
BEAExtension SDK
for BEA
WebLogic
Network
Gatekeeper™®

Developer Guide

Version 2.1
Revised: December 16, 2005

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform,
BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Network Gatekeeper, BEA WebLogic
Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA WebLogic SIP
Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Extension SDK for WebLogic Network Gatekeeper i

Contents

Introduction and Roadmap
Document Scope and Audience . 1-1

Prerequisites . 1-2

Guide to this Document . 1-2

Terminology. 1-3

Related Documentation . 1-6

WebLogic Network Gatekeeper documentation . 1-6

Actors
Extending WebLogic Network Gatekeeper . 2-1

Network plug-in . 2-3

Traffic interfaces . 2-3

Plug-in states. 2-5

Suspending a plug-in . 2-6

Switching plug-in . 2-7

Best practises for the plug-in interfaces . 2-7

Help classes for network plug-ins. 2-8

Plug-in manager . 2-10

Accessing the Plug-in Manager . 2-10

Plug-in manager interfaces . 2-11

Use cases. 2-14

SC manager . 2-17

ii Extension SDK for WebLogic Network Gatekeeper

Accessing the SC Manager . 2-17

Interfaces . 2-18

Use cases . 2-21

Service capability . 2-22

SESPA SC. 2-22

Web Services interface implementation . 2-23

Interacting with the SLEE and the SLEE Utility Services
Basic SLEE interfaces. 3-2

ServiceAccessible . 3-2

ServiceDeployable . 3-2

ServiceDeployableExt . 3-3

ServiceManageable . 3-3

ServiceContext . 3-3

SLEEContext . 3-4

SLEE utility interfaces . 3-5

Services fetched from the ServiceContext . 3-5

PolicyManager . 3-7

Services fetched from the SLEEContext . 3-9

SLEE utility classes. 3-14

Alarm . 3-14

LoadEvent . 3-14

SLEECyclicIDManager . 3-14

SLEEDBTable . 3-14

SLEECyclicIDManager . 3-15

SLEEIDManager . 3-15

SLEEGlobalCounterManager . 3-15

SLEEGlobalCounter . 3-15

Extension SDK for WebLogic Network Gatekeeper iii

SupervisedList . 3-15

SupervisedListListener . 3-16

OAM . 3-16

Implementing OAM access control . 3-18

Using the database . 3-18

Using the alarm service . 3-24

Using the event service . 3-27

Using the charging service. 3-29

Using the time service . 3-33

Using the trace service. 3-39

General sequence diagrams
Asynchronous application-initiated. 4-1

Synchronous application-initiated . 4-3

Network-triggered . 4-6

Registering the listener . 4-7

Handling incoming events . 4-8

Frameworks
Interacting with the SLEE . 5-1

Web Services framework. 5-2

Retrieving the login ticket from the SOAP Header . 5-2

Interworking with the stateless adapters (SLEE common loader) 5-3

Stateless adapter framework . 5-4

Interworking with a WESPA SC (SLEE common loader) . 5-4

Getting an ESPA session based on the loginticket . 5-7

Service capability framework . 5-9

Plug-in framework . 5-9

iv Extension SDK for WebLogic Network Gatekeeper

High availability
Introduction . 6-1

Plug-in Manager and SC Manager . 6-2

SC Manager. 6-2

Plug-ins using SC Manager . 6-2

Incoming traffic . 6-3

Outgoing traffic . 6-4

SESPA and ESPA . 6-4

Plug-ins that executes as a SLEE service and a web
application

Introduction . 7-1

Interaction between the web application part of a plug-in and the SLEE service part of a

plug-in . 7-2

Interface class registration . 7-2

Incoming requests . 7-3

Outgoing requests . 7-4

Call Control
Network plug-in . 8-1

Use cases . 8-7

Application-initiated two-party call . 8-7

Network-triggered call . 8-9

Call user interaction
Network plug-in . 9-1

Call user interaction interfaces. 9-1

UserInteractionCallResource . 9-3

IrUICallManager -deprecated- . 9-4

Extension SDK for WebLogic Network Gatekeeper v

IrUICallManagerExt. 9-4

IrUI . 9-4

IrUICall. 9-4

IrAppUI . 9-5

IrAppUICall . 9-5

Use cases for Call user interaction. 9-6

Application-initiated usage of a Call user interaction plug-in 9-6

SMS and MMS messaging
Network plug-in. 10-1

SMS Interfaces . 10-1

MMS Interfaces . 10-5

Use cases for SMS. 10-10

ESPA Service Capability registers SC . 10-10

Application-initiated send message . 10-11

Network-triggered messages . 10-12

Content based charging
Network plug-in. 11-1

Content based charging interfaces . 11-1

ChargingResource . 11-3

IrChargingSession . 11-3

IrAppChargingSession . 11-4

Use cases for Content based charging . 11-5

Application-initiated usage of a Content based charging plug-in 11-6

Subscriber profile
Network plug-in. 12-1

Subscriber profile interfaces. 12-1

vi Extension SDK for WebLogic Network Gatekeeper

IrSubscriberProfileResource . 12-3

IrSubscriberProfile . 12-3

IrSubscriberProfileSubscriptionExt . 12-4

IrAppSubscriberProfile . 12-4

IrAppSubscriberProfileSubscriptionExt . 12-5

Use cases for Subscriber profile . 12-5

Application-initiated usage of a Subscriber profile plug-in. 12-5

User Location
Network plug-in . 13-1

User location interfaces . 13-1

Use cases for user location . 13-5

Application-initiated user location. 13-5

Network-triggered user location request . 13-6

Policy rules and Policy Utilities
Mapping policy request data to variables in a Policy Rule . 14-1

Adding a rule to Policy Decision Point . 14-3

Getting data defined in the PolicyRequest. 14-4

Extending Service Level Agreements . 14-7

Update SLA Schema . 14-8

Load new SLA schema into the Policy Service. 14-8

Update and load rule files . 14-8

Update SLAs . 14-10

Load new SLAs . 14-10

Using a Policy Utility . 14-10

Defining a Policy Utility class . 14-11

Example Policy Utility . 14-12

Extension SDK for WebLogic Network Gatekeeper vii

Using the Extension SDK templates
Prerequisites. 15-2

Installing the Extension SDK . 15-3

Installation prerequisites. 15-3

Installation procedure . 15-3

About WESPA, SESPA, ESPA service capability, and network plug-in software modules .

15-4

About the flow descriptions. 15-6

Traffic flow for application initiated requests . 15-7

WESPA service capability . 15-7

SESPA service capability module . 15-7

ESPA service capability module. 15-8

Network protocol plug-in SLEE service part . 15-9

Network protocol plug-in Web Services part . 15-9

Registration flow for network triggered requests . 15-9

WESPA service capability . 15-9

SESPA service capability module . 15-10

ESPA service capability module. 15-10

Network protocol plug-in . 15-11

Traffic flow for network triggered requests. 15-12

Web Services part of the network protocol plug-in . 15-12

SLEE Service part of the network protocol plug-in . 15-12

ESPA service capability module. 15-13

SESPA service capability module . 15-14

WESPA service capability module. 15-15

Directory structure for the templates . 15-15

Introduction to the network plug-in. 15-19

viii Extension SDK for WebLogic Network Gatekeeper

Files for the SLEE service part of the network plug-in interfaces 15-19

my_plugin_if.idl. 15-19

MyPluginOAM.idl . 15-21

MyPluginContext.java . 15-21

MyPluginSLEEService.java . 15-21

MyPlugin_impl.java. 15-22

MyMethodReqTask.java . 15-23

DeliverNetworkTriggeredEventTask.java . 15-23

MyPluginNetworkTriggeredEventResultListenerImpl.java 15-23

MyWPluginNetworkTriggeredEventListenerImpl.java. 15-23

MyPluginOAM_impl.java . 15-24

MyWPluginNetworkTriggeredEventResultListenerImpl.java 15-25

MyWPluginServlet.java. 15-25

NetworkInterfaceImpl.java . 15-25

NetworkTriggeredEventListenerSoapBindingImpl.java . 15-25

Introduction to the ESPA service capability . 15-25

Files for the ESPA service capability interfaces . 15-26

MyServiceCapability_if.idl . 15-26

Files for the ESPA service capability implementation . 15-27

MyServiceCapabilityOAM.idl . 15-27

ChargingHelper.java. 15-27

DeliverNetworkTriggeredEventTask.java . 15-27

MyPluginNetworkTriggeredEventListener_impl.java. 15-27

MyServiceCapabilityNetworkTriggeredEventResultListenerImpl.java 15-27

MyPluginListener_impl.java . 15-28

MyServiceCapabilityOAM_impl.java . 15-28

MyServiceCapabilityPersistentStorage.java . 15-28

MyServiceCapabilityService_impl.java . 15-28

Extension SDK for WebLogic Network Gatekeeper ix

NotificationHandler.java . 15-28

MyServiceCapabilityManager_impl.java. 15-29

MyServiceCapabilityContext.java . 15-29

Policy implementation concept . 15-30

Files for the Policy utility . 15-31

MyPolicyUtility.java . 15-31

MyPolicyUtilityOAM_impl.java . 15-31

MyPolicyUtilityException.java . 15-31

Introduction to the SESPA module . 15-31

Files for the SESPA module interface. 15-32

MyServiceCapability.java and MyESPAServiceCapabilityListener.java 15-32

MyServiceCapabilityNetworkTriggeredEventListener.java 15-32

Files for the SESPA module implementation . 15-33

MyServiceCapabilityOAM.idl . 15-33

MyServiceCapabilityOAM.idl . 15-33

MyESPAServiceCapabilityListener_impl.java . 15-33

MyESPAServiceCapabilityNetworkTriggeredEventListener_impl.java 15-33

MyServiceCapabilityEventHelper.java . 15-34

MyServiceCapabilityService.java . 15-34

MyServiceCapabilityOAM_impl.java . 15-34

MyServiceCapabilityPersistentStorage.java . 15-34

MyServiceCapabilityContext.java . 15-35

MyServiceCapabilityImpl.java. 15-35

NotificationInfo.java and NotificationInfoId.java . 15-35

Introduction to the WESPA module . 15-35

Files for the WESPA module interface . 15-35

MyServiceCapability.java and MyServiceCapabilityListener.java 15-35

MyServiceCapabilityException.java . 15-36

x Extension SDK for WebLogic Network Gatekeeper

MyServiceCapabilityNetworkTriggeredEventListener.java 15-36

Files for the WESPA module implementation . 15-36

MyServiceCapabilityListenerImpl.java . 15-36

MyServiceCapabilityNetworkTriggeredEventListenerImpl.java 15-37

MyServiceCapabilitySoapBindingImpl.java . 15-37

Introduction to the test application . 15-37

Files for the test application . 15-37

LoginHelper.java and LoginInfo.java . 15-37

MyScHelper.java . 15-37

MyServiceCapabilityListenerImpl.java . 15-37

TestClient.java . 15-38

TraceLogService_impl.java and TraceLogService.java . 15-38

WespaHelper.java. 15-38

Introduction to the network simulator. 15-38

Files for the network simulator application. 15-38

NetworkTriggeredInterfaceHelper.java . 15-38

NetworkInterfaceImpl.java . 15-38

TestClient.java . 15-39

TraceLogService_impl.java and TraceLogService.java . 15-39

Preparing the development environment. 15-39

Copy templates. 15-39

Preparing the build environment . 15-39

Adapting the build files for the modules . 15-40

Using the templates from Eclipse . 15-43

Creating an example network plug-in
General preparations for the SLEE part of the plug-in . 16-3

Preparing the SLEE plug-in interface . 16-3

Extension SDK for WebLogic Network Gatekeeper xi

Set up the build environment . 16-3

Define the plug-in interface structure. 16-3

Interfaces in the plug-in . 16-4

Compilation of the SLEE plug-in interface . 16-5

Preparing the SLEE plug-in implementation. 16-5

Set up the build environment . 16-5

Defining the plug-in OAM methods. 16-5

Adapting the plug-in interface implementation . 16-6

Plug-in type definition . 16-6

Compilation of the SLEE plug-in implementation . 16-6

Installing the SLEE plug-in . 16-6

Setting up a plug-in route . 16-7

General preparations for the Web Services part of the plug-in . 16-8

Preparing the Web Services plug-in interface . 16-8

Set up the build environment . 16-8

Interfaces in the plug-in . 16-8

Compilation of the Web Services part of the plug-in interface. 16-9

Preparing the Web Services part of the plug-in implementation. 16-9

Set up the build environment . 16-9

Adapting the Web Services plug-in interface implementation. 16-9

Compilation of the Web Services plug-in implementation . 16-10

Installing the Web Service plug-in . 16-10

Creating an example ESPA Service Capability module
General preparations . 17-2

Preparing the ESPA service capability interface. 17-3

Set up the build environment . 17-3

Define the ESPA service capability module interface structure. 17-3

xii Extension SDK for WebLogic Network Gatekeeper

Interfaces to the ESPA service capability module . 17-3

Compilation of the ESPA service capability module interface. 17-4

Preparing the ESPA service capability module implementation 17-4

Set up the build environment . 17-4

Defining the OAM methods. 17-4

ESPA service capability module plug-in listener interface implementation 17-4

ESPA service capability module service manager implementation 17-5

ESPA service capability module persistent storage . 17-5

ESPA service capability module context . 17-5

Implement the Policy Enforcement Point . 17-6

Compilation of the ESPA service capability module implementation 17-6

Adapting the policy rules . 17-7

Installing the ESPA service capability module . 17-7

Update Service Level Agreements (SLAs) . 17-8

Install policy rules . 17-8

Creating an example Policy Utility
General preparations . 18-2

Preparing the Policy utility . 18-2

Set up the build environment . 18-2

Defining the OAM methods. 18-2

Policy utility implementation and rule files. 18-2

Installing the Policy Utility . 18-3

Install policy rules . 18-3

Install Subscriber profile plug-in. 18-3

Provision data to the database . 18-4

Extension SDK for WebLogic Network Gatekeeper xiii

Creating an example SESPA module
General preparations . 19-3

Preparing the SESPA service capability interface. 19-3

Build environment . 19-3

SESPA service capability module interface structure . 19-3

SESPA service capability module interfaces . 19-3

SESPA service capability module interface compilation . 19-4

Preparing the SESPA service capability module implementation. 19-4

Set up the build environment . 19-4

Defining the OAM methods . 19-4

SESPA service capability module structure . 19-4

SESPA service capability module listener implementation 19-4

SESPA service capability module implementation . 19-5

SESPA service capability module service . 19-5

Compilation of the SESPA service capability module implementation 19-5

Installing the SESPA service capability module . 19-5

Creating an example WESPA module
General preparations . 20-2

Preparing the WESPA service capability interface . 20-2

Build environment . 20-2

WESPA service capability module interface structure. 20-3

WESPA service capability module interfaces . 20-3

WESPA service capability module interface compilation. 20-3

Preparing the WESPA service capability module implementation 20-3

Set up the build environment . 20-3

WESPA service capability module structure . 20-4

SESPA service capability listener implementation . 20-4

xiv Extension SDK for WebLogic Network Gatekeeper

WESPA service capability SOAP binding implementation. 20-4

Compilation of the WESPA service capability module implementation 20-5

Installing the WESPA service capability module . 20-5

Creating an example application
General preparations . 21-2

Preparing the application. 21-2

Adapt the application to use the example WESPA module interfaces. 21-3

Compilation of the test application . 21-3

Running the application . 21-3

Prepare start script . 21-3

Register application data . 21-3

Run the application . 21-4

Creating an example network simulator
General preparations . 22-2

Preparing the network simulator application . 22-2

Compilation of the network simulator application . 22-3

Running the network simulator application . 22-3

Prepare start script . 22-3

Run the network simulator application . 22-3

Release notes
What is the Extension SDK for Network Gatekeeper 2.1. 23-1

Notes on installation . 23-1

Interface changes. 23-2

Documentation . 23-2

Operating system and third party software versions . 23-2

Operating system . 23-2

Extension SDK for WebLogic Network Gatekeeper xv

Java . 23-2

ORB . 23-2

Ant . 23-3

Known Issues. 23-3

xvi Extension SDK for WebLogic Network Gatekeeper

Extension SDK for WebLogic Network Gatekeeper 1-1

C H A P T E R 1

Introduction and Roadmap

The following sections describe the audience for and organization of this document:

Document Scope and Audience

Guide to this Document

Terminology

Related Documentation

Document Scope and Audience
The purpose of the document is to information on how to use the Extension SDK for BEA
WebLogic Network Gatekeeper to create extensions to Network Gatekeeper.

The first part describes the different software modules from various perspectives:

Actors

How to use the utilities provided by the SLEE

General sequence diagrams

Frameworks for the different layers

High availability aspects

Specifics regarding call control plug-ins

Specifics regarding messaging plug-ins

I n t roduc t i on and Roadmap

1-2 Extension SDK for WebLogic Network Gatekeeper

The second part provides information on the templates and build environment for creating
extensions that is provided by the Extension SDK.

The following topics are covered:

How to create a plug-in

How to create an ESPA Service Capability module

How to create a SESPA Service Capability module

How to create a WESPA Service Capability module

How to create a test application using the new interfaces

Information on how to use the SLEE utility services

Intended audience is system integrator and field engineers with an interest in how to extend the
functionality of the WebLogic Network Gatekeeper.

Prerequisites
In order to use the Extension SDK, Java and CORBA knowledge is essential.

It is also a prerequisite to know the architecture and to have hands on experience working with
the WebLogic Network Gatekeeper.

Guide to this Document
The document contains the following chapters:

Introduction and Roadmap, informs you about the structure and contents of this document,
and other WebLogic Network Gatekeeper related documentation.

Actors,outlines the different software layers and the actors involved.

Interacting with the SLEE and the SLEE Utility Services, contains information about how
to use the utilities provided by the SLEE.

General sequence diagrams, contains generic sequence diagrams that outlines how the
different layers interact with each other.

Frameworks, explains the frameworks used in the different layers

High availability, describes high availability aspects.

Te rmi no logy

Extension SDK for WebLogic Network Gatekeeper 1-3

Plug-ins that executes as a SLEE service and a web application, describes how to interact
between a SLEE Service and a Web Service executing in Tomcat via the SLEE Common
Loader. The focus is on network plug-ins.

Call Control, contains specifics regarding call control plug-ins.

Call user interaction, contains specifics regarding call user interaction plug-ins.

SMS and MMS messaging, contains specifics regarding messaging plug-ins.

Content based charging, contains specifics regarding content based charging plug-ins.

Subscriber profile, contains specifics regarding messaging plug-ins.

User Location, contains specifics regarding messaging plug-ins.

Policy rules and Policy Utilities, explains how request data is used in Policy rules, and how
the rules can be expanded using Policy Utility classes.

Using the Extension SDK templates, contains information about the Extension SDK, the
different software modules, the file structure and more.

Creating an example network plug-in, explains how to create a plug-in based on the
templates and build environment provided in the Extension SDK.

Creating an example ESPA Service Capability module, explains how to create a service
capability module based on the templates and build environment provided in the Extension
SDK.

Creating an example SESPA module, explains how to create a SESPA module based on the
templates and build environment provided in the Extension SDK.

Creating an example WESPA module, explains how to create a web service interface based
on the templates and build environment provided in the Extension SDK.

Creating an example application, explains how to create an application that uses the Web
Services exposed by the WESPA module provided in the Extension SDK.

Creating an example network simulator, explains how to create a simulator application that
is tied to the network protocol plug-in.

Terminology
The following terms and acronyms are used in this document:

API—Application Programming Interface

I n t roduc t i on and Roadmap

1-4 Extension SDK for WebLogic Network Gatekeeper

Application—A telecom enabled computer application accessed either from a telephony
terminal or a computer.

Service Provider—An organization offering services provided by one or more applications
to end users.

AS—Application Server

ATE—Application Test Environment

CBC—Content Based Charging

CORBA—Common Object Request Broker Architecture

End User—Person that uses an application. An end user can be identical to a subscriber,
for instance in a prepaid service. The end user can also be a non-subscriber, for instance in
an automated mail-ordering application where the subscriber is the mail-order company
and the end user is a customer to this company.

Enterprise Operator —See Service Provider.

ESPA—Extended and value added telecom web services APIs and service capabilities.

HTML—Hypertext Markup Language

IIOP—Internet Inter-ORB Protocol

IN—Intelligent Network

INAP—Intelligent Network Application Part

IOR—Interoperable Object Reference

IP—Internet Protocol

JDBC—Java Database Connectivity, the Java API for database access.

MAP—Mobile Application Part

Mated Pair—Two physically distributed installations of WebLogic Network Gatekeeper
nodes sharing a subset of data allowing for high availability between the nodes.

MPP—Mobile Positioning Protocol

NS—Network Simulator

Operator—The Network Gatekeeper owner

Te rmi no logy

Extension SDK for WebLogic Network Gatekeeper 1-5

ORB—Object Request Broker

OSA—Open Service Access

PAP—Push Access Protocol

Plug-in—A network plug-in the Network Gatekeeper to a network based service node or
OSA/Parlay SCS through a specific protocol.

SCF—Service Capability Function or Service Control Function

SC—Service Capability

Service—A network provided service capability.

Service Capability—See Service

SIP—Session Initiation Protocol

SLEE—Service Logic Execution Environment

SLEE Service—A software module that is designed to execute in the SLEE.

