
Collaborate Enabler

B E A W e b L o g i c C o l l a b o r a t e E n a b l e r f o r R o s e t t a N e t 1 . 0
D o c u m e n t E d i t i o n 1 . 0

F e b r u a r y 2 0 0 1

BEA WebLogic

User Guide

for RosettaNet

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Document Edition Date SoftwareVersion

1.0 February 2001 1.0

Contents

About This Document
What You Need to Know ..v

e-docs Web Site ... vi

How to Print this Document .. vi

Related Information... vi

Contact Us! ... vii

Documentation Conventions ... viii

User Guide
Overview of the WebLogic Collaborate Enabler for RosettaNet..........................1

About RosettaNet ...2

Architecture and Product Overview ..3

RosettaNet Protocol Layer ...4

WebLogic Process Integrator Integration for RosettaNet5

WebLogic Process Integrator Templates for PIPs ...5

Configuring the WebLogic Collaborate Enabler for RosettaNet Software...........6

C-Enabler for RosettaNet and C-Hub Configurations6

Configuring the C-Hub...8

Configuring the C-Enabler for RosettaNet...9

Configuring a Plug-In for Digital Signatures ...12

Linking WebLogic Process Integrator Templates with PIPs15

Configuring Workflow Sessions ..17

WebLogic Process Integrator Features for RosettaNet PIP Workflows19

Starting a Workflow upon Receipt of a RosettaNet Message......................19

Workflow and PIP Instances ..21

Waiting for a RosettaNet Message...21

Sending a RosettaNet Message ..23
BEA WebLogic Collaborate Enabler for RosettaNet User Guide iii

Using the Workflow Examples... 25

Configuring the C-Hub for the Workflow Examples 26

Configuring the C-Enabler for RosettaNet for the Workflow Examples 27

Configuring WebLogic Process Integrator for the Workflow Examples.... 27

Walkthrough of the Workflow Examples... 37

Getting Started... 37

PIP3A2_Customer ... 39

PIP3A2_Supplier ... 54

PIP0A1_Notifier.. 66

PIP0A1_Admin ... 74

Descriptions of Business Operations .. 79

General Business Operations... 80

PIP3A2-Specific Business Operations .. 83

Message Validation Processes .. 85

RosettaNet Message Validation Implementation .. 85

Recommended Reading about Message Validation 88

Index
iv BEA WebLogic Collaborate Enabler for RosettaNet User Guide

About This Document

This document describes the BEA WebLogic Collaborate Enabler for RosettaNet and
explains how to work with it. This document covers the following topics:

n Overview of the WebLogic Collaborate Enabler for RosettaNet

n Architecture and Product Overview

n Configuring the WebLogic Collaborate Enabler for RosettaNet Software

n WebLogic Process Integrator Features for RosettaNet PIP Workflows

n Using the Workflow Examples

n Walkthrough of the Workflow Examples

n Descriptions of Business Operations

n Message Validation Processes

What You Need to Know

This document is written for application developers who are creating c-enablers for
BEA WebLogic Collaborate and the RosettaNet business protocol. This document
focuses on using the WebLogic Process Integrator, which is included in WebLogic
Collaborate, to create workflows for the c-enabler. Therefore, you need to be familiar
with WebLogic Collaborate, WebLogic Process Integrator, and RosettaNet.
BEA WebLogic Collaborate Enabler for RosettaNet User Guide v

e-docs Web Site

BEA product documentation is available at http://e-docs.bea.com, which is the BEA
product documentation Web site.

How to Print this Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

The online documentation set also includes a PDF version of this document. You can
open the PDF in Adobe Acrobat Reader and print the entire document (or a portion of
it) in book format. To access the PDF, open the WebLogic Collaborate Enabler for
RosettaNet documentation Home page, click the PDF Files link and select the
document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com.

Related Information

For information about WebLogic Collaborate, see the WebLogic Collaborate online
documentation set at http://e-docs.bea.com. For information about RosettaNet, see
http://www.rosettanet.org.
vi BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Contact Us!

Your feedback on the WebLogic Collaborate Enabler for RosettaNet documentation is
important to us. Send us e-mail at docsupport@bea.com if you have questions or
comments. Your comments will be reviewed directly by the BEA professionals who
create and update the WebLogic Collaborate Enabler for RosettaNet documentation.

In your e-mail message, please indicate that you are using the documentation for the
WebLogic Collaborate Enabler for RosettaNet 1.0 release.

If you have any questions about this version of WebLogic Collaborate Enabler for
RosettaNet, or if you have problems installing and running WebLogic Collaborate
Enabler for RosettaNet, contact BEA Customer Support through BEA WebSupport at
http://www.bea.com. You can also contact Customer Support by using the contact
information provided on the Customer Support Card, which is included in the product
package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages
BEA WebLogic Collaborate Enabler for RosettaNet User Guide vii

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR
viii BEA WebLogic Collaborate Enabler for RosettaNet User Guide

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
BEA WebLogic Collaborate Enabler for RosettaNet User Guide ix

x BEA WebLogic Collaborate Enabler for RosettaNet User Guide

User Guide

The following sections describe the c-enabler for RosettaNet and provide procedures
for configuring and using the c-enabler for RosettaNet:

n Architecture and Product Overview

n Configuring the WebLogic Collaborate Enabler for RosettaNet Software

n WebLogic Process Integrator Features for RosettaNet PIP Workflows

n Using the Workflow Examples

n Walkthrough of the Workflow Examples

n Descriptions of Business Operations

n Message Validation Processes

Overview of the WebLogic Collaborate
Enabler for RosettaNet

In addition to routing XOCP messages, the WebLogic Collaborate c-hub can route
messages that use the RosettaNet business protocol. The basic WebLogic Collaborate
c-enabler available with WebLogic Collaborate 1.0 allows applications to engage in
business-to-business conversations using the XOCP protocol.

The BEA WebLogic Collaborate Enabler for RosettaNet software consists of a
c-enabler for RosettaNet that enhances the XOCP c-enabler by providing the ability to
send and receive RosettaNet messages according to the protocol described in the
RosettaNet Implementation Framework version (RNIF) 1.1. In addition, the c-enabler
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 1

for RosettaNet extends the basic WebLogic Process Integrator functionality with
features that allow WebLogic Process Integrator workflows to participate in
RosettaNet Partner Interface Processes (PIPs).

You can configure a c-enabler for RosettaNet to communicate directly with another
c-enabler for RosettaNet or any RNIF 1.1 compliant system. You can also configure
the c-enabler for RosettaNet to communicate to another c-enabler for RosettaNet or
RNIF 1.1 compliant system via the WebLogic Collaborate c-hub.

About RosettaNet

RosettaNet is an independent non-profit consortium of technology companies whose
purpose is to define and lead the implementation of open and common electronic
business processes for information technology electronic distribution channels. These
processes are designed to standardize the electronic business interfaces used by
participating supply-chain partners. The RosettaNet Implementation Framework
Specification (http://www.rosettanet.org) is an implementation guideline for
applications that implement RosettaNet Partner Interface Processes (PIPs). RosettaNet
describes its PIPs as follows:

“RosettaNet Partner Interface Processes (PIPs) define business processes between
supply-chain companies, providing the models and documents for the implementation
of standards. PIPs fit into six Clusters, or groups of core business processes, that
represent the backbone of the supply chain. Each Cluster is broken down into
Segments, cross-enterprise processes involving more than one type of supply chain
company. Within each Segment are individual PIPs. PIPs are specialized
system-to-system XML-based dialogs that define business processes between supply
chain companies. Each PIP includes a technical specification based on the RosettaNet
Implementation Framework (RNIF), a Message Guideline document with a
PIP-specific version of the Business Dictionary and an XML Message Guideline
document (an XML document type definition or DTD).”

The Business Dictionary defines the Business Properties, Business Data Entities, and
Fundamental Business Data Entities in PIP Message Guidelines.
2 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Architecture and Product Overview
Architecture and Product Overview

The c-enabler for RosettaNet consists of the following RosettaNet-specific
components:

n RosettaNet Protocol Layer

n WebLogic Collaborate—WebLogic Process Integrator integration layer to
support modeling and execution of RosettaNet PIPs

n WebLogic Process Integrator Templates for PIPs

The following c-enabler for RosettaNet components are leveraged from WebLogic
Collaborate:

n C-enabler

n WebLogic Process Integrator

For a description of these components, see the BEA WebLogic Collaborate Developer
Guide.
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 3

The following diagram shows the c-enabler for RosettaNet architecture.

Figure 1 C-Enabler for RosettaNet Architecture

RosettaNet Protocol Layer

The RosettaNet protocol layer provides the ability to send and receive messages via
the Internet according to the RNIF specification for transport, message packaging, and
security. The c-enabler for RosettaNet is a factory for c-enabler for RosettaNet
sessions. A c-enabler for RosettaNet session manages the URL for a location at which
the c-enabler for RosettaNet can receive RosettaNet messages.

Digital Signatures

The c-enabler for RosettaNet does not provide an out-of-the-box implementation for
digital signatures, but it offers a plug-in mechanism for security solutions that
implement this functionality. For more information, see “Configuring a Plug-In for
Digital Signatures” on page 12.

Workflow template for
RosettaNet PIP role

Workflow template for
RosettaNet PIP role

Workflows for
"private" processes

Backend
systems

WebLogic Process
Integrator

WebLogic Process
Integrator Integration

for RosettaNet

RosettaNet Protocol
Layer

C-Enabler

B
u

si
n

es
s

O
p

er
at

io
n

sMessage DTDs

Validation
Schema

WebLogic
Process

Integrator
Database
4 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Architecture and Product Overview
WebLogic Process Integrator Integration for RosettaNet

WebLogic Process Integrator software models and executes workflows that implement
RosettaNet PIPs. The RosettaNet protocol layer and WebLogic Process Integrator
work together to provide workflows with the ability to do the following:

n Have the WebLogic Process Integrator send RosettaNet messages. (See
“Sending a RosettaNet Message” on page 23.)

n Have the WebLogic Process Integrator wait for RosettaNet messages. (See
“Waiting for a RosettaNet Message” on page 21.)

n Indicate, through workflow template properties set by you, which PIP and role
are implemented by the workflow. (See “Linking WebLogic Process Integrator
Templates with PIPs” on page 15.)

n Pass incoming RosettaNet messages to the correct workflow instance and initiate
the correct type of workflow upon receipt of a RosettaNet message. (See
“Configuring Workflow Sessions” on page 17 and “Starting a Workflow upon
Receipt of a RosettaNet Message” on page 19.)

WebLogic Process Integrator Templates for PIPs

RosettaNet PIPs define the public processes in which trading partners participate while
performing e-business transactions. For example, PIP3A2 defines the process that a
Customer trading partner follows with a Product Supplier trading partner to get the
price and availability of goods that the customer wants to buy and the product supplier
wants to sell. Trading partners participating in PIPs need to implement the public
process defined by their roles in the PIP, and they need to connect their internal
systems, as well as their private processes and workflows, to the public process.

The WebLogic Collaborate Enabler for RosettaNet software defines example
workflow templates for the following PIPs:

n PIP3A2 Query Price and Availability v. 1.3

n PIP0A1 Notification of Failure v. 1.0
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 5

Message Validation

The RosettaNet PIP definitions contain detailed validation rules for messages
exchanged in the PIP. These rules go beyond the constraints that can be expressed
with an XML Document Type Definition (DTD). Both the service content and the
service header of a RosettaNet message need to be validated.

The required validation rules are expressed in XML schema documents. Each PIP
workflow template requires PIP-specific XML schema documents. At run time,
validation of incoming and outgoing messages is performed by WebLogic Process
Integrator business operations that call the XML parser. The XML parser validates the
service header and service content by using the corresponding XML schema
documents.

For a more detailed description of how messages are validated in the workflow
examples, see “Message Validation Processes” on page 85.

Configuring the WebLogic Collaborate
Enabler for RosettaNet Software

This section provides configuration information for the WebLogic Collaborate
Enabler for RosettaNet software.

C-Enabler for RosettaNet and C-Hub Configurations

The following sections show three configurations in which the c-enabler for
RosettaNet can interact with the c-hub and other systems.
6 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Configuring the WebLogic Collaborate Enabler for RosettaNet Software
Configuration 1: C-Enabler for RosettaNet to C-Enabler for RosettaNet

Two c-enablers for RosettaNet can interact with each other via a c-hub. Alternatively,
a c-enabler for RosettaNet can interact directly with another c-enabler for RosettaNet.

Figure 2 One C-Enabler for RosettaNet Interacting with Another

Each c-enabler for RosettaNet must have a separate session and the appropriate
workflow template definition for its RosettaNet PIP role.

Configuration 2: C-Enabler for RosettaNet to Multiple C-Enablers for
RosettaNet

A c-enabler for RosettaNet can interact with multiple c-enablers for RosettaNet via a
c-hub. Alternatively, a c-enabler for RosettaNet can interact directly with multiple
c-enablers for RosettaNet if required by the PIP technical specification.

Figure 3 One C-Enabler for RosettaNet Interacting with Multiple C-Enablers
for RosettaNet

C-Enabler for
RosettaNet

C-Enabler for
RosettaNet

C-Hub
(optional)

C-Enabler for
RosettaNet

C-Enabler for
RosettaNet

C-Hub
(optional)

C-Enabler for
RosettaNet
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 7

This arrangement should not be considered a configuration where one c-enabler for
RosettaNet broadcasts messages to other c-enablers for RosettaNet. The RNIF 1.1
specifies only point-to-point communication. Each of the c-enablers for RosettaNet
must have a separate session and the appropriate workflow template definition for its
RosettaNet PIP role.

Configuration 3: C-Enabler for RosettaNet to RNIF 1.1-Compliant System

A c-enabler for RosettaNet can interact with another RNIF 1.1 compliant system via a
c-hub. Alternatively, a c-enabler for RosettaNet can interact directly with another
RNIF 1.1 compliant system.

Figure 4 C-Enabler for RosettaNet Interacting with a RNIF 1.1-Compliant
System

Each of the RosettaNet PIP trading partners must have a separate session and the
appropriate workflow template definition for its RosettaNet PIP role. The workflow
template definition is not applicable for a system that does not use the c-enabler for
RosettaNet.

Configuring the C-Hub

To configure the WebLogic Collaborate c-hub to route messages to and from the
c-enabler for RosettaNet, the c-hub needs to be configured with the following:

n RosettaNet business protocol

n Conversations defined for the RosettaNet PIPs

n Trading partners with the information required by the RosettaNet business
protocol

n C-space that is enabled with the RosettaNet business protocol and contains the
appropriate role subscriptions

C-Enabler for
RosettaNet

Third-party
RNIF 1.1 Compliant

Software

C-Hub
(optional)
8 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Configuring the WebLogic Collaborate Enabler for RosettaNet Software
For detailed instructions for configuring the c-hub with this information, see
Configuring Business Protocols in the BEA WebLogic Collaborate C-Hub
Administration Guide.

