
B E A W e b L o g i c C o l l a b o r a t e 1 . 0
D o c u m e n t E d i t i o n 1 . 0

D e c e m b e r 2 0 0 0

Getting Started

BEA WebLogic
Collaborate

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

BEA WebLogic Collaborate Getting Started

Document Edition Date Software Version

1.0 December 2000 1.0

Contents

What You Need to Know ... vii

e-docs Web Site ... viii

How to Print the Document... viii

Documentation Conventions ...x

1. Overview
Feature Support for Your E-Business.. 1-2

Understanding the Architectural Requirements of an E-Market 1-5

Trading Partners ... 1-5

Business Processes and Vocabularies .. 1-6

Conversations and Roles .. 1-7

Business Messages ... 1-9

Business Protocols.. 1-9

RosettaNet ... 1-10

XOCP .. 1-10

Collaboration Spaces.. 1-13

Conversation Subscriptions.. 1-14

Software for Implementing the C-Space .. 1-14

Messaging Service .. 1-16

Conversation Coordination Service .. 1-16

Repository Service .. 1-17

Administration Services .. 1-17

Security Services... 1-18

XML Services ... 1-20

Logging Service .. 1-20

Workflow Process Engine... 1-20

Using WebLogic Collaborate — the End-to-End View.................................. 1-22
BEA WebLogic Collaborate Getting Started iii

Registering Trading Partners for the C-Space.. 1-25

Creating the Trading Partner Application .. 1-25

About Trading Partner Applications That Invoke the C-Enabler Directly
1-26

About Trading Partner Applications Integrated with WebLogic Process
Integrator .. 1-27

Configuring the C-Hub... 1-27

Configuring the C-Enabler ... 1-28

Starting the Conversation ... 1-29

Broadcasting a Message to Trading Partners ... 1-30

Receiving a Business Message and Responding Through WebLogic Process
Integrator ... 1-33

The C-Hub Sending a Response to the Buyer .. 1-35

Documentation Roadmap .. 1-36

2. Setting Up the WebLogic Process Integrator Environment
Configuring WebLogic Collaborate for WebLogic Process Integrator............. 2-2

Troubleshooting Your WebLogic Process Integrator Configuration 2-7

Starting WebLogic Process Integrator Studio ... 2-7

3. Running the WebLogic Process Integrator Verifier Example
Setting Up and Running the WebLogic Process Integrator Verifier Example.. 3-2

Running the Example on Two WebLogic Server Instances....................... 3-2

Step 1: Configuring WebLogic Collaborate for WebLogic Process
Integrator .. 3-3

Step 2: Building the Example.. 3-3

Step 3: Starting the C-Hub .. 3-4

Step 4: Starting the C-Enabler... 3-4

Step 5: Importing and Deploying the Workflow Templates 3-5

Step 6: Running the Example.. 3-13

Running the Example on a Single WebLogic Server Instance................. 3-16

Understanding the WebLogic Process Integrator Verifier Example 3-21

 The wlpiverifier_init Workflow ... 3-22

 The wlpiverifier_partner Workflow ... 3-27

Understanding WebLogic Process Integrator Java Classes...................... 3-30
iv BEA WebLogic Collaborate Getting Started

4. Using Logic Plug-Ins for Billing
Overview of the Logic Plug-In Examples ... 4-2

Structure of the Logic Plug-Ins for Billing.. 4-2

Purpose of the MessageCounter Logic Plug-In.. 4-3

Purpose of the CheckAccount Logic Plug-In... 4-3

Utility Servlets for the Logic Plug-Ins ... 4-3

MessageCounter Logic Plug-In Example.. 4-4

Structure of the MessageCounter Logic Plug-In Example......................... 4-4

Required Files .. 4-5

Files for Loading the WebLogic Collaborate Repository 4-6

HTML File for Querying Trading Partner Account Status 4-7

Files for Managing Database Tables... 4-7

Setting Up the MessageCounter Logic Plug-In.. 4-8

Setup on Windows: Main Steps .. 4-8

Setup on UNIX: Main Steps ... 4-9

MessageCounter Logic Plug-In Setup Steps in Detail 4-10

Running an Application with the MessageCounter Logic Plug-In 4-14

CheckAccount Logic Plug-In Example... 4-15

Structure of the CheckAccount Logic Plug-In Example.......................... 4-15

Required Files .. 4-16

Files for Loading the WebLogic Collaborate Repository 4-17

HTML File for Querying Trading Partner Account Status 4-18

Files for Managing Database Tables... 4-18

Setting Up the CheckAccount Logic Plug-In... 4-20

Setup on Windows: Main Steps .. 4-20

Setup on UNIX: Main Steps ... 4-20

CheckAccount Logic Plug-In Setup Steps in Detail 4-21

Running an Application with the CheckAccount Logic Plug-In 4-25

Index
BEA WebLogic Collaborate Getting Started v

vi BEA WebLogic Collaborate Getting Started

About This Document

This document explains how to get started with the BEA WebLogic Collaborate™
software.

This document is organized as follows:

n Chapter 1, “Overview,” provides an architectural overview of the BEA
WebLogic Collaborate software and explains some basic concepts.

n Chapter 2, “Setting Up the WebLogic Process Integrator Environment,” provides
a set of procedures you need to complete to set up your BEA WebLogic
Collaborate environment after you have installed it.

n Chapter 3, “Running the WebLogic Process Integrator Verifier Example,”
describes how to configure your WebLogic Collaborate environment for the
WebLogic Process Integrator-based wlpiverifier application provided with the
BEA WebLogic Collaborate package and describes how to run that application.

n Chapter 4, “Using Logic Plug-Ins for Billing,” describes how to build and run
the logic plug-in sample applications provided with the WebLogic Collaborate
software.

What You Need to Know

This document is for managers, system administrators, and programmers who are
interested in understanding the architectural requirements for implementing and
administering an e-market based on WebLogic Collaborate. This document assumes
you have a working knowledge the BEA WebLogic Server™ system, XML,
Enterprise JavaBeans, and Java programming.
BEA WebLogic Collaborate Getting Started vii

e-docs Web Site

The BEA WebLogic Collaborate product documentation will be available on the BEA
Systems, Inc. corporate Web site. From the BEA Home page, click Product
Documentation or go directly to the “e-docs” Product Documentation page at
http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the BEA WebLogic Collaborate
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterprise
documentation Home page, click the PDF Files button, and select the document you
want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free from
the Adobe Web site at http://www.adobe.com/.

Related Information

For more information about WebLogic Server, XML, or Java 2 Enterprise Edition
(J2EE), see the Bibliography in the BEA WebLogic Collaborate online
documentation.
viii BEA WebLogic Collaborate Getting Started

How to Print the Document
Contact Us!

Your feedback on the BEA WebLogic Collaborate documentation is important to us.
Send us e-mail at docsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the BEA WebLogic Collaborate documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Collaborate 1.0 release.

If you have any questions about this version of BEA WebLogic Collaborate, or if you
have problems installing and running BEA WebLogic Collaborate, contact BEA
Customer Support through BEA WebSUPPORT at www.bea.com. You can also
contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages
BEA WebLogic Collaborate Getting Started ix

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.
x BEA WebLogic Collaborate Getting Started

Documentation Conventions
[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
BEA WebLogic Collaborate Getting Started xi

xii BEA WebLogic Collaborate Getting Started

CHAPTER
1 Overview

The BEA WebLogic Collaborate™ product is an XML- and Java-based open market
electronic commerce platform that enables you to implement business-to-business
(B2B) e-commerce systems on the Web. It helps you quickly deploy B2B e-commerce
systems that link existing back-end applications, databases, and customers into
automatic and flexible electronic collaborations.

WebLogic Collaborate is a software framework and a set of services built on top of the
BEA WebLogic Server™ system. WebLogic Collaborate is implemented entirely in
Java and leverages the J2EE blueprint and standard APIs. Central to WebLogic
Collaborate is XML, which provides an open data interchange format between loosely
coupled participants. WebLogic Collaborate supports HTTP because the World Wide
Web is the ubiquitous communication medium where the majority of e-business gets
conducted.

WebLogic Collaborate simplifies and enables the building of portals, Application
Service Provider (ASP) businesses, and integrated businesses on the Web.

The following sections provide a product overview:

n Feature Support for Your E-Business

n Understanding the Architectural Requirements of an E-Market

n Using WebLogic Collaborate — the End-to-End View

n Documentation Roadmap
BEA WebLogic Collaborate Getting Started 1-1

1 Overview
Feature Support for Your E-Business

The goal of WebLogic Collaborate is to provide B2B features for building
mission-critical, scalable, real-world e-market collaboration and trading exchanges,
including:

n Robust support for secure, high-volume business transaction levels based on
BEA’s award winning WebLogic Application Server™ technology. BEA’s
proven, high availability, 24x7-managed server technology, with dynamic
load-balancing, multithreading, and fail-over without processing interruption,
has delivered industry-leading results in thousands of the world’s most
demanding application environments.

n Reliable, role-based XML messaging that supports enhanced send and receive
capabilities, including support for large messages, based on any combination of
sender, receiver, and content filtering.

n Dynamic market management, allowing you to configure e-markets, trading
partners, and collaborations on-the-fly.

n An SSL-based secure platform for conducting collaborations that includes
mutual (two-way) authentication using digital certificates among trading
partners.

n A pluggable architecture that supports multiple, standards-based business
protocols, business rules, and market applications.

n Conversation coordination to manage the execution and interaction of two or
more trading partners within the conversation and to manage conversation life
cycles.

n An open, nonproprietary architecture that leverages Java, J2EE XML, HTTP,
HTTPS, and other emerging industry standards to allow rapid system and
cross-platform integration, with low barriers to entry and “plug and play” with
XML-ready, best-of-breed application software.

n Support for user-defined business protocols and vocabularies, allowing you to
meet custom e-market requirements and obtain competitive advantage.

n A data repository and a set of design and configuration tools to define and
manage the metadata and conversation definitions of WebLogic Collaborate.
1-2 BEA WebLogic Collaborate Getting Started

Feature Support for Your E-Business
n Integration with BEA WebLogic Process Integrator, the BEA workflow
automation tool, which is packaged with WebLogic Collaborate.

WebLogic Collaborate also has a number of features inherited directly from WebLogic
Server, including:

n The ability to build custom portals to e-markets by leveraging BEA WebLogic
Personalization Server™ components

n A portal backbone

n Controlled and secure Web access to existing business data and applications

n Support for existing applications based on CORBA, EJB, Tuxedo®, and COM+

Figure 1-1 shows a high-level topology of an example e-market based on WebLogic
Collaborate.
BEA WebLogic Collaborate Getting Started 1-3

1 Overview
Figure 1-1 Topology of an Example WebLogic Collaborate-based E-Market

In the preceding figure, note the following

n Trading partners connect to a WebLogic Collaborate entity called the
collaboration space, or c-space, which organizes the business exchanges among
trading partners. C-spaces are described in “Collaboration Spaces” on page 1-13.

n A trading partner may be colocated on the machine that hosts the c-space, or a
trading partner may be remote at a site behind its own firewall.

n Multiple trading partners may be colocated on the same WebLogic Server
instance.

WebLogic Express

Trading Partner 4

WebLogic Collaborate

WebLogic Server

Trading Partner 1

WebLogic Collaborate

Collaboration
Space

Non-BEA
Trading Partner 5

WebLogic Server

Trading Partner 3

WebLogic Collaborate

Trading Partner 2

WebLogic Process
Integrator
1-4 BEA WebLogic Collaborate Getting Started

Understanding the Architectural Requirements of an E-Market
n Trading partners may be set up on top of a WebLogic Server-based platform, on
a WebLogic Express-based platform, or on a platform that has no BEA-provided
software.

n Trading partners that are based on WebLogic Server can also use the WebLogic
Process Integrator software to integrate workflows into their exchanges with
other trading partners.

Understanding the Architectural
Requirements of an E-Market

The following sections describe the architectural requirements of an e-market:

n Trading Partners

n Business Processes and Vocabularies

n Conversations and Roles

n Business Messages

n Collaboration Spaces

n Conversation Subscriptions

n Software for Implementing the C-Space

Trading Partners

One of the basic building blocks of an e-market is the notion of a trading partner. A
trading partner is an e-market participant, such as a company, that joins other trading
partners to form a community with a specific business purpose. For example, a typical
e-market could be an automobile parts exchange: one trading partner supplies exhaust
pipes and another is an auto parts retailer.
BEA WebLogic Collaborate Getting Started 1-5

1 Overview
In an e-market, a trading partner must have a special identity that defines where it fits
with the business purpose of the e-market. In WebLogic Collaborate, the term trading
partner refers specifically to an entity that is authorized to participate in one or more
specific business exchanges, or conversations, in a specific role that is defined for the
e-market. These concepts are explained in later sections.

Business Processes and Vocabularies

One of the first things you do when you create an e-market is to define the vocabulary
and business processes of the e-market. This is a key step because when you define the
vocabulary and business processes for exchanging information, you establish:

n The kind of information that is exchanged

n The processes that trading partners will follow when exchanging information

For example, in an automobile parts exchange, a trading partner sending a purchase
order must include a specific set of data in that purchase request so that the recipient
can understand the contents of that purchase order. The identity of each piece of
information, which is exchanged between trading partners in XML messages, makes
up the vocabulary.

Business processes govern how trading partners behave when they receive certain
types of messages or when error conditions arise. Business processes also define what
certain kinds of documents, such as a bid request or a purchase order response
document, mean. For example, a business process may state what kind of responses a
trading partner can send when the trading partner receivs a purchase order.

Once you have defined the e-market vocabulary and business processes, you must
choose:

n A business protocol appropriate for the e-market — for example, the eXtensible
Open Collaboration Protocol (XOCP) or RosettaNet. While RosettaNet specifies
both the business process and the protocol, XOCP refines the business process
that governs the exchange of business information between trading partners. The
business protocol specifies how to process the messages and how to route them
to the appropriate recipients. A business protocol may also specify
characteristics of messages related to persistence and reliability.

n A set of Document Type Definitions (DTDs) that define the grammar and syntax
of the XML messages sent among trading partners
1-6 BEA WebLogic Collaborate Getting Started

Understanding the Architectural Requirements of an E-Market
Conversations and Roles

A preliminary outcome of having defined the vocabulary, business processes, business
protocol, and DTDs for the e-market is the outline of the conversations that take place
between trading partners.

In WebLogic Collaborate, a conversation:

n Consists of a predefined set of message exchanges. Each message may cause any
number of back-end system transactions to occur when it arrives at a trading
partner’s site.

n May be complex and long-running, or short-lived.

n Has an ID, which is used by the system. The conversation ID can also be used
by the trading partner application to retrieve conversation-specific data.

A given conversation specifies the types of messages that can be changed between two
or more trading partners for a specific business process. The kinds of messages a
specific trading partner may send or receive is a conversation role.

The final outcome of specifying the details of each conversation in an e-market is the
conversation definition. A conversation definition specifies:

n A unique conversation definition name

n A conversation definition version

n The DTDs, or schema, for the business messages exchanged in the conversation

n Roles in the conversation

Each trading partner who participates in a conversation in a given role — for example,
supplier, as shown in the following figure — must implement its local view of the
conversation. Although this local view is partner-specific, to enable the trading partner
to participate in the conversation as specified by the conversation definition, the view
must encapsulate the processes required to handle the right business messages at the
right time.

The following figure shows a graphical representation of a simple conversation and
possible local flows for the two roles.
BEA WebLogic Collaborate Getting Started 1-7

1 Overview
In this figure, note the following:

n The business messages PriceAndAvailabilityQuote and
PriceAndAvailabilityResponse.

n The roles Buyer and Supplier. The implication of being in a role in a given
conversation is that you send and receive only the business messages defined for
your role. For example, the Buyer:

l Starts the conversation

l Sends the business message PriceAndAvailabilityQuote

l Receives the business message PriceAndAvailabilityResponse and
processes it

Send Quote

Buyer

Start

Request Quote

Process Quote

Done

Query Price and
Availability

Wait For
Response

Process Quote

Supplier

Start

PriceAndAvailabilityQuote

Business Message

Process Quote and
Availability

Return Quote

Done

PriceAndAvailabilityResponse

Business Message

C-Hub
Messaging

Service

Local Flow Local Flow
1-8 BEA WebLogic Collaborate Getting Started

Understanding the Architectural Requirements of an E-Market
By contrast, the Supplier:

l Receives and processes the business message
PriceAndAvailabilityQuote

l Sends the business message PriceAndAvailabilityResponse

n The local flows. Each role has its own set of local processes required to send and
receive the right business messages at the right times.

Business Messages

A business message is the basic unit of communication among trading partners. A
business message contains one or more XML business documents, one or more
attachments, or a combination of both. Business messages, which are expressed in
XML and are communicated in a WebLogic Collaborate-based c-space, also have
other information depending on the business protocol — for example, XOCP or
RosettaNet — chosen for the conversation. Business messages are exchanged as part
of a conversation. “Business Protocols” on page 1-9 provides more detail about this
additional, protocol-specific information.