SMPP—Short Message Peer-to-Peer Protocol

SMS—Short Message Service

SMSC—Short Message Service Centre

SNMP—Simple Network Management Protocol

SOAP—Simple Object Access Protocol

SPA—Service Provider APIs

SS7—Signalling System 7

Subscriber—A person or organization that subscribes for an application. The subscriber is
charged for the service usage. See End User.

SQL—Structured Query Language

TCP—Transmission Control Protocol

User—An application accessing services through one or more APIs and has a user name
and a password or a person working with OAM through the Network Gatekeeper
management tool that has an administrative user name and password.

I n t roduc t i on and Roadmap

1-6 Extension SDK for WebLogic Network Gatekeeper

USSD—Unstructured Supplementary Service Data

VAS—Value Added Service

VLAN—Virtual Local Area Network

VPN—Virtual Private Network

XML—Extended Markup Language

Related Documentation

WebLogic Network Gatekeeper documentation
This document is a part of WebLogic Network Gatekeeper documentation set. Other documents
includes:

Product Description - WebLogic Network Gatekeeper

The product description describes functionality and architecture of the WebLogic Network
Gatekeeper.

User's Guide - WebLogic Network Gatekeeper

The user's guide describes WebLogic Network Gatekeeper related operation and
maintenance.

Application Developer's Guide - Parlay X for WebLogic Network Gatekeeper

The developer's guide describes how to design and implement applications using the Parlay
X Web Services exposed by WebLogic Network Gatekeeper.

User's Guide - WebLogic Network Gatekeeper Application Test environment

The user's guide describes how to use WebLogic Network Gatekeeper ATE when it comes
to application test.

API Descriptions - Parlay X for WebLogic Network Gatekeeper

The API descriptions describe WebLogic Network Gatekeeper Parlay X APIs available for
developers and applications.

Extension SDK for WebLogic Network Gatekeeper 2-1

C H A P T E R 2

Actors

The following sections describe how to extend WebLogic Network Gatekeeper and the different
actors involved when creating extensions:

Extending WebLogic Network Gatekeeper

Network plug-in

Plug-in manager

SC manager

Service capability

Web Services interface implementation

Extending WebLogic Network Gatekeeper
The WebLogic Network Gatekeeper provides an modular software architecture that allows for
extensions to the traffic flow stack of the product, all the way from the northbound,
application-facing, interface implementations to network protocol plug-ins. See the Product
Description for information Architecture and functionality provided by the WebLogic Network
Gatekeeper.

The base software modules for a traffic flow stack are:

Web service interface implementations, that provides high level interfaces to applications.

Acto rs

2-2 Extension SDK for WebLogic Network Gatekeeper

Stateless adapters, that acts as an adapter between the stateless Web Services interfaces and
the stateful Service capabilies.

Service capabilities, that provides a general abstraction of capabilities of a certain type, for
example messaging, call control, and user location.

Network protocol plug-ins, that handles the protocol-specifics of the underlying network
node.

When extending Network Gatekeeper, several options are available:

1. Creating a whole new traffic path from the implementation of the northbound,
application-facing, interfaces down to the network protocol plug-ins.

2. Creating a new implementation of the northbound, application-facing, interfaces, and map it
to an existing stateless adapter (SESPA module).

3. Creating a new network protocol plug-in, and use the existing northbound,
application-facing, interfaces and service capabilities.

Also, a combination of the two latter cases can be an option.

Which option to use depends on several factors.

If a custom northbound, application-facing, interface implementation is being created, it may be
sufficient to create just the implementation of the interface and map it to an existing Stateless
adapter or Service capability module as outlined in option 2. Things to consider when doing this
is that CDRs generated will be identified to come from the Service Capability and SLA data and
rules will be the ones offered by the Service Capability.

If the implementation of the northbound, application-facing, interfaces does not sit comfortably
on an existing Stateless adapter, it may be necessary to create a whole new traffic path, as outlined
in the first option.

If the northbound, application-facing, interfaces provided per default are sufficient, option 3 is
suitable.

Since the software module executes in the execution environment offered by the SLEE, the
software module needs to implement the interfaces provided by the SLEE and use SLEE utility
services as outlined in Interacting with the SLEE and the SLEE Utility Services.

When creating new plug-ins and ESPA Service capabilities, it is also necessary to interact with
the Plug-in manager and the SC manager.

Network p lug- in

Extension SDK for WebLogic Network Gatekeeper 2-3

Network plug-in

Traffic interfaces
The network protocol plug-in implements the protocol specifics, and acts as the telecom
network-facing part of the traffic stack in WebLogic Network Gatekeeper.

A plug-in is directly associated with a Service capability, so the plug-in interfaces with one and
only one plug-in interface, there are plug-in interfaces for:

Call Control

Charging (charging based on content)

Messaging

User location

User status

Subscriber profile

User interaction (call and message based)

If a new service capability is introduced, it has a plug-in interface specific to that service
capability.

A plug-in has a set of properties:

PLUGIN_TYPE, which defines which service capability it is associated with. The property
defines the plug-in type that the plug-in specifies when registering in the plug-in manager.
Service capability implementations will use this type identifier when retrieving plug-ins for
handling service requests. The type must match one of the allowed types in the plug-in
manager service. Custom types are allowed, but must be registered in the plug-in manager.

SUBTYPE, which defines a sub-type of an interface where relevant. Examples are GMS
(messaging), USSD, or SMS. Subtype specifies a subtype of a specific resource interface.
Note that one resource or SC may support multiple subtypes.

TrAddressPlan, which defines which address plans the plug-in supports. Examples includes
IP and E.164.

All these properties are taken into account by the Plug-in manager when the Service Capability
is provided with a plug-in.

Acto rs

2-4 Extension SDK for WebLogic Network Gatekeeper

Note: Additional parameters, such as routing criteria and policy based routing settings are also
taken into consideration when routing a request from a Service Capability to a plug-in.
These parameters are configurable in contrast to the properties listed above.

Below is a table outlining the properties.

All plug-ins extends the base module com.incomit.resources.defined in resource_common.idl.

Table 2-1 Service Capabilities, plug-in types and plug-in subtypes

Service capability Plug-in to be used by the Service
capability

Subtype of plug-in

Call Control CALL_CONTROL_TYPE

Call user interaction USER_INTERACTION_CALL_TYPE

Charging (charging based
on content)

CHARGING_TYPE

Messaging MESSAGING_TYPE (for SMS)

MMS_TYPE (for MMS)

SMS

MMS

Messaging user interaction USER_INTERACTION_TYPE SMS -when SMS is the bearer

USSD -when USSD is the bearer

GUI -when OSA Generic User
interaction is the bearer

User location USER_LOCATION_TYPE

User status USER_STATUS_TYPE

Subscriber profile SUBSCRIBER_PROFILE_TYPE

Network p lug- in

Extension SDK for WebLogic Network Gatekeeper 2-5

The following modules are mapped to the service capabilities.

All modules contains a set of interfaces to be implemented or used by the plug-in. Refer to the
IDL definitions for the plug-in interfaces for detailed information. The IDL files are located in
bea\wlng21\esdk\idl\plugin_if.

Plug-in states
The following diagram shows the states of a plug-in as defined in the Plug-in Manager.

Table 2-2 Plug-in module and service capability

Module Definition in Corresponding Service capability

com.incomit.resources.callcontrol CallControlResource_data.idl

CallControlResource_IF.idl

Call Control

com.incomit.resources.charging ChargingResource_data.idl

ChargingResource_IF.idl

Charging

com.incomit.resources.messaging messaging_mms_resource_if.idl

messaging_resource_data.idl

messaging_resource_if.idl

Messaging

com.incomit.resources.mm MobilityResource_data.idl User location and User Status

com.incomit.resources.mm.ul UlResource_data.idl

UlResource_IF.idl

User location

com.incomit.resources.mm.us UsResource_data.idl

UsResource_IF.idl

User status

com.incomit.resources.sp sp_data.idl

sp_interfaces.idl

Subscriber profile

com.incomit.resources.ui UserInteractionResource_data.idl Call user interaction and
Messaging user interaction

com.incomit.resources.ui UserInteractionCallResource_IF.idl Call user interaction

com.incomit.resources.ui UserInteractionResource_IF.idl Messaging user interaction

Acto rs

2-6 Extension SDK for WebLogic Network Gatekeeper

When the plug-in is in the Active state, the SCs are able to retrieve references to the plug-in and
initiate new traffic. When the plug-in is in the Inactive state the SCs will not be able to retrieve
any new plug-in references. The plug-in should set itself to inactive when it has lost contact with
the underlying network node.

It is possible for the SCs to use existing references (for example call objects) to continue
processing any active traffic.

The state of a plug-in does not prevent it from using the SCs to initiate network-triggered events.
It only prevents the SCs to create application-initiated events.

Figure 2-1 Plug-in states

Different mechanisms are used when a plug-in changes between the active and inactive states.
The state change from active to inactive is only checked when an SC requests to obtain a plug-in.
In other words the plug-in have to make sure that the isActive method returns false when it is not
active. When a plug-in moves from inactive state to active state it must explicitly invoke the
resourceIsActive method. The plug-in must also make sure that the isActive method returns true
when active.

Suspending a plug-in
It is possible to suspend a plug-in, which means that no new traffic will be sent to the plug-in. For
example for call control this means that no new calls will be created, but all active calls will work
as normal. This is for instance useful when making a graceful shutdown of a plug-in.

Network p lug- in

Extension SDK for WebLogic Network Gatekeeper 2-7

To suspend a plug-in it should simply return false when the isActive method is invoked. To
resume from suspended state the plug-in should call resourceIsActive in the PluginRegistration
interface. In order for a plug-in to be suspended it must implement ServiceDeploymentExt
interface.

Switching plug-in
It is possible to use the states of a plug-in, see Plug-in states, to perform a HA switch when using
an active-standby system. See details about this in section High availability.

Best practises for the plug-in interfaces
This chapter contains common details on the plug-in interfaces. Specific details for each service
type (call control, user interaction, etc) are described in separate sections.

Usage of session id
To reduce the number of active CORBA objects, a plug-in may use the session id parameter. For
example, when a new call is created (either network-triggered or application initiated) the plug-in
sends a session id associated with that call. Whenever the proxy communicates with the plug-in
it sends this id to the plug-in. This means that only one CORBA instance of the call object will
be required. But in this case the plug-in must have some internal dispatching of invocations.
Session id works in the same way with, for instance call legs of user interaction calls.

It is up to the developer of the plug-in to decide if session id or multiple objects are to be used.
The call back interfaces that the SC implement are always newly created CORBA objects.

Always use timers (SLEETimer) to be able to detect and cleanup resources when no response is
received. This is relevant for all layers, not only plug-in

Threading
For each method invocation that is made from the SC to the plug-in it is recommended that the
plug-in creates a separate thread (or thread pool mechanism) that handles the invocation. This
will allow the CORBA thread to return as soon as possible, which reduces the duration that the
CORBA threads are blocked in the SC proxy. Most method calls are asynchronous (that is has a
request and a response method), which makes this possible.

The SCs use a thread pool to implement this functionality, use the SLEE task manager as
described in “SLEETaskManager” on page 3-13 and.“SLEETask” on page 3-12.

Acto rs

2-8 Extension SDK for WebLogic Network Gatekeeper

Help classes for network plug-ins
There is a set of help classes for plug-ins that simplifies the implementation. The template for the
SLEE service part of a plug-in provided in the extension SDK module templates uses these
classes.

The help classes for the network protocol plug-ins simplifies the interaction with the Service
Deployable and Service Accessible interface by implementing the general parts of a SLEE
Service in help classes.

In the package com.bea.wlcp.wlng.esdk there are two help classes for general SLEE Services.
First there is an abstract help class, com.bea.wlcp.wlng.esdk.SleeService that implements the
ServiceDeployableExt interface. The purpose of this class is to serve as a base class for general
services executing in the SLEE. There is also an abstract help class,
com.bea.wlcp.wlng.esdk.Context, that provides methods for getting and setting the POA and for
getting the Service Context.

For network protocol plug-ins, there is an abstract base class,
com.bea.wlcp.wlng.esdk.plugin.PluginSleeService, that implements the ServiceAccessible
interface. It also implements the ServiceDeployableExt interface implicitly through the
SLEEService class.

Network p lug- in

Extension SDK for WebLogic Network Gatekeeper 2-9

Figure 2-2 SleeService and PluginSleeService inheritance structure

PluginSleeService handles the registration of the plug-in in the plug-in manager. It extends the
the abstract class com.bea.wlcp.wlng.esdk.SleeService. There is also an abstract class,
com.bea.wlcp.wlng.esdk.plugin.PluginContext, that provides methods for getting and setting the
resourceID, as well as declaring methods that should be implemented in the sub-context class.

When using these help classes, there is no need for the implementation classes for a plug-in to
implement the ServiceAccessible and ServiceDeployableExt interfaces, instead they should
extend the class PluginSleeService.

When a plug-in that extends the PluginSleeService class is started, the method doStarted(...) will
be called.

+_default_POA()
+activated()
+deactivated()
+getNumberOfActiveSessions()
+isActive()
+isSuspended()
+resume()
+setPOA()
+started()
+stopped()
#subActivated()
#subDeactivated()
#subResume()
#subSetPOA()
#subStarted()
#subStopped()
#subSuspend()
+suspend()
+getServiceContext()
+getContext()

SleeService

«interface»
ServiceDeployableExt

«extends»

Implements

«interface»
ServiceAccessible

Implements

#doActivated()
#doDeactivated()
#doResume()
#doSetPOA()
#doSetServiceContext()
#doStarted()
#doStopped()
#doSuspend()
+getContext()
#getResource()
#getTrace()
#getTrafficObject()
+reqIsConfirmed()
+reqIsSent()
+resetNumberOfOutstandingRequests()
#subActivated ()
#subDeactivated()
#subResume()
#subSetPOA()
#subStarted()
#subStopped()
#subSuspend()

PluginSleeService

Acto rs

2-10 Extension SDK for WebLogic Network Gatekeeper

When a plug-in that extends the PluginSleeService class is activated, the method doActivated(...)
will be called. The help class PluginSleeService will then handle the registration of the plug-in in
the plug-in manager.

When a plug-in that extends the PluginSleeService class is deactivated, the method
doDeactivated(...) will be called.

The implementation of the traffic interfaces shall be implemented in a separate class. Whenever
the method getTrafficObject() is called on the class the extends the PluginSleeService help class,
the class that implements the traffic interfaces shall be instantiated, if the member-variable which
holds the reference to the class that implements the traffic interface is not yet instantiated.

Plug-in manager

Accessing the Plug-in Manager
The Plug-in Manager is retrieved from the SLEEContext and a task is scheduled that will be
performed in a separate thread when the plug-in manager has resolved a suitable plug-in based
on the parameters provided. When scheduling the task, information on the type of plug-in to use,
priority and so on are defined together with an object that implements the request that shall be
forwarded to the plug-in. The object must implement SLEEResourceTask

In the example below this object is task. task implements the method dotask(...), and when the
plug-in manager has retrieved a suitable plugin, the plug-in manager invokes the method
doTask(...) on this object. The plug-in is provided as an argument to doTask(...). See
MyServiceCapabilityManager_impl.java in
\module_templates\espa_sc_module_impl\src\com\incomit\espa\my_espa_sc\ for an example.

Listing 2-1 Example of how to get a matching plug-in and to schedule a task

MyServiceCapabilityContext.getServiceContext().getSLEEContext().getResourceMan
ager().scheduleResourceTask(new TrProperty[0],

MyServiceCapabilityContext.PLUGIN_TYPE,

rAddress,

resourceContext,

0, // prio

MyServiceCapabilityContext.POLICY_SERVICE_GROUP,

Pl ug- i n manager

Extension SDK for WebLogic Network Gatekeeper 2-11

1,

task,

MyServiceCapabilityContext.getServiceContext());

Plug-in manager interfaces
The following figure includes the interfaces related to the Plug-in Manager.

Figure 2-3 Plug-in manager interfaces

Acto rs

2-12 Extension SDK for WebLogic Network Gatekeeper

SLEEResourceMgr
This interface is the initial object when accessing the Plug-in Manager.

Table 2-3 Plug-in manager interfaces

Interface Description

SLEEResourceManager Initial object implemented by the Plug-in Manager.

Resource Base interface that all plug-ins must implement.

ResourceListener Call back interface used to notify that a plug-in has registered or
de-registered itself in the Plug-in Manager

SCS Implemented by the SCs. Closer descriptions can be found in SC manager.

Table 2-4 ResourceMgr

Method Description

addListener Adds a listener, interested in knowing if plug-ins have been added or
removed.

removeListener Removes a registered listener.

getBestResource This method is used to get the resource having least load level which have
been idle the longest time having the specified type and which have the
route set up to handle this address and addresses belonging to the specified
address plan. Use scheduleResourceTask instead.

getResourceFromProperties Perform the same as getBestResource, with addition that only resources
matching the specified properties are returned. Use scheduleResourceTask
instead.

getResource This method is used to get the resource having least load level which have
been idle the longest time having the specified type and which have the
route set up to handle this address and addresses belonging to the specified
address plan. Use scheduleResourceTask instead.

getResourceCtx Gets a plug-in.

getResourceCtxSendList Gets a plug-in capable of handling sendlists

Pl ug- i n manager

Extension SDK for WebLogic Network Gatekeeper 2-13

Resource
The base interface that all plug-ins must implement. It is important that all CORBA objects that
implement this interface are persistent, that is always use the same IOR. If this is not the case,
plug-in routing information, as configured in the Plug-in Manager will not work. This interface
is extended by Service Capability-specific parts, so there is one extension per SC type, call
control, messaging, user location and so on.

scheduleResourceTask Gets a plug-in and schedules a task to be performed. Asynchronous method
for scheduling a resource task for executing a request towards a plug-in
matching the specified criteria. If a plug-in can be allocated for the request
the supplied resource task will be executed in a separate thread.

registerResourceProperties Registers properties for a plug-in.

registerResource Registers a plug-in in the plug-in manager.

unregisterResource Unregisters a plug-in.

getResourceNodeId Get the node ID for a plug-in.

Table 2-4 ResourceMgr

Method Description

Table 2-5 Resource

Method Description

getAddressPlan Get the supported address plans. For example E_164. The plug-in can
support several address plans.

getLoadLevel Get load level.

getLoadValue Get load value in percent.

getType Get type of plug-in. For example call control or messaging.

getSubSystemLoadLevel Gets the load level of the underlying system for this resource.

getSubSystemLoadValue Gets the load value of the underlying system for this resource.

isActive Check if plug-in is active or not.

Acto rs

2-14 Extension SDK for WebLogic Network Gatekeeper

ResourceListener
The SCs can implement this interface. This listener interface will be notified when new plug-ins
are registered in the Plug-in Manager. This will make it possible for the SC to add itself as a
plug-in listener when new plug-ins are activated.

Use cases

Registration and deregistration
The Resource interface is implemented by the plug-in.

If the plug-in returns false when the isActive method is invoked, it will not be accessible until it
is activated.

If a plug-in supports more than one type it should use this registration process for each type.

Table 2-6 ResourceListener

Method Description

resourcesUpdated Notify that a resource has been registered or de-registered.

Pl ug- i n manager

Extension SDK for WebLogic Network Gatekeeper 2-15

Figure 2-4 Registration and de-registration of a plug-in

General usage (application-initiated events)
The following sequence diagram shows how application-initiated events are handled. An
application-initiated event could for example be creation of a new call or sending an SMS.

The Plug-in Manager maintains a list of routing information for the plug-ins. In this list it is
specified what address ranges a certain plug-in supports. The list is specified using the
Management Tool.

Acto rs

2-16 Extension SDK for WebLogic Network Gatekeeper

Figure 2-5 General plug-in usage

Description of the sequence diagram:

The SC asks the Plug-in Manager to schedule a task for the plug-in communication. This
request will contain plug-in type, address plan, address, a set of properties and a class that
the SLEE will perform doTask() on when a suitable plug-in is resolved. From this
information the Plug-in Manager will locate all active plug-ins that matches with its
internal routing information. Plug-in types, properties and address plans are defined in the
plug-in ins. The properties is a name-value pair array used to correlate properties that the
SC needs, and properties that the plug-ins supports. The following properties are used in
the standard product:

– NOTIFICATION_SUPPORT, whit the value TRUE or FALSE if notifications are
supported by the plug-in.

– SUBTYPE, with the values USSD or SMS. This is used to define if the messaging user
interaction shall use USSD or plug-in.

The Plug-in Manager will check if the plug-in is still active.

The Load level of the plug-in will be requested. The plug-in must return its current load
and if it is overloaded no new requests will be sent.

SC manager

Extension SDK for WebLogic Network Gatekeeper 2-17

The SLEE will invoke doTask() on the object provided when scheduling the task.

Plug-in specific communication will commence.

SC manager
The SC Manager is similar to the Plug-in Manager in many ways. The difference is that it
manages SCs instead of plug-ins. The main responsibility for the SC Manager is to deliver SC
references to the plug-ins when dealing with network-triggered events. The SC Manager contains
one part that is used by the SCs for registration an unregistration, and one part that is used by the
plug-ins to obtain SCs.

Each SC that wants to be accessed by plug-ins needs to implement the SC base interface. The SC
Manager supports registration and de-registration of SCs. The SCs are associated with a certain
type that is used when locating the SCs. It is possible to create new SC types from the SLEE
Manager.