Configuring the C-Enabler for RosettaNet

The c-enabler for RosettaNet configuration file contains the configuration information
for the RosettaNet Protocol layer. The c-enabler for RosettaNet reads this information
at start-up time. For general information about configuring c-enablers, see the BEA
WebLogic Collaborate C-Enabler Administration Guide.

For the c-enabler for RosettaNet, the following information must be included in the
c-enabler for RosettaNet configuration file:

n A business-protocol element that defines the RosettaNet business protocol
on the c-enabler for RosettaNet. Valid business protocols currently include
XOCP (supported by the WebLogic Collaborate 1.0 c-enabler) and RosettaNet
(supported by the c-enabler for RosettaNet).

n One or more c-enabler for RosettaNet sessions that refer to the RosettaNet
business protocol.

The following table summarizes the elements and attributes that are required by the
c-enabler for RosettaNet in addition to those described in the BEA WebLogic
Collaborate C-Enabler Administration Guide.

Table 1 Additional Elements and Attributes for C-Enabler for RosettaNet

Element Attribute Description

business-
protocol

Defines a business protocol.
(Subelement of the enabler element.)

name Specifies the logical name for the
protocol.

session-factory-class Must be set, for RosettaNet, to:
com.bea.b2b.enabler.rosetta
net.RNEnablerSessionFactory
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 9

The following example of a c-enabler for RosettaNet configuration file contains
settings required to run the c-enabler for RosettaNet.

Listing 1 Example of a C-Enabler for RosettaNet Configuration File

<?xml version="1.0"?>
<!DOCTYPE enabler SYSTEM "EnablerConfig.dtd">
<enabler name="Product Supplier">
 <business-protocol
 session-factory-class=

session Defines the c-enabler for RosettaNet
session. Multiple sessions may be
defined if you need to communicate
with more than one trading partner.

business-protocol Must match the name attribute of the
business-protocol element.

hub-url Defines the URL of the c-hub to which
the c-enabler for RosettaNet sends
messages. Note: If a c-hub is not used,
this element defines the URL of the
trading partner, which could be another
c-enabler for RosettaNet or another
RNIF 1.1 compliant system, to which
the c-enabler for RosettaNet sends
messages.

trading-
partners

name Specifies the business ID (the
RosettaNet specified DUNS ID) of the
trading partner hosting the c-enabler for
RosettaNet. If the c-enabler for
RosettaNet is configured to send
messages to a c-hub, this business ID
must match the business ID defined for
the trading partner in the c-hub
repository.

Table 1 Additional Elements and Attributes for C-Enabler for RosettaNet

Element Attribute Description
10 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Configuring the WebLogic Collaborate Enabler for RosettaNet Software
 "com.bea.b2b.enabler.rosettanet.RNEnablerSessionFactory"
 name="RN" />
 <session name="supplier-session" c-space-name="PriceSpace"
 business-protocol="RN">
 <hub-url ref="http://127.0.0.1:7001/TransportServlet/RN"/>
 <enabler-url ref="http://127.0.0.1:7501/rn2"/>
 <security-info>
 <trading-partner name="987654321"/>
 </security-info>
 </session>
</enabler>

The example c-enabler for RosettaNet configuration files may also be referenced.
They are located in <WLC_HOME>/rosettanet/enabler. A configuration file is
provided for each workflow that requires a session. The configuration files are
customerEnabler.xml, supplierEnabler.xml, and
failureadminEnabler.xml. The PIP0A1_Notifier workflow does not require a
configuration file because it is a subworkflow of PIP3A2_Customer and uses the
latter’s configuration settings.

Configuring SSL Security

When you configure the c-enabler for RosettaNet, you need to specify a value for the
security-info element in the c-enabler for RosettaNet configuration file. If you are
using SSL security, you need to specify values for the following subelements:

n Certificate

n Private key

n Trading partner

If you are not using SSL with your c-enabler for RosettaNet, you only need to specify
the trading partner subelement. For more information about configuring security
information for the c-enabler for RosettaNet, see Configuring C-Enablers in the BEA
WebLogic Collaborate C-Enabler Administration Guide.
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 11

The following example shows a c-enabler for RosettaNet configuration file that
contains the settings required to enable SSL.

Listing 2 Example of SSL Configuration

<?xml version="1.0"?>
<!DOCTYPE enabler SYSTEM "EnablerConfig.dtd">
<enabler name="Product Supplier">
 <business-protocol
 session-factory-class=
 "com.bea.b2b.enabler.rosettanet.RNEnablerSessionFactory"
 name="RN" />
 <session name="supplier-session" c-space-name="PriceSpace"
 business-protocol="RN">
 <hub-url ref="https://127.0.0.1:7002/TransportServlet/RN"
 certificate-field-name="fingerprint"
 certificate-field-value="1be4aad0678554175170d30c9b6bef0c"
 server-certificate-field-name="fingerprint"
 server-certificate-field-value="1be4aad0678554175170d30c9b6bef0c"
 hub-user="hub"/>
 <enabler-url ref="https://127.0.0.1:7602/rn2"/>
 <security-info>
 <trading-partner name="987654321"/>
 <certificatelocation="D:\bea\wlcsp1\wlcollaborate1.0
 \rosettanet\enabler\myserver\987654321_cert.pem"/>
 <private-key location="D:\bea\wlcsp1\wlcollaborate1.0
 \rosettanet\enabler\myserver\987654321-key.der"/>
 </security-info>
 </session>
</enabler>

Configuring a Plug-In for Digital Signatures

Note: The plug-in for digital signatures is an optional feature of the c-enabler for
RosettaNet. If you do not use digital signatures skip this section.

The WebLogic Collaborate Enabler for RosettaNet software provides a plug-in
architecture for creating and validating digital signatures. The digital signature plug-in
is a Java class that implements the
12 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Configuring the WebLogic Collaborate Enabler for RosettaNet Software
com.bea.b2b.protocol.security.WLCDigitalSignatureValidator interface.
The RosettaNet protocol layer calls the plug-in before sending a message and after
receiving a message.

To configure a digital signature plug-in, add the signature-validator-class
attribute to the business-protocol element that defines the RosettaNet business protocol
in the c-enabler for RosettaNet configuration file. The value of the
signature-validator-class attribute must be the class name of the plug-in. For
information about updating the c-enabler for RosettaNet configuration file, see
“Configuring the C-Enabler for RosettaNet” on page 9.

You can optionally add the signature-validator-class-init attribute to the
same business-protocol element. The string data specified on this attribute is passed to
the WLCDigitalSignatureValidator.init(String initString) method. This
method is invoked immediately after the object instance for the digital signature
plug-in Java class is created.

Sample Digital Signature Plug-In Configuration

The following example shows a c-enabler for RosettaNet configuration file in which a
digital signature plug-in is configured.

Listing 3 Example Configuration for a Digital Signature Plug-In

<?xml version="1.0"?>
<!DOCTYPE enabler SYSTEM "EnablerConfig.dtd">
<enabler name="Customer">
 <business-protocol
 session-factory-class=
 "com.bea.b2b.enabler.rosettanet.RNEnablerSessionFactory"
 signature-validator-class=
 "mypkg.DigitalSignatureValidator"
 signature-validator-class-init=
 "d:/CertJ10/certj10/sample/db/flatfile"
 name="RN" />
 <session name="customer-session" c-space-name="PriceSpace"
business-protocol="RN">
 <hub-url ref="http://127.0.0.1:7001/TransportServlet/RN"/>
 <enabler-url ref="http://127.0.0.1:7501/rn1"/>
 <security-info>
 <trading-partner name="123456789"/>
 </security-info>
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 13

 </session>
</enabler>

How the Digital Signature Plug-In Works

After reading in the c-enabler for RosettaNet configuration file, the protocol layer
instantiates the digital signature plug-in class. After instantiation, the init(String
initString) method is invoked. The initString passed here is the data available
from the signature-validator-class-init element. As the implementer of the
plug-in class, you should use this init string to configure relevant information; for
example, the location of the certificates.

The protocol layer calls the createSignature() method on the plug-in to create a
digital signature for an outgoing message. The message content to be signed is passed
in, as well as a com.bea.protocol.messaging.Message object representing the
entire RosettaNet message. This object should be cast to
com.bea.protocol.rosettanet.messaging.RNMessage to get more information.
(For details about the RNMessage class, see the Javadoc provided with WebLogic
Collaborate.) If createSignature() throws an exception, the message is not sent.
The return value of createSignature() is the digital signature.

For incoming messages, the protocol layer first calls the verifySignature() method
to verify the digital signature of the message. The message content and the signature
are passed in. If verifySignature() throws an exception, the message is rejected
and is not processed by the higher layers of the c-enabler for RosettaNet. Subsequently,
the verifySender() method is called to verify that the trading partner information in
the service header and content matches the information in the digital signature. The
plug-in can retrieve the service header and content through the Message object
parameter passed in to the verifySender() method. (For details, see the preceding
discussion about casting the Message object to RNMessage.) If verifySender()
throws an exception, the message is rejected and is not processed by the higher layers
of the c-enabler for RosettaNet.

For information about the
com.bea.b2b.protocol.security.WLCDigitalSignatureValidator interface,
see the Javadoc provided with the WebLogic Collaborate Enabler for RosettaNet
software.
14 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Configuring the WebLogic Collaborate Enabler for RosettaNet Software
Linking WebLogic Process Integrator Templates with
PIPs

RosettaNet PIPs define the public processes in which trading partners participate while
performing e-business transactions. Trading partners participating in PIPs need to
implement the public processes defined by their roles in the PIP, and they need to
connect their internal systems, as well as their private processes and workflows, to the
public process. The WebLogic Collaborate Enabler for RosettaNet software provides
a set of example WebLogic Process Integrator workflow templates that trading
partners can use to implement their own PIPs.

When configuring workflow templates that model PIPs, you must include the
information described in the following table.

Table 2 Conversation Properties for PIP Workflow Templates

Property Value Description

Name PIP_name Business process identifier of the PIP,
shown in a format identical to that defined
for the GlobalProcessCode element of
the Service Header in the RosettaNet
Service Header Part Message Guideline.

The RosettaNet Service Header Part
Message Guideline is available at
www.rosettanet.org under the RNIF
1.1 area, Business Signals, Service Header
& Preamble v1.1.

Example: The PIP name for PIP3A2
Request Price and Availability should be
set to 3A2.

Version PIP_version Version of the PIP, for example, 1.3.
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 15

The c-enabler for RosettaNet uses this information at run time to determine the
following:

n Which workflow template definition to instantiate upon receipt of a message for
a new PIP instance

n Which c-enabler for RosettaNet session to use when a message is sent from a
workflow

You configure WebLogic Process Integrator templates in the Conversation Properties
dialog box, which you access from the Properties dialog box of the template. For a
detailed description of how to open workflow template definitions and define
conversation properties, see the topic Defining Conversation Properties in Using
Workflows to Exchange Business Messages in the BEA WebLogic Collaborate
Developer Guide.

Role PIP_roles PIP role for which the template is
designed. The format is identical to that
defined for the
GlobalRoleClassificationCode
element of the Service Header in the
RosettaNet Service Header Part Message
Guideline.

Example: For PIP3A2, a Customer role
and a Product Supplier are specified.

Session RosettaNet_c-enabler_
session

C-enabler for RosettaNet session name, as
defined in the c-enabler for RosettaNet
configuration file.

 Example: customer-session as
defined in
<WLC_HOME>/rosettanet/enabler
/customerConfig.xml.

Table 2 Conversation Properties for PIP Workflow Templates (Continued)

Property Value Description
16 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Configuring the WebLogic Collaborate Enabler for RosettaNet Software
The following illustration shows the Conversation Properties dialog box with the
settings required when Name is defined as PIP3A2; Version, as 1.3; Role, as
Customer; and Session as customer-session. No information is needed for Quality of
Service. It is not applicable.

Configuring Workflow Sessions

The c-enabler for RosettaNet session and all related active WebLogic Process
Integrator templates are referred to, collectively, as a workflow session. Workflow
sessions for c-enabler for RosettaNet sessions are created when you boot the
WebLogic Server that hosts the c-enabler for RosettaNet.
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 17

For each workflow session, configure a com.bea.wlpi.Start startup class in the
<WLC_HOME>/rosettanet/enabler/weblogic.properties file with the
arguments described in the following table, all of which are required.

The following listing shows a fragment of a sample weblogic.properties file that
specifies the startup class and defines a workflow session named customer-session.

Listing 4 Defining a Workflow Session

weblogic.system.startupClass.PIP3A2Customer=com.bea.b2b.wlpi.Start

weblogic.system.startupArgs.PIP3A2Customer=ConfigFile=customerEnabler.xml,Sessi
onName=customer-session,

User=bea,Password=12345678,OrgName=BEA

The startup class creates the c-enabler for RosettaNet session. It then looks up and
registers all the active WebLogic Process Integrator templates that are configured for
the c-enabler for RosettaNet session.

Table 3 Configuration Arguments for com.bea.wlpi.Start

Argument Description

ConfigFile Name of the c-enabler for RosettaNet configuration file.

SessionName Name of the c-enabler for RosettaNet session.

User WebLogic Process Integrator user that the c-enabler for RosettaNet
should impersonate when creating a new workflow instance (upon
receipt of an incoming message).

Password Password of the WebLogic Process Integrator user.

OrgName Organization to which the WebLogic Process Integrator user belongs.
18 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

WebLogic Process Integrator Features for RosettaNet PIP Workflows
WebLogic Process Integrator Features for
RosettaNet PIP Workflows

The c-enabler for RosettaNet extends the basic WebLogic Process Integrator
functionality with features that allow WebLogic Process Integrator workflows to
participate in RosettaNet PIPs. WebLogic Process Integrator workflows can:

n Be started by an incoming RosettaNet message

n Wait for a RosettaNet message

n Send a RosettaNet message

The RosettaNet extensions to WebLogic Process Integrator are similar to those in
WebLogic Process Integrator for the WebLogic Collaborate XOCP c-enabler, which
are described in Using Workflows to Exchange Business Messages in the BEA
WebLogic Collaborate Developer Guide.

Note: To access workflow diagrams, you must invoke the WebLogic Process
Integrator Studio. For instructions for starting the WebLogic Process
Integrator Studio see “Starting WebLogic Process Integrator Studio” on page
31.

Starting a Workflow upon Receipt of a RosettaNet
Message

You can configure a workflow to be started automatically by the c-enabler for
RosettaNet upon receipt of the first message for a PIP instance. The example
PIP3A2_Supplier workflow instance provides an example of a workflow instance that
is started when the first message of this PIP for the Supplier role arrives.

