
BEA
 WebLogic
Adapter for
TIBCO™

User Guide
Release 7.0
Document Date: November 2002

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Copyright © 2002 iWay Software. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

BEA WebLogic Adapter for TIBCO User Guide

Part Number Date

N/A November 2002

Table of Contents

About This Document
What You Need to Know .. vi

Related Information... vi

Contact Us! ... vii

Documentation Conventions ... viii

1. Introducing the BEA WebLogic Adapter for TIBCO
TIBCO Rendezvous... 1-1

The BEA WebLogic Adapter for TIBCO ... 1-3

How the BEA WebLogic Adapter for TIBCO Works 1-4

2. Metadata, Schemas, and Repositories
Understanding Metadata.. 2-2

Schemas and Repositories ... 2-5

Naming a Schema Repository .. 2-6

The Repository Manifest ... 2-7

Creating a Repository Manifest.. 2-8

Creating a Schema... 2-9

Storing Directory and Template Files for Transformations 2-13

Samples File ... 2-13

3. Creating and Configuring an Event Adapter
Creating an Application View Folder.. 3-1

Creating an Event Adapter Application View... 3-3

Configuring an Event Adapter Application View... 3-8

Testing Event Adapter Application Views Using the Application View Console..
3-15
BEA WebLogic Adapter for TIBCO User Guide iii

Testing Event Adapter Application Views Using WebLogic Integration Studio...
3-18

4. Creating and Configuring a Service Adapter
Creating a Service Adapter Application View .. 4-1

Configuring a Service Adapter Application View... 4-4

Testing the BEA Service Adapter for TIBCO... 4-10

Testing Service Adapter Application Views Using WebLogic Integration
Studio .. 4-15

5. Transforming Document Formats
Kinds of Transformation ... 5-1

Non-XML to XML Transformation ... 5-2

XML to XML Transformations.. 5-4

XML to Non-XML... 5-6

Creating and Testing Transformations .. 5-8

Creating MFL Transformations.. 5-8

Testing MFL Transformations ... 5-12

6. Creating Schema Repositories
Introduction to Schemas and Repositories .. 6-1

Naming a Schema Repository ... 6-2

The Repository Manifest ... 6-3

Creating a Repository Manifest.. 6-4

Creating a Schema ... 6-5

A. Troubleshooting
Error Messages ... A-1

B. Sample Integration With a SWIFT Message
The TIBCO-Swift Integration Scenario ... B-2

Creating an Event Adapter Application View.. B-3

Configuring an Event Adapter Application View .. B-7

Validating Deployment Using WebLogic Integration Studio B-12

Publishing the Message Using RTTM.. B-15
iv BEA WebLogic Adapter for TIBCO User Guide

About This Document

This document explains how to install, configure, and deploy the BEA WebLogic
Adapter for TIBCO to develop online connections to TIBCO applications.

This document is organized as follows:

Chapter 1, “Introducing the BEA WebLogic Adapter for TIBCO,” provides an
overview of the BEA WebLogic Adapter for TIBCO.

Chapter 2, “Metadata, Schemas, and Repositories,” describes metadata, how to
name a schema repository and the schema manifest, how to create a schema,
how to store directory and template files for transformations.

Chapter 3, “Creating and Configuring an Event Adapter,” describes how to
create, configure, and test event adapter application views.

Chapter 4, “Creating and Configuring a Service Adapter,” describes how to
create, configure, and test a service adapter application view.

Chapter 5, “Transforming Document Formats,” describes how the BEA
WebLogic Adapter for TIBCO supports inbound transformations for the event
adapter and outbound transformations for the service adapter.

Chapter 6, “Creating Schema Repositories,” explains how to name a schema
repository, create a repository manifest, and create a schema.

Appendix A, “Troubleshooting,” lists error messages you may encounter while
using the BEA WebLogic Adapter for TIBCO.

Appendix B, “Sample Integration With a SWIFT Message,” illustrates how to
send a non-XML SWIFT message between TIBCO Rendezvous and WebLogic
Integration.
BEA WebLogic Adapter for TIBCO User Guide v

What You Need to Know

This document is written for system integrators who develop client interfaces between
TIBCO and other applications. It describes how to install the BEA WebLogic Adapter
for TIBCO and how to develop application environments with specific focus on
message integration. It is assumed that readers know Web technologies and have a
general understanding of Microsoft Windows and UNIX systems.

Related Information

The following documents provide additional information for the associated software
components:

BEA WebLogic Adapter for TIBCO Installation and Configuration Guide

BEA WebLogic Adapter for TIBCO Release Notes

BEA Application Explorer Installation Guide

BEA WebLogic Server installation and user documentation, which is available at
the following URL:

http://edocs.bea.com/more_wls.html

BEA WebLogic Integration installation and user documentation, which is
available at the following URL:

http://edocs.bea.com/more_wli.html
vi BEA WebLogic Adapter for TIBCO User Guide

Contact Us!

Your feedback on the BEA WebLogic Adapter for TIBCO documentation is important
to us. Send us e-mail at docsupport@bea.com if you have questions or comments.
Your comments will be reviewed directly by the BEA professionals who create and
update the BEA WebLogic Adapter for TIBCO documentation.

In your e-mail message, please indicate which version of the BEA WebLogic Adapter
for TIBCO documentation you are using.

If you have any questions about this version of the BEA WebLogic Adapter for
TIBCO, or if you have problems installing and running the BEA WebLogic Adapter
for TIBCO, contact BEA Customer Support through BEA WebSupport at
www.bea.com. You can also contact Customer Support by using the contact
information provided on the Customer Support Card, which is included in the product
package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages
BEA WebLogic Adapter for TIBCO User Guide vii

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR
viii BEA WebLogic Adapter for TIBCO User Guide

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

That an argument can be repeated several times in a command line

That the statement omits additional optional arguments

That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
BEA WebLogic Adapter for TIBCO User Guide ix

x BEA WebLogic Adapter for TIBCO User Guide

CHAPTER
1 Introducing the BEA
WebLogic Adapter for
TIBCO

This section introduces the BEA WebLogic Adapter for TIBCO, providing an
overview of its key features and of how you can use it to integrate TIBCO Rendezvous
messages with WebLogic Integration. This section includes the following topics:

TIBCO Rendezvous

The BEA WebLogic Adapter for TIBCO

How the BEA WebLogic Adapter for TIBCO Works

TIBCO Rendezvous

TIBCO Rendezvous is the messaging system that is the foundation of TIBCO
ActiveEnterprise. Rendezvous delivers true real-time publish or subscribe and request
or reply messaging. It also supports qualities of service ranging from lightweight
informational messages to certify and transactional delivery.
BEA WebLogic Adapter for TIBCO User Guide 1-1

1 Introducing the BEA WebLogic Adapter for TIBCO
Rendezvous utilizes a distributed architecture to eliminate bottlenecks and single
points of failure. Applications can select from several qualities of service including
reliable and certified and transactional, as appropriate for each interaction. Messaging
can be request or reply, publish or subscribe, synchronous or asynchronous, and locally
delivered or sent using a WAN or the Internet. Rendezvous messages are
self-describing and platform independent, with a user-extensible type system that
provides support for data formats such as XML.

Rendezvous software uses subject-based addressing™ technology to direct messages
to the destinations, so program processes can communicate without knowing the
details of network addresses or connections. Subject-based addressing conventions
define a uniform name space for messages and their destinations.

The locations of component processes become entirely transparent; any application
component can run on any network host without modification, recompilation, or
reconfiguration. Application programs migrate easily among host computers. You can
dynamically add, remove, and modify components of a distributed system without
affecting other components.

Subject names consist of one or more elements separated by dot characters (periods).
The elements can be used to implement a subject name hierarchy that reflects the
structure of information in an application system.

These strings are examples of valid subject names:

RUN.HOME

RUN.for.Elected_office.President

TIBCO Rendezvous:

Provides a high performance, scalable platform for e-business infrastructure.

Enables the creation of robust event-driven applications.

Harnesses the full capabilities of high performance multi-processor servers.

Ensures minimal integration-driven traffic as cross system requirements grow.

Meets the reliability standards of the most demanding applications and 24x7
environments.

Provides off-the-shelf support for over 100 of the world’s leading applications,
technologies, and databases.

Simplifies administration with self-administering protocols.
1-2 BEA WebLogic Adapter for TIBCO User Guide

The BEA WebLogic Adapter for TIBCO
The BEA WebLogic Adapter for TIBCO

The BEA WebLogic Adapter for TIBCO integrates your TIBCO Rendezvous
messages with WebLogic Integration in a fast, easy, and reliable way. You can use the
adapter to exchange XML, non-XML, ASCII, and custom data formats between your
TIBCO resources and WebLogic Integration to provide a tightly integrated and
reliable application infrastructure.

The BEA WebLogic Adapter for TIBCO provides:

Guaranteed asynchronous, bi-directional message interactions between
WebLogic Integration and native TIBCO Rendezvous destinations.

Data transfer between a business process running within WebLogic Integration
and a TIBCO Rendezvous Daemon.

Service and event adapter integration operations providing end-to-end business
process management using XML schemas.

Support for many formats including:

XML

Comma Separated Variable (CSV)

Excel

Message Format Language (MFL)

Custom Data Formats (CDF).

The adapter converts non-XML files into XML formats.

Delimited, fixed length, and variable length file formats are supported.
BEA WebLogic Adapter for TIBCO User Guide 1-3

1 Introducing the BEA WebLogic Adapter for TIBCO
How the BEA WebLogic Adapter for TIBCO
Works

The BEA WebLogic Adapter for TIBCO provides transport protocol support so that it
can listen for and emit documents from TIBCO queues using TIBCO’s daemon.
Transaction integrity is maintained at all times. The BEA WebLogic Adapter for
TIBCO can accept messages arriving on a named queue and can route these messages
to any queue or any other adapter.

The listening capability has been implemented as an event adapter within WebLogic
Integration. When an inbound document is detected, the event adapter provides
options that you can configure with the design-time Application View Console
windows:

Transformation services

XML is quickly becoming the standard for exchanging information between
applications and is invaluable in integrating disparate applications. With this in
mind, and acknowledging that the world does not yet speak XML exclusively,
the BEA WebLogic Adapter for TIBCO provides transformation services.

The adapter uses pre-built customizable parsers to enable the parsing and
conversion of non-XML formatted documents and XSLT transformation to
modify XML document formats. This ensures that any incoming document can
be converted to XML as specified by your event and service schemas.

You can also use the adapter in conjunction with other BEA Adapters to handle
the processing of IDoc, SWIFT, FIX, HIPAA, and HL7 message types.

Document validation rules

During the analysis of an incoming document, you can invoke one or more user
exits to examine and transform parts of the document.