In the case where several SLEEs are running, each instance will have its own SC Manager. In this
case it does not matter which SC Manager is used, as they all share the same information.

It is not necessary for the plug-ins to use the SC Manager at all. It is the choice of the plug-in
developer. The SC can register all available call back interfaces directly in the plug-in also. This
means that the plug-in can handle the load balancing internally. If an SC is overloaded it will
throw an overload exception and the plug-in should try another SC. This may be better for
external, not executing in the SLEE, plug-ins for performance reasons as no extra CORBA
invocations are needed. The use of the SC Manager is better suited for internal plug-ins as they
interact with a pure java interface. It may on the other hand be more convenient to use the SC
Manager. There is no need to use both these methods as the reference obtained from the SC
Manager and the registered listener will be the same.

Accessing the SC Manager
The SC Manager is retrieved from the SLEEContext. See The SLEEContext is fetched from the
ServiceContext, provided by the SLEE via the ServiceAccessible interface.

Listing 2-2 Getting the SC manager

m_scsManager = m_sc.getSLEEContext().getSCSManager();

Acto rs

2-18 Extension SDK for WebLogic Network Gatekeeper

Here, m_sc is the ServiceContext. The list of ESPA SCs are retrieved. In the example below all
registered listeners of MESSAGING_TYPE are requested. Other ESPA SCs are requested using
the same methodology, it is only the type that differs.

Listing 2-3 Example of how to get a list of ESPA Messaging SCs

scsArray = m_scsManager.getSLEESCSDiscovery().getSCSCtx(capabilityProperties,

SCS.MESSAGING_TYPE,

m_eventAny,

m_resourceID);

The code fragment also illustrates how a list of suitable SCs are fetched. The first in the list should
be used since the SC manager provides load balancing, although any in the list can be used.

Interfaces
The figure below displays the interfaces related to the SC Manager.

SC manager

Extension SDK for WebLogic Network Gatekeeper 2-19

Figure 2-6 SC Manager interfaces

Table 2-7 SC manager interfaces

Interface Description

SLEESCSMgr Initial object implemented by the SC Manager.

SCSDiscovery Interface that the plug-ins uses to obtain SC references.

SCSRegistration Interface used to register an SC. This interface will not be closer described
in this document.

SLEESCSDiscoveryOperati
ons

This interface is implemented by the SCs proxies.

SCSRegistrationOperations The base interface that all plug-ins must implement.

Acto rs

2-20 Extension SDK for WebLogic Network Gatekeeper

SLEESCSMgr
An object implementing the SCSMgr interface is the initial object in the SC Manager. This
interface is used to access other SCSMgr instances and to retrieve the registration and discovery
interfaces.

SLEESCSRegistrationOperations
This is interface is used by the ESPA SC to registers into the SC manager.

Table 2-8 SLEESCSMgr

Method Description

getSCSRegistration Retrieve the SCSRegistration object.

getSCSDiscovery Retrieve the SCSDiscovery object.

Table 2-9 SLEESCSRegistrationOperations

Method Description

registerSCS Registers an SC. This method is to be used when only the type of the SC
has significance.

registerSCSWithProperties This method registers an SC using a set of properties. A property of type
INSTANCE_ID and value the returned SCS id is always appended to the
properties.

unregisterSCS Unregisters an SC.

SCSIsActive Called by SC to indicate that it is active.

SC manager

Extension SDK for WebLogic Network Gatekeeper 2-21

SLEESCSDiscoveryOperations
This is interface is used by the plug-ins to retrieve references to SC instances. SCs retrieved with
this interface will ensure that load balancing is applied to network-initiated traffic.

Use cases

Network-triggered event
The following sequence show how a network-triggered event is distributed to an SC using the SC
manager.

Table 2-10 SSLEECSDiscoveryOperations

Method Description

getSCS Deprecated

getSCSCtx Retrieve all SCs that have enabled a criteria matching the supplied
parameters.

getSCSFromEvent Deprecated

getSCSFromProperties Deprecated

Acto rs

2-22 Extension SDK for WebLogic Network Gatekeeper

Figure 2-7 Figure Network-triggered event

Service capability
The Service capabilities are responsible for implementing the Policy Enforcement Points, storing
CDRs and to hold session information that is beyond the scope of the plug-ins.

Examples if this is user interaction sessions and call control sessions, which are of less transient
nature than for example sending of SMSs or positioning requests.

The existing Service capabilities are stateful.

The service capabilities registers themselves with a certain type, that is used to bind a plug-in to
a Service capability.

SESPA SC
The stateful adapters (or SESPA) are used to provide a stateless interfaces towards the service
capabilities. SESPA presents a stateless interface to the Web Services implementation.

Web Serv ices i nt er face impl ementa t i on

Extension SDK for WebLogic Network Gatekeeper 2-23

Per default there is a one to one mapping between Stateless adapters and Service capability
modules.

If the standard Network Gatekeeper is extended with a Web Services or pure HTTP interface that
fits on top of an existing Service Capability, the extended interface can be implemented on top of
this interface.

In the standards product, the Parlay X implementation is using this interface.

Web Services interface implementation
The Web Services implementations are deployed in the Tomcat server embedded in the SLEE.

Acto rs

2-24 Extension SDK for WebLogic Network Gatekeeper

Extension SDK for WebLogic Network Gatekeeper 3-1

C H A P T E R 3

Interacting with the SLEE and the SLEE
Utility Services

This chapter describes how to interact with the SLEE and the utilities that the SLEE offers when
creating applications.

These utilities can only be used when the applications are executing internally in the SLEE.

For a detailed description of all SLEE utility classes and methods, see the JavaDoc for the SLEE.

The following sections describe the SLEE and SLEE utility services:

Basic SLEE interfaces

SLEE utility interfaces

SLEE utility classes

OAM

Using the database

Using the alarm service

Using the event service

Using the charging service

Using the time service

Using the trace service

In te ract ing w i th the SLEE and the SLEE Ut i l i t y Se rv ices

3-2 Extension SDK for WebLogic Network Gatekeeper

Basic SLEE interfaces
All services must implement the basic SLEE interfaces in order for them to executed in the SLEE,
and being SLEE services.

ServiceAccessible
All accessible services running within the SLEE must have a class that implements this interface.
The ServiceAccessible interface represents the object that will be installed in the SLEE service
ORB as a service that can be accessed by other services. The class implementing this interface
MUST also have an empty public constructor.

The ServiceContext object is provided by the SLEE using the ServiceAccessible interface.

The CORBA POA is supplied by the SLEE in setPOA(...), and the SLEE service must implement
and return the same POA using the method public org.omg.PortableServer.POA _default_POA().

The SLEE service shall use this POA, or a child POA, when creating new CORBA objects.

The SLEE will call the following method on the object implementing this interface:

setServiceContext(...) - Will be called by the SLEE to set the Service Context. An object
representing the Service Context is provided. The Service Context is used for getting
handles to other SLEE services, see “ServiceContext” on page 3-3.

ServiceDeployable
All services running within the SLEE must implement this interface, otherwise they can not be
deployed. The SLEE will use the ServiceDeployable interface to notify the service of the current
service deployment status.

The SLEE will call the following methods on the object implementing this interface:

started() -will be called by SLEE when the service has been started.

activated() -will be called by SLEE when the service has been activated.

deactivated() -will be called by SLEE when a service is to be deactivated.

stopped() -will be called by SLEE when a service is to be stopped.

setServiceContext(...) - Will be called by the SLEE to set the Service Context. An object
representing the Service Context is provided. The Service Context is used for getting
handles to other SLEE services, see “ServiceContext” on page 3-3.

Bas ic SLEE in te r faces

Extension SDK for WebLogic Network Gatekeeper 3-3

ServiceDeployableExt
Extension of ServiceDeployable interface that a service can implement if supporting
suspend/resume for a service.

Extends the ServiceDeployable interface with the following operations:

getNumberOfActiveSessions() -used for returning the number of active sessions the service
holds.

resume() -causes the service to resume its suspended state back to active state.

suspend() -suspends the service.

ServiceManageable
All services running within the SLEE may have a class that implements this interface. The
interface is used for providing extra management capabilities for a service. The
ServiceManageable interface represents the object that will be installed in the name service as the
OAM (Operation Administration and Management) object for a service. Note that the
ServiceManageable interface extends ServiceCORBAServant. See “OAM” on page 3-16.

The SLEE will call the following method on the object implementing this interface:

setServiceContext(...) - Will be called by the SLEE to set the Service Context. An object
representing the ServiceContext is provided. The ServiceContext is used for getting
handles to other SLEE services, see “ServiceContext” on page 3-3.

ServiceContext
The ServiceContext represents the context of a service. All service interfaces have a
setServiceContext method that will be called from the SLEE before calling the method started()
on the object implementing ServiceDeployable interface.

It is possible to get a handle to the following services through this interface:

Charging service, see “ChargingService”.

Policy service, see “PolicyManager”.

SLEE Event Channel service, see “SLEEEventChannel”.

TraceLogService service, see “TraceLogService”.

ServiceInstanceHandler, see “ServiceInstanceHandler”.

In te ract ing w i th the SLEE and the SLEE Ut i l i t y Se rv ices

3-4 Extension SDK for WebLogic Network Gatekeeper

It is also possible to get references to the objects in the SLEE service implementing the following
interfaces:

ServiceAccessible object implemented by the SLEE service, see “ServiceAccessible”.

ServiceDeployable object implemented by the SLEE service, see “ServiceDeployable”.

ServiceManageable object implemented by the SLEE service, see “ServiceManageable”.

It is also possible to get a handle to the SLEE Context service, which is used to get other utility
services. See “Services fetched from the SLEEContext”.

Via the ServiceContext it is also possible to:

get the name of the jar file in which this service was installed.

get the name of the service.

get the state for the service

SLEEContext
SLEEContext represents the SLEE context for a service. It provides an initial object for retrieving
other services. A SLEE Context object is provided by the SLEE via the Service Context object.
A service can use the SLEE Context to retrieve handles to utility services provided by the SLEE.

It is possible to get a handle to the following classes through this interface:

Alarm, see “Using the alarm service”.

Cyclic ID manager, see “SLEECyclicIDManager”.

Database Manager, see “SLEEDBManager”.

Event Log, see “Using the event service”.

Global Counter and the Global Counter Manager, see SLEEGlobalCounter and
SLEEGlobalCounterManager.

ID Manager, see “SLEEIDManager”.

Load Manager, see “SLEELoadManager”.

Plug-in Manager, see “SLEEResourceManager”

SC Manager, see “SC manager” on page 2-17.

SLEE u t i l i t y in te r faces

Extension SDK for WebLogic Network Gatekeeper 3-5

Statistics Manager, see “SLEEStatisticsManager”.

Task Manager, see “SLEETaskManager”.

Time Manager, see “SLEETimeManager”.

Zombie Object Supervisor, see “SLEEZombieObjectSupervisor”.

SLEE utility interfaces
A software module that executes in the SLEE utilizes a set of operations offered by the SLEE and
the SLEE Utility services. Which SLEE utility interfaces to use depends on which SLEE utility
services the software module needs.

Some services are available using the SLEE Context interface, see “Services fetched from the
SLEEContext”, others via the “Services fetched from the SLEEContext” interface. There are also
a set of classes that can be used directly, see “SLEE utility classes”.

Services fetched from the ServiceContext

ChargingService
The charging service provides methods for creating CDRs in the Network Gatekeeper database.

See “Using the charging service”.

PolicyManager
The Policy Manager service provides methods for implementing a policy enforcement point.

See “Implement the Policy Enforcement Point”.

SLEEEventChannel
Interface for broadcasting events and for register listeners of events originating from other SLEE
services. Used for sending events (data) from a SLEE service to another, convenient when for
example propagating changes of cached data to other instances of a service.

Below is pseudo code for broadcasting an event via the SLEEEventChannel.

Listing 3-1 Broadcasting an event

//m_sc holds the ServiceContext

In te ract ing w i th the SLEE and the SLEE Ut i l i t y Se rv ices

3-6 Extension SDK for WebLogic Network Gatekeeper

String eventId = "eventID";

EventData eventData = new EventData();

org.omg.CORBA.Any event;

event = eventData;

m_sc.getSleeEventChannel().generateEvent(eventId, event);

Below is pseudo code for receiving the event.

Listing 3-2 Receiving an event -class that implements SLEEEventChannelListener

public void processEvent(String eventId,

org.omg.CORBA.Any event,

String source) {

if (eventId == "eventID") { // Check the event ID

EventData eventData = (EventData)event; //Cast to proper class

}

// source contains the instance ID of the SLEE service.

// m_sc holds holds the ServiceContext

if (source.equals(m_sc.getInstanceName()) {

// The event originated from this instance.

}

}

TraceLogService
Interface for the trace log service. A service can use the trace service to write service tracing
information to a service specific trace file. Although the trace service can be disabled and enabled
it is recommended that each service performs a check on the trace active flag before calling the

SLEE u t i l i t y in te r faces

Extension SDK for WebLogic Network Gatekeeper 3-7

logTrace method for performance reasons (reduces the number of allocated String objects at
runtime). See “Using the trace service”.

ServiceInstanceHandler
The Service instance handler can be used to locate multiple instances of a service. It provides
IORs to other SLEE Services ServiceAccessible interface.

PolicyManager
The Policy Manager is used for retrieving the Policy service in order to create a Policy
Enforcement Point. The policy manager is normally used in the ESPA SC Layer.

Below is an outline of how a Policy Enforcement Point is implemented. See
MyServiceCapabilityManager_impl.java in
module_templates\espa_sc_impl\src\com\acompany\espa\mysctype\ for details on how it is
implemented.

The PolicyManager is fetched from the ServiceContext.

Listing 3-3 Fetching the PolicyManager

policyManager =
MyServiceCapabilityContext.getServiceContext().getPolicyManager();

Then a PolicyRequest object, that holds the data to be forwarded to the Policy Decision Point, is
created. Among the data is application and service provider IDs for the application that the
requests originates from.

Listing 3-4 Creating a PolicyRequest object

MyServiceCapabilityContext.getServiceContext().getSLEEContext().getTimeManager
().getTime();

PolicyRequest policyRequest = new PolicyRequest_impl(

MyServiceCapabilityContext.getServiceContext().getSLEEContext().getORB(),

timeStamp);

In te ract ing w i th the SLEE and the SLEE Ut i l i t y Se rv ices

3-8 Extension SDK for WebLogic Network Gatekeeper

 try {

 policyRequest.applicationID = m_ApplicationID;

 policyRequest.serviceProviderID = m_ServiceProviderID;

 } catch (com.incomit.espa.access.AccessException e) {

 ...

}

 policyRequest.serviceName =

MyServiceCapabilityContext.POLICY_SERVICE_NAME;

 policyRequest.serviceGroup =

MyServiceCapabilityContext.POLICY_SERVICE_GROUP;

 policyRequest.methodName = "myMethod";

 policyRequest.serviceCode = serviceCode;

 policyRequest.requesterID = requesterID;

 policyRequest.transactionID = -1;

 policyRequest.noOfActiveSessions = -1;

 policyRequest.reqCounter = 0;

AdditionalData adArray[] = new AdditionalData[2];

AdditionalDataValue targetAddressValue = new AdditionalDataValue();

 AdditionalData adTargetAddressString = new AdditionalData();

 targetAddressValue.stringValue(address);

 adTargetAddressString.dataName = "targetAddress";

 adTargetAddressString.dataValue = targetAddressValue;

 adArray[0] = adTargetAddressString;

AdditionalDataValue dataValue = new AdditionalDataValue();

 AdditionalData adDataString = new AdditionalData();

 dataValue.stringValue(data);

 adDataString.dataName = "data";

SLEE u t i l i t y in te r faces

Extension SDK for WebLogic Network Gatekeeper 3-9

 adDataString.dataValue = dataValue;

 adArray[1] = adDataString;

policyRequest.additionalParameters = adArray;

Then the PolicyRequest data is evaluated by the Policy decision Point.

Listing 3-5 Evaluate the Policy data

PolicyRequest modifiedRequest =
(PolicyRequest)policyManager.evaluate((PolicyRequest) policyRequest);

If the request is denied, a DenyException is thrown. If the request was accepted, the request data
may have been modified, so the modified data is used when propagating the request instead of
the original data.

Listing 3-6 Use the request data returned from the PolicyRequest

requestContext = new RequestContext(modifiedRequest.requesterID,

modifiedRequest.serviceCode);

address = modifiedRequest.getAdditionalDataStringValue("targetAddress");

data = modifiedRequest.getAdditionalDataStringValue("data");

If the request was denied, a CDR shall be created with completion status Policy Rejected.

Services fetched from the SLEEContext

SLEEDBManager
Database manager for SLEE. The DB manager controls connections to the database. A SLEE
service can use the DB manager to retrieve a DB connection. By default all users/slee services
share the same database and database user identity. See “Using the database”.

In te ract ing w i th the SLEE and the SLEE Ut i l i t y Se rv ices

3-10 Extension SDK for WebLogic Network Gatekeeper

All SLEE services that use JDBC shall retrieve connections using the SLEEDBManager instead
of using the driver directly

SLEELoadManager
Used to query the load of a SLEE. It reports the load as a number between 0 and 100. It is also
possible to register listeners that report when the load has reach a certain level. Note that the load
is reported to listener only every 5th second. It is recommended to use the synchronous method
instead of registering listeners.

Listing 3-7 Getting the load on a SLEE Service

//m_sc holds the ServiceContext

int loadValue _= m_sc.getSLEEContext().getLoadManager().getLoadValue();

SLEELoadManagerListener
Load events are reported using this interface, when subscribed to using the SLEE LoadManager.

Events related to the load has reached a load level are reported via the
SLEELoadManagerListener interface via the method processLoadEvent(LoadEvent loadEvent).
The LoadEvent class holds information on which load level that was reached:

NORMAL

OVERLOADED

SEVERE_OVERLOADED

The registration of the SLEELoadManagerListener interface is performed via the method
addListener(...) in the SLEELoadManager interface.

SLEEResourceListener
When plug-ins are added, it is reported on this interface.

SLEEResourceManager
The Plug-in manager interface. See “Plug-in manager interfaces” on page 2-11.

SLEE u t i l i t y in te r faces

Extension SDK for WebLogic Network Gatekeeper 3-11

SLEEResourceTask
This interface must be implemented by users of the
SLEEResourceManager.scheduleResourceTask method. A resource task is scheduled by calling
scheduleResourceTask with an instance to the class implementing SLEEResourceTask as an
argument to the SLEEResourceManager.

This SLEEResourceTask interface is implemented by ESPA SCs, and the SLEE calls the method
doTask(...) on the implementation of the interface. A reference to the allocated plug-in is
provided as an argument to doTask(...).

SLEEStatisticsManager
This interface is used to add transaction statistics to the Statistics SLEE service. There are a set
of pre-defined statistic types, and new ones can be added using this interface or by using OAM
in the SLEE Statistics Service. All new Service Capabilities shall generate transaction statistics
to allow for a transaction based price model. Examples on how to generate transactions statistics
are provided in the template source code.

For extensions the statistics transaction type range must be: 1000 to 10 000.

Transaction statistics can be added for all traffic generated by all applications, or per service
provider or per service provider and application.

serviceProviderID is put in the sourceEntity parameter and applicationID is put in the
sourceApplication parameter.

Below is an example on how to generate statistics.

Listing 3-8 Update statistics counter

// m_sc holds the SLEEContext

// serviceProviderID contains the service provider ID that performed the request

// applicationID contains the application ID that performed the request

int transactionType = TRANSACTION_TYPE_NETWORK_TRIGGERED_EVENT_SUCCESS;

int transactions = 1; //number of transactions to add to the statistics counter

m_sc.getStatisticsManager().addTransactionStatistics(transactionType,

transactions,

In te ract ing w i th the SLEE and the SLEE Ut i l i t y Se rv ices

3-12 Extension SDK for WebLogic Network Gatekeeper

serviceProviderID,

applicationID);

The transactionType must be added to the SLEE Statistics service using the Management Tool.
That is, the value representing transactionType must be added using the Management method
addStatisticType in the SLEE_statistics service.

SLEETask
SLEETasks shall be used instead of using Java threads directly. Java threads must never be
created directly, they should always be created via SLEETasks. Since asynchronous
communication between the software modules always is preferred, SLEETasks shall be used for
remote procedure calls via CORBA.

The SLEETask interface should be implemented by users of the SLEETaskManager. A task is
scheduled by calling scheduleSLEETask in the SLEETaskManager. As soon as one of the threads
managed by SLEETaskManager becomes available doTask in SLEETask will be called.

SLEETasks shall be used instead of pure Java tasks. The SLEETaskManager provides
mechanisms for pooling of threads. Use SLEETasks for processing of tasks that risks blocking of
resources.

Listing 3-9 Pseudo code for a SLEETask

public class MyTask implements SLEETask {

public MyTask() {

}

// Will be called by the SLEETaskManager

public void doTask() {

// Perform the task.

}

}

SLEE u t i l i t y in te r faces

Extension SDK for WebLogic Network Gatekeeper 3-13

SLEETaskManager
SLEE task manager should be used for scheduling a task by using a thread from the thread pool
managed by the SLEETaskManager.

Listing 3-10 Pseudo code for scheduling a SLEETask

// m_sc holds the ServiceContext

m_taskMgr = m_sc.getSLEEContext().getTaskManager();

m_taskMgr.scheduleSLEETask(new MyTask)

SLEETimeManager
SLEE Time manager is responsible for managing system time and timer handling. Its possible to
schedule timers and get system time.