The PIP3A2_Supplier workflow instance serves as an example of how to configure a
workflow template definition to be started by an incoming message:

1. In the PIP3A2_Supplier workflow diagram, double-click the Start node to display
the Start Properties dialog box.
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 19

2. Select the Business Message radio button.

3. Set the Business Protocols field to RosettaNet.

4. Set the Variable Assignments fields. The Service Header field is populated with
the header of the incoming XML message and the Service Content field is
populated with the content of the incoming XML message. Only String variable
names are valid in these fields.
20 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

WebLogic Process Integrator Features for RosettaNet PIP Workflows
Workflow and PIP Instances

Each PIP instance is identified by a unique combination of a process ID
(ProcessIdentity/instanceIdentifier) and the DUNS (Data Universal
Numbering System) ID of the initiating trading partner. All RosettaNet messages
contain these values in the Service Header. The c-enabler for RosettaNet maintains a
list of all workflow instances and the PIP instances associated with them.

After a workflow is started in response to an incoming RosettaNet message, the
workflow is associated with the PIP instance to which the message belongs. When a
workflow is started by an event, timer, a manual request or a call from another
workflow, the c-enabler for RosettaNet creates a new PIP instance for it. In a single
c-enabler for RosettaNet session only one workflow instance can be associated with a
PIP instance.

Waiting for a RosettaNet Message

Workflows can contain events that are triggered when a message is received for the
PIP instance associated with the workflow. The following example workflows contain
events that are triggered when a RosettaNet message is received:

n PIP3A2_Customer

l Get Ack and Process

l Get Reply

n PIP3A2_Supplier: Get Ack and Process

n PIP0A1_Notifier: Get Ack and Process

The Get Ack and Process event in the PIP3A2_Supplier workflow instance serves as
an example of how to configure an event node to be triggered upon receipt of a
RosettaNet message:

1. In the PIP3A2_Supplier workflow diagram, double-click the Get Ack and Process
event node to display the Event Properties dialog box.

2. Click the Business Message Receive Event radio button under the Event Type
field.
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 21

3. Set the Business Protocols field to RosettaNet.

4. Set the Variable Assignments fields. The Service Header field is populated with
the header of the incoming XML message, and the Service Content field, with the
content of the incoming XML message. Only String variable names are valid in
these fields.
22 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

WebLogic Process Integrator Features for RosettaNet PIP Workflows
Sending a RosettaNet Message

A workflow can send a RosettaNet message by invoking an integration action called
Send RosettaNet Message. The following example workflows contain nodes that
define Send RosettaNet Message actions:

n PIP3A2_Customer

l Task: Send Query Message

l Task: Send Acknowledgement Exception

l Task: Send Acknowledgement Message

n PIP3A2_Supplier

l Task: Send Acknowledgement Exception

l Task: Send Acknowledgement Message

l Task: Send General Exception

l Task: Send Response Message

n PIP0A1_Notifier—Task: Send Failure Notification Message

n PIP0A1_Admin

l Task: Send Acknowledgement Exception

l Task: Send Acknowledgement Message

For an example of a task that defines a Send RosettaNet Message action, consider the
Send Response Message in the PIP3A2_Supplier workflow instance. To walk through
this example, complete the following procedure:

1. In the PIP3A2_Supplier workflow diagram, double-click the Send Response
Message task node to display the Task Properties dialog box.

2. Select the Activated tab under the Actions field.

3. Choose the Send RosettaNet Message action.
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 23

4. Click the Update button to display the Send RosettaNet Message dialog.

5. Specify parameters for the Send RosettaNet Message action, as described in the
following table.

The procedure for adding a Send RosettaNet Message action to a Task node is:

1. In the workflow diagram, double-click the Task node to display the Task Properties
dialog box.

2. Select the Activated tab under the Actions field.

3. Click the Add button to display the Add Action dialog.

Table 4 Parameters for Send RosettaNet Message Action

In this field . . . Specify the workflow variable that contains . . .

Service Header String variable that contains information for the RosettaNet
message header

Service Content String variable that contains information for the RosettaNet
message content

HTTP Status Integer variable that contains the HTTP status resulting from
sending the RosettaNet message
24 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Using the Workflow Examples
4. In the Integrations Actions folder, choose Send RosettaNet Message.

5. Click OK to display the Send RosettaNet Message dialog.

6. Specify parameters for the RosettaNet Message action, as described in the
Parameters for Send RosettaNet Action table.

Using the Workflow Examples

The workflow examples provide templates for specific PIPs and concise scenarios of
how to use the WebLogic Collaborate Enabler for RosettaNet technology to develop
compliant PIP solutions. This section briefly describes the four workflow examples.
For a step-by-step description of each workflow, see “Walkthrough of the Workflow
Examples” on page 37.

n PIP3A2_Customer—Implements the Customer role of the PIP3A2 Query Price
and Availability specification. The customer builds and sends the Query
message, waits for an acknowledgement, and then waits for a reply to the query
from the supplier.

n PIP3A2_Supplier—Implements the Product Supplier role of the PIP3A2 Query
Price and Availability specification. This workflow starts upon receipt of a query
message. After validating the message, the workflow sends an
acknowledgement, builds a response, and sends it. The supplier then waits for an
acknowledgement message from the customer.

n PIP0A1_Notifier—Implements the Failure Notifier role of the PIP0A1
Notification of Failure specification. This subworkflow starts when the customer
workflow exceeds its maximum number of retries while trying to send the Query
message. The Failure Notifier builds and sends the notification of failure
message and waits for an acknowledgement from the Failure Report
Administrator.

n PIP0A1_Admin—Implements the Failure Report Administrator role of the
PIP0A1 Notification of Failure specification. The Failure Report Administrator
starts upon receipt of a failure message. After validating the message, the
workflow sends an acknowledgement message to the Failure Notifier.
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 25

Configuring the C-Hub for the Workflow Examples

The <WLC_HOME>/hub/weblogic.properties file for the c-hub included with the
WebLogic Collaborate installation can be used for the examples. For more information
about the c-hub weblogic.properties file, see the BEA WebLogic Collaborate
C-Hub Administration Guide.

The c-hub repository data is included for the RosettaNet example. The installation
process stores the RepData.xml file in the <WLC_HOME>/rosettanet/hub directory.
The RosettaNet example assumes the c-hub database has been created. For more
information about configuring the c-hub repository, see the topic Configuring the
Repository in Setting Up the C-Hub in the BEA WebLogic Collaborate C-Hub
Administration Guide.

To use the RosettaNet business protocol, you must load the c-hub repository with the
appropriate data. Therefore, before you can run the example, you must import
RepData.xml into the c-hub repository, by completing the following procedure:

1. Start the c-hub.

2. In a browser, bring up the C-Hub Administration Console at the following URL:

http://<Collaborate machine>:<hubPort>/WLCHubAdmin

3. In the Console window, select the Configuration option and the Hub tab. The
Hub tab is displayed.

4. Click the Import button at the bottom of the Hub tab. The Hub import window is
displayed.

5. Click the Browse button to navigate to the <WLC_HOME>/rosettanet/hub
directory and select the RepData.xml file.

6. Select Yes or No for the Initialize Database option. If you select Yes, all other
c-hub data are removed. If you select No, the data is loaded with the other
repository data.

7. Click the Import button. A status message reports whether the data was imported
successfully.
26 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Using the Workflow Examples
Configuring the C-Enabler for RosettaNet for the
Workflow Examples

To configure the c-enabler for RosettaNet for the workflow examples, complete the
following procedure:

1. On the command line, navigate to the c-enabler for RosettaNet subdirectory of your
WebLogic Collaborate Enabler for RosettaNet installation,
<WLC_HOME>/rosettanet.

2. Run the setenv command. WebLogic Collaborate Enabler for RosettaNet
provides setenv.cmd for Windows and setenv.sh for UNIX.

3. Create the database for the WebLogic Process Integrator. Run appropriate
command from the <WLC_HOME>/rosettanet/wlpi directory.

l Oracle 8.1.5—use createOracle.cmd for Windows or createOracle.sh
for UNIX

l Microsoft SQL Server 7.0—use createMSSQL.cmd (Windows only)

l Cloudscape 3.5.0—use createCloud.cmd for Windows or
createCloud.sh for UNIX

4. Start the c-enabler for RosettaNet.

Configuring WebLogic Process Integrator for the
Workflow Examples

This section provides instructions for configuring WebLogic Process Integrator to run
the workflow examples. The WebLogic Process Integrator may be configured by using
a command script to perform all the configuration steps, alternatively you may follow
the manual configuration process.
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 27

Using the RNConfig Command Script

The RNConfig command script performs the following steps:

n Imports the business operations

n Creates the workflow templates

n Imports the workflow templates

The RNConfig command scripts assumes the c-enabler for RosettaNet is running with
the configuration parameters defined in the following table.

To run the RNConfig command script and start the example workflows, complete the
following procedure:

1. On the command line, navigate to the c-enabler for RosettaNet subdirectory of your
WebLogic Collaborate Enabler for RosettaNet installation,
<WLC_HOME>/rosettanet/enabler.

Table 5 Configuration Parameters Required to Run RNConfig

Parameter Name Parameter Value Associated Configuration File

enabler-url http://localhost:7501/ This parameter is located in the c-enabler for
RosettaNet configuration file. For instructions on
updating this file, see “Configuring the C-Enabler for
RosettaNet” on page 9.

User bea This parameter is located in the c-enabler for
RosettaNet weblogic.properties file. For instructions
on updating this file, see “Configuring Workflow
Sessions” on page 17.

Password 12345678 This parameter is located in the c-enabler for
RosettaNet weblogic.properties file. For instructions
on updating this file, see “Configuring Workflow
Sessions” on page 17.

OrgName BEA This parameter is located in the c-enabler for
RosettaNet weblogic.properties file. For instructions
on updating this file, see “Configuring Workflow
Sessions” on page 17.
28 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Using the Workflow Examples
2. Run the RNConfig command. WebLogic Collaborate Enabler for RosettaNet
provides RNConfig.cmd for Windows and rnconfig.sh for UNIX.

3. Start WebLogic Process Integrator Studio. On the command line, navigate to
<WLC_HOME>/rosettanet/wlpi.

4. Run the Studio command. WebLogic Collaborate Enabler for RosettaNet
provides Studio.cmd for Windows and studio.sh for UNIX.

5. In the Studio login dialog box, enter the following information:

l user: bea

l password: 12345678

l server: t3://localhost:7501

l organization: BEA

6. Make the PIP3A2_Customer template active by, open the PIP3A2_Customer
template in the folder tree, right-click it, and select Properties.

7. Select the Active check box and save the workflow.

8. Start the workflow examples from the Worklist client that is provided with
WebLogic Process Integrator (in <WLC_HOME>/rosettanet/wlpi).

9. Make sure both the c-hub and the c-enabler for RosettaNet are running.

10. Run the Worklist command. WebLogic Collaborate Enabler for RosettaNet
provides Worklist.cmd for Windows and worklist.sh for UNIX

11. In the Worklist client: select Workflow, and then Start Workflow.

12. Select the PIP3A2_Customer workflow and click OK.

The c-enabler for RosettaNet wlc.log (in <WLC_HOME>/rosettanet/enabler)
indicates when each workflow starts and completes. You can also use WebLogic
Process Integrator Studio to monitor the workflow status.

Manual Configuration Process

This section provides instructions for manually configuring WebLogic Process
Integrator to support the workflow examples. The first subsection, “High-Level
Procedure for Configuring and Starting Workflow Examples” on page 30 is actually a
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 29

summary of several low-level procedures you should follow to prepare and run the
workflow examples. The low-level procedures are provided in the remaining
subsections:

n Starting WebLogic Process Integrator Studio

n Defining Business Operations

n Creating Workflow Templates

n Importing Workflow Templates

n Running the Workflow Examples

High-Level Procedure for Configuring and Starting Workflow Examples

To define and run the PIP3A2 and PIP0A1 workflow examples, complete the
following procedure:

1. Start WebLogic Process Integrator Studio. (See “Starting WebLogic Process
Integrator Studio” on page 31.)

2. Define business operations. (See “Defining Business Operations” on page 31.)
Business operations stored in the WebLogic Process Integrator database are not
included in the XML definition of the sample workflows. All the sample
workflows use business operations to call methods on Java classes. If the
business operations are not defined in your database, you receive a warning
message when importing the workflows. This warning indicates that the system
cannot find the relevant business operation defined in the workflow template
definition.

3. Create four new workflow templates: PIP3A2_Customer, PIP3A2_Supplier,
PIP0A1_Notifier, and PIP0A1_Admin. (See “Creating Workflow Templates” on
page 35.) The order in which you import the four workflows is important because
PIP0A1_Notifier is implemented as a subworkflow. You must import and
activate the PIP0A1_Notifier workflow template definition before importing the
PIP3A2_Customer workflow template definition.

4. Import the workflow template definitions for PIP0A1_Notifier, PIP0A1_Admin,
PIP3A2_Customer, and PIP3A2_Supplier. (See “Importing Workflow
Templates” on page 36.)

5. Execute the workflows. (See“Running the Workflow Examples” on page 36.)
30 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Using the Workflow Examples
Starting WebLogic Process Integrator Studio

To start the WebLogic Process Integrator Studio:

1. On the command line, navigate to <WLC_HOME>/rosettanet/wlpi.

2. Run the Studio command. WebLogic Collaborate Enabler for RosettaNet
provides Studio.cmd for Windows and studio.sh for UNIX.

3. In the Studio login dialog box, enter the following information:

l user: bea

l password: 12345678

l server: t3://localhost:7501

l organization: BEA

For more information about defining users, roles, and organizations in WebLogic
Process Integrator, see the BEA WebLogic Process Integrator Studio Guide.

Defining Business Operations

The RosettaNet workflows use several business operations to perform customized
actions from within the workflows. A business operation represents a method call on
an Entity/Session EJB or Java class instance. All the example business operations call
methods on Java class instances.

For detailed instructions for adding business operations, see the topic Defining
Business Operations in Defining the Order Processing Workflow in the BEA
WebLogic Process Integrator Tutorial.

The business operations provided in the example include both general and
PIP3A2-specific operations. The general business operations may be used, without
modification, from within other PIP workflows to perform actions common across all
PIP workflows. The PIP3A2-specific business operations may be leveraged for other
PIP workflows but Java code modifications are required.

To add the example business operations, start the WebLogic Process Integrator Studio
(see “Starting WebLogic Process Integrator Studio” on page 31), choose first
Configuration and then Business Operations from the menu, and, finally, add the
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 31

business operations listed in the following table. You must use the exact name of each
business operation as specified in the table. (You are not required to update the
parameter names but you can improve readability by doing so.)

Table 6 Names and Details for General Business Operations

General Business
Operation

Details

Log Full Java class name:
com.bea.b2b.rosettanet.RNHelper

Method to call: void log (String p0)

Parameter name: message

Description: Logs the provided message.

Add Document Type Full Java class name:
com.bea.b2b.rosettanet.RNHelper

Method to call:
String addDocType (String p0, String p1)

Parameter names: xmlStringDoc, documentType

Description: Adds the DOCTYPE to the given XML
document string.

