted to the event router even if there are errors.

Custom agents can be coded to alter behavior when validation errors are present in the
document tree.

About the Acknowledgement Agent
The acknowledgement agent is defined by an <ackagent> entry. It can be defined at the event
or service level, or as an attribute in the root element of the rules XML file. The search order is
as follows:

1. An attribute of the root element of the rules XML file.

2. The event or service listener definition using the Application View Console.

Handl ing Acknowledgements

B-4 BEA WebLogic Adapter for SWIFT User Guide

For the BEA WebLogic Adapter for SWIFT, the default ackagent is the XDSWIFTACKAgent. This
setting is defined when you configure the service or event in the Application Integration Design
Console, as described in “Setting Service Properties” on page 3-6 and “Setting Event Properties”
on page 3-12, respectively.

Acknowledgement Message Handling
The validation engine performs the structural, content, and network validation rules defined in
the document specific dictionaries and rules files. The acknowledgement agent generates an
acknowledgement message based on the document tree, which is a composite of the original
XML document tree and validation errors added by the validation engine. The results of the
acknowledgement agent are dependent on the logic coded in the implementation class. For the
BEA WebLogic Adapter for SWIFT, the default implementation class is the
XDSWIFTACKAgent.class.

The following listing shows sample output (for file or FTP services, output delivered into the
directory; for MQ services, into the queue) with errors.

Listing B-1 Sample Output

<?xml version="1.0" encoding="UTF-8"?>

<eda>

<error code="-103" source="validator"

timestamp="2002-08-08T17:37:34Z">

Document failed validation: XD[FAIL] validation error:

checkList [SWIFTMT541._541.E.E3.L_19A._19A.CURCD_Currency_Code_]: code is

missing

</error>

</eda>

The following listing shows a sample schema for handling the results of this acknowledgement.

Listing B-2 Sample Schema for Handling Schema Results

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

Acknowledgement Message Hand l ing

BEA WebLogic Adapter for SWIFT User Guide B-5

elementFormDefault="qualified">

 <xs:element name="Error" type="xs:string"/>

 <xs:element name="SWIFTack">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Error" minOccurs="0"

maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

</xs:schema>

The acknowledgement message is generated separately from the document message. After the
acknowledgement agent completes execution, two messages traversing the system attempt to be
posted to the event router. For the message to be posted, an event must be registered in the
application view with the acknowledgement schema.

Creating an Acknowledgement Event
In addition to the application view event created for the document, there must be an event created
for the acknowledgement message generated by the acknowledgement agent.

When defining the event in the application view (as described in “Setting Event Properties” on
page 3-12), you need to set the ackagent value to the desired acknowledgement agent. In addition,
an ACKNAK schema in the Schema drop down list box handles both acknowledgements and
non-acknowledgements. For events, it is important that the adapter’s protocol settings are
identical to those provided for the original event. If the settings are different, a separate Event
Listener is created, the two events (document and associated ACK/NAK) are not tied together,
and the ACKs/NAKs created by the document will not be seen by the event or schema
combination created in this section.

After you create a SWIFT adapter with two registered events—a SWIFT document event (for
example, SWIFT MT540) and a SWIFT ACK/NAK message event—you can view the document
as it was processed through the workflow in WebLogic Workshop.

Handl ing Acknowledgements

B-6 BEA WebLogic Adapter for SWIFT User Guide

BEA WebLogic Adapter for SWIFT User Guide C-1

A P P E N D I X C

Linking Business Applications to
SWIFTAlliance

This section describes ways of connecting business applications to SWIFTAlliance. It includes
the following topics:

Connecting Business Applications to SWIFTAlliance

Connectivity Options

To learn more about SWIFTAlliance, go to the following URL: http://www.swift.com.

Connecting Business Applications to SWIFTAlliance
SWIFT allows you to connect business applications to SWIFTAlliance in the following ways:

Table C-1 Ways to Connect Business Applications

Approach Description

Manual File Transfer S.W.I.F.T. messages are exchanged between the business application and
SWIFTAlliance in batch files and with operator intervention on (either
and/or both) the business application and the SWIFTAlliance.

http://www.swift.com

L ink i ng Bus iness App l i cat ions to SWIFTA l l i ance

C-2 BEA WebLogic Adapter for SWIFT User Guide

Connectivity Options
The BEA WebLogic Adapter for SWIFT supports all three options when used in conjunction with
other BEA adapters such as FTP, File, TCP/IP, and MQ Series. The following table summarizes
the connectivity options.

