
B E A W e b L o g i c C o l l a b o r a t e 1 . 0 . 1
D o c u m e n t E d i t i o n 1 . 0 . 1

M a r c h 2 0 0 1

Developer Guide

BEA WebLogic
Collaborate

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

BEA WebLogic Collaborate Developer Guide

Document Edition Date Software Version

1.0.1 March 2001 1.0.1

BEA WebLogic Collaborate Developer Guide iii

Contents

About This Document
What You Need to Know ... xii

How to Print this Document ... xii

Related Information... xiii

Contact Us! .. xiii

Documentation Conventions ... xiv

1. Introduction
Messaging Applications .. 1-2

Management Applications... 1-3

Logic Plug-Ins ... 1-4

2. Using Workflows to Exchange Business Messages
About Using Workflows.. 2-2

About This WebLogic Process Integrator Version 2-2

Architectural Overview .. 2-3

Architecture Diagram.. 2-3

WebLogic Process Integrator Components
in WebLogic Collaborate... 2-4

Key Concepts ... 2-5

Workflows, Workflow Templates, and Workflow
Template Definitions ... 2-5

Conversations, Conversation Definitions, and Business Messages 2-6

Initiators and Participants.. 2-7

Sent and Received Business Messages ... 2-9

Run-Time Prerequisites.. 2-9

Summary of Workflow Integration Tasks.. 2-10

iv BEA WebLogic Collaborate Developer Guide

Administrative Tasks... 2-10

Design Tasks ... 2-11

Programming Tasks... 2-13

Designing Workflows for Exchanging Business Messages 2-14

Using Workflow Templates Created in Other WebLogic
Process Integrator Versions... 2-15

Exporting Workflow Template Definitions 2-15

Importing Workflow Template Definitions 2-16

Defining Conversation Properties .. 2-16

Opening Workflow Template Definitions... 2-17

Linking Workflows to Conversations ... 2-19

Defining the Quality of Service for Message Delivery
at the Template Level... 2-20

Linking C-Enabler Session Names to a Workflow Template
Definition ... 2-24

Defining Start Actions.. 2-26

Defining the Start for a Conversation Initiator Workflow 2-27

Defining the Start for a Conversation Participant Workflow............ 2-29

Defining Conversation Termination... 2-31

Defining the Termination of Conversation Initiator Workflows 2-31

Defining the End of Conversation Participant Workflows 2-33

Defining WebLogic Process Integrator Variables for Workflows 2-35

Associations Between WebLogic Process Integrator Variables
and Java Data Types .. 2-36

Rules for Defining WebLogic Process Integrator Variables............. 2-37

Defining Input Variables ... 2-38

Defining Output Variables .. 2-39

Working with Business Messages ... 2-41

About Business Messages .. 2-41

Summary of Prerequisite Tasks for Exchanging Business Messages 2-42

Defining Variables and Manipulating Business Messages 2-43

Defining WebLogic Process Integrator Variables for Business
Messages .. 2-43

Defining Manipulate Business Message Actions.............................. 2-44

Writing Business Operations to Manipulate Business Messages...... 2-51

Creating and Defining Messages to Send... 2-53

BEA WebLogic Collaborate Developer Guide v

Steps for Creating Business Messages.. 2-53

Defining Send Business Message Actions.. 2-57

Defining the Quality of Service for Message Delivery for a Send
Business Message Action .. 2-62

Assigning Message Token Information
to WebLogic Process Integrator Variables 2-63

Defining the Workflow to Receive Business Messages........................... 2-66

Defining the Business Message Start for Conversation Participant
Workflows ... 2-67

Defining Business Message Receive Events 2-70

Steps for Receiving Business Messages ... 2-72

Developing Applications That Start Conversation Initiator Workflows......... 2-76

WebLogic Process Integrator Integration API ... 2-76

Creating Workflow C-Enabler Sessions .. 2-77

Programming Steps for Accessing Conversation Initiator Workflows.... 2-78

Step 1: Import the Necessary Packages .. 2-78

Step 2: Initialize Input Variables .. 2-79

Step 3: Establish a Workflow C-Enabler Session 2-81

Step 4: Create a Workflow Instance for a Specific Workflow
Template .. 2-83

Step 5: Start a Workflow Instance .. 2-84

Step 6: Wait for the Workflow Instance to Complete....................... 2-85

Step 7: Handle Results in Output Variables...................................... 2-85

Step 8: Handling Exceptions... 2-86

3. Using XOCP C-Enabler Applications to Exchange Business
Messages

About XOCP C-Enabler Applications... 3-2

Architectural Overview .. 3-3

Key Concepts ... 3-4

XOCP C-Enabler Applications ... 3-5

C-Enabler Class Library.. 3-5

Conversations and Conversation Definitions...................................... 3-5

XOCP Business Messages and Message Envelopes........................... 3-6

Conversation Initiators and Participants ... 3-10

Conversation Coordinators ... 3-11

vi BEA WebLogic Collaborate Developer Guide

Trading Partner States ... 3-13

Secure Messaging.. 3-13

Key Tasks for C-Enabler Applications... 3-14

Joining a C-Space.. 3-14

Registering for a Role in a Conversation .. 3-15

Engaging in Conversations with Trading Partners............................ 3-16

Shutting Down a C-Enabler Session to Leave a C-Space................. 3-17

Run-Time Information Flow .. 3-18

Information Flow Diagram.. 3-19

Steps in the Information Flow... 3-20

Programming Steps for C-Enabler Applications ... 3-22

Step 1: Import Packages ... 3-23

Step 2: Implement the ConversationHandler Interface 3-24

Step 3: Create a C-Enabler Session .. 3-25

Step 4: Register a Conversation Handler.. 3-25

Step 5: Initiate or Participate in a Conversation....................................... 3-26

Step 6: Exchange Business Messages .. 3-27

Step 7: End the Conversation ... 3-27

Participant Leaves a Conversation .. 3-27

Initiator Terminates a Conversation .. 3-28

Step 8: Shut Down the C-Enabler Session ... 3-29

Sending XOCP Business Messages... 3-29

Step 1: Create the Business Message ... 3-30

Importing the Required Packages ... 3-30

Creating Payload Parts .. 3-30

Creating the XOCP Business Message and Adding Payload Parts... 3-32

Step 2: Specify the Recipients of the Business Message 3-33

Specifying a Particular Trading Partner .. 3-33

Using C-Enabler XPath Expressions to Specify Message Recipient
Criteria ... 3-34

Step 3: Specify the Quality of Service for Message Delivery.................. 3-37

Automatic Quality of Service Features ... 3-37

QualityOfService Class ... 3-38

Code Example ... 3-40

Setting the Message Delivery Confirmation Level 3-40

BEA WebLogic Collaborate Developer Guide vii

Setting Message Durability ... 3-41

Setting the Message Timeout .. 3-44

Setting the Number of Delivery Retry Attempts 3-44

Setting the Correlation ID for a Business Message 3-45

Step 4: Send the XOCP Business Message .. 3-46

Synchronous Message Delivery.. 3-46

Deferred Synchronous Message Delivery... 3-46

Step 5: Check the Delivery Status of the Business Message 3-47

Message Tokens .. 3-48

Delivery Status Tracking .. 3-49

Message Tracking Locations .. 3-50

Receiving XOCP Business Messages ... 3-52

About Receiving XOCP Business Messages ... 3-52

Receiving an XOCP Business Message ... 3-53

Tasks Performed ... 3-53

Code Listing .. 3-54

4. Developing Logic Plug-Ins
About Logic Plug-Ins .. 4-2

What Are Logic Plug-Ins?.. 4-2

Logic Plug-In Architecture... 4-3

Logic Plug-In Processing Tasks... 4-4

Chains... 4-4

Business Messages and Message Envelopes.. 4-7

System and Custom Logic Plug-Ins ... 4-8

Logic Plug-In API ... 4-9

Rules and Guidelines for Logic Plug-Ins .. 4-11

Creating and Adding Logic Plug-Ins... 4-13

Programming Steps for Logic Plug-Ins.. 4-13

Step 1: Import the Necessary Packages .. 4-14

Step 2: Implement the PlugIn Interface .. 4-15

Step 3: Specify the Exception Processing Model 4-15

Step 4: Implement the Process Method... 4-17

Step 5: Get the Business Message from the Message Envelope....... 4-18

Step 6: Validate the Business Message... 4-18

viii BEA WebLogic Collaborate Developer Guide

Step 7: Get Business Message Properties ... 4-19

Step 8: Process the Business Message as Needed............................. 4-19

Administrative Tasks.. 4-19

5. Developing Management Applications
About Management Applications .. 5-2

MBeans and the MBean Server .. 5-2

MBean Packages ... 5-3

MBean Server Implementation ... 5-3

C-Hub MBeans... 5-4

C-Enabler MBeans ... 5-5

Configuration Requirements .. 5-5

Programming Steps for Management Applications... 5-6

Step 1: Import the Necessary Packages.. 5-7

C-Hub Example... 5-7

C-Enabler Example ... 5-8

Step 2: Get a Reference to the MBean Server Object 5-8

Step 3: Construct an ObjectName Object... 5-8

Object Names .. 5-9

Object Name Expressions .. 5-11

Step 4: Query the MBean Server.. 5-11

C-Hub Example... 5-12

C-Enabler Code Example.. 5-12

Step 5: Read the Attributes of the MBean.. 5-13

C-Hub Example... 5-13

C-Enabler Example ... 5-14

Step 6: Navigate Across MBeans ... 5-15

Step 7: Handle Exceptions.. 5-15

6. Writing to the Log
About the Log .. 6-1

Log Files ... 6-1

Logging API ... 6-2

Severity Levels ... 6-2

Writing Messages to the Log... 6-3

BEA WebLogic Collaborate Developer Guide ix

Importing the Logging Package ... 6-3

Writing a Log Message with an INFO Severity Level............................... 6-3

Writing a Message With a Specific Severity Level 6-4

Index

x BEA WebLogic Collaborate Developer Guide

BEA WebLogic Collaborate Developer Guide xi

About This Document

This document describes how to develop applications to exchange business messages
and monitor run-time activities in c-hubs and c-enablers in the BEA WebLogic
Collaborate™ system.

This document is organized as follows:

� Chapter 1, “Introduction,” provides an introduction to developing applications
for the BEA WebLogic Collaborate environment.

� Chapter 2, “Using Workflows to Exchange Business Messages,” describes how
to exchange business messages using WebLogic Process Integrator workflows.

� Chapter 3, “Using XOCP C-Enabler Applications to Exchange Business
Messages,” describes how to exchange business messages using c-enabler
applications that implement the c-enabler API.

� Chapter 4, “Developing Logic Plug-Ins,” describes how to manipulate business
messages as they travel through the c-hub.

� Chapter 5, “Developing Management Applications,” describes how to monitor
run-time activities in the c-hub and c-enabler by developing management
applications that implement the BEA WebLogic Collaborate Managed Beans
(MBeans).

� Chapter 6, “Writing to the Log,” describes how to write messages to the log in
any BEA WebLogic Collaborate application.

xii BEA WebLogic Collaborate Developer Guide

What You Need to Know

This document is intended primarily for:

� Business process designers who will use WebLogic Process Integrator studio to
design workflows that integrate with the BEA WebLogic Collaborate
environment.

� Application developers who will write Java applications that manage the
exchange of business messages or monitor run-time statistics in the BEA
WebLogic Collaborate environment.

� System administrators who will set up and administer BEA WebLogic
Collaborate applications.

For an overview of the BEA WebLogic Collaborate architecture, see Overview in the
BEA WebLogic Collaborate Getting Started document.

How to Print this Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the BEA WebLogic Collaborate
documentation CD. You can open the PDF in Adobe Acrobat Reader and print the
entire document (or a portion of it) in book format.

If you do not have the Adobe Acrobat Reader installed, you can download it for free
from the Adobe Web site at http://www.adobe.com/.

How to Print this Document

BEA WebLogic Collaborate Developer Guide xiii

Related Information

For more information about Java 2 Enterprise Edition (J2EE), Extended Markup
Language (XML), and Java programming, see the Bibliography in the BEA WebLogic
Collaborate online documentation.

Contact Us!

Your feedback on the BEA WebLogic Collaborate documentation is important to us.
Send us e-mail at docsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the BEA WebLogic Collaborate documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Collaborate 1.0 release.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

xiv BEA WebLogic Collaborate Developer Guide

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

Documentation Conventions

BEA WebLogic Collaborate Developer Guide xv

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

� That an argument can be repeated several times in a command line

� That the statement omits additional optional arguments

� That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

xvi BEA WebLogic Collaborate Developer Guide

BEA WebLogic Collaborate Developer Guide 1-1

CHAPTER

1 Introduction

The following sections introduce the different kinds of WebLogic Collaborate
applications:

� Messaging Applications

� Management Applications

� Logic Plug-Ins

The following figure shows where these types of applications reside in the WebLogic
Collaborate system.

Figure 1-1 Types of WebLogic Collaborate Applications

For an introduction to the WebLogic Collaborate system, see Overview in BEA
WebLogic Collaborate Getting Started.

C-Hub Node

Logic
Plug-Ins

C-Hub
Management
Applications

Trading Partner
C-Enabler Node

Messaging
Applications

C-Enabler
Management
Applications

Trading Partner
C-Enabler Node

C-Enabler
Management
Applications

Messaging
Applications

1 Introduction

1-2 BEA WebLogic Collaborate Developer Guide

Messaging Applications

WebLogic Collaborate messaging applications handle the exchange of business
messages among trading partners in a c-space. Messaging applications run on
c-enabler nodes and exchange business messages via the c-hub. Developers can
implement messaging applications in two different ways.

For any given messaging application, the best implementation approach depends on
the particular needs of that application. Workflow applications provide design and
run-time tools to expedite application development. C-Enabler applications provide
greater programmatic control using Java APIs. Developers need to determine the best
approach based on the relative advantages of each in relation to their specific
application requirements.

A conversation usually has multiple, interoperating messaging applications, each
tailored to a particular role in that conversation. For example, the trading partner who
initiates the conversation uses an initiating messaging application, and trading partners
who participate in the conversation use a different participating messaging application
that interacts with the initiating messaging application at run time.

For more information about messaging applications, see Chapter 2, “Using Workflows
to Exchange Business Messages,” and Chapter 3, “Using XOCP C-Enabler
Applications to Exchange Business Messages.”

Table 1-1 Different Implementations of Messaging Applications

Implementation Option Description

Workflow applications Use WebLogic Process Integrator workflows to
exchange business messages with other trading
partners. The WLPI Verifier application (in
\examples\wlpiverifier) is an example of a
workflow application.

C-Enabler applications Use the flexible and powerful c-enabler API to
exchange business messages with other trading
partners. The Verifier application (in
\examples\verifier) is an example of a
c-enabler application.

Management Applications

BEA WebLogic Collaborate Developer Guide 1-3

Management Applications

WebLogic Collaborate management applications monitor run-time activities, such as
message traffic and conversation statistics, on c-hub and c-enabler nodes. WebLogic
Collaborate provides two administrative tools, the C-Hub Administration Console and
the C-Enabler Administration Console, that monitor run-time. In addition to these
system tools, developers can create custom management applications that provide
comparable monitoring functionality.

Developers can implement two kinds of management applications.

For c-hub and c-enabler management applications, WebLogic Collaborate provides a
set of Managed Beans, or MBeans, which are special JavaBeans with attributes and
methods for management operations. These MBeans are BEA implementations of the
Java Management Extensions (JMX) Managed Beans API, which is defined in the Java
Management Extensions Specification published by Sun Microsystems, Inc.

For more information about WebLogic Collaborate management applications, see
Chapter 5, “Developing Management Applications.”

Table 1-2 Types of Managing Applications

Component Description

C-Hub management applications Monitor activities on the c-hub node and provide
run-time statistics for c-hubs, c-spaces, conversation
definitions, trading partners, and business messages.

C-Enabler management
applications

Monitor activities on c-enabler nodes and provide
run-time statistics for c-enablers, c-enabler sessions,
conversations, and business messages.

1 Introduction

1-4 BEA WebLogic Collaborate Developer Guide

Logic Plug-Ins

Logic plug-ins are Java classes that perform specialized processing of business
messages as they pass through the c-hub. Logic plug-ins insert rules and business logic
at strategic locations along the path that business messages travel as they make their
way through the c-hub. WebLogic Collaborate provides XOCP and RosettaNet router
and filter logic plug-ins. A c-hub provider or trading partner can develop and install
custom logic plug-ins on the c-hub to provide additional value for c-hub management
and for trading partners who use that c-hub.

Logic plug-ins are stored and executed on the c-hub node and are defined in the c-hub
repository. Logic plug-ins are transparent to c-enabler users.

For more information about logic plug-ins, see Chapter 4, “Developing Logic
Plug-Ins.”

BEA WebLogic Collaborate Developer Guide 2-1

CHAPTER

2 Using Workflows to
Exchange Business
Messages

You can use WebLogic Process Integrator workflows to exchange XOCP business
messages in the WebLogic Collaborate environment. WebLogic Process Integrator
accelerates application development by providing a visual design tool for designing
workflows (process models); a run-time Process Engine for executing workflows; and
process monitoring capabilities. Using WebLogic Process Integrator in the WebLogic
Collaborate environment involves a combination of design, programming, and
administrative tasks.

The following sections describe how to exchange business messages in WebLogic
Collaborate by using WebLogic Process Integrator workflows:

� About Using Workflows

� Designing Workflows for Exchanging Business Messages

� Working with Business Messages

� Developing Applications That Start Conversation Initiator Workflows

The WebLogic Process Integrator Verifier program provides an example of using
WebLogic Process Integrator workflows to exchange business messages in WebLogic
Collaborate. For more information, see Running the WebLogic Process Integrator
Verifier Example in BEA WebLogic Collaborate Getting Started.

2 Using Workflows to Exchange Business Messages

2-2 BEA WebLogic Collaborate Developer Guide

About Using Workflows

The following sections describe key concepts for using WebLogic Process Integrator
workflows in WebLogic Collaborate applications:

� About This WebLogic Process Integrator Version

� Architectural Overview

� Key Concepts

� Run-Time Prerequisites

� Summary of Workflow Integration Tasks

About This WebLogic Process Integrator Version

The version of WebLogic Process Integrator that is bundled with WebLogic
Collaborate provides all of the functionality of WebLogic Process Integrator
version 1.2, which ships separately. It also provides additional functionality for
integrating with the WebLogic Collaborate environment, including:

� Specialized workflow properties for manipulating business messages, specifying
the message delivery Quality of Service, handling message tokens, and so on

� A Java application programming interface (API) for use in WebLogic
Collaborate workflow applications

For more information about the WebLogic Process Integrator application, see the
following documents:

� BEA WebLogic Process Integrator Studio User Guide

� BEA WebLogic Process Integrator Tutorial

� BEA WebLogic Process Integrator Worklist Guide

About Using Workflows

BEA WebLogic Collaborate Developer Guide 2-3

Architectural Overview

This section describes how WebLogic Process Integrator integrates with the
WebLogic Collaborate architecture.

Architecture Diagram

The following figure shows the WebLogic Collaborate c-enabler architecture with
WebLogic Process Integrator components.

Figure 2-1 C-Enabler Architecture

WebLogic Process Integrator is started automatically upon c-enabler startup.

C-Enabler Node

WLPI
Database

Java Virtual Machine (JVM)

Application Application Application

C-Enabler

XML Services

Messaging

WebLogic Server (WLS)

WebLogic
Process

Integrator

S
tu

d
io

P
ro

ce
ss

E
n

g
in

e

W
o

rk
lis

t

2 Using Workflows to Exchange Business Messages

2-4 BEA WebLogic Collaborate Developer Guide

WebLogic Process Integrator Components in WebLogic Collaborate

WebLogic Collaborate provides the following WebLogic Process Integrator
components:

For an introduction to these WebLogic Process Integrator components, see WebLogic
Process Integrator Overview in the BEA WebLogic Process Integrator Studio User
Guide.

Table 2-1 WebLogic Process Integrator Components

Component Description

WebLogic Process
Integrator Studio

Client application that is used at design time to define
workflows and at run time to monitor running workflows.

WebLogic Process
Integrator Process Engine

Run-time controller and workflow engine that executes and
manages workflows and tracks workflow instances.

WebLogic Process
Integrator Database

Database in which workflow templates are stored.

This database can reside locally on the c-enabler node, or it
can reside on a different node that is network accessible to the
c-enabler. The database can be deployed so that it is accessible
to a single c-enabler only, to multiple c-enablers within the
same trading partner organization, or to multiple c-enablers
across trading partners in different organizations.

WebLogic Process
Integrator Worklist

Application that is used to view and perform tasks that are
currently assigned to a user or to roles to which the user
belongs, such as reassigning tasks to other users, marking
tasks as done, unmarking tasks done, viewing a workflow
status, manually starting a workflow, and so on.

About Using Workflows

BEA WebLogic Collaborate Developer Guide 2-5

Key Concepts

This section describes key concepts that you need to understand before using
WebLogic Process Integrator workflows in WebLogic Collaborate applications.

Workflows, Workflow Templates, and Workflow Template Definitions

This section describes the following key WebLogic Process Integrator concepts:

� WebLogic Process Integrator is a workflow automation tool. A workflow is a
business process. Workflow automation is the automation of a business process,
in whole or in part, during which information of any type is passed to the right
participant at the right time according to a set of intelligent business rules that
allow computers to perform most of the work while humans only have to deal
with exceptions.

� In WebLogic Process Integrator, a workflow template is a folder (or a container)
in the WebLogic Process Integrator Studio. This workflow template represents a
workflow and is given a meaningful workflow name, such as Order Processing
or Billing. The workflow template aggregates various definitions (or “versions”)
of its implementation; these are referred to as workflow template definitions.
Further, a workflow template is responsible for controlling which organizations
can use the “contained” workflow template definitions.

� A workflow template definition is a definition (or “version”) of the workflow,
distinguished by its Effective and Expiry dates. At design time, you use the
WebLogic Process Integrator Studio to link a workflow template definition to a
particular conversation and WebLogic Collaborate role (such as buyer or seller)
in a WebLogic Collaborate conversation definition. At run time, WebLogic
Process Integrator starts an instance (or session) of a workflow template
definition, selecting the most effective (or current and active) definition.

For detailed information about these concepts, see WebLogic Process Integrator
Overview in the BEA WebLogic Process Integrator Studio User Guide.

2 Using Workflows to Exchange Business Messages

2-6 BEA WebLogic Collaborate Developer Guide

Conversations, Conversation Definitions, and Business Messages

This section defines the following key WebLogic Collaborate concepts:

� In WebLogic Collaborate, a conversation is a series of message exchanges
between trading partners that takes place in a collaboration space and that is
predefined according to a conversation definition. Each message in the
conversation can cause any number of back-end transactions.

� A conversation definition consists of a unique conversation name, conversation
version, document definitions, trading partner IDs, and trading partner roles for
one conversation. At design time, you use the WebLogic Process Integrator
Studio to link a workflow template definition to a particular role (such as buyer
or seller) in a WebLogic Collaborate conversation definition.

� An XOCP business message is the basic unit of communication exchanged
between trading partners in an XOCP conversation. An XOCP business message
is a multi-part MIME message that consists of business documents and
attachments. A business document is the XML-based payload part of a business
message. An attachment is the non-XML-based payload part of a business
message. To construct outgoing business messages or to process incoming
business messages, a workflow uses the Manipulate Business Message action,
which invokes a Java class that implements the
com.bea.b2b.wlpi.MessageManipulator interface.

For detailed information about these concepts, see Overview in BEA WebLogic
Collaborate Getting Started.

About Using Workflows

BEA WebLogic Collaborate Developer Guide 2-7

Initiators and Participants

A conversation involves an initiator who starts the conversation and participants who
participate in the conversation once it has started. Each perspective requires a different
kind of workflow.

In the context of a business process, these two types of workflows are interlocking. For
example, suppose a buyer wanted to obtain bids from various sellers. This business
process could be described as follows.

Figure 2-2 Sample Business Process with Two Workflows

1. In WebLogic Process Integrator Studio, the buyer (the initiating trading partner)
starts a workflow named GetBids (the conversation initiator workflow). The
GetBids workflow constructs and sends a business message (containing a bid
request in the form of an XML document) by way of the c-hub to qualified sellers
and awaits a reply.

Table 2-2 Types of Workflows

Workflow Type Description

Conversation initiator
workflow

Defined to have conversation properties and a non-Business
Message start property. This type of workflow initiates and
terminates the conversation.

Conversation participant
workflow

Defined to have conversation properties and a Business
Message start property. This type of workflow can join and
exit the conversation but cannot initiate or terminate it.

Bid Request

C-Hub

C-Enabler Node

Participating
Trading Partner

(Seller)
SubmitBid
Workflow

C-Enabler Node

Initiating
Trading Partner

(Buyer)
GetBids Workflow

Bid Reply
Bid Award

Bid Confirm

2 Using Workflows to Exchange Business Messages

2-8 BEA WebLogic Collaborate Developer Guide

Note: The GetBids workflow is defined with conversation properties and a
Manual start property. It is started programmatically by using a Java
application.

2. Each qualified seller (a participant trading partner) receives the business
message, which triggers the start of an instance of a workflow named SubmitBid

(the conversation participant workflow) on each seller’s c-enabler node.

The SubmitBid workflow processes the incoming bid request, determines
whether to submit a bid or not and, if so, constructs and sends a business
message (containing a bid reply in the form of an XML document), and awaits
the results of the bid selection.

Note: The SubmitBid workflow is defined with conversation properties and a
Message Start property.

3. On the buyer side, the GetBids workflow receives bid replies from all qualified
sellers, determines which seller to award the bid, and then notifies all sellers of
the results by:

� Constructing and sending a business message (containing a bid award in the
form of an XML document) to the winning bidder

� Constructing and sending a different business message (containing a bid
rejection in the form of an XML document) to all other sellers

The GetBids workflow then awaits a bid confirmation from the winning seller.

4. On the seller side, the SubmitBid workflow receives and processes the results of
the bid.

� If the seller was awarded the winning bid, the seller constructs and sends a
business message (containing a bid confirmation in the form of an XML
document) to the seller.

Alternatively, the seller could return a different business message (containing
another XML document, such as a purchase order request) to the seller that
would continue the conversation.

� If the seller did not receive the bid award, that seller’s SubmitBid workflow
ends and the seller exits the conversation.

5. On the buyer side, the GetBids workflow receives and processes the bid
confirmation from the seller and then terminates the conversation.

About Using Workflows

BEA WebLogic Collaborate Developer Guide 2-9

Sent and Received Business Messages

When trading partners exchange business messages, initiator and participant
workflows both typically send and receive business messages.

It is important to keep in mind which parts of the workflow send business messages
and which parts receive them. For example, a buyer might submit a bid request (a
business message) to a seller. In this case, the buyer workflow is sending the business
message and the seller workflow is receiving it. When the seller replies to the request
with a bid (another business message), then the roles are reversed: the seller workflow
is the sender and the buyer is the recipient workflow.

The design and programming tasks differ for sending and receiving business messages.
However, in both cases, you must define certain properties in the workflow template
definition and write application code (that implements the
com.bea.b2b.wlpi.MessageManipulator interface) to manipulate the business
message.

For more information about working with business messages, see “Working with
Business Messages” on page 2-41.

Run-Time Prerequisites

Before exchanging messages at run time, the following prerequisites must be met:

� Install and configure WebLogic Process Integrator and WebLogic Collaborate, as
described in “Administrative Tasks” on page 2-10.

� Define and link workflows to WebLogic Collaborate conversations, as described
in “Design Tasks” on page 2-11.

� Write and test application code for manipulating messages and for starting the
conversation initiator workflow, as described in “Programming Tasks” on page
2-13.

� For all trading partners, WebLogic Process Integrator is automatically loaded
and running upon c-enabler startup.

� For each trading partner, all relevant workflows are active and stored in the
WebLogic Process Integrator database.

2 Using Workflows to Exchange Business Messages

2-10 BEA WebLogic Collaborate Developer Guide

� For an initiating trading partner, the conversation initiator workflow is active
and defined with the non-Business Message start property. It awaits the
invocation of the application that starts the workflow.

� For all participating trading partners, the conversation participant workflow
is active and defined with a Business Message start property. It awaits the
receipt of the initial business message in the conversation.