Validate Header Full Java class name:
com.bea.b2b.rosettanet.RNHelper

Method to call: boolean validateHeader
(String p0, String p1)

Parameter names: xmlStringDoc, schemaFileName

Description: Validates the Service Header according to
the given XML schema file. The XML schema has been
created, using the Service Header message guideline, and
it is used to validate the XML document representation of
the Service Header.
32 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Using the Workflow Examples
Validate Content Full Java class name:
com.bea.b2b.rosettanet.RNHelper

Method to call: boolean validateContent
String p0, String p1)

Parameter names: xmlStringDoc,
schemaFileName

Description: Validates the Service Content according to
the given XML schema file. The XML schema has been
created, using the PIP specific message guideline, and it is
used to validate the XML document representation of the
PIP-specific Service Content.

Prepare Receipt
Exception

Full Java class name:
com.bea.b2b.rosettanet.RNHelper

Method to call: boolean
prepareReceiptException (String p0)

Parameter name: workflowInstanceId

Description: Prepares the receipt acknowledgement
exception message (including both header and content).
Because the message is built correctly in the workflow it
is not necessary to validate it.

Is this a
GeneralException
Message?

Full Java class name:
com.bea.b2b.rosettanet.RNHelper

Method to call: boolean
generalExceptionMessage (String p0)

Parameter name: headerXmlString

Description: Returns indication of whether the provided
service header is associated with a general exception
message.

Table 6 Names and Details for General Business Operations (Continued)

General Business
Operation

Details
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 33

Process Receipt
Acknowledgement

Full Java class name:
com.bea.b2b.rosettanet.RNHelper

Method to call: boolean
processReceiptAcknowledgement (String
p0)

Parameter name: workflowInstanceId

Description: Processes the receipt acknowledgement
message. Processing includes validation of the Service
Header and determination of the message type.

Prepare Receipt
Acknowledgement

Full Java class name:
com.bea.b2b.rosettanet.RNHelper

Method to call: boolean
prepareReceiptAcknowledgement (String
p0)

Parameter name: workflowInstanceId

Description: Prepares the receipt acknowledgement
message (including both header and content). Because the
message is built correctly in the workflow it is not
necessary to validate it.

Load XML Doc String Full Java class name:
com.bea.b2b.rosettanet.RNHelper

Method to call: String
getServiceContentString (String p0)

Parameter name: filename

Description: Retrieves a parsed version of the service
content for the given PIP.

Table 6 Names and Details for General Business Operations (Continued)

General Business
Operation

Details
34 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Using the Workflow Examples
The following table describes the Names and Details for PIP3A2-Specific Business
Operations.

For more information, see “Descriptions of Business Operations” on page 79.

Creating Workflow Templates

For detailed instructions for creating new workflow template definitions, see the topic
Creating a New Workflow Template Definition in Defining the Order Processing
Workflow in the BEA WebLogic Process Integrator Tutorial.

To create template definitions for the example, go in the folder tree on the left side of
the main Studio screen, right-click the Templates folder, and choose Create Template.
Give the templates the same names as the files in the
<WLC_HOME>/rosettanet/templates directory: PIP0A1_Notifier,
PIP0A1_Admin, PIP3A2_Customer, and PIP3A2_Supplier.

Table 7 Names and Details for PIP3A2-Specific Business Operations

PIP3A2-Specific
Business Operation

Details

Prepare Query Full Java class name: com.bea.b2b.rosettanet.pip3a2.
PrepareQuery

Method to call: boolean manipulate (String p0)

Parameters: workflowInstanceId

Description: Saves and sets the necessary template variables in the given workflow
instance.

Validate Query Full Java class name: com.bea.b2b.rosettanet.pip3a2.ValidateQuery

Method to call: boolean manipulate (String p0)

Parameters: workflowInstanceId

Description: Saves variables from the message received in the workflow variables.

Prepare Response Full Java class name:
com.bea.b2b.rosettanet.pip3a2.PrepareResponse

Method to call: boolean manipulate (String p0)

Parameters: workflowInstanceId

Description: Sets the necessary values in the response message from template
variables in the given workflow instance.
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 35

Importing Workflow Templates

For detailed instructions for importing workflow template definitions, see the topic
Importing the Start Order Processing Workflow Template Definition in Defining the
Start Order Processing Workflow in the BEA WebLogic Process Integrator Tutorial.

To import the PIP0A1_Notifier template from the
<WLC_HOME>/rosettanet/templates directory and make it active:

1. Right-click the PIP0A1_Notifier template you just created and select Import
Template.

2. Traverse to the <WLC_HOME>/rosettanet/templates directory.

3. Click Save.

4. WebLogic Process Integrator displays a message to indicate that it is resolving
the Business Operation names. Click OK.

5. Open the template in the folder tree, right-click it, and select Properties.

6. Select the Active check box and save the workflow. This template must be active
before importing the PIP3A2_Customer template because it is a subworkflow of
the PIP3A2_Customer workflow.

Import the other workflow templates from the
<WLC_HOME>/rosettanet/templates directory, using the procedure described
above. Make sure you set all the templates to Active and that you save the workflows.
The templates must be active in order for the workflows to run.

Running the Workflow Examples

To start the workflow examples from the Worklist client that is provided with
WebLogic Process Integrator (in <WLC_HOME>/rosettanet/wlpi), complete the
following procedure:

1. Make sure both the c-hub and the c-enabler for RosettaNet are running.

2. In the Worklist client: select Workflow, and then Start Workflow.

3. Select the PIP3A2_Customer workflow and click OK.

The c-enabler for RosettaNet wlc.log (in <WLC_HOME>/rosettanet/enabler)
indicates when each workflow starts and completes. You can also use WebLogic
Process Integrator Studio to monitor the workflow status.
36 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Walkthrough of the Workflow Examples
For detailed instructions for the tasks described here, see the following documents:

n For executing workflows using the Worklist client, see Executing the Workflow
Example in the BEA WebLogic Process Integrator Tutorial.

n For checking the workflow status, see Executing the Workflow Example in the
BEA WebLogic Process Integrator Tutorial.

Walkthrough of the Workflow Examples

The example workflows interact through XML messaging. This section describes how
to define these workflows and how you can implement your own PIP using the
c-enabler for RosettaNet. These descriptions are based on the following workflow
examples:

n PIP3A2_Customer

n PIP3A2_Supplier

n PIP0A1_Notifier

n PIP0A1_Admin

Getting Started

This section provides information designed to help you learn the fundamentals of PIP
workflows before walking through an individual example.

Recommended Reading

The following RosettaNet documents are recommended reading if you want to fully
understand the example workflow, and required reading if you want to implement your
own PIP using the c-enabler for RosettaNet. All documents are available in the
“Standards” section at the following URL: http://www.rosettanet.org.
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 37

n RosettaNet Implementation Framework (RNIF) v1.1—The RNIF is an open,
common networked-application framework designed to allow RosettaNet Supply
Chain and Solution Partners to collaborate in executing RosettaNet PIPs.

n RNIF Technical Advisories—RNIF Technical advisories are updates and
additional information for RNIF v1.1.

n RNIF Technical Recommendations—Technical Recommendations describe
features or enhancements not yet available in a published version of the RNIF
v1.1. Implementation of Technical Recommendations is optional.

n RNIF Business Signals, Service Header & Preamble—The RNIF Business
Signals, Service Header & Preamble contains message guidelines and XML
document type definitions (DTDs) for the RNIF Business Signals, Service
Header and Preamble.

n Understanding a PIP Blueprint—Reference for PIP blueprint components and
evaluation. Is available under Supporting Documents in the Standards Section.

n PIPs of interest—PIPs are specialized system-to-system XML-based dialogs that
define business processes between supply chain companies. Each PIP includes a
technical specification based on the RosettaNet Implementation Framework
(RNIF), a Message Guideline document with a PIP-specific version of the
Business Dictionary, and XML document type definitions (DTDs) for the
PIP-specific messages.

Creating New PIP Workflow Templates

Over ninety percent of the current PIPs have the same PIP Business Process Flow as
either PIP3A2 or PIP0A1. The PIP Business Process Flow is defined in the PIP
technical specification. There are two approaches you can take when implementing
your own PIP.
38 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Walkthrough of the Workflow Examples
The first approach is to create the PIP workflows from scratch using the PIP3A2 or
PIP0A1 workflows as examples. The BEA WebLogic Process Integrator Tutorial
provides a detailed example of how to define workflows using the features of
WebLogic Process Integrator Studio. The PIP3A2 and PIP0A1 workflows provide
examples of what to define in the workflows. Specifically:

n What nodes to create

n What nodes to connect together

n What actions to define in the nodes

The second approach is to import the example workflows and change the existing
nodes and workflow variables to suit the requirements of the PIP your are
implementing. The first approach is recommended if you are not experienced in
implementing PIP workflows with WebLogic Process Integrator Studio.

Defining Workflow Variables

A workflow variable is used to store application-specific information required by a
workflow at run time. This information is often used to control the logic within a
workflow and it may be used by business operations. If you are implementing a new
PIP you must create and use workflow variables.

Workflow variables are used extensively throughout the example workflows. Each
variable name is proceeded with a $ when used in the workflow. The variables used in
the example workflows are discussed in the remainder of this section. The variables
used by the example business operations are discussed in “Descriptions of Business
Operations” on page 79.

For more information about defining workflow variables, see the topic Defining
WebLogic Process Integrator Variables for Workflows in Using Workflows to
Exchange Business Messages in the BEA WebLogic Collaborate Developer Guide.

PIP3A2_Customer

To understand the details of the PIP3A2_Customer workflow, see PIP Specification,
PIP3A2: Query Price and Availability. For information about exception handling in
PIPs, see RosettaNet Implementation Framework, v1.1: Technical Advisory #1.
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 39

Before starting this workflow, the content of the query message should be available. In
the example template the content of the query message is read from the
<WLC_HOME>/rosettanet/enabler/3A2PriceAndAvailabilityQueryMessage

.xml file. In a production environment, the query message would be generated by a
private workflow or backend system.

In PIP3A2 the Customer role always initiates the PIP. Typically the workflow for the
Customer portion of PIP3A2 is triggered by a backend system programmatically or by
another, private workflow.

The following sections present the workflow diagram for each example, as well as a
description of each node in the workflow diagram.

Note: Where the workflow diagram is too large to be accommodated in a single
figure, it is divided into parts.
40 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Walkthrough of the Workflow Examples
The following figure shows the first part of the PIP3A2_Customer workflow.

Note: The variables associated with each workflow are displayed in a subfolder
under the workflow template folder. To view the properties for a particular
variable, right-click the variable name in the folder.

Start

The start node logs the start of the workflow and initializes several workflow variables
that are used throughout the workflow. The Log business operation may be used by
other PIP workflows. The variables fromDUNS, toDUNS, fromPartnerClassCode,
and toPartnerClassCode should be set to the appropriate values to reflect the
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 41

information of the actual trading partners as defined in the c-enabler for RosettaNet
configuration files. See “Configuring the C-Enabler for RosettaNet” on page 9. The
variables that are shown in upper case are constants that refer to schemas and XML
files. They should not be modified for the example, but they must be defined when a
new PIP workflow is being implemented. Many of the other variables are specific to
PIP3A2 and do not require modification. The workflow template provides descriptions
of all variables. The following table describes all the variables initialized in the Start
node and shows the values with which they are initialized.

Table 8 Variables Initialized in the Start Node

Variable Initialization
Value

Description

fromDUNS 123456789 The unique business identifier of the trading partner
sending the message. The number is specified by
RosettaNet. This number must match the trading
partner value in the c-enabler for RosettaNet
configuration file. The variable is used when
building the service header.

toDUNS 987654321 The unique business identifier of the trading partner
sending the message. The number is specified by
RosettaNet. This number must match the trading
partner value in the c-enabler for RosettaNet
configuration file. The variable is used when
building the service header.

initiatingDUNS $fromDUNS The unique business identifier of the trading partner
that starts the PIP conversation. It is initialized with
the value of the fromDUNS variable.The variable is
used when building the service header.

fromPartnerClassCode Shopper Code that identifies a partner’s function in the
supply chain. The partner must determine the code,
it is not specified in the PIP technical specification.
The variable is used when building the service
header.

toPartnerClassCode Retailer Code that identifies a partner’s function in the
supply chain. The partner must determine the code,
it is not specified in the PIP technical specification.
The variable is used when building the service
header.
42 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Walkthrough of the Workflow Examples
processCode Query Price and
Availability

This code is the name of a PIP specification
document. The variable is used when building the
service header.

processIndicatorCode 3A2 This is the classification of the PIP specification by
cluster identifier and segment identifier. The
variable is used when building the service header.

processVersionId 1.3 Version of the PIP. The variable is used when
building the service header.

retry 0 The number of times the message has tried to be
sent. The variable is used by a decision node in the
workflow.

timeout false Timeout status. The variable is used by a decision
node in the workflow.

reason SUCCESS Reason for failure. Updated by various nodes in the
workflow if a failure occurs.

processInstanceId Date() A unique alpha-numeric identifier for the process
instance. The variable is initialized by using the
Date() function in Studio. The variable is used
when building the service header.

transactionInstanceId Date() A unique alpha-numeric identifier for the
transaction instance. The variable is initialized by
using the Date() function in Studio. The variable
is used when building the service header.

actionInstanceId Date() A unique alpha-numeric identifier for the action
instance. The variable is initialized by using the
Date() function in Studio. The variable is used
when building the service header.

businessActionCode Price and
Availability
Query

A phrase that specifies a business action. It is
specified in the PIP technical specification. The
variable is used when building the service header.

Table 8 Variables Initialized in the Start Node (Continued)

Variable Initialization
Value

Description
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 43

EXCEPTION_RECEIPT_SCHEM
A

ReceiptAcknow
ledgementExcep
tionMessageGui
deline.xsd

The name of the Receipt Acknowledgement
Exception Message Guideline schema file. The
variable is not used by this example workflow.

HEADER_SCHEMA ServiceHeader
PartMessageGui
deline.xsd

The name of the Service Header Part Message
Guideline schema file. The variable is used by the
Process Receipt Acknowledgement business
operation and by the Build Query Header and
Validate Response Header tasks.

PRICE_QUERY_SCHEMA 3A2PriceAndAva
ilabilityQuery
MessageGuideli
ne_v1_3.xsd

The name of the Query Message schema file. The
variable is used by the Build Query Content task.

PRICE_RESPONSE_3A2 3A2PriceAndAva
ilabilityRespo
nseMessage.xml

The name of the ResponseMessage file. The
variable is not used by this example workflow.

PRICE_RESPONSE_SCHEMA 3A2PriceAndAva
ilabilityRespo
nseMessageGuid
eline_v1_3.xsd

The name of the Response Message schema file.
The variable is used by the Validate Response
Content task.

QUERY_PRICE_3A2 3A2PriceAndAva
ilabilityQuery
Message.xml

The name of the Query Message file. The variable
is used by the Build Query Content task.