For example, you can create a name and address validation exit that is called
each time such a set of elements appears in the document. The same exit logic
might apply to all documents, so that all names and addresses in a complete
system are validated in the same manner.

Validation rule specifications are stored in XML files that are freely accessible in
the directory structure. Keeping each rule in an external file facilitates the
1-4 BEA WebLogic Adapter for TIBCO User Guide

How the BEA WebLogic Adapter for TIBCO Works
maintenance of existing rules and provides an easy way to add new ones. You
can also create new rules by writing custom Java code.

Protocol emitting

The service adapter supports emitting documents to TIBCO destinations.

Document chaining

You can use any service adapter to enhance the functionality of a document flow.
You can chain any number of desired service adapters together.

For example, you can chain multiple protocol agents to send a message to
multiple transports and locations.
BEA WebLogic Adapter for TIBCO User Guide 1-5

1 Introducing the BEA WebLogic Adapter for TIBCO
1-6 BEA WebLogic Adapter for TIBCO User Guide

CHAPTER
2 Metadata, Schemas,
and Repositories

This section explains how metadata for your enterprise information system (EIS) is
described, how to name a schema repository and the schema manifest, how to create a
schema, and how to store directory and template files for transformations. After the
metadata for your EIS is described, you can create and deploy application views using
the WebLogic Application View Console.

This section includes the following topics:

Understanding Metadata

Schemas and Repositories

The Repository Manifest

Creating a Schema

Storing Directory and Template Files for Transformations
BEA WebLogic Adapter for TIBCO User Guide 2-1

2 Metadata, Schemas, and Repositories
Understanding Metadata

When you define an application view, you are creating an XML-based interface
between WebLogic Integration and an enterprise information system (EIS) or
application within your enterprise. The BEA WebLogic Adapter for TIBCO is used to
define a file based interface to applications within and outside of the enterprise. Many
applications or information systems use file systems to store and share data. These files
contain information required by other applications, and this information can be fed
information via the BEA WebLogic Adapter for TIBCO.

The BEA WebLogic Adapter for TIBCO can read, write, or manipulate different types
of files stored in multiple file systems or FTP sites. WebLogic integration uses XML
as the common format for data being processed in its workflows, which requires
information that is not in XML to be transformed to XML. Alternatively, to share
information successfully, the file adapter can transform information from the XML
format used in WebLogic Integration to widely used formats, such as commercial
XML schemas, EDI, SWIFT, HIPAA, HL7, and others.

For example, Excel is a widely used application that allows all types of professionals
(from fund managers to administrative assistants) to collate information pertinent to
their working environment. This information can be shared by other applications using
the adapter’s transformation capability, which can convert a worksheet to XML and to
other business partners via an EDI stream.

To map this information within the workflow via event and service adapters, the BEA
WebLogic Adapter for TIBCO requires XML schemas for identifying and processing
these documents. Because some of these documents may be in non-XML form, such
as Excel, CSV, SWIFT, or HIPAA, they must be converted to XML and described to
WebLogic Integration using these schemas. A manifest file is used to relate schemas
to events or services. The schemas and manifest are stored in a folder or directory in
the local file system referred to as the EIS repository. The repository location is
required when creating an application view from which events and services can be
configured.

Events are triggers to workflows. When a particular file arrives at a location, an event
can be triggered to read and convert, if necessary, to the XML format that conforms to
a particular schema, which then initiates a flow. Services are called from the workflow
to perform supported operations.
2-2 BEA WebLogic Adapter for TIBCO User Guide

Understanding Metadata
The adapter converts non-XML, non-self describing documents into XML in two
ways. The Format Builder tool can build MFL files that are stored in the WebLogic
server local repository. The Format Builder is best used for unconventional or custom
format files. The structure of this file can be defined using the Format Builder and used
for basic conversion to or from XML. For conventional documents that are not
self-describing, such as SWIFT, HIPAA, EDI/X12, EDIFACT, and HL7, the structure
of the data is described using a data dictionary or .dic file.

Pre-built dictionaries are supplied for these formats, so creating them is not necessary,
but you can customize them to conform with specific electronic trading agreements.
Transformation templates or .xch files use these dictionaries to map the document to
its XML form or vice versa.

Transformation templates use dictionaries as metadata for the file being read or
created. The template defines the input value’s relationship with the output values
using the dictionary and XML schema. For events, the template is used to convert a
non-XML format to XML and for services, the conversion can be reversed using an
alternative template.

The templates are stored in the templates sub-directory of the EIS repository.
Dictionaries are stored in the dictionaries sub-directory. The following is a sample data
dictionary.

Listing 2-1 Data Dictionary Sample

<?xml version="1.0"?>
<!-- Title = EDI Transaction Dictionary by Transaction Set -->
<!-- Transaction = 276 Health Care Claim Status Request -->

<EDI Type="ASCII" Version="4010" Standard="X12">
<TransactionSet ID="276" Name="Health Care Claim Status Request"
Note="">

<!-- Table 1 -->

<Segment ID="ST" Name="Transaction Set Header" Req="M"
MaxUse="1">

<Element ID="01" Name="Transaction Set Identifier Code"
Req="M" Type="ID" MinLength="3" MaxLength="3" Note="The transaction
set identifier 'ST01' is used by the translation routines of the
interchange partners to select the appropriate transaction set
definition 'e.g., 810 select the Invoice Transaction Set'."/>
BEA WebLogic Adapter for TIBCO User Guide 2-3

2 Metadata, Schemas, and Repositories
<Element ID="02" Name="Transaction Set Control Number" Req="M"
Type="AN" MinLength="4" MaxLength="9"/>

<Element ID="03" Name="Implementation Convention Reference"
Req="O" Type="AN" MinLength="1" MaxLength="35" Note="The
implementation convention reference 'ST03' is used by the
translation routines of the interchange partners to select the
appropriate implementation convention to match the transaction set
definition."/>

</Segment>

<Segment ID="BHT" Name="Beginning of Hierarchical Transaction"
Req="M" MaxUse="1">

<Element ID="01" Name="Hierarchical Structure Code" Req="M"
Type="ID" MinLength="4" MaxLength="4"/>

<Element ID="02" Name="Transaction Set Purpose Code" Req="M"
Type="ID" MinLength="2" MaxLength="2"/>

<Element ID="03" Name="Reference Identification" Req="O"
Type="AN" MinLength="1" MaxLength="50" Note="BHT03 is the number
assigned by the originator to identify the transaction within the
originator's business application system."/>

After the metadata for your EIS has been described, application views can be created
and deployed using the WebLogic Integration Application View Console. For more
information on creating application views, see “Creating an Event Adapter
Application View” on page 3-3 and “Creating a Service Adapter Application View”
on page 4-1.
2-4 BEA WebLogic Adapter for TIBCO User Guide

Schemas and Repositories
Schemas and Repositories

You describe all the documents entering and exiting your WebLogic Integration
system using W3C XML schemas. These schemas describe each event arriving to and
propagating out of an event, and each request sent to and each response received from
a service. There is one schema for each event and two for each service (one for the
request, one for the response). The schemas are usually stored in files with an .xsd

extension.

Use the WebLogic Integration Application View Console to access events and
services, and to assign a schema to each event, request, and response. Assign each
application view to a schema repository; several application views can be assigned to
the same repository.

BEA WebLogic Adapters all make use of a schema repository to store their schema
information and present it to the WebLogic Application View Console. The schema
repository is a directory containing:

A manifest file that describes the event and service schemas.

The corresponding schema descriptions.

To work with schemas, you must know how to:

Name a schema repository.

Create a manifest.

Create a schema.
BEA WebLogic Adapter for TIBCO User Guide 2-5

2 Metadata, Schemas, and Repositories
Naming a Schema Repository

The schema repository has a three-part naming convention:

session_base_directory\adapter\connection_name

session_base_directory is the schema’s session base path, which represents
a folder under which multiple sessions of schemas may be held.

adapter is the type of adapter (for example, TIBCO or SAP).

connection_name is a name representing a particular instance of the adapter
type.

For example, if the session base path is /usr/opt/bea/bse, the adapter type is
TIBCO, and the connection name is TIBCODev, then the schema repository is the
directory:

/usr/opt/bea/bse/TIBCO/TIBCODev
2-6 BEA WebLogic Adapter for TIBCO User Guide

The Repository Manifest
The Repository Manifest

Each schema repository has a manifest that describes the repository and its schemas.
This repository manifest is stored as an XML file named manifest.xml.

The following is an example of a sample manifest file showing relationships between
events and services and their related schemas.

The manifest file relates documents (through their schemas) to services and events.
The manifest exposes schema references to the event relating the required document
(via the root tag) to the corresponding schema. Schemas and manifests are stored in the
same directory, the repository root of the EIS. The following is an example of the a
manifest file with a description of the elements.

Listing 2-2 Sample Manifest File

<?xml version="1.0" encoding="ISO-8859-1" ?>
<manifest>

<connection/>
<schemaref name="service_only">

<request root="INVOICE" file="INVOICE.xsd"/>
<response root="emitStatus" file="FileEmit.xsd"/>

</schemaref>
<schemaref name="event_only">

<event root="PURCHASE_ORDER" file="PURCHASE_ORDER.xsd"/>
</schemaref>
<schemaref name="shared">

<request root="STOCK_STATUS" file="STOCK_STATUS.xsd"/>
<response root="emitStatus" file="FileEmit.xsd"/>
<event root="STOCK_UPDATE" file="STOCK_UPDATE.xsd"/>

</schemaref>
</manifest>
BEA WebLogic Adapter for TIBCO User Guide 2-7

2 Metadata, Schemas, and Repositories
The manifest has a connection section (which is not used by the BEA WebLogic
Adapter for TIBCO) and a schema reference section, named schemaref. The schema
reference name is displayed in the schema drop-down list on the Add Service and Add
Event windows in the WebLogic Integration Application View Console. This sample
manifest has three schema references or schemaref tags; one for services only, one for
events only, and one for a combination of services and events. Events require only one
schema, defined by the event tag. This relates the root tag of an XML document to a
schema in the EIS repository. For services, two schemas are required: one for the
document being passed to the service, represented by the request tag, and one for the
expected response document received from the service operation, represented by the
response tag.

Creating a Repository Manifest

The repository manifest is an XML file with the root element manifest and two
sub-elements:

connection, which appears once, and which you can ignore because it is not
used by the BEA WebLogic Adapter for TIBCO.

schemaref, which appears multiple times, once for each schema name, and
which contains all three schemas—request, response, and event.