Summary of Workflow Integration Tasks

Using WebLogic Process Integrator workflows to exchange business messages in
WebLogic Collaborate requires a combination of administrative, design, and
programming tasks.

Administrative Tasks

Integrating WebLogic Process Integrator workflows requires the following
administrative tasks:

1. Install WebLogic Collaborate, and configure WebLogic Process Integrator
according to the instructions in Setting Up the WebLogic Process Integrator
Environment in BEA WebLogic Collaborate Getting Started.

� Create the tables for the WebLogic Process Integrator database by running
the appropriate SQL script for the database management you will use.

� Configure the JDBC connection pool for the WebLogic Process Integrator
database in the using the Administrative Console.

� Run the WebLogic Process Integrator Verifier program to validate your
installation and configuration.

2. For c-enabler nodes, specify the workflow c-enabler session names you want to
use in the c-enabler XML configuration file. For more information, see
Configuring C-Enablers in the BEA WebLogic Collaborate C-Enabler
Administration Guide.

About Using Workflows

BEA WebLogic Collaborate Developer Guide 2-11

3. Using the C-Hub Administration Console, create and configure the necessary
entities in the c-hub repository, including c-spaces, trading partners, conversation
definitions, document definitions, and so on. For more information, see the BEA
WebLogic Collaborate C-Hub Administration Guide.

Note: Every WebLogic Process Integrator workflow template definition requires
a conversation definition.

4. Using WebLogic Process Integrator Studio, specify the organizations, users, and
roles in the WebLogic Process Integrator database, as described in Administering
Data within WebLogic Process Integrator in the BEA WebLogic Process
Integrator Studio User Guide.

Design Tasks

Integrating WebLogic Process Integrator workflows requires the following design
tasks that you perform in WebLogic Process Integrator Studio:

1. Create and design workflows that automate business processes.

You can create workflows from scratch, as described in Defining and
Maintaining Workflows in the BEA WebLogic Process Integrator Studio User
Guide.

Alternatively, you can import workflows created in other versions of WebLogic
Process Integrator, as described in “Using Workflow Templates Created in Other
WebLogic Process Integrator Versions” on page 2-15.

In addition to defining the standard workflow properties, you must also define
properties that link the workflow to the WebLogic Collaborate messaging
system. The remaining tasks in this sequence apply to integrating workflows into
WebLogic Collaborate.

2. For each workflow template definition, specify conversation properties as
follows:

� Explicitly link the workflow template definition to a role in a conversation
definition in the c-hub repository, as described in “Linking Workflows to
Conversations” on page 2-19.

� Associate at least one c-enabler session name to the workflow template
definition, as described in “Linking C-Enabler Session Names to a Workflow
Template Definition” on page 2-24.

2 Using Workflows to Exchange Business Messages

2-12 BEA WebLogic Collaborate Developer Guide

� Optionally, specify other conversation properties, as described in “Defining
the Quality of Service for Message Delivery at the Template Level” on page
2-20.

3. For each workflow template definition, define start actions depending on the type
of workflow.

� For conversation initiator workflows, define a non-Business Message start
property, as described in “Defining the Start for a Conversation Initiator
Workflow” on page 2-27.

� For conversation participant workflows, define a Business Message start
property, as described in “Defining the Start for a Conversation Participant
Workflow” on page 2-29.

4. For each workflow template definition, define how the workflow will end.

� For conversation initiator workflows, add a done shape and define its
properties, as described in “Defining the Termination of Conversation
Initiator Workflows” on page 2-31.

� For conversation participant workflows, optionally define a Conversation
Terminate Event property and status, as described in “Defining the End of
Conversation Participant Workflows” on page 2-33.

5. For any input or output variables used in the workflow, define them in the
workflow template definition, as described in “Defining WebLogic Process
Integrator Variables for Workflows” on page 2-35.

6. For each workflow template definition, define how business messages are
processed and exchanged.

� For all workflows, define the WebLogic Process Integrator variables that are
used to store business messages, as described in “Defining WebLogic
Process Integrator Variables for Business Messages” on page 2-43.

� For all workflows, define business operations that manipulate business
messages, either creating the business messages to send or processing
business messages that are received, as described in “Defining Manipulate
Business Message Actions” on page 2-44.

� For workflows that send business messages, define the Send Business
Message action, as described in “Defining Send Business Message Actions”
on page 2-57. In addition, you add an associated Manipulate Business
Message action to create the business message to send.

About Using Workflows

BEA WebLogic Collaborate Developer Guide 2-13

You can also assign information from the message token that is returned
from a sent message to WebLogic Process Integrator variables, as described
in “Assigning Message Token Information to WebLogic Process Integrator
Variables” on page 2-63.

� For conversation participant workflows, define the Start node as a Business
Message start so that the workflow is started upon receipt of the initial
business message from the conversation initiator workflow, as described in
“Defining the Business Message Start for Conversation Participant
Workflows” on page 2-67. In addition, you add an associated Manipulate
Business Message action to process the incoming business message.

� For non-initial business messages received by conversation initiator or
conversation participant workflows, define a Business Message Receive
event, as described in “Defining Business Message Receive Events” on page
2-70. In addition, you add an associated Manipulate Business Message action
to process the incoming business message.

For comprehensive information about workflow design tasks, see “Designing
Workflows for Exchanging Business Messages” on page 2-14.

Note: You can run WebLogic Process Integrator workflows in the WebLogic
Collaborate environment even if they are not integrated with WebLogic
Collaborate features. For example, you can run workflows created in
WebLogic Process Integrator version 1.2 (shipped separately from WebLogic
Collaborate) without specifically adapting them to integrate with WebLogic
Collaborate.

Programming Tasks

Programming tasks depend on the specific needs of each application that makes use of
a workflow. The following tasks are required:

� For conversation initiator workflows, write an application that performs the
following tasks: creates a workflow c-enabler session; constructs a business
message; starts the workflow; sends a business message; and, optionally, awaits
a reply. This application can do other tasks, but it must at least perform these
tasks. For more information, see “Developing Applications That Start
Conversation Initiator Workflows” on page 2-76.

� For both conversation initiator workflows and conversation participant
workflows, write application code that manipulates the business messages that a

2 Using Workflows to Exchange Business Messages

2-14 BEA WebLogic Collaborate Developer Guide

workflow sends and receives. This code constructs a business message before it
is sent and processes a business message that has been received. This code is a
class that implements the com.bea.b2b.wlpi.MessageManipulator interface.
For more information, see “Writing Business Operations to Manipulate Business
Messages” on page 2-51.

Designing Workflows for Exchanging
Business Messages

To use workflows to exchange business messages in WebLogic Collaborate, design
workflow template definitions by using WebLogic Process Integrator Studio. In
addition to the standard properties described in Defining and Maintaining Workflows
in the BEA WebLogic Process Integrator Studio User Guide, you must define
additional workflow properties, not described in that document, that allows the
workflow to be used in the WebLogic Collaborate environment.

For example, you link a workflow template definition to a particular role in a
conversation definition in the c-hub repository. You also define some additional
attributes, including the message delivery Quality of Service, message token handling,
and conversation termination.

The following sections describe how to design workflows to exchange business
messages in the WebLogic Collaborate environment:

� Using Workflow Templates Created in Other WebLogic Process Integrator
Versions

� Defining Conversation Properties

� Defining Start Actions

� Defining Conversation Termination

Designing Workflows for Exchanging Business Messages

BEA WebLogic Collaborate Developer Guide 2-15

Using Workflow Templates Created in Other WebLogic
Process Integrator Versions

The version of WebLogic Process Integrator that ships with WebLogic Collaborate is
designed to work seamlessly within the WebLogic Collaborate environment. If you
have workflows that were designed in other versions of WebLogic Process Integrator,
you can use still these workflows in WebLogic Collaborate, but you must complete the
following additional tasks to adapt them for use in WebLogic Collaborate:

1. Export the associated workflow template definition from the earlier version of
WebLogic Process Integrator, as described in “Exporting Workflow Template
Definitions” on page 2-15.

2. Import the workflow template definition that you previously exported into the
WebLogic Process Integrator that ships with WebLogic Collaborate, as described
in “Importing Workflow Template Definitions” on page 2-16.

3. Modify the workflow template design to work with WebLogic Collaborate, as
described in the section that begins with “Designing Workflows for Exchanging
Business Messages” on page 2-14.

Note: Standalone versions of WebLogic Process Integrator cannot use workflows
that were created or modified using the version of WebLogic Process
Integrator Studio that ships with WebLogic Collaborate.

Exporting Workflow Template Definitions

To export a workflow template definition from a WebLogic Process Integrator version
that shipped separately from WebLogic Collaborate:

1. In the folder tree, right-click the workflow template definition you want to export.

2. Choose Export from the pop-up menu.

3. In the Save dialog box, select the location (drive and directory) where you want
to save the exported workflow template definition.

4. Specify the file name of the exported workflow template definition.

5. Click Save.

2 Using Workflows to Exchange Business Messages

2-16 BEA WebLogic Collaborate Developer Guide

Importing Workflow Template Definitions

To import a previously exported workflow template definition (see “Exporting
Workflow Template Definitions” on page 2-15) into the version of WebLogic Process
Integrator that ships with WebLogic Collaborate:

1. In the WebLogic Process Integrator folder tree, right-click the workflow template
into which you will import the workflow template definition.

2. From the pop-up menu, choose Import Template Definition.

3. In the Save dialog box, select the current location (drive and directory) of the
exported workflow template definition file that you want to import.

4. Click Save.

5. After the file is read, an import confirmation dialog box appears. Click Yes to
confirm importing the workflow template definition.

6. Imported workflow template definitions are always marked “inactive.” Before an
imported workflow template definition can be instantiated, you must change its
definition to “active” in the Template Definition dialog box. For more
information, see Defining and Maintaining Workflows in the BEA WebLogic
Process Integrator Studio User Guide.

Defining Conversation Properties

Before you use a WebLogic Process Integrator workflow to exchange business
messages in WebLogic Collaborate, you define certain conversation properties that are
specific to the WebLogic Collaborate environment. For detailed information about
defining workflow templates, see Defining and Maintaining Workflows in the BEA
WebLogic Process Integrator Studio User Guide.

Designing Workflows for Exchanging Business Messages

BEA WebLogic Collaborate Developer Guide 2-17

Opening Workflow Template Definitions

To define a workflow template definition in WebLogic Process Integrator Studio:

1. Do one of the following:

� To create a new template definition, right-click the template that will contain
the new template definition in the folder tree, and choose New Template
Definition from the pop-up menu.

� To open an existing template definition, right-click the template definition in
the folder tree and choose Open from the pop-up menu.

2 Using Workflows to Exchange Business Messages

2-18 BEA WebLogic Collaborate Developer Guide

2. Right-click the template definition and choose Properties from the pop-up menu
to display the Template Definition dialog box.

Figure 2-3 Template Definition Dialog Box

3. Complete the fields in the Template Definition dialog box, as described in
Defining and Maintaining Workflows in the BEA WebLogic Process Integrator
Studio User Guide.

4. To define conversation properties, click Conversations.

5. Click OK to save your changes.

Designing Workflows for Exchanging Business Messages

BEA WebLogic Collaborate Developer Guide 2-19

Linking Workflows to Conversations

Before you use a WebLogic Process Integrator workflow to exchange business
messages in WebLogic Collaborate, you first link the workflow template definition in
WebLogic Process Integrator with a particular conversation type (a conversation
name, version, and WebLogic Collaborate role) in the WebLogic Collaborate c-hub
repository.

To link a workflow template definition with conversation type:

1. Open the Template Definition dialog box, as described in “Opening Workflow
Template Definitions” on page 2-17.

2. In the Template Definition dialog box, click the Conversations button to display
the Conversation Properties dialog box.

Figure 2-4 Conversation Properties Dialog Box

2 Using Workflows to Exchange Business Messages

2-20 BEA WebLogic Collaborate Developer Guide

3. Complete the following fields in the Conversation Properties dialog box.

4. Click OK to save your changes.

Defining the Quality of Service for Message Delivery at the Template Level

The Quality of Service (QoS) is a set of attributes that are defined for reliable business
message publishing. In WebLogic Process Integrator, you can define the QoS at the
following levels:

� At the workflow template definition level, where the settings apply to all Send
Business Message actions, unless it is specifically overridden by the definition of
the action.

� At the Send Business Message action level, where the settings apply to the
specific action only but override the settings specified at the template level. For

Table 2-3 Fields in the Conversation Properties Dialog Box

Field Description

Name Name of the WebLogic Collaborate conversation
definition in the c-hub repository to link with this
workflow template definition.

Version Version number of the conversation definition in the
c-hub repository to link with this workflow template
definition.

Role Role in the conversation definition to link with this
workflow template definition. In order for a trading
partner to receive messages in this conversation, it must
be registered in this role in the conversation at run time.

Quality of Service Message delivery quality of service, as described in
“Defining the Quality of Service for Message Delivery at
the Template Level” on page 2-20.

Session C-enabler session name(s) for which this workflow
template should be used, as described in “Linking
C-Enabler Session Names to a Workflow Template
Definition” on page 2-24.

Designing Workflows for Exchanging Business Messages

BEA WebLogic Collaborate Developer Guide 2-21

more information, see “Defining the Quality of Service for Message Delivery for
a Send Business Message Action” on page 2-62.

To specify the Quality of Service at the workflow template definition level:

1. Open the Conversation Properties dialog box for a workflow template definition,
as described in “Linking Workflows to Conversations” on page 2-19.

2. In the Conversation Properties dialog box, click the Quality of Service button to
display the Quality of Service Settings dialog box.

2 Using Workflows to Exchange Business Messages

2-22 BEA WebLogic Collaborate Developer Guide

Figure 2-5 Quality of Service Settings Dialog Box

3. Complete the following fields in the Quality of Service Settings dialog box.

Designing Workflows for Exchanging Business Messages

BEA WebLogic Collaborate Developer Guide 2-23

Table 2-4 Fields in the Quality of Service Dialog Box

Field Description

Confirm Message Delivery Degree to which message delivery confirmation is required:
up to the c-hub (the default), up to the router in the c-hub, or
to all destinations. Your selection determines which options
are available in the Message Token Assignments dialog box,
as described in “Assigning Message Token Information to
WebLogic Process Integrator Variables” on page 2-63.

� Up to the c-hub Delivery confirmation is required when a message reaches the
c-hub (default). Select this option to provide basic delivery
confirmation with maximum run-time performance.

� Up to the router in the
c-hub

Delivery confirmation is required when a message reaches the
router in the c-hub. This option provides the list of trading
partners selected by the c-hub router to receive the message.

� To all destinations Delivery confirmation is required from all destinations. Select
this option to provide the maximum delivery confirmation
details. May affect run-time performance.

Retry Attempts for Send Maximum number of retries for sending a message (default is
0). The WebLogic Process Integrator Process Engine will
repeatedly attempt to send a message until it either
successfully sends the message or it exceeds the maximum
number of retries. A WebLogic Process Integrator exception
will be thrown if the maximum retries are exceeded.

Timeout for Send Timeout value for sending a message (default is 0, which
means no timeout). The WebLogic Process Integrator Process
Engine will wait until either a delivery confirmation is
received or the timeout period has been exceeded.

Correlation ID Message identification string that can be used to correlate the
message with other business messages in the application
(default is none). For example, a trading partner might want to
specify a correlation ID in a request so that replies to that
request can be matched to the original request. The WLC
messaging system includes this property with the message.

2 Using Workflows to Exchange Business Messages

2-24 BEA WebLogic Collaborate Developer Guide

4. Click OK to save your settings.

Linking C-Enabler Session Names to a Workflow Template Definition

You can associate a workflow template definition with one or more workflow
c-enabler session names. At a minimum, you must link at least one c-enabler session
name. The WebLogic Process Integrator Studio allows you to add, update, and delete
linked session names.

A workflow template definition can have more than one defined session name. This
allows the same workflow template definition (different instances) to be used by
different c-enablers in the same conversation. For example, a workflow template
definition could be defined with three different session names (such as sessionA,
sessionB, and sessionC). Each trading partner in the conversation can then use the
appropriate session when providing their own implementation (manipulate message)
to process the request.

Session names are defined in the c-enabler XML configuration file. Each session name
refers to one session entry in a c-enabler configuration file (which is known only at run
time). Each session entry in the c-enabler XML configuration file refers to a specific
c-hub, c-space, and trading partner.

Durability Options Durability options for messaging: Persistence or
Non-persistence (default). Overrides the default setting (if
specified) for the associated conversation definition in the
c-hub repository.

Non-Persistence Messages are not to be saved in a persistent state. This option
improves run-time performance but will reduce the likelihood
of recovery from a system failure.

Persistence Messages are to be saved in a persistent state. This option
increases the likelihood of recovery from a system failure but
requires additional processing that might affect run-time
performance.

Notes Optional descriptive text.

Table 2-4 Fields in the Quality of Service Dialog Box (Continued)

Field Description

Designing Workflows for Exchanging Business Messages

BEA WebLogic Collaborate Developer Guide 2-25

Adding Sessions

To add a session:

1. In the Conversation Properties dialog box, click Add to display the Define Session
dialog box.

Figure 2-6 Define Session dialog box

2. Enter a unique session name.

3. Click OK to save your changes.

Updating Sessions

To update a session:

1. In the Conversation Properties dialog box, select the session you want to update
and then click Update to display the Define Session dialog box.

Figure 2-7 Define Session dialog box

2. Edit the session name. It must be a unique session name.

3. Click OK to save your changes.

2 Using Workflows to Exchange Business Messages

2-26 BEA WebLogic Collaborate Developer Guide

Deleting Sessions

To delete a session:

1. In the Conversation Properties dialog box, select the session you want to delete and
then click Delete to display the Delete Session dialog box.

Figure 2-8 Delete Session dialog box

2. Click Yes.

Defining Start Actions

You define a start action based on the type of workflow and according to the following
rules:

� To instantiate a workflow, the workflow template definition must be active and
not expired.

� For a conversation initiator workflow that is started programmatically, you
specify a Manual start property.

� For a conversation initiator workflow that is not started programmatically, you
can specify any start property (Event, Timed, Manual, or Called) except the
Business Message start state.

� For a conversation participant workflow that is started upon receiving a business
message, you define a Business Message start state.

Designing Workflows for Exchanging Business Messages

BEA WebLogic Collaborate Developer Guide 2-27

Defining the Start for a Conversation Initiator Workflow

A conversation initiator workflow is started programmatically and must therefore have
a Manual start property. For more information, see “Developing Applications That
Start Conversation Initiator Workflows” on page 2-76.

To define the Manual start property for a conversation initiator workflow:

1. Display or add the start shape, as described in Working with Workflow
Components in the BEA WebLogic Process Integrator Studio User Guide.

2 Using Workflows to Exchange Business Messages

2-28 BEA WebLogic Collaborate Developer Guide

2. Double-click the start shape to display the Start Properties dialog box.

Figure 2-9 Start Properties Dialog Box: Manual Start

Designing Workflows for Exchanging Business Messages

BEA WebLogic Collaborate Developer Guide 2-29

3. Change the text in the Description field to a unique, identifiable name.

4. If the workflow will be started programmatically, select Manual.

Otherwise, select any other option except Business Message as appropriate. For
more information about these options, see Working with Workflow Components
in the BEA WebLogic Process Integrator Studio User Guide.

5. Click OK.

Defining the Start for a Conversation Participant Workflow

A conversation participant workflow is started when it receives an initial business
message from a conversation initiator workflow. You must define a Business Message
start state for such workflows.

2 Using Workflows to Exchange Business Messages

2-30 BEA WebLogic Collaborate Developer Guide

To define the Business Message start state for a conversation participant workflow:

1. Display or add the start shape, as described in Working with Workflow
Components in the BEA WebLogic Process Integrator Studio User Guide.

2. Double-click the start shape to display the Start Properties dialog box.

Figure 2-10 Start Properties Dialog Box: Business Message Start

Designing Workflows for Exchanging Business Messages

BEA WebLogic Collaborate Developer Guide 2-31

3. Change the text in the Description field to a unique, identifiable name.

4. Select Business Message.

5. Select the Business Protocol.

6. Specify the target variable, as described in Working with Workflow Components
in the BEA WebLogic Process Integrator Studio User Guide.

7. Specify the sender filter variable, as described in Working with Workflow
Components in the BEA WebLogic Process Integrator Studio User Guide.

8. Click OK.

Defining Conversation Termination

A conversation is terminated when the conversation initiator workflow reaches a done
state. Conversation participant workflows can end their participation in a conversation
before the conversation is terminated.

Defining the Termination of Conversation Initiator Workflows

For a conversation initiator workflow, you define the conversation termination
property (terminate with success or failure) for any done node in the workflow. Once
a done node is reached in the workflow, the running instance of the workflow is
marked done, regardless of whether the active workflow has reach all the done nodes.
A conversation initiator workflow can terminate a conversation, but other participants
in the conversation cannot.

2 Using Workflows to Exchange Business Messages

2-32 BEA WebLogic Collaborate Developer Guide

To define the termination for a conversation initiator workflow:

1. Add or view a done shape, as described in Working with Workflow Components
in the BEA WebLogic Process Integrator Studio User Guide.

2. Double-click the done shape or right-click it in the folder tree and choose
Properties to display the Done Properties dialog box.

Figure 2-11 Done Properties Dialog Box

Designing Workflows for Exchanging Business Messages

BEA WebLogic Collaborate Developer Guide 2-33

3. Select a conversation termination option in the Done Properties dialog box.

Defining the End of Conversation Participant Workflows

A conversation participant workflow has defined conversation properties, a Business
Message start property, and (optionally) a Conversation Terminate event. The
Conversation Terminate event is used in a participant workflow to wait for a
conversation termination signal from the conversation initiator. It allows a participant
workflow to perform additional processing (such as housekeeping operations) based
on the status of the conversation termination.

Note: The use of this event is optional. A workflow that does not wait for this event
can leave the conversation by simply ending the workflow (a Done node).

A workflow event shape represents a notification node. The workflow waits for a
conversation terminate to trigger the event. Upon that trigger, actions defined within
the event can be executed and/or workflow variables can be set.

To add a Conversation Terminate event to a conversation participant workflow:

1. Display or add any task as described in Working with Workflow Components in
the BEA WebLogic Process Integrator Studio User Guide.

Table 2-5 Conversation Termination Options in the Done Properties Dialog Box

Graphic Field Description

Success The conversation should be terminated with a SUCCESS
result (default). The conversation is terminated after the
actions for this state are done.

The SUCCESS result indicates that the workflow instance
completed successfully. The participants of the
conversation will be notified (if possible) that the
conversation is being terminated.

Failure The conversation should be terminated with a FAILURE
result. The conversation is terminated after the actions for
this state are done.

The FAILURE result indicates that the workflow instance
encountered conversation-specific or application-specific
errors. The participants of the conversation are notified (if
possible) that the conversation is being terminated.

2 Using Workflows to Exchange Business Messages

2-34 BEA WebLogic Collaborate Developer Guide

2. Double-click the event shape or right-click it in the folder tree and choose the
Properties command to display the Event Properties dialog box.

Figure 2-12 Event Properties Dialog Box

Designing Workflows for Exchanging Business Messages

BEA WebLogic Collaborate Developer Guide 2-35

3. Select Conversation Terminate Event.

4. Select a WebLogic Process Integrator Boolean variable to store the terminate
status, which will be set to one of the values in the following table.

Note: You must explicitly create this Boolean variable before selecting it in this
dialog box. For more information, see “Defining WebLogic Process
Integrator Variables for Business Messages” on page 2-43.

5. Click OK to save your changes.

WebLogic Process Integrator assigns the conversation terminate status value to a
WebLogic Process Integrator Boolean variable, which can be accessed by the
workflow or passed to a business operation. The developer of the workflow should
take appropriate actions based on this value.

Defining WebLogic Process Integrator Variables for
Workflows

A WebLogic Process Integrator variable is typically used to store application-specific
information required by the workflow at run time. Variables are created and assigned
values largely to “control” the logical path through a workflow instance; the same
workflow template definition is instantiated multiple times and can be traversed in
different ways if the flow contains decision nodes, which evaluate workflow variable
values and branch to either the next True or next False within the workflow, as
appropriate.

Table 2-6 Terminate Status Options in the Event Properties Dialog Box

Option Description

True Indicates that the conversation was terminated with a
SUCCESS value.

False Indicates that the initiator has terminated the conversation
with a FAILURE value.

2 Using Workflows to Exchange Business Messages

2-36 BEA WebLogic Collaborate Developer Guide

You must define WebLogic Process Integrator variables for a workflow template
definition that contains processes that require variables during run time. During
workflow execution, you can access a WebLogic Process Integrator variable in the
following ways:

� Within the workflow instance, such as in a decision node

� Within a business operation, such as by executing an Enterprise Java Bean (EJB)
or Java class

Associations Between WebLogic Process Integrator Variables and Java Data
Types

If you access a WebLogic Process Integrator variable within a business operation, you
need to know how WebLogic Process Integrator variable types correspond to Java data
types. The following table shows how they are related.

Table 2-7 WebLogic Process Integrator Variables and Java Data Types

WLPI Variable Type Java Data Type

String java.lang.String

Integer Java.lang.Integer

Long Java.lang.Long

Double java.lang.Double

Date java.util.Date

Boolean java.lang.Boolean

Complex Object java.lang.Object

(must implement Serializable)

XML org.w3c.dom.Node

Designing Workflows for Exchanging Business Messages

BEA WebLogic Collaborate Developer Guide 2-37

Rules for Defining WebLogic Process Integrator Variables

When defining WebLogic Process Integrator variables, comply with the following
rules:

� You can access workflow variables programmatically in the following situations:

� After the instance is created but before it is started, as described in “Step 2:
Initialize Input Variables” on page 2-79.

� During the execution of a Manipulate Business Message action, as described
in “Defining Manipulate Business Message Actions” on page 2-44.

� After the instance completed, as described in “Step 7: Handle Results in
Output Variables” on page 2-85.

� If you define an input variable (a variable that is passed into the workflow), it
must have a value assigned to it at run time before the workflow instance starts.
For an example of how this is done in the WebLogic Process Integrator Verifier
application, see “Step 2: Initialize Input Variables” on page 2-79.

� If you define an output variable (a variable that is passed out of the workflow),
you can access its value after the workflow has finished.

� If you define a variable as neither input or output, you can access it only while
the workflow is running.

� If you want to save a variable in a conversation participant workflow, or if you
want to access it after the workflow starts, you must define it as an output
variable and you need to access is using a business operation. For more
information about defining business operations, see in Administering Data
within WebLogic Process Integrator in the BEA WebLogic Process Integrator
Studio User Guide.

� Actions for accessing business messages use Java object variables for
manipulating, sending, or receiving business messages. However, the objects
stored in the variables through these actions belong to an internal class that
encapsulates the business message. As a consequence, these variables should
only be accessed through message manipulators. Directly accessing these
variables will result in undefined behavior. For more information, see “Defining
WebLogic Process Integrator Variables for Business Messages” on page 2-43.

2 Using Workflows to Exchange Business Messages

2-38 BEA WebLogic Collaborate Developer Guide

Defining Input Variables

Before a WebLogic Collaborate application can set an input variable, you must define
it in WebLogic Process Integrator Studio.

To define an input variable:

1. Do one of the following:

� In the folder tree, right-click Variables under the appropriate workflow
template definition, and choose New Variable to display the Variable
Properties dialog box.

� Right-click an existing variable in the folder tree and choose Properties from
the pop-up menu to display the Variables Properties dialog box.

Figure 2-13 Variables Properties Dialog Box for an Input Variable

Designing Workflows for Exchanging Business Messages

BEA WebLogic Collaborate Developer Guide 2-39

2. Complete the fields in the following Variable Properties dialog box.

3. Select Input.

4. Click OK.

In the preceding example, the variable named requestString0 is declared as an
input variable. It is also declared as mandatory, which means that the workflow
instance will start only if the WebLogic Collaborate application explicitly sets its value
before attempting to start the workflow instance. For more information, see
“Developing Applications That Start Conversation Initiator Workflows” on page 2-76.

Defining Output Variables

Variables that must be retrieved after the workflow completes must be declared as
output variables. Otherwise, their value will not be preserved.