RECEIPT_ACKNOWLEDGE ReceiptAcknowl
edgementMessag
e.xml

The name of the Receipt Acknowledgement
Message file. The variable is not used by this
example workflow.

RECEIPT_EXCEPTION ReceiptAcknowl
edgementExcept
ionMessage.xml

The name of the Receipt Acknowledgement
Exception Message file. The variable is not used by
this example workflow.

RECEIPT_SCHEMA ReceiptAcknowl
edgementMessag
eGuideline.xsd

The name of the Receipt Acknowledgement
Exception Message Guideline schema file. The
variable is not used by this example workflow.

Table 8 Variables Initialized in the Start Node (Continued)

Variable Initialization
Value

Description
44 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Walkthrough of the Workflow Examples
DOCUMENT_TYPE <!DOCTYPE
ServiceHeader
SYSTEM
\”ServiceHeade
rPartMessageGu
ideline.dtd\”>

The DOCTYPE line that needs to be inserted in the
service header XML string. The service header is a
String variable that contains the service header
XML structure. There is no way to put the
DOCTYPE in the structure via WebLogic Process
Integrator so it is inserted with the Add Document
Type business operation after the structure is built.
The variable is used by the Build Query Header
task.

EXCEPTION_DTD <!DOCTYPE
ServiceHeader
SYSTEM
\”GeneralExcep
tionMessageGui
deline.dtd\”>

The DOCTYPE line for the General Exception
Message. The variable is not used by this example
workflow.

msgProblem false Result of the Process Receipt Acknowledgement
business operation. The variable is used by a
decision node in the workflow.

fromRoleClassCode Customer Code identifying the party’s role in the supply
chain. This value is specified in the PIP technical
specification. The variable is used when building
the service header.

toRoleClassCode Product
Supplier

Code identifying the party’s role in the supply
chain. This value is specified in the PIP technical
specification. The variable is used when building
the service header.

transactionCode Query Price and
Availability

The code is the name of the business activity and the
transaction dialog in the PIP technical specification.
The variable is used when building the service
header.

fromBusinessServiceCode Customer
Service

The unique identity of a business service network
component. The code is defined in the PIP technical
specification. The variable is used when building
the service header.

Table 8 Variables Initialized in the Start Node (Continued)

Variable Initialization
Value

Description
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 45

Task: Build Query Header

This task checks whether this is a retry to build this message. If this is the first time,
the transaction identifier in the service header is initialized. If this is a retry the
transaction identifier is unchanged. The service header XML of the message is built as
an XML structure and assigned to the workflow string variable actionHeader. The
document type is added, using the Add Document Type business operation, because
building an XML document in WebLogic Process Integrator does not allow a

toBusinessServiceCode Product
Supplier
Service

The unique identity of a business service network
component. The code is defined in the PIP technical
specification. The variable is used when building
the service header.

documentFunctionCode Request Code identifying the function of a document as
either a request or a response. The variable is used
when building the service header.

ackTimeout 2 The amount of time in which a receipt
acknowledgement must be received. The value is
defined in the PIP technical specification. The
variable is used by a decision node in the workflow.

workflowTimeout 24 The maximum amount of time the Customer
workflow will wait for the Response message
before timing out. The value is defined in the PIP
technical specification. The variable is used by a
decision node in the workflow.

maxRetries 3 The maximum number of times the workflow can
try to resend the message. The value is defined in
the PIP technical specification. The variable is used
by a decision node in the workflow.

timeUnit h The time unit used when specifying timeouts. The
variable is used in the Wait for Timeout task.

actionVersionId 1.3 Version identifier of the action. The variable is used
when building the service header.

Table 8 Variables Initialized in the Start Node (Continued)

Variable Initialization
Value

Description
46 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Walkthrough of the Workflow Examples
document type to be entered. The header is then validated, using the Validate Header
business operation, against an XML schema that enforces the Service Header message
guidelines.

Decision: validHeader?

The decision node determines whether the service header was validated successfully
against the schema. If the header is not valid, the reason is logged, using the Log
business operation, and the workflow ends.

Decision: retry = 0

This variable represents the number of times the c-enabler for RosettaNet has tried to
send the message. If the value of the retry variable is 0, this indicates that this is the
first time the c-enabler for RosettaNet has tried to send the message, and this is when
the service context is created. If value of the retry variable is not 0, the previous context
is reused.

Task: Build Query Content

The task loads the Query message from the
<WLC_HOME>/rosettanet/enabler/3A2PriceAndAvailabilityQueryMessage

.xml file, using the Load XML Doc String business operation. In a real deployment
this step could be replaced with a business operation that retrieves the service content
from a backend system. The task calls the business operation PrepareQuery, which
saves data from the Query message into workflow variables that will be used for later
messages. It also generates the document id and timestamp for the message. The
service content is then validated, using the Validate Content business operation,
against the XML schema that enforces the PIP3A2 query message guidelines.

The com.bea.b2b.rosettanet.pip3a2.PrepareQuery business operation is
specific to this PIP and role. If you define a workflow for a different PIP, you need to
develop a new business operation to perform the same functions as the PrepareQuery
business operation for the data specific to the new PIP.
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 47

Decision: validContent?

This decision node determines whether or not the service content was validated
successfully against the schema. If the message content is not valid the reason is
logged, using the Log business operation and the workflow ends.

Decision: isPrepareQuerySuccess

This decision node determines whether the result of the Prepare Query business
operation was successful. If it was successful, the flow continues to the Send Query
Message task. If the Prepare Query business operation was not successful, then the
workflow ends with a failure.

Task: Send Query Message

The RosettaNet message is sent using the built service header and service content by
the Send RosettaNet Message action.

Task: Wait for Workflow to Timeout

This task sets a task due date to the time specified by the workflowTimeout variable.
In the example template this is set to 24 hours in the Start node. According to the PIP
Specification, the supplier has 24 hours to respond to the query message that was sent.
This value is defined in the PIP technical specification and may be different or
nonexistent for other PIPs.

Decision: messageCode<>200?

This decision node determines whether the RosettaNet message was sent successfully
to the URL specified in the c-enabler for RosettaNet configuration file. The message
code is set to the HTTP status by the Send RosettaNet Message action. Any value other
than 200 indicates a problem. If there is a problem sending the message, the problem
is logged using the Log business operation, and the workflow ends.
48 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Walkthrough of the Workflow Examples
The following figure shows the second part of the PIP3A2_Customer workflow.

Task: Wait for Timeout

If the query message was sent successfully, according to the PIP specification, the
supplier has two hours to send a receipt of acknowledgement message. This task sets
a task due date to two hours. This value is defined in the PIP technical specification
and may be different or nonexistent for other PIPs.

Event: Get Ack and Process

This event waits for an acknowledgement from the supplier. This message could be a
Receipt Acknowledgement, a Receipt Acknowledgement Exception, or a General
Exception. When the message is received, the business operation Process Receipt
Acknowledgement is called to determine the kind of message and validate the message
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 49

according to the appropriate message guidelines. The business operation returns an
indication of whether the message has validation problems. This result is assigned to
the msgProblem workflow variable.

Decision: msgProblem?

This decision evaluates, based on the outcome of the previous task, whether there is a
validation problem with the message. If the message received cannot be validated, then
according to the RNIF Technical Advisory #1, it should be treated like a timeout. In
this case, the workflow enters the Wait for Timeout task.

Decision: timeout=”true”?

This decision determines whether the two-hour timeout task has expired. If a timeout
occurred, a message is logged using the Log business operation and the workflow
continues to check whether the message should be retried.

Decision: retry < $maxRetries?

This decision node determines whether the retry variable has reached the maxRetries
variable value. For this PIP, the message can be sent up to four times because the
retry variable is initialized to 0 and the maxRetries variable is initialized to 3 in the
Start node. If the message has not been retried the maximum number of times, the retry
count is incremented and the workflow goes back to rebuild and resend the query
message. If the maximum number of retries is reached the reason variable is updated
with an error message. The maximum number of retries is specified in the PIP
technical specification and may be different or nonexistent for other PIP workflows.

Decision: isException?

This decision node evaluates the boolean variable isException set in the Process
Receipt Acknowledgement business operation, which indicates whether the message
received from the supplier was a Receipt Acknowledgement Exception, or a General
Exception. If the message was an exception message, the workflow ends. If the
message was a Receipt Acknowledgement, the workflow continues.
50 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Walkthrough of the Workflow Examples
Event: Get Reply

This event waits for the Reply message from the supplier. This event also saves the
response service content, represented by the serviceContent workflow variable, in
the workflow variable responseContent. The header is saved in the actionHeader
workflow variable. After the workflow is complete, these variables can be accessed for
processing on the reply message. For example, the responseContent variable can be
processed to obtain the price and availability values that were requested.

Task: Validate Response Header

This task validates the header of the message received from the supplier, using the
Validate Header business operation, against the XML schema, which implements the
Service Header message guidelines.

Decision: validHeader?

This decision node determines whether the header conformed to the message
guidelines. If the header was not valid, a message is logged using the Log business
operation and this workflow ends, which causes the supplier workflow to time out
waiting for an acknowledgement response.

Task: Check if Expected Message

This task checks the kind of message that was received from the supplier, using the Is
this a GeneralExceptionMessage business operation. The supplier could have
sent a reply or a General Exception message.

Decision: isGeneralException?

This decision node checks whether the message received from the supplier was a
General Exception message. If the message is an exception message a message is
logged using the Log business operation and the workflow ends. If not, the workflow
continues.
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 51

Task: Validate Response Content

This task validates the reply message, using the Validate Content business operation,
against the XML schema that implements the message guidelines. It also saves the
business action code from the header of the reply message into the workflow variable
responseBusinessActionCode. The value is obtained from the actionHeader
variable by using an XPath expression. This value is used in the receipt
acknowledgement messages.

Decision: validContent?

This decision node checks whether the reply message was valid. If the reply is not
valid, a message is logged using the Log business operation, the reason variable is
updated with an error message and the workflow sends a Receipt Acknowledgement
Exception. If the message is valid, the workflow sends a Receipt Acknowledgement.

Task: Send Acknowledgement Exception

This task updates the reason variable with an error message. The task then builds the
header for the Receipt Acknowledgement Exception and assigns it to the workflow
variable signalHeader. It then calls the business operation Prepare Receipt
Exception to build the message. The task then sends the Acknowledgement Receipt
Exception message to the supplier. When this task completes, the workflow is finished.

Task: Send Acknowledgement Message

This task saves the fromDocId and fromDocTimeStamp values from the service
content to be used in the acknowledgement message. The values are obtained from the
serviceContent variable by using XPath expressions. It then builds the header for
the receipt acknowledgement and assigns it to the workflow variable signalHeader.
It then calls the business operation Prepare Receipt Acknowledgement, which
continues to build the message. The message is then sent to the supplier.
52 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Walkthrough of the Workflow Examples
Decision: messageCode<>200?

This decision node determines whether the RosettaNet message was sent successfully
to the URL specified in the c-enabler for RosettaNet configuration file. The message
code is set to the HTTP status by the Send RosettaNet Message action. Any value other
than 200 indicates a problem. If there is a problem sending the message, the problem
is logged using the Log business operation and the workflow ends.

Task: Validate Business Rules

This task is a placeholder for any additional business rules that may need to be checked
against the reply message. Currently only the validBusinessRules variable is set to
true.

Decision: validBusinessRules?

This decision determines whether the business rules are valid. If the business rules are
valid, the workflow is complete. If not, a message is logged using the Log business
operation and the reason variable is updated with an error message. Then according
to the RNIF Technical Advisory #1, the Notification of Failure PIP is started.

Task: Send Notification of Failure

This task calls the sub-workflow PIP0A1_Notifier with the data appropriate for
sending a failure message. The following table lists the parameters that are passed to
the PIP0A1_Notifier workflow and populated with the PIP3A2_Customer workflow
variable values.

Table 9 Parameters for Send Notification of Failure

PIP0A1_Notifier Parameter PIP3A2_Customer Variable

actionInstanceId actionInstanceId

actionVersionId actionVersionId

businessActionCode businessActionCode

failureReason reason

fromDUNS fromDUNS
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 53

Done

This node logs the completion of the workflow, using the Log business operation.

PIP3A2_Supplier

To further understand this workflow, see PIP Specification, PIP3A2: Query Price and
Availability. For more information about exception handling, see RosettaNet
Implementation Framework, v1.1: Technical Advisory #1.

fromPartnerClassCode fromPartnerClassCode

fromRoleClassCode fromRoleClassCode

fromSupplyChainCode fromSupplyChainCode

initiatingDUNS initiatingDUNS

processCode processCode

processIndicatorCode processIndicatorCode

processInstanceId processInstanceId

processVersionId processVersionId

toDUNS toDUNS

toPartnerClassCode toPartnerClassCode

toRoleClassCode toRoleClassCode

toSupplyChainCode toSupplyChainCode

transactionCode transactionCode

transactionInstanceId transactionInstanceId

Table 9 Parameters for Send Notification of Failure (Continued)

PIP0A1_Notifier Parameter PIP3A2_Customer Variable
54 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Walkthrough of the Workflow Examples
The following illustration shows the first part of the PIP3A2_Supplier workflow.

Start

The workflow is started upon receipt of a RosettaNet message. The start node logs the
workflow started, using the Log business operation, and initializes several workflow
variables that are used throughout the workflow. The values of the following variables
should be modified to accommodate the supplier:

n fromDUNS

n fromContactName

n fromEmailAddress
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 55

n fromTeleNo

n fromPartnerClassCode

The fromDUNS variable should be set to a value appropriate for the actual trading
partner, as defined in the c-enabler for RosettaNet configuration files. See
“Configuring the C-Enabler for RosettaNet” on page 9. The variables shown in all
upper case are constants that refer to schemas and XML files. They should not be
modified. Many other variables are specific to PIP3A2 and do not need to be modified.
The workflow template provides a description of every variable.

The following table describes all the variables initialized in the Start node and shows
the values with which they are initialized.

Table 10 Variables Initialized in the Start Node

Variable Initialization
Value

Description

fromDUNS 987654321 The unique business identifier of the trading partner
sending the message. The number is specified by
RosettaNet. This number must match the trading
partner value in the c-enabler for RosettaNet
configuration file. The variable is used when
building the service header.

fromContactName Jim Smith Contact name. This variable is used by the Prepare
Receipt Exception business operation.

fromEmailAddress jsmith@mycom
pany.com

Contact email address. This variable is used by the
Prepare Receipt Exception business operation.

fromTeleNo 9871234567 Contact telephone number. This variable is used by
the Prepare Receipt Exception business operation.

fromRoleClassCode Product
Supplier

Code identifying the party’s role in the supply
chain. This value is specified in the PIP technical
specification. The variable is used when building
the service header.

fromPartnerClassCode Manufacturer Code that identifies a partner’s function in the
supply chain. The partner must determine the code,
it is not specified in the PIP technical specification.
The variable is used when building the service
header.
56 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Walkthrough of the Workflow Examples
fromSupplyChainCode Information
Technology

Code identifying the supply chain for the partner’s
function. This variable is not used in the workflow.

toRoleClassCode Customer Code identifying the party’s role in the supply
chain. This value is specified in the PIP technical
specification. The variable is used when building
the service header.

processCode Query Price
and
Availability

This code is the name of a PIP specification
document. The variable is used when building the
service header.

timeout false Timeout status. The variable is used by a decision
node in the workflow.

reason SUCCESS Reason for failure. Updated by various nodes in the
workflow if a failure occurs.