Business Protocols

As mentioned earlier, the business protocol is a further refinement of the business
process that governs the exchange of business information between trading partners.
WebLogic Collaborate Version 1.0 supports two protocols:

n RosettaNet 1.1

n eXtensible Open Collaboration Protocol (XOCP), a BEA-specific protocol

WebLogic Collaborate provides a pluggable architecture to support multiple protocols,
providing message routing and filtering capabilities that are customized especially for
each protocol. A c-space can support multiple protocols, giving you a great deal of
flexibility in organizing an e-market by reducing the need for trading partners to
standardize on any single protocol. Support for additional protocols will be available
in future releases of WebLogic Collaborate.
BEA WebLogic Collaborate Getting Started 1-9

1 Overview
RosettaNet

From the RosettaNet Web site (http://www.rosettanet.org): RosettaNet is an
independent, self-funded, non-profit consortium of major information technology,
electronic components, and semiconductor manufacturing companies working to
create and implement industry-wide e-business process standards. These standards
form a common e-business language, aligning processes between supply chain
partners on a global basis.

RosettaNet provides e-business Partner Interface Process (PIP) specifications, which
define business processes between supply-chain partners, providing the models and
documents for the implementation of standards.

PIPs fit into six clusters, or groups of core business processes, that represent the
backbone of the supply chain. Each cluster is broken down into segments, which are
cross-enterprise processes involving more than one type of supply chain partner.
Within each segment are individual PIPs.

PIPs are specialized system-to-system XML-based dialogs that define business
processes between supply chain partners. Each PIP includes a technical specification
based on the RosettaNet Implementation Framework (RNIF), a Message Guideline
document with a PIP-specific version of the Business Dictionary, and an XML
Message Guideline document.

RosettaNet is a point-to-point messaging protocol: business messages are sent between
only two trading partners.

XOCP

The XOCP protocol, like RosettaNet, is also designed for deploying peer-to-peer and
supply-chain market applications among suppliers, manufacturers, and distributors.
However, XOCP also provides the following messaging characteristics:

n Message multicasting

Message multicasting is the ability of the messaging service to broadcast a
message from one trading partner to all conversation participants who are
registered as recipients of that message. For example, if 15 trading partners are
registered in the role of “supplier” in the ProcessPurchaseOrder conversation,
then all messages received by the c-space messaging service that are meant to be
sent to the “supplier” will be sent to all those trading partners (within the
constraints of message routing and filtering, described later).
1-10 BEA WebLogic Collaborate Getting Started

Understanding the Architectural Requirements of an E-Market
n Message payload definition independence

XOCP provides the flexibility for you to specify both the vocabulary and
business processes for your messages for a given conversation so that they are
an exact fit for your business requirements.

n Conversation life cycle management

XOCP is designed to manage long-lived conversations. When a conversation
terminates, all trading partners who are enlisted in that conversation receive an
end-of-conversation message.

n Qualities of Service (QoS) capabilities

The WebLogic Collaborate software offers a variety of settings related to QoS
that allow you to set and control characteristics of XOCP messages sent in
conversations, such as:

l Message durability — Specify whether a durable message store is to be used
to guarantee the delivery of messages in the case of network, machine, or
software failures.

l Timeout — Specify how long a trading partner application will wait before
terminating all processing related to the business message.

l Retry attempts — Control how many times a message should be resent in the
presence of specific situations, such as timeouts, network failures, and so on.

l Correlation ID — Set an additional business message property that can be
used to correlate messages in a conversation.

WebLogic Collaborate allows you to establish QoS settings on a
per-conversation and per-message basis.

XOCP Business Messages

Business messages exchanged in a conversation based on the XOCP protocol have the
structure shown in the following figure. Understanding the structure of XOCP business
messages is especially important for writing WebLogic Collaborate-based XOCP
applications, such as trading partner applications, or special c-hub-located applications
called logic plug-ins, described later.
BEA WebLogic Collaborate Getting Started 1-11

1 Overview
Note the following parts:

n Message envelope — This is a logical container for the XOCP business message
that is added while the business message is in transit through the WebLogic
Collaborate messaging service software. The message envelope typically
contains data related to the sender of the message and the recipients, and can
contain other metadata. The envelope is visible in the messaging service only.
The envelope is not part of the transport protocol.

n Message headers that include:

l Transport and Qualities of Service (QoS) data, such as sender and recipient
identities, content length and type, and status code. This metadata is typically
used and modified while the XOCP business message is in transit through
the c-hub.

l Conversation and routing headers, such as sender information, list of
message recipients, conversation information, message ID, creation
timestamp, and other data. Message attributes can be set by the originating
trading partner, or by logic plug-ins in the c-hub, such as the XOCP router or
XOCP filter.

n Payload, which includes one or more business documents, one or more
attachments, or a combination of both. Note that a business document is
expressed in XML, and an attachment is a binary (non-XML) part of the

Message Envelope

Payload

Message Headers

Business
Document

Attachment
1-12 BEA WebLogic Collaborate Getting Started

Understanding the Architectural Requirements of an E-Market
message. The business documents, with their attachments, constitute the kernel
containing the information being exchanged among trading partners.

When a trading partner application or a WebLogic Process Integrator workflow
prepares a message payload to be sent to one or more trading partners, that
application or workflow includes a process that adds the XOCP headers to the
XOCP business message.

An XOCP message is a MIME multipart message. All its components are expressed in
XML, except for the non-XML attachments.

Collaboration Spaces

In its simplest sense, a collaboration space, or c-space, is the implementation of an
e-market using WebLogic Collaborate. A c-space is an abstraction that provides the
structure for organizing and administering conversations among trading partners.

A c-space supports:

n A single business model

n A business message vocabulary

n A set of business processes

n One or more business protocols

n A registered set of trading partners

In summary, a c-space provides the administration capability, conversation
coordination, and underlying messaging services that are required to create a dynamic
business-to-business integration environment. A WebLogic Collaborate-based
e-market can support any number of c-spaces on the Web concurrently and any number
of trading partners.
BEA WebLogic Collaborate Getting Started 1-13

1 Overview
Conversation Subscriptions

When a trading partner wants to participate in a c-space, that trading partner subscribes
to specific roles in specific conversation definitions. This establishes the relationship
of the trading partner to the c-space. For example, an auto parts manufacturer can
participate in a c-space by subscribing to the role of “supplier” in the
ProcessPurchaseRequest conversation.

Software for Implementing the C-Space

WebLogic Collaborate provides two primary pieces of software for implementing a
c-space:

n The collaboration hub, or c-hub, which hosts the c-space and thus serves as the
transportation utility for sending messages among trading partners

n The collaboration enabler, or c-enabler, which exists at each trading partner’s
site and which allows a trading partner to participate in predefined c-spaces and
possibly with multiple c-hubs

Optionally, a c-enabler can be integrated with WebLogic Process Integrator to provide
better conversation flow handling. As mentioned earlier, WebLogic Process Integrator
is bundled with WebLogic Collaborate.

The following figure shows the WebLogic Collaborate software deployed in an
e-market. Each machine that hosts a c-enabler is referred to as a c-enabler node. The
machine hosting the c-hub is a c-hub node.
1-14 BEA WebLogic Collaborate Getting Started

Understanding the Architectural Requirements of an E-Market
The c-hub and c-enabler work together to enable the exchange of business messages
among trading partners by providing the following services:

n Messaging Service

n Conversation Coordination Service

n Administration Services

n Security Services

n XML Services

n Logging Service

In addition to these services, the c-hub also includes a repository service, and the
c-enabler can be integrated with WebLogic Process Integrator.

WebLogic Server

C-Hub

Collaboration
Space

WebLogic Server

Trading Partner

WebLogic Process
Integrator

WebLogic Server

Trading Partner

C-Enabler

C-Enabler

WebLogic Server

Trading Partner

WebLogic Process
Integrator

C-Enabler

C-Enabler Node

C-Enabler Node

C-Enabler Node

C-Hub Node
BEA WebLogic Collaborate Getting Started 1-15

1 Overview
The sections that follow introduce each of these services.

Messaging Service

WebLogic Collaborate provides a flexible messaging service to facilitate information
transfer between trading partners. The messaging component relies on decoupled,
deferred synchronous messaging capabilities to allow communication flexibility
between trading partners.

The WebLogic Collaborate messaging service has the following features and
characteristics:

n Supports multiple XML-based business protocols natively; for example, the
eXtensible Open Collaboration Protocol (XOCP) and RosettaNet

n Supports blocking and non-blocking message delivery

n On the c-hub:

l Provides routing and filtering capabilities, controlling who receives messages

l Accommodates the insertion of user-written code at key points to customize
the handling of incoming or outgoing messages or to perform
messaging-related operations

n For XOCP-based messages, provides Quality of Service (QoS) capabilities to
establish durability, confirmation of receipt, message tracking, message timeout,
retry, and other settings for messages sent among trading partners

Conversation Coordination Service

Conversations can be complex and long running; in fact, some business conversations
may last years. Conversations always have life cycles, and they are explicitly
demarcated by a beginning and an end. The WebLogic Collaborate software provides
a service, called the conversation coordination service, that coordinates trading
partners who are participating in conversations around these life cycle events.

The WebLogic Collaborate conversation coordination service is protocol-specific. In
the case of XOCP-based conversations, the conversation coordinator in the c-hub does
the following:

n Creates the conversation on behalf of the trading partner that initiates the
conversation
1-16 BEA WebLogic Collaborate Getting Started

Understanding the Architectural Requirements of an E-Market
n Enlists new trading partners into the conversation

n Delists trading partners that choose to leave the conversation

n Sends conversation termination notices to all conversation participants when the
conversation is terminated

Also in the case of XOCP-based conversations, the conversation coordinator in the
c-enabler keeps track of the following:

n Conversation handlers for the different conversation types

n All the conversations currently active in the c-enabler

Repository Service

The c-hub includes a repository service to store data required to run the c-space and
manage trading partners, including:

n Conversation definitions

n Trading partner role subscriptions

n Document definition (DTD) names

n Document and configuration information

n Extended properties of trading partners

n Data used for message routing and filtering operations

In addition, the repository:

n Is accessible through the C-Hub Administration Console for administration and
monitoring functions. The repository allows you to plug in a variety of JDBC
RDBMs.

n Provides Oracle, Microsoft SQL Server, or Cloudscape as a primary store

n Can be loaded with the Bulk Loader utility

Administration Services

The WebLogic Collaborate administration services perform multiple configuration
and system management functions, including:
BEA WebLogic Collaborate Getting Started 1-17

1 Overview
n Providing the entry point for trading partners to join a c-space

n Providing a means to configure, administer, and monitor the c-space,
conversations, trading partners, and more

Through the administration service, the c-space administrator can configure and
manage trading partners (create IDs, grant and revoke roles), and both c-hub
administrators and trading partners can browse system status (conversations, message
delivery, and so on). In addition, trading partners can use the administration service to
start and end c-enabler sessions and end conversations.

Access to Administration Services

WebLogic Collaborate provides two means of access to the administration services:

n For configuring and monitoring, WebLogic Collaborate provides two Web-based
administration consoles:

l C-Hub Administration Console, used by the c-hub administrator to configure
and monitor the c-hub

l C-Enabler Administration Console, used primarily by the trading partner as a
monitoring tool, although it is also used to start and stop c-enabler sessions

n For monitoring use only, WebLogic Collaborate also supports user-written
applications that use the Java Management Extensions (JMX) Management
Beans (or MBeans) to view various data and statistics maintained by the
administration service, particularly data about the c-space, conversations, and
trading partners.

Trading partners can use the JMX Mbeans through an Mbean server, which is
included in the administration services package, to send and receive messages to
and from the administration service.

Note: The version of the MBean server provided with WebLogic Collaborate 1.0
supports only local access.

Security Services

WebLogic Collaborate security is built on top of the security features provided by
WebLogic Server. WebLogic Collaborate implements a role-based authorization
scheme in the c-hub in which trading partners apply for roles in conversation types.

The key security features are:
1-18 BEA WebLogic Collaborate Getting Started

Understanding the Architectural Requirements of an E-Market
n Mutual, two-way authentication using digital certificates

WebLogic Collaborate authenticates the identities of trading partners, before the
trading partners can access services or participate in dynamic collaboration and
the trading partner’s c-enabler and the c-hub server authenticate each other.

n Authorization control for WebLogic Server and WebLogic Collaborate resources

WebLogic Collaborate conversations and business messages delivered by the
messaging service are available only to an authorized set of trading partners. The
authorized set of trading partners is specified per conversation type by the c-hub
administrator, which is done by defining roles and specifying which trading
partners are in the role.

n SSL communication among the WebLogic Collaborate trading partners, human
users, and the c-hub

n Privacy

Messages sent and received by and through WebLogic Collaborate are only seen
by the appropriate set of trading partners.

Trading partner information is captured and stored by the c-hub repository. The basic
information captured includes conversations, roles, URLs, and so on.

The c-hub security mechanism leverages from WebLogic Server to perform the
following tasks:

n Map digital certificates to valid trading partners, using either the email addresses
contained in the certificate or the fingerprint. (WebLogic Collaborate provides a
default authenticator to perform the mapping.)

n Specify root Certification Authorities (CAs) and other WebLogic Server
properties.

You can read more information about the tasks associated with setting up and
administering the WebLogic Collaborate security:

n For a comprehensive discussion about WebLogic Collaborate security, and
specifically c-hub security, see Configuring Security in the BEA WebLogic
Collaborate C-Hub Administration Guide.

n For c-enabler security, see the topic Configuring C-Enabler Security in the BEA
WebLogic Collaborate C-Enabler Administration Guide.
BEA WebLogic Collaborate Getting Started 1-19

1 Overview
XML Services

The WebLogic Collaborate c-hub provides the following bundled XML services from
the Apache Software Foundation:

n Xerces — an XML parser

n Xalan — an XSLT engine

For more information about these services, go to the Apache Software Foundation
Web site at http://www.apache.org.

Logging Service

In both the c-hub and c-enabler, WebLogic Collaborate provides a local logging
capability for error and information messages, which allows for data stores (for
example, files). In the WebLogic Collaborate environment, all messages are
timestamped. Logging is maintained as set of log messages, which can be sent to the
WebLogic Server log, or to a separate log file.

Workflow Process Engine

A workflow process engine is not a mandatory architectural requirement for an
e-market, but it can provide an extremely useful service when integrated with a trading
partner’s platform to control the execution of local business processes. The WebLogic
Collaborate software includes the WebLogic Process Integrator product.

WebLogic Process Integrator is a process engine tool suite that trading partners can
integrate with their market and back-end enterprise applications to manage complex
e-business processes with multiple trading partners. The overall management of these
distributed processes are part of WebLogic Collaborate conversation coordination.

Key features of the WebLogic Process Integrator software make it a powerful addition
to WebLogic Collaborate:

n A design tool, called Studio, that a trading partner can use to graphically model
business processes, including participation in the conversation roles in which the
trading partner is registered. The WebLogic Process Integrator software then
provides a means to link an instance of that model, called a workflow, to the
trading partner’s c-enabler configuration and execute the workflow. You can also
use Studio to configure, administer, debug, and monitor workflow instances.
1-20 BEA WebLogic Collaborate Getting Started

Understanding the Architectural Requirements of an E-Market
n Integration with back-end application by means of business operations defined
by the trading partner.

n You use Worklist, a convenient user interface that defines and directs e-business
process exceptions to human users for resolution.

Note: WebLogic Process Integrator is available in two versions: one that ships
separately (version 1.2), and one that is bundled with WebLogic Collaborate
(version 1.2C). WebLogic Process Integrator 1.2C provides all the
functionality of 1.2, but also provides additional integration features with
WebLogic Collaborate, including:

n Specialized workflow properties for manipulating business messages,
specifying the message delivery Quality of Service, handling message
tokens, and so on

n A Java application programming interface (API) for use in WebLogic
Collaborate applications

The following figure shows a typical trading partner configuration that integrates the
WebLogic Process Integrator software with WebLogic Collaborate.

Trading Partner C-Enabler Node

C-Enabler

WebLogic Process Integrator
Process Engine

Worklist

Workflow InstanceTrading Partner
Application

Studio

WebLogic Server
BEA WebLogic Collaborate Getting Started 1-21

1 Overview
For more information about WebLogic Process Integrator integration with WebLogic
Collaborate, see Using Workflows to Exchange Business Messages in the BEA
WebLogic Collaborate Developer Guide.

For more information about WebLogic Process Integrator, see the following
documents:

n BEA WebLogic Process Integrator Studio User Guide

n BEA WebLogic Process Integrator Worklist Guide

n BEA WebLogic Process Integrator Tutorial

Using WebLogic Collaborate — the
End-to-End View

This section provides more details about the WebLogic Collaborate architecture and
features by showing a step-by-step, end-to-end view of:

n The procedure for setting up the components that make a c-space work, which
shows what you need to do

n An exchange of business messages among trading partners registered for a
conversation in a c-space, which shows how WebLogic Collaborate works

The procedures described in this section include:

n Registering Trading Partners for the C-Space

n Creating the Trading Partner Application

n Configuring the C-Hub

n Configuring the C-Enabler

n Starting the Conversation

n Broadcasting a Message to Trading Partners
1-22 BEA WebLogic Collaborate Getting Started

Using WebLogic Collaborate — the End-to-End View
n Receiving a Business Message and Responding Through WebLogic Process
Integrator

n The C-Hub Sending a Response to the Buyer

The procedures described in this section focus on three trading partners: one has an
application that invokes the c-enabler directly by way of the C-Enabler API to send and
receive XOCP business messages. The other trading partners’ configurations use
WebLogic Process Integrator to process business messages received and sent through
their c-enabler. The conversation used in this example is described in “Conversations
and Roles” on page 1-7, and a figure showing a representation of this conversation is
repeated as follows.