To define an output variable:

1. Do one of the following:

� In the folder tree, right-click Variables under the appropriate workflow
template definition, and choose New Variable to display the Variable
Properties dialog box.

Table 2-8 Fields in the Variable Properties Dialog Box

Field Description

Name Meaningful name for the variable, such as ItemNumber.

Type Variable type: Boolean, Date, Double, Entity EJB, Integer,
Java Object, Session EJB, String, Long, or XML.

Parameter Input or Output. For Input, choose whether the parameter is a
mandatory one.

Notes Optional descriptive text.

2 Using Workflows to Exchange Business Messages

2-40 BEA WebLogic Collaborate Developer Guide

� Right-click an existing variable in the folder tree and choose Properties from
the pop-up menu to display the Variables Properties dialog.

Figure 2-14 Variable Properties Dialog Box for an Output Variable

2. Complete the fields in the Variable Properties dialog box, as described in
Working with Workflow Components in the BEA WebLogic Process Integrator
Studio User Guide.

3. Select Output.

4. Click OK.

Working with Business Messages

BEA WebLogic Collaborate Developer Guide 2-41

Working with Business Messages

You use WebLogic Process Integrator in conjunction with WebLogic Collaborate to
exchange business messages between trading partners. The following sections
describe how to work with business messages exchanged by using workflows:

� About Business Messages

� Summary of Prerequisite Tasks for Exchanging Business Messages

� Defining Variables and Manipulating Business Messages

� Creating and Defining Messages to Send

� Defining the Workflow to Receive Business Messages

About Business Messages

A business message is the basic unit of communication exchanged between trading
partners in a conversation. A business message is a multi-part MIME message that
consists of:

� A business document, which represents the XML-based payload part of a
business message. The payload is the business content of a business message.

� An attachment, which represents a non-XML payload part of the business
message.

You can access the contents of a business message programmatically using XOCP
messaging objects, as described in “Step 1: Create the Business Message” on page
3-30 and “Receiving an XOCP Business Message” on page 3-53.

2 Using Workflows to Exchange Business Messages

2-42 BEA WebLogic Collaborate Developer Guide

Summary of Prerequisite Tasks for Exchanging Business
Messages

You must perform the following tasks before you can send and receive business
messages. Subsequent sections describe these tasks in detail.

� Define the business message in the workflow template using WebLogic Process
Integrator Studio.

� For sending a business message, this involves defining a Manipulate
Business Message action to construct the business message and the Send
Business Message action to send the message.

� For receiving a business message, this involves defining a Manipulate
Business Message action to process an incoming business message.

� Write the Java application to process the business message by implementing the
com.bea.b2b.wlpi.MessageManipulator interface and using the
manipulate method on that object.

This task involves writing the code associated with the Manipulate Business
Message action.

� For sending a business message, this code constructs the business message to
send.

� For receiving a business message, this code processes an incoming business
message.

For more information, see “Writing Business Operations to Manipulate Business
Messages” on page 2-51.

Working with Business Messages

BEA WebLogic Collaborate Developer Guide 2-43

Defining Variables and Manipulating Business Messages

The following sections describe procedures you perform in regard to both sent and
received messages:

� Defining WebLogic Process Integrator Variables for Business Messages

� Defining Manipulate Business Message Actions

� Writing Business Operations to Manipulate Business Messages

Defining WebLogic Process Integrator Variables for Business Messages

At run time, a business message is stored in a WebLogic Process Integrator variable
(of type Java Object) when it is ready to be sent or when it has been received. When a
business message is ready to be sent, the application code associated with the
Manipulate Business Message action constructs the business message and returns it in
this variable to the workflow instance. When a business message has been received,
the application code associated with the Manipulate Business Message action obtains
this variable from the workflow instance and uses it to process the incoming business
message.

Note: In WebLogic Collaborate, XOCP business messages are not stored in
WebLogic Process Integrator variables of type XML Document.

In WebLogic Process Integrator Studio, you must define the Java Object variables used
to store business messages before you define any actions that refer to them, as
described in “Defining Manipulate Business Message Actions” on page 2-44.

For each workflow template definition, you must define a separate variable for each
business message that the workflow sends or receives. For example, if a workflow
sends a request and receives a reply, you must define variables for both in its workflow
template definition.

2 Using Workflows to Exchange Business Messages

2-44 BEA WebLogic Collaborate Developer Guide

To define a variable for a business document in WebLogic Process Integrator Studio:

1. In the folder tree, right-click Variables under the appropriate workflow template
definition and choose New Variable to display the Variable Properties dialog box.

Figure 2-15 Variable Properties Dialog Box

2. Specify a unique name for this variable.

3. Select the Java Object variable type.

4. Click OK.

Defining Manipulate Business Message Actions

At run time, the Manipulate Business Message action is invoked to manipulate a
business message. If the workflow is sending a business message (such as request), the
Manipulate Business Message action runs the associated application code to create the
business message and save it in an output variable that is sent subsequently in a Send

Working with Business Messages

BEA WebLogic Collaborate Developer Guide 2-45

Business Message action. If the workflow is receiving a business message (such as a
reply), the Manipulate Business Message action captures the incoming business
message in an input variable and passes it onto the associated application code for
processing.

The Manipulate Business Message action can be associated with any of the following
nodes: task, decision, event, and start. You must explicitly add the Manipulate
Business Message action to the workflow template definition.

2 Using Workflows to Exchange Business Messages

2-46 BEA WebLogic Collaborate Developer Guide

Adding a Manipulate Business Message Action

To define the Manipulate Business Message action for a workflow in WebLogic
Process Integrator Studio:

1. In any dialog box where you can specify an action (such as the Task, Decision,
Event, or Start Properties dialog box), click Add to display the Add Action dialog
box.

Figure 2-16 Add Action Dialog Box

Working with Business Messages

BEA WebLogic Collaborate Developer Guide 2-47

2. Click the Integration Actions folder to expand it.

Figure 2-17 Add Action Dialog Box With Integration Actions

2 Using Workflows to Exchange Business Messages

2-48 BEA WebLogic Collaborate Developer Guide

3. Select Manipulate Business Message.

4. Click OK to display the Manipulate Business Message dialog box.

Figure 2-18 Manipulate Business Message Dialog Box

Working with Business Messages

BEA WebLogic Collaborate Developer Guide 2-49

5. Complete the following fields in the Manipulate Business Message dialog box.

Table 2-9 Fields in the Manipulate Business Message Dialog Box

Field Description

Class Name Required. Name of a Java class that implements the
com.bea.b2b.wlpi.MessageManipulator interface.
For more information, see “Writing Business Operations to
Manipulate Business Messages” on page 2-51.

Input variable Name of a WebLogic Process Integrator variable that contains
an existing business message, such as a message that has been
received through a Receive Business Message action.

The contents of this variable will be passed as the in
parameter to the manipulate operation in the specified Java
class that implements the
com.bea.b2b.wlpi.MessageManipulator interface.
If no variable name is specified, the value of the in parameter
will be null.

The specified variable must correspond to an existing
WebLogic Process Integrator variable of type Java Object. For
more information, see “Defining WebLogic Process
Integrator Variables for Business Messages” on page 2-43.

Output variable Name of a WebLogic Process Integrator variable that will
contain the business message returned by the manipulate
operation in the specified Java class that implements the
com.bea.b2b.wlpi.MessageManipulator interface.

The specified variable must correspond to an existing
WebLogic Process Integrator variable of type Java Object. For
more information, see “Defining WebLogic Process
Integrator Variables for Business Messages” on page 2-43. If
no variable name is specified, then the return value of the
manipulate operation will be ignored.

Notes Optional descriptive text.

2 Using Workflows to Exchange Business Messages

2-50 BEA WebLogic Collaborate Developer Guide

When specifying input or output variables, follow these guidelines:

� If the action receives a business message, then you must specify an input
variable.

� If the action sends a business message, then you must specify an output
variable.

� If the action receives a business message, modifies it, and then sends it, you
must specify both an input and an output variable.

6. Click OK to save your changes.

Example of a Manipulate Business Message Action

For example, suppose you specify the following settings in the Manipulate Business
Message dialog box.

At run time, when the WebLogic Process Integrator Process Engine executes the action
with the specified settings, the following events occur:

1. An object of class examples.wlpiverifier.ProcessRequest is created using
reflection and the default constructor.

2. The value of the in parameter (requestMsg) is retrieved.

3. The manipulate operation is invoked on the object.

4. The return value of the manipulate operation is stored in the WebLogic Process
Integrator output variable (replyMsg).

Table 2-10 Sample Settings in the Manipulate Business Message Dialog Box

Field Description

Class name examples.wlpiverifier.ProcessRequest

Input variable requestMsg

Output variable replyMsg

Working with Business Messages

BEA WebLogic Collaborate Developer Guide 2-51

Writing Business Operations to Manipulate Business Messages

You write business operations that use WebLogic Process Integrator variables and
Java code to manipulate business messages that are exchanged between trading
partners. The Manipulate Business Message action invokes a special WebLogic
Collaborate business operation, a message manipulator, to create a business message
to send or to process a business message that has been received. A message
manipulator is a Java class that implements the
com.bea.b2b.wlpi.MessageManipulator interface.

For more information about defining the message manipulator class and input and
output variables for the Manipulate Business Message action, see “Defining
Manipulate Business Message Actions” on page 2-44. For more information about the
com.bea.b2b.wlpi.MessageManipulator interface, see the WebLogic Collaborate
Javadoc.

Supported Operations

Message manipulators support the following operations for processing business
messages:

� Creating business messages before sending them. (See “Steps for Creating
Business Messages” on page 2-53.) A workflow must send messages to
participate in conversations.

� At run time, the Manipulate Business Message action is invoked. The
Manipulate Business Message action creates a business message, based on
the contents of other WebLogic Process Integrator variables, and returns the
business message for storage in a variable. For more information, see
“Defining WebLogic Process Integrator Variables for Business Messages” on
page 2-43.

� The Send Business Message action retrieves this variable and sends the
business message. For more information, see “Defining Send Business
Message Actions” on page 2-57.

� Processing business messages after receiving them. After a business message has
been received, an invoked business message manipulator extracts the contents of
the message and stores any required message parts in WebLogic Process
Integrator variables for use by other actions.

2 Using Workflows to Exchange Business Messages

2-52 BEA WebLogic Collaborate Developer Guide

MessageManipulator Interface

To process business messages that are exchanged between roles in a conversation,
workflow applications use Java classes that implement the
com.bea.b2b.wlpi.MessageManipulator interface. This interface contains a
single operation, manipulate, with the following signature:

XOCPMessage manipulate(WorkflowInstance instance, XOCPMessage in)
throws WLPIException;

When calling the manipulate operation, a workflow specifies the following
parameters.

The manipulate operation returns an XOCP message generated by the message
manipulator. At run time, this XOCP message is stored in the output variable specified
in the associated WebLogic Process Integrator Manipulate Business Message action.
If this output variable was not specified, then the return value is ignored.

Note: Classes that implement the message manipulator interface must have a public
default constructor (a constructor without arguments). The Process Engine
uses Java reflection to create objects of that class and therefore invokes the
default constructor.

Table 2-11 Parameters in the Manipulate Operation

Parameter Description

instance Current workflow instance, which can be used to get or set
variables. For more information, see “Defining WebLogic
Process Integrator Variables for Business Messages” on page
2-43.

in XOCP message stored in the WebLogic Process Integrator
variable specified as an input variable in the associated
Manipulate Business Message action. If no input variable was
specified in the Manipulate Business Message action or if the
variable is empty, then null is passed.

Working with Business Messages

BEA WebLogic Collaborate Developer Guide 2-53

Creating and Defining Messages to Send

The following sections describe how to prepare messages to be sent:

� Steps for Creating Business Messages

� Defining Send Business Message Actions

� Defining the Quality of Service for Message Delivery for a Send Business
Message Action

� Assigning Message Token Information to WebLogic Process Integrator Variables

Steps for Creating Business Messages

The PrepareQuery class in the WebLogic Process Integrator Verifier program is an
example of a message manipulator that constructs a business message before it is sent.
It is called by the Manipulate Business Message action that occurs in the workflow. It
returns a reply message (replyMsg variable) that is passed back to the workflow as the
business message to send.

Step 1: Import the Necessary Packages

The following listing shows the packages that the PrepareQuery class imports, which
includes the XOCP messaging objects that are used to create the XOCP message.

Listing 2-1 Importing the Necessary Packages

package examples.wlpiverifier;

import java.io.*;

import org.apache.xerces.dom.*;
import org.w3c.dom.*;

import com.bea.eci.logging.*;
import com.bea.b2b.wlpi.MessageManipulator;
import com.bea.b2b.wlpi.WorkflowInstance;
import com.bea.b2b.wlpi.WLPIException;

import com.bea.b2b.protocol.conversation.ConversationType;
import com.bea.b2b.enabler.*;

2 Using Workflows to Exchange Business Messages

2-54 BEA WebLogic Collaborate Developer Guide

import com.bea.b2b.enabler.xocp.*;
import com.bea.b2b.protocol.messaging.*;
import com.bea.b2b.protocol.xocp.conversation.local.*;
import com.bea.b2b.protocol.xocp.messaging.*;

Step 2: Implement the MessageManipulator Interface

The following listing shows the PrepareQuery class declaration that implements the
MessageManipulator interface.

Listing 2-2 Implementing the MessageManipulator Interface

public class PrepareQuery implements MessageManipulator{
...
}

Step 3: Call the Manipulate Method

The code in the following listing calls the manipulate method, which retrieves the
current workflow instance object as well as the incoming business message.

Listing 2-3 Calling the manipulate Method

public XOCPMessage manipulate(WorkflowInstance instance,
XOCPMessage in)

throws WLPIException{

Working with Business Messages

BEA WebLogic Collaborate Developer Guide 2-55

Step 4: Get the Input Variables from the Current Workflow Instance

The code in the following listing gets the input variables associated with the current
workflow instance by calling the getVariable method on the workflow instance.

Note: The WlpiVerifierConstants class contains constant values.

Listing 2-4 Getting the Input Variables

int current =
((Integer)instance.getVariable(WlpiVerifierConstants.CURRENT)).in
tValue();

String req =
(String)instance.getVariable(WlpiVerifierConstants.REQUESTSTR +
current);

boolean last;
if (current < 4){
try{

String v =
(String)instance.getVariable(WlpiVerifierConstants.REQUESTSTR +
(current + 1));

if (v == null || v.length() == 0)
last = true;

else
last = false;

}catch (WLPIException e){
last = true;

}
}else
last = true;

if (last)
instance.setVariable("last", new Integer(1));

2 Using Workflows to Exchange Business Messages

2-56 BEA WebLogic Collaborate Developer Guide

The code in the following listing creates the request message. For more information
about creating XOCP business messages, see “Step 1: Create the Business Message”
on page 3-30.

Listing 2-5 Creating the Request Message

XOCPMessage xocpmsg = null;
try{
DOMImplementationImpl domi = new DOMImplementationImpl();

// "request" - (param1) The qualified name of the document
type to be created.

// "request" - The document type public identifier.
// "upper-request.dtd" - The document type system identifier
DocumentType dType = domi.createDocumentType("request",

"request", "upper-request.dtd");

org.w3c.dom.Document rq = new DocumentImpl(dType);
Element root = rq.createElement("request");
rq.appendChild(root);
Text t = rq.createTextNode(req);
root.appendChild(t);
root.setAttribute("last", last ? "true" : "false");

xocpmsg = new XOCPMessage("");
xocpmsg.addPayloadPart(new BusinessDocument(rq));

}catch(Exception e){
e.printStackTrace();

throw new WLPIException("PrepareQuery raised exception:" + e);
}

Working with Business Messages

BEA WebLogic Collaborate Developer Guide 2-57

Step 5: Return the Request Message

The code in the following listing returns the request message in the variable xocpmsg
(of type XOCPMessage) The return value is then assigned to an output variable (of type
Java Object) in the workflow in preparation for sending the business message.

Listing 2-6 Returning the Request Message

return xocpmsg;

Defining Send Business Message Actions

After you create a business message in WebLogic Process Integrator using a
Manipulate Business Message action and a message manipulator, you send the
business message using the Send Business Message action.

2 Using Workflows to Exchange Business Messages

2-58 BEA WebLogic Collaborate Developer Guide

To define a Send Business Message action:

1. In any dialog box where you can specify an action (such as the Task, Decision,
Event, or Start Properties dialog box), click Add to display the Add Action dialog
box.

Figure 2-19 Add Action Dialog Box

Working with Business Messages

BEA WebLogic Collaborate Developer Guide 2-59

2. Click the Integration Actions folder to expand it.

Figure 2-20 Add Action Dialog Box With Integration Actions

2 Using Workflows to Exchange Business Messages

2-60 BEA WebLogic Collaborate Developer Guide

3. Select Send Business Message, and then click OK to display the Send Business
Message dialog box.

Figure 2-21 Send Business Message Dialog Box

Working with Business Messages

BEA WebLogic Collaborate Developer Guide 2-61

4. Complete the following fields in the Send Business Message dialog box.

Table 2-12 Fields in the Send Business Message Dialog Box

Field Description

Source Variable Name of a WebLogic Process Integrator Java Object variable
that contains an XOCPMessage, probably created by an
earlier call to a message manipulator. Required field. For more
information, see “Defining WebLogic Process Integrator
Variables for Business Messages” on page 2-43.

Router Expression
Contains

Contents of the Router Expression field: a trading partner
name or an XPath expression. Router expressions might be
overridden by router expressions specified in the c-hub
repository. For more information about routers, see Routing
and Filtering XOCP Business Messages in the BEA WebLogic
Collaborate C-Hub Administration Guide.

� Trading Partner Name The Router Expression field contains a single trading partner
name.

� XPath Expression The Router Expression field contains an XPath expression.

� Variable The Router Expression field contains a WebLogic Process
Integrator variable (of type String) with the contents of the
Xpath expression. The variable is selected from a drop down
list and may have been assigned by the Receive Business
Message event.

Router Expression Router expression that will be used when the message is sent.

� If Trading Partner name is selected, the message will be
sent to the specified trading partner.

� If XPath Expression is selected, the message will be sent
based on the specified XPath expression.

If this field is left blank, a null filter will be used. For more
information about router expressions, see Routing and
Filtering XOCP Business Messages in the BEA WebLogic
Collaborate C-Hub Administration Guide.

Target Role The role in the conversation to which the message will be sent.
Required field.

2 Using Workflows to Exchange Business Messages

2-62 BEA WebLogic Collaborate Developer Guide

5. Click OK to save your changes.

Defining the Quality of Service for Message Delivery for a Send Business
Message Action

The Quality of Service (QoS) is a set of attributes that are defined for reliable business
message publishing. In WebLogic Process Integrator, you can define the QoS at the
following levels:

� At the template level, where the settings apply to all Send Business Message
actions, unless it is specifically overridden by the definition of the action. For

Use QoS Defined for
Conversation

Specifies whether to use the Quality of Service defined at the
template level or at this Send Business Message action level.

� If selected, WebLogic Collaborate uses the QoS
information that was defined at the workflow template
definition level, as described in “Defining the Quality of
Service for Message Delivery at the Template Level” on
page 2-20.

� If not selected, WebLogic Collaborate uses QoS
information defined at this Send Business Message action
level, as described in “Defining the Quality of Service for
Message Delivery for a Send Business Message Action”
on page 2-62.

Quality Of Service Appears only if Use QoS Defined for Conversation is not
selected. Click this button to specify the quality of service at
this Send Business Message action level. For more
information, see “Defining the Quality of Service for Message
Delivery at the Template Level” on page 2-20.

Message Token Click this button to assign the message token information to
WebLogic Process Integrator variables. For more
information, see “Assigning Message Token Information to
WebLogic Process Integrator Variables” on page 2-63.

Notes Optional descriptive text.

Table 2-12 Fields in the Send Business Message Dialog Box (Continued)

Field Description

Working with Business Messages

BEA WebLogic Collaborate Developer Guide 2-63

more information, see “Defining the Quality of Service for Message Delivery at
the Template Level” on page 2-20.

� At the Send Business Message action level, where the settings apply to the
specific action only but override the settings specified at the template level.

To define QoS at the Send Business Message level:

1. Click the Quality of Service button.

2. The Quality of Service Settings dialog box appears.

3. Complete the fields in the Quality of Service Settings dialog box, as described in
Table 2-4.

4. Click OK.

Note: The definitions specified here will apply to this Send Message action only, not
to all send actions within this conversation.

Assigning Message Token Information to WebLogic Process Integrator
Variables

When a business message is sent by the WebLogic Collaborate messaging service, a
message token is returned as a Java object at the programming level. The message
token provides the information about the message, such as the message ID,
conversation ID, send success/failure, the delivery status, and the number of recipient
destinations after final selection (router and filter evaluations) at the c-hub.
Applications call the getVariable method to get access to this variable.

This variable could be defined as an output variable that gets processed after the
workflow ends. A message token is represented by the
com.bea.b2b.protocol.messaging.MessageToken class, which is described in
the Javadoc and in “Message Tokens” on page 3-48.

You can configure WebLogic Process Integrator workflows to get access to the
message token by assigning the token and its associated information to WebLogic
Process Integrator variables. At run time, values are assigned to the workflow instance
variables after the Send Business Message action has completed. For more information
about message tokens, see “Message Tokens” on page 3-48.

2 Using Workflows to Exchange Business Messages

2-64 BEA WebLogic Collaborate Developer Guide

To assign the message token and its associated information to WebLogic Process
Integrator variables:

1. Open the Send Business Message dialog box, as described in “Defining Send
Business Message Actions” on page 2-57.

2. In the Send Business Message dialog box, click the Message Token button to
display the Message Token dialog box.

Figure 2-22 Message Token Assignments Dialog Box

Note: The available options in this dialog box depend on the selected Quality of
Service settings, as described in “Defining the Quality of Service for
Message Delivery at the Template Level” on page 2-20.

Working with Business Messages

BEA WebLogic Collaborate Developer Guide 2-65

3. Complete the following fields in the Message Token Assignments dialog box.

Table 2-13 Fields in the Message Token Assignments Dialog Box

Field Description

QoS Messaging
Confirmation set to:

Display only. Shows the QoS Message confirmation setting,
which is described in “Defining the Quality of Service for
Message Delivery at the Template Level” on page 2-20.
The three possible settings are:

� Confirm message delivery up to the c-hub

� Confirm message delivery up to the router in the c-hub

� Confirm message delivery to all destinations

Message Token Assigns the returned message token to a WebLogic Process
Integrator Java Object variable. This object can then only be
passed to a business operation for processing.

Status of Send Message Indicates whether the message was sent successfully (true for
success and false for failure). Assigns the value to a WebLogic
Process Integrator Boolean variable that can be accessed by
the workflow or passed to a business operation.

Number of Initial
Recipients

Number of recipients assigned by the c-hub after the message
has traversed the router. Assigns the value to a WebLogic
Process Integrator Integer variable that can be accessed by the
workflow or passed to a business operation.

This field appears only if the QoS Messaging Confirmation
setting is either is one of the following selections:

� To the router in the c-hub

� To all destinations

Number of Actual
Recipients

Actual number of recipients (number of c-enabler sessions
that received the message). Assigns the value to a WLPI
Integer variable that can be accessed by the workflow or
passed to a business operation.

This field is shown only if the QoS Messaging Confirmation
setting is “To all destinations”.

2 Using Workflows to Exchange Business Messages

2-66 BEA WebLogic Collaborate Developer Guide

Defining the Workflow to Receive Business Messages

A workflow can receive a business message in the following circumstances:

� When a conversation participant workflow is waiting for the initial business
message sent by the conversation initiator workflow. The first business message
triggers the start node of the conversation, which is defined as a Business
Message start. For more information, see “Defining the Business Message Start
for Conversation Participant Workflows” on page 2-67.

� When a conversation initiator workflow or conversation participant workflow is
waiting for another message, such as a reply to a request, as described in
“Defining Business Message Receive Events” on page 2-70.

The following sections describe procedures for setting up your workflow to receive
business messages:

� Defining the Business Message Start for Conversation Participant Workflows

� Defining Business Message Receive Events

� Steps for Receiving Business Messages

Time Elapsed for Acks
(ms)

Time taken, in milliseconds, for acknowledgments from all
recipients. This assigns the value to a WLPI Long variable that
can be accessed by the workflow or passed to a business
operation.

This field is shown only if the QoS Messaging Confirmation
setting is “Confirm message delivery to all destinations.”

Notes Optional descriptive text.

Table 2-13 Fields in the Message Token Assignments Dialog Box (Continued)

Field Description

Working with Business Messages

BEA WebLogic Collaborate Developer Guide 2-67

Defining the Business Message Start for Conversation Participant Workflows

To define the Business Message start property for a conversation participant
workflow:

1. Display or add the start shape, as described in Working with Workflow
Components in the BEA WebLogic Process Integrator Studio User Guide.

2 Using Workflows to Exchange Business Messages

2-68 BEA WebLogic Collaborate Developer Guide

2. Double-click the start shape to display the Start Properties dialog box.

Figure 2-23 Start Properties Dialog Box

Working with Business Messages

BEA WebLogic Collaborate Developer Guide 2-69

3. Complete the following fields in the Start Properties dialog box.

4. Click OK.

When a workflow instance is started for the conversation participant workflow, the
target variable contains the business message that triggered the conversation. If a
router variable is specified, it contains an XPath expression that can be used to reply
to the sender. For more information, see “Defining Send Business Message Actions”
on page 2-57.

Table 2-14 Fields in the Start Properties Dialog Box

Variable Description

Start Property Select Business Message.

Target Name of a target WebLogic Process Integrator variable (of
type Java Object) in which to store the business message.
Required field.

Sender’s Router
Expression

Name of a WebLogic Process Integrator variable (of type
String) in which to store an XPath expression. The value
represents the XPath expression that was used by the sender to
send the message. This XPath expression can be used later as
part of a router expression to publish a reply to the current
message back to the sender. Optional field.

Sender’s Name Name of a WebLogic Process Integrator variable (of type
String) in which to store the name of the Trading Partner that
sent the message. If the Convert Sender’s Name to XPath
check box is selected, then this name is converted to an XPath
expression.

Convert Sender’s Name to
XPath

If selected, the contents of the variable specified in the
Sender's Name field will be converted to an XPath expression
suitable for use in the Send Business Message action.

If not selected, the Sender's Name variable will be the actual
name of the sending Trading Partner.

2 Using Workflows to Exchange Business Messages

2-70 BEA WebLogic Collaborate Developer Guide

Defining Business Message Receive Events

If a workflow waits to receive a business message, such as reply to a request or a
subsequent (not an initial) request), you must define a Business Message Receive
event. This event is triggered at run time when the appropriate business message is
received in the conversation.

To define a Business Message Receive event:

1. Display or add a task as described in Working with Workflow Components in the
BEA WebLogic Process Integrator Studio User Guide.

Working with Business Messages

BEA WebLogic Collaborate Developer Guide 2-71

2. Double-click the event shape or right-click it in the folder tree and choose the
Properties command to display the Event Properties dialog box.

Figure 2-24 Event Properties Dialog Box

2 Using Workflows to Exchange Business Messages

2-72 BEA WebLogic Collaborate Developer Guide

3. Complete the following fields in the Event Properties dialog box.

At run time, when the business message is received, the event is triggered and the
target variable is set to the business message that was just received. If a router variable
is specified, it contains an XPath expression that can be used to reply to the sender. For
more information, see “Defining Send Business Message Actions” on page 2-57.

Steps for Receiving Business Messages

The PrepareReply class in the WebLogic Process Integrator Verifier program is an
example of a message manipulator that receives and processes a business message. It
is called by the Manipulate Business Message action associated with the Start event
(defined as Business Message start event) that is triggered when the initial business

Table 2-15 Fields in the Event Properties Dialog Box

Variable Description

Event Type Select Business Message Receive Event.

Target Name of a target WebLogic Process Integrator variable (of
type Java Object) in which to store the business message.
Required field.

Sender’s Router
Expression

Name of a WebLogic Process Integrator variable (of type
String) in which to store an XPath expression. The value
represents the XPath expression that was used by the sender to
send the message. This XPath expression can be used later as
part of a router expression to publish a reply to the current
message back to the sender. Optional field.

Sender’s Name Name of a WebLogic Process Integrator variable (of type
String) in which to store the name of the Trading Partner that
sent the message. If the Convert Sender’s Name to XPath
checkbox is selected, then this name is converted to an XPath
expression.