To create a manifest:

1. Create an XML file with the following structure:

<manifest>
<connection>
</connection>

</manifest>
2-8 BEA WebLogic Adapter for TIBCO User Guide

Creating a Schema
2. For each new event or service schema you define, create a schemaref section
using this model:

<schemaref name="OrderIn">
<request root="OrderIn" file="service_OrderIn_request.xsd"/>
<response root="emitStatus" file="MQEmitStatus.xsd"/>
<event root="OrderIn" file="event_OrderIn.xsd"/>

</schemaref>

Here, the value you assign to:

file is the name of the file in the schema repository.

root is the name of the root element in the actual instance documents that
will arrive at, or be sent to, the event or service.

Creating a Schema

Schemas describe the rules of the XML documents that will traverse WebLogic
Integration. You can generate a schema manually or through a schema-generating tool.

WebLogic Integration interacts with application view events and services by sending
and receiving XML messages. The XML messages are defined by XML schemas. The
schemas are stored in directories specific for each adapter.

You must set up at least one directory for each adapter you use. This directory can
contain multiple subdirectories, each of which can hold schemas specific to different
instances of your application. You should name the parent directory to represent your
adapter; you can name the subdirectories according to what is appropriate for your
application.

For example, if you have four instances of an application that exchanges messages
between the BEA WebLogic Adapter for TIBCO and WebLogic Integration, you
should set up four subdirectories to store the schemas; the subdirectories should be in
a parent TIBCO directory:

D:\TraderSystems\BEAapps\TIBCO\FTPprod
D:\TraderSystems\BEAapps\TIBCO\FTPdev
D:\TraderSystems\BEAapps\TIBCO\FTPuat

The schemas for the documents being processed are stored within those directories.
BEA WebLogic Adapter for TIBCO User Guide 2-9

2 Metadata, Schemas, and Repositories
The following is an example of an instance document for the OrderIn event referred to
in “Creating a Repository Manifest” on page 2-8.

Listing 2-3 Instance Document for OrderIn Event

<?xml version="1.0"?>

<OrderIn>
<Store_Code>1003CA</Store_Code>
<LineItem>

<Prod_Num>1003</Prod_Num>
<Quantity>100</Quantity>
<Price>1.69</Price>

</LineItem>
<LineItem>

<Prod_Num>1004</Prod_Num>
<Quantity>10</Quantity>
<Price>1.79</Price>

</LineItem>
</OrderIn>

The following is a schema matching this instance document and may be manually
coded or generated from any XML editor.
2-10 BEA WebLogic Adapter for TIBCO User Guide

Creating a Schema
Listing 2-4 Schema Matching OrderIn Event Instance Document

<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

<xsd:element name="OrderIn">
<xsd:complexType>

<xsd:sequence>
<xsd:element ref="Store_Code"/>
<xsd:element ref="LineItem" maxOccurs="unbounded"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="LineItem">

<xsd:complexType>
<xsd:sequence>

<xsd:element ref="Prod_Num"/>
<xsd:element ref="Quantity"/>
<xsd:element ref="Price"/>

</xsd:sequence>
</xsd:complexType>

</xsd:element>
<xsd:element name="Price">

<xsd:simpleType>
<xsd:restriction base="xsd:decimal">

<xsd:enumeration value="1.69"/>
<xsd:enumeration value="1.79"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<xsd:element name="Prod_Num">

<xsd:simpleType>
<xsd:restriction base="xsd:short">

<xsd:enumeration value="1003"/>
<xsd:enumeration value="1004"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<xsd:element name="Quantity">

<xsd:simpleType>
<xsd:restriction base="xsd:byte">

<xsd:enumeration value="10"/>
<xsd:enumeration value="100"/>

</xsd:restriction>
</xsd:simpleType>

</xsd:element>
<xsd:element name="Store_Code" type="xsd:hexBinary"/>
BEA WebLogic Adapter for TIBCO User Guide 2-11

2 Metadata, Schemas, and Repositories
</xsd:schema>
2-12 BEA WebLogic Adapter for TIBCO User Guide

Storing Directory and Template Files for Transformations
Storing Directory and Template Files for
Transformations

The BEA WebLogic Adapter for TIBCO supports the exchange of XML and
non-XML messages with WebLogic Integration. Templates and dictionaries are
created and associated with the BEA WebLogic Adapter for TIBCO events and
services. Dictionaries (.dic extension) are documents that describe an incoming
non-XML document. Templates (.xch extension) describe the conversion from one
format to another (XML to non-XML, and vice versa). Sample dictionaries and
templates are supplied with the product and must be placed in a transform
subdirectory in the root directory for your domain, as shown in the following paths:

DOMAIN_HOME\transform\xch
DOMAIN_HOME\transform\xslt
DOMAIN_HOME\transform\dic

Samples File

Supplied with the BEA WebLogic Adapter for TIBCO are sample files (xml and edi
format) that can be used to help test that your environment is correctly set up and
working. The samples.zip file also includes sample manifest and schema files.
BEA WebLogic Adapter for TIBCO User Guide 2-13

2 Metadata, Schemas, and Repositories
2-14 BEA WebLogic Adapter for TIBCO User Guide

CHAPTER
3 Creating and
Configuring an Event
Adapter

This section describes how to create, configure, and test an event adapter application
view. An event adapter is the inbound interface from a TIBCO Daemon to a workflow.
This section includes the following topics:

Creating an Application View Folder

Creating an Event Adapter Application View

Configuring an Event Adapter Application View

Testing Event Adapter Application Views Using the Application View Console

Testing Event Adapter Application Views Using WebLogic Integration Studio

Creating an Application View Folder

Application views reside within WebLogic Integration. WebLogic Integration
provides a root folder in which you can store all of your application views. You can
create additional folders to organize related application views into groups.
BEA WebLogic Adapter for TIBCO User Guide 3-1

3 Creating and Configuring an Event Adapter
To create an application view folder:

1. Log on to the Application View Console at //appserver-host:port/wlai.
Here, appserver-host is the IP address or host name on which the WebLogic
Integration Server is installed, and port is the socket on which the server is
listening. The port, if not changed during installation, defaults to 7001.

2. If prompted, enter a user name and password.

Note: If the user name is not system, it must be included in the adapter group.
For more information on adding the administrative server user name to the
adapter group, see the BEA WebLogic Adapter for TIBCO Installation
and Configuration Guide.

3. Click Login.

The WebLogic Integration Application View Console opens.

Figure 3-1 WebLogic Integration - Application View Console

a. Double-click the new folder icon. The Add Folder window opens.
3-2 BEA WebLogic Adapter for TIBCO User Guide

Creating an Event Adapter Application View
Figure 3-2 Add Folder Window

b. Enter a name for the folder and click Save.

You created the application view folder. To create an event adapter application view,
see “Creating an Event Adapter Application View.” To create a service adapter
application view, see “Creating a Service Adapter Application View” on page 4-1.

Creating an Event Adapter Application View

To create an event adapter application view:

1. Log on to the Application View Console at //appserver-host:port/wlai.
Here, appserver-host is the IP address or host name on which the WebLogic
Integration Server is installed, and port is the socket on which the server is
listening. The port, if not changed during installation, defaults to 7001.

2. If prompted, enter a user name and password.

Note: If the user name is not system, it must be included in the adapter group.
For more information on adding the administrative server user name to the
adapter group, see the BEA WebLogic Adapter for TIBCO Installation
and Configuration Guide.
BEA WebLogic Adapter for TIBCO User Guide 3-3

3 Creating and Configuring an Event Adapter
3. Click Login.

The WebLogic Integration Application View Console opens.

Figure 3-3 Application View Console - Selecting the TIBCO Folder

a. Select the desired application view folder, for example, TIBCO.

b. Click Add Application View.

The Define New Application View window opens.
3-4 BEA WebLogic Adapter for TIBCO User Guide

Creating an Event Adapter Application View
Figure 3-4 Application View Console - Define New Application View

4. In the Define New Application View window, add the following information:

a. In the Application View Name field, enter a name.

This name should describe the set of functions performed by this application.

Each application view name must be unique to its adapter. Valid characters
include a-z, A-Z, 0-9, and _ (underscore).

b. In the Description field, enter any relevant notes. These notes are viewed by
users when they use this application view with business process management
workflows.

c. Select BEA_TIBCO_1_0 from the Associated Adapter drop-down list.
BEA WebLogic Adapter for TIBCO User Guide 3-5

3 Creating and Configuring an Event Adapter
d. Click OK.

The Configure Connection Parameters window opens.

Figure 3-5 Configure Connection Parameters Window

5. Enter the name of the BEA WebLogic Adapter for TIBCO session base directory
in the Session path field.

This directory holds your TIBCO schema information and contains the
subdirectory TIBCO/YourConnectionName.

For example, the session base directory might be d:\beaiway\schemas,
with the schema repository—containing a repository manifest and schemas—
residing in d:\beaiway\schemas\TIBCO\TIBRV03. For more information
about schema repositories, see Chapter 6, “Creating Schema Repositories.”
3-6 BEA WebLogic Adapter for TIBCO User Guide

Creating an Event Adapter Application View
6. Select the session name—also known as the connection name—from the
Connection name drop-down list.

7. Click Connect to EIS.

The Application View Administration window opens.

Figure 3-6 Application View Administration Window

Note that you can access the Configure Connection Parameters window when
the application view is not deployed by selecting the Reconfigure connection
parameters for TibcoEvent link. If the application view is deployed, you can
access the window by first undeploying the application view.

8. Click Save.

You have created the application view for the event adapter.
BEA WebLogic Adapter for TIBCO User Guide 3-7

3 Creating and Configuring an Event Adapter
Note that you must add an event, as described in “Configuring an Event Adapter
Application View” on page 8, before you can deploy the application view.

Configuring an Event Adapter Application
View

An event adapter application view contains all events that are expected to arrive at an
instance of the event adapter. You can add many events to an application view. Each
event has a schema for the arriving message (or document). A service should be added
for each event that is used by the application view.

To add an event to an application view and then deploy an event adapter application
view:

1. Log on to the Application View Console as described in “Creating an Application
View Folder” on page 1.

2. Select the folder in which this application view resides and then select the
application view.

3. When the Administration window opens, select Add Event.
3-8 BEA WebLogic Adapter for TIBCO User Guide

Configuring an Event Adapter Application View
The Add Event window opens.