The following figure shows a static, high-level view of the WebLogic Collaborate
environment in which the conversation takes place. Note the following:

Send Quote

Buyer

Start

Request Quote

Process Quote

Done

Query Price and
Availability

Wait For
Response

Process Quote

Supplier

Start

PriceAndAvailabilityQuote

Business Message

Process Quote and
Availability

Return Quote

Done

PriceAndAvailabilityResponse

Business Message

C-Hub
Messaging

Service

Local Flow Local Flow
BEA WebLogic Collaborate Getting Started 1-23

1 Overview
n The buyer is shown on the left. The buyer’s IT environment includes its Finance,
HR, and Purchasing enterprise applications that are connected to the underlying
WebLogic Server platform. (Note that the buyer’s configuration does not include
WebLogic Process Integrator. The use of WebLogic Process Integrator is
optional. The configuration shown in this figure is hypothetical and could
potentially have a number of different types of platform configurations.)

n The suppliers are shown on the right. Each supplier is configured with its own
set of enterprise applications and WebLogic Process Integrator.

WebLogic Server

WebLogic Server

WebLogic Collaborate

C-Hub

Collaboration
Space

WebLogic Server

C-Enabler

Trading Partner
(supplier)

WebLogic Process
Integrator

Market Application

Dispatch

PricingInventory

Shipping

CatalogInventory

Market Application

WebLogic Server

C-Enabler

Trading Partner
(buyer)

Market Application

Finance

Purchasing
HR

C-Enabler

Trading Partner
(supplier)

WebLogic Process
Integrator
1-24 BEA WebLogic Collaborate Getting Started

Using WebLogic Collaborate — the End-to-End View
Registering Trading Partners for the C-Space

After the conversation definitions for a c-space have been created, the c-hub
administrator can register trading partners in the c-space. Registering a trading partner
in a c-space requires the following:

1. The c-hub administrator and the trading partner need a means to communicate,
whether via email, a solicitation on a Web page, or whatever is appropriate for the
business purpose of the c-space, to match a trading partner to a role in a
conversation definition.

2. The c-hub administrator uses the C-Hub Administration Console to subscribe the
trading partner to one or more specific roles in one or more conversation
definitions.

3. The trading partner needs the c-enabler software. The trading partner can
download the c-enabler from the BEA Web site, or from the c-hub administrator.
If the trading partner platform includes WebLogic Process Integrator, the
software sent by the c-hub administrator typically includes the local WebLogic
Process Integrator workflow template definitions for each role to which the
trading partner is subscribed. The trading partner also needs to have the software
and business processes required to implement its roles.

In addition to completing the preceding steps, each trading partner also needs to have
an application that:

n Interacts with the c-enabler

n Implements the processes defined in their local flows

The application may be provided by the c-hub administrator and configured by the
trading partner, or may be created and configured entirely by the trading partner.

Creating the Trading Partner Application

The trading partner application is the implementation of the local business processes
required to participate in the c-space conversations. The requirements for the
application vary depending on:
BEA WebLogic Collaborate Getting Started 1-25

1 Overview
n Whether the trading partner applications invokes the c-enabler directly, via the
Enabler API, to participate in a conversation, or is integrated with WebLogic
Process Integrator.

n Whether the trading partner’s role is to initiate a conversation, or participate in
an existing conversation

The trading partner application must implement the following functionality:

n Populating the outgoing business messages with the information required for the
conversation

n Extracting information from the incoming business messages that have been
received by the c-enabler

n The business process that is needed for the conversation, which typically
includes access to back-end applications

About Trading Partner Applications That Invoke the C-Enabler Directly

The c-enabler has an API that provides trading partner applications with access to the
following basic capabilities:

n Joining the c-space

n Registering conversation handlers

n Creating conversations

n Sending and receiving messages

n Terminating conversations

The trading partner application can use these APIs to implement the business logic for
performing these tasks directly in Java.

For complete details about implementing applications that invoke the c-enabler
directly, see Using XOCP C-Enabler Applications to Exchange Business Messages in
the BEA WebLogic Collaborate Developer Guide.
1-26 BEA WebLogic Collaborate Getting Started

Using WebLogic Collaborate — the End-to-End View
About Trading Partner Applications Integrated with WebLogic Process
Integrator

A trading partner whose c-enabler software is integrated with WebLogic Process
Integrator needs to create an application that does the following:

n Invoke the workflow template to start the workflow instance

n Provide data for outgoing messages

n Process incoming messages

n Link to back-end applications, as appropriate

As mentioned earlier, the logic flow of the trading partner application depends on
whether the trading partner’s role is to initiate a conversation or to participate in a
conversation initiated by someone else. A powerful way to implement a c-space is for
the c-hub owner to create workflows that trading partners, who are subscribed to roles
as participants in a conversation, can download from the c-hub administrator. These
trading partners can then implement the business logic required to connect the
workflows to their back-end applications, including other local workflows.

For complete details about using WebLogic Process Integrator to exchange business
messages in the WebLogic Collaborate environment, see Using Workflows to
Exchange Business Messages in the BEA WebLogic Collaborate Developer Guide.

Configuring the C-Hub

Before any trading partner activity can take place, the c-space administrator needs to
configure the c-hub. Configuring the c-hub, which runs in a WebLogic Server instance,
is a set of tasks in which you configure the following:

n WebLogic Server, to set values specific to the environment in which the c-hub
runs

n The c-hub start-up classes

n The c-hub repository, which primarily involves setting up the JDBC connection
to the database in which the repository exists

n The Java Message Service (JMS) queue
BEA WebLogic Collaborate Getting Started 1-27

1 Overview
n The C-Hub Administration Console

n C-space, which includes associating trading partners with conversation
definitions

n Security

n Persistence and recovery of business messages

n Business protocols used in the c-spaces

The c-space is the key entity that links trading partners with specific conversation
definitions and roles. Each c-space has a URL that trading partners use to access the
c-space. The URL also indicates the business protocol for the conversation in which
the trading partner’s role is subscribed.

For complete information about configuring the c-hub and c-spaces, see the BEA
WebLogic Collaborate C-Hub Administration Guide.

Configuring the C-Enabler

To participate in conversations coordinated by the c-hub, each trading partner needs to
create a c-enabler session between their c-enabler and the c-hub. Each c-enabler
session allows the trading partner to exchange business messages with other trading
partners in a c-space.

Each c-enabler requires an XML configuration file, which specifies:

n C-enabler name, URL, and session name

n Trading partner name, as registered in the c-space, and security information

n URL of the c-hub with which the c-enabler interacts

For complete information about creating the c-enabler XML configuration file, see the
BEA WebLogic Collaborate C-Enabler Administration Guide.
1-28 BEA WebLogic Collaborate Getting Started

Using WebLogic Collaborate — the End-to-End View
Starting the Conversation

The trading partner in the role of buyer begins a conversation. The buyer’s
configuration is shown in the following figure.

When the buyer’s application starts, the following events occur:

1. The market application, shown in this figure as MarketApplication.java,
invokes the C-Enabler API to start a c-enabler session and a conversation. Because
of the buyer’s role in the conversation definition, the buyer is a conversation
initiator. (This has an impact on the code that needs to be implemented in the
market application, as opposed to a trading partner in the role of conversation
participant, described in “Receiving a Business Message and Responding Through
WebLogic Process Integrator” on page 1-33.)

When the trading partner creates an XOCP conversation, the trading partner
becomes enlisted in the conversation.

2. The market application constructs an XML business document containing a quote
request to be sent to trading partners in the role of “supplier.” The business
document uses the appropriate DTDs specified in the conversation definition to
which the trading partner is subscribed.

"Buyer" Trading Partner

WebLogic Server

C-Enabler

MarketApplication.java

Finance

Purchasing
HR

Enabler API
BEA WebLogic Collaborate Getting Started 1-29

1 Overview
3. The market application invokes the C-Enabler API to create an XOCP business
message containing the XML business document created in step 2.

4. The market application sends the XML business message through the transport
service to the c-hub, and then waits for a system reply from the c-hub.

The specific replies that the application may receive depends on the message
Qualities of Service (QoS) settings that have been established. For example, with
the lowest QoS, there is no reply and the return is immediate. With the highest
QoS, the reply contains the list of trading partners to whom the message has
been delivered. In the latter case, the system reply arrives only when one of the
following events has occurred:

l All trading partners have received the business message.

l The message has expired.

Broadcasting a Message to Trading Partners

When the buyer’s XOCP business message arrives at the c-hub, the c-hub messaging
service executes the sequence shown in the following figure:
1-30 BEA WebLogic Collaborate Getting Started

Using WebLogic Collaborate — the End-to-End View
The preceding figure shows that the messaging service in the c-hub is made up of three
components: the transport service, the scheduling service, the routing service. Among
these services are decoder, encoder, router, and filter modules that do specialized
processing of the business messages, described in the following sequence:

1. The transport service receives and passes the message to the appropriate decoder
module.

2. The decoder:

l Processes the protocol-specific headers, creating the message envelope

C-Hub Messaging Service

Routing Service

Scheduling Service

Transport Service

FilterRouter

Trading Partner 1 Trading Partner 2

Incoming Message Outgoing Message

1

2

3

4

5

6

7

8

9

DecoderDecoder EncoderEncoder
BEA WebLogic Collaborate Getting Started 1-31

1 Overview
l Identifies the sending trading partner (in this case, the buyer)

l Prepares a system reply to be returned to the buyer, which is returned
immediately if this QoS is requested

l Passes the business message to the scheduling service

3. The scheduling service queues the business message for the router.

4. The router processes the router logic plug-ins that are configured for the current
conversation definition. In the case of an XOCP business message, at a minimum
the BEA-provided XOCP router logic plug-ins are processed. The XOCP router
logic plug-in typically consists of a sequence of Xpath expressions that are
maintained in the repository. The purpose of an Xpath expression in the XOCP
router logic plug-in is to add or remove recipients to the list of trading partners
who will receive the message.

If the incoming business message uses the RosettaNet protocol, BEA provides a
RosettaNet router logic plug-in to process routing operations, such as matching
the DUNS number of the incoming business message and matching that number
to a trading partner identity in the repository and updating the message header.

Note that the c-hub administrator can add one or more user-written logic
plug-ins to the router — for example, to implement a billing function. A series
of such plug-ins in the router is called a router chain. For information about
creating logic plug-ins, see Developing Logic Plug-Ins in the BEA WebLogic
Collaborate Developer Guide. For information about configuring the router
chain, including adding or removing logic plug-ins and specifying Xpath
expressions, see Routing and Filtering XOCP Business Messages in the BEA
WebLogic Collaborate C-Hub Administration Guide.

5. The routing service performs final validation of the message recipients, and
queues the message for the filter chain of the selected recipients.

6. The filter processes the filter logic plug-ins that are configured for the current
conversation definition. In the case of an XOCP business message, at a minimum
the BEA-provided XOCP filter logic plug-ins are processed. As with the router,
the XOCP filter logic plug-in typically consists of a sequence of Xpath
expressions that are maintained in the repository. The purpose of an Xpath
expression in the XOCP filter logic plug-in is to accept or reject a business
message intended for a particular recipient.
1-32 BEA WebLogic Collaborate Getting Started

Using WebLogic Collaborate — the End-to-End View
If the outgoing business message uses the RosettaNet protocol, BEA provides a
RosettaNet filter logic plug-in for completeness, although it does not perform
any operations.

Note that the c-hub administrator can add one or more user-written logic
plug-ins to the filter. A series of such plug-ins in the filter is called a filter chain.
For information about creating logic plug-ins, see Developing Logic Plug-Ins in
the BEA WebLogic Collaborate Developer Guide. For information about
configuring the filter chain, including adding or removing logic plug-ins and
specifying Xpath expressions, see Routing and Filtering XOCP Business
Messages in the BEA WebLogic Collaborate C-Hub Administration Guide.

7. The scheduling service performs any Quality of Service functions on the business
message, as required, and passes the business message to the encoder.

8. The encoder prepares the business message for the transport service.

9. The transport service sends the business message onto the recipient trading
partners. This causes the following two events to occur:

a. The recipient trading partners are enlisted in the conversation.

b. The system reply is sent back to the originating trading partner if the QoS
requires it.

Receiving a Business Message and Responding Through
WebLogic Process Integrator

In this scenario, the suppliers each have a configuration that includes the WebLogic
Process Integrator software, as shown in the following figure. Note that the WebLogic
Process Integrator software is not a mandatory component of a trading partner
platform, but it is shown in this figure as an example.

Regardless of whether a trading partner is configured with WebLogic Process
Integrator, in order to be invoked in conversations, the c-enabler for a trading partner
must be running, have joined the c-space, and be registered for the conversation. (Note
that “The C-Hub Sending a Response to the Buyer” on page 1-35 describes a scenario
in which a c-enabler that does not use WebLogic Process Integrator receives a
message.)
BEA WebLogic Collaborate Getting Started 1-33

1 Overview
When the business document arrives at each supplier’s c-enabler, the following events
occur:

1. The WebLogic Process Integrator process engine, which is a subscriber to
WebLogic Collaborate events, receives the business document and instantiates the
workflow instance that matches the conversation definition identified in the
business message.

2. The workflow instance starts and processes the incoming business document by
passing it to a user-written Java message manipulator class, ExtractData.java,
which extracts the information from the incoming XML business document and
passes that information back to the workflow instance.

3. Because approving the quote request requires human intervention, the workflow
instance adds a task to the Worklist. The use of the Worklist is not mandatory. A
trading partner has the flexibility to create whatever user interface applications
are appropriate for its business processes that require human intervention.

4. The human user at the supplier site starts the worklist, double-clicks the task, and
approves the request.

"Supplier" Trading Partner

WebLogic Server

C-Enabler

Market Application

Dispatch

Inventory

Pricing

Worklist

Workflow Instance

Studio

WebLogic Process Integrator
Process Engine

WLPI
Repository

CreateDocument.java

ExtractData.java
1-34 BEA WebLogic Collaborate Getting Started

Using WebLogic Collaborate — the End-to-End View
5. The workflow instance invokes another user-written Java message manipulator
class, CreateDocument.java, to create an XML business document containing
the response.

6. The message manipulator class returns the business document to the workflow
instance.

7. The workflow instance passes the business document to the supplier’s c-enabler.

8. The c-enabler prepares the XOCP protocol metadata for the business message
containing the XML document, and sends it to the c-hub.

The C-Hub Sending a Response to the Buyer

The c-hub processes the supplier’s response similar to how the c-hub processed the
buyer’s business message, applying Xpath routing and filtering expressions as
necessary.

When the buyer’s c-enabler receives the XOCP business message, the following
events occur:

1. The c-enabler passes the business message to the market application via the
conversation handler. The application is invoked asynchronously.

2. The conversation handler passes the business message to the local Java class,
ProcessPriceResponse.java.

3. The Java class extracts the data from the business message, and returns the data
to the market application.

4. The market application may invoke the C-Enabler API to terminate the
conversation or send another message. If the market application terminates the
conversation, the following events occur:

a. The c-enabler sends the termination to the c-hub.

b. The c-hub propagates the termination notice to all the trading partners enlisted
in the conversation.

c. Each trading partner receives the termination notice from the c-hub.
BEA WebLogic Collaborate Getting Started 1-35

1 Overview
This concludes the end-to-end view of WebLogic Collaborate. The next section
describes the other topics covered in this document and the rest of the WebLogic
Collaborate documentation set.

Documentation Roadmap

The following topics are described in this document and throughout the entire
WebLogic Collaborate documentation set:

n Installing the WebLogic Collaborate software — See the BEA WebLogic
Collaborate Installation Guide for complete details about the installation
prerequisites, installation steps, and installation verification instructions.

n WebLogic Collaborate Tour — See the tour to get a high-level description of the
WebLogic Collaborate architecture and how to build and run an example
furniture exchange.

n Setting up the WebLogic Collaborate environment — See Chapter 2, “Setting Up
the WebLogic Process Integrator Environment,” in this document for instructions
on setting up WebLogic Collaborate to work with WebLogic Process Integrator.
You need to complete this step to run the WebLogic Process Integrator-based
example.

n Example applications — See Chapter 3, “Running the WebLogic Process
Integrator Verifier Example,” and Chapter 4, “Using Logic Plug-Ins for Billing,”
in this document for instructions on building and running two WebLogic
Collaborate example applications.

n Configuration and monitoring tools — See the BEA WebLogic Collaborate
C-Hub Administration Guide and the BEA WebLogic Collaborate C-Enabler
Administration Guide for complete documentation on using the administration
service to perform configuration, administration, and monitoring tasks associated
with running, respectively, a c-space and a trading partner platform.

n Online help — When you use the C-Hub Administration Console or the
C-Enabler Administration Console, click on the Help menu to obtain full,
context-sensitive online help.
1-36 BEA WebLogic Collaborate Getting Started

Documentation Roadmap
n Developing applications — See the BEA WebLogic Collaborate Developer
Guide for a details about building and deploying trading partner, logic plug-in,
and administration applications for the WebLogic Collaborate environment.

n Programmer reference documentation — See the BEA WebLogic Collaborate
Javadoc for reference information on all the API packages provided with both
WebLogic Collaborate and WebLogic Process Integrator.

n WebLogic Process Integrator documentation:

l BEA WebLogic Process Integrator Studio User Guide explains how to use
Studio to design workflows.

l BEA WebLogic Process Integrator Worklist Guide explains how to use
Worklist to view, perform, and work with tasks that are currently the roles to
which you are subscribed.

l BEA WebLogic Process Integrator Tutorial provides a tutorial on using the
WebLogic Process Integrator software.
BEA WebLogic Collaborate Getting Started 1-37

1 Overview
1-38 BEA WebLogic Collaborate Getting Started

CHAPTER
2 Setting Up the
WebLogic Process
Integrator
Environment

The following sections explain how to set up the WebLogic Process Integrator
environment, so that you can run WebLogic Process Integrator Studio:

n Configuring WebLogic Collaborate for WebLogic Process Integrator

n Troubleshooting Your WebLogic Process Integrator Configuration

n Starting WebLogic Process Integrator Studio

Before beginning the procedures in this chapter, run the WebLogic Collaborate
installation verification application, verifier, described in the BEA WebLogic
Collaborate Installation Guide.
Getting Started 2-1

2 Setting Up the WebLogic Process Integrator Environment
Configuring WebLogic Collaborate for
WebLogic Process Integrator

To configure your WebLogic Collaborate environment so that it operates with
WebLogic Process Integrator, you need to verify WebLogic Process Integrator Studio
and Weblogic Server run-time requirements, as described in this section.