SLEEZombieObjectListener
Listener interface for handling state changes of zombie objects. When the zombie object is
reachable again the client listener will be notified. If the supervised object is not alive within
AssumedDeadTimeout the listener will also be notified.

Instead of using this interface, use the SuperVisedListListener interface, see
“SupervisedListListener” on page 3-16.

SLEEZombieObjectSupervisor
Class for supervising CORBA objects that are currently not reachable but may become available
in the future. Clients can use this utility class to handle the checking of when such an object
becomes active/reachable again. When the object is reachable the client listener will be notified.
If the supervised object is not alive within the specified time-out (or getAssumeDeadTimeout()
if time-out is not specified) the listener will also be notified.

Instead of using this class, use the SupervisedList class, see “SupervisedList” on page 3-15.

TaskChain
Used when tasks need to be executed in a given order.

In te ract ing w i th the SLEE and the SLEE Ut i l i t y Se rv ices

3-14 Extension SDK for WebLogic Network Gatekeeper

This interface is returned when scheduling the first task in a task chain using
SLEETaskManager.scheduleTaskChain. It can be used to add new tasks to the end of the chain.

SLEE utility classes
In com.incomit.slee there is a set of classes available. Below is a summary of the available
classes. Refer to the Javadoc for the SLEE for detailed information.

Alarm
See “Using the alarm service”.

LoadEvent
Definition of a load level event.

SLEECyclicIDManager
ID manager for retrieving a unique ID. The IDs will be unique for all SLEE instances using the
same database.

IDs will be reused when IDs of an int minus the most significant byte has been exceeded.

Listing 3-11 Below is pseudo code for how to get a unique ID

//m_sc holds the ServiceContext

int ID = m_sc.getSLEEContext().getCyclicIDManager().getID()

SLEEDBTable
Database table class. Can be used to check if table exists and that it has the desired format and to
create or replace the table. Used also for creating temporary tables.

SLEE services using the SLEE DB Manager to retrieve JDBC connections must use this class to
create its tables, to get privileges to use the table. See “Using the database” on page 3-18.

SLEE ut i l i t y c l asses

Extension SDK for WebLogic Network Gatekeeper 3-15

SLEECyclicIDManager
ID manager for retrieving a unique ID. The IDs will be unique for all SLEE instances using the
same database. The IDs are of type int.

IDs will be reused when IDs of a int minus the most significant byte has been exceeded.

SLEEIDManager
ID manager for retrieving a unique ID. The IDs will be unique for all SLEE instances using the
same database. The IDs are of type long.

IDs will be reused when IDs of a long minus the most significant byte has been exceeded.

SLEEGlobalCounterManager
The SLEE global counter manager provides an interface for maintaining global counters. A
global counter will be automatically updated across all SLEE instances in a system.

SLEEGlobalCounter
The SLEE global counter interface provides methods for incrementing and managing a global
counter. Note that increments of a counter may not be distributed to all instances immediately.
Updates will be performed globally every 10th increment of a specific counter or every 5th
second for all counters that have been updated less than 10 times during the last 5 second period.

SupervisedList
List holding supervised CORBA objects, that if they are unreachable is moved to a zombie object
supervisor list where they are “pinged” for a certain time before they are considered dead and
entirely removed from the list.

Listing 3-12 Pseudo code for creating a supervised list.

// m_sc holds the ServiceContext.

//listener implements the SupervisedListListener interface

SupervisedList m_supervisedList;

long timeBeforeDead = 10000; // Time given in millseconds

In te ract ing w i th the SLEE and the SLEE Ut i l i t y Se rv ices

3-16 Extension SDK for WebLogic Network Gatekeeper

m_supervisedList = new SupervisedList(m_sc.getSLEEContext(),

timeBeforeDead);

m_supervisedList.addListener(listener);

SupervisedListListener
Interface for receiving events about objects removed from a SupervisedList.

Listing 3-13 Pseudo code for listening to events from object s in a supervised list.

public class MyClass implements SupervisedListListener {

MyClass() {

}

public void objectDead(SupervisedCorbaObject o) {

// Object was removed due to zombie timeout.

// Remove any references to the object.

}

public void objectZombie(SupervisedCorbaObject o) {

// Object was declared a zombie and moved to zombie list.

}

public void objectLive(SupervisedCorbaObject o) {

// Object was declared alive and put back into the list again

}

}

OAM
All SLEE services that has parameters that needs to be configured in runtime must implement the
ServiceManageable interface.

OAM

Extension SDK for WebLogic Network Gatekeeper 3-17

The OAM operations are defined in IDL, and Java stubs are generated from this interface. This
means that the class that implements the OAM operations must extend the abstract class
generated from the IDL definition. This class is named <name of interface in IDL>POA.

For example if the interface is named AServiceOAM, the implementation must extend
AServiceOAMPOA. In the example below the implementation of the interface is in the class
AServiceOAM_impl.

Listing 3-14 Example of declaration of the OAM class

public class AServiceOAM_impl extends AServiceOAMPOA implements

ServiceManageable

Also, the IDL file defining the OAM interface must be packaged into the jar file for the software
module, in the root. There is a deployment descriptor in JAR file, which states the name of the
IDL file for the OAM interface and the class that implements the interface.

Listing 3-15 Part of the Example of deployment descriptor

...

<SERVICE_MANAGEABLE>

 com.my_company.my_plugin.AServiceOAM_impl

 <SERVICE_MANAGEABLE_IDL>

 AServiceOAM.idl

 </SERVICE_MANAGEABLE_IDL>

</SERVICE_MANAGEABLE>

...

Additional information is also defined in the deployment descriptor. The build files in the
templates are used for creating the deployment descriptors and to package them into the
deployable Jar file.

In te ract ing w i th the SLEE and the SLEE Ut i l i t y Se rv ices

3-18 Extension SDK for WebLogic Network Gatekeeper

Implementing OAM access control
To implement access control for OAM, there must be two methods for each OAM method. One
that is exposed in the OAM interface, and another one that checks if the OAM user has
appropriate privileges. The two methods are correlated by their name. So an OAM method with
the signature <method name>, must have a corresponding method with the signature <method
name>Allowed(...). In the latter method the privilege is checked. See example below.

Listing 3-16 Checking of an OAM method is permitted

public void setOverloadPercentage(int percentage)

....

public boolean setOverloadPercentageAllowed(int userLevel) {

 return(userLevel >= SLEEOAM.SEC_LEVEL_READ_WRITE);

 }

Using the database
The SLEE uses a DBMS that can be used by the application programmer. Support is built into
the framework for accessing the database using JDBC.

The SLEE allocates database connections that can be accessed from the SLEE Context. From the
SLEE Context you can retrieve a handle to the Database Manager, which is a singleton class that
controls access to the database. By default all users and SLEE services share the same database.
To get access to own tables, the tables must be created using the createSLEEDBTable()
method. That is, the tables cannot be created using SQL syntax.

This example shows how to create a temporary table, called mobile_users, with two columns
containing a user identity and its corresponding mobile subscription number. The table can be
used to, for example, sending SMS messages to a group of registered users. The
createTemporaryTable() method is called on service activation. The insertion of data through
the register() method can be done from a class implementing the ServiceAccessible
interface. To retrieve a list of all users that are currently registered, a convenience method called

Us ing the database

Extension SDK for WebLogic Network Gatekeeper 3-19

getSubscribers() is used. Finally, when the service is deactivated, the table is removed from
the database by calling the removeTemporaryTable() method.

For the purpose of the example, we will create a class called DbRegister.java, that takes one
argument in its constructor, a reference to the SLEE Service Context. The database manipulation
is done through the database manager, SLEEDBManager.

Listing 3-17 DbRegister.java -initiation and constructor

package example.helloslee;

import com.incomit.slee.*;

import java.sql.*;

import java.sql.*;

public class DbRegister {

private ServiceContext itsServiceContext = null;

 private SLEEDBManager itsDbManager = null;

// Constructor

 public DbRegister (ServiceContext aServiceContext) {

 itsServiceContext = aServiceContext;

 SLEEContext sc = itsServiceContext.getSLEEContext();

 itsDbManager = sc.getDBManager();

}

To create the temporary table, we will use the method createTemporaryTable(), that takes no
arguments. It uses the utility method createSLEEDBTable() that returns a SLEEDBTable,
which then is used to add the necessary columns, before physically creating the table in the
database. The arguments to addColumn specifies the column name, the data type, if the column
is used in the primary key, and if null values are allowed.

In te ract ing w i th the SLEE and the SLEE Ut i l i t y Se rv ices

3-20 Extension SDK for WebLogic Network Gatekeeper

Listing 3-18 DbRegister.java -method: createTemporaryTable

public void createTemporaryTable () {

 try {

Connection conn =

itsDbManager.getConnection();

try {

SLEEDBTable table =

itsDbManager.createSLEEDBTable("mobile_users");

table.addColumn("userName", "VARCHAR(20)", true, false);

table.addColumn("msisdn", "VARCHAR(28)", false, true);

if (!table.exists(conn)) {

table.create(conn);

}

}

catch(Exception e){

// Handle exception

}

finally {

if (conn!=null) {

conn.close();

}

}

 } catch (SQLException e) {

 // Handle exception

 }

 }

Us ing the database

Extension SDK for WebLogic Network Gatekeeper 3-21

To insert a new row in the table, we use the method register(), that takes a user name and a
mobile subscription number as arguments. It uses JDBC methods to create a statement and
execute the update towards the database. It is working towards a pre-allocated connection
resource that is served by the SLEE Database Manager.

Listing 3-19 DbRegister.java -method: register

public void register(String user, String msisdn) {

try {

Connection conn =

itsDbManager.getConnection();

try {

Statement stmt = conn.createStatement();

try {

stmt.executeUpdate("INSERT INTO " +

"mobile_users VALUES ('" +

user + "', '" + msisdn + "')");

catch (Exception e) {

//Handle exception

}

finally {

stmt.close();

}

catch (Exception e) {

//Handle exception

}

finally {

if (conn!=null) {

conn.close();

In te ract ing w i th the SLEE and the SLEE Ut i l i t y Se rv ices

3-22 Extension SDK for WebLogic Network Gatekeeper

}

}

} catch (SQLException ex) {

 // Handle exception

 }

}

As a convenience service, we provide a method that return all registered subscribers. The get-
Subscribers() methods takes no arguments, and executes a SQL SELECT query towards the
database. The Result Set is converted to a Hashtable and returned to the calling method.

Listing 3-20 DbRegister.java -method: getSubscribers

public Hashtable getSubscribers () {

Connection conn = itsDbManager.getConnection();

 Statement stmt;

 ResultSet rs;

try {

stmt = conn.createStatement();

Hashtable table = new Hashtable();

String query = "SELECT userName, msisdn " +

"FROM mobile_users";

rs = stmt.executeQuery(query);

while (rs.next()) {

table.put(rs.getString(1), rs.getString(2));

}

return table;

Us ing the database

Extension SDK for WebLogic Network Gatekeeper 3-23

}

catch (SQLException e) {

// Handle exception

}

finally {

if (rs!=null) {

rs.close();

}

if (stmt!=null){

stmt.close();

}

if (conn!=null) {

conn.close();

}

}

 }

Finally, when the table is no longer needed, it is removed from the database. For this the method
removeTemporaryTable() is used. It also uses a connection resource from the SLEE Database
Manager, and a SQL DROP TABLE command in its JDBC execute update statement.

Listing 3-21 DbRegister.java -method: removeTemporaryTable

public void removeTemporaryTable () {

 try {

Connection conn =

itsDbManager.getConnection();

Statement stmt;

In te ract ing w i th the SLEE and the SLEE Ut i l i t y Se rv ices

3-24 Extension SDK for WebLogic Network Gatekeeper

try {

stmt = conn.createStatement();

stmt.executeUpdate("DROP TABLE mobile_users");

}

catch (Exeption e) {

// Handle exception

}

finally {

if (stmt!=null) {

stmt.close();

}

if (conn!=null) {

conn.close();

}

}

 } catch (SQLException e) {

 // Handle exception

 }

 }

}

Using the alarm service
Alarms in the SLEE are handled by a dedicated alarm service. All alarms reported from an
application will be reported to an alarm log in the database. There is only one table in the database
for logging alarms, which means that all applications using the alarm service share the same table
in the database.

Using the a l arm se rv ice

Extension SDK for WebLogic Network Gatekeeper 3-25

Alarms are critical events that need corrective action. If an application raises too many alarms, it
is taken out of service. The maximum number of allowed critical alarms for an application can
be configured in the deployment descriptor.

In this example we will explore how to set up a reference to the alarm service, and how to
generate alarms that will be stored in the alarm log.
An alarm record contains the following information:

The method fireAlarm() is used to report an alarm, and has the following signature:

public void fireAlarm(byte[] source, int severity, int identifier, byte[]
info)

The following code shows an example how to set up and use the alarm service. It is in the form
of an utility class that uses the Service Context to retrieve a handle to the alarm service. The
method raiseAlarm() fires a simple alarm that will be written to the system alarm table in the

Field Description

Alarm Number An alarm identifier, for example the type of the alarm.

For extensions, the alarm number range must be:

500 000 to 999 999.

Severity The severity of the alarm. Pre-defined constants are
defined in the AlarmService interface, and should
be used:

AlarmService.MINOR

AlarmService.WARNING

AlarmService.MAJOR

AlarmService.CRITICAL

Service Instance Name The source of the alarm, that is, the unique name for
this service. Retrieved by using
getInstanceName() on the ServiceContext
object.

Time and Date The time-stamp will be generated by the system when
receiving an alarm

Additional Information Any other information that can be used to inform about
the alarm. For example the stack trace can be included,
if available.

In te ract ing w i th the SLEE and the SLEE Ut i l i t y Se rv ices

3-26 Extension SDK for WebLogic Network Gatekeeper

database. The method takes one argument of the type Throwable, and will include the stringified
error message in the alarm log.

Listing 3-22 Alarm.java

package example.helloslee;

import com.incomit.slee.*;

import com.incomit.slee.alarm.*;

public class Alarm {

 private ServiceContext itsServiceContext;

 private AlarmService itsAlarmService;

 private int alarmNumber = 4711;

 public Alarm (ServiceContext aServiceContext) {

 itsServiceContext = aServiceContext;

 SLEEContext sc = itsServiceContext.getSLEEContext();

 itsAlarmService = sc.getAlarmService();

 }

 public void raiseAlarm (Throwable e) {

 itsAlarmService.fireAlarm(itsServiceContext

.getInstanceName().getBytes(),

 AlarmService.MAJOR,

 alarmNumber,

Us ing the even t se rv ice

Extension SDK for WebLogic Network Gatekeeper 3-27

 e.toString().getBytes());

 }

}

Using the event service
Events in the SLEE are handled by a dedicated Event Log service. All events generated by an
application will be logged to an event log in the database. There is only one table in the database
for logging events, which means that all applications using the Event Log Service share the same
table in the database.

Events are expected events of importance to the operator.

In this example we will explore how to set up a reference to the Event Log Service, and how to
generate events that will be stored in the event log.

An event record contains the following information:

Field Description

Event Number An event identifier, for example the type of the event

For extensions, the event number range must be:

500 000 to 999 999.

In te ract ing w i th the SLEE and the SLEE Ut i l i t y Se rv ices

3-28 Extension SDK for WebLogic Network Gatekeeper

The method logEvent() is used to report an event, and has the following signature:

public void logEvent(byte[] source,int identifier,int level,byte[] info)

The following code shows an example how to set up and use the Event Log Service. It is in the
form of an utility class that uses the Service Context to retrieve a handle to the Event Log Service.
The method storeEvent() logs a simple event that will be written to the system event log table
in the database.

Listing 3-23 Event.java

package example.helloslee;

import com.incomit.slee.*;

import com.incomit.slee.event.*;

public class Event {

Level The level of the event. Pre-defined constants are
defined in the EventLogService interface, and
should be used:

EventLogService.LOW

EventLogService.MEDIUM

EventLogService.HIGH

Service Instance Name The source of the event, that is, the unique name for
this service. Retrieved by using
getInstanceName() on the ServiceContext
object.

Time and Date The time-stamp will be generated by the system when
receiving an event

Additional Information Any other information that can be used to inform about
the event.

Field Description

Us ing the charg ing se rv ice

Extension SDK for WebLogic Network Gatekeeper 3-29

 private ServiceContext itsServiceContext;

 private EventLogService itsEventService;

 private int eventNumber = 42;

 private String message = "Logged message";

 public Event (ServiceContext aServiceContext) {

 itsServiceContext = aServiceContext;

 SLEEContext sc = itsServiceContext.getSLEEContext();

 itsEventService = sc.getEventLogService();

 }

 public void storeEvent () {

 itsEventService.logEvent(itsServiceContext

.getInstanceName().getBytes(),

 EventLogService.MEDIUM,

 eventNumber,

 message.getBytes());

 }

}

Using the charging service
The charging service works in a similar way as the event service, the difference is the information
that will be stored in the database. Each SLEE service will have a dedicated instance of the
charging service. The charging service is retrieved via the Service Context.

The signature of the logChargingInfo() method looks like this:

In te ract ing w i th the SLEE and the SLEE Ut i l i t y Se rv ices

3-30 Extension SDK for WebLogic Network Gatekeeper

public void logChargingInfo(ChargingInfo info)

The ChargingInfo class is a container with fields and corresponding set-methods for all
charging-specific data. Before applying the logChargingInfo() method, all mandatory
parameters must be set. Parameters that are not set will cause a null value to be written to the
Charging Log. The methods available for the ChargingInfo class are shown in the table below.
All fields of type long that represents a time is in milliseconds. A start or stop time is represented
as the number of milliseconds since January 1, 1970 00:00:00.000 GMT.

Method Parameter Description

addAdditionalInfo (String xmlTag,
String xmlValue)

Adds user defined additional charging
parameters. These parameters will be
saved in the additional_info field
of the charging database as XML
elements. This method can be called more
than once to add more parameters.

clear () Clears all data and restores the default
values in the ChargingInfo instance

setAmountOfUsage (long
amountOfUsage)

Sets the used amount. Used when the
charging is not time dependent, for
example, flat rate services.

setCompletionStatus (int status) Sets transaction completion status.
Indicates if the transaction was completed
or not. If the transaction is divided into
parts, the completion status also indicates
if all transaction parts have been sent.The
class defines constants that should be
used:

ChargingInfo.
COMPLETION_STATUS_COMPLETED

ChargingInfo.
COMPLETION_STATUS_PARTIAL

ChargingInfo.
COMPLETION_STATUS_FAILED

ChargingInfo.COMPLETION_STAT
US_POLICY_REJECTED

Us ing the charg ing se rv ice

Extension SDK for WebLogic Network Gatekeeper 3-31

The following example will show how to obtain a reference to the charging service and create a
Charging Data Record in the charging table in the database. The class is in the form of a helper,
that is created at the start of service usage for a specific subscriber. When the subscriber stops

setConnectTime (long
connectTime)

Sets a timestamp telling when the
destination party responded

setDestinationParty (String
destinationParty
)

Sets the destination party's address

setDurationOfUsage (long
durationOfUsage)

Sets the total time the service used
network resources

setEndOfUsage (long endOfUsage) Sets a timestamp telling when the service
stopped using network resources

setOriginatingParty (String
originatingParty
)

Sets the originating party's address

setServiceName (String
serviceName)

Sets the name of the used service

setSessionID (long sessionId) Sets the session ID. The session ID is the
connection between related charging
transactions.

setTransactionPart
Number

(int
transactionPartN
umber)

Sets the transaction part number. Used if
the transaction is divided into different
parts. Increment the number by one for
each transaction part.

setStartOfUsage (long
startOfUsage)

Sets a timestamp telling when the service
started using network resources

setUserID (String
userId)

Sets the ID of the application that has used
the service

Method Parameter Description

In te ract ing w i th the SLEE and the SLEE Ut i l i t y Se rv ices

3-32 Extension SDK for WebLogic Network Gatekeeper

using the service, the createChargingRecord() method is called to produce the charging
record. The class uses the timeManager utility service from the com.incomit.time package
to retrieve the system time at start and stop of service usage.

Listing 3-24 ChargingHelper.java

package example.helloslee;

import com.incomit.slee.*;

import com.incomit.slee.time.*;

import com.incomit.slee.charging.*;

public class ChargingHelper {

 private ServiceContext itsServiceContext = null;

 private ChargingService itsChargingService = null;

 private SLEETimeManager itsTimeManager = null;

 private ChargingInfo itsInfo;

 public ChargingHelper (ServiceContext aServiceContext,

 int aSessionId,

 String aUserId) {

 itsServiceContext = aServiceContext;

 itsChargingService = itsServiceContext.getChargingService();

 SLEEContext sc = itsServiceContext.getSLEEContext();

 itsTimeManager = sc.getTimeManager();

 itsInfo = itsChargingService.createChargingInfo();

 itsInfo.setSessionID(aSessionId);

 itsInfo.setServiceName(itsServiceContext.getName());

Us ing the t ime se rv ice

Extension SDK for WebLogic Network Gatekeeper 3-33

 itsInfo.setUserID(aUserId);

 itsInfo.setStartOfUsage(itsTimeManager.getTime());

 itsInfo.addAdditionalInfo("additionalinfo", "testvalue");

 }

 public void createChargingRecord () {

 itsInfo.setEndOfUsage(itsTimeManager.getTime());

 itsInfo.setCompletionStatus(ChargingInfo

 .COMPLETION_STATUS_COMPLETED);

 itsInfo.addAdditionalInfo("moreinfo", "someothervalue");

 try {

 itsChargingService.logChargingInfo(info);

 } catch(ChargingException ce) {

 //Handle Exception

 }

 }

}

Fields in the ChargingInfo object that is not set will use default or null values. The call to
setCompletionStatus() is not necessary, since status COMPLETED will be used by default.