Figure 3-7 Add Event Window

The properties in this window correspond to the TIBCO Rendezvous
communication and transformation settings that the event adapter uses. The
adapter uses these settings to communicate with TIBCO Rendezvous and to
process messages (messages are also known as documents).
BEA WebLogic Adapter for TIBCO User Guide 3-9

3 Creating and Configuring an Event Adapter
The following table describes these properties.

Table 3-1 Event Properties

Property Description Type Sample
Value

Element

non-XML
Preparse

Name of the transform type selected for the
non-XML to XML transformation phase.
Supports Excel, MFL, and .xch transform types.
For more information, see Chapter 5,
“Transforming Document Formats.”

string excel <preparse>

XCH
Transform

Name of the.xch transform template file used by
the XCH transform type in the XML to XML
transformation phase. For more information, see
Chapter 5, “Transforming Document Formats.”

string <in_xmlg>

XSLT
Transform

Name of the XSLT stylesheet used by the XSLT
transform type in the XML to XML
transformation phase. For more information, see
Chapter 5, “Transforming Document Formats.”

string <in_xslt>

Daemon RV Daemon information to find the
TIB\Rendezvous daemon and establish a
connection.

string <Daemon>

Network Network parameter instructs the Rendezvous
daemon to use a particular network for all
communications involving this transport. This
parameter may be a host name, IP address, or
network name. For more information about this
parameter, see the TIBCO Rendezvous
administration manual. This parameter may be
omitted if the daemon is running on the local host.

string <Network>

Service
Name

UDP service on which to listen for
TIB/Rendezvous messages. This parameter
accepts a service name or a port. The default
TIB/Rendezvous port during installation is 7500.
If service, network, or daemon are not present,
then the listener attempts to connect to a local
instance of running TIBCO Rendezvous service.
Otherwise, specify the TIBCO Rendezvous
instance in the form: host:<port>

string <service>
3-10 BEA WebLogic Adapter for TIBCO User Guide

Configuring an Event Adapter Application View
The schema drop-down list box corresponds to the list of events in the schema
repository.

4. Click Add.

5. When the Application View Administration window opens, click Continue.

The Deploy Application View window opens.

Event Queue
Name

If this parameter is not specified, the listener
listens on the Tib/Rendezvous default queue.

string <queue>

Field Name Custom field name on which the listener filters. string <fieldname>

Send Subject Each Rendezvous messages bears a subject name.
The subject name is used by data consumers to
receive all messages labeled with a given name. If
the parameter is left blank, the BEA WebLogic
Adapter for TIBCO listener listens on subject *.
For more information on the send subject
parameter, see the topics on Subject Names in the
TIB/Rendezvous Concepts manual.

string <sendsubject>

ReplySubject Return address to which recipients can send reply
messages.

string <replysubject>

encoding The character set to use. It defaults to ISO-8869-1,
the Latin-1 character set used for most West
European languages including English, French,
Spanish, German, Dutch, and Swedish.

string ISO-8859-1

Polling
Interval

The maximum wait interval between checks for
new documents. The higher this value, the longer
the interval, and the fewer system resources that
are used. The side effect of a high value is that the
worker thread will not respond to a stop
command. If timeout is set to 0, the listener runs
once and terminates. Default is 2 seconds.

Duration:
xxH:xxM
:xxS

1h:2m:3s

Table 3-1 Event Properties (Continued)

Property Description Type Sample
Value

Element
BEA WebLogic Adapter for TIBCO User Guide 3-11

3 Creating and Configuring an Event Adapter
Figure 3-8 Deploy Application View Window

6. Update event parameters, connection pool parameters, log configuration, and
security as necessary. For more information about these, see “Defining an
Application View” in “Using Application Integration.”

For WebLogic Integration 7.0, see
http://edocs.bea.com/wli/docs70/aiuser/2usrdef.htm

For WebLogic Integration 2.1, see
http://edocs.bea.com/wlintegration/v2_1sp/aiuser/2usrdef.htm

7. Click Deploy to save and deploy the event adapter.

In the WebLogic Server Log, the following entries appear as the event adapter
deploys.
3-12 BEA WebLogic Adapter for TIBCO User Guide

Configuring an Event Adapter Application View
Figure 3-9 WebLogic Server Log Window

8. To validate that the application view was successfully deployed, invoke the main
Application View Console window and select the folder in which you created the
application view. You see the name of the new application view with a status of
deployed.
BEA WebLogic Adapter for TIBCO User Guide 3-13

3 Creating and Configuring an Event Adapter
Figure 3-10 Application View Console - Displaying the Application View Status

You have finished configuring the event adapter application view.

You can confirm that you have configured the event adapter application view
correctly, and that it can successfully receive events, using the instructions in “Testing
Event Adapter Application Views Using the Application View Console” on page 15
and “Testing Event Adapter Application Views Using WebLogic Integration Studio”
on page 18.
3-14 BEA WebLogic Adapter for TIBCO User Guide

Testing Event Adapter Application Views Using the Application View Console
Testing Event Adapter Application Views
Using the Application View Console

To confirm that a deployed event adapter application view is correctly configured and
can receive events:

1. Log on to the Application View Console as described in “Creating an Application
View Folder” on page 1.

2. Select the folder in which the application view resides and then select the
application view. The Summary window opens.

Figure 3-11 Application View - Summary Window
BEA WebLogic Adapter for TIBCO User Guide 3-15

3 Creating and Configuring an Event Adapter
3. Click Test for one of the application view’s events.

The Test Event window opens.

Figure 3-12 Test Event Window

4. Enter 3000 (or a higher value) in the Time field and click Test.

This provides a 30-second period during which, in the following step, you can
access the TIBCO client program (or your favorite utility) to manually invoke a
request from TIBCO to your event adapter.

5. Click Test.

In the Application View Console, the Test Result window displays the event’s
result.
3-16 BEA WebLogic Adapter for TIBCO User Guide

Testing Event Adapter Application Views Using the Application View Console
Figure 3-13 Test Result Window

If you wait longer than a minute and do not receive the event’s result, you
should assume that there is a problem with the event adapter application view.
Examine the WebLogic Server Log for information about the event’s activity.

Otherwise, you have confirmed that the event adapter application view is
correctly configured and can receive events.
BEA WebLogic Adapter for TIBCO User Guide 3-17

3 Creating and Configuring an Event Adapter
Testing Event Adapter Application Views
Using WebLogic Integration Studio

To confirm that a deployed event adapter application view is correctly configured and
can receive events:

1. Start the WebLogic Integration Studio.

On a Windows system:

Choose Start→Programs→BEA WebLogic E-Business Platform→
WebLogic Integration 2.1→Studio.

On a UNIX system:

Navigate to the WLI_HOME/bin directory and run the Studio start-up script by
entering the following at the command prompt:

sh studio.sh

2. Log on to the WebLogic Integration Studio.

3. In the Organization pane, choose an organization to create a new workflow
template.
3-18 BEA WebLogic Adapter for TIBCO User Guide

Testing Event Adapter Application Views Using WebLogic Integration Studio
4. Right-click Templates and select Create Template.

Figure 3-14 WebLogic Integration Studio

A Workflow dialog box appears.

Figure 3-15 General Tab of the Workflow Dialog Box

5. Enter a name for your workflow and click OK.
BEA WebLogic Adapter for TIBCO User Guide 3-19

3 Creating and Configuring an Event Adapter
In the left pane of WebLogic Integration Studio:

1. Right-click the new template (TibcoEvent) and choose Create Template Definition
from the shortcut menu.

The template opens in WebLogic Integration Studio.

Figure 3-16 Displaying a New Template in WebLogic Integration Studio
3-20 BEA WebLogic Adapter for TIBCO User Guide

Testing Event Adapter Application Views Using WebLogic Integration Studio
2. Right-click the Start node and choose Properties from the shortcut menu.

Figure 3-17 WebLogic Integration Studio - Choosing Node Properties
BEA WebLogic Adapter for TIBCO User Guide 3-21

3 Creating and Configuring an Event Adapter
The Start Properties dialog box opens.

Figure 3-18 Start Properties Dialog Box
3-22 BEA WebLogic Adapter for TIBCO User Guide

Testing Event Adapter Application Views Using WebLogic Integration Studio
a. Click the Event option and select AI Start from the drop down list.

b. In the event explorer, browse the application view folders and select the
application view that corresponds to the event adapter.

3. Open the event adapter and select the desired event.

4. Select New from the Event Document Variable drop-down list.

The Variable Properties dialog box opens.

Figure 3-19 Variable Properties Dialog Box

a. Enter a name for the new variable.

b. Select XML from the Type drop-down list.

c. Check the Input and Output Parameter options.

d. Click OK.
BEA WebLogic Adapter for TIBCO User Guide 3-23

3 Creating and Configuring an Event Adapter
Figure 3-20 WebLogic Integration Studio - Saving a Template

5. Right-click the template in WebLogic Integration Studio’s Organization pane and
choose Save from the shortcut menu.

6. Right-click the event definition folder and choose Properties from the shortcut
menu.
3-24 BEA WebLogic Adapter for TIBCO User Guide

Testing Event Adapter Application Views Using WebLogic Integration Studio
The Template Definition dialog box opens.

Figure 3-21 Template Definition Dialog Box

7. Ensure that Active is checked and click OK.

You may now initiate events from your Enterprise Information System (EIS).
For the BEA WebLogic Adapter for TIBCO, you can create events through a
business application or through a TIBCO Rendezvous test program.
BEA WebLogic Adapter for TIBCO User Guide 3-25

3 Creating and Configuring an Event Adapter
8. Return to WebLogic Integration Studio.

Figure 3-22 WebLogic Integration Studio - Choosing Instances

9. Right-click the event definition folder and choose Instances.

The Workflow Instances for your event definition appear. You can now track the
execution of your workflow.
3-26 BEA WebLogic Adapter for TIBCO User Guide

Testing Event Adapter Application Views Using WebLogic Integration Studio
Figure 3-23 WebLogic Integration Studio - Displaying Workflow Instances

a. Select Started.

b. Click Refresh.

A list of workflows appears in the right pane.

c. Right-click any instance of the workflow and select Variables.

d. When the Workflow Variables window opens, click View XML to see the entire
contents of the workflow message (also known as a document).
BEA WebLogic Adapter for TIBCO User Guide 3-27

3 Creating and Configuring an Event Adapter
Figure 3-24 WebLogic Integration Studio - View XML Window

You have confirmed that the deployed event adapter application view is correctly
configured and can receive events.
3-28 BEA WebLogic Adapter for TIBCO User Guide

CHAPTER
4 Creating and
Configuring a Service
Adapter

This section describes how to create, configure, and test a service adapter application
view. The service adapter for TIBCO is WebLogic Integration’s interface to TIBCO
Rendezvous, enabling your business processes to publish to TIBCO Rendezvous
queues. This section includes the following topics:

Creating a Service Adapter Application View

Configuring a Service Adapter Application View

Testing the BEA Service Adapter for TIBCO

Creating a Service Adapter Application View

The service adapter for TIBCO is configured for services that send data to TIBCO
Rendezvous.

1. In the Application View Console’s main window, click Add Application View.

The Define New Application View window opens.
BEA WebLogic Adapter for TIBCO User Guide 4-1

4 Creating and Configuring a Service Adapter
Figure 4-1 Define New Application View Window

2. In the Define New Application View window, add the following information:

a. In the Application View Name field, enter a name.