1. Open a command window, and change to the following directory:

Windows

%WLC_HOME%\enabler

UNIX

$WLC_HOME/enabler

2. Open the weblogic.properties file. This file is configured during the
installation process to match your environment. This step describes how to
confirm that the settings are correct for your environment.

The proper repository pool should be uncommented and configured to the
database you selected at install time. The weblogic.ejb.deploy property and
the weblogic.jdbc.connectionPool.wlpiPool property configurations
should match your environment. Verify the configurations as follows:

l Find the text in the weblogic.properties file that specifies the
weblogic.ejb.deploy property. The following extract from the file
displays the weblogic.ejb.deploy property:

weblogic.ejb.deploy=\
D:/bea/wlcollaborate1.0/lib/wlpi-ejb.jar,\
D:/bea/wlcollaborate1.0/lib/wlpi-wlc-ejb.jar,\
D:/bea/wlcollaborate1.0/lib/wlpi-cc-ejb.jar

Ensure that the pathname is correct for the WebLogic Collaborate lib
directory on your system. For this example, the WebLogic Collaborate
software is installed in D:/bea/wlcollaborate1.0.

Note: The weblogic.properties file uses forward slash format in pathnames,
on UNIX and NT systems.

l Find the text in the weblogic.preperties file that specifies the
weblogic.jdbc.connectionPool.wlpiPool property.
2-2 Getting Started

Configuring WebLogic Collaborate for WebLogic Process Integrator
The following extract from the file shows the property settings for the
supported databases:

##Oracle##
##Oracle##weblogic.jdbc.connectionPool.wlpiPool=\
##Oracle##url=jdbc:weblogic:oracle,\
##Oracle##driver=weblogic.jdbc.oci.Driver,\
##Oracle##loginDelaySecs=1,\
##Oracle##initialCapacity=1,\
##Oracle##maxCapacity=10,\
##Oracle##capacityIncrement=1,\
##Oracle##allowShrinking=true,\
##Oracle##shrinkPeriodMins=15,\
##Oracle##refreshTestMinutes=10,\
##Oracle##props=user=<ORACLE_USER>;password=<ORACLE_PASSWORD>;
server=<ORACLE_SERVICENAME>

Cloudscape settings

weblogic.jdbc.connectionPool.wlpiPool=\

 url=jdbc:cloudscape:wlpidb,\
 driver=COM.cloudscape.core.JDBCDriver,\
 loginDelaySecs=1,\
 initialCapacity=1,\
 maxCapacity=10,\
 capacityIncrement=1,\
 allowShrinking=true,\
 shrinkPeriodMins=15,\
 refreshTestMinutes=10

SQL Server settings (MSSQL)

##MSSQL##weblogic.jdbc.connectionPool.wlpiPool=\
##MSSQL##url=jdbc:weblogic:mssqlserver4,\
##MSSQL##driver=weblogic.jdbc.mssqlserver4.Driver,\
##MSSQL##loginDelaySecs=1,\
##MSSQL##initialCapacity=1,\
##MSSQL##maxCapacity=10,\
##MSSQL##capacityIncrement=1,\
##MSSQL##allowShrinking=true,\
##MSSQL##shrinkPeriodMins=15,\
##MSSQL##refreshTestMinutes=10, \
##MSSQL## testTable=dual,\
##MSSQL##props=user=<MSSQL_USER>;password=<MSSQL_PASSWORD>;
server=<MSSQL_HOSTNAME>

The preceding extract shows that during installation this weblogic.properties
file was configured for the Cloudscape database (the Cloudscape
Getting Started 2-3

2 Setting Up the WebLogic Process Integrator Environment
weblogic.jdbc.connectionPool.wlpiPool property is uncommented).
Confirm that the property corresponding to the database you are using is
uncommented, and that the other database properties are commented.

Within the weblogic.jdbc.connectionPool.wlpiPool property, confirm that
the configuration is correct for the database you are using:

l If you are using an Oracle database, confirm that <ORACLE_USER>,
<ORACLE_PASSWORD>, and <ORACLE_SERVICENAME> (shown in bold in the
extract above) are replaced by the user ID, password, and
ORACLE_SERVICENAME values for your system. ORACLE_SERVICENAME is
defined in the Oracle client tnsnames.ora file and is usually the Oracle
system ID.

l If you are using a Microsoft SQL Server database, confirm that
<MSSQL_USER>, <MSSQL_PASSWORD>, and <MSSQL_HOSTNAME> (shown in
bold in the extract above) are replaced by the appropriate user ID, password,
and Microsoft SQL Server host name values, respectively. (MSSQL_HOSTNAME
may take one of the following forms: DATABASE_NAME or
DATABASE_NAME@HOST_NAME.)

Note: The Cloudscape database is a single-user database and requires no user ID
and password configurations in the
weblogic.jdbc.connectionPool.wlpiPool property.

3. Close the weblogic.properties file.

4. Change to the directory where the WebLogic Process Integrator scripts are
installed:

Windows

%WLC_HOME%\wlpi

UNIX

 $WLC_HOME/wlpi
2-4 Getting Started

Configuring WebLogic Collaborate for WebLogic Process Integrator
5. Create the WebLogic Process Integrator repository database tables by executing
one of the following commands:

l Oracle

Windows

prompt> createOracle.cmd

UNIX

prompt> . ./createOracle.sh

l Cloudscape

Windows

prompt> createCloud.cmd

UNIX

prompt> . ./createcloud.sh

l Microsoft SQL Server (Windows)

prompt> createMSSQL.cmd

Note: These scripts use DDL files (wlpi_oracle.ddl, wlpi_cloud.ddl, or
wlpi_mssql.ddl). By default, the createdatabase.xx scripts do not
drop tables. If you have existing tables that you wish to drop, edit the
appropriate DDL file.

After you execute these scripts, you may see the SQL prompt. Exit from SQL
before proceeding to the next step.

6. Change to the directory where you installed WebLogic Collaborate:

Windows

%WLC_HOME%

UNIX

$WLC_HOME
Getting Started 2-5

2 Setting Up the WebLogic Process Integrator Environment
7. Ensure that the setenv.sh script defines the following environment variables.

8. Execute the setenv script to set the WebLogic Collaborate environment
variables:

Windows

prompt> setEnv.cmd

UNIX

prompt> . ./setenv.sh

9. Change directory to the enabler subdirectory and start WebLogic Server:

Windows

prompt> cd enabler

prompt> startweblogic.cmd

UNIX

prompt> cd enabler

prompt> ./startwebLogic.sh

Note: WebLogic Server must be running when you start WebLogic Process
Integrator Studio (refer to “Starting WebLogic Process Integrator Studio” on
page 2-7).

Variable Definition

JAVA_HOME The directory path where you installed the JDK software. For example:

JAVA_HOME=/usr/local/JDK1.2.2

WL_HOME The directory path where you installed the WebLogic Server software.
For example:

WL_HOME=/usr/local/weblogic

WLC_HOME The directory path where you installed the WebLogic Collaborate
software. For example:

WLC_HOME=/usr/local/WLCollaborate
2-6 Getting Started

Troubleshooting Your WebLogic Process Integrator Configuration
Troubleshooting Your WebLogic Process
Integrator Configuration

If you observe binding errors on the listening port, make sure another instance of
WebLogic Server is not running using the same port (that is, another command window
with the startwebLogic script running).

If WebLogic Server is unable to create a connection pool, as indicated by exceptions
displayed in the command window, check that the connection pool property,
weblogic.jdbc.connectionPool.wlpiPool, is specified correctly.

If you continue to have a problem, make sure that the database server is running and
accessible, and that you have the appropriate permissions.

Starting WebLogic Process Integrator Studio

WebLogic Process Integrator Studio is the workflow editing component of the
WebLogic Process Integrator software, and can be used to create the workflows for
conversations and business processes in the WebLogic Collaborate environment.

Before using WebLogic Process Integrator in your WebLogic Collaborate
environment, complete the following procedure to verify that you can start WebLogic
Process Integrator Studio and connect to WebLogic Server.

1. Complete the procedure described in “Configuring WebLogic Collaborate for
WebLogic Process Integrator” on page 2-2, and ensure that WebLogic Server is still
running before you proceed to step 2.

2. Open a new command window, change to the directory where WebLogic
Collaborate is installed, and execute the script to set the WebLogic Collaborate
environment variables:

Windows

prompt> cd %WLC_HOME%

prompt> setEnv.cmd
Getting Started 2-7

2 Setting Up the WebLogic Process Integrator Environment
UNIX

prompt> cd $WLC_HOME

prompt> . ./setenv.sh

3. Change to the directory where the WebLogic Process Integrator scripts are
installed:

Windows

%WLC_HOME%\wlpi

UNIX

$WLC_HOME/wlpi

4. Execute the following script, which starts WebLogic Process Integrator Studio
and displays the WebLogic Process Integrator Studio login dialog box:

Windows

prompt> Studio.cmd

UNIX

prompt> . ./studio.sh

The WebLogic Process Integrator Studio login dialog box is displayed.
2-8 Getting Started

Starting WebLogic Process Integrator Studio
5. Enter the BEA user name (bea) and password (12345678) in the dialog box.

6. In the Server text field, enter the following:

t3://localhost:7501

where localhost represents the name of your machine.

7. Click OK.

If you are unable to log in:

n Check for errors in the command window in which you started WebLogic
Process Integrator Studio.

n See the section “Troubleshooting Your WebLogic Process Integrator
Configuration” on page 2-7.

n Make sure that the WebLogic Server instance is still running.

n Make sure you ran the script (createOracle, createCloud, or createMSSQL)
to create the WebLogic Process Integrator database tables. Refer to “Configuring
WebLogic Collaborate for WebLogic Process Integrator.” (See step 5.)
Getting Started 2-9

2 Setting Up the WebLogic Process Integrator Environment
2-10 Getting Started

CHAPTER
3 Running the WebLogic
Process Integrator
Verifier Example

The WebLogic Process Integrator Verifier example application (wlpiverifier), uses
WebLogic Process Integrator workflows to exchange business messages in the
WebLogic Collaborate environment. This example application demonstrates how
WebLogic Process Integrator workflows are integrated into the WebLogic Collaborate
environment, and how data is passed between two WebLogic Process Integrator
partner workflows (trading partners) in a conversation.

The following sections describe how to run the Verifier example, and how WebLogic
Process Integrator workflows are integrated in the WebLogic Collaborate
environment:

n Setting Up and Running the WebLogic Process Integrator Verifier Example

n Understanding the WebLogic Process Integrator Verifier Example

Note: An installation Verifier example is also provided with WebLogic Collaborate
to verify that the product is correctly installed. Before running the WebLogic
Process Integrator Verifier example, run the installation Verifier example to
ensure that your WebLogic Collaborate environment is configured so that the
procedures described in the following sections will work. For information on
how to run the installation Verifier example, refer to the BEA WebLogic
Collaborate Installation Guide.
BEA WebLogic Collaborate Getting Started 3-1

3 Running the WebLogic Process Integrator Verifier Example
Setting Up and Running the WebLogic
Process Integrator Verifier Example

You can configure the WebLogic Process Integrator Verifier example to run on one or
two instances of WebLogic Server. Execute it on two instances of WebLogic Server
before attempting to run it on a single instance.

Running the Example on Two WebLogic Server Instances

The WebLogic Process Integrator Verifier example is in the following location:

Windows

%WLC_HOME%\examples\wlpiverifier

UNIX

$WLC_HOME/examples/wlpiverifier

This example is configured to run on two instances of WebLogic Server. In this
example, you start the c-hub on one instance of WebLogic Server, and two c-enablers
on the second instance.

Complete the following procedures to set up and run the Verifier example:

n Step 1: Configuring WebLogic Collaborate for WebLogic Process Integrator

n Step 2: Building the Example

n Step 3: Starting the C-Hub

n Step 4: Starting the C-Enabler

n Step 5: Importing and Deploying the Workflow Templates

n Step 6: Running the Example
3-2 BEA WebLogic Collaborate Getting Started

Setting Up and Running the WebLogic Process Integrator Verifier Example
Step 1: Configuring WebLogic Collaborate for WebLogic Process Integrator

1. Configure and bring up WebLogic Server with WebLogic Process Integrator,
according to the procedure in “Configuring WebLogic Collaborate for WebLogic
Process Integrator” on page 2-2.

This ensures that your environment is configured to run WebLogic Process
Integrator and WebLogic Server.

2. Shut down WebLogic Server before proceeding to “Step 2: Building the
Example.” (Type Ctrl+C in the command window where WebLogic Server is
running.)

Step 2: Building the Example

To build the WebLogic Process Integrator Verifier example application, complete the
following procedure:

1. Open a new command window, change directory to the location where WebLogic
Collaborate is installed, and execute the script to set the WebLogic Collaborate
environment variables:

Windows

 prompt> cd %WLC_HOME%

prompt> setEnv.cmd

UNIX

prompt> cd $WLC_HOME

prompt> . ./setenv.sh

2. Build the example to populate the compiled classes and required scripts:

Windows

prompt> cd %WLC_HOME%\examples\wlpiverifier

prompt> build.cmd

UNIX

prompt> cd $WLC_HOME/examples/wlpiverifier

prompt> . ./build.sh
BEA WebLogic Collaborate Getting Started 3-3

3 Running the WebLogic Process Integrator Verifier Example
Step 3: Starting the C-Hub

To start WebLogic Server and the c-hub, execute the following commands:

Windows

prompt> cd %WLC_HOME%\hub

prompt> startweblogic.cmd

UNIX

prompt> cd $WLC_HOME/hub

prompt> . ./startweblogic.sh

Note: Make sure WebLogic Server is still running before proceeding to “Step 5:
Importing and Deploying the Workflow Templates.”

Step 4: Starting the C-Enabler

1. Open a new command window, change directory to the location where WebLogic
Collaborate is installed, and execute the script to set the WebLogic Collaborate
environment variables:

Windows

 prompt> cd %WLC_HOME%

prompt> setEnv.cmd

UNIX

prompt> cd $WLC_HOME

prompt> . ./setenv.sh

2. Change directory to where the c-enabler is located:

Windows

%WLC_HOME%\enabler

UNIX

$WLC_HOME/enabler
3-4 BEA WebLogic Collaborate Getting Started

Setting Up and Running the WebLogic Process Integrator Verifier Example
3. Open the weblogic.properties file and uncomment the lines indicated in bold
in the following listing:

The following are used for the WLPIVerifier example
#
#weblogic.system.startupClass.WlpiVerifierCaller=com.bea.b2b.wlpi.Start
#weblogic.system.startupArgs.WlpiVerifierCaller=ConfigFile=xml/enablers.xml,Ses
sionName=caller-session,\
#User=bea,Password=12345678,OrgName=BEA

#weblogic.system.startupClass.WlpiVerifierCallee=com.bea.b2b.wlpi.Start
#weblogic.system.startupArgs.WlpiVerifierCallee=ConfigFile=xml/enablers.xml,Ses
sionName=callee-session,\
#User=bea,Password=12345678,OrgName=BEA

#weblogic.httpd.register.WlpiVerifier=examples.wlpiverifier.WlpiVerifierServlet
end of WLPIVerifier example

4. Start WebLogic Server:

Windows

prompt> startweblogic.cmd

UNIX

prompt> . ./startweblogic.sh

Note: You may get warning messages in the WebLogic Server log indicating that
there are no active WebLogic Process Integrator templates for session
caller-session in organization BEA. You can ignore these messages and
continue to “Step 5: Importing and Deploying the Workflow Templates” on
page 3-5.

For more information about configuring the c-enabler, see the BEA WebLogic
Collaborate C-Enabler Administration Guide.

Step 5: Importing and Deploying the Workflow Templates

A WebLogic Process Integrator workflow template is a folder or a container for
workflow template definitions. Each workflow template can hold one or more
WebLogic Process Integrator workflow template definitions.
BEA WebLogic Collaborate Getting Started 3-5

3 Running the WebLogic Process Integrator Verifier Example
To import the workflow templates from the templates directory into WebLogic
Process Integrator Studio, and deploy them in WebLogic Process Integrator Studio,
complete the following procedure:

1. Open a new command window, change to the directory where WebLogic
Collaborate is installed, and execute the script to set the WebLogic Collaborate
environment variables:

Windows

prompt> cd %WLC_HOME%

prompt> setEnv.cmd

UNIX

prompt> cd $WLC_HOME

prompt> . ./setenv.sh

2. Change to the directory where WebLogic Process Integrator scripts are installed:

Windows

%WLC_HOME%\wlpi

UNIX

$WLC_HOME/wlpi

3. Execute the following script to start WebLogic Process Integrator Studio, and
display the WebLogic Process Integrator Studio login dialog box:

Windows

prompt> Studio.cmd

UNIX

prompt> . ./studio.sh
3-6 BEA WebLogic Collaborate Getting Started

Setting Up and Running the WebLogic Process Integrator Verifier Example
The WebLogic Process Integrator Studio login dialog box is displayed.