Using the time service
The time service was introduced in the previous section. Except from using the Time Manager
class to retrieve the system time, it also contains functionality to handle timers.

With the use of timers, the application programmer can protect programs from hanging and avoid
dead-lock situations. For example, when requesting resource over a high latency network, the
programmer can include a timer with a certain treshold value. If the network resource is

In te ract ing w i th the SLEE and the SLEE Ut i l i t y Se rv ices

3-34 Extension SDK for WebLogic Network Gatekeeper

unavailable, the timer will expire, and the program can continue, taking any actions necessary to
report the faulty resource etc. If the resource is available, the timer is reset and execution
continues normally.

With periodic timers, events can be generated repeatedly, with regular intervals. For example, an
application can read the contents of a database table containing subscription numbers, and use the
result to submit a group SMS.

Also, it is recommended to create a new object reference for each timer to be used. If the same
reference is used and you want to cancel a timer, any of the timers using the same object reference
could be cancelled.

Listing 3-25 Timer.java

package example.helloslee;

import com.incomit.slee.*;

import com.incomit.slee.time.*;

public class Timer {

 private ServiceContext itsServiceContext = null;

 private SLEETimeManager itsTimeManager = null;

 private String timerRef;

Object synchObject = new Object();

 public Timer (ServiceContext aServiceContext,

 String reference)

 {

 itsServiceContext = aServiceContext;

 SLEEContext sc = itsServiceContext.getSLEEContext();

Us ing the t ime se rv ice

Extension SDK for WebLogic Network Gatekeeper 3-35

 itsTimeManager = sc.getTimeManager();

 timerRef = reference;

 }

 public void removeTimer () {

 itsTimeManager.cancelTimer(timerRef);

 }

 public void startTimer () {

 itsTimeManager.scheduleTimer(false,

 10 * 1000, // 10 seconds

 new MyTimerListener(this),

 timerRef);

}

}

Listing 3-26 Timer.java -method: MyTimerListener

class MyTimerListener implements SLEETimerListener {

 private Timer timer = null;

 MyTimerListener(Timer timer) {

 this.timer = timer;

 }

 public void processTimer(Object reference) {

In te ract ing w i th the SLEE and the SLEE Ut i l i t y Se rv ices

3-36 Extension SDK for WebLogic Network Gatekeeper

synchronized (timer.synchObject) {

timer.synchObject.notify();

 }

 }

}

Listing 3-27 PeriodicTimer.java

package example.helloslee;

import com.incomit.slee.*;

import com.incomit.slee.time.*;

import com.incomit.slee.event.*;

public class PeriodicTimer {

 private ServiceContext itsServiceContext = null;

 private SLEETimeManager itsTimeManager = null;

 private EventLogService itsEventService;

 private String timerRef = "periodic timer";

 public static final long PERIOD = 2000;

 Object synchObject = new Object();

Us ing the t ime se rv ice

Extension SDK for WebLogic Network Gatekeeper 3-37

Listing 3-28 PeriodicTimer.java (continued)

 public PeriodicTimer (ServiceContext aServiceContext) {

 itsServiceContext = aServiceContext;

 SLEEContext sc = itsServiceContext.getSLEEContext();

 itsEventService = sc.getEventLogService();

 itsTimeManager = sc.getTimeManager();

 }

 public void doPeriodicTask (int cnt) {

 String message = "This is periodic task " + cnt;

 itsEventService.logEvent(itsServiceContext

 .getInstanceName().getBytes(),

 EventLogService.LOW,

 cnt,

 message.getBytes());

 }

 public void removeTimer () {

 itsTimeManager.cancelTimer(timerRef);

 }

public void startTimer () {

 itsTimeManager.scheduleTimer(true,

 period,

 new MyTimerListener(this, 10),

 timerRef);

 try {

In te ract ing w i th the SLEE and the SLEE Ut i l i t y Se rv ices

3-38 Extension SDK for WebLogic Network Gatekeeper

 synchronized (synchObject) {

 synchObject.wait();

 }

 }

 catch (java.lang.InterruptedException ie) {

 // Handle exception

 }

 }

}

Listing 3-29 PeriodicTimer.java (continued)

public class MyTimerListener implements SLEETimerListener {

private int counter = 0;

private int noOfEvents;

private PeriodicTimer timer;

 MyTimerListener(PeriodicTimer timer, int noOfEvents) {

 this.timer = timer;

this.noOfEvents = noOfEvents;

 }

 public void processTimer(Object reference) {

if (counter < noOfEvents) {

timer.doPeriodicTask(counter);

counter++;

Us ing the t race se rv ice

Extension SDK for WebLogic Network Gatekeeper 3-39

 }

else {

synchronized (timer.synchObject) {

timer.synchObject.notify();

//do stuff

}

 }

 }

}

Using the trace service
The trace service enables to trace execution of a program. It can be used, for example, when a
service is suspected to be erroneous. The trace output is written to file. For performance reasons
it is recommended that the application performs a check on the trace active flag before calling the
logTrace method. The trace file that is generated is service specific.

All services using the trace service will have an associated buffer class. This class will buffer all
trace messages from the service until the size of the buffer reach the specified size setting and
then flush the buffer to a file.

The information that gets written to the trace log is controlled by using trace filter groups. It is
possible to turn on and off different pre-defined trace groups at runtime by supplying a new filter
value. The following filters are available:

Filter Description Value

METHOD_IN Log trace at entry of method. 1

METHOD_OUT Log trace at exit of method. 2

USERDEF_1 User defined trace (DEBUG) 4

USERDEF_2 User defined trace (INFO) 8

USERDEF_3 User defined trace (WARNING) 16

In te ract ing w i th the SLEE and the SLEE Ut i l i t y Se rv ices

3-40 Extension SDK for WebLogic Network Gatekeeper

To specify which groups to include in the trace log, the values for the different filters are added.
For example, if you want to include the entry and exit of a method, as well as information in user
defined trace group 4, you should specify a filter value of 35:

1 + 2 + 32, or METHOD_IN + METHOD_OUT + USERDEF_4

It is not recommended, for performance reasons, to enter a filter value equal to 0 to disable trace
logging. Instead the trace for that service should be deactivated.

The code example below shows how to set up a reference to the trace service. It then defines a
set of methods that shows how to use the trace methods available in the API. The methods, along
with initializations, will be executed from the trace() method, which is defined at the end of
the example.

Listing 3-30 Tracer.java

package example.helloslee;

import com.incomit.slee.*;

USERDEF_4 User defined trace (ERROR) 32

USERDEF_5 User defined trace 64

USERDEF_6 User defined trace (RACE)

This trace level shall be used for measuring the time from when
entering a certain code segment to a existing ac certain code
segment. Normally a code segment is from when entering a module
to exiting a module. The elapsed time shall be provided in the trace.

128

RAW_DATA Log any data 256

EXCEPTION_LOG Writes trace information at exceptions that breaks the execution
flow.

512

TRAFFIC FLOW Writes trace information when traffic related requests (both
application and network initiated) are received by and sent from the
service.

1024

Filter Description Value

Us ing the t race se rv ice

Extension SDK for WebLogic Network Gatekeeper 3-41

import com.incomit.slee.trace.*;

public class Tracer {

 private ServiceContext itsServiceContext;

 private TraceLogService itsTraceService;

 public Tracer (ServiceContext aServiceContext) {

 itsServiceContext = aServiceContext;

itsTraceService = itsServiceContext.getTraceService();

 }

The call to the ordinaryTrace() method will cause the trace to attempt a trace of the method
entry and exit. It uses the API methods logTraceIntoMethod() and
logTraceOutOfMethod() with the following signatures:

public void logTraceIntoMethod(java.lang.String className,

 java.lang.String methodName)

public void logTraceOutOfMethod(java.lang.String className,

 java.lang.String methodName)

The parameter className denotes the current, defining class, and methodName is the name of
the method in which the statement is included. The calls to logTraceIntoMethod() and
logTraceOutOfMethod() will always cause its information to be included in its corresponding
trace group.

Listing 3-31 Tracer.java (continued) -Example of method in and method out trace

public void methodInmethodOut() {

if (itsTraceService.isGroupTraceActive(TraceLogService.METHOD_IN)) {

itsTraceService.logTraceIntoMethod("Tracer",

In te ract ing w i th the SLEE and the SLEE Ut i l i t y Se rv ices

3-42 Extension SDK for WebLogic Network Gatekeeper

"methodInmethodOut");

}

// Perform method-specific functionality

if (itsTraceService.isGroupTraceActive(TraceLogService.METHOD_OUT)) {

itsTraceService.logTraceOutOfMethod("Tracer",

"methodInmethodOut");

}

}

The call to the userdef1Trace() method will cause the trace to attempt a trace on user defined
level 1. It uses the API methods logTrace() with the following signature:

public void logTrace(java.lang.String className,

java.lang.String methodName,

int traceGroup,

java.lang.String info)

The information from logTrace() can be included in any trace group (the value of
traceGroup). logTrace() also allows the inclusion of an arbitrary string in the generated trace
log message.

Listing 3-32 Tracer.java (continued) -Example of userdef 1 trace

public void userdef1Trace () {

if (itsTraceService.isGroupTraceActive(TraceLogService.USERDEF_1))

{

for (int i = 0; i < 10; i++) {

itsTraceService.logTrace("Tracer",

"userdef1Trace",

Us ing the t race se rv ice

Extension SDK for WebLogic Network Gatekeeper 3-43

TraceLogService.USERDEF_1,

"Trace Log Record " + i);

}

}

}

The call to the traceFaultyMethod() will generate an arithmetic exception, which will be
logged in the trace log. To facilitate the tracing of exceptions, the API offers the
logTraceException() method. It has the following signature:

public void logTraceException(java.lang.String className,

 java.lang.String methodName,

 int traceGroup,

 java.lang.String info,

 java.lang.Throwable exception)

The className and methodName are the same as for the logTrace() method. The trace log
message will be included in the trace group corresponding to the value of the traceGroup
parameter. Information about the exception, the exception stack trace from the exception
object, will also be included in the trace log message, along with an arbitrary string (info).

Listing 3-33 Tracer.java (continued) -example of exception trace

 public void traceFaultyMethod () {

 try {

 int a = 42;

 int b = 0;

 int c = a / b;

 } catch(ArithmeticException ae) {

if (itsTraceService.isExceptionTraceActive()) {

In te ract ing w i th the SLEE and the SLEE Ut i l i t y Se rv ices

3-44 Extension SDK for WebLogic Network Gatekeeper

itsTraceService.logTraceException("Tracer",

 "traceFaultyMethod",

TraceLogService.EXCEPTION_LOG,

Division by zero!",

ae);

}

 }

 }

 }

The traceRawData() method below shows how to trace any data in the form of a byte array. For
this, the API offers the logTrace() method with the following signature:

public void logTrace(byte[] buf,

 int off,

 int len)

The buf parameter is a byte array, off indicates the starting position in this buffer, and len how
many bytes from the buffer that will be included in the trace log message. The call to logTrace
below will cause a byte array representing the string “rawdata 1 2 3” being included in the
trace log.

Listing 3-34 Trace.java (continued) -example of using raw data trace

 public void traceRawData () {

 if (itsTraceService.isGroupTraceActive(TraceLogService.RAW_DATA)) {

String rawData = "Testing rawdata 1 2 3";

itsTraceService.logTrace(rawData.getBytes(),

 8,

 rawData.length());

Us ing the t race se rv ice

Extension SDK for WebLogic Network Gatekeeper 3-45

 }

 }

When exceptions occur, but there are alternative execution paths can be used, so the request still
can be executed, the method logTraceException(...) should be used according to the example
below. itsTraceService is the trace service.

Listing 3-35 Example of use of logTraceException

if (itsTraceService.isExceptionTraceActive()) {

 m_ts.logTraceException(CLASSNAME,

 METHODNAME,

 TraceLogService.EXCEPTION_LOG,

 e.getMessage(),

 e);

 }

To trace the traffic execution flow, the method logTrafficFlowTrace(...) shall be used. It shall
only be used for the traffic interfaces. A traffic flow context should be provided, with information
on which Service Provider and application that performed the request. In the example below,
m_trafficFlowContext contains the Service Provider ID and application ID of the requester in
the format m_trafficFlowContext = applicationId + "\\" + serviceProviderId;

Listing 3-36 .Example of use of logTrafficFlowTrace

if (m_ts.isTrafficFlowTraceActive()) {

Object[] params = {listener, data, address,

serviceCode,

In te ract ing w i th the SLEE and the SLEE Ut i l i t y Se rv ices

3-46 Extension SDK for WebLogic Network Gatekeeper

requesterID};

m_ts.logTrafficFlowTrace(CLASSNAME,

METHODNAME,

m_trafficFlowContext,

params);

}
d

Extension SDK for WebLogic Network Gatekeeper 4-1

C H A P T E R 4

General sequence diagrams

Below are a set of generalized sequence diagrams describing the call flow through the Network
Gatekeeper. The flows are described from an end-to-end perspective, from a northbound,
application-facing, Web Service interfaces to a plug-in.

The following sections contain sequence diagrams:

Asynchronous application-initiated

Synchronous application-initiated

Network-triggered

Asynchronous application-initiated
Below is a sequence showing the flow of an arbitrary method request through the Network
Gatekeeper. The method call is performed asynchronous from the point-of-view of the
application, and the request is performed asynchronous trough the Network Gatekeeper. Requests
must always be asynchronous inside Network Gatekeeper, otherwise resources will be reserved
for too long from an end-to-end perspective.

Genera l sequence di agrams

4-2 Extension SDK for WebLogic Network Gatekeeper

Figure 4-1 Asynchronous application-initiated sequence

1. An application performs a method request (SOAP) towards the Web Services
implementations (WESPA SC). The implementation of the WESPA SC is deployed in the
Embedded Tomcat server.

2. The methods request is propagated to the stateless adapter (SESPA SC). This is a normal
Java request, since SESPA has registered its interface, all classes, and all objects in the
SLEE Common Loader.

3. A listener class is instantiated. This object is provided as a call-back object when the
method request is propagated to the ESPA SC. This method call is using CORBA.

Synchronous app l i ca t i on- in i t ia t ed

Extension SDK for WebLogic Network Gatekeeper 4-3

4. In the ESPA SC, a request to evaluate (eval) the request is performed towards the Policy
service. This request is called a Policy Enforcement Point (PEP). Two scenarios are possible
after policy has evaluated the request:

a. The method request is denied by the Policy Service, and a PolicyException shall be
thrown towards the SESPA SC. The exception will be propagated to WESPA SC and
finally to the application.

b. The method request is accepted by the Policy Service. The parameters feed into the
evaluation requests are returned. These may be altered by the Policy Service so the
original request parameters shall be updated with the ones received from the policy
evaluation.

5. A resource task is scheduled by calling scheduleResourceTask on the plug-in manager.

6. ScheduleResourceTask returns immediately and the execution thread returns back to the
SESPA SC, the WESPA SC, and finally to the application.

7. When the Plug-in manager has found a suitable plug-in and a free thread is available from
the pool of threads. The SLEE Tread Pool Manager performs doTask(...) on the call-back
listener object provided in the call to scheduleResourceTask.

8. When doTask is called, a listener object is created.

9. The request is propagated to the plug-in, with the newly created listener call-back object
sent as an argument.

10. The plug-in performs the protocol specifics related to the request. Illustrated here is an
asynchronous request, so the operation toward the network node is returned immediately,
but the result of the operation will be received later on.

11. When the response to the request reaches the plug-in, it propagates the response to the
ESPA SC listener.

12. When the SC has received the response it creates a CDR using the SLEE Charging service.

13. The response is propagated from the ESPA SC listener to the SESPA listener.

14. The SESPA listener propagates the response to the WESPA SC, which propagates the
response to the application.

Synchronous application-initiated
Below is a sequence showing the flow of an arbitrary method request through the Network
Gatekeeper. The method call is performed synchronous from the point-of-view of the application,

Genera l sequence di agrams

4-4 Extension SDK for WebLogic Network Gatekeeper

although the request is not performed synchronous trough the Network Gatekeeper. Requests
must always be asynchronous inside Network Gatekeeper, otherwise resources will be reserved
for too long from an end-to-end perspective.

The synchronization is performed in the SESPA layer.

Figure 4-2 Synchronous application-initiated sequence

Synchronous app l i ca t i on- in i t ia t ed

Extension SDK for WebLogic Network Gatekeeper 4-5

1. An application performs a method request (SOAP) towards the Web Services
implementations (WESPA SC). The implementation of the WESPA SC is deployed in the
Embedded Tomcat server.

2. The methods request is propagated to the stateless adapter (SESPA SC). This is a normal
Java request. Since SESPA register its interface, all classes, and all objects in the SLEE
Common Loader.

3. A listener class is instantiated. This object is provided as a call-back object when the
method request is propagated to the ESPA SC. This method call is using CORBA.

4. In the ESPA SC, a request to evaluate (eval) the request is performed towards the Policy
service. This request is called a Policy Enforcement Point (PEP). Two scenarios are after
policy has evaluated the request:

a. The method request is denied by the Policy Service, and a PolicyException shall be
thrown towards the SESPA SC. The exception will be propagated to WESPA SC and
finally to the application.

b. The method request is accepted by the Policy Service. The parameters feed into the
evaluation requests are returned. These may be altered by the Policy Service so the
original request parameters shall be updated with the ones received from the policy
evaluation.

5. A resource task is scheduled by calling scheduleResourceTask on there plug-in manager.

6. ScheduleResourceTask returns immediately and the execution thread returns back to the
SESPA SC.Where SESPA waits for the response to the request to arrive to the listener.

7. When the Plug-in manager has found a suitable plug-in and a free thread is available from
the pool of threads. doTask is performed on the call-back listener object provided in the call
to scheduleResourceTask.

8. When doTask is called, a listener object is created.

9. The request is propagated to the plug-in, with the newly created listener call-back object
sent as an argument.

10. The plug-in performs the protocol specifics related to the request. Illustrated here is an
asynchronous request, so the operation toward the network node is returned immediately,
but the result of the operation will be received later on.

11. When the response to the request reaches the plug-in, it propagates the response to the ESP
A SC listener.

Genera l sequence di agrams

4-6 Extension SDK for WebLogic Network Gatekeeper

12. When the SC has received the response it creates a CDR using the SLEE Charging service.

13. The response is propagated from the ESPA SC listener to the SESPA listener.

14. The SESPA listener performs a notify on the listener, and thus returning releasing the object
previously set in state wait. The response is finally returned to the application through the
SESPA SC and the WESPA SC.

Network-triggered
Below is a sequence showing the flow of an arbitrary method network triggered request through
the Network Gatekeeper.

Before receiving and forwarding requests originating from the network to an application, the
application must register to notifications for the event in question.

Network-t r iggered

Extension SDK for WebLogic Network Gatekeeper 4-7

Figure 4-3 Network-triggered sequence

Registering the listener
1. An application performs a method request (SOAP) towards the Web Services

implementations (WESPA SC). The implementation of the WESPA SC is deployed in the
Embedded Tomcat server. The method request (addListener) provides an URL to an
end-point, where the application has implemented the Web Service that is used by Network
Gatekeeper not notify the application about network-initiated events.

Genera l sequence di agrams

4-8 Extension SDK for WebLogic Network Gatekeeper

2. The request to add the listener is propagated to the stateless adapter (SESPA SC). This is a
regular Java request. Since SESPA register its interface, all classes, and all objects in the
SLEE Common Loader.

3. A listener class is instantiated. This object is provided as a call-back object when the
method request is propagated to the ESPA SC. This method call is using CORBA.

4. In the ESPA SC, a request to evaluate (eval) the request is performed towards the Policy
service. This request is called a Policy Enforcement Point (PEP). Two scenarios are after
policy has evaluated the request:

a. The method request is denied by the Policy Service, and a PolicyException shall be
thrown towards the SESPA SC. The exception will be propagated to WESPA SC and
finally to the application.

b. The method request is accepted by the Policy Service. The parameters feed into the
evaluation requests are returned. These may be altered by the Policy Service so the
original request parameters shall be updated with the ones received from the policy
evaluation.

5. The ESPA SC call getResourceCtx on the ResourceDiscovery interface in the plug-in
manager. The type of plug-in requested is provided together with a property that asks for if
the plug-in is capable of handling network initiated traffic. A plug-in is returned.

6. The ESPA SC updates the database with the reference and distributes the reference to other
ESPA SCs.

7. An ID for the listener is returns to the SESPA SC, which also updates the database with the
references and distributes the references to other SESPA SCs.

8. The ID is returned to the Application. This ID is used to when removing the listener.

9. When a plug-in has been chosen, the plug-in manger invokes addListener on the plug-in,
which starts to listen on network-initiated events. As an alternative there can be one listener
in the ESPA SC, and the plug-in distributes all incoming events to this listener. The
registration of the listener should be performed when the ESPA SC becomes activated.