Convert Sender’s Name to
XPath

If selected, the contents of the variable specified in the
Sender's Name field will be converted to an XPath expression
suitable for use in the Send Business Message action.

If not selected, the Sender's Name variable will be the actual
name of the sending Trading Partner.

Working with Business Messages

BEA WebLogic Collaborate Developer Guide 2-73

message is received from the conversation initiator workflow. It returns a reply
message (replyMsg variable) that is passed back to the workflow as the business
message to send.

Step 1: Import the Necessary Packages

The code in the following listing shows the packages that the PrepareReply class
imports, which includes the XOCP messaging objects that are used to create the XOCP
business message.

Listing 2-7 Importing the Necessary Packages

import java.util.*;

import org.apache.xerces.dom.*;
import org.w3c.dom.*;

import com.bea.eci.logging.*;
import com.bea.b2b.wlpi.MessageManipulator;
import com.bea.b2b.wlpi.WorkflowInstance;
import com.bea.b2b.wlpi.WLPIException;
import com.bea.b2b.protocol.messaging.*;
import com.bea.b2b.protocol.xocp.conversation.local.*;
import com.bea.b2b.protocol.xocp.messaging.*;

Step 2: Implement the MessageManipulator Interface

The following listing shows the PrepareReply class declaration that implements the
MessageManipulator interface.

Listing 2-8 Implementing the MessageManipulator Interface

public class PrepareReply implements MessageManipulator

2 Using Workflows to Exchange Business Messages

2-74 BEA WebLogic Collaborate Developer Guide

Step 3: Call the Manipulate Method

The code in the following listing calls the manipulate method, which retrieves the
current workflow instance object as well as the incoming business message (request).

Listing 2-9 Calling the manipulate Method

public XOCPMessage manipulate(WorkflowInstance instance,
XOCPMessage in)

throws WLPIException{

Step 4: Process the Request Message

The code in the following listing processes the request message.

Listing 2-10 Processing the Request Message

PayloadPart[] payload = in.getPayloadParts();

Document rq = null;
if (payload != null && payload.length > 0){
BusinessDocument bd = (BusinessDocument)payload[0];
rq = bd.getDocument();

}

if (rq == null){
throw new WLPIException("Did not get a request document");

}

Element root = rq.getDocumentElement();
String name = root.getNodeName();
if (!name.equals("reply")){
String msg = "Expected reply, found " + name;
throw new WLPIException(msg);

}
if (!root.hasChildNodes()){
String msg = "No data in reply";
throw new WLPIException(msg);

}
Node value = root.getFirstChild();
if (value == null){

Working with Business Messages

BEA WebLogic Collaborate Developer Guide 2-75

String msg = "No text inside request";
throw new WLPIException(msg);

}
if (value.getNodeType() != Node.TEXT_NODE){

String msg = "Note inside request is not text node";
throw new WLPIException(msg);

}
Text t = (Text)value;
String data = t.getData();

Step 5: Process the Input Variables Associated with the Current Workflow Instance

The code in the following listing processes the input variables associated with the
current workflow instance.

Listing 2-11 Changing the Input Variables

// get the 'current' variable from the workflow
int current =

((Integer)instance.getVariable(WlpiVerifierConstants.CURRENT)).in
tValue();

// assign it to a variable that we can extract later in the
client servlet

instance.setVariable(WlpiVerifierConstants.REPLYSTR +
current, data);

// get the no of recipients that got the message
Integer noOfRecipients =

(Integer)instance.getVariable(WlpiVerifierConstants.RECIPIENTSHOL
DER);

// assign it to a variable that we can extract later in the
client servlet

instance.setVariable(
WlpiVerifierConstants.RECIPIENTS + current,

(Integer)noOfRecipients);

return null;
}

2 Using Workflows to Exchange Business Messages

2-76 BEA WebLogic Collaborate Developer Guide

Developing Applications That Start
Conversation Initiator Workflows

For conversation initiator workflows, you can start the workflow at run time by using
WebLogic Process Integrator Worklist or by starting it in a Java application.
The following sections describe how to start a conversation initiator workflow
programmatically:

� WebLogic Process Integrator Integration API

� Creating Workflow C-Enabler Sessions

� Programming Steps for Accessing Conversation Initiator Workflows

To start a conversation initiator workflow programmatically, the start node for the
workflow template must have a Manual start property, as described in “Defining the
Start for a Conversation Initiator Workflow” on page 2-27.

WebLogic Process Integrator Integration API

WebLogic Collaborate applications use the com.bea.b2b.wlpi package to start
WebLogic Process Integrator workflows. This package provides the following
interface and classes.

Table 2-16 Components of the com.bea.b2b.wlpi Package

Object Description

MessageManipulator interface Implemented by all classes that are used in a Manipulate
Message action inside a WebLogic Process Integrator task

WorkflowEnablerSession class Represents a workflow c-enabler session that is coupled with
WebLogic Process Integrator workflows

WorkflowEnablerSessionManager class Controls workflow c-enabler sessions

Developing Applications That Start Conversation Initiator Workflows

BEA WebLogic Collaborate Developer Guide 2-77

For details about this package, see the WebLogic Collaborate Javadoc.

Creating Workflow C-Enabler Sessions

Before you start the workflow, the application must first create a workflow c-enabler
session with the c-hub. A workflow c-enabler session is a logical session between one
c-enabler node and a c-hub that connects the c-enabler node to a c-space.

You can create workflow c-enabler sessions in the following ways:

� When the WebLogic Server starts up, as described in this section.

� At run time in a WebLogic Collaborate application, as described in “Creating a
New Workflow C-Enabler Session Programmatically” on page 2-82.

It is generally more convenient to create workflow c-enabler sessions as part of the
bootstrap sequence of the WebLogic Server hosting the c-enabler. To create workflow
c-enabler sessions upon WebLogic Server startup, you must specify the
com.bea.b2b.wlpi.Start startup class and c-enabler session information while
using the WebLogic Server Administration Console to configure the c-enabler node.

The following listing shows a fragment of a sample config.xml file that specifies the
startup class and defines a workflow c-enabler session named caller-session.

Listing 2-12 Starting a Workflow C-Enabler Session in the config.xml File

<<StartupClass
Arguments="ConfigFile=xml/enablers.xml,SessionName=caller-session
,User=bea,Password=12345678,OrgName=BEA"

ClassName="com.bea.b2b.wlpi.Start"
Name="WlpiVerifierCaller"

WorkflowInstance class Represents a running workflow instance

WLPIException class Thrown if an error occurs with WebLogic Process Integrator
processing

Table 2-16 Components of the com.bea.b2b.wlpi Package (Continued)

Object Description

2 Using Workflows to Exchange Business Messages

2-78 BEA WebLogic Collaborate Developer Guide

Targets="myserver"
/>

For more information about using the WebLogic Server Administration Console, see
see the BEA WebLogic Server Administration Guide.

Programming Steps for Accessing Conversation Initiator
Workflows

To access a WebLogic Process Integrator conversation initiator workflow, a
WebLogic Collaborate workflow application completes the following steps:

� Step 1: Import the Necessary Packages

� Step 2: Initialize Input Variables

� Step 3: Establish a Workflow C-Enabler Session

� Step 4: Create a Workflow Instance for a Specific Workflow Template

� Step 5: Start a Workflow Instance

� Step 6: Wait for the Workflow Instance to Complete

� Step 7: Handle Results in Output Variables

� Step 8: Handling Exceptions

The WlpiVerifierServlet in the WebLogic Process Integrator Verifier application
provides the sample code for this section. For more information about the WebLogic
Process Integrator Verifier application, see Running the WebLogic Process Integrator
Verifier Example in BEA WebLogic Collaborate Getting Started.

Step 1: Import the Necessary Packages

To access a WebLogic Process Integrator workflow, a WebLogic Collaborate
application begins by importing the necessary package(s). At a minimum, the
WebLogic Collaborate application must import the com.bea.b2b.wlpi package, as
shown in the following listing.

Developing Applications That Start Conversation Initiator Workflows

BEA WebLogic Collaborate Developer Guide 2-79

Listing 2-13 Importing the com.bea.b2b.wlpi Package

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;
import javax.naming.*;
import com.bea.wlpi.server.*;
import com.bea.wlpi.common.*;
import com.bea.wlpi.server.worklist.*;
import com.bea.wlpi.server.wlcollaborate.*;
import com.bea.b2b.wlpi.*;
import com.bea.eci.logging.*;

Step 2: Initialize Input Variables

If a conversation initiator workflow has input variables defined, you must initialize and
assign variables to them in the WebLogic Collaborate application before starting the
workflow instance. These input variables must first be declared in the template
definition in WebLogic Process Integrator Studio, as described in “Defining Input
Variables” on page 2-38.

Retrieving Values from a Submitted HTML Form

The WlpiVerifierServlet in the WebLogic Process Integrator Verifier application
initializes the input variables and retrieves the values that a Web user has entered and
submitted in an HTML form, as shown in the following listing from the WebLogic
Process Integrator Verifier application.

Listing 2-14 Setting the Value of an Input Variable

// servlet parameters
private static final String sendParam = "sendstring";
private static final String idParam = "recipientId";

// vars to hold parameter values
private String[] sendStr = new String[5]; // strings to send
// contains the replies for each sent string
private String[] reply = new String[sendStr.length];
// the no of actual recipients for each reply
private Integer[] noOfRecipients = new Integer[sendStr.length];

2 Using Workflows to Exchange Business Messages

2-80 BEA WebLogic Collaborate Developer Guide

public void doPost(HttpServletRequest req, HttpServletResponse
res)

throws IOException, ServletException{
try{
// get the parameters for this servlet
Enumeration e = req.getParameterNames();
String name = null;
while (e.hasMoreElements()){
name = (String)e.nextElement();
String lowName = name.toLowerCase();
if (lowName.startsWith(sendParam)){
int index =

Integer.parseInt(lowName.substring(sendParam.length()));
sendStr[index] = req.getParameter(name);

}
}//while

Assigning Values by Using the setVariable Method

A WebLogic Collaborate application sets instance variables by calling the
setVariable method on the workflow instance, passing the name of the variable and
its value. The setVariable method requires the following parameters.

The WlpiVerifierServlet of the WebLogic Process Integrator Verifier application
uses the setVariable method to specify values for the request string, as shown in the
following listing.

Table 2-17 Parameters for the setVariable Method

Parameter Description

name Name of the variable to be set.

value Value for the variable. The value must be represented as a Java
object, as described in “Associations Between WebLogic
Process Integrator Variables and Java Data Types” on page
2-36.

Developing Applications That Start Conversation Initiator Workflows

BEA WebLogic Collaborate Developer Guide 2-81

Listing 2-15 Setting the Value of Input Variables

for (int i = 0 ; i < data.length ; i++){
wi.setVariable(WlpiVerifierConstants.REQUESTSTR + i, data[i]);

Step 3: Establish a Workflow C-Enabler Session

You establish a workflow c-enabler session by accessing the Workflow C-Enabler
Session Manager and then retrieving an existing workflow c-enabler session or
creating a new one.

Accessing the Workflow C-Enabler Session Manager

WebLogic Collaborate provides a Workflow C-Enabler Session Manager that
manages all workflow c-enabler sessions. One Workflow C-Enabler Session Manager
exists per WebLogic Server instance. A WebLogic Collaborate application must get
access to this Workflow C-Enabler Session Manager by calling the
WorkflowEnablerSessionManager.get() method, as shown in the following
listing:

Listing 2-16 Accessing the Workflow C-Enabler Session Manager

WorkflowEnablerSessionManager wesm =
WorkflowEnablerSessionManager.get();

After accessing the Workflow C-Enabler Session Manager, a WebLogic Collaborate
application either creates a new workflow c-enabler session or retrieves an existing
one.

Retrieving an Existing C-Enabler Session

If the required workflow c-enabler session already exists (for example, the workflow
c-enabler session was created upon WebLogic Server startup, as described in
“Creating Workflow C-Enabler Sessions” on page 2-77), a WebLogic Collaborate

2 Using Workflows to Exchange Business Messages

2-82 BEA WebLogic Collaborate Developer Guide

application can obtain access to it by calling the getExistingEnablerSession
method and passing its workflow c-enabler session name. The workflow c-enabler
session name is specified in the c-enabler XML configuration file.

The code in the following listing retrieves an existing workflow c-enabler session in a
WebLogic Collaborate application by specifying its name (caller-session):

Listing 2-17 Retrieving an Existing Workflow C-Enabler Session

WorkflowEnablerSession wes = wesm.getExistingEnablerSession(
"caller-session");

Creating a New Workflow C-Enabler Session Programmatically

If you do not create workflow c-enabler sessions upon WebLogic Server startup, as
described in “Creating Workflow C-Enabler Sessions” on page 2-77, the WebLogic
Collaborate application must do so programmatically. Creating a workflow c-enabler
session includes registering a workflow conversation handler for all of the
conversation types that are active for the workflow c-enabler session.

Note: A WLPIException will be thrown if the specified workflow c-enabler session
was already created in a startup class or by a servlet initialized during the
WebLogic server bootstrap.

The code in the following listing creates a workflow c-enabler session in a WebLogic
Collaborate application.

Listing 2-18 Creating a Workflow C-Enabler Session

// Define the parameters for the workflow c-enabler session
String configFile = "xml/enablers.xml";
String sessionName = "caller-session";
String orgName = "WAC1";
String user = "bea";
String password = "12345678";

// Get the only WorkflowEnablerSessionManager
WorkflowEnablerSessionManager wesm =
WorkflowEnablerSessionManager.get();

Developing Applications That Start Conversation Initiator Workflows

BEA WebLogic Collaborate Developer Guide 2-83

// Create a workflow c-enabler session with specified parameters
WorkflowEnablerSession wes = wesm.getEnablerSession(configFile,
sessionName, orgName, user, password);

The WebLogic Collaborate application passes the following parameters to the
getEnablerSession method.

Step 4: Create a Workflow Instance for a Specific Workflow Template

After establishing a workflow c-enabler session, a WebLogic Collaborate application
creates a workflow instance by calling the createInstance method, passing the
name of the WebLogic Process Integrator workflow template to use. Calling this
method automatically creates a corresponding WebLogic Collaborate conversation
associated with this workflow c-enabler session.

The specified workflow template must:

Table 2-18 Parameters for getEnablerSession()

Parameter Description

configFile Name of the c-enabler XML configuration file where the
session is defined.

This parameter is identical to the corresponding parameter in
the EnablerSessionFactory.getEnablerSession
method.

sessionName Name of a session in the c-enabler XML configuration file.

This parameter is identical to the corresponding parameter in
the EnablerSessionFactory.getEnablerSession
method.

orgName Name of the WebLogic Process Integrator organization
associated with the workflow template definition(s) to use.

user Login username of a WebLogic user that has access to the
workflow template definitions.

password Login password of a user that has access to the template
definitions.

2 Using Workflows to Exchange Business Messages

2-84 BEA WebLogic Collaborate Developer Guide

� Be active and not expired

� Have a Manual start state

Note: A WebLogic Collaborate application can call the createInstance method to
to create any valid workflow instance, regardless of whether the workflow
template is linked to a role in a WebLogic Collaborate conversation definition.

The code in the following listing creates a workflow instance.

Listing 2-19 Create a Workflow Instance for the Specified Workflow Template

WorkflowInstance wi =
wes.createInstance(WlpiVerifierConstants.INITIAL_TEMPLATEID);

Note: The WlpiVerifierConstants class contains constant values.

Step 5: Start a Workflow Instance

After creating a workflow instance and initializing input variables, a WebLogic
Collaborate application starts the workflow instance by calling the start method on
the instance, as shown in the following listing.

Listing 2-20 Start a Workflow Instance

wi.start();

Developing Applications That Start Conversation Initiator Workflows

BEA WebLogic Collaborate Developer Guide 2-85

Step 6: Wait for the Workflow Instance to Complete

Once a workflow instance has been started, a WebLogic Collaborate application can
wait for its completion by calling the waitForCompletion method on the
workflow instance. The operation blocks until the workflow instance has completed.

Listing 2-21 Waiting for Completion of the Workflow Instance

private void waitForWorkFlowToEnd(WorkflowInstance wi)
throws Exception{

wi.waitForCompletion();
...
}

While waiting for the workflow instance to complete, a WebLogic Collaborate
application can determine the completion state of the workflow instance by calling the
isCompleted method on the workflow instance. This method returns a Boolean
true if the workflow execution completed, or false if not.

Step 7: Handle Results in Output Variables

After a workflow instance has completed, a WebLogic Collaborate application can
handle the results of the workflow instance by retrieving the information stored in
output variables. These output variables must first be declared in the template
definition in WebLogic Process Integrator Studio, as described in “Defining Output
Variables” on page 2-39.

A WebLogic Collaborate application retrieves the value of an instance variable by
calling the getVariable method on the workflow instance, passing the name of the
variable to retrieve, as shown in the following sample listing.

Listing 2-22 Retrieving the Results in Output Variables

for (int i = 0 ; i < reply.length ; i++){
try{

reply[i] =
(String)wi.getVariable(WlpiVerifierConstants.REPLYSTR + i);

2 Using Workflows to Exchange Business Messages

2-86 BEA WebLogic Collaborate Developer Guide

noOfRecipients[i] =
(Integer)wi.getVariable(WlpiVerifierConstants.RECIPIENTS + i);

The getVariable method returns a Java object that should be cast to the appropriate
Java data type, as described in “Associations Between WebLogic Process Integrator
Variables and Java Data Types” on page 2-36.

Step 8: Handling Exceptions

If an error occurs while running a workflow application, a
com.bea.b2b.wlpi.WLPIException is thrown. Workflow applications can catch
this exception and process it as appropriate, as shown in the following listing.

Listing 2-23 Handling WLPIExceptions in Workflow Applications

catch (WLPIException we){
String msg = "Exception in Workflow: " + we;
throw new Exception(msg);

BEA WebLogic Collaborate Developer Guide 3-1

CHAPTER

3 Using XOCP C-Enabler
Applications to
Exchange Business
Messages

The following sections describe how to develop c-enabler applications that exchange
business messages by using the eXtensible Open Collaboration Protocol (XOCP) in
the WebLogic Collaborate messaging system:

� About XOCP C-Enabler Applications

� Programming Steps for C-Enabler Applications

� Sending XOCP Business Messages

� Receiving XOCP Business Messages

Many of the code samples in this chapter derive from the installation verification
example, which resides in the /examples/verifier subdirectory of the WebLogic
Collaborate application directory. For more information, see the BEA WebLogic
Collaborate Installation Guide.

Developers also design and implement workflows by using the WebLogic Process
Integrator Studio. For more information, see Chapter 2, “Using Workflows to
Exchange Business Messages.”

3 Using XOCP C-Enabler Applications to Exchange Business Messages

3-2 BEA WebLogic Collaborate Developer Guide

About XOCP C-Enabler Applications

The following sections introduce XOCP c-enabler applications and related concepts:

� Architectural Overview

� Key Concepts

� Run-Time Information Flow

� Key Tasks for C-Enabler Applications

About XOCP C-Enabler Applications

BEA WebLogic Collaborate Developer Guide 3-3

Architectural Overview

The following diagram shows how c-enabler applications fit into the c-enabler
architecture.

Figure 3-1 C-Enabler Applications in the C-Enabler Architecture

3 Using XOCP C-Enabler Applications to Exchange Business Messages

3-4 BEA WebLogic Collaborate Developer Guide

The following table describes the key components related to c-enabler applications.

For more information about other c-enabler architectural components, see Introduction
to C-Enablers in the BEA WebLogic Collaborate C-Enabler Administration Guide.

Key Concepts

This section describes the following key concepts associated with c-enabler
applications:

� XOCP C-Enabler Applications

� C-Enabler Class Library

� Conversations and Conversation Definitions

� XOCP Business Messages and Message Envelopes

� Conversation Initiators and Participants

� Conversation Coordinators

� Trading Partner States

� Secure Messaging

Table 3-1 Key C-Enabler Components for C-Enabler Applications

Component Description

C-Enabler application Java applications that exchange XOCP business messages
with other trading partners. For more information, see “XOCP
C-Enabler Applications” on page 3-5.

C-Enabler Class Library Provides Java APIs for exchanging XOCP business messages.
For more information, see “C-Enabler Class Library” on page
3-5.

Local Conversation
Coordinator

Coordinates conversation activity between the c-enabler and
the c-hub. For more information, see “Conversation
Coordinators” on page 3-11.

About XOCP C-Enabler Applications

BEA WebLogic Collaborate Developer Guide 3-5

XOCP C-Enabler Applications

XOCP C-enabler applications are Java applications that run on c-enabler nodes and
use the C-Enabler Class Library to join and leave c-spaces; initiate or participate in
conversations; terminate or leave conversations; and exchange XOCP business
messages with other trading partners in the c-space. A c-enabler node can host many
XOCP c-enabler applications.

C-Enabler Class Library

The C-Enabler Class Library provides APIs for exchanging XOCP business messages
and consists of the packages in the following table.

For detailed information about these packages, see the Javadoc on the WebLogic
Collaborate documentation CD or in the classdocs subdirectory of your WebLogic
Collaborate installation.

Conversations and Conversation Definitions

In WebLogic Collaborate, a conversation is a series of message exchanges between
trading partners that take place in a collaboration space and that are predefined
according to a conversation definition. Each message in the conversation may cause
any number of back-end transactions.

Table 3-2 C-Enabler Class Library Packages

Package Name Description

com.bea.b2b.enabler Used for working with c-enabler nodes and c-enabler
sessions.

com.bea.b2b.enabler.xocp Used for working with c-enabler sessions for the
XML Open Collaboration Protocol (XOCP).

com.bea.b2b.protocol.xocp.conversation
.local

Used for working with conversations that use the
XML Open Collaboration Protocol (XOCP).

com.bea.b2b.protocol.messaging Used for working with messages in a conversation.

com.bea.b2b.protocol.xocp.messaging Used for working with messages in conversations that
use the XML Open Collaboration Protocol (XOCP).

3 Using XOCP C-Enabler Applications to Exchange Business Messages

3-6 BEA WebLogic Collaborate Developer Guide

A conversation definition consists of a unique conversation name, conversation
version, message definitions, trading partner IDs, and trading partner roles for one
conversation. At design time, you use the WebLogic Process Integrator Studio to link
a workflow template definition to a particular role (such as buyer or seller) in a
WebLogic Collaborate conversation definition.

XOCP Business Messages and Message Envelopes

An XOCP business message is the basic unit of communication exchanged between
trading partners in an XOCP conversation. An XOCP business message is represented
in the C-Enabler Class Library by the
com.bea.b2b.protocol.xocp.messaging.XOCPMessage class.

A message envelope is a container for a business message. A message envelope
contains information about the sender (such as the sender URL) and recipient (such as
the destination URL). A message envelope is represented in the C-Enabler Class
Library by the com.bea.b2b.protocol.messaging.MessageEnvelope class.
However, only logic plug-ins (not c-enabler applications) have programmatic access
to message envelopes. For more information, see “Information Flow for Message
Envelopes” on page 3-9 and Chapter 4, “Developing Logic Plug-Ins.”

About XOCP C-Enabler Applications

BEA WebLogic Collaborate Developer Guide 3-7

Diagram of an XOCP Business Message

The following figure shows a message envelope and the components of an XOCP
business message.

Figure 3-2 Components of an XOCP Business Message

Message Envelope

XOCP Business Message

Payload

Message Header

Business
Document(s)

Attachment(s)

Recipient InformationSender Information

3 Using XOCP C-Enabler Applications to Exchange Business Messages

3-8 BEA WebLogic Collaborate Developer Guide

Components of an XOCP Business Message

An XOCP business message is a multi-part MIME (Multipurpose Internet Mail
Extensions) message. It consists of the following components.

Table 3-3 Components of an XOCP Business Message

Component Description

Message header Message attributes, including the sender and recipient information,
conversation information, Qualites of Service information, and so on.

Payload Container for business document(s) and attachment(s) in this business
message. The payload container has one or more business documents,
one or more attachments, or a combination of both. A payload part is
represented in the C-Enabler Class Library by the
com.bea.b2b.protocol.messaging.PayloadPart
interface.

Business
document(s)

XML-based payload part of a business message. Represented in the
C-Enabler Class Library by the
com.bea.b2b.protocol.messaging.BusinessDocument
class.

Attachment(s) Non-XML-based payload part of a business message. Binary content.
Represented in the C-Enabler Class Library by the
com.bea.b2b.protocol.messaging.Attachment class.

About XOCP C-Enabler Applications

BEA WebLogic Collaborate Developer Guide 3-9

Information Flow for Message Envelopes

The following figure shows an example of how message envelopes are processed in
the c-hub.

Figure 3-3 Message Envelope Processing in the C-Hub

3 Using XOCP C-Enabler Applications to Exchange Business Messages

3-10 BEA WebLogic Collaborate Developer Guide

Message envelope processing occurs in the following sequence:

1. The sending c-enabler application creates and sends the business message to the
c-hub.

2. The c-hub receives the business message and wraps it into a message envelope,
extracting certain sender and recipient information from the business message.

3. The router processes the business message and then validates and finalizes the list
of recipients.

4. The router creates a separate message envelope for each recipient in the
recipients list, inserts a logical copy of the business message in the message
envelope, and then forwards all message envelopes onto the filter.

In the diagram, the router creates message envelopes for three recipients.

5. Within the filter, the applicable protocol-specific filter for each recipient trading
partner evaluates each business message to determine whether it will be sent to
the recipient. The filter forwards accepted messages onto the next processing step
in the c-hub.

In the diagram, the three business messages are evaluated in the filter. Two are
accepted and one is rejected.

6. The c-hub validates the recipient, and then sends the business message (in its
message envelope) to the recipient trading partner.

7. The recipient trading partner receives the business message.

Conversation Initiators and Participants

In any XOCP conversation, there are two types of trading partner roles:

� Conversation initiator is the trading partner who creates the conversation and
sends the first business message (such as a request) to one or more recipient
trading partners. The conversation initiator usually awaits a reply from each
trading partner and might exchange subsequent business messages. When
finished, the conversation initiator terminates the conversation (unless the
conversation has timed out).

� Conversation participant is a trading partner who is enlisted in the conversation
when it receives the first business message from the conversation initiator. The
conversation participant usually sends a reply to the conversation initiator and,

About XOCP C-Enabler Applications

BEA WebLogic Collaborate Developer Guide 3-11

optionally, might exchange subsequent business messages. When finished, the
conversation participant either leaves the conversation or waits until the
conversation terminates.

Each conversation definition in the repository includes at least both of these types of
roles. A trading partner must be subscribed to the appropriate role in the conversation
in order to initiate or participate in conversations associated with that conversation
definition.

The initiator of a conversation is usually determined by the role in which a trading
partner is registered. For example, in a GetQuote conversation, the trading partner
who is in the role of buyer would normally initiate a GetQuote conversation. Any
trading partner who is in the role of seller would normally be a conversation participant
in the GetQuote conversation.

The following figure shows some of the tasks that conversation initiators and
conversation participants perform.

Figure 3-4 Conversation Initiators and Participants

Conversation Coordinators

WebLogic Collaborate has two types of conversation coordinators that coordinate
conversations at run time: a global conversation coordinator coordinates active
conversations on the c-hub, and local conversation coordinators in c-enablers help the
global coordinator coordinate active conversations locally.

Send Request

C-Hub

Conversation
Participant

Send Reply

Create Conversation

Terminate
Conversation

Conversation
Initiator

T
im

e

3 Using XOCP C-Enabler Applications to Exchange Business Messages

3-12 BEA WebLogic Collaborate Developer Guide

The following figure shows global and local conversation coordinators in the
WebLogic Collaborate architecture.

Figure 3-5 Global and Local Conversation Coordinators

Global Conversation Coordinator

A global conversation coordinator is a c-hub based service that coordinates
conversation life cycles according to the rules of XOCP and supports long-living,
durable conversations that span multiple organizational boundaries. The global
conversation coordinator maintains a list of active conversations in the c-hub.