Figure 3-1 Logon to WebLogic Process Integrator Dialog Box

4. Enter the BEA user name (bea) and password (12345678) in the dialog box.

5. In the Server text field, enter the following:

t3://localhost:7501

where localhost represents the name of your machine.

6. Click OK to log in to WebLogic Process Integrator Studio and display the
WebLogic Process Integrator Studio main window.
BEA WebLogic Collaborate Getting Started 3-7

3 Running the WebLogic Process Integrator Verifier Example
Figure 3-2 WebLogic Process Integrator Studio Main Window

7. Right-click on Templates, and click Create Template to display the Template
Properties dialog box.

Figure 3-3 Template Properties Dialog Box

8. Enter the workflow template name (wlpiverifier_init) and click OK.

9. Repeat steps 8 and 9 to generate a second workflow template named
wlpiverifier_partner.

The WebLogic Process Integrator Studio screen displays the two workflow
template folders you created.
3-8 BEA WebLogic Collaborate Getting Started

Setting Up and Running the WebLogic Process Integrator Verifier Example
10. Right-click on the wlpiverifier_init workflow template folder and choose
Import Template Definition.

Figure 3-4 WebLogic Process Integrator Import Template Definitions Menu

11. Navigate to the %WLC_HOME%\examples\wlpiverifier\templates directory
and select the appropriate workflow template:

l wlpiverifier_init.xml—for the wlpiverifier_init workflow

l wlpiverifier_partner.xml—for the wlpiverifier_partner workflow

The templates are imported from the templates directory into WebLogic
Process Integrator Studio, and displayed as subfolders under the
wlpiverifier_init and wlpiverifier_partner folders. The workflow
template definitions subfolders are identified by an effective date (see
Figure 3-5).
BEA WebLogic Collaborate Getting Started 3-9

3 Running the WebLogic Process Integrator Verifier Example
Figure 3-5 WebLogic Process Integrator Workflow Template Folders

12. Right-click on the wlpiverifier_init subfolder (the folder identified by the
effective date (Figure 3-5)) and choose Open to display the workflow template
definition in WebLogic Process Integrator Studio.

Figure 3-6 WebLogic Process Integrator Workflow Template Definition
3-10 BEA WebLogic Collaborate Getting Started

Setting Up and Running the WebLogic Process Integrator Verifier Example
13. Right-click on the wlpiverifier_init subfolder (the folder identified by the
effective date (Figure 3-5)) and choose Properties from the drop-down menu.

The Template Definition dialog box is displayed.

Figure 3-7 Template Definition Dialog Box

14. Select the Active check box and click OK.
BEA WebLogic Collaborate Getting Started 3-11

3 Running the WebLogic Process Integrator Verifier Example
15. Right-click on the wlpiverifier_init subfolder and choose Save.

Figure 3-8 Save Workflow Definition Menu

The Template Deployment dialog box is displayed.

Note: This dialog box is displayed only if matching templates were not found by
the c-enabler when it started. In that case, you would have seen error
messages when you started the c-enabler (see “Step 4: Starting the
C-Enabler” on page 3-4).

Figure 3-9 Template Deployment Dialog Box

16. Click Yes.

The steps to import and deploy the wlpiverifier_init workflow template are
complete.
3-12 BEA WebLogic Collaborate Getting Started

Setting Up and Running the WebLogic Process Integrator Verifier Example
17. Repeat steps 11 through 17 to import and deploy the wlpiverifier_partner
workflow template.

18. Exit the WebLogic Process Integrator Studio.

Step 6: Running the Example

To run the WebLogic Process Integrator Verifier example application, complete the
following procedure:

1. Make sure the c-hub and c-enabler are still running (see step 3 and step 4 above).

2. Invoke a Web browser with the following URL:

http://localhost:7501/wlpiVerifier.html

where localhost represents the name of your machine.

The HTML page used to start the example application is displayed in your
browser.
BEA WebLogic Collaborate Getting Started 3-13

3 Running the WebLogic Process Integrator Verifier Example
Figure 3-10 WebLogic Process Integrator Verifier Example Start Page

3. Click Submit to start the wlpiverifier_init workflow.

The application starts. If the application executes successfully, a report
containing the results is displayed in the browser.
3-14 BEA WebLogic Collaborate Getting Started

Setting Up and Running the WebLogic Process Integrator Verifier Example
Figure 3-11 WebLogic Process Integrator Verifier Example Report Page

4. If errors occur, check the WebLogic Server log for more information.
BEA WebLogic Collaborate Getting Started 3-15

3 Running the WebLogic Process Integrator Verifier Example
Running the Example on a Single WebLogic Server
Instance

When you configure your system to execute the example application on a single
instance of WebLogic Server, the c-hub and two c-enablers are colocated on that same
instance.

Make sure that the following conditions are met before running the colocated example:

n You completed the execution of the WebLogic Process Integrator Verifier
example application on two instances of WebLogic Server successfully (as
described in “Setting Up and Running the WebLogic Process Integrator Verifier
Example” on page 3-2).

n If you ran a logic plug-ins example application before running the WebLogic
Process Integrator Verifier example, use one of the following procedures to
prepare your system for the WebLogic Process Integrator Verifier example
application:

l Use the WebLogic Collaborate C-Hub Administration Console to remove the
MessageCounter and CheckAccount plug-ins from the XOCP protocol. For
details about using the C-Hub Administration Console, refer to Working
With Logic Plug-Ins in the BEA WebLogic Collaborate C-Hub
Administration Guide.

l Initialize the WebLogic Collaborate c-hub database, and reload the c-hub
WebLogic Process Integrator Verifier example application configuration.

Warning: This procedure deletes your current c-hub configuration. Before
proceeding, you can save the existing c-hub configuration by using the
C-Hub Administration Console to export it. For more information, see
Working With the Bulk Loader in the BEA WebLogic Collaborate
C-Hub Administration Guide.

To initialize and reload the c-hub database, complete the following
procedure:

a. Create the database schema:

Windows

prompt> createDB.cmd [oracle|cloudscape|mssql]

UNIX
3-16 BEA WebLogic Collaborate Getting Started

Setting Up and Running the WebLogic Process Integrator Verifier Example
prompt> createDB.sh [oracle|cloudscape|mssql]

where the database name you use corresponds to your database.

b. Change to the examples directory, and reload the WebLogic Process Integrator
Verifier example configurations:

Windows

prompt> cd %WLC_HOME%\examples\verifier

prompt> bulkloader.cmd [BulkloadOracleconfig.xml |
BulkloadCloudscapeconfig.xml |
BulkloadMSSQLconfig.xml]

UNIX

prompt> cd $WLC_HOME/examples/verifier

prompt> bulkloader.sh [BulkloadOracleconfig.xml |
BulkloadCloudscapeconfig.xml]

where the XML file you use corresponds to your database.

To configure the Verifier example application to execute on a single instance of
WebLogic Server, complete the following procedure:

1. Open a command window, change to the directory where WebLogic Collaborate is
installed, and execute the script to set the WebLogic Collaborate environment
variables:

Windows

prompt> cd %WLC_HOME%

prompt> setEnv.cmd

UNIX

prompt> cd $WLC_HOME

prompt> . ./setenv.sh

2. Change to the following directory:

Windows

%WLC_HOME%\hub

UNIX

$WLC_HOME/hub
BEA WebLogic Collaborate Getting Started 3-17

3 Running the WebLogic Process Integrator Verifier Example
3. It is recommended that you make a copy of the weblogic.properties file. You
will edit this file in step 4 below and then use the edited weblogic.properties
file when you run the WebLogic Process Integrator Verifier example application
on a single instance of WebLogic Server.

4. Open the weblogic.properties file and locate the section in the file that
applies to running the WebLogic Process Integrator Verifier example application
on a single instance (colocated c-enablers) of WebLogic Server.

The steps in this procedure describe how to uncomment and configure this
section of the weblogic.properties file to match your environment:

a. Search for the following line (near the beginning of the file) and comment it
out:

weblogic.system.startupClass.WLCStartup=com.bea.b2b.hub.Startup

b. Search for the following comment to identify the section of the
weblogic.properties file that applies to the WebLogic Process Integrator
example application running on colocated c-enablers:

The rest of this properties file is associated with
colocated enablers that use WLPI.

Uncomment all the code in this section of the weblogic.properties file.
You should uncomment only one of the
weblogic.jdbc.connectionPool.wlpiPool properties (the one for the
database you are using). See (c) below.

c. Uncomment the weblogic.jdbc.connectionPool.wlpiPool property that
corresponds to the database you are using. The following extract from the file
shows the property settings for the supported databases.

Oracle settings

#####Oracle##weblogic.jdbc.connectionPool.wlpiPool=\
##Oracle##url=jdbc:weblogic:oracle,\
##Oracle##driver=weblogic.jdbc.oci.Driver,\
##Oracle##loginDelaySecs=1,\
##Oracle##initialCapacity=1,\
##Oracle##maxCapacity=10,\
##Oracle##capacityIncrement=1,\
##Oracle##allowShrinking=true,\
##Oracle##shrinkPeriodMins=15,\
##Oracle##refreshTestMinutes=10,\
##Oracle##props=user=<ORACLE_USER>;password=
##Oracle##<ORACLE_PASSWORD>;server=<ORACLE_SERVICENAME>
3-18 BEA WebLogic Collaborate Getting Started

Setting Up and Running the WebLogic Process Integrator Verifier Example
Cloudscape settings###

weblogic.jdbc.connectionPool.wlpiPool=\

 url=jdbc:cloudscape:wlpidb,\
 driver=COM.cloudscape.core.JDBCDriver,\
 loginDelaySecs=1,\
 initialCapacity=1,\
 maxCapacity=10,\
 capacityIncrement=1,\
 allowShrinking=true,\
 shrinkPeriodMins=15,\
 refreshTestMinutes=10

SQL Server settings (MSSQL)

##MSSQL##weblogic.jdbc.connectionPool.wlpiPool=\
##MSSQL##url=jdbc:weblogic:mssqlserver4,\
##MSSQL##driver=weblogic.jdbc.mssqlserver4.Driver,\
##MSSQL##loginDelaySecs=1,\
##MSSQL##initialCapacity=1,\
##MSSQL##maxCapacity=10,\
##MSSQL##capacityIncrement=1,\
##MSSQL##allowShrinking=true,\
##MSSQL##shrinkPeriodMins=15,\
##MSSQL##refreshTestMinutes=10, \
##MSSQL## testTable=dual,\
##MSSQL##props=user=<MSSQL_USER>;password=<MSSQL_PASSWORD>;
##MSSQL##server=<MSSQL_HOSTNAME>

d. Within the weblogic.jdbc.connectionPool.wlpiPool property, confirm
that the configuration is correct for the database you are using:

l If you are using an Oracle database, confirm that <ORACLE_USER>,
<ORACLE_PASSWORD>, and <ORACLE_SERVICENAME> (shown in bold in the
extract above) are replaced by the user ID, password, and
ORACLE_SERVICENAME values for your system. ORACLE_SERVICENAME is
defined in the Oracle client tnsnames.ora file and is usually the Oracle
system ID.

l If you are using a Microsoft SQL Server database, confirm that
<MSSQL_USER>, <MSSQL_PASSWORD>, and <MSSQL_HOSTNAME> (shown in
bold in the extract above) are replaced by the appropriate user ID, password,
and Microsoft SQL Server host name values, respectively. (MSSQL_HOSTNAME
may take one of the following forms: DATABASE_NAME or
DATABASE_NAME@HOST_NAME.
BEA WebLogic Collaborate Getting Started 3-19

3 Running the WebLogic Process Integrator Verifier Example
e. The Cloudscape database is a single-user database and requires no user ID and
password configurations in the
weblogic.jdbc.connectionPool.wlpiPool property.

f. Find the text in the weblogic.properties file that specifies the
weblogic.ejb.deploy property.

The following extract from the file displays the weblogic.ejb.deploy
property:

weblogic.ejb.deploy=\
D:/bea/wlcollaborate1.0/lib/wlpi-ejb.jar,\
D:/bea/wlcollaborate1.0/lib/wlpi-wlc-ejb.jar,\
D:/bea/wlcollaborate1.0/lib/wlpi-cc-ejb.jar

Ensure that the pathname is correct for the WebLogic Collaborate lib
directory on your system. For this example, the WebLogic Collaborate
software is installed in D:/bea/wlcollaborate1.0.

Note: The weblogic.properties file uses forward slash format in pathnames
on UNIX and NT systems.

5. Close the weblogic.properties file.

6. Open the wlcstartup.properties file and uncomment the lines indicated in
bold in the following listing:

Start of WLPI Verifier example
#WLCStartup.WLPIVerifierCaller=com.bea.b2b.wlpi.Start
#ConfigFile=xml/enablers.xml
#SessionName=caller-session
#User=bea
#Password=12345678
#OrgName=BEA

#WLCStartup.WLPIVerifierCallee=com.bea.b2b.wlpi.Start
#ConfigFile=xml/enablers.xml
#SessionName=callee-session
#User=bea
#Password=12345678
#OrgName=BEA# end of WLPIVerifier example
End of WLPI Verifier example

7. Close the wlcstartup.properties file.

8. Start WebLogic Server, which starts the c-hub and two c-enablers:

Windows
3-20 BEA WebLogic Collaborate Getting Started

Understanding the WebLogic Process Integrator Verifier Example
prompt> startweblogic.cmd

UNIX

prompt> . ./startweblogic.sh

9. Invoke a Web browser with the following URL:

http://localhost:7001/wlpiverifier.html

where

l localhost represents the name of your machine

l 7001 is the port number for the c-hub instance of WebLogic Server

10. Refer to “Step 6: Running the Example” on page 3-13 to see the HTML pages
used to invoke the example. From this point in the process, the application runs
on a single instance of WebLogic Server in the same way as it does on two
instances.

Note: The port number is 7001 for the c-hub instance of WebLogic Server; the
port number for the c-enabler instance is 7501 (“Step 6: Running the
Example” on page 3-13).

Understanding the WebLogic Process
Integrator Verifier Example

This section describes workflow definitions for the WebLogic Process Integrator
Verifier example application. For complete details about integrating workflow
templates with WebLogic Collaborate, see Using Workflows to Exchange Business
Messages in the BEA WebLogic Collaborate Developer Guide.

Data is passed between WebLogic Process Integrator partner workflows (trading
partners) in a WebLogic Collaborate conversation. During execution of the WebLogic
Process Integrator Verifier example, the following events occur:

n Trading partner caller sends a message to Trading partner callee. Trading
partner callee converts the message to lowercase and returns it as a reply.
BEA WebLogic Collaborate Getting Started 3-21

3 Running the WebLogic Process Integrator Verifier Example
n The caller workflow (wlpiverifier_init) is a sequence of preparing the
request message, sending the message, waiting for a reply, and storing the reply
for processing by the calling application. Within the workflow, the sequence is
repeated five times.

n The callee workflow (wlpiverifier_partner) is a sequence of getting a
request, processing it, and returning the result. This sequence is repeated until
the last request (identified by the last variable).

The application code manipulates the business messages that a workflow sends and
receives using a class that implements the
com.bea.b2b.wlpi.MessageManipulator interface.

Note: When you are using WebLogic Process Integrator Studio, you can view details
for actions in any workflow task by double-clicking on the task in the
workflow diagram. In the Actions box, click Activated. Select the action and
click Update. A dialog box containing Class name, Input variable, and Output
variable fields is displayed; the fields contain the name of the Java class to call,
the name of a workflow variable to pass to the class, and name of the workflow
variable that will be assigned the result of the class execution, respectively.

 The wlpiverifier_init Workflow

This section describes the tasks in the wlpiverifier_init workflow diagram, and
the variables associated with the wlpiverifier_init workflow.

Note: The variables associated with a workflow are displayed in a subfolder under
the workflow template folder. To view the properties for a variable, right-click
the variable name in the folder.

The following variables are associated with the wlpiverifier_init workflow:

requestMsg

A Java object that holds the message to be used in the Send Business Message
action.

replyMsg

A Java object that holds the reply message received from a Receive Business
Message event.

requestString[0-4]

Variables that hold the request data passed in by the client application. These
variables are used to fill in elements when the request message is being
3-22 BEA WebLogic Collaborate Getting Started

Understanding the WebLogic Process Integrator Verifier Example
constructed. (The parameter properties for these variables are marked as
input.)

replyString[0-4]

Variables that hold the reply data. When a reply message is received, the
relevant data is extracted from the message and assigned to these variables.
The WebLogic Process Integrator Verifier example application code accesses
the replyString variables to obtain the data that it returns. (The parameter
properties for these variables are marked as output.)

noOfRecipients[0-4]

Variables that hold the number of recipients who received each of the
requests. One variable is assigned for each message send.

noOfRecipientsHolder

A variable that holds the number of recipients who received the request. The
value from the variable is then used to assign the variables
noOfRecipients[0-4] described above.

current

The counter for the current message. For each current count, the workflow
takes a requestString[current] and constructs a request message.

last

A variable used to indicate the final request. When last is set, the workflow
moves to the end stage.

sendStatus

A Boolean value representing the status of the WebLogic Collaborate send.
BEA WebLogic Collaborate Getting Started 3-23

3 Running the WebLogic Process Integrator Verifier Example
The following figure shows the wlpiverifier_init workflow.

Figure 3-12 The wlpiverifier_init Workflow

Start Node (Green Circle)

This is the beginning of the workflow. It is started programmatically by
WlpiVerifierServlet.java. To see how this is done, refer to the startworkflow
method in the servlet class.