EXCEPTION_RECEIPT_SCHEM
A

ReceiptAckno
wledgementEx
ceptionMessa
geGuideline.
xsd

The name of the Receipt Acknowledgement
Exception Message Guideline schema file. The
variable is not used by this example workflow.

DOCUMENT_TYPE <!DOCTYPE
ServiceHeade
r SYSTEM
\”ServiceHea
derPartMessa
geGuideline.
dtd\”>

The DOCTYPE line that needs to be inserted in the
service header XML string. The service header is a
String variable that contains the service header
XML structure. There is no way to put the
DOCTYPE in the structure via WebLogic Process
Integrator so it is inserted with the Add Document
Type business operation after the structure is built.
The variable is used by the Send General Exception
and Pack Price and Availability Header tasks.

HEADER_SCHEMA ServiceHeade
rPartMessage
Guideline.xs
d

The name of the Service Header Part Message
Guideline schema file. The variable is used by the
Process Receipt Acknowledgement business
operation and by the Validate Query Header and
Pack Price and Availability Header tasks.

Table 10 Variables Initialized in the Start Node (Continued)

Variable Initialization
Value

Description
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 57

PRICE_QUERY_SCHEMA 3A2PriceAndA
vailabilityQ
ueryMessageG
uideline_v1_
3.xsd

The name of the Query Message schema file. The
variable is used by the Validate Query Content task.

PRICE_RESPONSE_3A2 3A2PriceAndA
vailabilityR
esponseMessa
ge.xml

The name of the ResponseMessage file. The
variable is used by the Pack Price and Availability
Content task.

PRICE_RESPONSE_SCHEMA 3A2PriceAndA
vailabilityR
esponseMessa
geGuideline_
v1_3.xsd

The name of the Response Message schema file.
The variable is used by the Pack Price and
Availability Content task.

QUERY_PRICE_3A2 3A2PriceAndA
vailabilityQ
ueryMessage.
xml

The name of the Query Message file. The variable
is not used by this example workflow.

RECEIPT_ACKNOWLEDGE ReceiptAckno
wledgementMe
ssage.xml

The name of the Receipt Acknowledgement
Message Guideline schema file. The variable is not
used by this example workflow.

RECEIPT_EXCEPTION ReceiptAckno
wledgementEx
ceptionMessa
ge.xml

The name of the Receipt Acknowledgement
Exception Message file. The variable is not used by
this example workflow.

RECEIPT_SCHEMA ReceiptAckno
wledgementMe
ssageGuideli
ne.xsd

The name of the Receipt Acknowledgement
Exception Message Guideline schema file. The
variable is not used by this example workflow.

Table 10 Variables Initialized in the Start Node (Continued)

Variable Initialization
Value

Description
58 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Walkthrough of the Workflow Examples
EXCEPTION_DTD <!DOCTYPE
ServiceHeade
r SYSTEM
\”GeneralExc
eptionMessag
eGuideline.d
td\”>

The DOCTYPE line for the General Exception
Message. The variable is used in the Send General
Exception task.

processIndicatorCode 3A2 This is the classification of the PIP specification by
cluster identifier and segment identifier. The
variable is used when building the service header.

processVersionId 1.3 Version of the PIP. The variable is used when
building the service header.

fromBusinessServiceCode Product
Supplier
Service

The unique identity of a business service network
component. The code is defined in the PIP technical
specification. The variable is used when building
the service header.

toBusinessServiceCode Customer
Service

The unique identity of a business service network
component. The code is defined in the PIP technical
specification. The variable is used when building
the service header.

transactionCode Query Price
and
Availability

The code is the name of the business activity and the
transaction dialog in the PIP technical specification.
The variable is used when building the service
header.

businessActionCode Price and
Availability
Query

A phrase that specifies a business action. It is
specified in the PIP technical specification. The
variable is used when building the service header.

documentFunctionCode Response Code identifying the function of a document as
either a request or a response. The variable is used
when building the service header.

Table 10 Variables Initialized in the Start Node (Continued)

Variable Initialization
Value

Description
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 59

Task: Validate Query Header

This task validates the header of the message received, using the Validate Header
business operation, against the XML schema that enforces the Service Header message
guidelines.

Decision: validHeader?

This decision node determines whether the header was validated successfully. If the
header is not valid, then the workflow logs a message, using the Log business
operation and ends, which means that the customer workflow will time out waiting for
a response. If the header is valid, the workflow continues.

Task: Validate Query Content

This task saves some values from the query header into the following workflow
variables:

n responseBusinessActionCode

n toDUNS

n toPartnerClassCode

n initiatingDUNS

n retry

ackTimeout 2 The amount of time a receipt acknowledgement
must be received in. The value is defined in the PIP
technical specification. The variable is used by a
decision node in the workflow.

msgProblem false Result of the Process Receipt Acknowledgement
business operation. The variable is used by a
decision node in the workflow.

actionVersionId 1.3 Version identifier of the action. The variable is used
when building the service header.

Table 10 Variables Initialized in the Start Node (Continued)

Variable Initialization
Value

Description
60 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Walkthrough of the Workflow Examples
n transactionInstanceId

n actionInstanceId

The variable values are obtained by using XPath expressions on the actionHeader
workflow variable. The variables are used when building the service header. This task
then validates the content of the message received, using the Validate Content business
operation, against the XML schema that enforces the Query Message guidelines.

Decision: validContent?

This decision node determines whether the content was validated successfully. If the
content is not valid, the reason variable is updated with an error message and a
Receipt Acknowledgement Exception is sent. If the content is valid, a Receipt
Acknowledgement is sent.

Task: Send Acknowledgement Exception

This task updates the reason variable with an error message and then builds the
header for the Receipt Acknowledgement Exception. It then calls the business
operation Prepare Receipt Exception, which continues to build the message. The
message is then sent to the customer. When this task completes, the workflow is done.

Task: Send Acknowledgement Message

This task saves the query message in the queryContent workflow variable. It then
calls the business operation Validate Query to save values from the content of the
query message into workflow variables. The task then builds the header for the Receipt
Acknowledgement and calls the business operation Prepare Receipt
Acknowledgement, which continues to validate the header, build, and validate the
content. The RosettaNet message is then sent to the supplier.

The com.bea.b2b.rosettanet.pip3a2.ValidateQuery business operation is
specific to this PIP and role. If you define a workflow for a different PIP, you need to
develop a new business operation to perform the same functions as the Validate Query
business operation for the data specific to the new PIP.
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 61

Decision: messageCode<>200?

This decision node determines whether the RosettaNet message was sent successfully
to the URL specified in the c-enabler for RosettaNet configuration file. The message
code is set to the HTTP status by the Send RosettaNet Message action. Any value other
than 200 indicates a problem. If there is a problem sending the message, the problem
is logged using the Log business operation, and the workflow ends.

Task: Validate Business Rules

This task is a placeholder for any additional business rules that may need to be checked
against the reply message. Currently only the validBusinessRules variable is set to
true.

Decision: validBusinessRules?

This decision determines whether the business rules where valid. If not, the reason
variable is updated with an error message. According to the RNIF Technical Advisory
#1, a General Exception message is then sent.

Task: Retrieve Product Information

This task is a placeholder for the product information to be retrieved from a company
database or other source. The received message is available in the workflow variables
actionHeader and queryContent. These variables are the XML documents in
String format. In the example template the product information is retrieved from the
following XML file:
<WLC_HOME>/rosettanet/enabler/3A2PriceAndAvailabilityResponseMess

age.xml.
62 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Walkthrough of the Workflow Examples
The following illustration shows the second part of the PIP3A2_Supplier workflow.
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 63

Task: Pack Price and Availability Header

The service header XML of the message is built and the document type is added on,
using the Add Document Type business operation, because building an XML
document in WebLogic Process Integrator does not allow a document type to be
entered. The header is then validated, using the Validate Header business operation,
against an XML schema that enforces the Service Header message guidelines.

Decision: validHeader?

The decision checks whether the service header was validated successfully against the
schema. If the header is not valid, the problem is logged, using the Log business
operation and the reason variable is updated with an error message.

Task: Pack Price and Availability Content

The task loads the Response message from the
<WLC_HOME>/rosettanet/enabler/3A2PriceAndAvailabilityResponseMess

age.xml file using the Load XML Doc String business operation. This file should
contain the product items for which the supplier is returning information. The business
operation Prepare Response is called to set the date timestamps and identifiers in the
response document. The service content is then validated, using the Validate Content
business operation, against the XML schema that enforces the PIP3A2 Response
Message guidelines.

Decision: validContent?

The decision checks whether the service content was validated successfully against the
schema. If the message content is not valid the problem is logged, using the Log
business operation and the reason variable is updated with an error message.

Decision: isPrepareResponseSuccess?

The decision checks whether the Prepare Response business operation was successful.
If it was, the response message is sent.
64 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Walkthrough of the Workflow Examples
Task: Send General Exception

The signal header XML of the message is built and the document type is added on,
using the Add Document Type business operation, because building an XML
document in WebLogic Process Integrator does not allow a document type to be
entered. The signal content XML is built and the document type is added on using the
Add Document Type business operation. The general exception message is then sent
to the customer.

Task: Send Response Message

The task sends the Response message using the built service header represented by the
workflow variable actionHeader and service content represented by the workflow
variable serviceContent.

Decision: messageCode <> 200?

This decision node determines whether the RosettaNet message was sent successfully
to the URL specified in the c-enabler for RosettaNet configuration file. The message
code is set to the HTTP status by the Send RosettaNet Message action. Any value other
than 200 indicates a problem. If there is a problem sending the message, the problem
is logged using the Log business operation, and the workflow ends.

Task: Wait for Timeout

If the response message is sent successfully, according to the PIP 3A2 specification,
the supplier has two hours to send a Receipt of Acknowledgement message. This task
sets a task due date of two hours using the workflow variable ackTimeout.

Event: Get Ack and Process

This event waits for an acknowledgement from the customer about the response
message. This message could be a Receipt Acknowledgement, a Receipt
Acknowledgement Exception, or a General Exception. When the message is received,
the business operation Process Receipt Acknowledgement is called to determine the
kind of message and validate the message according to the appropriate message
guidelines. The business operation returns an indication of whether the message has
validation problems. This result is assigned to the msgProblem workflow variable.
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 65

Decision: msgProblem?

This decision checks whether the message has a validation problem. If the message
received cannot be validated, it should be treated like a timeout, according to the RNIF
Technical Advisory #1. If a problem exists, the workflow enters the Wait for Timeout
task.

Decision: timeout=”true”?

This decision checks whether the two-hour timeout task expired. If a timeout occurs,
the reason variable is updated with an error message, and a message is logged, using
the Log business operation.

Decision: isException?

This decision checks whether the message received from the supplier was a General
Exception message. If the message is an exception message, a problem is logged, using
the Log business operation. If not, the workflow ends.

Task: Notify Application (Private Workflow) of Problem

This task is a placeholder that can be used to notify any other applications of a problem.
If this workflow is extended for use in a real world environment, additional actions
should be added to handle the workflow problems.

Done

This node logs the completion of the workflow, using the Log business operation.

PIP0A1_Notifier

For more information about this workflow, see PIP Specification, PIP0A1:
Notification of Failure. For details about exception handling, see RosettaNet
Implementation Framework, v1.1: Technical Advisory #1. This Technical Advisory
specifies when a PIP should initiate PIP0A1.
66 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Walkthrough of the Workflow Examples
Workflow Inputs

This workflow is always started by another workflow. The initiating workflow must
set the following variables in the Start Workflow action:

n actionInstanceId

n actionVersionId

n businessActionId

n failureReason

n fromDUNS

n fromPartnerClassCode

n fromRoleClassCode

n fromSupplyChainCode

n initiatingDUNS

n processCode

n processIndicatorCode

n processInstanceId

n processVersionId

n toDUNS

n toPartnerClassCode

n toRoleClassCode

n toSupplyChainCode

n transactionCode

n transactionInstanceId

These variables are used when the failure notification message header and content are
built. Descriptions of them are provided in the workflow template. An example Start
Workflow action is available in the PIP3A2_Customer workflow task Start
Notification of Failure.
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 67

The following illustration shows the first part of the PIP0A1_Notifier workflow.

Start

The start node logs the start of the workflow, using the Log business operation, and
initializes workflow variables that are used throughout the workflow. The variable
adminDUNS should be modified to the appropriate value. The variables shown in all
upper case are constants that refer to XML schema files. Many of the other variables
68 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Walkthrough of the Workflow Examples
are specific to PIP0A1 and do not need to be modified. The following table describes
all the variables initialized in the Start node and shows the values with which they are
initialized.

Table 11 Variables Initialized in Start Node

Variable Initialization Value Description

retry 0 The number of times the message has tried to be
sent. The variable is used by a decision node in the
workflow.

maxRetries 3 The maximum number of times the workflow can
try to resend the message. The value is defined in
the PIP technical specification. The variable is used
by a decision node in the workflow.

timeout false Timeout status. The variable is used by a decision
node in the workflow.

adminDUNS 999999993 The unique business identifier of the trading partner
sending the message. The number is specified by
RosettaNet. This number must match the trading
partner value in the c-enabler for RosettaNet
configuration file. The variable is used when
building the service header.

DOCUMENT_TYPE <!DOCTYPE
ServiceHeader
SYSTEM
\”ServiceHeader
PartMessageGuide
line.dtd\”>

The DOCTYPE line that needs to be inserted in the
service header XML string. The service header is a
String variable that contains the service header
XML structure. There is no way to put the
DOCTYPE in the structure via WebLogic Process
Integrator so it is inserted with the Add Document
Type business operation after the structure is built.
The variable is used by the Build Failure
Notification Header task.