This name should describe the set of functions performed by this application.

Each application view name must be unique to its adapter. Valid characters
include a-z, A-Z, 0-9, and _ (underscore).

b. In the Description field, enter any relevant notes. These notes are viewed by
users when they use this application view with business process management
workflows.

3. Select BEA_TIBCO_1_0 from the Associated Adapter list.
4-2 BEA WebLogic Adapter for TIBCO User Guide

Creating a Service Adapter Application View
4. Click OK.

The Configure Connection Parameters window opens.

Figure 4-2 Configure Connection Parameters Window

5. Enter the name of the BEA WebLogic Adapter for TIBCO session base directory
in the Session path field. This directory holds your TIBCO schema information
and contains the subdirectory TIBCO/YourConnectionName.

For example, the session base directory might be
d:\bea\bse\sessions\default, with the schema repository—containing a
repository manifest and schemas—residing in
d:\bea\bse\sessions\default\TIBCO\TIBRV01. For more information
about schema repositories, see Chapter 6, “Creating Schema Repositories.”
BEA WebLogic Adapter for TIBCO User Guide 4-3

4 Creating and Configuring a Service Adapter
6. Select the session name—also known as the connection name—from the
Connection name drop-down list.

7. Click Connect to EIS. The Application View Administration window opens.

Note that you can access the Configure Connection Parameters window when
the application view is not deployed, simply by selecting the Reconfigure
connection parameters link. If the application view is deployed, you can access
the window by first undeploying the application view.

To configure a service adapter application view, see “Configuring a Service
Adapter Application View” on page 4.

Configuring a Service Adapter Application
View

To configure a service adapter application view:

1. Log on to the Application View Console at

//appserver-host:port/wlai

Here, appserver-host is the IP address or host name where the WebLogic
Integration Server is installed, and port is the socket on which the server is
listening. The port, if not changed during installation, defaults to 7001.

2. If prompted, enter a user name and password.

Note: If the user name is not system, it must be included in the adapter group.
For more information on adding the administrative server user name to the
adapter group, see the BEA WebLogic Adapter for TIBCO Installation
and Configuration Guide.

3. Click Login.

The WebLogic Integration Application View Console opens.

4. Select the folder in which this application view resides and then select the
application view.

The Administration window opens.
4-4 BEA WebLogic Adapter for TIBCO User Guide

Configuring a Service Adapter Application View
Figure 4-3 Application View Administration Window

5. Click Add in the Services pane.

The Add Service window opens.
BEA WebLogic Adapter for TIBCO User Guide 4-5

4 Creating and Configuring a Service Adapter
Figure 4-4 Add Service Window

a. Update the required properties of TIBCO Rendezvous as described in the
following table.

These settings correspond to the TIBCO communication settings that the service
adapter uses to communicate with TIBCO Rendezvous to publish messages to
the queues, and with the transform options described in Chapter 5,
“Transforming Document Formats.”
4-6 BEA WebLogic Adapter for TIBCO User Guide

Configuring a Service Adapter Application View
Table 4-1 Service Properties

Property Description Type Sample
Value

Transform Name Name of the transform template file used by the transform
engine in either XSLT, XCH, or MFL transformations. For
MFL transformations, do not enter an .mfl extension;
these files are not stored with an extension. For more
information, see Chapter 5, “Transforming Document
Formats.”

string

Type File format for the output (flat or xml). string

Transform
Engine

Name of the transform engine to perform the
transformation. This field can be omitted if no
transformations are performed.

string

Broker Host Host where RVD daemon is listening. string Localhost

Broker Port Port on which RVD daemon is listening String 7500

Send Subject Each Rendezvous message bears a subject name. The
subject name is used by data consumers to receive all
messages labeled with a given name. If the parameter is
left blank, the BEA WebLogic Adapter for TIBCO emitter
defaults the send subject for the TIBCO Rendezvous
message to IWAYDEFAULTSUBJECT.

string

Reply Subject Return address, to which recipients can send reply
messages. If this parameter is omitted, no default value is
supplied.

string

Field Name A field name is a character string. Each field can have a
maximum of one name. Several fields can have the same
name.

If the fieldname parameter is not specified, the TIBCO
Rendezvous message with the payload associated with it is
emitted with the default field name of
IWAYDEFAULTOBJECT.

duration
BEA WebLogic Adapter for TIBCO User Guide 4-7

4 Creating and Configuring a Service Adapter
The schema drop-down list corresponds to the manifest that describes all
schemas associated with the view.

b. Select the schema you wish to work with.

c. If desired, enable trace and logging.

d. Click Add.

e. When the Administration window opens, click Continue.

The Deploy Application View window opens.

Figure 4-5 Deploy Application View Window
4-8 BEA WebLogic Adapter for TIBCO User Guide

Configuring a Service Adapter Application View
6. Update service parameters, connection pool parameters, log configuration, and
security as necessary. For more information about these, see “Defining an
Application View” in “Using Application Integration”:

For WebLogic Integration 7.0, see
http://edocs.bea.com/wli/docs70/aiuser/2usrdef.htm

For WebLogic Integration 2.1, see
http://edocs.bea.com/wlintegration/v2_1sp/aiuser/2usrdef.htm

7. Click Deploy to save and deploy the service adapter.

The Summary for Application View TibcoService window opens on successful
deployment.

Figure 4-6 Summary for Application View Window
BEA WebLogic Adapter for TIBCO User Guide 4-9

4 Creating and Configuring a Service Adapter
You have finished configuring the service adapter application view. You can
confirm that you configured it correctly by following the instructions in “Testing
the BEA Service Adapter for TIBCO” on page 10 and “Testing Service Adapter
Application Views Using WebLogic Integration Studio” on page 15.

Testing the BEA Service Adapter for TIBCO

The service adapter publishes a document to TIBCO and returns an emit status. You
can validate the document’s arrival on the queue using the TIBCO-supplied
TIBRVLISTEN program.

1. Open a command window to the TIBCO Rendezvous bin directory.

Figure 4-7 TIBRVLISTEN Command Window

2. Start the TIBCO Rendezvous listen program to listen on the Send Subject of
bea.message.

3. Issue the command TIBRVLISTEN * bea.message.

The Summary for Application View window opens.
4-10 BEA WebLogic Adapter for TIBCO User Guide

Testing the BEA Service Adapter for TIBCO
Figure 4-8 Summary for Application View Window

4. Click Test.

The Test Service window opens.
BEA WebLogic Adapter for TIBCO User Guide 4-11

4 Creating and Configuring a Service Adapter
Figure 4-9 Test Service Window - Entering Sample Document

5. Enter a sample document that matches the request schema for the configured
service.

For example, the OrderIn request schema contains an instance document such
as the following code listing.
4-12 BEA WebLogic Adapter for TIBCO User Guide

Testing the BEA Service Adapter for TIBCO
Listing 4-1 Instance Document for OrderIn Request Schema

<?xml version="1.0"?>
<OrderIn>

<Store_Code>1003CA</Store_Code>
<LineItem>

<Prod_Num>1003</Prod_Num>
<Quantity>100</Quantity>
<Price>1.69</Price>

</LineItem>
<LineItem>

<Prod_Num>1004</Prod_Num>
<Quantity>10</Quantity>
<Price>1.79</Price>

</LineItem>
</OrderIn>

6. Enter this document into the Service Test window by either typing it, or copying
and pasting it, into the window.

7. Click Test to send the request through the service adapter to TIBCO Rendezvous.

The response document indicates the success of emitting to TIBCO. See the
sample response in the following test result window.
BEA WebLogic Adapter for TIBCO User Guide 4-13

4 Creating and Configuring a Service Adapter
Figure 4-10 Test Result Window

After transformation and formatting, the document is published to TIBCO
Rendezvous.

8. Return to the TIBRVLISTEN command window to verify that the TIBCO message
has arrived.
4-14 BEA WebLogic Adapter for TIBCO User Guide

Testing the BEA Service Adapter for TIBCO
Figure 4-11 TIBRVLISTEN Command Window - Verifying the Message

Testing Service Adapter Application Views Using
WebLogic Integration Studio

To confirm that a deployed service adapter application view is correctly configured
and can receive events, test the adapter application using WebLogic Integration
Studio.

1. Start the WebLogic Integration Studio:

On a Windows system, choose Start→Programs→BEA WebLogic E-Business
Platform→WebLogic Integration 2.1→Studio.

On a UNIX system, go to the WLI_HOME/bin directory and run the Studio
start-up script by entering the following at the command prompt:

sh studio.sh

2. Log on to the WebLogic Integration Studio.
BEA WebLogic Adapter for TIBCO User Guide 4-15

4 Creating and Configuring a Service Adapter
3. In the Organization pane, select an organization to create a new workflow
template.

The WebLogic Integration Studio window opens.

Figure 4-12 WebLogic Integration Studio

4. Right-click Templates and choose Create Template.

The Template Properties dialog box appears.
4-16 BEA WebLogic Adapter for TIBCO User Guide

Testing the BEA Service Adapter for TIBCO
Figure 4-13 Template Properties Dialog Box

a. In the Template Properties dialog box, enter a name for your workflow
template.

b. Click OK.

5. Right-click the new template and choose Create Template Definition.
BEA WebLogic Adapter for TIBCO User Guide 4-17

4 Creating and Configuring a Service Adapter
Figure 4-14 WebLogic Integration Studio - Displaying a New Template

The template appears in WebLogic Integration Studio.
4-18 BEA WebLogic Adapter for TIBCO User Guide

Testing the BEA Service Adapter for TIBCO
Figure 4-15 WebLogic Integration Studio - Choosing Node Properties

6. Right-click the Task node and choose Properties.

7. After the Start Properties dialog box appears, select Add, AI Actions, and Call
Application View Service.

The Call Service dialog box appears.
BEA WebLogic Adapter for TIBCO User Guide 4-19

4 Creating and Configuring a Service Adapter
Figure 4-16 Call Service Dialog Box

a. In the service explorer, browse the Application View folders and select the
application view that corresponds to the service adapter.

b. Open the service adapter and select the desired service.
4-20 BEA WebLogic Adapter for TIBCO User Guide

Testing the BEA Service Adapter for TIBCO
c. Select <new> from the Request Document Variable drop-down list.

The Variable Properties dialog box opens.

Figure 4-17 Variable Properties Dialog Box

8. Enter a name for the new variable.

a. Select the variable type XML.

b. Check the Input and Output options in the Parameter group.

c. Click OK.