The global conversation coordinator performs the following services:

� Enlists and delists trading partners in a conversation

� Enforces the XOCP conversation termination protocol

� Maintains status information about conversations

� Provides the conversational context for the execution of the business protocol

Local Conversation Coordinators

A local conversation coordinator is a c-enabler based service that coordinates
conversations in which the c-enabler node is participating. The local conversation
coordinator maintains a list of active conversations in which the c-enabler node is
participating. Each c-enabler session has a separate local conversation coordinator.

C-HubConversation
Initiator

Local
Conversation
Coordinator

Global
Conversation
Coordinator

Conversation
Participant

Local
Conversation
Coordinator

XOCP
Conversation

About XOCP C-Enabler Applications

BEA WebLogic Collaborate Developer Guide 3-13

The local conversation coordinator performs the following tasks:

� Locally enlists in a conversation when the initial business message in a
conversation is received from the c-hub

� Locally delists from a conversation when the terminate conversation system
message is received from the c-hub

Trading Partner States

The following table describes the states assigned to trading partners as they perform
tasks related to c-space and conversation participation.

Some of these trading partner states are visible in the C-Hub Administration Console
and the C-Enabler Administration Console. For more information, see Using the
C-Hub Administration Console in the BEA WebLogic Collaborate C-Hub
Administration Guide and Working with C-Enablers in the BEA WebLogic
Collaborate C-Enabler Administration Guide.

Secure Messaging

Communication between the c-hub and c-enablers is secured via the Secure Sockets
Layer (SSL). Before allowing the trading partner to exchange business messages, the
c-hub must authenticate the identity of the trading partner using the trading partner’s
certificate. Once authenticated, business messages are exchanged securely among

Table 3-4 Trading Partner States

State Description

CONNECTED Trading partner has joined a c-space.

REGISTERED Connected trading partner has registered for roles in conversations and
is ready to initiate or participate in conversations.

ACTIVE Registered trading partner has participated (sent or received a business
message) in at least one conversation.

DROPPEDOUT Trading partner has left a conversation.

DISCONNECTED Trading partner has left a c-space.

3 Using XOCP C-Enabler Applications to Exchange Business Messages

3-14 BEA WebLogic Collaborate Developer Guide

trading partners by way of the c-hub. For more information about WebLogic
Collaborate security, see Configuring Security in the BEA WebLogic Collaborate
C-Hub Administration Guide.

Key Tasks for C-Enabler Applications

This section introduces the key tasks that c-enabler applications perform:

� Joining a C-Space

� Registering for a Role in a Conversation

� Engaging in Conversations with Trading Partners

� Shutting Down a C-Enabler Session to Leave a C-Space

Joining a C-Space

Before exchanging business messages, a c-enabler application must join a c-space.
To join a c-space, the c-enabler application must create a c-enabler session, which is a
logical session between a c-enabler node and one c-hub for one particular c-space.

Before a trading partner (c-enabler application) can create a c-enabler session to join a
c-space:

� The c-space and trading partner configuration information must be defined in the
WebLogic Collaborate repository on the c-hub that hosts the c-space.

� The session’s configuration information (as well as the c-space, c-hub and
c-enabler URL, trading partner name, and c-enabler session name) must be
defined in the c-enabler XML configuration file. For more information, see
Configuring C-Enablers in the BEA WebLogic Collaborate C-Enabler
Administration Guide. For an introduction to c-enabler sessions, see Introducing
C-Enablers in the BEA WebLogic Collaborate C-Enabler Administration Guide.

� The trading partner must be authorized to join the c-space.

When a c-enabler session is created, the c-enabler sends a system message to the c-hub
with a request to join the c-space using the configuration settings specified in the
c-enabler XML configuration file. This message acts as an authentication request to
join the WebLogic Collaborate system. The c-hub validates the registration of the

About XOCP C-Enabler Applications

BEA WebLogic Collaborate Developer Guide 3-15

trading partner in the requested c-space and, if valid, allows that trading partner to join
that particular c-space. At this point, the trading partner is in a CONNECTED state but it
cannot yet participate in conversations.

Note: If the c-enabler node crashes after joining a c-space, the c-enabler application
can rejoin the c-space upon normal startup. The previous c-enabler session is
discarded and new resources are assigned to the new c-enabler session.
However, the c-hub will not be able to deliver business messages while the
c-enabler node is down. Undelivered business messages will be discarded if
the number of retry attempts is exceeded or if the business message or
conversation times out.

When a trading partner wants to leave a c-space, the c-enabler application shuts down
the associated c-enabler session, as described in “Shutting Down a C-Enabler Session
to Leave a C-Space” on page 3-17.

Registering for a Role in a Conversation

Once connected, a trading partner needs to register a conversation handler for a
particular role in a specific conversation definition in a given c-space. The
conversation handler must be registered for the conversation type that will define how
the trading partner participates in the conversation.

Role registration requires the following information in the c-hub repository:

� The conversation type is a subset of a conversation definition that defines a
conversation for one trading partner based on the role in the conversation
definition to which the trading partner subscribed.

� A message definition consists of ordered message parts. A message part contains
a content type (XML or binary) and can contain a document definition. If the
content type is XML, then the document definition is required for that part. For
type binary, no other information is required.

For an introduction to these concepts, see Introducing C-Enablers in the BEA
WebLogic Collaborate C-Enabler Administration Guide.

Before registering for a conversation type, the trading partner must first be authorized
to register. Authorization is configured by the c-hub administrator and is based on the
trading partner’s subscription to a role in a conversation definition.

3 Using XOCP C-Enabler Applications to Exchange Business Messages

3-16 BEA WebLogic Collaborate Developer Guide

When a c-enabler session attempts to register a conversation handler for a specific
conversation type, the c-enabler sends an XOCP system message, “register for
conversation,” to the c-hub. The c-hub validates the role of the trading partner for the
requested conversation type in the associated c-space. If the registration is valid, the
trading partner is then allowed to initiate and participate in conversations associated
with the registered conversation type. At this point, the trading partner is in a
REGISTERED state and is ready to initiate or participate in conversations.

Engaging in Conversations with Trading Partners

Once registered for a role in a conversation, a trading partner can engage in
conversations in accordance with that role. Conversation initiation and participation
occurs on the c-hub itself. However, the c-enabler session maintains some state
information about the conversations in which it is involved.

The overall tasks for conversation initiator c-enabler applications and conversation
participant c-enabler applications are very similar. However, conversation initiator
c-enabler applications can terminate conversations while conversation participant
c-enabler applications cannot. Conversation participant c-enabler applications can
only leave a conversation.

Initiating a Conversation and Sending a Business Message

To initiate a conversation, a conversation initiator c-enabler application creates the
conversation. Optionally, the conversation initiator c-enabler application can specify a
timeout value, after which the conversation will automatically terminate; this value
overrides the timeout value that is specified in the associated conversation definition
in the repository.

The local conversation coordinator on the c-enabler node sends an XOCP system
message, “create conversation,” to the c-hub. The global conversation coordinator in
the c-hub creates a conversation in the appropriate c-space and enlists the trading
partner as the conversation initiator. After the conversation is created, the conversation
initiator c-enabler application creates and sends a business message, as described in
“Sending XOCP Business Messages” on page 3-29.

Participating in a Conversation

The global conversation coordinator in the c-hub handles all business messages that
the c-hub receives for a given conversation. After the c-hub delivers the initial business
message to recipient trading partners, the global conversation coordinator enlists those

About XOCP C-Enabler Applications

BEA WebLogic Collaborate Developer Guide 3-17

trading partners in that conversation. Once a trading partner is enlisted in a
conversation, the trading partner is in an ACTIVE state and can send and receive
business messages in that conversation.

When the c-enabler session on a target c-enabler node receives the initial business
message in a conversation, it performs the necessary housekeeping (such as registering
the conversation in the local list) before invoking the onMessage callback on the
conversation handler. For more information, see “Receiving XOCP Business
Messages” on page 3-52.

Once a registered trading partner is enlisted in a conversation, the trading partner is in
an ACTIVE state and can send and receive business messages in that conversation.

Leaving a Conversation

When finished participating in a conversation, a conversation participant trading
partner can leave the conversation. When a trading partner leaves a conversation, the
conversation coordinator removes it from the list of participating trading partners.
Subsequent business messages in that conversation will not be sent to that trading
partner. After a trading partner leaves, it is in a DROPPEDOUT state for that conversation.

Terminating Conversations

A conversation terminates when the initiating trading partner explicitly terminates the
conversation, or when the conversation times out, which ever occurs first. A trading
partner who has initiated a conversation must terminate that conversation at the
appropriate time in a business process.

Note: Only the conversation initiator can terminate a conversation.

When a conversation is terminated, the conversation coordinator sends all of the
participating trading partners an XOCP system message, “terminate message,” which
is propagated as the callback onTerminate on registered conversation handlers in
c-enabler sessions at respective c-enabler nodes.

Shutting Down a C-Enabler Session to Leave a C-Space

When a trading partner has finished its activities in a c-space, the c-enabler application
should leave the c-space by shutting down the c-enabler session. When a c-enabler
application shuts down a c-enabler session, the c-enabler sends an XOCP system
message, “leave c-space,” to the c-hub. When the c-hub receives this system message,

3 Using XOCP C-Enabler Applications to Exchange Business Messages

3-18 BEA WebLogic Collaborate Developer Guide

the conversation coordinator automatically terminates all of the conversations that the
trading partner has initiated in the c-space and delists the trading partner from all other
conversations in which it was participating in the c-space.

Leaving a c-space:

� Stops the c-hub from sending any further messages to the trading partner
associated with the shutdown c-enabler session.

� Terminates all conversations that were initiated by the trading partner.

� Causes the trading partner to leave any conversations in which it was
participating.

� Reclaims resources allocated in the c-hub for that c-enabler session.

At this point, the trading partner is in a DISCONNECTED state in that c-space.

Run-Time Information Flow

At run time, all c-enabler applications perform certain tasks identically: joining a
c-space, registering conversation handlers, and leaving the c-space. During individual
conversations, however, conversation initiators and conversation participants perform
a series of distinct, interweaving tasks.

About XOCP C-Enabler Applications

BEA WebLogic Collaborate Developer Guide 3-19

Information Flow Diagram

The following figure shows the run-time information flow between conversation
initiators and participants.

Figure 3-6 Information Flow Between Conversation Initiator and Participant

This is a simplified example that uses a single conversation and a minimal exchange
of business messages (request and reply). In practice, a trading partner may participate
in multiple conversations after registering a conversation handler and before leaving
the c-space. In addition, within a single conversation, trading partners might exchange
many business messages, not just a single request and a single reply.

C-HubC-Enabler C-Enabler

Join C-Space Join C-Space

Register Conversation Handler Register Conversation Handler

Create Conversation

Send First Bus Msg (Request) Deliver First Bus Msg

Deliver Reply Bus Msg Send Reply Bus Msg

Terminate Conversation Terminate Conversation

Conversation Terminated

Leave C-Space

onTerminate()

terminate()

onMessage()

send()
onMessage()

send()

shutdown()

Leave C-Space

shutdown()

getEnablerSessions() getEnablerSessions()

registerConversationHandler()

createConversation()

enlist global enlist local

onTerminate()

delist global delist local

C
o

n
ve

rs
at

io
n

In
it

ia
to

r

C
o

n
ve

rs
at

io
n

P
ar

ti
ci

p
an

t

C
-H

u
b

T
im

e registerConversationHandler()

3 Using XOCP C-Enabler Applications to Exchange Business Messages

3-20 BEA WebLogic Collaborate Developer Guide

Steps in the Information Flow

At run time, the flow of information between trading partners (via c-enabler
applications communicating through the c-hub) proceeds in the following sequence:

1. Trading partner c-enabler applications join the c-space.

2. Each trading partner c-enabler application registers a conversation handler with
the c-enabler session, which in turn (with the help of the local conversation
coordinator) registers that trading partner for a given role in a given conversation
at the c-hub.

3. The conversation starts when the conversation initiator c-enabler application
creates a conversation.

4. The global conversation coordinator adds the conversation instance to its global
conversation list and marks the trading partner as the initiator.

5. The local conversation coordinator in the conversation initiator c-enabler node
adds the conversation instance to its local conversation list.

6. The conversation initiator’s c-enabler application creates and sends a business
message (such as a request).

7. The conversation initiator’s c-enabler session delivers the business message to
the c-hub.

8. The c-hub delivers the business message to the conversation participant’s
c-enabler node.

9. The global conversation coordinator in the c-hub enlists the participating trading
partner in the conversation, adding the participating trading partner to the
conversation instance entry in the global conversation list.

10. The local conversation coordinator receives the business message and enlists the
trading partner in the conversation locally, adding the conversation instance to
the local conversation list.

11. The onMessage implementation in the conversation participant c-enabler
application is invoked, and the onMessage implementation processes the
business message.

12. The conversation participant c-enabler application creates and sends a business
message (such as a reply) back to the conversation initiator.

About XOCP C-Enabler Applications

BEA WebLogic Collaborate Developer Guide 3-21

13. The c-enabler session on the conversation participant c-enabler node delivers the
business message to the c-hub.

14. The c-hub receives the business message and delivers it to the conversation
initiator c-enabler node.

15. The conversation initiator c-enabler node receives the business message.

16. The onMessage implementation in the conversation initiator c-enabler
application is invoked, and the onMessage implementation processes the
business message.

17. To end the conversation, the conversation initiator c-enabler application
terminates the conversation.

Note: A conversation might terminate automatically if the conversation timeout
is exceeded.

18. The local conversation coordinator in the conversation initiator c-enabler node
delivers notification of termination to the global conversation coordinator in the
c-hub.

19. The global conversation coordinator in the c-hub delists the conversation
participant in the global conversation list and delivers notification of termination
to the local conversation coordinator on the conversation participant c-enabler
node.

20. The local conversation coordinator on the conversation participant c-enabler node
receives the termination notification and delists the conversation in the local
conversation list.

21. The onTerminate implementation in the conversation participation c-enabler
application is invoked.

22. The global conversation coordinator in the c-hub marks the conversation
terminated and informs the conversation initiator by sending a conversation
termination confirmation.

23. The conversation initiator c-enabler node receives the conversation termination
confirmation.

24. The local conversation coordinator on the conversation initiator c-enabler node
receives the termination notification and delists the conversation in the local
conversation list.

3 Using XOCP C-Enabler Applications to Exchange Business Messages

3-22 BEA WebLogic Collaborate Developer Guide

25. The onTerminate implementation in the conversation initiator c-enabler
application is invoked.

26. Trading partner c-enabler applications leave the c-space.

For more information about these steps, see “Key Tasks for C-Enabler Applications”
on page 3-14.

Programming Steps for C-Enabler
Applications

The previous section, “Run-Time Information Flow” on page 3-18, provided an
end-to-end look at the flow of messages between c-enabler applications and the c-hub.
The following steps describe the sequence of tasks that a developer usually provides
in a c-enabler application:

� Step 1: Import Packages

� Step 2: Implement the ConversationHandler Interface

� Step 3: Create a C-Enabler Session

� Step 4: Register a Conversation Handler

� Step 5: Initiate or Participate in a Conversation

� Step 6: Exchange Business Messages

� Step 7: End the Conversation

� Step 8: Shut Down the C-Enabler Session

This section describes these steps using sample code.

Note: You must provide a c-enabler XML configuration file that contains the
configuration information that the c-enabler application requires at run time.
Only one c-enabler XML configuration file exists per c-enabler node.

Programming Steps for C-Enabler Applications

BEA WebLogic Collaborate Developer Guide 3-23

However, the c-enabler XML configuration file can specify configuration
information for multiple c-enabler sessions, one for each c-space that the
associated trading partner joins.

For more information, see Configuring C-Enablers in the BEA WebLogic
Collaborate C-Enabler Administration Guide. In addition, for help in defining
the c-enabler XML configuration file, see the comments in the
EnablerConfig.dtd file in the dtd subdirectory of your WebLogic
Collaborate installation.

Step 1: Import Packages

C-enabler applications import the required packages from the C-Enabler Class
Library. For a description of these packages, see “C-Enabler Class Library” on page
3-5.

The following listing is an example of the packages to import.

Listing 3-1 Importing Packages

import org.w3c.dom.*;
import org.apache.html.dom.*;
import org.apache.xml.serialize.*;
import org.apache.xerces.dom.*;

import com.bea.b2b.protocol.conversation.ConversationType;
import com.bea.b2b.enabler.*;
import com.bea.b2b.enabler.xocp.*;
import com.bea.b2b.protocol.messaging.*;
import com.bea.b2b.protocol.xocp.conversation.local.*;
import com.bea.b2b.protocol.xocp.messaging.*;

import com.bea.eci.logging.*;

3 Using XOCP C-Enabler Applications to Exchange Business Messages

3-24 BEA WebLogic Collaborate Developer Guide

Step 2: Implement the ConversationHandler Interface

To receive messages, a c-enabler application must implement the following interface:

com.bea.b2b.protocol.xocp.conversation.local.ConversationHandler

This interface provides the onMessage and onTerminate methods that are used to
handle incoming business messages and conversation termination notifications,
respectively. The onMessage method is invoked when the c-enabler receives a
business message. The onTerminate method is invoked when the c-enabler receives
a conversation termination.

The conversation handler is required in order for the trading partner to receive business
messages in a conversation. A conversation handler must support at least one
conversation type (com.bea.b2b.protocol.conversation.ConversationType),
which represents a role in a conversation. A c-enabler session supports one
conversation handler per conversation type.

Listing 3-2 Implementation of the ConversationHandler Interface

public class MyConversationHandler
implements ConversationHandler{

private String collaboratorId;

MyConversationHandler(String collaboratorId){
this.collaboratorId = collaboratorId;

}

public void onMessage(XOCPMessage msg){
System.out.println("onMessage: received for collaborator:" +
collaboratorId);

Conversation conv = msg.getConversation();
QualityOfService qos = msg.getQoS();

…
}

public void onTerminate(Conversation conv, int result) {
System.out.println("onTerminate: received for collaborator:"

+ collaboratorId);
}

}

Programming Steps for C-Enabler Applications

BEA WebLogic Collaborate Developer Guide 3-25

For detailed information about the ConversationHandler interface, see the Javadoc
on the WebLogic Collaborate documentation CD or in the classdocs subdirectory of
your WebLogic Collaborate installation.

Step 3: Create a C-Enabler Session

To initiate or participate in conversations, a trading partner creates a c-enabler session
on a c-enabler node. Each c-enabler session enables the trading partner to exchange
messages with other trading partners in one c-space.

To create a new c-enabler session or to get an existing one, use the
com.bea.b2b.enabler.Enabler class. The following listing is an example of
getting the session1 c-enabler session based on the information defined in the
c-enabler XML configuration file. Alternatively, an application could get all the
c-enabler session definitions from the c-enabler XML configuration file and then
create c-enabler sessions as needed.

Listing 3-3 Obtaining the C-Enabler Session

Enabler enabler = Enabler.getEnabler("enabler.xml");
EnablerSession es = enabler.getEnablerSession("session1");
// Create all enabler session(s) defined in "enabler.xml"
// EnablerSession[] ess = enabler.getEnablerSessions();
// Optionally, get names of Enabler Sessions
// and use name to create enabler session individually
// String[] sessionNames = enabler.getSessionNames();
// EnablerSession es = null;

Step 4: Register a Conversation Handler

To participate in a conversation, a c-enabler application must register a conversation
handler. A conversation handler can be associated with multiple conversation types
(each type has conversation name, version and role). A conversation handler can also
be shared among multiple conversations. As conversation handler is implemented by
the application, and it is up to the developer to use it as needed.

3 Using XOCP C-Enabler Applications to Exchange Business Messages

3-26 BEA WebLogic Collaborate Developer Guide

To register a conversation handler, a c-enabler application calls the
registerConversationHandler method on the XOCPEnablerSession instance,
passing the conversation type and the conversation handler object as parameters.

The following listing is an example of registering a conversation handler for a buyer
role (generally a conversation initiator) in the BuyProcessor conversation. Note that
the specified conversation definition and role must be defined in the c-hub repository.

Listing 3-4 Registering a Conversation Handler

XOCPEnablerSession session = null;
if(es instanceof XOCPEnablerSession)

session = (XOCPEnablerSession)es;
MyConversationHandler ch = new
MyConversationHandler(session.getTradingPartner());

ConversationType ctype = new ConversationType("BuyProcessor",
"1.0", "buyer");
ConversationType[] types = { ctype };
session.registerConversationHandler(types, ch);

Step 5: Initiate or Participate in a Conversation

A conversation initiator application explicitly starts a conversation. To initiate a
conversation, the initiating trading partner calls the createConversationmethod on
the com.bea.b2b.enabler.xocp.XOCPEnablerSession instance, passing the
conversation type and, optionally, the conversation timeout value, in seconds (or zero,
the default, for no timeout if the configured timeout is also zero in the conversation
definition in the c-hub repository). The trading partner must be registered in the
initiator role in the conversation definition.

Programming Steps for C-Enabler Applications

BEA WebLogic Collaborate Developer Guide 3-27

The following listing is an example of initiating a conversation:

Listing 3-5 Initiating a Conversation

ConversationType ctype = new ConversationType("BuyProcessor",
"1.0", "buyer");
Conversation conv = session.createConversation(ctype, 0);

Step 6: Exchange Business Messages

After the conversation initiator application has created the conversation, it can begin
exchanging business messages with other trading partners in the c-space.

Initially, the conversation initiator application creates and sends a business message
(such as a request) to one or more trading partners in the c-space. When a trading
partner receives the business message, its conversation participant application
processes the business message and (usually) creates and sends a reply business
message. The trading partners may send and receive several business messages in the
conversation. For more information about exchanging business messages, see
“Sending XOCP Business Messages” on page 3-29 and “Receiving XOCP Business
Messages” on page 3-52.

Step 7: End the Conversation

A conversation can end after trading partners have finished exchanging business
messages in that conversation. The way a trading partner ends involvement in a
conversation depends on its role in the conversation.

Participant Leaves a Conversation

Participant trading partners can leave a conversation. To leave a conversation, a
participant c-enabler application calls the leave method on the Conversation
instance, passing false. No messages will be retained on the c-hub while the
participant is not participating.

3 Using XOCP C-Enabler Applications to Exchange Business Messages

3-28 BEA WebLogic Collaborate Developer Guide

Note: In this release, only the false argument is supported.

The following listing shows an example of a participant leaving a conversation.

Listing 3-6 Leaving a Conversation

c.leave(false);

Initiator Terminates a Conversation

Conversation initiators can explicitly terminate the conversation or wait until the
conversation times out (the conversation initiator can specify a timeout value at the
time it creates the conversation, or they can specify zero to use the timeout value
defined for the conversation in the c-hub repository). When a conversation terminates,
the conversation initiator and all participating trading partners are delisted from the
conversation, any undelivered business messages are discarded, and associated system
resources are released.

To terminate a conversation explicitly, the initiating c-enabler application calls the
terminate method in its implementation of the Conversation interface, as shown in
the following listing.

Listing 3-7 Terminating a Conversation

c.terminate(Conversation.SUCCESS);

Sending XOCP Business Messages

BEA WebLogic Collaborate Developer Guide 3-29

Step 8: Shut Down the C-Enabler Session

To shut down a c-enabler session and leave the c-space, an application uses the
shutDown method in its implementation of the EnablerSession interface, always
passing false. The following listing shows an example of shutting down a c-enabler
session.

Listing 3-8 Shutting Down a C-Enabler Session

es.shutDown(false);

If a c-enabler application shuts down a c-enabler session, the trading partner leaves the
c-space automatically and permanently.

Sending XOCP Business Messages

The following sections describe how a c-enabler application sends XOCP business
messages to one or more trading partners in a c-space:

� Step 1: Create the Business Message

� Step 2: Specify the Recipients of the Business Message

� Step 3: Specify the Quality of Service for Message Delivery

� Step 4: Send the XOCP Business Message

� Step 5: Check the Delivery Status of the Business Message

To send an XOCP business message, a c-enabler application constructs the business
document, creates the business message, specifies the message routing criteria and
Quality of Service delivery options, and sends the business message to the c-hub for
processing. The c-enabler application can also check the delivery status of the business

3 Using XOCP C-Enabler Applications to Exchange Business Messages

3-30 BEA WebLogic Collaborate Developer Guide

message, including whether it was successfully delivered. For an introduction to
XOCP business messages, see “XOCP Business Messages and Message Envelopes”
on page 3-6.

Step 1: Create the Business Message

To create a business message, a c-enabler application first creates the message
payload, which consists of any business documents and attachments that the business
message will contain. For an introduction to the components of a business message,
see “XOCP Business Messages and Message Envelopes” on page 3-6.

Importing the Required Packages

To create a business message, a c-enabler application imports the necessary packages,
as shown in the following listing.

Listing 3-9 Importing Packages for Business Message Creation

import org.w3c.dom.*;
import org.apache.html.dom.*;
import org.apache.xml.serialize.*;
import org.apache.xerces.dom.*;
import com.bea.b2b.protocol.conversation.ConversationType;

Creating Payload Parts

A c-enabler application next creates the message payload, which can include business
documents and attachments.

Creating XML Documents

A business message can contain one or more business documents. A business
document is the XML-based payload part of a business message. A business document
is an instance of the com.bea.b2b.protocol.messaging.BusinessDocument
class.

Sending XOCP Business Messages

BEA WebLogic Collaborate Developer Guide 3-31

A BusinessDocument object contains an XML document, which is an instance of the
org.w3c.dom.Document class in the org.w3c.dom package published by the World
Wide Web Consortium (www.w3.org). A c-enabler application can also use a
third-party implementation of that package, such as the org.apache.xerces.dom
package provided by The Apache XML Project (www.apache.org), which is what the
Verifier application uses to create and process XML documents.

Note: The specified document type parameters must map to a part content type of
message definition associated with the conversation definition in the
repository.

The following listing from the Partner1Servlet of the Verifier application creates a
request in the form of an XML document.

Listing 3-10 Creating an XML Document

// Create a request document
DOMImplementationImpl domi = new DOMImplementationImpl();
DocumentType dType = domi.createDocumentType("request", null,
"request.dtd");
org.w3c.dom.Document rq = new DocumentImpl(dType);
Element root = rq.createElement("request");
// the actual string data to be processed by the other partner
String sendStr = "ABCDEFGHI";
root.appendChild(rq.createTextNode(sendStr));
rq.appendChild(root);

After creating the XML document, a c-enabler application creates a
BusinessDocument object, passing the XML document (request) as a parameter to
the constructor, as shown in the following listing.

Listing 3-11 Creating a BusinessDocument

BusinessDocument bdoc = new BusinessDocument(rq);

3 Using XOCP C-Enabler Applications to Exchange Business Messages

3-32 BEA WebLogic Collaborate Developer Guide

Creating Attachments

A business message can contain one or more attachments. An attachment is a
non-XML-based payload part of a business message that contains binary content. An
attachment is an instance of the com.bea.b2b.protocol.messaging.Attachment
class. For more information, see the WebLogic Collaborate Javadoc.

The following listing shows creating an attachment.

Listing 3-12 Creating an Attachment

FileInputStream fis = new FileInputStream("somefile");
Attachment att = new Attachment (fis);

Creating the XOCP Business Message and Adding Payload Parts

After creating the message payload, a c-enabler application creates the XOCP business
message and adds the payload parts to it. The
com.bea.b2b.protocol.xocp.messaging.XOCPMessage class represents an
XOCP business message. For more information, see the WebLogic Collaborate
Javadoc.

To construct the business message, a c-enabler application:

1. Creates an instance of the XOCPMessage class.

2. Adds the payload parts to the business message by calling either of the following
methods on the XOCPMessage message object:

� addPayLoadPart adds a single business document or attachment to the
business message.

� addPayLoadParts adds multiple business documents or attachments to the
business message.

Sending XOCP Business Messages

BEA WebLogic Collaborate Developer Guide 3-33

The following listing creates an XOCP business message and adds payload parts to it.

Listing 3-13 Creating a Business Message and Adding Payload Parts

XOCPMessage smsg = new XOCPMessage("");
smsg.addPayloadPart(bdoc);
smsg.addPayloadPart(att);

Note: The c-Enabler application clones XOCPMessage content (except its payload
parts) before sending it to the c-hub. Therefore, a payload part must not be
changed after invoking the send or sendAndWait methods on the
XOCPMessage.