HEADER_SCHEMA ServiceHeaderPart
MessageGuideline.
xsd

The name of the Service Header Part Message
Guideline schema file. The variable is used by the
Process Receipt Acknowledgement business
operation and by the Build Failure Notification
Header task.
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 69

Task: Build Failure Notif Header

This task first checks whether this is a retry to build the notification message. If this is
the first time, then the transaction identifier in the service header is initialized. If this
workflow is a retry, the task leaves the transaction identifier the same. The service
header XML of the message is built and the document type is added, using the Add
Document Type business operation, because building an XML document in WebLogic
Process Integrator does not allow a document type to be entered. Some of the data
needed to build this message comes from the calling PIP. (See “Workflow Inputs” on
page 67 for the data provided by the calling PIP.) After the service header XML of the

FAILURE_NOTIF_SCHEMA 0A1FailureNotific
ationMessageGuide
line.xsd

The name of the Failure Notification Message
schema file. The variable is used by the Build
Failure Notification Content task.

ackTimeout 2 The amount of time a receipt acknowledgement
must be received in. The value is defined in the PIP
technical specification. The variable is used by a
decision node in the workflow.

timeUnit h The time unit used when specifying timeouts. The
variable is used in the Wait for Timeout task.

transactionInstanceId Date() A unique alpha-numeric identifier for the
transaction instance. This variable is initialized with
the Date() function in Studio. The variable is used
when building the service header.

actionInstanceId Date() A unique alpha-numeric identifier for the action
instance. This variable is initialized with the Date()
function in Studio. The variable is used when
building the service header.

processInstanceId Date() A unique alpha-numeric identifier for the process
instance. This variable is initialized with the Date()
function in Studio. The variable is used when
building the service header.

Table 11 Variables Initialized in Start Node (Continued)

Variable Initialization Value Description
70 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Walkthrough of the Workflow Examples
message is built and the document type is added, the header is validated, using the
Validate Header business operation, against an XML schema that enforces the Service
Header message guidelines.

Decision: validHeader?

The decision checks whether the service header was validated successfully against the
schema. If the header is not valid, a message is logged using the Log business operation
and the workflow ends because this is the first message of this PIP instance. This action
is specified in the RosettaNet Implementation Framework, v1.1: Technical Advisory
#1.

Decision: retry = 0

This variable represents the number of times the c-enabler for RosettaNet has tried to
send the message. If the value of the retry variable is 0, this indicates that this is the
first time the c-enabler for RosettaNet has tried to send the message, and this is when
the service context is created. If value of the retry variable is not 0, the previous context
is reused.

Task: Build Failure Notif Content

The service content of the Failure Notification message is built and assigned to the
failureNotifContent workflow variable. Some of the data needed to build this
message comes from the calling PIP. (See “Workflow Inputs” on page 67 for data
provided by the calling PIP.) This service content is then validated, using the Validate
Content business operation, against the XML schema that enforces the PIP_0A1
Failure Notification message guidelines.

Decision: validContent?

The decision checks whether the service content was validated successfully against the
schema. If the message content is not valid, a message is logged using the Log business
operation and the workflow ends because this is the first message of this PIP instance.
This action is specified in the RosettaNet Implementation Framework, v1.1: Technical
Advisory #1.
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 71

Task: Send Failure Notification Message

The task sends the Failure Notification message to the PIP0A1_Admin workflow. The
following illustration shows the second part of the PIP0A1_Notifier workflow.

Decision: messageCode<>200?

This decision node determines whether the RosettaNet message was sent successfully
to the URL specified in the c-enabler for RosettaNet configuration file. The message
code is set to the HTTP status by the Send RosettaNet Message action. Any value other
than 200 indicates a problem. If there is a problem sending the message, the problem
is logged using the Log business operation, and the workflow ends.

Task: Wait for Timeout

If the Failure Notification message is sent successfully, according to the PIP0A1
specification, the administrator has two hours to send a Receipt of Acknowledgement
message. This task sets a task due date to two hours using the ackTimeout workflow
variable.
72 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Walkthrough of the Workflow Examples
Event: Get Ack and Process

This event waits for an acknowledgement from the administrator (the other role in this
PIP). This message could be a Receipt Acknowledgement or a Receipt
Acknowledgement Exception. When the message is received, the business operation
Process Receipt Acknowledgement is called to determine the kind of message and to
validate the message according to the appropriate message guidelines. The business
operation returns an indication of whether there is a validation problem with the
message and assigns it to the msgProblem workflow variable.

Decision: msgProblem?

This decision checks whether the message has a validation problem. If the message
received cannot be validated, then according to the RNIF Technical Advisory #1, it
should be treated like a timeout. So if there is a problem, the workflow enters the Wait
for Timeout task.

Decision: timeout=”true”?

This decision checks whether the two-hour timeout task has expired. If a timeout
occurred, then it continues to the check to see whether the message should be retried.

Decision: retry < $maxRetries?

This decision checks whether the number of retries has reached the value specified by
the maxRetries variable. For this PIP the message can be sent up to four times
because the retry variable is initialized to 0, and the maxRetries variable, to 3. If the
message has not been retried the maximum number of times, the retry variable is
incremented by one and the workflow resumes rebuilding and resending the Failure
Notification message. If the maximum number of retries has been reached, the reason
variable is updated with an error message.

Decision: isException?

This decision looks at the isException variable set in the Process Receipt
Acknowledgement business operation, which indicates whether or not the message
received from the administrator was a Receipt Acknowledgement Exception or a
General Exception. If the message was an exception message then the workflow ends.
If the message was a Receipt Acknowledgement then the workflow continues.
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 73

Task: Low Level Error Handler

This task is provided as an extension point in the workflow to handle low-level failures
as described in the RosettaNet PIP0A1: Notification of Failure specification.

Done

This node logs the completion of the workflow, using the Log business operation.

PIP0A1_Admin

For more information about this workflow, see PIP Specification, PIP0A1 Notification
of Failure. For details about exception handling, see RosettaNet Implementation
Framework, v1.1: Technical Advisory #1.
74 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Walkthrough of the Workflow Examples
The following illustration shows the PIP0A1_Admin workflow.

Start

The workflow is started upon receipt of a RosettaNet message. The Start node logs the
start of the workflow, using the Log business operation, and initializes workflow
variables that are used throughout the workflow. The variables fromContactName,
fromEmailAddress, and fromTeleNo should be modified to the appropriate values
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 75

for the administrator. The variables shown in all upper case are constants that refer to
XML schema files. The following table describes all the variables initialized in the
Start node and shows the values with which they are initialized.

Task: Validate Failure Notif Header

This task validates the header of the message received, using the Validate Header
business operation, against the XML schema that enforces the Service Header message
guidelines.

Table 12 Variables Initialized in the Start Node

Variable Initialization Value Description

HEADER_SCHEMA ServiceHeaderPar
tMessageGuidelin
e.xsd

The name of the Service Header Part Message
Guideline schema file. The variable is used by the
Validate Failure Notification Header task.

FAILURE_NOTIF_SCHEMA 0A1FailureNotifi
cationMessageGui
deline.xsd

The name of the Failure Notification Message
schema file. The variable is used by the Validate
Failure Notification Content task.

DOCUMENT_TYPE <!DOCTYPE
ServiceHeader
SYSTEM
\”ServiceHeaderP
artMessageGuidel
ine.dtd\”>

The DOCTYPE line that needs to be inserted in the
service header XML string. The service header is a
String variable that contains the service header
XML structure. There is no way to put the
DOCTYPE in the structure via WebLogic Process
Integrator so it is inserted with the Add Document
Type business operation after the structure is built.
The variable is not used by the workflow.

fromContactName John Doe Contact name. This variable is used by the Prepare
Receipt Exception business operation.

fromEmailAddress jdoe@company.com Contact email address. This variable is used by the
Prepare Receipt Exception business operation.

fromTeleNo 9876543214 Contact telephone number. This variable is used by
the Prepare Receipt Exception business operation.
76 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Walkthrough of the Workflow Examples
Decision: validHeader?

This decision checks whether the header was validated successfully. If the header is
not valid, then the workflow logs a message, using the Log business operation and
ends, which means that the Notifier workflow will time out waiting for a response. If
the workflow is valid, then the workflow continues.

Task: Validate Failure Notif Content

This task saves some values from the Failure Notif header in the following workflow
variables:

n fromDUNS

n fromPartnerClassCode

n fromRoleClassCode

n toDUNS

n toRoleClassCode

n toPartnerClassCode

n initiatingDUNS

n transactionInstanceId

n actionInstanceId

n processInstanceId

The variable values are obtained by using XPath expressions on the actionHeader
workflow variable. The variables are used when the service header is built. This task
then validates the content of the message received, using the Validate Content business
operation, against the XML schema that enforces the Failure Notification message
guidelines.

Decision: validContent?

This decision checks whether the content was validated successfully. It also saves
some values from the Failure Notif content in the following workflow variables:

n fromDocid

n fromDocTimeStamp
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 77

n fromSupplyChainCode

n toSupplyChainCode

The variable values are obtained by using XPath expressions on the serviceContent
workflow variable. The variables are used when the service header is built. If the
content is not valid, then a message is logged, using the Log business operation, and a
Receipt Acknowledgement Exception is sent. If the content is valid, then a Receipt
Acknowledgement is sent.

Task: Send Acknowledgement Exception

This task updates the reason variable with an error message and then builds the header
for the Receipt Acknowledgement Exception. It then calls the business operation
Prepare Receipt Exception, which continues to build the message. The message is then
sent to the Notifier. When this task completes, the workflow is done.

Task: Send Acknowledgement Message

This task saves the failure notification message in the failureContent workflow
variable. The task then builds the header for the Receipt Acknowledgement and calls
the business operation Prepare Receipt Acknowledgement, which continues to validate
the header, and to build and validate the content. The RosettaNet message is then sent
to the Notifier.

Decision: messageCode <>200?

This decision node determines whether the RosettaNet message was sent successfully
to the URL specified in the c-enabler for RosettaNet configuration file. The message
code is set to the HTTP status by the Send RosettaNet Message action. Any value other
than 200 indicates a problem. If there is a problem sending the message, the problem
is logged using the Log business operation, and the workflow ends.

Task: Validate Business Rules

This task is a placeholder for any additional business rules that may need to be checked
against the reply message. Currently only the validBusinessRules variable is set to
true.
78 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Descriptions of Business Operations
Decision: validBusinessRules?

This decision checks whether the business rules are valid. If the business rules are
valid, then the workflow is complete. If not, the workflow continues to the low-level
error handler.

Task: Process Failure Notification

This task is provided as an extension point in the workflow to handle the Failure
Notification processing. Example actions: sending alerts to an administrator’s console,
sending e-mail notifications, and logging failures in a file.

Task: Low Level Error Handler

This task is provided as an extension point in the workflow to handle low-level
failures, as described in the RosettaNet PIP0A1: Notification of Failure specification.

Done

This node logs the completion of the workflow using the Log business operation.

Descriptions of Business Operations

Business operations are called from the workflows. The following sections provide an
overview of the actions performed by these business operations:

n General Business Operations

n PIP3A2-Specific Business Operations

For additional information, see the WebLogic Process Integrator Javadoc, which is
provided with BEA WebLogic Collaborate.
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 79

General Business Operations

This section describes business operations that may be used, without modification, by
all PIP workflows to perform actions common to all PIP workflows.

Log

This business operation logs information to the
<WLC_HOME>/rosettanet/enabler/wlc.log file. The log provides some feedback
on what happened in the workflow without having to look at the workflow status in
WebLogic Process Integrator Studio.

Add Document Type

This business operation adds the document type to an XML String document from
WebLogic Process Integrator. The document type should be specified in the following
form:

<!DOCTYPE ServiceHeader SYSTEM "ServiceHeaderPartMessageGuideline.dtd">

Validate Header

This business operation validates an XML document passed in as a string against an
XML schema that was created to enforce the message guidelines for the header. The
XML string and the name of the XML schema are passed as parameters.

Validate Content

This business operation validates an XML document passed in as a string against an
XML schema that was created to enforce the message guidelines for the service
content. The XML string and the name of the XML schema are passed as parameters.

Prepare Receipt Exception

This business operation completes building the service header by adding the document
type to the header and builds the service content for the Receipt Acknowledgement
Exception message. The service header should be built before this business operation
is called. No validation of the built message is done because this signal message is built
80 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Descriptions of Business Operations
correctly in the workflow. The workflow instance id is passed in so workflow variables
can be used to build the message. The workflow variables signalHeader and
serviceContent are also set. These variables are used when the workflow sends the
message. This operation expects the following workflow variables to be defined and
fails if any of them are not:

n fromRoleClassCode

n fromPartnerClassCode

n fromSupplyChainCode

n fromDUNS

n fromContactName

n fromEmailAddress

n fromTeleNo

n toRoleClassCode

n toPartnerClassCode

n toSupplyChainCode

n toDUNS

n signalHeader

n serviceContent

Is This a General Exception Message?

This business operation returns an indication as to whether the message is a General
Exception message by looking at the service header passed in.

Process Receipt Acknowledgement

This business operation checks whether the message received is a General Exception
message, a Receipt Acknowledgement Exception message, or a Receipt
Acknowledgement message. It validates the service header and content of the message
and returns an indication of whether the message is invalid (msgProblem). It also sets
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 81

the workflow variable isException, which is used in a Decision node later in the
workflow. This operation expects the following workflow variables to be defined and
fails if any of them are not:

n serviceHeader

n serviceContent

n isException

n reason

Prepare Receipt Acknowledgement

This business operation completes building the service header by adding the document
type to the header and builds the service content for the Receipt Acknowledgement
message. The service header should be built before this business operation is called.
No validation of the built message is done because this signal message is built correctly
in the workflow. The workflow instance id is passed in so workflow variables can be
used to build the message. Workflow variables are also set to be able to send the
message. This operation expects the following workflow variables to be defined:

n fromRoleClassCode

n fromPartnerClassCode

n fromSupplyChainCode

n fromDUNS

n fromContactName

n fromEmailAddress

n fromTeleNo

n toRoleClassCode

n toPartnerClassCode

n toSupplyChainCode

n toDUNS

n signalHeader

n serviceContent
82 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Descriptions of Business Operations
Load XML Doc String

This business operation loads an XML document from the file with the filename that
is passed in and returns the document as a string. In the example workflows this
business operation is used to load XML files such as the following:

n 3A2PriceAndAvailabilityQueryMessage.xml

n 3A2PriceAndAvailabilityResponseMessage.xml

PIP3A2-Specific Business Operations

The following business operations are called by PIP3A2 workflows:

n Prepare Query

n Validate Query

n Prepare Response

The following sections describe each of these business operations in detail. The
PIP3A2-specific business operations may be leveraged for other PIP workflows but
Java code modifications are required.

Prepare Query

This business operation saves data from the service content (query) message in
workflow variables that are used later to build messages. It also sets the document ID
and timestamp in the query message in preparation for sending. This operation expects
the following variables to exist in the workflow:

n fromContactName

n fromTeleNo

n fromEmailAddress

n fromRoleClassCode

n toRoleClassCode

n fromSupplyChainCode

n toSupplyChainCode

n toDUNS
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 83

n toPartnerClassCode

n fromDUNS

n fromPartnerClassCode

n serviceContent

n processInstanceId

Validate Query

This business operation saves data from the query message that has been received in
workflow variables that are used later to build messages. This operation expects the
following variables to be defined in the workflow and fails if any of them are not
defined:

n fromDocid

n fromDocTimeStamp

n toDUNS

n toRoleClassCode

n toPartnerClassCode

n toSupplyChainCode

n fromDocid

n fromDocTimeStamp

n processInstanceId

Prepare Response

This business operation takes the serviceContent variable (which contains the
response message for the Supplier workflow), updates some elements of it, and saves
it. The following XML elements are modified from the
Pip3A2PriceAndAvailabilityResponse message:

n thisDocumentGenerationDateTime.DateTimeStamp

n thisDocumentIdentifier.ProprietaryDocumentIdentifier

n requestingDocumentDateTime.DateTimeStamp

n requestingDocumentIdentifier.ProprietaryDocumentIdentifier
84 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Message Validation Processes
Message Validation Processes

The message validation process uses the Xerces 1.2.0 DOM parser, which supports an
alpha implementation of the XML Schema specification. The Xerces 1.2.0 DOM
parser is packaged with the WebLogic Collaborate Enabler for RosettaNet software.