You are returned to the Call Service dialog box.

a. Select Synchronous.

b. Select New from the Response Document Variable drop-down list.

c. Enter a name for the new variable.
BEA WebLogic Adapter for TIBCO User Guide 4-21

4 Creating and Configuring a Service Adapter
d. Select the variable type XML.

Since this is only a partial workflow, the request document containing the
request must be set.

e. Click Set to set the request document. This enables you to choose an XML
document containing the service request.

f. Click OK to return to the template.

Figure 4-18 WebLogic Integration Studio - Saving a Template

9. Right-click the event definition in WebLogic Integration Studio’s Organization
pane and select Save.
4-22 BEA WebLogic Adapter for TIBCO User Guide

Testing the BEA Service Adapter for TIBCO
10. Right-click the event definition folder and choose Properties.

The Template Definition dialog box appears.

Figure 4-19 Template Definition Dialog Box

a. Click Active.

b. Click OK.

You can now initiate the workflow from the BEA Worklist.

11. Select BEA WebLogic E-Business Platform→WebLogic Integration→Worklist.

12. Log on to Worklist.
BEA WebLogic Adapter for TIBCO User Guide 4-23

4 Creating and Configuring a Service Adapter
Figure 4-20 WebLogic Integration Worklist Window

13. Choose Workflow→Start a Workflow.
4-24 BEA WebLogic Adapter for TIBCO User Guide

Testing the BEA Service Adapter for TIBCO
The Start Workflow dialog box appears.

Figure 4-21 Start Workflow Dialog Box

a. Select the workflow that was just created from the workflow list.

b. Click OK.

Figure 4-22 BEA WebLogic Integration - Successful Workflow Message

You receive a message indicating that your workflow has been started
successfully.
BEA WebLogic Adapter for TIBCO User Guide 4-25

4 Creating and Configuring a Service Adapter
Figure 4-23 WebLogic Integration Studio - Selecting Instances

14. Right-click the service definition folder and select Instances.

15. Select Started.

16. Click Refresh.

A list of workflows appears in the right pane.
4-26 BEA WebLogic Adapter for TIBCO User Guide

Testing the BEA Service Adapter for TIBCO
Figure 4-24 WebLogic Integration Studio - Workflow Instances Refreshed

The Workflow Instances for your service definition appear. You can now track
the execution of your workflow

17. Right-click any instance of the workflow and select Variables.

The Workflow Variables window opens.
BEA WebLogic Adapter for TIBCO User Guide 4-27

4 Creating and Configuring a Service Adapter
Figure 4-25 WebLogic Integration Studio - View XML Window

18. Click View XML to see the entire contents of the workflow message (also known
as a document).
4-28 BEA WebLogic Adapter for TIBCO User Guide

CHAPTER
5 Transforming
Document Formats

Documents within WebLogic Integration are encoded in XML. However, you may
also need to receive and generate non-XML data. The BEA WebLogic Adapter for
TIBCO supports inbound transformations for the event adapter and outbound
transformations for the service adapter. This section describes the transformation
options available to you. It includes the following topics:

Kinds of Transformation

Creating and Testing Transformations

Kinds of Transformation

WebLogic Integration supports several transformation phases for converting data from
one format to another. Each phase offers several methods, or transforms, for
accomplishing the conversion.

There are two transformation phases available to an event adapter sending a message
from an Enterprise Information System (EIS) to a workflow. You can invoke either
phase, or both phases in sequence:

Non-XML formats to XML.

XML to XML.
BEA WebLogic Adapter for TIBCO User Guide 5-1

5 Transforming Document Formats
There are two transformation phases available to a service adapter sending a message
from a workflow to an Enterprise Information System. You can invoke either phase,
or both phases in sequence:

XML to XML.

XML to non-XML formats.

You specify the type of transformation when adding an event or service to an
application view.

Non-XML to XML Transformation

An event adapter that interfaces with non-XML data sources must be able to covert that
data to XML for processing by a workflow. This conversion includes “pre-parsing” the
data into XML, which is then parsed itself for processing by the workflow.

You can choose between three types of transforms—also known as pre-parsers—to
accomplish this conversion:

Excel, which converts documents in Excel format to XML.

MFL (Message Format Language), which uses BEA routines.

For more information about MFL based transformations, see “Building Format
Definitions” in Translating Data:

For WebLogic Integration 7.0, see
http://edocs.bea.com/wli/docs70/diuser/fmtdef.htm

For WebLogic Integration 2.1, see
http://edocs.bea.com/wlintegration/v2_1sp/diuser/fmtdef.htm

XCH, a general conversion system which uses dictionaries (implemented as
.dic files) and transformation templates (implemented as .xch files).

You can invoke only one transform during this phase—that is, an event adapter can
invoke only one kind of non-XML to XML conversion.
5-2 BEA WebLogic Adapter for TIBCO User Guide

http://e-docs.bea.com/wli/docs70/aiuser/3usruse.htm
http://e-docs.bea.com/wlintegration/v2_1/aiuser/3usruse.htm

Kinds of Transformation
For example, the Order_excel event specifies the Excel transform for the non-XML
to XML phase. Note that it also specifies two transforms—XCH and XSLT—for the
XML to XML phase, which is described in “XML to XML Transformations” on
page 4.

Figure 5-1 Specifying Non-XML to XML Transform in Add Event Window

When you specify non-XML to XML transformation in the Add Event window, use
this syntax:

transformType(parameter_1, ..., parameter_n)
BEA WebLogic Adapter for TIBCO User Guide 5-3

5 Transforming Document Formats
The parameters for each type of non-XML to XML transform (that is, for each
pre-parser) are shown in the following table.

XML to XML Transformations

An event adapter or service adapter may be required to convert data from one type of
XML document to another. You can choose between two types of transforms to
accomplish this conversion:

XCH, a general conversion system which uses dictionaries (implemented as
.dic files) and transformation templates (implemented as .xch files).

Table 5-1 Non-XML Pre-Parse Transform Parameters

Transform Type Parameter Value/Description/Example

excel HAS_HEADERS Type/Value: string literal

Description: The literal HAS_HEADERS instructs the Excel
pre-parser to use the first column as the tag names for the
resulting XML document.

Example: excel(HAS_HEADERS)

NO_HEADERS Type/Value: string literal

Description: The literal NO_HEADERS instructs the Excel
pre-parser to generate column number tag names (for
example, <col1>, <col2>) for the resulting XML
document.

Example: excel(NO_HEADERS)

mfl MFL routine name Type/Value: string

Description: The name of the MFL routine. Do not enter an
.mfl extension for a Message Format Language (MFL)
routine; these files are not stored with an extension.

Example: mfl(mfl_name)

transform transform file name Type/Value: string

Description: The name of the transform file including the
.xch extension.

Example: transform(CSVtoXML.xch)
5-4 BEA WebLogic Adapter for TIBCO User Guide

Kinds of Transformation
XSLT, a language for transforming XML documents into other XML documents.
It is part of XSL, the XML stylesheet language.

You can invoke either or both transforms during this phase. If you specify both, XSLT
occurs after XCH.

For example, the Order_excel event specifies an XCH transform that uses the
Order2OrderIn.xch file and an XSLT transform that uses the Order2HTML.xsl
stylesheet.

Figure 5-2 Specifying XCH and XSLT Transforms in Add Event Window
BEA WebLogic Adapter for TIBCO User Guide 5-5

5 Transforming Document Formats
The parameters for each type of transform are shown in the following table.

XML to Non-XML

A service adapter that deals with non-XML data sources must be able to covert XML
to those non-XML formats for processing by the Enterprise Information System (EIS).
This conversion includes “pre-emitting” the data into the non-XML format, which is
then emitted to the Enterprise Information System.

You can choose between two types of transforms—also known as pre-emitters—to
accomplish this conversion:

MFL (Message Format Language), which uses BEA routines.

XCH, a general conversion system, which uses dictionaries (implemented as
.dic files) and transformation templates (implemented using .xch files).

You can invoke only one transform during this phase—that is, a service adapter can
invoke only one kind of XML to non-XML conversion.

Table 5-2 XML to XML Transform Parameters

Transform Type Parameter Value/Description/Example

XCH Transform transformation template filename Type/Value: string

Description: The name of the transformation
template file including the .xch extension.

Example: OrderIn2Out.xch

XSLT Transform XSLT stylesheet filename Type/Value: string

Description: The name of the transformation
template file including the .xch extension.

Example: OrderInHTML.xsl
5-6 BEA WebLogic Adapter for TIBCO User Guide

Kinds of Transformation
For example, the OrderIn event specifies XCH and XSLT transforms for the XML to
XML phase, as well as an XCH transform for the XML to non-XML pre-emit phase.

Figure 5-3 Specifying XML to Non-XMLTransform in Add Service Window

When you specify XML to non-XML transformation in the Add Service window, use
this syntax:

transformType(parameter)
BEA WebLogic Adapter for TIBCO User Guide 5-7

5 Transforming Document Formats
The parameters for each type of transform (that is, for each pre-emitter) are shown in
the following table.

Creating and Testing Transformations

The following sections describe how to create and test transformations.

Creating MFL Transformations

This procedure explains how to construct a basic MFL transformation with the
WebLogic Integration Format Builder. The MFL transformation is tested using the
Application View Console.

Table 5-3 Non-XML Pre-Emit Transform Parameters

Transform
Type

Parameter Value/Description/Example

mfl MFL routine
name

Type/Value: string

Description: The name of the MFL routine. Do not enter
an .mfl extension for a Message Format Language
(MFL) routine; these files are not stored with an
extension.

Example: mfl(mfl_name)

transform transform file
name

Type/Value: string

Description: The name of the transform file including
the .xch extension.

Example: transform(CSVtoXML.xch)
5-8 BEA WebLogic Adapter for TIBCO User Guide

Creating and Testing Transformations
1. Using the WebLogic Integration Format Builder, construct the OrderIn message
format.

Figure 5-4 WebLogic Format Builder Main Window

2. After the message format is complete, save it to the repository.

a. Choose Repository→Store.

b. Select the desired folder in the repository.
BEA WebLogic Adapter for TIBCO User Guide 5-9

5 Transforming Document Formats
3. When the Store Document window opens, click Store.

Figure 5-5 Store Document Window
5-10 BEA WebLogic Adapter for TIBCO User Guide

Creating and Testing Transformations
Use the Format Tester to provide a preliminary confirmation of the transform.

Figure 5-6 Format Tester Window

4. In the XML pane, enter your text.

5. Choose Translate→XML to Binary.

The binary representation appears in the Binary pane.

After the MFL format definition has been stored in the repository, it may be
referenced by the BEA WebLogic Adapter for TIBCO.

To test an MFT transformation, see “Testing MFL Transformations” on page 5-12.
BEA WebLogic Adapter for TIBCO User Guide 5-11

5 Transforming Document Formats
Testing MFL Transformations

This procedure explains how to test the MFL transformation using the Application
View Console. In this test, the MFL transformation takes place in a service.