Step 2: Specify the Recipients of the Business Message

After creating a business message, a c-enabler application optionally specifies the
trading partner to which it will be sent. A c-enabler application might send the business
message to a specific trading partner (a point-to-point exchange), such as when it
replies to a request received from a conversation initiator. Alternatively, a c-enabler
application might send the business message to a set of trading partners (multicasting)
based on business criteria (c-enabler XPath expressions), such as when a buyer sends
a bid request to multiple sellers of a particular product.

Either way, the set of eligible trading partners is constrained by those who are
subscribed to the appropriate role in the conversation definition. In addition, router and
filter expressions defined in the c-hub repository may also affect message delivery to
particular trading partners. For more information, see Routing and Filtering XOCP
Business Messages in the BEA WebLogic Collaborate C-Hub Administration Guide.

Specifying a Particular Trading Partner

If an XOCP business message is being sent to a single, known trading partner, a
c-enabler application can call the setRecipientmethod on the XOCPMessage object,
passing the trading partner name as the parameter. The specified trading partner must
be defined in the c-hub repository.

3 Using XOCP C-Enabler Applications to Exchange Business Messages

3-34 BEA WebLogic Collaborate Developer Guide

The following listing shows specifying the trading partner named ChipMaker as the
recipient of the business message.

Listing 3-14 Specifying a Single Trading Partner

String tradingPartnerName = "ChipMaker";
XOCPMessage msg = new XOCPMessage();
msg.setRecipient(tradingPartnerName);

Using setRecipient for a business message expedites message delivery because the
c-hub does not perform the usual router processing, such as evaluating trading partner
or c-hub XPath expressions. However, the business message is still subject to
applicable filtering in the c-hub. For more information, see Routing and Filtering
XOCP Business Messages in the BEA WebLogic Collaborate C-Hub Administration
Guide.

Using C-Enabler XPath Expressions to Specify Message Recipient Criteria

A c-enabler application can use XPath expressions to specify the criteria for the set of
trading partners that are to receive the business message. C-enabler XPath expressions
are used to address parts of an XML document. For more information, see Routing and
Filtering XOCP Business Messages in the BEA WebLogic Collaborate C-Hub
Administration Guide.

The XPath expression should be specific to the document format of the c-hub
repository and should define a node set of trading-partner elements. The XPath
expression selects recipient trading partners based on the following attributes, which
are defined in the c-hub repository:

� Standard attributes, such the trading partner name or a postal code

� Extended properties, which are custom attributes, elements, and text defined by
the c-hub administrator

The XPath expression is passed as part of the message header in the business message
from the c-enabler to the c-hub. The c-hub uses this XPath expression, along with other
XPath expressions defined in the c-hub repository, to determine the set of message
recipients for the business message.

Sending XOCP Business Messages

BEA WebLogic Collaborate Developer Guide 3-35

If applicable trading partner and c-hub XPath expressions are defined in the c-hub
repository, the c-hub evaluates these expressions after it receives the business
message. Depending on how they are configured, these XPath expressions might
override or append the c-enabler XPath expression that the c-enabler application
specifies. For more information, see Routing and Filtering XOCP Business Messages
in the BEA WebLogic Collaborate C-Hub Administration Guide.

To specify a c-enabler XPath expression for an XOCP business message, the c-enabler
application calls the setExpressionmethod on the XOCPMessage object, passing the
XPath expression as the parameter.

Notes: The version of Apache Xalan (v 1.0.1) supports single quotes, but not double
quotes, to delimit string literals.

Before the business message is delivered, it is still subject to applicable router and filter
processing in the c-hub.

Specifying Standard Trading Partner Attributes

The following listing shows a c-enabler XPath expression that selects the trading
partner with the specified name:

Listing 3-15 C-Enabler XPath Expression Specifying a Trading Partner Name

msg.setExpression("//trading-partner[@name=\'"+
tradingPartnerName+"\']")

The following listing shows a c-enabler XPath expression that selects the trading
partner whose address contains the string “San”:

Listing 3-16 C-Enabler XPath Expression Specifying a Trading Partner Name

msg.setExpression("//trading-partner[contains(address,\'San\')]")
;

3 Using XOCP C-Enabler Applications to Exchange Business Messages

3-36 BEA WebLogic Collaborate Developer Guide

Specifying a C-Enabler XPath Expression Using Extended Properties

Extended properties are user-defined elements, attributes, and text that can be
associated with trading partners in the c-hub repository. These properties provide
application extensions to the standard predefined attributes in the repository. The
extended property sets are modeled in the repository so that they can be retrieved as
subtrees within an XML document. Extended properties are configured in the Trading
Partners tab in the C-Hub Administration Console. For more information, see Using
the C-Hub Administration Console in the BEA WebLogic Collaborate C-Hub
Administration Console.

C-enabler XPath expressions can refer to these extended properties to assist with
business message routing. For example, suppose a c-hub administrator added an
extended property called “Maximum Order Quantity” so that sellers could indicate in
the c-hub repository the largest quantity that they could accommodate. With this
property defined, a buyer with a large order could specify a c-enabler XPath expression
that sends the business message only to the sellers that can process the order.

The following code listing shows an XML document generated from the repository
with an extended property set for a given seller:

Listing 3-17 Extended Property Set in XML Document Generated from the
Repository

<c-hub context="message-router">
…
<trading-partner name="ABC Seller"
email="orderprocessing@somedomain.com"
phone="999-999-9999">
<address>123 Main St., San Jose, CA 95131</address>
<extended-property-set name="Capacity">

<max-order-quantity>1000</max-order-quantity>
</extended-property-set>
</trading-partner>
…
</c-hub>

Sending XOCP Business Messages

BEA WebLogic Collaborate Developer Guide 3-37

The following listing shows a c-enabler XPath expression that selects trading partners
that can accommodate orders larger than 500 units:

Listing 3-18 C-Enabler XPath Expression Specifying an Order Size

msg.setExpression("//trading-partner[extended-property-set/(@max-
order-qty > \'500\')]")

Because the seller can accommodate orders of up to 1000 units, the seller would be
selected as a recipient of this business message.

Step 3: Specify the Quality of Service for Message
Delivery

The WebLogic Collaborate messaging system allows c-enabler applications to define
the Quality of Service (QoS), or level of reliability, to use when delivering a business
message to recipient trading partners. The Quality of Service settings are stored in the
message header of the business message. The messaging system supports the reliable
delivery of messages in the event of network-link or node failures. The messaging
system provides other capabilities to support reliable messaging, such as message
logging and tracking, correlation of messages, delivery retry attempts, message
timeouts, and choice of message delivery methods.

Automatic Quality of Service Features

The WebLogic Collaborate messaging system provides certain automatic Quality of
Service features that do not require input from c-enabler applications:

� WebLogic Collaborate prevents duplicate message delivery.

� WebLogic Collaborate time stamps every business message when it arrives at
the c-hub or a c-enabler node, which helps with taking performance
measurements and with application debugging.

3 Using XOCP C-Enabler Applications to Exchange Business Messages

3-38 BEA WebLogic Collaborate Developer Guide

QualityOfService Class

The com.bea.b2b.protocol.xocp.messaging.QualityOfService class
represents Quality of Service settings for business messages. The QualityOfService
class defines the quality of service required from the WebLogic Collaborate messaging
system to deliver a specific message and it identifies to the WebLogic Collaborate
messaging system the c-enabler application’s expectation for delivering the business
message. A c-enabler application creates an instance of this class, calls methods on this
instance to specify various Quality of Service settings, and then calls the setQoS
method on the message instance, passing the QualityOfService object, to associate
the settings with the message. If a c-enabler application does not specify Quality of
Service settings, the WebLogic Collaborate messaging system uses the default values
where applicable.

Quality of Service Settings, Options, and Default Values

The following table describes the available Quality of Service settings, options, and
default values.

Table 3-5 Quality of Service Settings, Options, and Default Values

QoS Setting / Description Options Default Value(s)

CONFIRMED_DELIVERY_TO_DESTINATION(S)

� Provides the complete delivery status from each
destination, including receipt timestamp, router
selected trading partners, final list of recipient
trading partners, and so on.

� Provides complete message tracking information
(all potential locations) for the c-hub administrator
and the sending c-enabler's administrator.

Not applicable Not applicable

CONFIRMED_ROUTING

� Provides information from the c-hub router about
the trading partners selected to receive the business
message.

� Provides message tracking for the sending
c-enabler's administrator (until the business
message reaches the c-hub router),

Not applicable Not applicable

Sending XOCP Business Messages

BEA WebLogic Collaborate Developer Guide 3-39

How Quality of Service Settings Affect Message Tracking and Delivery Acknowledgments

The following table describes how the Quality of Service setting affects message
tracking and delivery acknowledgments.

If the Confirmed Delivery to Destination(s) setting is used, then complete message
tracking is available and acknowledgments are used to reliably deliver the message to
its destination(s). If the Confirmed Delivery to Hub setting is used, then no message
tracking is available and no acknowledgments are sent from recipient trading partners..

CONFIRMED_DELIVERY_TO_HUB

(Default)

� Message reached the c-hub

� No message tracking for sending c-enabler's
administrator

Not applicable Not applicable

DURABILITY � PERSISTENT

� NON-PERSISTENT

NON-PERSISTENT

TIMEOUT Timeout, in milliseconds,
after send

Ignored

RETRY_ATTEMPTS 0-n As defined in the c-hub
configuration

CORRELATION_ID Application-defined field Ignored

Table 3-5 Quality of Service Settings, Options, and Default Values (Continued)

QoS Setting / Description Options Default Value(s)

Table 3-6 QoS, Acknowledgment, and Message Tracking

Quality of Service Setting Message Tracking (Y/N)? Acknowledgment (Y/N)?

Confirmed Delivery to Destination(s) Y Y

Confirmed Delivery To Router Y N

Confirmed Delivery To C-Hub N N

3 Using XOCP C-Enabler Applications to Exchange Business Messages

3-40 BEA WebLogic Collaborate Developer Guide

Code Example

The following listing is an example of setting the Quality of Service for a business
message.

Listing 3-19 Setting the Quality of Service for a Business Message

// Relevant imports
import com.bea.b2b.protocol.messaging.MessageToken;
import com.bea.b2b.protocol.messaging.DeliveryStatus;
import com.bea.b2b.protocol.messaging.BusinessDocument;
import com.bea.b2b.protocol.xocp.conversation.local.*;
import com.bea.b2b.protocol.xocp.messaging.*;
import com.bea.b2b.enabler.*;
import com.bea.b2b.enabler.xocp.*;

XOCPMessage msg = …
// Create QoS object
QualityOfService qos = new QualityOfService();
// Specify message to be persisted
qos.setPersistent(true);
// Specify confirmed delivery to destination(s)
qos.setConfirmedDeliveryToDestination(true);
msg.setQoS(qos);

Setting the Message Delivery Confirmation Level

To specify the level of message delivery confirmation, a c-enabler application calls one
of the following methods on the QualityOfService instance, passing the Boolean
true parameter to enable that option:

Sending XOCP Business Messages

BEA WebLogic Collaborate Developer Guide 3-41

The following listing is an example of setting the message confirmation level up to its
destination.

Listing 3-20 Setting the Message Delivery Confirmation Level

qos.setConfirmedDeliveryToDestination(true);

For more information about confirming message delivery, see “Step 5: Check the
Delivery Status of the Business Message” on page 3-47.

Setting Message Durability

In the WebLogic Collaborate messaging system, message durability is a Quality of
Service option that determines whether a durable message store is used in order to
guarantee delivery of message in case of node failures.

Table 3-7 Message Delivery Confirmation Levels

Durability Description

setConfirmedDeliveryToDestination Specifies whether to confirm message delivery up to its
destination (true) or only up to the c-hub (false).

setConfirmedDeliveryToHub Specifies whether to confirm message delivery up to the
c-hub (true) or not (false).

setConfirmedDeliveryToRouter Specifies whether to confirm message delivery up to the
router in the c-hub (true) or only up to the c-hub (false).

3 Using XOCP C-Enabler Applications to Exchange Business Messages

3-42 BEA WebLogic Collaborate Developer Guide

Message Durability Options

A c-enabler application has two message durability options, non-persistent (the
default) and persistent, as described in the following table.

Message and Conversation Durability

A c-enabler application can specify message durability on a per message basis. In
addition, message durability can be defined on a per conversation basis in the c-hub
repository.

How business messages are persisted on a per message or a per conversation basis
depends on a combination of whether persistence is enabled or disabled in the c-hub,
the conversation, or the message, as shown in the following table.

Table 3-8 Message Durability Options

Durability Description

Non-persistent For non-persistent QoS, the message is not stored
anywhere in a durable data store in the WebLogic
Collaborate system in due process of delivery to its
destination. A non-persistent business message en route to
its destination is not recoverable in case of whole or partial
system failures. Using this option requires less system
resources and improves throughput.

Persistent For persistent QoS, message is persisted to a durable data
store in due process of delivery to its destination. This
quality of service increases the guarantee of delivery, as
the message is stored, in reliable data store. The message
delivery guarantee increases at the expense of throughput
of the system. Such a message travels slower in the system
and consumes more resources.

The message is persisted to a data store chosen by the
owner of the WebLogic Collaborate component or
serialized to a file on disk based on size of the message.

Sending XOCP Business Messages

BEA WebLogic Collaborate Developer Guide 3-43

A business message is considered persistent if persistence (recovery) is enabled in the
c-hub, if the conversation in which message propagates is persistent, and if the
message QoS indicates persistence. Even if persistence is enabled for conversations or
messages, if persistence is not enabled in the c-hub, then no conversations or messages
are stored to a reliable data store.

Specifying Message Persistence

To enable message persistence, a c-enabler application calls the setPersistent
method on the QualityOfService instance, passing the Boolean true parameter, as
shown in the following listing.

Listing 3-21 Specifying Message Persistence

qos.setPersistent(true);

Table 3-9 Message Persistence

Persistent Object Persistence Enabled?

If persistence is enabled (Y) or disabled (N) for:

� C-Hub Y Y Y Y N

� Conversation Y N Y N Y/N

� Business Message Y N N Y Y/N

Then the conversation or business message is
persisted (Y) or not persisted (N):

Persisted?

� Conversation Y N Y N N

� Business Message Y N Y N N

3 Using XOCP C-Enabler Applications to Exchange Business Messages

3-44 BEA WebLogic Collaborate Developer Guide

Setting the Message Timeout

If specified, the message timeout determines how long a sender waits for
acknowledgments. If a business message expires (times out), the receiver of the
business message does not process it, and all other processing of the business message,
including acknowledgment processing and delivery retries, is abandoned.

Timeout Algorithm

WebLogic Collaborate does not synchronize the clocks used by its different
components, which can reside in different machines at different locations. Instead,
WebLogic Collaborate uses a relative time algorithm.

Based on this algorithm, the time left before the timeout of a business message (relative
to the absolute time of the component processing the business message) is included in
the business message when the business message is sent to the other component. On
the receiving component, the timeout calculations are based on an absolute time (at the
arrival of the business message) and a relative time (embedded in the incoming
message) left to process the message. This algorithm at least ensures that the actual
message timeout in the system will always occur after the original timeout specified
by the application.

Message Timeout on the C-Hub = Message timeout specified by the
c-enabler application when sending a message

Message Timeout on the Sending C-Enabler = Message Timeout on the
C-Hub + N x Delta

Where

� N = a predefined number in the system, such as 10

� Delta = Estimated round-trip time between the sending c-enabler and the c-hub

Setting the Number of Delivery Retry Attempts

If an attempt to deliver a business message fails due to intermittent network failures,
the WebLogic Collaborate messaging system attempts to retry sending the business
message repeatedly until one of the following occurs:

� The business message is delivered (delivery succeeded).

� The number of retry attempts is exceeded.

Sending XOCP Business Messages

BEA WebLogic Collaborate Developer Guide 3-45

� The message times out.

� The conversation in which the business message is sent either terminates or
times out.

The default values for message timeouts and retry intervals are defined in the c-hub
repository and are retrieved by a c-enabler at the time the c-enabler session is created.
The WebLogic Collaborate messaging system waits for the configured interval before
attempting to resend a business message.

To override the default retry attempt limit, a c-enabler application calls the
setTimeout method on the QualityOfService instance, passing the timeout value
(number of milliseconds) as a parameter, as shown in the following listing.

Listing 3-22 Specifying the Message Timeout

qos.setTimeout(10000);

Setting the Correlation ID for a Business Message

A c-enabler application can specify a unique correlation ID for a business message so
that it can correlate received business messages (such as replies to a request) from
trading partners to a previously sent message (such as a request). The correlation ID
accompanies the business message to its destination. The c-enabler application of the
recipient trading partner can use this value to unambiguously identify the reply
message sent back to the originating trading partner.

To specify the correlation ID, a c-enabler application calls the setCorrelationId
method on the QualityOfService instance, passing a string representing the
correlation ID as a parameter, as shown in the following listing.

Listing 3-23 Specifying the Correlation ID for a Business Message

qos.setCorrelationId("ABC123");

3 Using XOCP C-Enabler Applications to Exchange Business Messages

3-46 BEA WebLogic Collaborate Developer Guide

Step 4: Send the XOCP Business Message

After specifying the recipients of a business message and the Quality of Service, a
c-enabler application sends the business message in one of the following ways:

� Synchronous message delivery

� Deferred synchronous message delivery

Synchronous Message Delivery

With synchronous message delivery, the application waits until the sent message is
delivered to the destination(s). The WebLogic Collaborate messaging system returns
control to the application once the outcome of the activity of sending the message is
known. The application waits until any of the following events occurs:

� Acknowledgments are received from all potential destinations

� Message times out

� Conversation in which message was sent terminates

To send a business message synchronously, a c-enabler application calls the
sendAndWaitmethod on the XOCPMessage instance, passing the time to wait (number
of milliseconds) as a parameter. If zero (0) is specified, the c-enabler application waits
until the business message reaches its destination(s), as shown in the following listing.

Listing 3-24 Sending a Message Using Synchronous Message Delivery

MessageToken token = msg.sendAndWait(0);

Deferred Synchronous Message Delivery

With deferred synchronous message delivery, the WebLogic Collaborate messaging
system returns control to the c-enabler application immediately after a message is sent,
and returns a message token that the c-enabler application can use to check the status
of message delivery. Once a message token is accessed, the application waits for a
specified time or until any of the following events occurs:

Sending XOCP Business Messages

BEA WebLogic Collaborate Developer Guide 3-47

� Acknowledgments are received from all potential destinations.

� The message times out.

� The conversation in which message was sent either terminates or times out.

To send a business message with deferred synchronous message delivery, a c-enabler
application calls the send method on the XOCPMessage instance, continues executing
business logic, and then checks the status by calling the waitForACK method on the
MessageToken instance, as shown in the following listing.

Listing 3-25 Sending a Message Using Deferred Synchronous Message Delivery

token = msg.send();
...
token.waitForACK();

The waitForAck method will block until the status of the business message is
available (if no timeout is specified) or until the specified timeout (in milliseconds) is
exceeded.

Step 5: Check the Delivery Status of the Business
Message

Both the send and sendAndWait methods on the XOCPMessage instance return a
message token that a c-enabler application can query to check the delivery status of the
associated business message.

3 Using XOCP C-Enabler Applications to Exchange Business Messages

3-48 BEA WebLogic Collaborate Developer Guide

Message Tokens

A message token is an instance of the
com.bea.b2b.protocol.xocp.messaging.XOCPMessageToken class. A message
token has the following attributes:

If the business message was sent using the synchronous send delivery option, then the
message token cannot be used to wait for acknowledgments and, if used, the method
returns immediately.

Table 3-10 Message Token Information

Attribute Description

Message ID Unique ID of the business message.

Exception If applicable, any exception that occurred before the
business message left the sending c-enabler. An exception
is usually returned when the message is sent, but for
deferred synchronous message delivery, the business
message might be kept in an internal send queue
temporarily before being delivered to the c-hub.

Elapsed Time Time taken to deliver the business message to all
destination(s). This information is available only after
acknowledgments have been received from all message
destinations. Availability is subject to the specified
Qualify of Service delivery option.

Delivery Status Delivery status from recipient destination(s). This
information depends on the availability of such
information. Availability is subject to the specified
Qualify of Service delivery option.

Number of Recipients (Router) Number of recipient trading partners after the business
message has been processed by the XOCP router in the
c-hub. Availability is subject to the specified Qualify of
Service delivery option.

Number of Recipients (Filter) Number of recipient trading partners after the business
message has been processed by the XOCP filter in the
c-hub. Availability is subject to the specified Qualify of
Service delivery option.

Sending XOCP Business Messages

BEA WebLogic Collaborate Developer Guide 3-49

Delivery Status Tracking

In the WebLogic Collaborate messaging system, when a business message reaches its
destination (the receive queue of the destination c-enabler node), a system message is
returned to the sender to acknowledge the message delivery if the Quality of Service
setting requires it.

A c-enabler application can use either of the following methods to obtain the delivery
status:

� getAllDeliveryStatus if the business message was sent to multiple recipients

� getDeliveryStatus if the business message was sent to a single recipient

Both methods return a DeliveryStatus object, an instance of the
com.bea.b2b.protocol.messaging.DeliveryStatus class that provides the
following information:

� Recipient (name of the recipient trading partner or message tracking location)

� Timestamp of the receipt of the business message

� Status code, which is one of the following values.

Table 3-11 Message Delivery Status Codes

Status Code Description

SUCCESS Business message was successfully delivered to the
destination. No errors or exceptions occurred.

FAILURE An error occurred while delivering the business message
to this destination.

RETRIES_EXHAUSTED All delivery retry attempts have been exhausted and the
business message has been discarded.

TIMEDOUT Timeout occurred before message delivery and the
business message has been discarded.

3 Using XOCP C-Enabler Applications to Exchange Business Messages

3-50 BEA WebLogic Collaborate Developer Guide

Message Tracking Locations

The WebLogic Collaborate messaging system provides message tracking features that
allow c-hub and c-enabler administrators to check the progress of a business message
as it moves through various predefined message tracking locations along the message
path en route to its destination. The C-Hub Administration Console and the C-Enabler
Administration Console can display status information if a business message passes
through these tracking points. Administrators can use message tracking information
for debugging and to identify bottlenecks in applications.

Note: The availability of message tracking locations depends on the configuration of
the WebLogic Collaborate system and the specified Quality of Service for a
given business message (such as
CONFIRMED_DELIVERY_TO_DESTINATION(S), which is described in
Table 3-5). For example, if the c-enabler and c-hub are colocated on the same
node, some locations are not available. Similarly, some locations may not be
available for synchronous message delivery.

Sending XOCP Business Messages

BEA WebLogic Collaborate Developer Guide 3-51

Diagram of Message Tracking Locations

The following figure shows the message tracking locations in the WebLogic
Collaborate messaging system.

Figure 3-7 Message Tracking Locations

Description of Message Tracking Locations

The following message tracking locations are potentially visible in the C-Hub
Administration Console or the C-Enabler Administration Console.

Table 3-12 Message Tracking Locations

Message Tracking
Locations

Location Activity Performed

ENABLER_SEND_QUEUE Send queue in the c-enabler session of
the sending trading partner.

Message is enqueued for sending.

HUB_RECEIVE_QUEUE Receive queue for the sending trading
partner in the c-hub.

Message is enqueued in the receive
queue of the trading partner at the
c-hub.

3 Using XOCP C-Enabler Applications to Exchange Business Messages

3-52 BEA WebLogic Collaborate Developer Guide

Receiving XOCP Business Messages

The following sections describe how to receive XOCP business messages in a
c-enabler application:

� About Receiving XOCP Business Messages

� Receiving an XOCP Business Message

About Receiving XOCP Business Messages

C-enabler applications must implement the onMessage method in the
ConversationHandler interface to receive and process business messages.
The onMessage method has the following signature.

Listing 3-26 Signature for onMessage Method

public void onMessage(XOCPMessage msg)

HUB_ROUTER XOCP-Router in the c-hub. Message has reached the router.

HUB_SEND_QUEUE Send queue of the receiving trading
partner in the c-hub.

Message has been enqueued for
delivery in the target trading partner's
queue at the c-hub.

ENABLER_RECEIVE_QUEUE Receive queue in the c-enabler
session of the receiving trading
partner.

Message has been enqueued in queue
of the listener thread of the target
trading partner's c-enabler session.

Table 3-12 Message Tracking Locations (Continued)

Message Tracking
Locations

Location Activity Performed

Receiving XOCP Business Messages

BEA WebLogic Collaborate Developer Guide 3-53

The c-enabler session invokes the onMessage method whenever a c-enabler receives
a business message, passing the business message as an input parameter. The c-enabler
application retrieves the XOCPMessage object containing the business message and
then calls methods on that instance to process the message.

If a c-enabler application receives multiple business documents in a conversation, the
onMessage implementation would first determine the type of document received (such
as a bid request or bid reward), and then process that document accordingly.

In addition, the onMessage implementation might contain code that constructs and
sends a business message. For example, a conversation participant c-enabler
application might implement onMessage to receive a request, process the request, and
then create and send the reply document.

Receiving an XOCP Business Message

Listing 3-27 describes the onMessage implementation in the Partner2Servlet of
the Verifier application. This onMessage implementation processes the initial
business document (a request) sent from the Partner1Servlet. It then creates and
sends a reply document back to the Partner1 node.

Tasks Performed

The onMessage code performs the following tasks:

1. Retrieves the Quality of Service for the business message by calling the getQoS
method on the XOCPMessage instance.

The application will use the same Quality of Service settings to send the reply
message.

2. Retrieves the payload parts of the business message by calling the
getPayloadParts method on the XOCPMessage instance.

3. Retrieves the first (and only) business document in the PayloadPart[] array.

4. Extracts the associated XML document by calling the getDocument method on
the BusinessDocument instance.

3 Using XOCP C-Enabler Applications to Exchange Business Messages

3-54 BEA WebLogic Collaborate Developer Guide

5. Retrieves and examines parts of the XML document using methods on the
Document instance, which is an instance of the org.w3c.dom.Document class
provided in the org.w3c.dom package published by the World Wide Web
Consortium (www.w3.org).

A c-enabler application can also use a third party implementation of that
package, such as the org.apache.xerces.dom package provided by The
Apache XML Project (www.apache.org), which is what the Verifier application
uses to create and process business documents.

6. Retrieves the data string ("ABCDEFGHI") embedded in the business document and
converts it to all lowercase letters.

7. Constructs a reply document, specifies the same Quality of Service as the request
document, and sends the document to Trading Partner 1.

Code Listing

The following listing is the onMessage implementation in the Partner2Servlet of
the Verifier application.

Listing 3-27 The onMessage Implementation in Partner2Servlet

public void onMessage(XOCPMessage rmsg) {
try{
QualityOfService qos = rmsg.getQoS();

PayloadPart[] payload = rmsg.getPayloadParts();
Document rq = null;

if (payload != null && payload.length > 0){
BusinessDocument bd = (BusinessDocument)payload[0];
rq = bd.getDocument();

}
if (rq == null){
throw new Exception("Did not get a request document");

}
Conversation conv = rmsg.getConversation();

Element root = rq.getDocumentElement();
String name = root.getNodeName();
if (!name.equals("request")){
debug("Received "+name+" instead of a request");
return;

Receiving XOCP Business Messages

BEA WebLogic Collaborate Developer Guide 3-55

}
Text revStr = (Text)root.getFirstChild();

// Create the return document
DOMImplementationImpl domi = new DOMImplementationImpl();
DocumentType dType = domi.createDocumentType("reply", null, "reply.dtd");
rq = new DocumentImpl(dType);
root = rq.createElement("reply");
String sendStr = new String(revStr.getData());
root.appendChild(rq.createTextNode(sendStr.toLowerCase()));
rq.appendChild(root);

XOCPMessage smsg = new XOCPMessage("");
smsg.addPayloadPart(new BusinessDocument(rq));
smsg.setQoS(qos);
smsg.setExpression("//trading-partner[@name=\'Partner1\']");

smsg.setConversation(conv);
smsg.sendAndWait(0);

}catch(Exception e){
e.printStackTrace();

}
}

3 Using XOCP C-Enabler Applications to Exchange Business Messages

3-56 BEA WebLogic Collaborate Developer Guide

BEA WebLogic Collaborate Developer Guide 4-1

CHAPTER

4 Developing Logic
Plug-Ins

The following sections describe how to develop logic plug-ins in WebLogic
Collaborate:

� About Logic Plug-Ins

� Logic Plug-In API

� Rules and Guidelines for Logic Plug-Ins

� Creating and Adding Logic Plug-Ins

For sample applications that demonstrate the use of logic plug-ins, see the
MessageCounter and CheckAccount logic plug-in samples, which are described in
Using Logic Plug-Ins for Billing in BEA WebLogic Collaborate Getting Started.