Publish Request Message (Blue Box)

This is the first task in the workflow. It consists of the following three actions:

n Manipulate business message using class
examples.wlpiverifier.PrepareQuery

This action makes a request to the specified class. The class is a user
implemented class that implements the MessageManipulator interface. (See
<WLC_HOME>/examples/wlpiverifier/PrepareQuery.java.) This class
implements the manipulate method. The method takes the appropriate
workflow variables (requestString) and constructs an XOCP business
message. The constructed message is the return value of the method.
3-24 BEA WebLogic Collaborate Getting Started

Understanding the WebLogic Process Integrator Verifier Example
n Send Business Message

This action sends the request message. Associated with this action are the Source
variable that holds the request message, the Router Expression that holds the
trading partner’s name for the message, and the Target role that is the role of the
receiver of the message; their values are requestMsg, callee, and
string-changer, respectively.

The partner workflow is linked with the conversation and role. A generic
conversation handler is registered when the c-enabler session is created. When
the first message comes in for the subordinate handler, the handler looks for an
entry in the workflow table. Since it does not find one, it starts the workflow and
passes it the first message.

n Mark task “Publish request message done”

This ends the task and moves to the next stage of the workflow.

Decision Box:Send Status (Yellow Diamond)

This decision box determines whether the workflow should end or continue. The value
placed in Send Status is evaluated to determine whether the message was sent
successfully. If the evaluation is true, the workflow proceeds to the Receive Reply
task, if the evaluation is false, the workflow fails and moves to the failure node. This
failure node issues a conversation terminate failure to all participants in the
conversation.

Receive Reply (Green Star)

This task waits for a business message to arrive, that is, it waits for a response message
from the callee (wlpiverifier_partner). Associated with this action is a Target
variable (replyMsg). The received business message is assigned to this variable.

Prepare Reply (Blue Box)

This task contains the following actions:

n Manipulate business message using class
examples.wlpiverifier.PrepareReply

This action is similar to the Manipulate business message using class
examples.wlpiverifier.PrepareQuery action in the Publish Request
Message task, except that this class processes the returned message and assigns
the results from the message to the replyMsg variable. (The replyMsg
BEA WebLogic Collaborate Getting Started 3-25

3 Running the WebLogic Process Integrator Verifier Example
workflow variable is extracted by the WebLogic Process Integrator Verifier
example application to get the data.)

n Set workflow variable current expression: current+1

Increments the workflow variable current by 1.

n Mark task Prepare reply done

This ends the task and moves to the next stage of the workflow.

Decision Box (Yellow Diamond)

This decision box determines if the count is less than five, and if the last variable is
set to true or false. If the action is true, another iteration is performed, sending another
message. If the action is false, the workflow terminates.

Done Node (Red Circle)

Terminates the workflow. A conversation terminate success is issued to all participants
of the conversation.
3-26 BEA WebLogic Collaborate Getting Started

Understanding the WebLogic Process Integrator Verifier Example
 The wlpiverifier_partner Workflow

This section describes the tasks in the wlpiverifier_partner workflow diagram,
and the variables associated with the wlpiverifier_partner workflow.

Note: The variables associated with a workflow are displayed in a subfolder under
the workflow template folder. To view the properties for a variable, right-click
the variable name in the folder.

The following variables are associated with the wlpiverifier_partner workflow:

requestMsg

 A Java object that holds the message that is sent by the wlpiverifier_init
workflow.

replyMsg

A Java object that holds the message to be sent as a reply to the
wlpiverifier_init workflow.

last

A variable used to indicate the final request. When last is set to true, the
workflow moves to the end stage.

convTerminateSuccess

A Boolean value representing conversation termination status.

senderName

A string containing the name of the message sender.

sendStatus

A Boolean value representing the status of the WebLogic Collaborate send
business message.
BEA WebLogic Collaborate Getting Started 3-27

3 Running the WebLogic Process Integrator Verifier Example
The following figure shows the wlpiverifier_partner workflow.

Figure 3-13 The wlpiverifier_partner Workflow

Start Node (Green Circle)

This is the beginning of the wlpiverifier_partner workflow. When a message
intended for this workflow arrives, the workflow is started by the c-enabler code. The
message is then ready for processing. The format for the business message is specified
in the requestMsg variable.

Process Request (Blue Box)

This task consists of the following actions:

n Manipulate business message using class
examples.wlpiverifier.ProcessRequest

This action makes a request to the specified class. The class is a user
implemented class that implements the MessageManipulator interface. (See
<WLC_HOME>/examples/wlpiverifier/ProcessRequest.java.) This class
implements the manipulate method. This method takes the requestMsg
workflow input variable, processes the data, and creates a reply message. The
reply message is returned in the replyMsg output variable.
3-28 BEA WebLogic Collaborate Getting Started

Understanding the WebLogic Process Integrator Verifier Example
n Send Business Message

This action sends the business message. Associated with this action are the
Source variable that holds the request message, the router expression that holds
the trading partner’s name for the message, and the target role that is the role of
the receiver of the message; their values are replyMsg, senderName, and
initiator, respectively.

n Mark task Process request done

This ends the task and moves to the next stage of the workflow.

Decision (Yellow Diamond)

This decision box determines if the workflow should finish based on the value of
the workflow Boolean variable last. If last is set to false, the workflow
proceeds to receive another request. If true, the workflow waits for
conversation termination.

Receive Other Request (Green Star)

This task waits for a business message to arrive, that is, the Receive Other Request
event waits for the next message from the caller (wlpiverifier_init). Associated
with this action is a Target variable (requestMsg), and a Sender’s Name
(senderName).

Wait for Conversation Termination (Green Star)

This task blocks and waits for the initiator of the conversation (wlpiverifier_init)
to terminate the conversation, if the last message has been received. It places the
Termination Status in the defined workflow variable (convTerminateSuccess).

Decision (Yellow Diamond)

This decision box determines whether to end the conversation based on the value of
the workflow Boolean variable convTerminateSuccess.

An Application May Do Some Error Processing Here (Blue Box)

Error processing tasks can happen at this node in the workflow.

Done Node (Red Circle)

End of the workflow. A conversation leave is issued.
BEA WebLogic Collaborate Getting Started 3-29

3 Running the WebLogic Process Integrator Verifier Example
Understanding WebLogic Process Integrator Java Classes

Business operations use WebLogic Process Integrator variables and Java code to
manipulate business messages that are exchanged between trading partners. In general,
the workflows sequence the flow of data, and Java classes process the data. The Java
classes read and write the workflow variables using the WebLogic Process Integrator
API.

The following Java classes are used in the WebLogic Process Integrator Verifier
example application. For more details about business operations, see Using Workflows
to Exchange Business Messages in the BEA WebLogic Collaborate Developer Guide.

Java Class How This Class Works with the WebLogic Process Integrator
Workflows

WlpiVerifyServlet.java Starts the workflow. The startWorkflow method completes the following
tasks using the WebLogic Process Integrator API:

n Creates an instance of the wlpiverifier_init workflow

n Copies the strings from the array into the requestString[0-4]
workflow variables

n Starts the wlpiverifier_init workflow

n Waits for the workflow to end in the waitForWorkFlowToEnd method

n Extracts data from the wlpiverifier_init workflow return

n Passes the return values back to the HTML page

The wlpiverifier_init workflow tasks Publish request message
and Prepare reply invoke Java classes that operate on the workflow
variables and thereby effect the execution of the workflow.

PrepareQuery.java The Publish Request Message task invokes this class. The
PrepareQuery.java class constructs the business messages to send. At run
time, the Manipulate Business Message action is invoked to create a business
message (based on the contents of WebLogic Process Integrator variables), and
return the business message for storage in a variable.

The Prepare Query.java class also checks to see if five messages were
sent, and if so, sets the last variable to true, which causes the conditional
test to fail, thereby leading to termination of the workflow.

PrepareReply.java The Prepare reply task invokes this class. The PrepareReply.java class
receives and processes the business messages. It implements the
MessageManipulator interface.
3-30 BEA WebLogic Collaborate Getting Started

Understanding the WebLogic Process Integrator Verifier Example
ProcessRequest.java The Process request task in the wlpiverifier_partner workflow invokes
this class to convert the characters in the input message to uppercase.

The ProcessRequest.java class implements the
MessageManipulator interface.

Java Class How This Class Works with the WebLogic Process Integrator
Workflows
BEA WebLogic Collaborate Getting Started 3-31

3 Running the WebLogic Process Integrator Verifier Example
3-32 BEA WebLogic Collaborate Getting Started

CHAPTER
4 Using Logic Plug-Ins for
Billing

The BEA WebLogic Collaborate billing examples illustrate how to implement and
install user-written logic plug-ins. A logic plug-in is a service that a c-hub owner can
develop and install on a c-hub, providing additional value for management of the
c-hub, or providing additional value to customers who use that c-hub. A c-hub
administrator accomplishes this by introducing custom code at well-defined plug-in
points, for additional processing of the information that passes through the c-hub. This
functionality is transparent to the c-enabler user.

For a comprehensive description of developing logic plug-ins, see Developing Logic
Plug-Ins in the BEA WebLogic Collaborate Developer Guide.

The following sections describe the structure, purpose, and set-up procedures for two
example plug-ins:

n Overview of the Logic Plug-In Examples

n Structure of the Logic Plug-Ins for Billing

n MessageCounter Logic Plug-In Example

n CheckAccount Logic Plug-In Example
BEA WebLogic Collaborate Getting Started 4-1

4 Using Logic Plug-Ins for Billing
Overview of the Logic Plug-In Examples

The MessageCounter and CheckAccount logic plug-ins are enhancements to an
underlying example application. These plug-ins customize the billing process for a
c-hub owner. In this example, you can add each plug-in separately or use them in
combination. The plug-ins operate at different logical points in the flow of control.
Applying these plug-ins and observing the results is a way to understand how and
where the c-hub provider can influence the flow of information traveling between
c-enablers and the c-hub, in the context of a conversation.

For complete information about setting up and running the logic plug-in examples, see
the main sections:

n MessageCounter Logic Plug-In Example

n CheckAccount Logic Plug-In Example

Structure of the Logic Plug-Ins for Billing

In this scenario, a c-hub owner establishes a billing algorithm based on the number of
messages an e-market trading partner sends, and on the cost for a specific conversation.
The algorithm requires keeping track of all the messages a trading partner sends and
all the conversations in which the partner participates.

The c-hub owner registers all messages passing through the hub, storing the registry
information by trading partner and conversation name. The c-hub owner or
administrator has the option of assigning a rate for messages in a conversation,
depending on the characteristics of the conversation. The rate varies based on the
quantity of c-hub resources a conversation consumes.
4-2 BEA WebLogic Collaborate Getting Started

Structure of the Logic Plug-Ins for Billing
Purpose of the MessageCounter Logic Plug-In

The MessageCounter plug-in records the activities of each trading partner that uses the
c-hub. The c-hub owner has the authority to review trading partner accounts and adjust
an outstanding balance when a trading partner makes a payment.

Purpose of the CheckAccount Logic Plug-In

The c-hub owner can disallow access to the c-hub for specific trading partners. One
way to do this is to apply selection criteria under program control, automatically
excluding trading partners whose outstanding account balance is greater than an
amount set by the owner. When you add the CheckAccount plug-in to an application,
you can set the account balance due threshold to a value other than the default value.
The CheckAccount plug-in filters trading partners, disallowing access to the c-hub, for
partners who do not meet the selection criteria.

Utility Servlets for the Logic Plug-Ins

The Inquiry and Reset Account functions are tools for checking account status, and
optionally setting outstanding account balances back to zero. Only the c-hub owner or
an administrator has the authority to use these tools. The utility servlet source files in
the Using Logic-Plug Ins for Billing example are InquiryAccountServlet.java
and ResetMsgServlet.java.
BEA WebLogic Collaborate Getting Started 4-3

4 Using Logic Plug-Ins for Billing
MessageCounter Logic Plug-In Example

The MessageCounter logic plug-in shows how a c-hub owner can introduce a service
that provides additional value for management of the c-hub. This plug-in collects data
that the c-hub owner applies to a billing algorithm. This functionality is transparent to
the c-enabler user.

The MessageCounter logic plug-in for billing is one of two enhancements for an
example application. (The second is the CheckAccount logic plug-in.)

This logic plug-in example uses a relational database to extend features for managing
a c-hub. The set of example files includes scripts for Oracle, Cloudscape, and MS SQL
Server databases.

Structure of the MessageCounter Logic Plug-In Example

A c-hub owner needs to know the number of messages an e-market trading partner
sends, and all the conversations in which the partner participates. This information is
applied to a billing algorithm. The c-hub owner has the option of assigning a cost for
each message depending on the characteristics of the conversation. The cost can vary
from conversation to conversation, based on the quantity of c-hub resources a
conversation consumes.

The c-hub owner or administrator creates two database tables that are external to the
WebLogic Collaborate repository:

n The MESSAGECOST table stores the conversation name and the cost of each
message sent in the context of this conversation. The order of events in this
example sets conversation name and cost parameters in the MESSAGECOST table
before messaging begins.

n The Billing table is the store for trading partner name, conversation name, and
a count of messages sent by each trading partner for a named conversation.
Custom code in the MessageCounter plug-in records the number of sent
messages, storing the information in the Billing table. The count increases
each time a trading partner sends a message in the context of an identified
conversation.
4-4 BEA WebLogic Collaborate Getting Started

MessageCounter Logic Plug-In Example
The MessageCounter custom code plugs in to the c-hub as the first element in the
XOCP filter logic plug-in chain.

After the c-hub applies all routing criteria and filters, the MessageCounter logic is
executed once for each ultimate recipient of a message.

Required Files

Files required for setting up and running the MessageCounter logic plug-in are in
directories subordinate to the location defined by the WLC_HOME environment variable.

Windows

%WLC_HOME%\examples\LogicPlugIns\MessageCounter

UNIX

$WLC_HOME/examples/LogicPlugIns/MessageCounter

The following sections and tables identify the name of each file that is required to set
up and run the MessageCounter logic plug-in. The files are grouped by function.
Where required, a table provides supplementary notes specific to a file. See “Setting
Up the MessageCounter Logic Plug-In” on page 4-8 and “Running an Application
with the MessageCounter Logic Plug-In” on page 4-14 for complete information on
how to use these files.
BEA WebLogic Collaborate Getting Started 4-5

4 Using Logic Plug-Ins for Billing
Files for Loading the WebLogic Collaborate Repository

The XML file for input to the Bulk Loader utility is in the examples directory
subordinate to the location defined by the WLC_HOME environment variable. The
RepData.xml file and the command files are in the MessageCounter directory.

Java Source Files for Using the MessageCounter Logic Plug-In

The Java source files listed in this table are in these directories:

Windows

%WLC_HOME%\examples\LogicPlugIns\MessageCounter\Sources

Filename Purpose Notes

BulkloaddatabaseConfig.xml An XML configuration file
used with the Bulk Loader
utility to populate the
WebLogic Collaborate
repository. Works in
conjunction with the
RepData.xml file in the
MessageCounter
directory.

As supplied, the information in the file
relates to the verifier example
application only.To run this logic plug-in
with an example application other than
verifier, for example wlpiverifier,
you must first register the MessageCounter
logic plug-in the target application using the
C-Hub Administration Console.

To use the MessageCounter logic plug-in in
combination with the CheckAccount logic
plug-in, populate the repository using the
RepData.xml file from the
LogicPlugIns directory.

RepData.xml The XML data file
containing
MessageCounter data to be
loaded into the repository.

Follow the directives in this file:
BulkloaddatabaseConfig.xml

build.cmd

 or
build.sh

A command file you
invoke to compile the Java
source files and to copy all
required files into target
directories.

Windows
build.cmd

UNIX
build.sh
4-6 BEA WebLogic Collaborate Getting Started

MessageCounter Logic Plug-In Example
UNIX

$WLC_HOME/examples/LogicPlugIns/MessageCounter/Sources

HTML File for Querying Trading Partner Account Status

There is a version of this file in each of these directories:

Windows

%WLC_HOME%\examples\LogicPlugIns\MessageCounter\HtmlFiles

UNIX

$WLC_HOME/examples/LogicPlugIns/MessageCounter/HtmlFiles

Files for Managing Database Tables

There is a version of the CreateDataBaseTables command file in each of these
directories:

Windows

%WLC_HOME%\examples\LogicPlugIns\MessageCounter\DataBase

UNIX

$WLC_HOME/examples/LogicPlugIns/MessageCounter/DataBase

Filename Purpose

SentMsgCounter.java Contains the Java class code for implementing the MessageCounter
logic plug-in.

InquiryAccountServlet.java Java servlet for inquiring about the status of a trading partner account.

ResetMsgServlet.java Java servlet for modifying the status of a trading partner account.