Handling incoming events
10. An network-initiated event is routed to the plug-in.

Network-t r iggered

Extension SDK for WebLogic Network Gatekeeper 4-9

11. The plug-in queries the SC manager for information on which ESPA SCs that has registered
for notifications on the event, using the method getSCSCtx on the SCSDiscovery interface.
The parameters provided are matched to the parameters given when the listener was
created.

12. ScheduleResourceTask returns immediately and the execution thread returns back to the
SESPA SC.Where SESPA waits for the response to the request to arrive to the listener.

13. A list of matching ESPA SCs is returned, and the plug-in invokes a method on the ESPA
SC, in this case the method called is notify. Which methods to call is specific to the SC.

14. The ESPA SC tries to find all registered listeners in SESPA.

15. When a listener is found, the method request is propagated to the SESPA SC listener which
performs the charging specifics.

16. The method request is propagated to the WESPA SC, which will perform a request to the
application.

Genera l sequence di agrams

4-10 Extension SDK for WebLogic Network Gatekeeper

Extension SDK for WebLogic Network Gatekeeper 5-1

C H A P T E R 5

Frameworks

The following sections contain descriptions of the frameworks used by extensions to WebLogic
Network Gatekeeper:

Interacting with the SLEE

Web Services framework

Stateless adapter framework

Service capability framework

Plug-in framework

All software modules executing as SLEE services interacts with the SLEE. The Web Services
framework is used when a software module implements or uses a a Web Service, in both these
cases the software module executes as a web application in Embedded Tomcat. The stateless
adapter framework is used by the SESPA modules, while the Service capability framework is
used by the ESPA modules. The plug-in framework is used by the plug-ins for interacting with
the plug-in manager.

Interacting with the SLEE
The framework for interacting with the SLEE is described in “Interacting with the SLEE and the
SLEE Utility Services”.

Frameworks

5-2 Extension SDK for WebLogic Network Gatekeeper

Web Services framework

Retrieving the login ticket from the SOAP Header
The login ticket represents a login from an application. The login ticket is provided when the
application logs in. The ticket shall be provided in the SOAP header of every request the
application makes towards Network Gatekeeper.

The login ticket is provided in the WSSE part of the SOAP header as illustrated below. In this
header, the application login user ID is also provided.

Listing 5-1 WSSE header in SOAP Header

<wsse:Security xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/07/secext">

 <wsse:UsernameToken
xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/07/secext">

 <wsse:Username xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/07/secext">

 domain_user@app_domain_1.default_provider

 </wsse:Username>

 <wsse:Password xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/07/secext"
Type="wsse:PasswordText">

 app:73183493944772289

 </wsse:Password>

 </wsse:UsernameToken>

 </wsse:Security>

The login user ID is found in the <wsse:Username> tag, in the form, <Application Instance
group>@<Application Account ID>.<Service Provider ID>. The login ticket is found in the
<wsse:Password> tag in the form app:<login Ticket>.

The SOAPHeaderHandler is a utility class in com.bea.wespa.util.SOAPHeaderHandler.
The login ticket is provided as a parameter in each request from the WESPA SC to the SESPA
SC, see example below.

Web Se rv ices f ramework

Extension SDK for WebLogic Network Gatekeeper 5-3

Listing 5-2 Calling a SESPA method

returnValue = m_serviceCapability.myMethod(

m_SOAPHeaderHandler.getCurrentSessionTicket(),

endpoint,

data,

address,

serviceCode,

requesterID);

In the example, m_SOAPHeaderHandler is instantiated from the SOAP header handler utility.

See “Stateless adapter framework” for a description on how SESPA implements the method and
resolves a an ESPA Manager form the login ticket.

Interworking with the stateless adapters (SLEE common
loader)
In order for a WESPA SC to use an object in SESPA it is necessary to use the SLEE Common
Loader. This section will outline how to use an object in SESPA, while “Stateless adapter
framework” describes how the class is registered and the object is loaded.

A WESPA SC must know under which name the object is registered in the SLEE Common
loader.

Listing 5-3 Obtain a reference to the interfaces to a Stateless Adapter (SESPA SC)

try {

if (m_serviceCapability == null) {

Object obj = SleeCommonLoader.getInstance().getObject(
OBJ_SESPA_MY_SERVICE_CAPABILITY);

m_serviceCapability =
(com.incomit.sespa.myservicecapability.MyServiceCapability) obj;

Frameworks

5-4 Extension SDK for WebLogic Network Gatekeeper

}

} catch (Throwable t) {

....

}

The SLEE Common Loader is queried for the interface object registered under the name
OBJ_SESPA_MY_SERVICE_CAPABILITY. The returned object is casted to the correct class.

Since the SESPA SC uses methods in the interface exposed by the WESPA SC, WESPA must
also register the interface classes and add the interface objects into the to the SLEE Common
loader.

Stateless adapter framework

Interworking with a WESPA SC (SLEE common loader)
The implementation of the Web Services and the software modules executing within the SLEE
cannot get hold on each others classes directly. In order to make them reach each other, the SLEE
Common Loader is used. The SLEE Common Loader provides a registration and lookup
mechanism as described below.

Listing 5-4 Registering a class in the SLEE Common loader

m_sc = serviceContext;

String[] ifClasses = {

"com.incomit.sespa.myservicecapability.MyServiceCapability",

"com.incomit.sespa.myservicecapability.MyServiceCapabilityListener"

};

try {

for (int i=0; i<ifClasses.length; i++) {

SleeCommonLoader.getInstance().registerClass(m_sc.getJarName(),

ifClasses[i]);

Sta te l ess adapter f ramework

Extension SDK for WebLogic Network Gatekeeper 5-5

}

} catch (SleeCommonLoaderException ex) {

....

}

In the example above, the SESPA SC implementation registers its interfaces classes so that they
can be used by the WESPA SC implementation. First, the name of the classes are defined in a list,
and they are registered in the SLEE Common Loader together with the name of the JAR-file they
are found in. In this case, the name of the file is resolved using the object m_sc, which is of type
ServiceContext. Refer to “Services fetched from the SLEEContext” on page 3-9 for a description
of ServiceContext.

The next step is to instantiate an object and then add it to the SLEE Common loader, allowing the
WESPA SC to use the objects. This is illustrated below.

Listing 5-5 Add object to the SLEE common class loader, allowing WESPA to access the object.

try {

m_myScImpl = new MyServiceCapabilityImpl(m_sc, m_dbHelper);

} catch (Exception ex) {

String errorMsg = "Failed to create MyServiceCapabilityImpl. Reason: "

+ ex.getMessage();

throw new ServiceDeploymentException(errorMsg,

errorMsg,

m_sc.getName(),

0);

}

try {

SleeCommonLoader.getInstance().addObject(OBJ_SESPA_MY_SERVICE_CAPABILITY,

m_myScImpl.getProxy());

Frameworks

5-6 Extension SDK for WebLogic Network Gatekeeper

} catch (SleeCommonLoaderException ex) {

...

}

The class is instantiated, and the object is added to the SLEE Common Loader. The object is the
object implementing the interface given when registering the class
(com.incomit.sespa.myservicecapability.MyServiceCapability). When the object is
added, a name for it is provided (OBJ_SESPA_MY_SERVICE_CAPABILITY) which is used for
looking up of the object by the WESPA SC. The name must be unique, and it is recommended to
use the actual class name as a part of the name. Instead of the object itself, a proxy representing
the object is provided. This is due to high availability reasons, and is further explained in “High
availability” on page 6-1.

See “Web Services framework” on page 5-2 for information how the object is used by the
WESPA SC implementation.

Below is outlined how the object is removed from the SLEE Common Loader.

Listing 5-6 Removing an object from the SLEE Common Loader

try {

SleeCommonLoader.getInstance().removeObject(OBJ_SESPA_MY_SERVICE_CAPABILITY
);

} catch (SleeCommonLoaderException ex) {

String errorMsg = "Failed to deregister SESPA MyServiceCapability
service from SleeCommonLoader. Reason: "

+ ex.getMessage();

throw new ServiceDeploymentException(errorMsg,

errorMsg,

m_sc.getName(),

0);

}

Sta te l ess adapter f ramework

Extension SDK for WebLogic Network Gatekeeper 5-7

The object is removed from the SLEE Common Loader, using the name for lookup. When
removing the object, all resources used should be cleaned up, and the affected applications should
be notified. Objects should be cleared when SLEE calls deactivate(...) on the implementation of
the service.

Getting an ESPA session based on the loginticket
The ESPA SC provides the SESPA SC with an application session and a Manager on which the
ESPA SC methods are invoked.

In general there is a three step process:

The SESPA SC logs in to ESPA Access.

SESPA SC gets an application session that is correlated with the login ticket.

On the object representing the application session, the ESPA Manager, the SESPA SC can
execute the methods provided by the ESPA SC.

There are utility classed in SESPA which assist in retrieving the session and the Manager based
on the login ticket.

Below is an example that illustrated how to retrieve the application session and a manager.

Listing 5-7 Getting an application session and a manager

ApplicationSession appSession = m_dbHelper.getApplicationSession(loginTicket);

MyServiceCapabilityManager espaManager = getEspaManager(loginTicket);

result = espaManager.myMethodWait(data,

address,

waitTimeoutSeconds,

serviceCode,

requesterID,

appSession);

Frameworks

5-8 Extension SDK for WebLogic Network Gatekeeper

First, the application session is fetched from the database where the correlation between the login
ticket and the application session object is stored. This is done using the SESPA utility class
com.incomit.sespa.util.DbHelper. m_dbHelper is an object instantiated from this class.

Then the ESPA Manager for the SC is fetched based on the login ticket. The ESPA Manager
represents the ESPA SC, and the methods implemented in the ESPA SC can be invoked on this
object as illustrated above. Below getEspaManager(...) is illustrated

Listing 5-8 getEspaManager(...)

public MyServiceCapabilityManager getEspaManager(String loginTicket)

throws GeneralException{

MyServiceCapabilityManager manager = null;

try {

ESPAManager espaManager = null;

espaManager = m_dbHelper.getEspaManager(loginTicket,

MyServiceCapabilityManager.SERVICE_NAME);

manager = MyServiceCapabilityManagerHelper.narrow(espaManager);

} catch(AccessException ex) {

...

}

return manager;

}

The code fragment illustrates how the ESPA manager is fetched based on the login ticket and the
service name defined in MyServiceCapabilityManager.SERVICE_NAME. Where
ServiceName is defined in the IDL file for the ESPA SC interface.

The manager is then narrowed to the actual class.

Serv i ce capabi l i t y f ramework

Extension SDK for WebLogic Network Gatekeeper 5-9

Service capability framework
For information on how to interworking with the SC Manager, see “SC manager” on page 2-17
and “Plug-in manager interfaces” on page 2-11.

Plug-in framework
For information on how to interworking with the Plugin manager, see “Plug-in manager
interfaces” on page 2-11.

Frameworks

5-10 Extension SDK for WebLogic Network Gatekeeper

Extension SDK for WebLogic Network Gatekeeper 6-1

C H A P T E R 6

High availability

The following sections contain descriptions of high-availability aspects for extensions to
WebLogic Network Gatekeeper:

Introduction

Plug-in Manager and SC Manager

SC Manager

SESPA and ESPA

Introduction
HA is important for both incoming and outgoing traffic. This is handled mostly by the Plug-in
and SC Managers. HA and load balancing between the underlying platform and Network
Gatekeeper are managed by the SC Manager for northbound traffic, and the plug-in manager for
southbound traffic. Recovery and distribution mechanisms only apply to newly created sessions
since ongoing sessions will maintain the established reference between Network Gatekeeper and
the underlying platform since there is no redundancy on a session level.

Network Gatekeeper would normally run on a cluster of servers running in parallel to support
high availability. The number of servers required for the different configurations ranges normally
from two to eight. This means for instance that all SCs will be run on all machines and contain
exactly the same information, but have different active sessions. Each server running SCs will
also execute a plug-in manager and an SC Manager, all synchronized and to be treated as equals.
This also means that if one server crashes, applications may continue to use the system
uninterrupted. All active sessions on the faulty machine will be lost.

High ava i labi l i t y

6-2 Extension SDK for WebLogic Network Gatekeeper

Plug-in Manager and SC Manager
Each Network Gatekeeper server will have its own instance of the Plug-in Manager and SC
Manager. All these instances share the same information, which means that it makes no
difference which instance is used. Once one manager is obtained references to all other managers
can be acquired. This is performed with the getAllResourceManagers method in the
ResourceManager interface and getAllSCSManagers method in the SCSMgr interface.

An external plug-in could poll the Plug-in Manager and the SC Manager at regular intervals to
see if additional managers have started.

SC Manager
The SC Manager can be used by all plug-ins capable of detecting network triggered sessions to
obtain references to SCs.

Each Network Gatekeeper SLEE executes an instance of the SC Manager. All instances within
one Network Gatekeeper node are synchronized and are to be treated as equals. Upon startup of
an Network Gatekeeper SLEE, all SCs dealing with network triggered sessions will register their
callback interfaces in the SC Manager executing in the same SLEE, and the change is propagated
between all SC Manager instances.

Plug-ins using SC Manager
If no SC is found to be active or if all are under severe overload, the SC Manager will raise a
SCSMgmtException to the getSCS method call. Under such a condition the plug-in should abort
the dialogue since no suitable SC is available in the Network Gatekeeper cluster.

An SC returned by the SC Manager has always been checked and found working, however
something might have happened to it during the time it takes the plug-in to invoke the
reportNotification method. Under such a condition the plug-in could either choose to use the
getSCS method again or to abort the dialogue.

There is a pinging mechanism between the SC Manager and the SCs. If an SC is found to be not
reachable, it is put in a “zombie list” maintained by the SC Manager. All entries in the zombie
list are checked periodically by the SC Manager, and zombies that are found working after some
time will be put back in the list of active again. This mechanism deals with the case were network
connectivity is lost for some time between Network Gatekeeper hosts.

In the case of inactivity, the plug-in could check the SC Managers for existence periodically by
invoking __non_existant() on the SCSManager. However this may work differently with
different ORBs but in our case it should be fine since we use the same ORB.

SC Manager

Extension SDK for WebLogic Network Gatekeeper 6-3

Failure on notification reporting
If the plug-in gets a CORBA exception on reportNotification towards an SC, it must consider the
type of exception.

There is once condition that should trigger the plug-in to try with another SC by either invoking
SCSDiscovery.getSCS or shifting to another SC if it uses the directly registered callbacks. This
condition is if the received exception is a org.omg.CORBA.SystemException and completed
status indicates org.omg.CORBA.CompletionStatus.COMPLETED_NO. There is only one way
to guarantee that a broken network connection will not result in a lost relationship between
Network Gatekeeper and the underlying platform on that SC, and that is putting the SC in a
zombie list and perform regular isActive checks on the SC.

Listing 6-1 Examining the type of exception

if (ex instanceof org.omg.CORBA.SystemException) {

org.omg.CORBA.SystemException coSyEx = (org.omg.CORBA.SystemException) ex;

if (coSyEx.completed == org.omg.CORBA.CompletionStatus.COMPLETED_NO)

retry = true;

}

If the completion status indicates COMPLETED_YES or COMPLETED_MAYBE the plug-in
cannot know for sure whether the notification has been handled or not and it should therefore treat
the call normally. The plug-in should either start an activity supervision timer on the call that will
expire after a certain time if no action is performed on the call from Network Gatekeeper, or it
could rely on supervision timers in the MSC that will cause a TC_ABORT from the MSC after
some time.

Incoming traffic
This section describes HA regarding the incoming traffic, that is traffic from the telecom network.

When a network-triggered event that should be sent to an SC is received, the SC Manager can be
used. This manager will always return an active SC at the time of the request.

High ava i labi l i t y

6-4 Extension SDK for WebLogic Network Gatekeeper

Despite this, the SC may crash immediately after the SC was received. In this case, the plug-in
will have to retrieve a new SC using the SC Manager. Now, the SC will detect the error and return
another working SC instance, if one exists.

The plug-in can also use the call back interfaces that the SCs register directly in the plug-in. If the
plug-in detects an error that is not transient, the faulty listeners should be removed. The SC will
register as a listener again once it is activated/restarted. On transient errors the plug-in should
keep the call back interface and try to reuse it with subsequent calls. On several repeated errors
the interface may be discarded even in this case.

If no SCs are available or an error (for example a CORBA system exception) is encountered in
an active session then the plug-in must take its own default action and also destroy all objects
related to that session.

Outgoing traffic
This section describes HA regarding the outgoing traffic, that is traffic from the SCs to the
plug-ins.

The outgoing traffic works in a similar way as the incoming. In this case the Plug-in Manager is
responsible to deliver plug-ins to the SCs. If the Plug-in manager detects an error in a plug-in (for
example a CORBA system exceptions), it will remove this plug-in.

In the same way that several SCs may run in parallel, plug-ins can also run in parallel to allow
the service to be used uninterrupted.

SESPA and ESPA
If a SESPA SC looses contact with the ESPA SC it currently uses, there is an automatic HA
switch performed for the ESPA session object and the ESPA Manager object. This is achieved
by SESPA who registers a proxy to the SESPA object that implements the SESPA interface in
the SLEE Common Loader. See “Stateless adapter framework” on page 5-4.

Below is an example on how the SESPA SC registers the proxy object in this HA handler.

Listing 6-2 Registering an object in the HA Handler

m_haHandler = HAHandler.createInstance(m_sc,

this,

null);

SESPA and ESPA

Extension SDK for WebLogic Network Gatekeeper 6-5

m_haProxy = (com.incomit.sespa.myservicecapability.MyServiceCapability)
m_haHandler.getHAProxy(
com.incomit.sespa.myservicecapability.MyServiceCapability.class);

The HA handler is fetched and the Service Context and the object implementing the SESPA SC
are provided as arguments. An additional parameter, a custom recovery manager, can also be
provided. This is discussed later in this section.

When the HA handler has been retrieved, the class object representing the SESPA interface is
provided to the HA handler and a HA proxy object is returned. This HA Proxy object is added to
the SLEE Common loader as described in “Stateless adapter framework” on page 5-4.

When HA switch is performed between SESPA and ESPA, this is transparent for the SESPA, so
the objects representing the ESPA session and ESPA manager can be used after a HA switch. If
the SESPA implementation has objects that are created using either the session or manager
object, these are not automatically restored. The SESPA SC must implement this recovery
functionality. The object that performs the recovery, the service specific recovery manager, is
provided as a parameter to the createInstance(...) method. The method recoversession(...) is called
on the service specific recovery manager after the recovery manager has restored the ESPA
Session and Manager objects.

An example of when to use service specific recovery manager is when a SESPA implementation
on top of ESPA Messaging keeps track of opened mailboxes and reopens them after a HA switch.

High ava i labi l i t y

6-6 Extension SDK for WebLogic Network Gatekeeper

Extension SDK for WebLogic Network Gatekeeper 7-1

C H A P T E R 7

Plug-ins that executes as a SLEE
service and a web application

The following sections contain descriptions of plug-ins that uses or exposes Web Services:

Introduction

Interaction between the web application part of a plug-in and the SLEE service part of a
plug-in

Introduction
There are a lot of network nodes that exposes Web Services (SOAP/HTML) or other protocols
with HTPP as a bearer. When plug-ins communicate with these network elements they can utilize
the Tomcat servlet engine provided by the Network Gatekeeper. This section describes how a
plug-in, or any SLEE service can interact with the Tomcat.

The plug-in must be divided into two parts, one part that executes as a regular SLEE service and
one part that executes as a web application in Tomcat. The Tomcat is itself deployed as a SLEE
service, Embedded_Tomcat.

When creating a server part for incoming HTTP requests, a web application in the form of a
servlet or a Web Service needs to be created and deployed in Embedded_Tomcat. When creating
a client part for outgoing requests, the client part should also be created as a servlet or a Web
Services client, and deployed in Embedded_Tomcat. The reason for creating and deploying a
servlet or a Web Service client in Embedded_Tomcat is that the necessary Axis classes are a part
of the Embedded-Tomcats classpath and not a part of the SLEEs classpath.

P lug- ins that executes as a SLEE se rv ice and a web app l i cat i on

7-2 Extension SDK for WebLogic Network Gatekeeper

Because of the classloader hierarchy in the Network Gatekeeper, the SLEE service part of the
plug-in needs to register itself into the SLEE Common loader and the interface needs to be
retrieved by the part of the plug-in that executes in Embedded Tomcat.

Figure 7-1 Classloader hierarchy

Interaction between the web application part of a plug-in and
the SLEE service part of a plug-in

Interface class registration
It is the responsibility of the SLEE service part of the plug-in to register all interface classes
associated with the communication between the SLEE Service part of the plug-in and the web
application part of the plug-in. It is important that these classes are registered into SLEE Common
Loader before any of them are used within the plug-in. If this is not the case a ClassCastException
will occur when the SLEE Service part and the web application part communicate.

When the plug-in goes into Started state, the jar file that contains the interface definition of the
implementation together with the fully qualified classname of the interface is registered in the
SLEE Common Loader. In the example below, m_sc is the service context provided by the SLEE.