1. In the Application View Console, select Add Service from the service adapter
application view.

The Add Service window opens.

Figure 5-7 Add Service Window

a. Update the necessary service parameters in the Add Service window.

b. Click Add to save your parameters.
5-12 BEA WebLogic Adapter for TIBCO User Guide

Creating and Testing Transformations
2. When the Administration window opens, click Continue.

3. When the Deploy Application View window opens, click Deploy to deploy the
new service.

4. When the Summary window opens, click Test for the new service.

The Test Service window opens.

Figure 5-8 Test Service Window

5. Enter a sample XML document into the Test Service window, by either typing it
or copying and pasting it.

6. Click Test to send the XML document to be transformed by the adapter into its
binary equivalent as shown in Figure 5-6, “Format Tester Window,” on page
5-11.
BEA WebLogic Adapter for TIBCO User Guide 5-13

5 Transforming Document Formats
The output shows the success or failure of the service adapter send in the lower
pane of the Test Result window.

Figure 5-9 Test Result Window
5-14 BEA WebLogic Adapter for TIBCO User Guide

Creating and Testing Transformations
The results of the transform are sent to the output queue.

7. Browse the message queues to view the new message in the TIBCO Output
Queue window.

Figure 5-10 TIBCO Output Queue Window
BEA WebLogic Adapter for TIBCO User Guide 5-15

5 Transforming Document Formats
5-16 BEA WebLogic Adapter for TIBCO User Guide

CHAPTER
6 Creating Schema
Repositories

This section addresses the schema repositories, manifests, and schemas that describe
the documents entering and exiting a WebLogic Integration system. This section
includes the following topics:

Introduction to Schemas and Repositories

Naming a Schema Repository

The Repository Manifest

Creating a Schema

Introduction to Schemas and Repositories

You describe all the documents entering and exiting your WebLogic Integration
system using W3C XML schemas. These schemas describe each event arriving to and
propagating out of an event adapter, and each request sent to and each response
received from a service adapter. There is one schema for each event, and two for each
service (one for the request, one for the response). The schemas are usually stored in
files with an .xsd extension.

Use the Application View Console to access events and services and to assign a
schema to each event, request, and response. Assign each application view to a schema
repository; several application views can be assigned to the same repository.
BEA WebLogic Adapter for TIBCO User Guide 6-1

6 Creating Schema Repositories
BEA Adapters make use of a schema repository to store their schema information and
display it in the Application View Console. The schema repository is a directory
containing:

A manifest file that describes the event and service schemas.

The corresponding schema descriptions.

To work with schemas, you must know how to:

Name a schema repository.

Create a manifest.

Create a schema.

Naming a Schema Repository

The schema repository has a three-part naming convention:

session_base_directory\adapter_type\connection_name

Here:

session_base_directory is the schema’s session base path, which represents a
folder under which multiple sessions of schemas can be held.

adapter_type is the type of adapter (for example, TIBCO, MQSeries or SAP).

connection_name is a name representing a particular instance of the adapter type. For
example, TIBRV01 may be a daemon on a particular host, and TIBRV02 may be
another, each of these systems having different events and services relevant to them.

For example, if the session base path is /usr/opt/bea/bse, and the adapter type is
TIBCO, and the connection name is TIBRV02, then the schema repository is the
directory:

/usr/opt/bea/bse/TIBCO/TIBRV02
6-2 BEA WebLogic Adapter for TIBCO User Guide

The Repository Manifest
The Repository Manifest

Each schema repository has a manifest that describes the repository and its schemas.
This repository manifest is stored as an XML file named manifest.xml.

The following is a sample manifest file.

Figure 6-1 Displaying a Sample Manifest File in a Web Browser
BEA WebLogic Adapter for TIBCO User Guide 6-3

6 Creating Schema Repositories
The manifest has a connection section (which is not used by the BEA WebLogic
Adapter for TIBCO) and a schema reference section, named schemaref. The schema
reference name displays in the schema drop-down list box on the Add Service and Add
Event screens in the Application View Console. Each named schema reference
contains three schemas, one for each of these schema types:

Request, which specifies a request document to be sent to a service adapter.

Response, which specifies a response document received from a service adapter.

Event, which specifies an event that invokes an event adapter.

Creating a Repository Manifest

The repository manifest is an XML file with the root element manifest and two
sub-elements:

connection, which appears once, and which you can ignore because it is not
used by the BEA WebLogic Adapter for TIBCO.

schemaref, which appears multiple times, once for each schema name, and
which contains all three schemas—request, response, and event.

To create a manifest:

1. Create an XML file with the following structure:

<manifest>

<connection>

</connection>

</manifest>

2. For each new event or service schema you define, create a schemaref section
using the following model:

<schemaref name="OrderIn">

<request root="OrderIn" file="service_OrderIn_request.xsd"/>

<response root="emitStatus" file="TibcoEmitStatus.xsd"/>

<event root="OrderIn" file="event_OrderIn.xsd"/>

</schemaref>
6-4 BEA WebLogic Adapter for TIBCO User Guide

Creating a Schema
Here, the value you assign to:

file is the name of the file in the schema repository.

root is the name of the root element in the actual instance documents that
arrive at, or are sent to, the event or service adapters.

Creating a Schema

Schemas describe the rules of the XML documents that traverse WebLogic
Integration. You can generate a schema manually or through a schema-generating tool.

The following is an example of an instance document for the OrderIn event referred
to in “Creating a Repository Manifest” on page 6-4:

<?xml version="1.0"?>

<OrderIn>

<Store_Code>1003CA</Store_Code>

<LineItem>

<Prod_Num>1003</Prod_Num>

<Quantity>100</Quantity>

<Price>1.69</Price>

</LineItem>

<LineItem>

<Prod_Num>1004</Prod_Num>

<Quantity>10</Quantity>

<Price>1.79</Price>

</LineItem>

</OrderIn>
BEA WebLogic Adapter for TIBCO User Guide 6-5

6 Creating Schema Repositories
The following is a schema matching this instance document and may be manually
coded or generated from an XML editor of your choice:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified">

<xs:element name="LineItem">

<xs:complexType>

<xs:sequence>

<xs:element ref="Prod_Num"/>

<xs:element ref="Quantity"/>

<xs:element ref="Price"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="OrderIn">

<xs:complexType>

<xs:sequence>

<xs:element ref="Store_Code"/>

<xs:element ref="LineItem"
maxOccurs="unbounded"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="Price">

<xs:simpleType>

<xs:restriction base="xs:decimal">

<xs:enumeration value="1.69"/>

<xs:enumeration value="1.79"/>
6-6 BEA WebLogic Adapter for TIBCO User Guide

Creating a Schema
</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name="Prod_Num">

<xs:simpleType>

<xs:restriction base="xs:short">

<xs:enumeration value="1003"/>

<xs:enumeration value="1004"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name="Quantity">

<xs:simpleType>

<xs:restriction base="xs:byte">

<xs:enumeration value="10"/>

<xs:enumeration value="100"/>

</xs:restriction>

</xs:simpleType>

</xs:element>

<xs:element name="Store_Code" type="xs:hexBinary"/>

</xs:schema>
BEA WebLogic Adapter for TIBCO User Guide 6-7

6 Creating Schema Repositories
6-8 BEA WebLogic Adapter for TIBCO User Guide

APPENDIX
A Troubleshooting

This section lists error messages that you may encounter while using the BEA
WebLogic Adapter for TIBCO. It includes the following topic:

Error Messages

Error Messages

The following list describes error messages you may encounter while using the BEA
WebLogic Adapter for TIBCO, and what you can do to resolve the errors.

BEA_TIBCO_1_0 - Can’t create TIBRVEvent TIBRV protocol:
java.lang.NoClassDefFoundError: com/tibco/tibrv/TibrvException. Possibly missing
jar files.

Description

This TIBCO error occurs when the class path was not updated to include the
tibrvj.jar file.

Action

Refer to the BEA WebLogic Adapter for TIBCO Installation and Configuration
Guide and ensure that %TIBRV%\lib\tibrvj.jar is added to the WebLogic
Integration class path. You must stop and restart WebLogic Integration for this to
take effect.
BEA WebLogic Adapter for TIBCO User Guide A-1

A Troubleshooting
java.lang.Exception: Couldn’t start EventGenerator: java.lang.IllegalStateException:
Can’t get the transport connection to TIBCO Rendezvous.

Description

This adapter error occurs when the system path was not updated to include the
directory containing tibrvj.dll

Action

Refer to the BEA WebLogic Adapter for TIBCO Installation and Configuration
Guide and ensure that %TIBRV%\bin is added to the system path. You must stop
and restart WebLogic Integration for this to take effect.
A-2 BEA WebLogic Adapter for TIBCO User Guide

APPENDIX
B Sample Integration
With a SWIFT Message

TIBCO is a widely-deployed messaging backbone in the financial services industry.
Many financial services firms integrate their business processes using J2EE solutions
such as BEA WebLogic Platform. This section illustrates how to send a non-XML
SWIFT message between TIBCO Rendezvous and WebLogic Integration. It includes
the following topics:

The TIBCO-Swift Integration Scenario

Creating an Event Adapter Application View

Configuring an Event Adapter Application View

Validating Deployment Using WebLogic Integration Studio

Publishing the Message Using RTTM
BEA WebLogic Adapter for TIBCO User Guide B-1

B Sample Integration With a SWIFT Message
The TIBCO-Swift Integration Scenario

In this scenario, illustrated in the following figure, you use the BEA WebLogic
Adapter for SWIFT to subscribe WebLogic Integration to specified SWIFT messages,
including SWIFT MT515. (MT515 is a Client Confirmation of Purchase or Sale.) The
MT515 is provided only as a sample for testing the BEA WebLogic Adapter for
TIBCO. The full suite of MT5## message types, dictionaries, rules, schemas, and
validation rules requires the purchase of the BEA WebLogic Adapter for SWIFT.

Figure B-1 Integrating SWIFT Messages From TIBCO to WebLogic Server

You then send the SWIFT message to TIBCO Rendezvous using RTTM, a Java
program provided with the adapter. The TIBCO Rendezvous daemon (rvd) picks up
this message and routes it to the Information Bus. This is where the BEA WebLogic
Adapter for TIBCO listens, picking up the SWIFT message to transform it into XML
and direct it to the event adapter’s router.
B-2 BEA WebLogic Adapter for TIBCO User Guide

Creating an Event Adapter Application View
Creating an Event Adapter Application View

To create an event adapter application view:

1. Log on to the WebLogic Application View Console at

//appserver-host:port/wlai

Here, appserver-host is the IP address or host name on which the WebLogic
Integration Server is installed, and port is the socket on which the server is
listening. The port, if not changed during installation, defaults to 7001.