This section describes how RosettaNet message validation is implemented in
WebLogic Collaborate Enabler for RosettaNet. It also provides a bibliography for
further reading about message validation.

RosettaNet Message Validation Implementation

This section explains the message validation logic used within the RosettaNet
exception handling process implemented by the example workflows:

n Preamble Grammar Validation

n Service Header Grammar Validation

n Service Header Content and Message Sequence Validation

n Action Message Grammar and Schema Validation

n Action Message Content Validation

n Business Signal Grammar and Schema Validation

n Validator Utility

For an explanation of the exception handling process, see RosettaNet Implementation
Framework, v1.1: Technical Advisory #1.

The example XML schema files are located in
<WLC_HOME>/rosettanet/enabler/schemas. The document type definition (DTD)
files from www.rosettanet.org are located in
<WLC_HOME>/rosettanet/enabler.
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 85

Preamble Grammar Validation

The RosettaNet Protocol Layer validates the Preamble grammar against RosettaNet’s
PreamblerPartMessageGuideline.dtd file.

Service Header Grammar Validation

The Service Header grammar is validated against RosettaNet’s
ServiceHeaderPartMessageGuideline.dtd file.

Service Header Content and Message Sequence Validation

In the workflow examples, the Service Header content is validated against the XML
schema file ServiceHeaderPartMessageGuideline.xsd. The XML schema file
was first generated using the ServiceHeaderPartMessageGuideline.dtd file. It
was then modified to include the constraints and validation rules defined in
RosettaNet’s ServiceHeaderPartMessageGuideline.htm file.

The message sequence validation is provided in a couple of ways. When a workflow
receives an action message, the Service Header validation is performed. An out of
sequence business message fails this validation. When a workflow receives a business
signal, the Process Receipt Acknowledgement business operation performs sequence
validation. This business operation could potentially receive a General Exception
message, a Receipt Acknowledgement Exception message, a Receipt
Acknowledgement message, or an action message. The Process Receipt
Acknowledgement business operation handles each type of message in accordance
with the RosettaNet exception handling process.

Action Message Grammar and Schema Validation

The Action Message grammar is validated against a RosettaNet PIP DTD. The Action
Message schema is validated against an XML schema file with the same name as the
associated PIP DTD, except that the .dtd filename extension is replaced with the .xsd
filename extension. The XML schema files were generated using the PIP DTD files.
They were then modified to include the constraints and validation rules defined in the
associated RosettaNet message guideline HTML files.
86 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Message Validation Processes
Action Message Content Validation

Action Message content is validated against a company’s business rules. These
business rules have not been implemented. Validate Business Rules tasks have been
inserted in the workflows in appropriate locations. The user is responsible for
implementing the appropriate actions within a Validate Business Rules task. Business
rules can also be incorporated into the XML schema files described in “Business
Signal Grammar and Schema Validation” on page 87. For example, a business rule
could be implemented in an XML schema file that specifies that a supplier will only
respond to requests for orders of quantities greater than 100 units.

Business Signal Grammar and Schema Validation

The Business Signal grammar is validated against the applicable RosettaNet Business
Signal DTD. The Business Signal schema is validated against an XML schema file
with the same name as that of the associated Business Signal DTD, except that the
.dtd filename extension is replaced with the .xsd filename extension. The XML
schema files were generated using the Business Signal DTD files. They were then
modified to include the constraints and validation rules defined in the associated
RosettaNet message guidelines.

Validator Utility

The class com.bea.b2b.rosettanet.Validator is a utility that can be used to
validate an XML message file against a DTD file or an XML schema file, or both.

To use this utility, enter the following command line:
java com.bea.b2b.rosettanet.Validator arg0 arg1

In this command line:

n arg0 is an XML file URI (for example, MyFile.xml)

n arg1 is an XML schema file URI (for example, MyFile.xsd)

Note: The XML schema file must be located in a subdirectory called schemas
directly below the directory from which Validator is invoked. Also, if
MyFile.xml contains a DOCTYPE line, the DTD file must reside in the path
specified by the DTD file that is specified on the DOCTYPE line in the
MyFile.xml file.
BEA WebLogic Collaborate Enabler for RosettaNet User Guide 87

Recommended Reading about Message Validation

The following information is recommended reading if you want to fully understand the
example XML schemas; it is required reading if you are planning to implement your
own XML schemas:

n Information about XML schema tools, usage, specifications, and development is
available at http://www.w3.org/XML/Schema. XML Schema Part 0: Primer
provides good descriptions of the features and capabilities of XML schema.

n Information about the Xerces implementation of the XML Schema specification
is available at http://xml.apache.org/xerces-j/schema.html.
88 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

Index

A
acknowledgments

getting 49, 65, 73
preparing 82
processing 49, 65, 73, 81
sending 52, 61, 78

actions, parameters 24
adding document types 80
applications, notifying 66
architecture 3

B
building

contents 71
headers 64, 70
query contents 47
query headers 46

business operations
adding document types 80
defining 31
descriptions 79
exception messages 81
general 32, 80
loading strings 83
log 80
PIP3A2 35, 83
preparing acknowledgments 82
preparing exceptions 80
preparing queries 83
preparing responses 84

processing acknowledgments 81
validating contents 80
validating headers 80
validating queries 84

business protocols, configuring 8, 9
business rules, validating 53, 62, 78
business signals, validating 87

C
c-enablers

configuring 6, 9
configuring for examples 27

checking expected messages 51
c-hubs

configuring 6, 8
configuring for examples 26

command, RNConfig 28
configuring

business protocols 8, 9
c-enablers 6, 9
c-enablers for examples 27
c-hubs 6, 8
c-hubs for examples 26
conversations 8
c-spaces 8
digital signatures 12
examples 26, 27
manually 29
plug-ins for digital signatures 12
sessions 10
BEA WebLogic Collaborate Enabler for RosettaNet User Guide I-1

SSL 11
startup class 18
trading partners 8, 10
URLs 10
WebLogic Process Integrator for

examples 27
workflow examples 30
workflow sessions 17

contacting BEA vii
contents

building 47, 71
decisions 48, 52, 61, 64, 71, 77
loading 64
validating 52, 60, 64, 77, 80, 86, 87

conversations
configuring 8
properties 15

creating
contents 71
headers 64
PIP workflow templates 38
query contents 47
query headers 46
workflow templates 35

c-spaces, configuring 8
customer support vii

D
decisions

contents 48, 52, 61, 64, 71, 77
exceptions 50, 51, 66, 73
headers 47, 51, 60, 64, 71, 77
isPrepareQuerySuccess 48
isPrepareResponseSuccess 64
message codes 48, 53, 62, 65, 72, 78
message problems 50, 66, 73
retries 47, 50, 71, 73
rules 53, 62, 79
timeouts 50, 66, 73

defining
business operations 31
workflow variables 39

digital signatures
configuring 12
description 4

document types, adding 80
documentation

locating vi
message validation 88
PIPs 38
printing vi
RosettaNet Implementation Framework

(RNIF) 38
done nodes 54, 66, 74, 79

E
errors, handling 74, 79
events

getting acknowledgments 49, 65, 73
getting replies 51
processing acknowledgments 65

examples
configuring 26, 27, 30
configuring WebLogic Process

Integrator 27
getting started 37
overview 25
PIP0A1_Admin 74
PIP0A1_Notifier 66
PIP3A2_Customer 39
PIP3A2_Supplier 54
running 36
starting 30
walkthrough 37

exceptions
decisions 51, 66, 73
messages 81
preparing 80
I-2 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

retries 50
sending 52, 61, 65, 78

expected messages, checking 51

F
failures

notifying 53
processing 79

features, RosettaNet PIP workflows 19

G
getting

acknowledgments 49, 65, 73
replies 51

grammar
validating 86

grammar, validating 86, 87

H
handling errors 74, 79
headers

building 46, 64, 70
decisions 47, 51, 60, 64, 71, 77
validating 51, 60, 64, 76, 80, 86

I
importing workflow templates 36
information, retrieving 62
inputs to workflows 67
instances, PIPs 21
integration with WebLogic Process

Integrator 5

L
linking

PIPs 15
WebLogic Process Integrator templates

15
loading

contents 64
strings 83
XML files 83

logging 80

M
manual configuration 29
message codes

decisions 48, 53, 62, 65, 72, 78
message problems, decisions 50, 66, 73
message sequences, validating 86
message validation 6
messages

checking if expected 51
codes 48
decisions 53, 66, 72
exceptions 81
receiving 19
sending 23, 48, 65, 72, 78
validating 85, 86
waiting for 21

N
nodes

done 54, 66, 74, 79
start 41, 55, 68, 75

notifying
applications 66
failures 53
BEA WebLogic Collaborate Enabler for RosettaNet User Guide I-3

O
operations

defining 31
descriptions 79

overview
WebLogic Collaborate Enabler for

RosettaNet 1, 3
workflow examples 25

P
parameters

RNConfig 28
Send RosettaNet Message 24

parsers, Xerces DOM 85
partner interface processes 2
PIP0A1_Admin 74
PIP0A1_Notifier 66
PIP3A2_Customer 39
PIP3A2_Supplier 54
PIPs

creating workflow templates 38
description 2
documentation 38
features for workflows 19
instances 21
linking 15
templates 5

plug-ins for digital signatures, configuring 12
preamble, validating 86
preparing

acknowledgments 82
exceptions 80
queries 83
responses 84

printing product documentation vi
problems

decisions 66
notifying 66

processing
acknowledgments 49, 65, 73, 81
failures 79

product information, retrieving 62
protocol layer 4
protocols

configuring 9
protocols, configuring 8, 9

Q
queries

building contents 47
building headers 46
preparing 83
sending 48
validating 84

R
receiving

acknowledgments 49, 65, 73
messages 19
replies 51

related information vi
replies, receiving 51
responding 65
responses, preparing 84
retries, decisions 47, 50, 71, 73
retrieving product information 62
RNConfig

command script 28
parameters 28

RNIF
description 2
documentation 38

RosettaNet
description 2
features for workflows 19
I-4 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

rules
decisions 53, 62, 79
validating 53, 62, 78

running workflow examples 30, 36

S
schema, validating 86, 87
script, RNConfig 28
security, configuring 11
Send RosettaNet Message, parameters 24
sending

acknowledgments 52, 61, 78
exceptions 52, 61, 65, 78
failure notification 53
messages 23, 65, 72, 78
query messages 48

sequences, validating 86
sessions

configuring 10
configuring workflow sessions 17

signals, validating 87
SSL security, configuring 11
start nodes

description 41, 55, 68, 75
variables 42, 56, 69, 76

starting
WebLogic Process Integrator Studio 31
workflow examples 30
workflows 19

startup class, configuring 18
strings, loading 83
support, technical vii

T
tasks

building contents 71
building headers 64, 70
building query contents 47
building query headers 46

checking messages 51
handling errors 74, 79
loading contents 64
notifying applications 66
processing failures 79
responding 65
retrieving product information 62
sending acknowledgments 52, 61, 78
sending exceptions 52, 61, 65, 78
sending failure notification 53
sending messages 72
sending query messages 48
validating business rules 62
validating contents 52, 60, 64, 77
validating headers 51, 60, 64, 76
validating rules 53, 78
waiting for timeouts 48, 49, 65, 72

templates
conversation properties 15
creating 35, 38
importing 36
linking 15
PIPs 5
WebLogic Process Integrator 5

timeouts
decisions 50, 66, 73
waiting for 48, 49, 65, 72

trading partners, configuring 8, 10

U
URLs, configuring 10
utility, validator 87

V
validating

business rules 53, 62, 78
business signals 87
contents 52, 60, 64, 77, 80, 86, 87
grammar 86, 87
BEA WebLogic Collaborate Enabler for RosettaNet User Guide I-5

headers 51, 60, 64, 76, 80, 86
message sequences 86
messages 6, 85, 86
preamble grammar 86
queries 84
schema 86, 87

validation documentation 88
validator utility 87
variables

defining for workflows 39
start nodes 42, 56, 69

W
waiting

for messages 21
for timeouts 48, 49, 65, 72

walkthrough, workflow examples 37
WebLogic Process Integrator

configuring for examples 27
features for RosettaNet PIP workflows

19
integration 5
linking templates 15
templates 5

WebLogic Process Integrator Studio, starting
31

workflow examples
configuring 30
getting started 37
running 36
starting 30
walkthrough 37

workflow sessions, configuring 17
workflow templates

creating 35, 38
importing 36

workflows
and PIP instances 21
defining variables 39
examples 25

features 19
inputs 67
starting 19
waiting to timeout 48

X
Xerces DOM parsers 85
XML files, loading 83
I-6 BEA WebLogic Collaborate Enabler for RosettaNet User Guide

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print this Document
	Related Information
	Contact Us!
	Documentation Conventions

	User Guide
	Overview of the WebLogic Collaborate Enabler for RosettaNet
	About RosettaNet

	Architecture and Product Overview
	RosettaNet Protocol Layer
	WebLogic Process Integrator Integration for RosettaNet
	WebLogic Process Integrator Templates for PIPs

	Configuring the WebLogic Collaborate Enabler for RosettaNet Software
	C-Enabler for RosettaNet and C-Hub Configurations
	Configuring the C-Hub
	Configuring the C-Enabler for RosettaNet
	Configuring a Plug-In for Digital Signatures
	Linking WebLogic Process Integrator Templates with PIPs
	Configuring Workflow Sessions

	WebLogic Process Integrator Features for RosettaNet PIP Workflows
	Starting a Workflow upon Receipt of a RosettaNet Message
	Workflow and PIP Instances
	Waiting for a RosettaNet Message
	Sending a RosettaNet Message

	Using the Workflow Examples
	Configuring the C-Hub for the Workflow Examples
	Configuring the C-Enabler for RosettaNet for the Workflow Examples
	Configuring WebLogic Process Integrator for the Workflow Examples

	Walkthrough of the Workflow Examples
	Getting Started
	PIP3A2_Customer
	PIP3A2_Supplier
	PIP0A1_Notifier
	PIP0A1_Admin

	Descriptions of Business Operations
	General Business Operations
	PIP3A2-Specific Business Operations

	Message Validation Processes
	RosettaNet Message Validation Implementation
	Recommended Reading about Message Validation

	Index