4 Developing Logic Plug-Ins

4-2 BEA WebLogic Collaborate Developer Guide

About Logic Plug-Ins

The following sections describe logic plug-ins and related concepts:

� What Are Logic Plug-Ins?

� Logic Plug-In Architecture

� Chains

� Business Messages and Message Envelopes

� System and Custom Logic Plug-Ins

� Creating and Adding Logic Plug-Ins

� Creating and Adding Logic Plug-Ins

What Are Logic Plug-Ins?

Logic plug-ins are individual components that perform specialized processing of
business messages that pass through the c-hub. A logic plug-in is a custom service that
a c-hub provider or trading partner can develop and install on a c-hub to provide
additional value for c-hub management and for trading partners who use that c-hub.

Logic plug-ins insert rules and business logic at strategic locations along the path that
business messages travel as they make their way through the c-hub. Logic plug-ins are
Java classes that are invoked when a c-space is started. At run time, logic plug-ins can
intercept, process, and output business messages. When a business message passes
through the location where a logic plug-in is configured, the logic plug-in processes
the business message. Logic plug-in execution occurs on the c-hub and is transparent
to c-enabler users.

Each logic plug-in is associated with a business protocol. A logic plug-in processes
only the messages that are exchanged using that protocol. For example, if a particular
plug-in is associated with the XOCP protocol, then it will process only XOCP business
messages.

About Logic Plug-Ins

BEA WebLogic Collaborate Developer Guide 4-3

Logic Plug-In Architecture

Logic plug-ins can be installed at two processing locations in the c-hub: in the router
and in the filter, which are shown in the following figure.

Figure 4-1 Logic Plug-In Locations in the C-Hub: Router and Filter

4 Developing Logic Plug-Ins

4-4 BEA WebLogic Collaborate Developer Guide

Logic Plug-In Processing Tasks

WebLogic Collaborate-provided XOCP router and XOCP filter plug-ins, as well as
RosettaNet plug-ins, are directly involved in the processing of message recipients
based on Xpath expressions in the repository. However, custom logic plug-ins can
perform a wide range of services that are entirely unrelated to routing or filtering, as
well as performing routing and filtering operations. For example, a custom logic
plug-in might track the number of messages sent from each trading partner for billing
purposes.

Logic plug-ins perform the types of tasks described in the following table.

Chains

Both the router and filter modules can have multiple plug-ins that will be executed
when a business message passes through that part of the c-hub. Multiple logic plug-ins
that share the same protocol are sequenced as a logic plug-in chain.

Table 4-1 Tasks That Logic Plug-Ins Perform

Process Description Examples

Route
Modification

Changes the list of target recipients for a
business message. Subject to conversation and
c-space validation of the recipient. (WebLogic
Collaborate plug-ins and custom plug-ins.)

� “If a computer chip order over $1M is
placed, make sure that NewChipCo is one
of the recipients.”

� “After January 1, 2000, no orders should
be sent to OldChipCo.”

Examination Examines the contents of a business message
and takes certain actions based on the results of
the examination. (Custom plug-ins.)

Note: Examination is usually performed on
business messages without encrypted
contents.

� “Log all senders of messages for billing
purposes.”

� “Sample 1 out of every N messages of
type X for standards compliance.”

� “For messages of type X, how many are
conversation version 1 versus
conversation version 2?”

Content
Modification

Changes the contents of a business message.

Note: Content modification is not allowed in
this release.

� “If over N items are ordered, be sure to
specify extra insurance.”

About Logic Plug-Ins

BEA WebLogic Collaborate Developer Guide 4-5

In a chain, the logic plug-ins are processed sequentially at run time. After one plug-in
has finished executing, the next sequential plug-in in the chain will normally be
activated. Each successive plug-in can access any changes made previously to the
shared message information as the business message passes throughout the c-hub.

Note: The position of a logic plug-in in a chain is configured in the repository using
the C-Hub Administration Console, as described in Working with Logic
Plug-ins in the BEA WebLogic Collaborate C-Hub Administration Guide.

The following figure shows an example of a chain of XOCP logic plug-ins in the router
location in the c-hub.

Figure 4-2 Sample XOCP Router Chain

Router

XOCP
Business
Message

Queue

XOCP Router Chain

XOCP-Router-Enqueue

XOCP-MessageInspector

XOCP-Router

XOCP-MessageTracker

4 Developing Logic Plug-Ins

4-6 BEA WebLogic Collaborate Developer Guide

Note that even when custom logic plug-ins do not provide routing or filtering
capability, they must still be part of an XOCP or RosettaNet router or filter chain. In
this example, the chain contains four logic plug-ins that are processed in the order
described in the following table.

In this example, only XOCP business messages will trigger the logic plug-ins in the
XOCP router chain. Non-XOCP business messages (such as RosettaNet messages) are
processed separately by the router chain associated with the protocol/c-space defined
by the URL that received the business message.

Table 4-2 Logic Plug-Ins in the Sample XOCP Router Chain

Logic Plug-In Description

XOCP router WebLogic Collaborate provides this logic plug-in, which
might modify the list of recipients for an XOCP business
message based on XPath router expressions configured in the
repository. This should be the first logic plug-in in the XOCP
router chain.

XOCP-MessageTracker Hypothetical logic plug-in. A c-hub owner or trading partner
might provide such a custom logic plug-in to track the number
of business messages sent from each trading partner for billing
purposes.

XOCP-MessageInspector Hypothetical logic plug-in. A c-hub owner or trading partner
might provide such a custom logic plug-in to examine and
maintain statistics for the types of business documents being
exchanged on the c-hub (for example, purchase orders,
invoices, and so on).

XOCP router enqueue WebLogic Collaborate provides this logic plug-in, which
enqueues the XOCP business message in an internal c-hub
router message queue. This should be the last logic plug-in in
the XOCP router chain.

About Logic Plug-Ins

BEA WebLogic Collaborate Developer Guide 4-7

Business Messages and Message Envelopes

A business message is the basic unit of communication exchanged between trading
partners in a conversation. The business message contains the list of message
recipients. A business message is represented in the C-Hub API by the
com.bea.b2b.protocol.messaging.Message interface. In addition, the following
classes implement this interface and represent protocol-specific business messages:

� com.bea.b2b.protocol.xocp.messaging.XOCPMessage

� com.bea.b2b.protocol.rosettanet.messaging.RNMessage

When a business message enters the c-hub, the c-hub creates a message envelope that
acts as a container for the business message as it travels through the c-hub. Message
envelopes are instances of the
com.bea.b2b.protocol.messaging.MessageEnvelope class.

The message envelope is used for routing purposes and is analogous to a paper
envelope for a letter: the message envelope contains the business message plus
addressing information, such as the identity of the sender (return address) and one
recipient of the business message (destination address), as shown in the following
figure.

Figure 4-3 Message Envelope Containing an XOCP Business Message

Message envelopes also contain other information about the business message. For
detailed information about the MessageEnvelope class, see the Javadoc on the
WebLogic Collaborate documentation CD or in the classdocs subdirectory of your
WebLogic Collaborate installation.

Message Envelope

Sender URL

Recipient / Destination URL

XOCP Business Message

4 Developing Logic Plug-Ins

4-8 BEA WebLogic Collaborate Developer Guide

For XOCP business messages, after the system XOCP router processes an XOCP
business message and finalizes the list of intended message recipients, the c-hub
validates the recipients and creates a separate message envelope (and a logical copy of
the XOCP business message) for each recipient in the recipient list. These message
envelopes are then forwarded to the XOCP filter for processing. For more information,
see “Information Flow for Message Envelopes” on page 3-9.

System and Custom Logic Plug-Ins

WebLogic Collaborate provides the following logic plug-ins to provide standard
services for processing business messages.

Table 4-3 System Logic Plug-Ins

Logic Plug-In Description

XOCP router Modifies the list of recipients for an XOCP business message
based on XPATH router expressions configured in the
repository. In general, this system logic plug-in should be first
in the router chain so that custom logic plug-ins can
subsequently process a business message after its list of
intended recipients is known.

XOCP router enqueue Enqueues the XOCP business message in the c-hub router
message queue. In general, this system logic plug-in should be
last in the XOCP router chain.

XOCP filter Determines whether an XOCP business message is sent to a
trading partner based on XPATH filter expressions configured
in the repository. In general, this system logic plug-in should
be first in the XOCP filter chain so that custom logic plug-ins
can subsequently process a business message after rejected
business messages have been filtered out.

RosettaNet router Handles routing for RosettaNet business messages. In general,
this system logic plug-in should be first in the RosettaNet
router chain.

Logic Plug-In API

BEA WebLogic Collaborate Developer Guide 4-9

In addition to using the system logic plug-ins, c-space owners and trading partners can
develop their own custom logic plug-ins to provide specialized services on the c-hub.
Each logic plug-in is a Java class that implements the Logic Plug-In API, as described
in “Programming Steps for Logic Plug-Ins” on page 4-13.

Logic Plug-In API

WebLogic Collaborate provides a Logic Plug-In API that allows WebLogic
Collaborate applications to:

� Add or remove target trading partners from the message recipient list. The c-hub
validates the list of recipients before sending the business message.

� Retrieve, examine, and process parts of business messages. To ensure that the
contents of business messages will not be altered or misrepresented
programmatically, the logic plug-in API provides methods for examining
business messages, but not for changing their contents.

The following table lists the components of the Logic Plug-in API. For more
information, see the WebLogic Collaborate Javadoc.

RosettaNet router enqueue Enqueues the RosettaNet business message in the c-hub router
message queue. In general, this system logic plug-in should be
last in the RosettaNet router chain.

RosettaNet filter Determines whether a RosettaNet business message is sent to
a trading partner. In general, this system logic plug-in should
be first in the RosettaNet filter chain.

Table 4-3 System Logic Plug-Ins (Continued)

Logic Plug-In Description

4 Developing Logic Plug-Ins

4-10 BEA WebLogic Collaborate Developer Guide

Table 4-4 Logic Plug-In API

Class/Interface Description

com.bea.b2b.protocol.PlugIn Tagging interface that describes a generic logic
plug-in, which represents pluggable code that can be
inserted for execution at various places in the c-hub.

com.bea.b2b.protocol.PlugInException Exception class that is thrown if an error occurs while
executing a logic plug-in.

com.bea.b2b.protocol.messaging.Message
Envelope

Represents the container (“envelope”) for a business
message passing through the c-hub. The
MessageEnvelope contains the actual business
message plus high level routing and processing
information associated with the business message,
such as the sender URL and the URL for one recipient
(there is a single message envelope for each recipient).
A Java InputStream is available in case access to
the native message is needed (however, because
message content modification is not allowed, no
OutputStream is provided).

com.bea.b2b.protocol.messaging.Message Represents a business message passing through the
c-hub. It provides additional information to be used to
properly route a message between trading partners.
It also contains information specific to the particular
business protocol being used for this business message.
Depending on the protocol used, the Message class
will usually be subclassed to provide additional
protocol-specific information about the message.

com.bea.b2b.protocol.messaging.Payload
Part

Represents a component of the message payload.
Specific implementing classes of this information are
provided for some of the different types of parts of a
business message, such as XML or non-XML parts, or
to assist in accessing business protocol-specific
information.

com.bea.b2b.protocol.conversation.Conv
ersationType

Represents a single role in a specific conversation
definition. It contains information such as the
conversation name, conversation version, and trading
partner role.

Rules and Guidelines for Logic Plug-Ins

BEA WebLogic Collaborate Developer Guide 4-11

Rules and Guidelines for Logic Plug-Ins

Logic plug-ins should conform to the following rules and guidelines:

� Logic plug-ins must be thread-safe and, therefore, stateless. At run time, logic
plug-in instances are cached and shared by multiple threads. Using instance
variables is not recommended.

� If access to shared resources is required, then use the synchronized Java
keyword to restrict access to the shared resource. Certain resources, such as
instance variables within the class, shared objects, or external system resources
(like files) might need shared access. Using the synchronized keyword can
affect overall application performance, so use it only when necessary.

� Logic plug-ins can modify the message envelope and the list of recipients in the
business message, but they cannot modify the message contents. Changing the
business message invalidates the digital signature, if present. The Logic Plug-In
API provides mutator methods for modifying the message envelope only.

� Logic plug-ins must be self-contained. They are not interdependent with other
logic plug-ins; they cannot pass variables between them; and they do not return a
variable. The message envelope is the only input and the only output. If the logic
plug-in makes a change to the message envelope, it outputs the message
envelope as modified.

� The main logic plug-in class must implement the
com.bea.b2b.protocol.PlugIn interface.

� To ensure secure messaging, logic plug-ins are generally not able to inspect
encrypted business messages. Examination is usually performed on business
messages that do not have encrypted contents. To examine the encrypted
contents of a business message, the logic plug-in would need to decrypt the
message, inspect its contents, and then encrypt it again. Users would need to
have their own public key infrastructure.

� It is the responsibility of the plug-in provider to ensure that any custom plug-ins
that are installed on the c-hub are properly debugged and designed from a
security perspective.

� A logic plug-in is always associated with at least one particular protocol in the
repository. The logic plug-in is triggered only when a business message that

4 Developing Logic Plug-Ins

4-12 BEA WebLogic Collaborate Developer Guide

uses that protocol passes through the c-hub. For example, a RosettaNet business
message does not trigger an XOCP-defined logic plug-in, and vice versa.

� A single logic plug-in can be associated with multiple protocols in the
repository. For example, the same logic plug-in class named SentMessages

could be associated with the XOCP and RosettaNet protocols. In the C-Hub
Administration Console, you can define two separate logic plug-ins (such as
XOCP-SentMessages and RN-SentMessages), although each would point to the
same SentMessages class. Alternatively, the same logic plug-in can be used in
two different protocol chains; they would share initialization parameters, but
they would be separate instances.

� An efficient logic plug-in determines quickly whether a business message
qualifies for processing and, if not, exits immediately.

� Logic plug-ins can call other modules, including shared methods in a utility
library (for example, a module that accesses a database).

� Logic plug-ins are initialized one time, when the c-space is activated.

� If the c-space is shut down (the shutdown method is called on the associated
com.bea.b2b.management.hub.runtime.CSpaceMBean), then all
protocol-specific logic plug-ins associated with that c-space are shut down as
well. The c-space must be restarted for the logic plug-ins to be active.

� If the c-hub is shut down (the shutdown method is called on the associated
com.bea.b2b.management.hub.runtime.CHubMBean), then all logic
plug-ins running on that c-hub are shut down as well. The c-hub and c-space
must be restarted.

� If the logic plug-in definitions change in the c-hub repository, such as when
the chain is resequenced or when logic plug-in definitions are added,
changed, or removed, then the c-space must be shut down and restarted to
reflect the repository changes.

� The WebLogic Server instance must be restarted (and the Java Virtual Machine,
or JVM, reloaded) if an upgraded version of the logic plug-in source code is
installed on the c-hub.

Creating and Adding Logic Plug-Ins

BEA WebLogic Collaborate Developer Guide 4-13

Creating and Adding Logic Plug-Ins

Implementing a custom logic plug-in requires a combination of development and
administrative tasks. The following steps describe those procedures:

� Programming Steps for Logic Plug-Ins

� Administrative Tasks

Programming Steps for Logic Plug-Ins

This section describes the programming steps that you must perform in the logic
plug-in code. Although each logic plug-in processes business messages in its own way,
all logic plug-ins must perform certain tasks.

To implement a logic plug-in, complete the following steps:

� Step 1: Import the Necessary Packages

� Step 2: Implement the PlugIn Interface

� Step 3: Specify the Exception Processing Model

� Step 4: Implement the Process Method

� Step 5: Get the Business Message from the Message Envelope

� Step 6: Validate the Business Message

� Step 7: Get Business Message Properties

� Step 8: Process the Business Message as Needed

4 Developing Logic Plug-Ins

4-14 BEA WebLogic Collaborate Developer Guide

This section uses code fragments from the SentMsgCounter.java file in the
MessageCounter sample application. The SentMsgCounter class is a logic plug-in
that:

� Intercepts a business message en route through the c-hub

� Obtains the names of the message sender, its target recipient, and its associated
conversation definition

� Inserts a row with this information in the billing database.

The CheckAccount.java file in the CheckAccount sample application is another
example of a logic plug-in. For more information about the MessageCounter and
CheckAccount sample applications, see Using Logic Plug-Ins for Billing in BEA
WebLogic Collaborate Getting Started.

Step 1: Import the Necessary Packages

At a minimum, a logic plug-in needs to import the following packages:

� com.bea.b2b.protocol.*

� com.bea.b2b.protocol.messaging.*

The following listing from the SentMsgCounter.java file shows importing the
necessary packages.

Listing 4-1 Importing the Necessary Packages

import java.util.Hashtable;
import com.bea.b2b.protocol.*;
import com.bea.b2b.protocol.messaging.*;
import com.bea.eci.logging.*;
import javax.naming.*;
import javax.sql.DataSource;

// This package is needed to access the DB pool
import java.sql.*;

Creating and Adding Logic Plug-Ins

BEA WebLogic Collaborate Developer Guide 4-15

Step 2: Implement the PlugIn Interface

A logic plug-in needs to implement the com.bea.b2b.protocol.PlugIn interface,
as shown in the following listing.

Listing 4-2 Implementing the PlugIn Interface

public class SentMsgCounter implements PlugIn
{ ...
}

Step 3: Specify the Exception Processing Model

A PlugInException is thrown if:

� A run-time exception (such as a NullPointerException) is thrown by a logic
plug-in and caught by WebLogic Collaborate processing code.

� The logic plug-in throws an exception to indicate problems encountered during
logic plug-in processing. The logic plug-in might handle the exception directly
or it might notify the WebLogic Collaborate processing code.

4 Developing Logic Plug-Ins

4-16 BEA WebLogic Collaborate Developer Guide

The exception processing model specified in a logic plug-in determines what happens
if an exception is thrown. Logic plug-ins must implement the
exceptionProcessingModel method and specify one of the return values described
in the following table.

Table 4-5 Options for the Exception Processing Model

Class/Interface Description

EXCEPTION_CONTINUE Indicates that processing should continue to the next logic
plug-in in the chain if a PlugInException is thrown.

Use this option to allow a business message to continue
through the c-hub even if an error occurs during the execution
of this logic plug-in.

EXCEPTION_STOP Indicates that processing should stop at this logic plug-in if a
PlugInException is thrown. The business message does
not continue to the next logic plug-in in the chain.

Use this option to cancel message processing and prevent its
further progress through the c-hub. For example, if a logic
plug-in might validate business documents and reject any that
contain insufficient or incorrect data.

EXCEPTION_UNWIND Indicates that processing should unwind if a
PlugInException is thrown. The business message does
not continue to the next logic plug-in in the chain.

Use this option to reject a message; to prevent its further
progress through the c-hub; and to undo any changes made by
this plug-in, along with any changes made by previous
plug-ins in the chain. If an exception is thrown and this is the
exception processing model, then the unwind methods in all
previous plug-ins in the chain (but not the current logic
plug-in), are invoked in reverse order. In effect, unwinding
cancels all changes made by the chain.

For example, if a logic plug-in inserts a row in a database
table, its unwind method should delete that row.

Note: To use this exception processing model, all logic
plug-ins in the chain must implement the unwind
method, even if it does nothing.

Creating and Adding Logic Plug-Ins

BEA WebLogic Collaborate Developer Guide 4-17

If a business message is rejected, what happens next depends on the business protocol
as well as the specified Quality of Service associated with the message. For example,
the sending c-enabler application might be notified that message delivery failed and it
might then attempt to send the business message again.

The following listing shows how the SentMsgCounter plug-in implements the
exceptionProcessingModel method.

Listing 4-3 Specifying the Exception Processing Model

public int exceptionProcessingModel()
{
return EXCEPTION_CONTINUE;

}

Step 4: Implement the Process Method

To process a business message, a logic plug-in must implement the process method,
which accepts the message envelope of the business message as its only parameter. In
the following listing, the SentMsgCounter class begins its implementation of the
process method by defining the variables that it will later use to store message
properties.

Listing 4-4 Implementing the Process Method

public void process(MessageEnvelope mEnv) throws PlugInException
{

String sender, conversation ;
String tRecipient;
Connection conn = null;
Statement stmt = null;
Message bMsg = null;
...

}

4 Developing Logic Plug-Ins

4-18 BEA WebLogic Collaborate Developer Guide

Note: When processing a business message, a logic plug-in is allowed to modify
only the message envelope, not the business message.

Step 5: Get the Business Message from the Message Envelope

If a logic plug-in needs to inspect the contents of a business message, it must call the
getMessage method on the MessageEnvelope instance, which retrieves the business
message as a Message object.

In the following listing, the SentMsgCounter class gets the business message from the
message envelope by calling the getMessage method.

Listing 4-5 Retrieving the Business Message from the Message Envelope

if((bMsg = mEnv.getMessage())== null)
{

new Throwable("bMsg is NULL").printStackTrace();
}

Step 6: Validate the Business Message

Optionally, a logic plug-in can determine whether a message is a valid business
message that should be processed, or a system message that should be ignored by the
logic plug-in. To check a business message, the logic plug-in can call the
isBusinessMessage method on the Message instance. In the following listing, the
SentMsgCounter class uses the isBusinessMessage method to ensure that the
message is a business message before processing it.

Listing 4-6 Validating the Business Message

if (bMsg.isBusinessMessage())
{
...
}

Creating and Adding Logic Plug-Ins

BEA WebLogic Collaborate Developer Guide 4-19

Step 7: Get Business Message Properties

Optionally, a logic plug-in can retrieve certain properties of the business message by
calling methods on the MessageEnvelope or Message instance. In the following
listing, the SentMsgCounter class gets the name of the conversation definition
associated with the conversation in which this message was sent, the name of the
sender of the business message, and the name of the recipient trading partner.

Listing 4-7 Retrieving Business Message Properties

conversation= bMsg.getConversationType().getName();
sender = mEnv.getSender();
tRecipient = mEnv.getRecipient();

Step 8: Process the Business Message as Needed

After a logic plug-in has obtained the necessary information from the business
message, it processes this information as needed. For example, the SentMsgCounter
plug-in updates the billing database with the message statistics it has collected.

Administrative Tasks

An administrator adds the logic plug-in definition to the repository by performing the
following tasks from the Logic Plug-Ins tab of the C-Hub Administration Console:

1. Specify the following logic plug-in properties:

� Name of the logic plug-in.

� Java class that implements the PlugIn interface. This class can call auxiliary
classes in the class library, but it must be the main point of entry for the logic
plug-in. In addition, the Java class file must reside in a location specified by
the WebLogic CLASSPATH.

� Parameter name/value pairs to use when initializing the Java class.

2. Assign a logic plug-in to a business protocol.

3. Specify the position of the logic plug-in in the chain.

4 Developing Logic Plug-Ins

4-20 BEA WebLogic Collaborate Developer Guide

For more information about administrative tasks, see Working with Logic Plug-Ins and
Using the C-Hub Administration Console in the BEA WebLogic Collaborate C-Hub
Administration Guide.

BEA WebLogic Collaborate Developer Guide 5-1

CHAPTER

5 Developing
Management
Applications

The following sections describe how to create WebLogic Collaborate management
applications that monitor run-time activity on c-hub and c-enabler nodes:

� About Management Applications

� Programming Steps for Management Applications

The WebLogic Collaborate C-Hub Administration Console and the C-Enabler
Administration Console tools provide run-time monitoring of c-hub and c-enabler
activities. In addition to these standard tools, developers can create custom
management applications that provide the same monitoring information that appears
in the administration console tools.

These custom management applications can provide read-only access to real-time
statistics, such as the number of messages exchanged in a particular conversation or
the number of messages received by the c-hub. In addition, these custom applications
can perform certain administrative tasks programmatically, such as shutting down a
particular c-space or the c-hub (in c-hub management applications) or leaving or
terminating a particular conversation (in c-enabler management applications).

Note: Configuring the c-hub repository requires the C-Hub Administration Console.
Custom management applications cannot perform configuration tasks.

5 Developing Management Applications

5-2 BEA WebLogic Collaborate Developer Guide

About Management Applications

The following sections describe management applications in WebLogic Collaborate:

� MBeans and the MBean Server

� C-Hub MBeans

� C-Enabler MBeans

� Configuration Requirements

MBeans and the MBean Server

WebLogic Collaborate provides developers with the application programming
interfaces (APIs) needed to create custom management applications that monitor
run-time activity on c-hub and c-enabler nodes. The C-Hub Administration Console
and the C-Enabler Administration Console tools also use these APIs to provide
real-time monitoring information.

These APIs consist of sets of Java Management Extensions (JMX) Managed Beans, or
MBeans, which are special JavaBeans with attributes and methods for management
operations. For more information about JMX, particularly the use of the JMX API
(including the MBean Server and MBeans), see the Java Management Extensions
Specification published by Sun Microsystems, Inc., at the following URL:

http://www.java.sun.com/products/JavaManagement/index.html

About Management Applications

BEA WebLogic Collaborate Developer Guide 5-3

MBean Packages

WebLogic Collaborate provides the following packages for creating custom
management applications.

For detailed information about these packages, see the Javadoc on the WebLogic
Collaborate documentation CD or in the classdocs subdirectory of your WebLogic
Collaborate installation.

Note: In this release, all MBeans are implemented as Standard MBeans, which is a
class that implements its own MBean interface.

MBean Server Implementation

WebLogic Collaborate provides an implementation of the JMX MBean Server
component that serves as a repository for MBeans.

� The c-hub MBeans are registered with the MBean Server running inside the
c-hub. When c-hub MBeans are created, WebLogic Collaborate populates their
attributes from settings in the c-hub repository.

� The c-enabler MBeans are registered with the MBean server running inside the
c-enabler. When c-enabler MBeans are created, WebLogic Collaborate populates
their attributes from settings in the c-enabler XML configuration file.

Table 5-1 Packages for WebLogic Collaborate Management Applications

Package Description

com.bea.b2b.management Provides the ManagementException class for
handling errors that occur when running a management
application.

com.bea.b2b.management.hub.runtime Provides c-hub MBeans used for creating management
applications that monitor run-time activity on c-hub
nodes.

com.bea.b2b.management.enabler.runtime Provides c-enabler MBeans used for creating
management applications that monitor run-time
activity on c-enabler nodes.

5 Developing Management Applications

5-4 BEA WebLogic Collaborate Developer Guide

At run time, WebLogic Collaborate updates the MBean attributes to reflect the state of
the running system.

Note: C-enablers that are co-located with the c-hub or with other c-enablers share the
same MBean Server instance. If a c-enabler runs in WebLogic Server without
a co-located hub, it will have its own local MBean server.

C-Hub MBeans

The com.bea.b2b.management.hub.runtime package contains the WebLogic
Collaborate c-hub MBeans, which are described in the following table.

Table 5-2 Managed Beans in the C-Hub MBeans

Label Description

HubMBean Represents a c-hub. Used for monitoring a c-hub at run
time.

CSpaceMBean Represents a c-space. Used for monitoring c-spaces on
the c-hub at run time.

GlobalConversationMBean Represents an instance of a global conversation
managed by the Conversation Manager on the c-hub.
Used for monitoring active conversations within a
c-space.

CollaboratorMBean Represents a trading partner in a c-space. Used for
monitoring trading partners in the c-space.

MessageMBean Represents a message in a conversation. Used for
monitoring messages in the c-space.

About Management Applications

BEA WebLogic Collaborate Developer Guide 5-5

C-Enabler MBeans

The com.bea.b2b.management.enabler.runtime package contains the
WebLogic Collaborate c-enabler MBeans, which are described in the following table.

Configuration Requirements

To use the WebLogic Collaborate MBeans, make sure that the following file is
included in the CLASSPATH:

lib\jmxri.jar

Note: Be sure to use the Javasoft implementation of this file.

Table 5-3 Managed Beans in the C-Enabler MBeans

Label Description

EnablerMBean Represents a c-enabler. Used for monitoring the
c-enabler at run time.