Batch File Transfer – FILE and FTP
The File Transfer method permits batch file transfer with message partners.This method permits
both automated and manual invocation of communication sessions, either with or without the use
of parameter files. For each message format, the communication media may be diskettes or files,
—read or write a batch message file from, or to, a directory in a local or remote file system.

Automated File Transfer S.W.I.F.T. messages are exchanged between the business application and
SWIFTAlliance in batch files, without operator intervention— the file
transfer operation is automated on (either or/and both) SWIFTAlliance and
Business Application.

Interactive Unlike file transfer operation mode, S.W.I.F.T. messages are exchanged real
time (via a conversational protocol) between the business application and
SWIFTAlliance on an individual basis and without operator intervention on
both SWIFTAlliance and Business Application.

Table C-1 Ways to Connect Business Applications (Continued)

Table C-2 Connectivity Options In Conjunction With Other Adapters

Mode BEA Adapter Third Party Software

File Transfer • BEA WebLogic Adapter for
SWIFT

• BEA WebLogic Adapter for File

None specific but could be application,
for example, MERVA or BESS

Application Server • BEA WebLogic Adapter for
SWIFT

• BEA TCP/IP Adapter

'AI MXA TCP-IP'

CASmf Application Server

Interactive • BEA WebLogic Adapter for
SWIFT

• BEA WebLogic Adapter for
MQSeries

MQSA

SWIFT Alliance Toolkit Runtime

Connec t iv i t y Opt ions

BEA WebLogic Adapter for SWIFT User Guide C-3

The following message file formats are supported:

DOS-PCC is used for batch input and output of messages. The DOS-PCC connection
method permits you to read or write an ST200 DOS message file.

RJE (Remote Job Entry) is used for batch input and output of messages in ST200 RJE
format.

MERVA/2 batch transfer (from/to mainframes) in IBM MERVA/2 format.

CAS (Common Application Server) format.

Application Server – CAS MF
The SWIFT Common Application Server (CAS) defines how data can be exchanged between
SWIFTAlliance and financial applications via a conversational protocol. The specifications are
common to both SWIFTAlliance and ST400, thus allowing smooth ST400 migration to
SWIFTAlliance.

CAS supports TCP/IP and SNA LU6.2 as a networking protocol. Application developers need
not know the CAS protocol. The CASmf software package provides APIs to the financial
application developers. It hides all communication and data formatting aspects, enabling
developers to concentrate on the application functions. APIs exist to open, close, or abort a
session and to send or receive data.

CASmf is available on the following platforms:

AIX

HP/UX

Sun OS

Windows NT

AS400

Open VMS for VAX and Alpha

CASmf uses TCP/IP as the communication protocol. It can run on the same system as
SWIFTAlliance. CASmf can handle several simultaneous application sessions. The BEA
WebLogic Adapter for SWIFT can use the TCP/IP Adapter for processing events and services
between BEA WebLogic Integration and SWIFT CASmf applications. The option 'AI MXA
TCP-IP' must be licensed on SWIFTAlliance.

L ink i ng Bus iness App l i cat ions to SWIFTA l l i ance

C-4 BEA WebLogic Adapter for SWIFT User Guide

Interactive – MQ Series
The MQSeries Interface for SWIFTAlliance (MQSA) software provides a reliable
communication between financial applications and SWIFTAlliance through IBM MQSeries. It
enables S.W.I.F.T. message exchange between SWIFTAlliance and financial applications. The
MQSA software is based on the SWIFTAlliance Development Toolkit referenced as ADK in this
document. It uses ADK functions to communicate with SWIFTAlliance and MQSeries functions
to access message queuing services.

The MQSeries Interface for SWIFTAlliance is available for SWIFTAlliance Access running on
Windows NT and UNIX. IBM MQSeries messaging software enables business applications to
exchange information across different operating system platforms in a way that is straightforward
and easy for programmers to customize.

MQSeries is available on different platforms (Windows NT, UNIX, OS/400, MVS/ESA, and so
forth). The applications are shielded from the mechanics of the underlying communications. With
MQSeries, the exchange of messages between the sending and receiving program is time
independent. This means that the sending and receiving applications are de-coupled so that the
sender can continue processing without having to wait for the receiver to acknowledge the receipt
of the message.