2. If prompted, enter a user name and password.

Note: If the user name is not system, it must be included in the adapter group.
For more information on adding the administrative server user name to the
adapter group, see the BEA WebLogic Adapter for TIBCO Installation
and Configuration Guide.

3. Click Login.

The WebLogic Integration Application View Console opens.

Figure B-2 Application View Console Main Window
BEA WebLogic Adapter for TIBCO User Guide B-3

B Sample Integration With a SWIFT Message
4. Click Add Application View.

The Define New Application View window opens.

Figure B-3 Define New Application View Window

a. Enter a name and description for the application view.

b. Select BEA_TIBCO_1_0 from the Associated Adapter drop-down list.

c. Click OK.

The Configure Connection Parameters window opens.
B-4 BEA WebLogic Adapter for TIBCO User Guide

Creating an Event Adapter Application View
Figure B-4 Configure Connection Parameters Window

a. Enter the name of the BEA WebLogic Adapter for TIBCO session base
directory in the Session Path field.

This directory holds your TIBCO schema information and contains the
subdirectory TIBCO/YourConnectionName.

For example, the session base directory might be c:\Program Files\BEA

Systems\BEA Application Explorer\sessions, with the schema
repository—containing a repository manifest and schemas—residing in
c:\Program Files\BEA Systems\BEA Application

Explorer\sessions\default\TIBCO\TEST.

For more information about schema repositories, see Chapter 6, “Creating
Schema Repositories.”

b. Select the session name—also known as the connection name—from the
Connection Name drop-down list.

In the example in the previous step, the session name is TEST.

c. Click Connect to EIS.

The Application View Administration window opens.
BEA WebLogic Adapter for TIBCO User Guide B-5

B Sample Integration With a SWIFT Message
Figure B-5 Application View Administration Window

5. Click Save.

You have finished creating the application view for the event adapter.

Note that you must add an event, as described in “Configuring an Event Adapter
Application View” on page 7, before you can deploy the application view.
B-6 BEA WebLogic Adapter for TIBCO User Guide

Configuring an Event Adapter Application View
Configuring an Event Adapter Application
View

An event adapter application view contains all events that are expected to arrive at an
instance of the event adapter. You can add many events to an application view.

Each event has a schema for the arriving message (also known as a document). A
service should be added for each event that is used by the application view.

To add an event to and then deploy an event adapter application view:

1. In the Administration window of the WebLogic Application View Console, click
Add in the Events pane.

The Add Event window opens.
BEA WebLogic Adapter for TIBCO User Guide B-7

B Sample Integration With a SWIFT Message
Figure B-6 Add Event Window

a. Enter the event name MyEvent in the Unique Event Name field.

The event properties that appear correspond to TIBCO Rendezvous
communication and transformation settings. The event adapter uses these
settings to communicate with TIBCO Rendezvous and to process messages.
B-8 BEA WebLogic Adapter for TIBCO User Guide

Configuring an Event Adapter Application View
b. Set the following parameters:

Daemon
Defines the TIBCO Rendezvous daemon with which to establish a connection.
You can specify the default, which is the port number: 7500.

Network
Defines the IP address at which TIBCO Rendezvous resides.

service name
Defines the UDP service to use whenever TIBCO Rendezvous conveys
messages. The service name can be a name or a port number.
You can specify the default, which is a port: 7500.

Send subject
The subject that identifies the message for which the event adapter is listening.
Type BEA.

Field Name
The custom field name to use for the message field.
Type DATA.

non-XML Preparse
Identifies the transform type for the non-XML to XML transformation phase.
Type transform(MT515toXML.xch) to specify an XCH transform from
SWIFT MT515 to XML.

schema
Lists the events in the schema repository.
Select SWIFTMT515, which is the schema resulting from the transformation
(SWIFT MT515 to XML).

These pre-defined transforms (and validations) are supplied with the BEA
WebLogic Adapter for SWIFT.

A sample is provided for testing purposes. For information about accessing
these, see “Creating Schema Repositories” in the BEA WebLogic Adapter for
SWIFT User Guide.

c. Click Add after you have set these paramenters.

The Administration window opens.
BEA WebLogic Adapter for TIBCO User Guide B-9

B Sample Integration With a SWIFT Message
Figure B-7 Application View Administration Window

2. Click Continue.

The Deploy Application View window opens.
B-10 BEA WebLogic Adapter for TIBCO User Guide

Configuring an Event Adapter Application View
Figure B-8 Deploy Application View Window

a. Modify event parameters, connection pool parameters, log configuration, and
security as necessary.

b. Click Deploy to save and deploy the event adapter.

To validate the deployment, see “Validating Deployment Using WebLogic
Integration Studio” on page 12.
BEA WebLogic Adapter for TIBCO User Guide B-11

B Sample Integration With a SWIFT Message
Validating Deployment Using WebLogic
Integration Studio

To confirm that a deployed event adapter application view is correctly configured and
can receive events:

1. Start the WebLogic Integration Studio.

2. Log on to the WebLogic Integration Studio.

3. In the Organization panel, select an organization to create a new workflow
template.

4. Right-click Templates and choose Create Template.

5. When the Template Properties window opens, enter a name for your workflow in
the Name field.

6. Click OK.
B-12 BEA WebLogic Adapter for TIBCO User Guide

Validating Deployment Using WebLogic Integration Studio
Figure B-9 WebLogic Integration Studio

7. Right-click the new template and choose Create Template Definition.

The template opens in WebLogic Integration Studio.

8. Right-click the Start node and choose Properties (not illustrated).

The Start Properties dialog box opens.
BEA WebLogic Adapter for TIBCO User Guide B-13

B Sample Integration With a SWIFT Message
Figure B-10 Start Properties Dialog Box

a. Select Event→AI Start.

b. In the event explorer, browse the application view folders and select the
application view that corresponds to the event adapter.
B-14 BEA WebLogic Adapter for TIBCO User Guide

Publishing the Message Using RTTM
c. Open the event adapter and select the MyEvent event. (You defined MyEvent
earlier, in “Configuring an Event Adapter Application View” on page B-7.)

d. Select New from the Event Document Variable drop-down list.

The Variable Properties window opens (not illustrated).

a. Type a name for the new variable in the Event Document Variable field.

b. Select XML from the Type drop-down list.

c. Check the Input and Output Parameter options.

d. Click OK.

9. Right-click the template in WebLogic Integration Studio’s left panel and choose
Save.

10. Right-click the event definition folder and choose Properties.

The Template Definition window opens (not illustrated).

a. Select Active.

b. Click OK.

You may now initiate events from your Enterprise Information System.

To publish a SWIFT MT515 message, see “Publishing the Message Using RTTM” on
page B-15

Publishing the Message Using RTTM

You use the RTTM (Real-Time Trade Matching) Java tool to publish a SWIFT MT515
message with the message subject BEA and with a field named DATA on a specified
TIBCO Rendezvous subject (BEA). You create a field named DATA to hold the
message string. (You defined the message subject and field earlier, in “Configuring an
Event Adapter Application View” on page B-7.)

You can find instructions for using RTTM in readme.txt in
bea_tibco_samples.zip, which is provided with the adapter.
BEA WebLogic Adapter for TIBCO User Guide B-15

B Sample Integration With a SWIFT Message
1. To run RTTM, add tibrvj.jar to your class path (it resides with TIBCO
Rendezvous).

2. Enter the following command at the DOS prompt:

java -cp rttm.jar TestDesktop

RTTM’s Business Participant Node window opens.

Figure B-11 RTTM: Business Participant Node
B-16 BEA WebLogic Adapter for TIBCO User Guide

Publishing the Message Using RTTM
3. Enter values for the fields. You can use the sample values shown in the previous
figure.

Note: Be sure to use the format YYYYMMDDHHMMSS for the date/time fields
Preparation Date and Trade Date. Use the format YYYYMMDD for the date
field Settlement Date. Include slashes preceding the CUSIP field’s
component values.

4. Click View the Message to view the message contents in the SWIFT Message
field.

5. Click Send to RTTM to send the message to TIBCO Rendezvous.

6. Return to WebLogic Integration Studio.

7. To track the execution of your workflow, right-click the event definition folder
and choose Instances.

The Workflow Instances for your event definition appear.
BEA WebLogic Adapter for TIBCO User Guide B-17

B Sample Integration With a SWIFT Message
Figure B-12 WebLogic Integration Studio - Workflow Instances

a. Select Started.

b. Click Refresh.

A list of started workflows appears.

8. Right-click the instance of the workflow and select Variables.

The Workflow Variables window opens.

9. Click View XML to see the entire contents of the workflow message (which is
also known as a document).
B-18 BEA WebLogic Adapter for TIBCO User Guide

Publishing the Message Using RTTM
Figure B-13 View XML Window

You have confirmed that a deployed event adapter application view is correctly
configured and can receive events.
BEA WebLogic Adapter for TIBCO User Guide B-19

B Sample Integration With a SWIFT Message
B-20 BEA WebLogic Adapter for TIBCO User Guide

	About This Document
	What You Need to Know
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introducing the BEA WebLogic Adapter for TIBCO
	TIBCO Rendezvous
	The BEA WebLogic Adapter for TIBCO
	How the BEA WebLogic Adapter for TIBCO Works

	2 Metadata, Schemas, and Repositories
	Understanding Metadata
	Schemas and Repositories
	Naming a Schema Repository

	The Repository Manifest
	Creating a Repository Manifest

	Creating a Schema
	Storing Directory and Template Files for Transformations
	Samples File

	3 Creating and Configuring an Event Adapter
	Creating an Application View Folder
	Creating an Event Adapter Application View
	Configuring an Event Adapter Application View
	Testing Event Adapter Application Views Using the Application View Console
	Testing Event Adapter Application Views Using WebLogic Integration Studio

	4 Creating and Configuring a Service Adapter
	Creating a Service Adapter Application View
	Configuring a Service Adapter Application View
	Testing the BEA Service Adapter for TIBCO
	Testing Service Adapter Application Views Using WebLogic Integration Studio

	5 Transforming Document Formats
	Kinds of Transformation
	Non-XML to XML Transformation
	XML to XML Transformations
	XML to Non-XML

	Creating and Testing Transformations
	Creating MFL Transformations
	Testing MFL Transformations

	6 Creating Schema Repositories
	Introduction to Schemas and Repositories
	Naming a Schema Repository
	The Repository Manifest
	Creating a Repository Manifest

	Creating a Schema

	A Troubleshooting
	Error Messages

	B Sample Integration With a SWIFT Message
	The TIBCO-Swift Integration Scenario
	Creating an Event Adapter Application View
	Configuring an Event Adapter Application View
	Validating Deployment Using WebLogic Integration Studio
	Publishing the Message Using RTTM