ConversationMBean Represents a conversation. Used for monitoring active
conversations in which the c-enabler is involved.

EnablerSessionMBean Represents a c-enabler session. Used for monitoring
active c-enabler sessions on the c-enabler.

MessageMBean Represents a message in a conversation. Used for
monitoring messages in the c-enabler.

5 Developing Management Applications

5-6 BEA WebLogic Collaborate Developer Guide

Programming Steps for Management
Applications

The steps for using MBeans to develop management applications for c-hubs and
c-enablers are nearly identical. To access WebLogic Collaborate MBeans using the
JMX API, a Java application must complete the following steps:

� Step 1: Import the Necessary Packages

� Step 2: Get a Reference to the MBean Server Object

� Step 3: Construct an ObjectName Object

� Step 4: Query the MBean Server

� Step 5: Read the Attributes of the MBean

� Step 6: Navigate Across MBeans

� Step 7: Handle Exceptions

The C-Hub and C-Enabler Administration Consoles use the JMX API and WebLogic
Collaborate MBeans to monitor running c-hubs and c-enablers, respectively.

Programming Steps for Management Applications

BEA WebLogic Collaborate Developer Guide 5-7

Step 1: Import the Necessary Packages

To work with MBeans, a management application must import the necessary
packages. At a minimum, the application must import the packages described in the
following table.

C-Hub Example

The code in the following listing imports the necessary packages for c-hub
management applications.

Listing 5-1 Importing Packages for C-Hub Management Applications

import javax.management.*;
import javax.naming.Context;
import javax.naming.InitialContext;
import com.bea.b2b.management.ManagementException;
import com.bea.b2b.management.hub.runtime.*;

Table 5-4 Packages that Must Be Imported

Label Description

javax.management.*; Required for JMX MBeans, as mandated in the
Java Management Extensions Specification
published by Sun Microsystems, Inc.

javax.naming.*; Required for retrieving the MBean server object
using JNDI lookup. Only the following are
required:

� javax.naming.Context

� javax.naming.InitialContext

com.bea.b2b.management.ManagementException Required for handling exceptions in all
management applications.

com.bea.b2b.management.hub.runtime.* Required for c-hub management applications.

com.bea.b2b.management.enabler.runtime.* Required for c-enabler management
applications.

5 Developing Management Applications

5-8 BEA WebLogic Collaborate Developer Guide

C-Enabler Example

The code in the following listing imports the necessary packages for c-enabler
management applications.

Listing 5-2 Importing Packages for C-Enabler Management Applications

import javax.management.*;
import javax.naming.Context;
import javax.naming.InitialContext;
import com.bea.b2b.management.ManagementException;
import com.bea.b2b.management.enabler.runtime*;

Step 2: Get a Reference to the MBean Server Object

To get a reference the MBean server object, a management application calls the
findMBeanServer method on the MBeanServerFactory object, as shown in the
following listing.

Listing 5-3 Getting a Reference to the MBean Server Object

MBeanServer server = null;
ArrayList mbsList = MBeanServerFactory.findMBeanServer("WLC");
if (mbsList.size() > 0) {

server = (MBeanServer)mbsList.get(0);
}

Step 3: Construct an ObjectName Object

MBeans are uniquely identified by object names inside the MBean server.
The ObjectName class represents an object name.

Programming Steps for Management Applications

BEA WebLogic Collaborate Developer Guide 5-9

Object Names

An object name consists of two parts:

� Domain Name. For all MBeans in WebLogic Collaborate, the domain name is
the same:

WLC

� Key property list. Enables you to assign unique names to the MBeans of a
given domain. The WebLogic Collaborate MBeans have the following key
properties:

Table 5-5 Key Properties

Property Description

type Name of the MBean interface.

For c-hub management applications, one of the
following values:

� HubMBean

� CSpaceMBean

� CollaboratorMBean

� GlobalConversationMBean

� MessageMBean

For c-enabler management applications, one of the
following values:

� EnablerMBean

� EnablerSessionMBean

� ConversationMBean

� MessageMBean

name Unique identifier of the MBean.

5 Developing Management Applications

5-10 BEA WebLogic Collaborate Developer Guide

C-Hub Example

For example, a CSpaceMBean could have the following object name:

WLC:type=CSpaceMBean,*

C-Enabler Example

Similarly, an EnablerMBean could have either of the following object names:

WLC:type=EnablerMBean,*

WLC:type=EnablerMBean,subsystem=enabler,*

subsystem Unique identifier of the subsystem.

For c-hubs, use the following format:

hub.<hubName>

For c-enablers in conjunction with EnablerMBeans
and MessageMBeans, use the following format:

enabler.

For c-enablers in conjunction with
EnablerSessionMBeans and
ConversationMBeans, use the following format:

enabler.<enablerName>

The enablerName extension uniquely identifies the
specific c-enabler in the conversation. This is needed
because a c-enabler can participate in the same
conversation in two different roles using two different
c-enabler sessions.

Table 5-5 Key Properties (Continued)

Property Description

Programming Steps for Management Applications

BEA WebLogic Collaborate Developer Guide 5-11

Object Name Expressions

For MBeans, object names can be also used for query operations that use object name
expressions. The MBean server uses pattern matching on the object names of the
registered MBeans. The matching syntax is consistent with file globing, which is
described in the Java Management Extensions Specification published by Sun
Microsystems, Inc.:

� An asterisk (*) matches any character sequence.

� A question mark (?) matches a single character.

C-Hub Example

For example, the following object name expression will match the object names of all
registered CSpaceMBeans.

WLC:type=CSpaceMBean,name=*

C-Enabler Example

Similarly, the following object name expression will match the object names of all
registered EnablerMBeans.

WLC:type=EnablerMBean,name=*

Step 4: Query the MBean Server

After constructing an object name expression, an application queries the MBean server
by passing in the ObjectName object corresponding to the expression. To retrieve the
set of registered MBeans whose names satisfy an object name expression, use the
following method:

javax.management.MBeanServer.queryNames()

The MBean server returns a set of objects that satisfy the query criteria. Note that these
are ObjectName objects that represent MBeans, not direct references to the MBeans
themselves.

5 Developing Management Applications

5-12 BEA WebLogic Collaborate Developer Guide

C-Hub Example

The code in the following listing retrieves a set of ObjectName objects that represent
the CSpaceMBeans associated with registered c-spaces on the c-hub.

Listing 5-4 Retrieving Registered CSpaceMBeans

if (server != null) {
ObjectName queryObjName = new ObjectName("WLC:type=HubMBean,*");
// beans is a set of ObjectName objects
beans= server.queryNames(queryObjName, null);

}

if (null == beans)
noCsps = true;

else {
Iterator it = null;
it = beans.iterator();
csps = new ArrayList();
while (it != null && it.hasNext()) {
ObjectName objname = (ObjectName)it.next();
hubObj = objname.toString();
cspbeans = (CSpaceMBean[])server.getAttribute(objname , "CSpaces");
for (int c=0; c < cspbeans.length; c++)
csps.add(cspbeans[c]);

}

C-Enabler Code Example

The code in the following listing retrieves a set of ObjectName objects that represent
active EnablerSessionMBeans on the c-enabler.

Listing 5-5 Retrieving Registered EnablerSessionMBeans

if (server != null)
{
ObjectName queryObjName = new ObjectName("WLC: subsystem=enabler." + enablerName

+ ",name=" + sessionName + ",type=EnablerSessionMBean");
// beans is a set of ObjectName objects
beans= server.queryNames(queryObjName, null);

}

Programming Steps for Management Applications

BEA WebLogic Collaborate Developer Guide 5-13

Iterator it = beans.iterator();
// Iterate through the EnablerSessionMBeans
while (it.hasNext()){

ObjectName objName = (ObjectName)it.next();
// do something

}

Step 5: Read the Attributes of the MBean

Use the ObjectName instance, obtained in the previous step, to access other MBeans,
provided that the ObjectName has one or more attributes whose type is MBean. To
read the attributes of an MBean, use the following method, passing the ObjectName
object as a parameter:

javax.management.MBeanServer.getAttribute()

Once you call the getAttributemethod by passing in the ObjectName object for the
first MBean, you can get references directly to other MBean instances.

C-Hub Example

The code in the following listing retrieves a set of attributes associated with a global
conversation.

Listing 5-6 Retrieving Conversation Attributes

while ((count < convsPerPage) && (idx < totalConvs)) {
ObjectName objName = (ObjectName)convs.get(idx);
String convId = (String) server.getAttribute(objName, "ConversationId");
CSpaceMBean cspace = (CSpaceMBean) server.getAttribute(objName, "CSpace");
Protocol protocol = (Protocol)server.getAttribute(objName, "Protocol");
Date startTime = (Date) server.getAttribute(objName, "ActiveSince");
Date lastMessage = (Date) server.getAttribute(objName, "LastMessageTime");
String lastSender = (String) server.getAttribute(objName, "LastSender");
CollaboratorMBean[] parts = (CollaboratorMBean[])

server.getAttribute(objName, "ActiveCollaborators");
String checkBoxSuccess = "checkBoxSuccess" + idx;
String checkBoxFailure = "checkBoxFailure" + idx;
String regConvId = convId.replace('*','$');
regConvId = regConvId.replace(':','$');

5 Developing Management Applications

5-14 BEA WebLogic Collaborate Developer Guide

regConvId = regConvId.replace('?','$');
regConvId = regConvId.replace('=','$');
String checkBoxValue = "WLC:subsystem=hub,name=" + regConvId + ",cspacename="

+ cspace.getName() + ",type=GlobalConversationMBean" ;

In this example, server is a reference to the MBean server and objName is a reference
to the ObjectName object representing the GlobalConversationMBean.

The application can then iterate through and process the set of
GlobalConversationMBean objects as needed. Because it now has direct references
to the MBean, the application can use methods on the MBean to retrieve attributes,
such as run-time monitoring information.

C-Enabler Example

The code in the following listing retrieves a set of attributes associated with a c-enabler
session.

Listing 5-7 Retrieving C-Enabler Session Attributes

Iterator it = beans.iterator();
while (it.hasNext()){

ObjectName obj = (ObjectName)it.next();
hubUrl = (String)server.getAttribute(obj, "HubUrl");
hubProxyHost = (String)server.getAttribute(obj, "ProxyHost");
hubProxyPort = (String)server.getAttribute(obj, "ProxyPort");
hubUser = (String)server.getAttribute(obj, "HubUser");
hubCertField = (String)server.getAttribute(obj, "CertificateFieldName");
hubCertValue = (String)server.getAttribute(obj, "CertificateFieldValue");
hubServerCertField = (String)server.getAttribute(obj,

"ServerCertificateFieldName");
hubServerCertValue = (String)server.getAttribute(obj,

"ServerCertificateFieldValue");
enablerUrl = (String)server.getAttribute(obj, "EnablerUrl");
cSpaceName = (String)server.getAttribute(obj, "CSpaceName");
tradingPartner = (String)server.getAttribute(obj, "TradingPartnerName");
certLocation = (String)server.getAttribute(obj, "CertificateLocation");
privateKeyLoc = (String)server.getAttribute(obj, "PrivateKeyLocation");

}

Programming Steps for Management Applications

BEA WebLogic Collaborate Developer Guide 5-15

In this example, server is a reference to the MBean server and objName is a reference
to the ObjectName object representing the EnablerSessionMBean.

The application can then iterate through and process the set of
EnablerSessionMBean objects as needed. Because it now has direct references to the
MBean, the application can use methods on the MBean to retrieve attributes, such as
run-time monitoring information.

Step 6: Navigate Across MBeans

MBeans that are logically related have accessor methods to retrieve references to each
other. These methods are strongly typed and return an exact MBean type. For example,
the CSpaceMBean.getHub() method returns a HubMBean that represents the c-hub
associated with that c-space. Similarly, the EnablerSessionMBean.getEnabler()
method returns a EnablerMBean that represents the associated c-enabler.

For detailed information about these methods, see the Javadoc on the WebLogic
Collaborate documentation CD or in the classdocs subdirectory of your WebLogic
Collaborate installation.

Step 7: Handle Exceptions

If an error occurs while running a WebLogic Collaborate management application, a
com.bea.b2b.management.ManagementException is thrown. Management
applications can catch this exception and process it as appropriate, as shown in the
following listing.

Listing 5-8 Handling ManagementExceptions in Management Applications

catch (ManagementException me){
String msg = "Exception in Management Application: " + me;
debug(msg);
throw new Exception(msg);

5 Developing Management Applications

5-16 BEA WebLogic Collaborate Developer Guide

BEA WebLogic Collaborate Developer Guide 6-1

CHAPTER

6 Writing to the Log

The following sections describe how to write messages to the log in WebLogic
Collaborate applications:

� About the Log

� Writing Messages to the Log

About the Log

WebLogic Collaborate applications can write messages (errors, warnings, and
information) to a log file for subsequent examination. WebLogic Collaborate provides
a Logging API that applications can use to write messages to the log.

Log Files

Logged messages are written to the following locations:

� WebLogic Collaborate system log file (wlc.log), the C-Hub Administration
Console, and the C-Enabler Administration Console

� WebLogic Server log file (weblogic.log) and the WebLogic Server Console (if
it is running)

The wlc.log system log file is created automatically when a c-hub or c-enabler starts
up. The size of this file is limited to 1MB. When the file size is exceeded, the file is
renamed with a numeric suffix (such as wlc1.log) and a new empty file is created.

6 Writing to the Log

6-2 BEA WebLogic Collaborate Developer Guide

Logging API

The com.bea.eci.logging package contains the WebLogic Collaborate logging
API, which consists of the classes described in the following table.

For detailed information about these classes, see the Javadoc on the WebLogic
Collaborate documentation CD or in the classdocs subdirectory of your WebLogic
Collaborate installation.

Severity Levels

The Log class defines the severity levels described in the following table.

Table 6-1 Logging API

Name Description

Log Defines severity levels for log messages.

UserLog Represents a user log. Provides access to the log for
users. The user log is defined as a User log output
stream (with a <user> tag) in the system log.

Table 6-2 Severity Levels Defined in Log Class

Level Severity Description

1 FATAL Fatal error has occurred. A system component failed abnormally
due to the exception that was detected.

2 ERROR User level error has occurred. A critical error occurred that
impacts system stability.

3 WARNING Warning message. A minor exception occurred that does not
impact system stability.

4 INFO Informational message. Informational only. Not used in
exception conditions. An example would be logging the
successful startup of the c-hub.

Writing Messages to the Log

BEA WebLogic Collaborate Developer Guide 6-3

Writing Messages to the Log

WebLogic Collaborate applications can write messages to the user log using the log
method in the UserLog class. The log method has two versions: one version specifies
the message text with an INFO severity level, and the other version specifies the
message text and a particular severity level (FATAL, ERROR, or WARNING). In addition,
applications have print stream access to the log via userlog.out.

Importing the Logging Package

To write to the log, WebLogic Collaborate applications must import the
com.bea.eci.logging package, as shown in the following listing.

Listing 6-1 Importing the com.bea.eci.logging Package

import com.bea.eci.logging.*;

Writing a Log Message with an INFO Severity Level

To write a log message with an INFO severity level, an application can use the
following version of the log method:

static void log(java.lang.String userMsg)

6 Writing to the Log

6-4 BEA WebLogic Collaborate Developer Guide

The following listing shows writing a log message with an INFO severity level:

Listing 6-2 Writing an INFO Message to the Log

private static void debug(String msg){
if (DEBUG)
UserLog.log("***Partner1Servlet: "+msg);

}

Writing a Message With a Specific Severity Level

To write a log message with a specific severity level, an application uses the following
version of the log method:

static void log(int severity, java.lang.String userMsg)

The following listing shows writing a log message with a WARNING severity level:

Listing 6-3 Writing a WARNING Message to the Log

private static void debug(String msg){
if (DEBUG)

UserLog.log(log.WARNING, msg);
}

try {
}catch(Exception e){

debug("Partner1 exception errors");
e.printStackTrace(UserLog.out);

}

BEA WebLogic Collaborate Developer Guide I-1

Index

A
about conversations 2-6
action

publish business document action 2-60
ACTIVE state 3-13
APIs

C-Enabler API 3-5
attachments

creating 3-32

B
Business Message Receive events 2-70
business messages

about business messages 2-6, 2-41, 3-6,
4-7

creating 2-53, 3-30
exchanging 2-42
receiving 2-66, 2-72, 3-52
sending 3-46
WebLogic Process Integrator variables

2-43
business operations 2-51

C
c-enabler applications

about c-enabler applications 3-5
application steps 3-22
architectural overview 3-3
creating attachments 3-32

creating business messages 3-30
creating XML documents 3-30
creating XOCP Business Messages 3-32
initiating conversations 3-16
joining a c-space 3-14
key tasks 3-14
leaving conversations 3-17
registering for a role in a conversation

3-15
run-time information flow 3-19
shutting down c-enabler sessions and

conversations 3-17
specifying a trading partner 3-33
specifying recipients 3-33
specifying XPath expressions 3-34
terminating conversations 3-17

C-Enabler Class Library
enlisting trading partners 3-16
implementing interfaces 3-24

C-Enabler Class Library, about 3-5
c-enabler MBeans 5-5
c-enabler sessions

linking to workflow templates 2-24
shutting down 3-17

c-enablers
Enabler API 3-5

chains
about chains 4-4

c-hub MBeans 5-4
CollaboratorMBean 5-4
com.bea.b2b.enabler package 3-5

I-2 BEA WebLogic Collaborate Developer Guide

com.bea.b2b.management.enabler.runtime
package 5-5

com.bea.b2b.management.hub.runtime
package 5-4

com.bea.eci.logging package 6-2
confirmation of message delivery 3-40
CONNECTED state 3-13
content modification 4-4
conversation coordinators 3-11
conversation definitions

about conversation definitions 2-6, 3-5
conversation initiators 3-10

about conversation initiators 2-7
conversation participants 3-10

about conversation participants 2-7
ConversationMBean 5-5
conversations 2-6

about conversations 3-5
initiating 3-16
initiators 3-10
leaving 3-17
linking

workflow template definitions to
2-19

participants 3-10
participating in 3-16
registering for a role in 3-15
shutting down 3-17
terminating 3-17

correlation ID 3-45
creating

attachments 3-32
business messages 2-53
payload parts 3-30
XML documents 3-30
XOCP business messages 3-32

creating a workflow instance 2-83
CSpaceMBean 5-4
c-spaces

joining 3-14
leaving 3-17

customer support contact information xiii

D
deferred synchronous message delivery 3-46
delivery attempts 3-44
delivery status, tracking 3-49
DISCONNECTED state 3-13
domain name 5-9
DROPPED OUT state 3-13
durability 3-41

E
EnablerMBean 5-5
EnablerSessionMBean 5-5
enlisting trading partners 3-16
error levels 6-2
examination 4-4
exception processing model 4-15
exceptions

management applications 5-15
exporting workflow template definitions

2-15
extended properties 3-36

G
global conversation coordinator 3-12
GlobalConversationMBean 5-4

H
HubMBean 5-4

I
implementing interfaces in the C-Enabler

Class Library
3-24

importing workflow template definitions
2-16

BEA WebLogic Collaborate Developer Guide I-3

initiating conversations 3-16
initiators 2-7
input variables, defining 2-38

J
joining c-spaces 3-14

K
key property list 5-9

L
leaving

conversations 3-17
c-spaces 3-17

linking
c-enabler session names to workflow

template definitions 2-24
linking workflow template definitions to

conversations 2-19
local conversation coordinators 3-12
log

about the log 6-1
log files 6-1
Logging API 6-2
severity levels 6-2

logic plug-in 4-8
logic plug-ins

about logic plug-ins 4-2
administrative tasks 4-19
application programming interface

(API) 4-9
architecture 4-3
business message from message

envelope 4-18
business message properties 4-19
developer tasks 4-13
exception processing model 4-15
importing packages 4-14

PlugIn Interface, implementing 4-15
process method 4-17
programming steps 4-13
RN-Filter 4-9
RN-Router 4-8
RN-Router-Enqueue 4-9
rules and guidelines 4-11
system logic plug-ins 4-8
types of processing tasks 4-4
validating business message 4-18
XOCP-Filter 4-8
XOCP-Router 4-8
XOCP-Router-Enqueue 4-8

M
management applications

about management applications 5-2
c-enabler MBeans 5-5
c-hub MBeans 5-4
configuration requirements 5-5
constructing ObjectName objects 5-8
getting reference to MBean server object

5-8
handling exceptions 5-15
importing packages 5-7
MBeans and MBean server 5-2
navigating across MBeans 5-15
programming steps 5-6
querying MBean server 5-11
reading attributes of MBeans 5-13

Manipulate Business Message action 2-44
MBean server

about the MBean server 5-2
getting a reference to 5-8
implementation 5-3
querying 5-11

MBeans
about MBeans 5-2
c-enabler

ConversationMBean 5-5

I-4 BEA WebLogic Collaborate Developer Guide

EnablerMBean 5-5
EnablerSessionMBean 5-5
MessageMBean 5-5

c-enabler MBeans 5-5
c-hub

CollaboratorMBean 5-4
CSpaceMBean 5-4
GlobalConversationMBean 5-4
HubMBean 5-4
MessageMBean 5-4

c-hub MBeans 5-4
navigating across 5-15
packages 5-3
reading attributes of 5-13

message delivery
deferred synchronous 3-46
synchronous 3-46

message delivery confirmation 3-40
message durability 3-41
message envelopes

about message envelopes 3-6, 4-7
information flow 3-9

message tokens
about message tokens 3-48
workflow applications 2-63

message tracking locations 3-50
MessageMBean 5-4, 5-5
messages

timeouts 3-44

O
object names

constructing 5-8
domain name 5-9
key property list 5-9
object name expressions 5-11

ObjectName objects 5-8
opening workflow template definitions 2-17
output variables

defining 2-39

P
packages

com.bea.b2b.enabler 3-5
com.bea.b2b.management.enabler.runti

me 5-5
com.bea.b2b.management.hub.runtime

5-4
com.com.bea.eci.logging 6-2

participants 2-7
participating in conversations 3-16
payload parts

adding 3-32
creating 3-30

persistence 3-41
printing product documentation xii
publish business document action 2-60

Q
Quality of Service

automatic features 3-37
correlation ID 3-45
message delivery confirmation 3-40
message durability 3-41
message timeouts 3-44
options 3-38
QualityOfService class 3-38
retry attempts 3-44
Send Business Message action 2-62
settings 3-38
values 3-38
workflow template definitions 2-20

R
receiving

business messages 2-72, 3-52
recipients

specifying 3-33
trading partner 3-33
XPath expressions 3-34

BEA WebLogic Collaborate Developer Guide I-5

REGISTERED state 3-13
registering

for a role in a conversation 3-15
related information xiii
retry attempts 3-44
RN-Filter logic plug-in 4-9
RN-Router logic plug-in 4-8
RN-Router-Enqueue logic plug-in 4-9
route modification 4-4

S
secure messaging 3-13
Secure Sockets Layer (SSL) 3-13
Send Business Message actions 2-57

Quality of Service 2-62
sending

business messages 3-46
severity levels 6-2
shutting down c-enabler sessions 3-17
Start 2-28
start actions, in workflow template

definitions 2-26
starting a workflow instance 2-84
states, trading partners 3-13
synchronous message delivery 3-46

T
terminating conversations 3-17
termination

workflow template definitions 2-31
timeouts

message timeouts 3-44
tracking

delivery status 3-49
trading partners

enlisting 3-16
states 3-13

V
variables in workflow template definitions

2-35

W
WebLogic Collaborate

creating a workflow instance 2-83
publish business document action 2-60
starting a workflow instance 2-84

WebLogic Process Integrator
administrative tasks 2-10
architectural overview 2-3
components 2-4
design tasks 2-11
documentation 2-2
integration API 2-76
integration tasks 2-10
Manipulate Business Message action

2-44
message tokens 2-63
programming tasks 2-13
Send Business Message actions 2-57
variable types 2-36
variables 2-35
version information 2-2
workflow templates from other versions

2-15
workflow applications

Business Message Receive events 2-70
receiving business messages 2-66
workflow c-enabler sessions 2-77

workflow c-enabler sessions 2-77
workflow instance

creating 2-83
starting 2-84

workflow template definitions
about workflow template definitions 2-5
business messages

defining 2-42
conversation termination 2-31

I-6 BEA WebLogic Collaborate Developer Guide

exporting 2-15
importing 2-16
input variables 2-38
linking c-enabler session names 2-24
linking to conversations 2-19
opening 2-17
output variables 2-39
Quality of Service 2-20
start actions 2-26
variables 2-35

workflow templates
about workflow templates 2-5

workflows
about workflows 2-5

writing messages to log
importing packages 6-3
INFO severity level 6-3
other severity levels 6-4

X
XML documents, creating 3-30
XOCP business messages

components of 3-8
diagram of 3-7

XOCP-Filter logic plug-in 4-8
XOCP-Router logic plug-in 4-8
XOCP-Router-Enqueue 4-8
XPath expressions 3-34

	About This Document
	What You Need to Know
	How to Print this Document
	Documentation Conventions

	1 Introduction
	Messaging Applications
	Management Applications
	Logic Plug-Ins

	2 Using Workflows to Exchange Business Messages
	About Using Workflows
	About This WebLogic Process Integrator Version
	Architectural Overview
	Key Concepts
	Run-Time Prerequisites
	Summary of Workflow Integration Tasks

	Designing Workflows for Exchanging Business Messages
	Using Workflow Templates Created in Other WebLogic Process Integrator Versions
	Defining Conversation Properties
	Defining Start Actions
	Defining Conversation Termination
	Defining WebLogic Process Integrator Variables for Workflows

	Working with Business Messages
	About Business Messages
	Summary of Prerequisite Tasks for Exchanging Business Messages
	Defining Variables and Manipulating Business Messages
	Creating and Defining Messages to Send
	Defining the Workflow to Receive Business Messages

	Developing Applications That Start Conversation Initiator Workflows
	WebLogic Process Integrator Integration API
	Creating Workflow C-Enabler Sessions
	Programming Steps for Accessing Conversation Initiator Workflows

	3 Using XOCP C-Enabler Applications to Exchange Business Messages
	About XOCP C-Enabler Applications
	Architectural Overview
	Key Concepts
	Key Tasks for C-Enabler Applications
	Run-Time Information Flow

	Programming Steps for C-Enabler Applications
	Step 1: Import Packages
	Step 2: Implement the ConversationHandler Interface
	Step 3: Create a C-Enabler Session
	Step 4: Register a Conversation Handler
	Step 5: Initiate or Participate in a Conversation
	Step 6: Exchange Business Messages
	Step 7: End the Conversation
	Step 8: Shut Down the C-Enabler Session

	Sending XOCP Business Messages
	Step 1: Create the Business Message
	Step 2: Specify the Recipients of the Business Message
	Step 3: Specify the Quality of Service for Message Delivery
	Step 4: Send the XOCP Business Message
	Step 5: Check the Delivery Status of the Business Message

	Receiving XOCP Business Messages
	About Receiving XOCP Business Messages
	Receiving an XOCP Business Message

	4 Developing Logic Plug-Ins
	About Logic Plug-Ins
	What Are Logic Plug-Ins?
	Logic Plug-In Architecture
	Logic Plug-In Processing Tasks
	Chains
	Business Messages and Message Envelopes
	System and Custom Logic Plug-Ins

	Logic Plug-In API
	Rules and Guidelines for Logic Plug-Ins
	Creating and Adding Logic Plug-Ins
	Programming Steps for Logic Plug-Ins
	Administrative Tasks

	5 Developing Management Applications
	About Management Applications
	MBeans and the MBean Server
	C-Hub MBeans
	C-Enabler MBeans
	Configuration Requirements

	Programming Steps for Management Applications
	Step 1: Import the Necessary Packages
	Step 2: Get a Reference to the MBean Server Object
	Step 3: Construct an ObjectName Object
	Step 4: Query the MBean Server
	Step 5: Read the Attributes of the MBean
	Step 6: Navigate Across MBeans
	Step 7: Handle Exceptions

	6 Writing to the Log
	About the Log
	Log Files
	Logging API
	Severity Levels

	Writing Messages to the Log
	Importing the Logging Package
	Writing a Log Message with an INFO Severity Level
	Writing a Message With a Specific Severity Level

	Index