The MQSA software enables fast integration of user applications with SWIFTAlliance Access.
It is composed of two ADK components, and they must be installed as any other ADK
component. The components must be registered in SWIFTAlliance. The purpose of the
registration is to make the component known to SWIFTAlliance. The registration adds
component data to the SWIFTAlliance database. The MQSA software is limited to the exchange
of S.W.I.F.T. messages, S.W.I.F.T. acknowledgement and non-acknowledgements, and
recording of events in the SWIFTAlliance journal. It can handles multiple MQSeries queues for
the connection with the user application(s).

The BEA WebLogic Adapter for SWIFT and BEA WebLogic Adapter for MQSeries provide
connectivity to SWIFT network using SWIFT Alliance MQSA. The SWIFTAlliance Toolkit
run-time license is required to run the MQSA software.

BEA WebLogic Adapter for SWIFT User Guide D-1

A P P E N D I X D

Adapter Support for AS1 and AS2
Communications

AS1 and AS2 document exchange is an adapter messaging component that provides for the
secure exchange of electronic documents with interchange partners via the Internet and VANs
(Value Added Networks). This topic describes BEA WebLogic Adapter for SWIFT support for
AS1 and AS2 communications. It contains the following sections:

About the AS1 and AS2 Standards

Comparison of AS1 (SMTP/e-mail) and AS2 (HTTPS)

Adapter Support for AS1 and AS2

Note: Support for AS1 and AS2 standards is not automatically provided with the WebLogic
Adapter for SWIFT. In order to implement AS1 and AS2 in your environment, you must
contact BEA Customer Support (through BEA WebSUPPORT at www.bea.com) for
assistance.

About the AS1 and AS2 Standards
AS1 and AS2 are comprised and assembled from existing standards to produce an organized and
managed specification for the independent transport of interchange documents over the Internet.
The philosophy behind the IETF Working Group is to provide an international transport
mechanism whereby interchange partners may communicate over the open Internet, within a
secure and supportable specification, without using paid framework services. To learn more
about the AS1 and AS2 standards, see “Electronic Data Interchange-Internet Integration (ediint)”
at the following URL: http://www.ietf.org/html.charters/ediint-charter.html.

http://www.ietf.org/html.charters/ediint-charter.html
http://www.ietf.org/html.charters/ediint-charter.html
http://www.bea.com

Adapter Suppor t fo r AS1 and AS2 Communicat ions

D-2 BEA WebLogic Adapter for SWIFT User Guide

The specifications (AS1 & AS2) were developed in near parallel, and the consecutive naming
convention does not reflect any statement of version or relationship, other than the fact that AS2
references AS1 in its specification. AS1 utilizes SMTP (Simple Mail Transfer Protocol), with
S/MIME for encryption and security, by requiring authentication, message integrity, and
originating non-repudiation. AS2 may be considered a modification of AS1, providing S/MIME
via direct HTTP or HTTP/S as the transport protocol.

The AS2 specification provides support for “any” data-type transmission via the Internet over
HTTP. The AS2 specification governs data transport, not specific data-type validation or
document processing. The AS2 specification designates the means by which to connect, deliver,
validate, and acknowledge transport in a secure reliable manner.

Comparison of AS1 (SMTP/e-mail) and AS2 (HTTPS)
The following table compares features of AS1 and AS2:

Table D-1 Comparison Between AS1 and AS2

AS1 AS2

Asynchronous SMTP server connection with your
interchange partner

Synchronous communication

Supports digital signatures Supports digital signatures

Non-repudiating Non-repudiating

Supports EDIINT AS1 compatible applications Supports EDIINT AS2 compatible applications

Transaction-time based on E-mail server reaction Ease of integration with back-end systems

File size limited to E-mail capacity Unlike AS1, there is no externally imposed
file-size limitation as the connection is direct and
immediate

Persistent connectivity to the Internet

Adapte r Suppor t f or AS1 and AS2

BEA WebLogic Adapter for SWIFT User Guide D-3

Adapter Support for AS1 and AS2
The BEA WebLogic Adapter for SWIFT supplies matching interoperability support for EDIINT
AS1 and AS2, as well as support for the underlying technologies (HTTPS and SMTP).

The BEA WebLogic Adapter for SWIFT enables you to send and receive interchange documents
over the Internet through a variety of transfer protocols. This flexible service allows the use of
in-house protocols, without the need to consider specific protocol support on the opposite end of
the transaction. The Transformation Servers managed data and document exchange service is
based on open standards, including matched interoperability support for EDIINT AS1 and AS2.
This provides maximum flexibility for your interchange partners, as they might use either SMTP
(S/MIME) protocol or HTTPS, regardless of source protocol.