SLEE Common Loader

SLEE Services Embedded Tomcat

SLEE

Web Applications/

Web Services

I n te rac t i on be tween the web appl i ca t ion par t o f a p lug- in and the SLEE ser v i ce par t o f a p lug- in

Extension SDK for WebLogic Network Gatekeeper 7-3

Listing 7-1 Registering the class interfaces

String mySOAPReciever_if = ”com.acme.MySOAPReciever_if”;

String JarName = m_sc.getJarName;

SleeCommonLoader.getInstance().registerClass(JarName, mySOAPReciever_if);

String mySOAPSender_if = ”com.acme.MySOAPSender_if”;

String JarName = m_sc.getJarName;

SleeCommonLoader.getInstance().registerClass(JarName, mySOAPSender_if);

Incoming requests
For request that originates in the network, a web application or Web Service part of a plug-in
needs to be implemented. This part of the plug-in needs to communicate with the part of the
plug-in that executes as a SLEE service.

In the SLEE service part of the plug-in
As the SLEE service gets into state Activated, the plug-in instantiates the implementation of the
part of the plug-in that handles incoming request.

The object is added to the SLEE Common Loader. An ID is provided when registering the object.
This ID is by the web application part of the plug-in to bind the implementation to the interface.

Note: It is important that the object is added in the SLEE Common Loader immediately after it
has been instantiated.

Listing 7-2 Add the implementation of the interface to the SLEE Common Loader

soapReceiver = new MySOAPReciever_impl(TheContext.getServiceContext(), this);

SleeCommonLoader.getInstance().addObject(MY_SLEESERVICE_OBJECT_ID,
soapReceiver);

P lug- ins that executes as a SLEE se rv ice and a web app l i cat i on

7-4 Extension SDK for WebLogic Network Gatekeeper

In the web application part of the plug-in
The web application part of the plug-in gets the object that implements the SLEE service part of
the plug-in from the SLEE Common Loader. The object is accessed via the ID that the object was
registered in the SLEE Common Loader by the SLEE service part of the plug-in, see Listing 7-2.
The object returned is then casted to the correct class. The object shall be retrieved for each
request.

Listing 7-3 Fetch the interface from the SLEE Common Loader

Object obj = SleeCommonLoader.getInstance().getObject(MY_SLEESERVICEOBJECT_ID);

MySOAPReciever_if mySOAPReciever_if = (MySOAPReciever_if) obj;

Since the web application part of the plug-in is fetching the object from the SLEE Common
loader, the object must exist, and it must have been registered in the SLEE Common Loader. This
means that the web application part of the plug-in must start before the part that executes as a
SLEE Service. This is done automatically since the regular SLEE services always are started
prior to Tomcat.

Outgoing requests
For request that originates from the Network Gatekeeper, a HTPP client or Web Services client
needs to be implemented. This part of the plug-in needs to communicate with the part of the
plug-in that executes as a SLEE service.

In the web application part of the plug-in
The part of the plug-in that executes in Embedded_Tomcat should be responsible for constructing
and performing the HTPP request. If it is a SOAP request it should be responsible for creating the
SOAP message with the help of the AXIS classes available for applications running in
Emdedded_Tomcat service.

When the web application being instantiated, it should add itself to the SLEE Common Loader
according to Listing 7-4.

I n te rac t i on be tween the web appl i ca t ion par t o f a p lug- in and the SLEE ser v i ce par t o f a p lug- in

Extension SDK for WebLogic Network Gatekeeper 7-5

Listing 7-4 Add the implementation of the interface to the SLEE Common Loader

soapSender = new MySOAPSender_impl(TheContext.getServiceContext(), this);

SleeCommonLoader.getInstance().addObject(MY_SERVLET_OBJECT_ID, soapSender);

It is important that the web application part of the plug-in implementation is registered into the
SLEE Common Loader before the SLEE Service part of the implementation tries to use the
interface. One way to achieve this is to add a method in the interface used by the web application
part (and implemented in the SLEE Service part of the plug-in) that notifies the SLEE service part
of the plug-in that is has started, and make the web application part of the plug-in to call this
method when it goes into state Active.

Since the web application parts always starts after the SLEE services, this will make sure that the
SLEE part of the plug-in does not try to use interface prior to that the implementation has been
instantiated.

In the SLEE service part of the plug-in
For outgoing requests, the SLEE service part of the plug-in uses the interface class registered by
the web application part of the plug-in.

This means that it should fetch the object via the SLEE Common Loader and cast it to the correct
class. The object shall be retrieved for each request.

Listing 7-5 Fetch the interface from the SLEE Common Loader

Object obj = SleeCommonLoader.getInstance().getObject(MY_SERVLET_OBJECT_ID);

MySOAPSender_if mySOAPSender_if = (MySOAPSender_if) obj;

This also means that the SLEE service part of the plug-in must wait until the part executing in
Embedded_tomcat has registered the implementing class in the SLEE Common loader.

P lug- ins that executes as a SLEE se rv ice and a web app l i cat i on

7-6 Extension SDK for WebLogic Network Gatekeeper

Extension SDK for WebLogic Network Gatekeeper 8-1

C H A P T E R 8

Call Control

The following sections contain descriptions of plug-ins of call control type:

Network plug-in

Use cases

Network plug-in
Interfaces
All call control interfaces are defined in the package com.incomit.resources.callcontrol.

The call control interfaces are similar to the Parlay 3.2 call control interfaces.

Cal l Cont ro l

8-2 Extension SDK for WebLogic Network Gatekeeper

Figure 8-1 Call control interface

Interfaces that should be implemented by the plug-in are listed in the table below.

Network p lug- in

Extension SDK for WebLogic Network Gatekeeper 8-3

Table 8-1 Interfaces that shall be implemented by a plug-in for Call control

Interfaces that are implemented by the Call Control SC.

Table 8-2 Interfaces that are implemented by the Call Control SC, used by a Call control plug-in.

CallControlResource
CallControlResource inherits from the Resource interface and adds an additional method that is
used to obtain the call control manager.

Table 8-3 CallControlResource

IrCallControlManager - Deprecated -
IrCallControlManager is deprecated.

Interface Description

CallControlResource Initial object obtained from Plug-in Manager.

IrCallControlManager Deprecated.

IrCallControlManagerExt The extended resource multi-party call control manager interface provides
the management functions to the multi-party call control plug-ins.

IrCall The logical representation of a call.

IrCallLeg The logical representation of a call leg.

Interface Description

IrCallControlPlugInListener Call back interface for receiving network initiated calls, overload events
and so on.

IrAppCall Interface that is used by plug-in to receiving events related to calls.

IrAppCallLeg Interface for receiving events related to a call leg.

Method Description

getCallControlManager Retrieve call control manager.

Cal l Cont ro l

8-4 Extension SDK for WebLogic Network Gatekeeper

IrCallControlManagerExt
IrCallControlManagerExt is used to create calls, handle load control, and to register plug-in
listeners. Only one instance of this type is required.

Table 8-4 IrCallControlManagerExt

IrCall
IrCall interface represents a call. Each active call will have one object instance implementing this
interface, or if the plug-in uses the session id only one instance is required.

Table 8-5 IrCall

Method Description

createCallCtx Create a new call object.

disableNotification Disable a call notification.

enableNotification Enables a call notification for network initiated traffic.

setCallLoadControlCtx Used for call gapping.

Method Description

createCallLeg Create a new call leg.

deassignCall De-assign the call without disconnect.

getCallLegs Retrieve a list of all call legs belonging to this call.

getInfoReq Request to receive call information when the call is disconnected.

release Release this call and disconnect all call legs.

setAdviceOfCharge Set advice of charge information.

setCallback Change the call back object used for this call.

setChargePlan Set the call charge plan.

superviseReq Supervise a call, that is set granted connect time for this call.

Network p lug- in

Extension SDK for WebLogic Network Gatekeeper 8-5

IrCallLeg
The IrCallLeg interface represents a call leg. For each leg in a call there must be an instance
implementing this interface, or if the plug-in uses the session id only one instance is required.

Table 8-6 IrCallLeg

IrCallControlPlugInListener
IrCallControlPlugInListener listens for events originating in the plug-in. There may be several
listeners registered for each plug-in.

This interface inherits from the SCS interface. It makes it possible to narrow a SC object retrieved
from the SC Manager to an IrCallControlPlugInListener.

Method Description

attachMediaReq Attach a detached call leg.

continueProcessing Resume call processing.

deassign Release control of leg. The call will remain, but all requested call info and
events are disabled.

detachMediaReq Detach this leg from the call. That is no connection will exist with other call
legs.

eventReportReq Request to event reports.

getCall Retrieve the call object that this leg belongs to.

getInfoReq Request to receive call information when the call leg is disconnected.

release Disconnect this call leg.

routeReq Route this call leg.

setAdviceOfCharge Set advice of charge information.

setCallback Change the call back object used for this call.

setChargePlan Set the call charge plan for this leg.

superviseReq Set granted connect time for this call leg.

Cal l Cont ro l

8-6 Extension SDK for WebLogic Network Gatekeeper

Table 8-7 IrCallControlPlugInListener

IrAppCall
IrAppCall is used to receive events related to a specific call.

Table 8-8 IrAppCall

IrAppCallLeg
IrAppCallLeg is used to receive events related to a specific call leg.

Table 8-9 IrAppCallLeg

Method Description

callOverloadCeased Report that overload has ceased.

callOverloadEncountered Report an overload in the plug-in.

reportNotification Send notification about a network-triggered call.

Method Description

callEnded Notification that the call has ended.

superviseRes Response to a previous call to superviseReq.

superviseErr Response to a previous call to superviseErr.

getInfoErr This asynchronous method reports that the original request was erroneous,
or resulted in an error condition.

getInfoRes This asynchronous method reports time information of the finished call or
call attempt as well as release cause depending on which information has
been requested by getInfoReq.

Method Description

attachMediaRes/Err Response to a previous call to attachMediaReq.

callLegEnded Inform that call leg has ended.

Use cases

Extension SDK for WebLogic Network Gatekeeper 8-7

Use cases

Application-initiated two-party call
The following sequence diagram show a basic two-party call. How the SC obtains the call control
manager is not shown here.

detachMediaRes/Err Response to a previous call to detachMediaReq.

eventReportRes/Err Response to a previous call to eventReportReq.

getInfoRes/Err Response to a previous call to getInfoReq.

routeErr Report an error when routing call leg.

superviseRes/Err Response to a previous call to superviseReq.

Method Description

Cal l Cont ro l

8-8 Extension SDK for WebLogic Network Gatekeeper

Figure 8-2 Application-initiated two-party call

Details about the sequence diagram:

The client application requests to create a new call and this object is created and returned.

A call leg is created for the first party.

Use cases

Extension SDK for WebLogic Network Gatekeeper 8-9

Event reports and call information is requested. Charge plan is set and the call is routed.
Preferably, the plug-in would buffer these calls and send everything when routeReq is
called. getInfoReq and setChargePlan are not mandatory.

After a while when the call leg is answered the answer event is sent to the application with
eventReportRes. Other events could also be sent here, such as busy or no answer.

The application decides to connect another call leg to this call.

The same methods may be invoked as when creating the first call leg. The first call leg is
in interrupted state, so call processing is on hold until continueProcessing is invoked on
this leg.

attachMediaReq is invoked on the first call leg. Note that all call legs created by an
application are detached initially.

continueProcessing is invoked. At this time, any buffered events in the previous steps
should be sent.

The second leg is answered and eventReportRes is called.

The leg is attached and continueProcessing invoked.

The application decides to release the call.

Call information is sent for each call leg where information was requested.

The end of the call is notified.

Network-triggered call
This example shows how a basic network-triggered call may be handled. For each new call the
plug-in should use the SC Manager to obtain a listener interface or use one of the registered
plug-in listeners.

Cal l Cont ro l

8-10 Extension SDK for WebLogic Network Gatekeeper

Figure 8-3 Network-triggered call

Details about the sequence diagram:

The plug-in receives a network triggered call event and creates the call and call leg object
that is sent to the plug-in listener. The call is now in interrupted state.

The application creates the callback interfaces and notifies the plug-in about these.

The application requests to receive event notification for the first call leg.

A new call leg is created.

First event reports are requested for this leg. Then the call leg is routed, but no operations
are sent until continueProcessing is invoked.

The second call leg is answered.

The second call leg is attached to the call and continueProcessing is invoked.

Use cases

Extension SDK for WebLogic Network Gatekeeper 8-11

The call is de-assigned. This will release all objects related to this call, but the call will
remain active in the network.

Cal l Cont ro l

8-12 Extension SDK for WebLogic Network Gatekeeper

Extension SDK for WebLogic Network Gatekeeper 9-1

C H A P T E R 9

Call user interaction

The following sections contain descriptions of plug-ins of call user interaction type:

Network plug-in

Use cases for Call user interaction

Network plug-in

Call user interaction interfaces
All Call user interaction interfaces are defined in the files UserInteractionCallResource_IF.idl
and UserInteractionResource_IF.idl located in bea\wlng21\esdk\idl\plugin_if\ui

There are two interface definition files, where general user interaction interfaces are defined in
UserInteractionResource_IF.idl and functionality related only to Call user interaction is found in
UserInteractionCallResource_IF.idl.

Cal l use r in t erac t ion

9-2 Extension SDK for WebLogic Network Gatekeeper

Figure 9-1 Call user interaction interfaces

Interfaces that should be implemented by the plug-in are listed in the table below.

Table 9-1 Interfaces that shall be implemented by a plug-in for Subscriber profile

«interface»
Resource

+getUICallManager()

«interface»
UserInteractionCallResource

+recordMessageReq()
+abortActionReq()

«interface»
IrUICall

+sendInfoReq()
+sendInfoAndCollectReq()
+release()

«interface»
IrUI

+sendInfoRes()
+sendInfoErr()
+sendInfoAndCollectRes()
+sendInfoAndCollectErr()
+userInteractionFaultDetected()

«interface»
IrAppUI

+recordMessageRes()
+recordMessageErr()
+abortActionRes()
+abortActionErr()

«interface»
IrAppUICall

«extends»

«extends»

«extends»
+createUICall()

«interface»
IrUICallManager

+createUICallCtx()

«interface»
IrUICallManagerExt

«extends»

Interface Description

Resource Initial object obtained from Plug-in Manager. Base interface implemented
by all plug-ins.

UserInteractionCallResource Manager object that is used to create and release sessions towards the Call
user interaction plug-in.

Network p lug- in

Extension SDK for WebLogic Network Gatekeeper 9-3

Interfaces that are implemented by the ESPA Call user interaction SC.

Table 9-2 Interfaces that are implemented by the ESPA Call user interaction SC, used by a Call user
Interaction plug-in.

UserInteractionCallResource
UserInteractionCallResource inherits from the Resource interface and adds an additional method
that is used to obtain the Call user interaction manager.

Table 9-3 UserInteractionCallResource

IrUI Provides functions for sending information, typically prompt messages and
to order collection of information from the end user.The information is
typically collected from IVRs capable of collecting user input in the form
of DTMF. It also provides functions for ending, or releasing, a user
information session.

IrUICall Provides functions for ordering recording of messages and to abort a
request.

IrUICallManager Deprecated.

IrUICallManagerExt Provides functions for creating objects representing a Call user interaction
session.

Interface Description

Interface Description

IrAppUI Call back interface for receiving responses to operations performed via the
IrUI interface.

IrAppUICall Call back interface for receiving responses to operations performed via the
IrUICall interface.

Method Description

getUICallManager Retrieve a Call user interaction manager. The returned object shall be
narrowed from a IrUICallManager to a IrUICallManagerExt object since
IrUICallManager is deprecated.

Cal l use r in t erac t ion

9-4 Extension SDK for WebLogic Network Gatekeeper

IrUICallManager -deprecated-
IrUICallManager is deprecated.

IrUICallManagerExt
IrUICallManagerExt is used to create Call user interaction sessions. Only one instance of this
type is required.

Table 9-4 IrUICallManagerExt

IrUI
The User Interaction Service Interface provides functions to send information to, or gather
information from a user.

Table 9-5 IrUI

IrUICall
The User Interaction Call Service Interface provides functions for recording messages from an
end user and to abort user interaction operations.

Method Description

createUICallCtx Create a new Call user interaction object.

Method Description

sendInfoReq Plays an announcement or sends other type of information to the end user.

sendInfoAndCollectReq Plays an announcement or sends other type of information to the end user
and collects input from the end user.

release Releases an user interaction session. Releases all resources associated with
the user interaction session and terminates the ongoing user interaction
session.

Network p lug- in

Extension SDK for WebLogic Network Gatekeeper 9-5

Table 9-6 IrUICall

IrAppUI
Table 9-7 IrAppUI

IrAppUICall
Table 9-8 IrAppUICall

Method Description

recordMessageReq Records a message from the end user.

abortActionReq Aborts a previously ordered operation.

Method Description

sendInfoRes Result of a successful sendInfoReq request.

sendInfoErr Result of a failed sendInfoRes request.

sendInfoAndCollectRes Result of a successful sendInfoAndCollectReq request.

sendInfoAndCollectErr Result of a failed sendInfoAndCollectReq request.

userInteractionFaultDetected Indicates that a fault has been detected in the user interaction.

Method Description

recordMessageRes Result of a successful recordMessageReq request.

recordMessageErr Result of a failed recordMessageReq request.

abortActionRes Result of a successful request to abort a user interaction operation.

abortActionErr Result of a failed request to abort a user interaction operation.

Cal l use r in t erac t ion

9-6 Extension SDK for WebLogic Network Gatekeeper

Use cases for Call user interaction
A Call user interaction plug-in only supports operations originating from an application. Network
triggered is not supported.

A Call user interaction session is established on an existing call. The call is created with an
identifier that identifies an already created call. The call can be either initiated by an application
or from the network.

Application-initiated usage of a Call user interaction plug-in
The following sequence diagram show a basic interaction between a user of Call user interaction
plug-in and the Plug-in.

Figure 9-2 Application-initiated usage of Call user interaction plug-in.

Details about the sequence diagram:

Prior to this sequence the Call user interaction client has received a plug-in. See “General
usage (application-initiated events)” on page 2-15. The client shall also have access to a
IrAppCall object representing an ongoing call.

The Call user interaction client calls createUICallCtx on the implementation of the
IrUICallManagerExt interface. This interface is implemented in the plug-in. An identifier
for the Call user interaction session, along with the interface is returned to the client.

The client request to send information via, sendInfoReq, to one or more participants
(represented by call legs) in the call.

IrCallLegCall UI Client IrAppCallIrAppUICall

new

new

IrAppCallleg IrCall IrUICallManagerExtIrUICall

sendInfoRes

sendInfoReq

createUICallCtx

release

Use cases fo r Ca l l use r interac t i on

Extension SDK for WebLogic Network Gatekeeper 9-7

The result of the sendInfoReq request is returned asynchronously to the IrAppUICall
interface implemented by the client via sendInfoRes. If the plug-in experiences an error
when sending the info to the participant in the call, the method sendInfoErr is invoked
instead.

Additional operation s can be performed towards the IrUICall interface, all operations
belonging to the user interaction session. To end the session, the client calls release on the
IrUICall interface.

It is not illustrated here how to end the call session that was used for the Call user interaction
session.

Cal l use r in t erac t ion

9-8 Extension SDK for WebLogic Network Gatekeeper

Extension SDK for WebLogic Network Gatekeeper 10-1

C H A P T E R 10

SMS and MMS messaging

The following sections contain descriptions of plug-ins of SMS and MMS type:

Network plug-in

Use cases for SMS

Network plug-in

SMS Interfaces
All SMS messaging interfaces are defined in the package com.incomit.resources.messaging.

SMS and MMS messaging

10-2 Extension SDK for WebLogic Network Gatekeeper

Figure 10-1 SMS interface

Interfaces that should be implemented by the plug-in are listed in the table below.

Network p lug- in

Extension SDK for WebLogic Network Gatekeeper 10-3

Table 10-1 Interfaces that shall be implemented by a plug-in for SMS messaging

Interfaces that are implemented by the Messaging SC.

Table 10-2 Interfaces that are implemented by the Messaging SC, used by a SMS messaging plug-in.

MessagingResource
MessagingResource inherits from the Resource interface and contains some datatypes and adds an
method for using messaging sessions.

Table 10-3 MessagingResource

Interface Description

Resource Initial object obtained from Plug-in Manager. Base interface implemented
by all plug-ins.

MessagingResource Manager object that is used to create and release messaging sessions. Used
for message based user interaction.

MessagingResourceExt The extended SMS messaging plug-in interface provides functions for
sending and deleting messages, and to enable and disable notification
listeners.

Interface Description

MessageListener Call back interface for handling network initiated messages and delivery
receipts for sent messages. Delivery receipts are returned when the
message has been delivered to the terminal.

MessageListenerExt Extended call back interface for handling network initiated messages. and
delivery receipts for sent messages. Delivery receipts are returned when the
message has been delivered to the terminal.

Method Description

createMessagingSession Create a message based user interaction session.

releaseMessagingSession Release a previously created messaging session. Used for message based
user interaction.

SMS and MMS messaging

10-4 Extension SDK for WebLogic Network Gatekeeper

MessagingResourceExt
MessagingResourceExt is an extended version of the MessagingResource interface and should
be used instead of this.

Table 10-4 MessagingResourceExt

MessageListener
MessageListener listens for events originating in the plug-in. There may be several listeners
registered for each plug-in.

This interface inherits from the SCS interface. It makes it possible to narrow a SC object retrieved
from the SC Manager to an MessageListener.

sendMessage Deprecated.

addDefaultMessageListener Deprecated.

addMessageListener Deprecated.

removeMessageListener Deprecated.