Filename Purpose

LogicPlugIns.htm Used to inquire about the status of a trading partner account.
BEA WebLogic Collaborate Getting Started 4-7

4 Using Logic Plug-Ins for Billing
The SQL scripts are in a database-specific directory subordinate to the DataBase
directory.

Setting Up the MessageCounter Logic Plug-In

You can apply the MessageCounter logic plug-in to an existing example application
such as the verifier example or the wlpiverifier example. The procedure here
applies the logic plug-in to the verifier example.

The next two sections summarize the set-up steps on Windows and UNIX. The
“MessageCounter Setup Steps in Detail” section describes the same steps in more
detail.

Setup on Windows: Main Steps

This section summarizes the steps for enabling the MessageCounter logic plug-in in an
application. See “MessageCounter Logic Plug-In Setup Steps in Detail” on page 4-10
for more detailed information about each step.

1. Run the setenv.cmd command file.

Filename Purpose Notes

CreateDataBaseTables.cmd
 or
CreateDataBaseTables.sh

Command file that directs the
createTables.sql script and the
populateTables.sql as input to
a database utility.

Windows
*.cmd

UNIX
*.sh

createTables.sql SQL script. Input file to the
CreateDataBaseTables
command file. Creates the Billing
table and the MESSAGECOST table.

SQL scripts are platform
independent.

populateTables.sql SQL script. Input file to the
CreateDataBaseTables

command file. Inserts data into the
MESSAGECOST table.

SQL scripts are platform
independent.
4-8 BEA WebLogic Collaborate Getting Started

MessageCounter Logic Plug-In Example
2. Customize the BulkloaddatabaseConfig.xml file, where database
identifies the database you are using.

3. Change to the %WLC_HOME%\LogicPlugIns\MessageCounter directory.

4. From the MessageCounter directory, execute this command:
bulkloader ..\..\BulkLoaddatabaseConfig.xml

5. Customize the CreateDataBaseTables.cmd command file.

6. Run the CreateDataBaseTables.cmd command file.

7. Run the build.cmd command file.

8. Customize the c-hub weblogic.properties configuration file, enabling the
Java servlet and JDBC Connection Pool sections.

9. Ensure that your environment is defined, and start the c-hub.

Setup on UNIX: Main Steps

See “MessageCounter Logic Plug-In Setup Steps in Detail” on page 4-10 for complete
information about each step.

1. Run the setenv.sh shell.

2. Customize the BulkloaddatabaseConfig.xml file, where database identifies
the relational database you are using.

3. Change to this directory:
$WLC_HOME/examples/LogicPlugIns/MessageCounter

4. From the MessageCounter directory, execute the following command:

bulkloader.sh ../../BulkLoaddatabaseConfig.xml

5. Customize the CreateDataBaseTables.sh shell.

6. Run the CreateDataBaseTables.sh shell.

7. Run the build.sh shell.

8. Customize the c-hub weblogic.properties configuration file, enabling the
Java servlet and JDBC Connection Pool sections.

9. Ensure that your environment is set, and start the c-hub.
BEA WebLogic Collaborate Getting Started 4-9

4 Using Logic Plug-Ins for Billing
MessageCounter Logic Plug-In Setup Steps in Detail

The following procedure explains each main step. The numbering corresponds to the
numbering in the main step sections.

1. Set the environment.

Run the setenv.cmd command file (Windows), or the setenv.sh shell
(UNIX). This step establishes the environment for your system.

2. Customize the Bulk Loader XML configuration file.

Customize the configuration file that corresponds to the database you are using:

l BulkloadCloudscapeConfig.xml

l BulkloadMSSQLConfig.xml

l BulkloadOracleConfig.xml

This XML file is an input file to the Bulk Loader utility that you invoke in step 4
of this series of steps. You must define the database connectivity variables
correctly before populating the repository, creating database tables, and
populating database tables.

3. Change to the MessageCounter directory.

Change to the MessageCounter directory, and run subsequent steps from this
location.

Windows

%WLC_HOME%\examples\LogicPlugIns\MessageCounter

UNIX

$WLC_HOME/examples/LogicPlugIns/MessageCounter

4. Populate the WebLogic Collaborate repository.

From the MessageCounter directory, run the Bulk Loader utility, supplying the
correct path to the input XML configuration file. Additionally, this step reads the
RepData.xml file as input.

Windows

Syntax:

bulkloader ..\..\BulkloaddatabaseConfig.xml

Example:
4-10 BEA WebLogic Collaborate Getting Started

MessageCounter Logic Plug-In Example
bulkloader ..\..\BulkloadOracleConfig.xml

UNIX

Syntax:

bulkloader.sh ../../BulkloaddatabaseConfig.xml

Example:

bulkloader.sh ../../BulkloadCloudscapeConfig.xml

5. Customize the CreateDataBaseTables command file in the DataBase
directory.

Windows

MessageCounter\DataBase\CreateDataBaseTables.cmd

UNIX

MessageCounter/DataBase/CreateDataBaseTables.sh

The values for the connection parameters must match those specified in the JDBC
examplesPool in the weblogic.properties file. Modify the connection
values required for your underlying database. The user name you specify must
be an existing user with authority to create tables in the database.

6. Create the database tables and populate with data.

To create the MESSAGECOST and Billing database tables, run the command file
you customized in the previous step. The database tables are external to the
repository. You supply one input parameter to the command file, identifying the
subdirectory for your database. The command file reads the createTables.sql
and populateTables.sql script files from the subordinate directory.

As supplied, the populateTables.sql script inserts two rows of data into the
MESSAGECOST table. These insert statements are from the script:

insert into MESSAGECOST values (’verifierConversation’,20.37);
insert into MESSAGECOST values (’to-upper’,3);

To change the cost for each message in a conversation, in the
populateTables.sql script, modify the numeric value to be inserted into the
MESSAGE_COST column. For example, to change the cost of a message in the
verifierConversation conversation from the supplied value of 20.37, modify
the numeric value in the first insert statement. You can run step 6 again later,
if you decide to change a message cost value.
BEA WebLogic Collaborate Getting Started 4-11

4 Using Logic Plug-Ins for Billing
Windows

Syntax:

CreateDataBaseTables { oracle | cloudscape | mssql }

Example:

CreateDataBaseTables oracle

UNIX

Syntax:

CreateDataBaseTables.sh { oracle | cloudscape }

Example:

CreateDataBaseTables.sh cloudscape

7. Create the executable programs for this example.

Run the build command file for your platform. This step compiles required Java
source files and copies resulting files to target locations.

Windows

build.cmd

UNIX

build.sh

8. Using a text editor, uncomment the following sections of the c-hub
weblogic.properties configuration file specific to the logic plug-in examples:

a. The Logic Plug-Ins servlets section. This section is identified by the
following section header, which appears before the lines that you need to
uncomment:

###
Servlets used for the WLC Logic PlugIns example
Uncomment to use
The Logic PlugIns require the Verifier example to be working
###

b. The section that specifies the data source to be used. This section is identified
by the following section header:

###
#Data Source used for the Logic PlugIns examples
4-12 BEA WebLogic Collaborate Getting Started

MessageCounter Logic Plug-In Example
#Uncomment it whatever database you use
###

c. The section that specifies the JDBC connection pool specific to the database
you are using. For example, if you are using Oracle, this section is identified by
the following section header:

###
Oracle 8.1.5
Note: EXAMPLE_USER, EXAMPLE_PASSWORD must match the values used in the
CreateDatabaseTables.cmd(sh) command
###

If you are using Oracle, be sure to specify values for <EXAMPLE_USER> and
<EXAMPLE_PASSWD> that match the values used in the
weblogic.properties.verifier CreateDatabaseTables script.

If you are using MS SQL server, be sure to specify values for
<MSSQL_USER>, <MSSQL_PASSWORD>, and <MSSQL_HOSTNAME> that match
your MS SQL server installation.

d. The section that represents ACLs for the examplesPool. This section is
identified by the following section header:

###
The following three lines represent ACLs for the examplesPool and
must be un-commented independently of the database type used
###

To uncomment the appropriate lines in each of these sections, simply delete the
comment character (#) at the beginning of each line in those sections. For
example, the section that represents ACLs for the examplesPool should appear
as:

weblogic.allow.reserve.weblogic.jdbc.connectionPool.examplesPool=everyone
weblogic.allow.reset.weblogic.jdbc.connectionPool.examplesPool=everyone
weblogic.allow.shrink.weblogic.jdbc.connectionPool.examplesPool=everyone

9. Start the example application.

Ensure that your environment is defined correctly, and start the c-hub.
BEA WebLogic Collaborate Getting Started 4-13

4 Using Logic Plug-Ins for Billing
Running an Application with the MessageCounter Logic
Plug-In

Follow these steps to observe how the MessageCounter logic plug-in adds value to an
underlying application.

1. Start the verifier example application, or the alternative example application
you configured for the logic plug-in.

2. Examine the WebLogic Server system log for messages from the
MessageCounter logic plug-in.

The logic plug-in writes messages to the log each time the c-hub processes a
business document. The first time a trading partner sends a message in the
verifier conversation, the logic plug-in records this message:

** MessageCounter ##### 1 Record Inserted

This message tells you that custom program logic in the logic plug-in has
inserted a record into the Billing table. The count of messages sent is set to
one.

Messages from the same trading partner after the first trigger this message:

** MessageCounter ##### 1 Record Updated

This message tells you that the count of sent messages has been incremented by
one.

3. Use your Web browser to inquire about the status of a trading partner account.
Enter the following URL in a browser:

http://localhost:7001/examples/LogicPlugIns/LogicPlugIns.htm

Enter the name of a trading partner and click on the Submit button. This Java
servlet utility returns information about the trading partner.

Note: The valid names for the two trading partners are ’Partner1’ and
’Partner2’. These names are case-sensitive, and do include the
single-quote characters.

4. Continuing with the LogicPlugIns.htm tool, reset the trading partner balance
due back to zero by clicking the Reset button.

If you have set up the CheckAccount logic plug-in, the MessageCounter logic
plug-in processes database information recorded by both logic plug-ins.
4-14 BEA WebLogic Collaborate Getting Started

CheckAccount Logic Plug-In Example
CheckAccount Logic Plug-In Example

The CheckAccount logic plug-in shows how a c-hub owner can introduce a service that
provides additional value for management of the c-hub. This logic plug-in implements
a custom filtering mechanism that is an extension of the filtering mechanisms available
through BEA WebLogic Collaborate based on an XPATH expression. This
functionality is transparent to the c-enabler user.

The CheckAccount logic plug-in for billing is one in a series of enhancements for an
example application.

This logic plug-in example uses a relational database to extend features for managing
a c-hub. The set of example files includes scripts for Oracle, Cloudscape, or MS SQL
Server databases.

Structure of the CheckAccount Logic Plug-In Example

A c-hub owner chooses to filter messages to trading partners for specific
conversations. The criterion for filtering is the account balance a potential recipient
owes to the c-hub owner. Trading partners can be excluded from a conversation if they
have outstanding balances higher than a threshold amount the c-hub owner defines.

The formula for determining the account balance includes a count of messages a
trading partner sends, and a rate for each conversation in which the trading partner
participates. The rate for each conversation varies depending on the amount of c-hub
resources the conversation consumes. For each conversation, the cost is the product of
conversation rate and number of messages sent. The total account balance due is the
sum of current conversation costs. In the CheckAccount logic plug-in, you can vary
the threshold amount for excluding trading partners from a conversation. In the
MessageCounter logic plug-in, you can vary the rate of cost for a conversation. You
can implement each logic plug-in separately or in combination. Each allows you to
vary parameters and observe the results.

The c-hub owner or administrator creates two database tables that are external to the
WebLogic Collaborate repository:

n The MESSAGECOST table stores the conversation name and the cost of each
message sent in the context of this conversation. This order of events in this
BEA WebLogic Collaborate Getting Started 4-15

4 Using Logic Plug-Ins for Billing
example sets conversation name and cost parameters in the MESSAGECOST table
before messaging begins.

n The Billing table is the store for trading partner name, conversation name, and
a count of messages sent by each trading partner for a named conversation. The
CheckAccount custom code plugs into the c-hub after the XOCP router logic
plug-in and before the XOCP router enqueue logic plug-in. The custom logic is
executed once for each incoming message. The following figure shows the
sequence in which the logic plug-ins in the XOCP router should be configured.

Required Files

Files required for setting up and running the CheckAccount logic plug-in are in
directories subordinate to the directory defined by the WLC_HOME environment
variable.

Windows

%WLC_HOME%\examples\LogicPlugIns\CheckAccount

UNIX

$WLC_HOME/examples/LogicPlugIns/CheckAccount

XOCP Router

XOCP Router
Logic Plug-in

XOCP Router
Enqueue Logic Plug-in

CheckAccount
Logic Plug-in

1

2

3

4-16 BEA WebLogic Collaborate Getting Started

CheckAccount Logic Plug-In Example
The following sections and tables identify the name of each file that is required to set
up and run the CheckAccount logic plug-in. The files are grouped by function. Where
required, a table provides supplementary notes specific to a file. See “Setting Up the
CheckAccount Logic Plug-In” on page 4-20 and “Running an Application with the
CheckAccount Logic Plug-In” on page 4-25 for complete information on how to use
these files.

Files for Loading the WebLogic Collaborate Repository

The XML file for input to the Bulk Loader utility is in the examples directory
subordinate to the location defined by the WLC_HOME environment variable. The
RepData.xml file and the command files are in the CheckAccount directory.

Filename Purpose Notes

BulkloaddatabaseConfig.xml An XML configuration file
used with the Bulk Loader
utility to populate the
WebLogic Collaborate
repository. Works in
conjunction with the
RepData.xml file in the
CheckAccount directory.

As supplied, the information in the file
relates to the verifier example
application only. To run this logic plug-in
with an example application other than
verifier, for example wlpiverifier,
you must first register the CheckAccount
logic plug-in the target application using the
C-Hub Administration Console.

To use the CheckAccount logic plug-in in
combination with the MessageCounter
logic plug-in, populate the repository using
the RepData.xml file from the
LogicPlugIns directory.

RepData.xml The XML data file
containing CheckAccount
data to be loaded into the
repository.

Follow the directives in this file:
BulkloaddatabaseConfig.xml

build.cmd

 or
build.sh

A command file you
invoke to compile the Java
source files and to copy all
required files into target
directories.

Windows
build.cmd

UNIX
build.sh
BEA WebLogic Collaborate Getting Started 4-17

4 Using Logic Plug-Ins for Billing
Java Source Files for Using the CheckAccount Logic Plug-In

The Java source files listed in this table are in these directories:

Windows

%WLC_HOME%\examples\LogicPlugIns\CheckAccount\Sources

UNIX

$WLC_HOME/examples/LogicPlugIns/CheckAccount/Sources

HTML File for Querying Trading Partner Account Status

There is a version of this file in each of these directories:

Windows

%WLC_HOME%\examples\LogicPlugIns\CheckAccount\HtmlFiles

UNIX

$WLC_HOME/examples/LogicPlugIns/CheckAccount/HtmlFiles

Files for Managing Database Tables

There is a version of the CreateDataBaseTables command file in each of these
directories:

Filename Purpose

CheckAccount.java Contains the Java class code for implementing the CheckAccount
logic plug-in.

InquiryAccountServlet.java Java servlet for inquiring about the status of a trading partner account.

ResetMsgServlet.java Java servlet for modifying the status of a trading partner account.

Filename Purpose

LogicPlugIns.htm Used to inquire about the status of a trading partner account.
4-18 BEA WebLogic Collaborate Getting Started

CheckAccount Logic Plug-In Example
Windows

%WLC_HOME%\examples\LogicPlugIns\CheckAccount\DataBase

UNIX

$WLC_HOME/examples/LogicPlugIns/CheckAccount/DataBase

The SQL scripts are in a database-specific directory subordinate to the DataBase
directory.

Filename Purpose Notes

CreateDataBaseTables.cmd
 or
CreateDataBaseTables.sh

Command file that directs the
createTables.sql script and the
populateTables.sql script as
input to a database utility.

Windows
*.cmd

UNIX
*.sh

createTables.sql SQL script. Input file to the
CreateDataBaseTables
command file. Creates the Billing
table and the MESSAGECOST table.

SQL scripts are platform
independent.

populateTables.sql SQL script. Input file to the
CreateDataBaseTables

command file. Inserts data into the
MESSAGECOST table.

SQL scripts are platform
independent.
BEA WebLogic Collaborate Getting Started 4-19

4 Using Logic Plug-Ins for Billing
Setting Up the CheckAccount Logic Plug-In

You can apply the CheckAccount logic plug-in to an existing example application such
as the verifier example or the wlpiverifier example. The procedure here applies
the logic plug-in to the verifier example.

The next two sections summarize the setup steps on Windows and UNIX. The
“CheckAccount Setup Steps in Detail” section describes the same steps in more detail.

Setup on Windows: Main Steps

This section summarizes the steps for enabling the CheckAccount logic plug-in in an
application. See “CheckAccount Logic Plug-In Setup Steps in Detail” on page 4-21 for
more information about each step.

1. Run the setenv.cmd command file.

2. Customize the BulkloaddatabaseConfig.xml file, where database
identifies the database you are using.

3. Change to the %WLC_HOME%\LogicPlugIns\CheckAccount directory.

4. From the CheckAccount directory, execute this command:
bulkloader ..\..\BulkloaddatabaseConfig.xml

5. Customize the CreateDataBaseTables command file.

6. Run the CreateDataBaseTables.cmd file.

7. Run the build.cmd command file.

8. Customize the c-hub weblogic.properties configuration file, enabling the
Java servlet and JDBC Connection Pool sections.