The BEA WebLogic Adapter for SWIFT can be used in conjunction with the following format
adapters to provide support for AS1- and AS2-based EDI communication:

EDI ANSI X12

EDI EDIFACT

HIPAA

HL7

SWIFT

Adapter Suppor t fo r AS1 and AS2 Communicat ions

D-4 BEA WebLogic Adapter for SWIFT User Guide

BEA WebLogic Adapter for SWIFT User Guide I-1

Index

A
ackagent attribute A-2
application views

adding events to 3-12
events, adding 3-12
final configuration tasks 3-20
overview of defining 3-3
preparing to define 3-2
services, adding 3-6
services, testing 3-23
testing events manually 3-28
testing events using a service 3-26
testing services 3-23

AS1 specification D-1
AS2 specification D-1
attribute parameters A-5
attributes A-23

cd A-23
class A-3
errorcode A-15, A-23
format A-16
line A-15
max A-15
method A-3
min A-15
name A-3
stag A-3
tag A-3
tagset A-23
type A-19
usage A-3

auditing events 3-21

B
BEA WebLogic Adapter for SWIFT,
overview of 1-1
BEA_SWIFT_8_1.manifest.zip file 2-8
benefits of SWIFT adapter 1-3

C
cd attribute A-23
checkAddition rule A-26
checkCD rule A-23
checkChildSequence rule A-25
checkNodes rule A-25
checkRelation rule A-27
checkRepetitive rule A-24
checkSegment rule A-28
checkValue rule A-21
class attribute A-3
customer support contact information xii

D
document entries A-2
Document Table Model (DTM) A-3
document validation A-1
DTM (Document Table Model) A-3

E
EDIError object A-7
EDIII D-1
errorcode attribute A-15, A-23
events

about 2-2
adding to application views 3-12
auditing 3-21
testing 3-26
testing manually 3-28
testing using a service 3-26

1-2 BEA WebLogic Adapter for SWIFT User Guide

F
format attribute A-16

G
getting started 1-8

H
hexadecimal values A-19
HTTPS D-1

I
IETF Working Group D-1
isDate rule A-12
isN rule A-11
isNotPresent rule A-15
isR rule A-12
isSWIFTDate rule A-16
isSWIFTReal rule A-16
isSWIFTTime rule A-20
isTime rule A-13
isValidISIN rule A-15
isValidMessageType rule A-20
isValidMultiLine rule A-15
isValidReference rule A-15
isValidSWIFTString rule A-17

J
Java rules A-5

L
line attribute A-15
logging 3-21

M
max attribute A-15
method attribute A-3

min attribute A-15

N
name attribute A-3
node parameters A-5

O
other attribute A-3
outbound processes 1-6

P
parameters

attribute A-5
node A-5
value A-5

product support xii

R
related information x
Rule List search codes A-8
rule lists A-8
rule violations A-6
rules A-11

 tag A-3
checkAddition A-26
checkCD A-23
checkChildSequence A-25
checkNodes A-25
checkRelation A-27
checkRepetitive A-24
checkSegment A-28
checkValue A-21
isDate A-12
isN A-11
isNotPresent A-15
isR A-12
isSWIFTDate A-16
isSWIFTReal A-16

BEA WebLogic Adapter for SWIFT User Guide 1-3

isSWIFTTime A-20
isTime A-13
isValidISIN A-15
isValidMessageType A-20
isValidMultiLine A-15
isValidReference A-15
isValidSWIFTString A-17
tag A-3
tag A-3

rules documents A-2
rules file A-2
rules tags A-2
rules validation A-3

S
schemas

events 2-2
service requests 2-2
service responses 2-2

search routines in Java A-8
service requests 2-2
service responses 2-2
services

adding to application views 3-6
testing 3-23

shared.jar file 2-8
SMTP D-1
stag attribute A-3
support xii
SWIFT characters A-19
SWIFT rule set A-14
SWIFT X character set A-18
SWIFT Y character set A-18
SWIFT Z character set A-18
SWIFTAlliance connectivity

iapplication server (CAS MF) C-3
ifile transfer (FILE and FTP) C-2
interactive (MQSeries) C-4
summary of options C-1

T
tag attribute A-3
tagset attribute A-23
technical support xii
type attribute A-19

U
usage attribute A-3

V
validating documents A-1
validating rules A-3
validation rules

checkAddition A-26
checkCD A-23
checkChildSequence A-25
checkNodes A-25
checkRelation A-27
checkRepetitive A-24
checkSegment A-28
checkValue A-21
isDate A-12
isN A-11
isNotPresent A-15
isR A-12
isSWIFTDate A-16
isSWIFTReal A-16
isSWIFTTime A-20
isTime A-13
isValidISIN A-15
isValidMessageType A-20
isValidMultiLine A-15
isValidReference A-15
isValidSWIFTString A-17

value parameters A-5

W
writing rule lists A-8

1-4 BEA WebLogic Adapter for SWIFT User Guide

writing rules in Java A-5

X
XD.RULE_SYNTAX error A-7
XD.RULE_VIOLATION error A-7
XDException file A-6
XDRuleList class A-8

	Copyright
	About This Document
	Who Should Read This Documentation
	Additional Information
	How to Use This Document
	Contact Us!
	Documentation Conventions

	Introducing the BEA WebLogic Adapter for SWIFT
	About the BEA WebLogic Adapter for SWIFT
	Supported Features for Application Integration
	Supported Services
	Supported Events
	Benefits of the Adapter for SWIFT
	Components of the Adapter Kit
	SWIFT Document Validation
	Validation of Inbound SWIFT Documents
	Validation of Outbound SWIFT Documents
	Post-Validation Acknowledgements

	Getting Started With the Adapter for SWIFT
	Step 1: Design the Application Integration Solution
	Step 2: Determine the Required Business Processes for SWIFT Documents
	Step 3: Generate Schemas and Define Document Transformations
	Step 4: Define Application Views and Configure Services and Events
	Step 5: Define Validation for SWIFT Documents
	Step 6: Integrate with Other BEA Software Components
	Step 7: Deploy the Solution to the Production Environment

	Transforming Document Formats
	About Schemas
	Service Requests
	Service Responses
	Events

	About Document Format Transformations
	Transforming SWIFT to XML (Events Only)
	Transforming XML to SWIFT (Services Only)

	About Schema Repositories
	Contents of the Schema Repository
	About the Repository Manifest
	Naming Schema Repositories
	Modifying the Repository
	Modify Repository on Disk
	Modify Repository and Update the EAR File

	Generating Transformation Templates and Document Schemas
	About the Sample Utilities
	Extracting the Sample Utilities
	Generating Transformation Templates
	Generating Document Schemas
	Automatically Generating a Session Repository

	Next Steps

	Defining Application Views for SWIFT
	How to Use This Document
	Before You Begin
	About Application Views
	About Defining Application Views
	Defining Service Connection Parameters
	Setting Service Properties
	MQ Service
	File Service
	FTP Service
	Common Service and Event Settings

	Setting Event Properties
	MQ Event
	File Event
	FTP Event
	TCP Event

	Defining Event Connection Parameters
	Testing Services
	Testing Events Using a Service
	Testing Events Manually

	Validation Rules
	About the Rules File
	<document> tag
	<using> Tag
	<rule> tag

	Writing Rules in Java
	Writing Rule Search Routines in Java
	General Validation Rules Reference
	isN
	isR
	isDate
	isTime

	SWIFT Specific Rules Reference
	isValidReference
	isValidISIN
	isNotPresent
	isValidMultiLine
	isSWIFTReal
	isSWIFTDate
	IsValidSWIFTString
	SWIFT X Character Set
	SWIFT Y Character Set
	SWIFT Z Character Set

	Hexadecimal Representation of SWIFT Character Set
	isSWIFTTime
	isValidMessageType
	checkValue
	Case 1
	Case 2
	Case 3
	Case 4
	Case 5
	Case 6
	Case 7

	checkCD
	Case 1
	Case 2
	Case 3
	Case 4
	Case 5
	Case 6

	checkRepetitive
	checkNodes
	checkChildSequence
	Case 1
	Case 2

	checkAddition
	Case 1
	Case 2

	checkRelation
	checkSegment

	Handling Acknowledgements
	About Acknowledgement Processing
	Processing Documents With Validation and Acknowledgement
	About the Acknowledgement Agent
	Acknowledgement Message Handling
	Creating an Acknowledgement Event

	Linking Business Applications to SWIFTAlliance
	Connecting Business Applications to SWIFTAlliance
	Connectivity Options
	Batch File Transfer – FILE and FTP
	Application Server – CAS MF
	Interactive – MQ Series

	Adapter Support for AS1 and AS2 Communications
	About the AS1 and AS2 Standards
	Comparison of AS1 (SMTP/e-mail) and AS2 (HTTPS)
	Adapter Support for AS1 and AS2

	Index