9. Ensure that your environment is defined, and start the c-hub.

Setup on UNIX: Main Steps

See “CheckAccount Logic Plug-In Setup Steps in Detail” on page 4-21 for more
detailed information about each step.

1. Run the setenv.sh shell.
4-20 BEA WebLogic Collaborate Getting Started

CheckAccount Logic Plug-In Example
2. Customize the BulkloaddatabaseConfig.xml file, where database identifies
the relational database you are using.

3. Change to this directory:
$WLC_HOME/examples/LogicPlugIns/CheckAccount

4. From the CheckAccount directory, execute this command:
bulkloader.sh ../../BulkloaddatabaseConfig.xml

5. Customize the CreateDataBaseTables.sh shell.

6. Run the CreateDataBaseTables.sh shell.

7. Run the build.sh shell.

8. Customize the c-hub weblogic.properties configuration file, enabling the
Java servlet and JDBC Connection Pool sections.

9. Ensure that your environment is set, and start the c-hub.

CheckAccount Logic Plug-In Setup Steps in Detail

The following procedure explains each step. The numbering corresponds to the
numbering in the main steps sections.

1. Set the environment.

Run the setenv.cmd command file (Windows), or the setenv.sh shell
(UNIX). This step establishes the environment for your system.

2. Customize the Bulk Loader XML configuration file.

Customize the configuration file corresponding to the database you are using:

l BulkloadCloudscapeConfig.xml

l BulkloadMSSQLConfig.xml

l BulkloadOracleConfig.xml

This XML file is an input file to the Bulk Loader utility which you invoke in step
4 of this series of steps. You must define the database connectivity variables
correctly before populating the repository, creating database tables, and
populating database tables.

3. Change to the CheckAccount directory.
BEA WebLogic Collaborate Getting Started 4-21

4 Using Logic Plug-Ins for Billing
Change to the CheckAccount directory, and run subsequent steps from this
location.

Windows

%WLC_HOME%\examples\LogicPlugIns\CheckAccount

UNIX

$WLC_HOME/examples/LogicPlugIns/CheckAccount

4. Populate the WebLogic Collaborate repository.

From the CheckAccount directory, run the Bulk Loader utility, supplying the
correct path to the input XML configuration file. Additionally, this step reads the
RepData.xml file as input.

Windows

Syntax:

bulkloader ..\..\BulkloaddatabaseConfig.xml

Example:

bulkloader ..\..\BulkloadOracleConfig.xml

UNIX

Syntax:

bulkloader.sh ../../BulkloaddatabaseConfig.xml

Example:

bulkloader.sh ../../BulkloadCloudscapeConfig.xml

5. Customize the CreateDataBaseTables command file in the DataBase
directory.

Windows

CheckAccount\DataBase\CreateDataBaseTables.cmd

UNIX

CheckAccount/DataBase/CreateDataBaseTables.sh

The values for the connection parameters must match those specified in the JDBC
examplesPool in the weblogic.properties file. Modify the connection
values required for your underlying database. The user name you specify must
be an existing user with authority to create tables in the database.
4-22 BEA WebLogic Collaborate Getting Started

CheckAccount Logic Plug-In Example
6. Create the database tables and populate with data.

To create the MESSAGECOST and Billing database tables, run the command file
you customized in the previous step. The database tables are external to the
repository. You supply one input parameter to the command file, identifying the
subdirectory for your database. The command file reads the createTables.sql
and populateTables.sql script files in the subordinate directory.

As supplied, the populateTables.sql script inserts two rows of data into the
MESSAGECOST table. These insert statements are from the script:

insert into MESSAGECOST values (’verifierConversation’,20.37);
insert into MESSAGECOST values (’to-upper’,3);

To change the cost for each message in a conversation, in the
populateTables.sql script, modify the numeric value to be inserted into the
MESSAGE_COST column. For example, to change the cost of a message in the
verifierConversation conversation from the supplied value of 20.37, modify
the numeric value in the first insert statement.

Windows

Syntax:

CreateDataBaseTables { oracle | cloudscape | mssql }

Example:

CreateDataBaseTables oracle

UNIX

Syntax:

CreateDataBaseTables.sh { oracle | cloudscape }

Example:

CreateDataBaseTables.sh cloudscape

7. Create the executable programs for this example.

Run the build command file for your platform. This step compiles required Java
source files and copies resulting files to target locations.

Windows

build.cmd

UNIX

build.sh
BEA WebLogic Collaborate Getting Started 4-23

4 Using Logic Plug-Ins for Billing
You can vary the threshold for account balances due. Once the outstanding
balance due for a trading partner is above the threshold, custom code in the logic
plug-in denies access to the c-hub for this trading partner. To change the
threshold from the default value of 100, modify the value of the MAXLIMIT
variable in the CheckAccount.java source file and run the build step again.
This is a code fragment from the CheckAccount.java source file:

 public void process(MessageEnvelope mEnv) throws PlugInException {
 final float MAXLIMIT = 100;
 String sender, conversation ;
 String tRecipients[];
 Connection conn = null;
 float debit = 0;
 Message bMsg = null;

 // Gets the Business Message from the Message Envelope

8. Using a text editor, uncomment the following sections of the c-hub
weblogic.properties configuration file specific to the logic plug-in examples:

a. The Logic Plug-Ins servlets section. This section is identified by the
following section header, which appears before the lines that you need to
uncomment:

###
Servlets used for the WLC Logic PlugIns example
Uncomment to use
The Logic PlugIns require the Verifier example to be working
###

b. The section that specifies the data source to be used. This section is identified
by the following section header:

###
#Data Source used for the Logic PlugIns examples
#Uncomment it whatever database you use
###

c. The section that specifies the JDBC connection pool specific to the database
you are using. For example, if you are using Oracle, this section is identified by
the following section header:

###
Oracle 8.1.5
Note: EXAMPLE_USER, EXAMPLE_PASSWORD must match the values used in the
CreateDatabaseTables.cmd(sh) command
###
4-24 BEA WebLogic Collaborate Getting Started

CheckAccount Logic Plug-In Example
If you are using Oracle, be sure to specify values for <EXAMPLE_USER> and
<EXAMPLE_PASSWD> that match the values used in the
weblogic.properties.verifier CreateDatabaseTables script.

If you are using MS SQL server, be sure to specify values for
<MSSQL_USER>, <MSSQL_PASSWORD>, and <MSSQL_HOSTNAME> that match
your MS SQL server installation.

d. The section that represents ACLs for the examplesPool. This section is
identified by the following section header:

###
The following three lines represent ACLs for the examplesPool and
must be un-commented independently of the database type used
###

To uncomment the appropriate lines in each of these sections, simply delete the
comment character (#) at the beginning of each line in those sections. For
example, the section that represents ACLs for the examplesPool should appear
as:

weblogic.allow.reserve.weblogic.jdbc.connectionPool.examplesPool=everyone
weblogic.allow.reset.weblogic.jdbc.connectionPool.examplesPool=everyone
weblogic.allow.shrink.weblogic.jdbc.connectionPool.examplesPool=everyone

9. Start the example application.

Ensure that your environment is defined correctly, and start the c-hub.

Running an Application with the CheckAccount Logic
Plug-In

Follow these steps to observe how the CheckAccount logic plug-in adds value to an
underlying application.

1. Start the verifier example application, or the alternative example application
you configured for the logic plug-in.

Note: The CheckAccount logic plug-in requires that the target recipient list not
be empty. If the list is empty when you implement this logic plug-in, the
conversation will hang until it times out. You can change the timeout
period for a conversation.
BEA WebLogic Collaborate Getting Started 4-25

4 Using Logic Plug-Ins for Billing
2. Examine the WebLogic system log for messages from the CheckAccount logic
plug-in.

The CheckAccount logic plug-in writes a message to the log each time the c-hub
processes a business document. Look in the log for messages similar to these:

** CheckAccount ##### Recipient 1 = Partner2
** CheckAccount ##### Debit for Partner2 = 10.0
** CheckAccount ##### The recipient has not exceeded MAXLIMIT
** CheckAccount ##### Recipient has been removed because
 MAXLIMIT has been exceeded

3. Use your Web browser to inquire about the status of a trading partner account.
Set your browser to this address:

http://localhost:7001/examples/LogicPlugIns/LogicPlugIns.htm

Enter the name of a trading partner and click on the Submit button. This Java
servlet utility returns information about the trading partner.

Note: The valid names for the two trading partners are ’Partner1’ and
’Partner2’. These names are case-sensitive, and do include the
single-quote characters.

4. Continuing with the LogicPlugIns.htm tool, reset the trading partner balance
due back to zero by clicking the Reset button.

If you have set up the MessageCounter logic plug-in, the CheckAccount logic
plug-in processes database information recorded by both plug-ins.
4-26 BEA WebLogic Collaborate Getting Started

Index

A
administration service

access to 1-18
application

trading partner 1-25
architectural requirements

e-market 1-5
attachment 1-11

B
BEA Personalization Server 1-2
BEA WebLogic Collaborate

See WebLogic Collaborate
bulk loader utility 1-17

See also WebLogic Collaborate
Repository

See also WebLogic Process Integrator
example

business document 1-11
business message 1-9

attachment 1-11
broadcasting in c-hub 1-30
in example application 3-24
payload 1-11
XOCP 1-11

business model 1-13
business process

definition 1-7
business protocol 1-9

RosettaNet 1-10

XOCP 1-10

C
c-enabler

administration service 1-17
and WebLogic Process Integrator 1-33
colocation with c-hub 3-16
configuring 1-28
message logging 1-20
overview 1-14
security 1-18

c-enabler node 1-14
chain 1-30
CheckAccount plug-in

Java source files 4-18
running 4-25
setting up 4-20

c-hub
administration service 1-17
colocation with c-enabler 3-16
configuring 1-27
conversation coordination service 1-16
message broadcasting 1-30
message logging 1-20
messaging service 1-16
overview 1-14
repository 1-17
security 1-18

c-hub node 1-14
BEA WebLogic Collaborate Getting Started I-1

collaboration enabler
See c-enabler

collaboration hub
See c-hub 1-14

collaboration space
See c-space

collaborator
See trading partner

COM+ 1-2
configuring the c-hub 1-27
conversation

definition 1-7
role 1-7
starting 1-29
termination 1-35

conversation coordination service 1-16
conversation definition 1-7

subscription 1-14
conversation handler

and Enabler API 1-26
CORBA 1-2
c-space

definition 1-13
registering trading partners 1-5

customer support contact information ix

D
decoder 1-30
document 1-11
documentation, where to find it viii

E
e-market

architectural requirements 1-5
See also c-space 1-5

Enabler API 1-25
encoder 1-30
envelope 1-11

example application
Installation Verifier 3-1
logic plug-ins and billing 4-1
WebLogic Process Integrator Verifier 3-

1
eXtensible Open Collaboration Protocol

(XOCP)
See XOCP

F
filter 1-30
filter chain 1-30
flow

local 1-7

J
Java Management Extensions 1-18
Java Message Service (JMS) queue 1-27
JDBC connection

configuring 1-27
WebLogic Process Integratot example 2-

3
JMX 1-18

L
loading repository 4-6
local flow 1-7
logging service 1-20
logic plug-in 1-30

billing 4-1
CheckAccount 4-2
MessageCounter 4-2
utility servlets 4-3
I-2 BEA WebLogic Collaborate Getting Started

M
MBeans 1-18
message

business 1-9
vocabulary 1-7
WebLogic Process Integrator example 3-

21
message envelope 1-11
message header 1-11
message logging 1-20
MessageCounter plug-in

Java source files 4-6
running 4-14
setting up 4-8

messaging service
overview 1-16

P
payload 1-11
printing product documentation viii
process, business 1-7
protocol, business 1-9

Q
QoS

and messaging service 1-16
definition 1-10

Qualities of Service (QoS)
See QoS

R
related information viii
repository 1-17

loading 4-6
XML files 4-6

role
definition 1-7
subscribing to 1-14

RosettaNet 1-10
router 1-30
router chain 1-30
routing service 1-30

S
scheduling service 1-30
security service

overview 1-18
startup class 1-27
Studio. See Weblogic Process Integrator.
subscription 1-14
Support 1-2
support

technical ix

T
templates. See workflow templates.
trading partner

application 1-25
broadcasting message to 1-30
how to register in a c-space 1-25
workflow 1-27

trading partners
definition 1-5
joining a c-space 1-5

transport service 1-30
troubleshooting 2-7

U
utility servlets

See logic plug-in

V
vocabulary 1-7
BEA WebLogic Collaborate Getting Started I-3

W
WAP 1-2
WebLogic Collaborate

configuring for WebLogic Process
Integrator 2-2

feature summary 1-2
overview 1-1

WebLogic Collaborate Repository 4-6
WebLogic Process Integrator

and weblogic.properties file 2-2
configuring with WebLogic Collaborate

2-2
example 1-33
example, about 3-1
example, bulk loader utility 3-17
example, running 3-2
integrating with WebLogic Collaborate

1-33
Java classes 3-30
overview 1-20
Studio tool 1-20
Studio, login dialog box 2-8
Studio, running 3-6
Studio, starting 2-7
template definition 1-20
wlpiverifier_init workflow 3-22
wlpiverifier_partner workflow 3-27
workflow 1-20
Worklist 1-20

WebLogic Server
c-hub and c-enabler colocation 3-16
configuring with c-hub 1-27
single instance 3-16
two instances 3-2

weblogic.properties file
and WebLogic Process Integrator 2-2

wlcstartup.properties file 3-20
WLPI

See WebLogic Process Integrator

WLS
See WebLogic Server

workflow
and WebLogic Collaborate 1-20
downloading to trading partner 1-27
variables 3-22

workflow templates 3-5
deploying 3-12
folders 3-8
importing 3-9

X
Xalan 1-20
Xerces 1-20
XML parser 1-20
XML service 1-20
XOCP business message 1-11
XOCP business protocol 1-10
XOCP filter

logic plug-in 1-30
XOCP router logic plug-in 1-30
Xpath expression 1-30
XSLT engine 1-20
I-4 BEA WebLogic Collaborate Getting Started

	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Documentation Conventions
	1 Overview
	Feature Support for Your E-Business
	Understanding the Architectural Requirements of an E-Market
	Trading Partners
	Business Processes and Vocabularies
	Conversations and Roles
	Business Messages
	Business Protocols
	RosettaNet
	XOCP

	Collaboration Spaces
	Conversation Subscriptions
	Software for Implementing the C-Space
	Messaging Service
	Conversation Coordination Service
	Repository Service
	Administration Services
	Security Services
	XML Services
	Logging Service
	Workflow Process Engine

	Using WebLogic Collaborate — the End-to-End View
	Creating the Trading Partner Application
	About Trading Partner Applications That Invoke the C-Enabler Directly
	About Trading Partner Applications Integrated with WebLogic Process Integrator

	Configuring the C-Hub
	Configuring the C-Enabler
	Starting the Conversation
	Broadcasting a Message to Trading Partners
	Receiving a Business Message and Responding Through WebLogic Process Integrator
	The C-Hub Sending a Response to the Buyer

	Documentation Roadmap

	2 Setting Up the WebLogic Process Integrator Environment
	Configuring WebLogic Collaborate for WebLogic Process Integrator
	Troubleshooting Your WebLogic Process Integrator Configuration
	Starting WebLogic Process Integrator Studio

	3 Running the WebLogic Process Integrator Verifier Example
	Setting Up and Running the WebLogic Process Integrator Verifier Example
	Running the Example on Two WebLogic Server Instances
	Step 1: Configuring WebLogic Collaborate for WebLogic Process Integrator
	Step 2: Building the Example
	Step 3: Starting the C-Hub
	Step 4: Starting the C-Enabler
	Step 5: Importing and Deploying the Workflow Templates
	Step 6: Running the Example

	Running the Example on a Single WebLogic Server Instance

	Understanding the WebLogic Process Integrator Verifier Example
	The wlpiverifier_init Workflow
	The wlpiverifier_partner Workflow
	Understanding WebLogic Process Integrator Java Classes

	4 Using Logic Plug-Ins for Billing
	Structure of the Logic Plug-Ins for Billing
	Purpose of the MessageCounter Logic Plug-In
	Purpose of the CheckAccount Logic Plug-In
	Utility Servlets for the Logic Plug-Ins

	MessageCounter Logic Plug-In Example
	Structure of the MessageCounter Logic Plug-In Example
	Required Files
	Files for Loading the WebLogic Collaborate Repository
	HTML File for Querying Trading Partner Account Status
	Files for Managing Database Tables

	Setting Up the MessageCounter Logic Plug-In
	Setup on Windows: Main Steps
	Setup on UNIX: Main Steps
	MessageCounter Logic Plug-In Setup Steps in Detail

	Running an Application with the MessageCounter Logic Plug-In

	CheckAccount Logic Plug-In Example
	Structure of the CheckAccount Logic Plug-In Example
	Required Files
	Files for Loading the WebLogic Collaborate Repository
	HTML File for Querying Trading Partner Account Status
	Files for Managing Database Tables

	Setting Up the CheckAccount Logic Plug-In
	Setup on Windows: Main Steps
	Setup on UNIX: Main Steps
	CheckAccount Logic Plug-In Setup Steps in Detail

	Running an Application with the CheckAccount Logic Plug-In

	Index