Method Description

Method Description

sendMessageCtx Sends a message.

deleteMessageCtx Deletes a message from the underlying storage.

enableMessagingNotificationCtx Enable message notification for a specified set of notification criteria to
the Messaging SC. Not used by existing messaging plug-ins, since all
incoming messages are routed automatically to a mailbox.

enableMessagingUINotificationCtx Enable message notification for a specified set of notification criteria to
the Messaging user interaction SC.

disableMessagingNotificationCtx Disable messaging notification for a specific notification assignment ID.

disableMessagingUINotificationCtx Disable messaging notification for a specific notification assignment ID.

Network p lug- in

Extension SDK for WebLogic Network Gatekeeper 10-5

Table 10-5 MessageListener

MessageListenerExt
MessageListenerExt listens for events originating in the plug-in. There may be several listeners
registered for each plug-in. This interface extends the MessageListener interface and should be
used instead of that.

This interface inherits from the SCS interface. It makes it possible to narrow a SC object retrieved
from the SC Manager to an MessageListener.

Table 10-6 MessageListenerExt

MMS Interfaces
All MMS messaging interfaces are defined in the package com.incomit.resources.messaging.

Method Description

messageArrived Deprecated.

messageResult Results of previous send message operations are reported using this
interface.

 messagingSessionAborted Indications that a previously created messaging session has been aborted
are reported using this method.

Method Description

 messageArrivedCtx Will be used for notifying a listener that a network initiated message has
arrived.

sendResultCtx Will be used for notifying a listener that a application initiated message has
been delivered to the terminal.

 messageResultExt A listener will be notified if a message was sent by the underlying plug-in.
Holds a status code with more detailed information on the status of the
message.

SMS and MMS messaging

10-6 Extension SDK for WebLogic Network Gatekeeper

Figure 10-2 MMS interface

Interfaces that should be implemented by the plug-in are listed in the table below.

Network p lug- in

Extension SDK for WebLogic Network Gatekeeper 10-7

Table 10-7 Interfaces that shall be implemented by a plug-in for MMS messaging

Interfaces that are implemented by the Messaging SC.

Table 10-8 Interfaces that are implemented by the Messaging SC, used by a MMS messaging plug-in.

MmsResource
MmsResource is the base interface for sending MMS messages.

Table 10-9 MmsResource

Interface Description

Resource Initial object obtained from Plug-in Manager. Base interface implemented
by all plug-ins.

MmsResource Used for sending MM Messages.

MmsResourceExt The extended MMS messaging interface provides functions for sending
and deleting messages, and to enable and notifications.

MmsResourceExt2 The extensions to the extended MMS messaging interface provides
functions for sending messages.

Interface Description

MmsListener Call back interface for handling network initiated MMS messages.

MmsListenerExt Extended call back interface for handling network initiated MMS
messages. Also provides functionality for receiving notifications about a
sent MMS.

MmsListenerExt2 Extended call back interface for handling network initiated MMS
messages.

Method Description

sendMmMessage Sends an MMS message.

addDefaultMmsListener Deprecated.

removeDefaultMmsListener Deprecated.

SMS and MMS messaging

10-8 Extension SDK for WebLogic Network Gatekeeper

MmsResourceExt
MmsResourceExt is extended interface to for sending MMS messages.

Table 10-10 MmsResourceExt

MmsResourceExt2
MmsResourceExt2 is extended interface to for sending MMS messages.

Table 10-11 MmsResourceExt2

MmsListener
MmsListener listens for events originating in the plug-in. There may be several listeners
registered for each plug-in.

This interface inherits from the SCS interface. It makes it possible to narrow a SCS object
retrieved from the SC Manager to an MmsListener.

Method Description

sendMmMessageCtx Sends an MMS message. Results of messages sent using this method are
delivered to any service capability instance registered using the SC
Manager.

deleteMessageCtx Delete an MMS message from the underlying storage

enableMmMessagingNotificationCtx Enable message notification for a specified set of notification criteria.

Method Description

sendMmMessageExtCtx Sends an MMS message. Results of messages sent using this method are
delivered to any service capability instance registered using the SC
Manager.

Network p lug- in

Extension SDK for WebLogic Network Gatekeeper 10-9

Table 10-12 MmsListener

MmsListenerExt
MessageListenerExt listens for events originating in the plug-in. There may be several listeners
registered for each plug-in. This interface extends the MmsListener interface and should be used
instead of that.

This interface inherits from the SCS interface.It makes it possible to narrow a SC object retrieved
from the SC Manager to a MmsListenerExt. It also extends the MmsListener interface.

Table 10-13 MmsListenerExt

MmsListenerExt2
This interface shall be implemented to be able to receive messages from an MMS plug-in. It also
extends the MmsListenerExt interface.

Table 10-14 MmsListenerExt2

Method Description

mmMessageArrived Deprecated.

mmMessageResult Results of previous send message operations are reported using this
interface.

Method Description

 mmMessageArrivedExt Will be used for notifying a listener that a network initiated message has
arrived.

sendResultCtx Will be used for notifying a listener that a application initiated message has
been sent to the underlying network.

Method Description

 mmMessageArrivedExt2 Will be used for notifying a listener that a network initiated message has
arrived.

SMS and MMS messaging

10-10 Extension SDK for WebLogic Network Gatekeeper

Use cases for SMS

ESPA Service Capability registers SC
The following sequence diagram shows how the ESPA Messaging SC registers itself in the SC
Manager. When creating a messaging plug-in, it is not necessary to perform this task, but it is
included to illustrate that the SC must register itself and that the plug-in use the registered
information.

Figure 10-3 ESPA Service Capability registers in the SC Manager

Details about the sequence diagram:

First, the MessageListenerExt implementation fetches the SLEESCSRegistration interface
from the SLEESCSManager.

It then registers the MessageListenerExt interface with the SC Manager (on
SLEESCSRegistration). The class implementing MessageListenerExt is used by the plug-in
to notify the ESPA Messaging SC on events related to the outcome of sendMessageCtx
operations, see Application-initiated send message, and messageArrivedCtx, see
Network-triggered messages, operations.

Use cases fo r SMS

Extension SDK for WebLogic Network Gatekeeper 10-11

Application-initiated send message
The following sequence diagram show a basic send message interaction between the Messaging
SC and the Plug-in. Note that a plug-in shall uses the SC manager to get an ESPA SC to deliver
the delivery receipts, via MessageListenrExt interface. This is due to that it may take long time
before a delivery request is sent back to the plug-in, so ESPA Messaging SC itself is acting as a
listener for delivery reports.

Figure 10-4 Application-initiated send message

Details about the sequence diagram:

Prior to this sequence the ESPA Messaging SC has received a plug-in. See “General usage
(application-initiated events)” on page 2-15.

The MessagingResourceClient application performs a SendMessageCtx call to The
implementation of the MessagingResourceExt interface. This interface is implemented in
the plug-in.

The plug-in fetched the ESPA SC to report the result of the sendMessageCtx call. The
ESPA SC listener interface, the implementation of the MessagelistenerExt interface, is
fetched by performing a getSCSCtx operation on the SLEESCSDiscovery interface.

The MessagelistenerExt interface returned is narrowed to the appropriate object by calling
narrow on MessageListenerHelper. This class is auto generated when generating Java stubs
from the MessageListenerExt IDL interface.

When sendMessageCtx is performed on the plug-in’s implementation of the
MessagelistenerExt interface, it is the plug-ins responsibility to convert the request to a
protocol-specific request and send the request to the network element.

SMS and MMS messaging

10-12 Extension SDK for WebLogic Network Gatekeeper

If the sendMessageCtx operation contains more than one destination address, that is it
contains a sendlist, the plug-in calls sendResultExt on the ESPA SC as soon as the network
node has received the send message request, and acknowledged it. The ESPA Messaging
SC will create a CDR with completion status partial.

When the destination terminal(s) have received the message, and acknowledged it to the
plug-in, via the network node, the plug-in calls sendResultExt on the ESPA SC. The ESPA
Messaging SC will then create a CDR.

Network-triggered messages
This example shows how a basic network-triggered message may be handled. For each new
incoming message the plug-in should use the SC Manager to obtain a listener interface. Prior to
this sequence, an application must have registered for notifications on network-initiated
messages. It is not necessary for ESPA enable specific listeners for incoming traffic, since the
ESPA messaging SC listens to all incoming traffic and distributes the message to a mailbox.
Application register listeners that listens for events, such as new message arrived events, on the
mailbox.

Figure 10-5 Network-triggered message

Details about the sequence diagram:

The plug-in receives a network triggered message from the underlying telecom network.

The plug-in fetches an appropriate ESPA SC based on a set of properties and a type
identifier given in getSCSCtx(...). The type identifier is SCS.MESSAGING_TYPE in for
ESPA Messaging (defined in resource_common.idl).

Use cases fo r SMS

Extension SDK for WebLogic Network Gatekeeper 10-13

A list of ESPA Messaging SCs are returned. The SLEESCSDiscovery interface provides
load balancing, so it is recommended to use the first in the list.

The MessagelistenerExt interface returned is narrowed to the appropriate object by calling
narrow on MessageListenerHelper. This class is auto generated when generating Java stubs
from the MessageListenerExt IDL interface.

messageArrivedCtx is invoked by the plug-in on the MessageListenerExt interface
implemented by the ESPA Messaging SC.

SMS and MMS messaging

10-14 Extension SDK for WebLogic Network Gatekeeper

Extension SDK for WebLogic Network Gatekeeper 11-1

C H A P T E R 11

Content based charging

The following sections contain descriptions of plug-ins of Content based charging type:

Network plug-in

Use cases for Content based charging

Network plug-in

Content based charging interfaces
All subscriber profile interfaces are defined in the file
bea\wlng21\esdk\idl\plugin_if\charging\ChargingResource_IF.idl

Content based charg ing

11-2 Extension SDK for WebLogic Network Gatekeeper

Figure 11-1 Content based charging interface

Interfaces that should be implemented by the plug-in are listed in the table below.

Table 11-1 Interfaces that shall be implemented by a plug-in for Content based charging

+creditAmountErr()
+creditAmountRes()
+creditUnitErr()
+creditUnitRes()
+debitAmountErr()
+debitAmountRes()
+debitUnitErr()
+debitUnitRes()
+directCreditAmountErr()
+directCreditAmountRes()
+directCreditUnitErr()
+directCreditUnitRes()
+directDebitAmountErr()
+directDebitAmountRes()
+directDebitUnitErr()
+directDebitUnitRes()
+extendLifeTimeErr()
+extendLifeTimeRes()
+rateErr()
+rateRes()
+reserveAmountErr()
+reserveAmountRes()
+reserveUnitErr()
+reserveUnitRes()
+sessionEnded()

«interface»
IrAppChargingSession

+createChargingSessionCtx()
+getChargingSessionCtx()

«interface»
ChargingResource

«interface»
Resource

«extends»

+creditAmountReq()
+creditUnitReq()
+debitAmountReq()
+debitUnitReq()
+directCreditAmountReq()
+directCreditUnitReq()
+directDebitAmountReq()
+directDebitUnitReq()
+extendLifeTimeReq()
+getAmountLeft()
+getLifeTimeLeft()
+getUnitLeft()
+rateReq()
+release()
+reserveAmountReq()
+reserveUnitReq()

«interface»
IrChargingSession

1..n

Interface Description

Resource Initial object obtained from Plug-in Manager. Base interface implemented
by all plug-ins.

ChargingResource Manager object that is used to create sessions towards a Content based
charging plug-in.

IrChargingSession The Charging session interface provides functions to reserve, debit and
credit user accounts.It also provides functions for rating requstes.There are
separate functions that operate on units, volumes and amounts.

Network p lug- in

Extension SDK for WebLogic Network Gatekeeper 11-3

Interfaces that are implemented by the ESPA Content based charging SC.

Table 11-2 Interfaces that are implemented by the ESPA Content based charging SC, used by a Content
based charging plug-in.

ChargingResource
Table 11-3 ChargingResource

IrChargingSession
Table 11-4 IrChargingSession

Interface Description

IrAppChargingSession Call back interface for receiving responses to operations performed via the
IrChargingSession interface.

Method Description

createChargingSessionCtx Creates a Content based charging session.

getChargingSessionCtx Retrieves an already created instance of a charging session.

Method Description

creditAmountReq Credits an amount towards the reservation associated with the session.

creditUnitReq Credits one or more units towards the reservation associated with the
session.

debitAmountReq Debits an amount towards the reservation associated with the session.

debitUnitReq Debits one or more units towards the reservation associated with the
session.

directCreditAmountReq Credits an amount directly without affecting the reservation.

directCreditUnitReq Credits one or more units directly without affecting the reservation.

directDebitAmountReq Debits an amount directly without affecting the reservation.

Content based charg ing

11-4 Extension SDK for WebLogic Network Gatekeeper

IrAppChargingSession
Table 11-5 IrAppChargingSession

directDebitUnitReq Debits one or more units directly without affecting the reservation.

extendLifeTimeReq Request to extend the lifetime of a reservation.

getAmountLeft Request to get the remaining amount in a reservation.

getLifeTimeLeft Request to get the remaining lifetime of a reservation.

getUnitLeft Request to get the remaining units of a reservation.

rateReq Request to rate a request.

release Releases a Content based charging session and releases any reserved
amount or units left in a reservation.

reserveAmountReq Reserves an amount from an account

reserveUnitReq Reserves one or more units from an account.

Method Description

Method Description

creditAmountErr Result of a failed creditAmountReq request. No amount was credited.

creditAmountRes Result of a successful creditAmountReq request. Contains the information
requested.

creditUnitErr Result of a failed creditUnitReq request. No units were credited.

creditUnitRes Result of a successful creditUnitReq request.

debitAmountErr Result of a failed debitAmountReq request. No amount was debited.

debitAmountRes Result of a successful debitAmountReq request.

debitUnitErr Result of a failed debitUnitReq request. No units were debited.

debitUnitRes Result of a successful debitUnitReq request.

directCreditAmountErr Result of a failed directCreditAmountReq request. No amount was debited.

Use cases f or Con ten t based charging

Extension SDK for WebLogic Network Gatekeeper 11-5

Use cases for Content based charging
A Content based charging plug-in only supports operations originating from an application.
Network triggered is not supported.

directCreditAmountRes Result of a successful directCreditAmountReq request.

directCreditUnitErr Result of a failed directCreditUnitReq request. No units were credited.

directCreditUnitRes Result of a successful directCreditUnitReq request.

directDebitAmountErr Result of a failed directDebitAmountReq request. No amount was credited.

directDebitAmountRes Result of a successful directDebitAmountReq request.

directDebitUnitErr Result of a failed directDebitUnitReq request. No units were debited.

directDebitUnitRes Result of a successful directDebitUnitReq request.

extendLifeTimeErr Result of a failed extendLifeTimeReq request. The lifetime was not
extended.

extendLifeTimeRes Result of a successful extendLifeTimeReq request.

rateErr Result of a failed rateReq request. The rating was not performed.

rateRes Result of a successful rateReq request.

reserveAmountErr Result of a failed reserveAmountReq request. No amount was reserved.

reserveAmountRes Result of a successful reserveAmountReq request.

reserveUnitErr Result of a failed reserveAmountReq request. No units were reserved.

reserveUnitRes Result of a successful reserveAmountReq request.

sessionEnded The charging session was ended by the plug-in.

Method Description

Content based charg ing

11-6 Extension SDK for WebLogic Network Gatekeeper

Application-initiated usage of a Content based charging
plug-in
The following sequence diagram show a basic interaction between a user of content based
charging plug-in and the plug-in.

Figure 11-2 Application-initiated usage of Content based charging plug-in.

Details about the sequence diagram:

Prior to this sequence the Charging client (for example the content based charging ESPA
SC) has received a plug-in. See “General usage (application-initiated events)” on
page 2-15.

IrChargingSessionCharging Client IrAppChargingSession ChargingResource

createChargingSessionCtx

new

new

creditAmountReq

creditAmountRes

extendLifeTimeReq

extendLifeTimeRes

reserveAmountReq

reserveAmountRes

debitAmountReq

debitAmountRes

rateReq

rateRes

release

sessionEnded

Use cases f or Con ten t based charging

Extension SDK for WebLogic Network Gatekeeper 11-7

The Charging client application performs a createChargingSessionCtx to the
implementation of the ChargingResource interface. This interface is implemented in the
plug-in.

The plug-in creates an instance of the IrChargingSession interface and return it to the
client. An identifier for the session, along with the interface is returned to the client. A
sequence number is also supplied. This sequence number shall be increased for each new
request, in order to make sure that the requests are performed in the correct order.

The Content based charging client orders the plug-in to rate the request. The plug-in
returns the rating via rateRes, so the client knows how much to reserve. if the rating failed,
rateErr shall be returned.

The reservation is performed via reserveAmountReq.

A successful reservation is reported via reserveAmountRes.

An amount tis debited from the reservation using debitAmountReq.

The successful debit is reported via debitAmountRes.

The debited amount was too large, so the account is credited using creditAmountReq, and
the successful credit is reported using creditAmountRes.

The lifetime of the reservation is extended via extendLifeTimeReq, and the successful
request is reported via extendLifeTimeRes.

When all apportions in the session have been performed, the session is released.

Content based charg ing

11-8 Extension SDK for WebLogic Network Gatekeeper

Extension SDK for WebLogic Network Gatekeeper 12-1

C H A P T E R 12

Subscriber profile

The following sections contain descriptions of plug-ins of Subscriber profile type:

Network plug-in

Use cases for Subscriber profile

Network plug-in

Subscriber profile interfaces
All subscriber profile interfaces are defined in the file
bea\wlng21\esdk\idl\plugin_if\sp\sp_interfaces.idl

Subscr ibe r pr of i l e

12-2 Extension SDK for WebLogic Network Gatekeeper

Figure 12-1 Subscriber profile interface

Interfaces that should be implemented by the plug-in are listed in the table below.

Table 12-1 Interfaces that shall be implemented by a plug-in for Subscriber profile

Interface Description

Resource Initial object obtained from Plug-in Manager. Base interface implemented
by all plug-ins.

IrSubscriberProfile Manager object that is used to create and release sessions towards the
subscriber profile plug-in, and to get and set subscriber data.

IrSubscriberProfileSubscri
ptionExt

The extended subscriber profile interface provides functions for handling
subscriptions. The ESPA Subscriber profile SC does not operate on this
interface, but other -custom- clients to a subscriber profile plug-in may use
this. Examples of this can be policy utility classes.

Network p lug- in

Extension SDK for WebLogic Network Gatekeeper 12-3

Interfaces that are implemented by the ESPA Subscriber profile SC.

Table 12-2 Interfaces that are implemented by the Subscriber profile SC, used by a subscriber profile
plug-in.

Interfaces that could be implemented by a client to the Subscriber profile plug-in.

Table 12-3 Interfaces that could be implemented by a client to the Subscriber profile plug-in.

IrSubscriberProfileResource
Table 12-4 IrSubscriberProfileResource

IrSubscriberProfile
Table 12-5 IrSubscriberProfile

Interface Description

IrAppSubscriberProfile Call back interface for receiving responses to operations performed via the
IrAppSubscriberProfile interface.

Interface Description

IrAppSubscriberProfileSubsc
riptionExt

Call back interface for receiving responses to operations performed via the
IrSubscriberProfileSubscriptionExt interface.

Method Description

getSubscriberProfileCtx Request a subscriber profile. Creates a session.

Method Description

getSubscriberId Gets a subscriber ID based on the session id.

getInfoPropertyReq Request to get one or more properties for the subscriber.

setInfoPropertyReq Request to set one or more properties for the subscriber.

Subscr ibe r pr of i l e

12-4 Extension SDK for WebLogic Network Gatekeeper

IrSubscriberProfileSubscriptionExt
Table 12-6 IrSubscriberProfileSubscriptionExt

IrAppSubscriberProfile
Table 12-7 IrAppSubscriberProfile

release Releases a session.

queryBalanceReq Request to get the available balance for a subscriber.

Method Description

Method Description

getSubscriptionReq Request to fetch data about a subscription.

setSubscriptionStateReq Request to set data about a subscription.

addSubscriptionReq Request to add a subscription.

removeSubscriptionReq Request to remove a subscription.

Method Description

getInfoPropertyRes Result of a successful getInfoPropertyReq request. Contains the
information requested.

getInfoPropertyErr Result of a failed getInfoPropertyReq request.

setInfoPropertyRes Verification of a successful setInfoPropertyReq request.

setInfoPropertyErr Result of a failed setInfoPropertyReq request.

Use cases fo r Subsc r ibe r p ro f i l e

Extension SDK for WebLogic Network Gatekeeper 12-5

IrAppSubscriberProfileSubscriptionExt
Table 12-8 IrAppSubscriberProfileSubscriptionExt

Use cases for Subscriber profile
A subscriber profile plug-in only supports operations originating from an application. Network
triggered is not supported.

Application-initiated usage of a Subscriber profile plug-in
The following sequence diagram show a basic interaction between a user of subscriber profile
plug-in and the Plug-in.

Method Description

getSubscriptionRes Result of a successful getSubscriptionReq request.

getSubscriptionErr Result of a failed getSubscriptionReq request.

setSubscriptionStateRes Result of a successful setSubscriptionStateReq request.

setSubscriptionStateErr Result of a failed setSubscriptionStateReq request.

addSubscriptionRes Result of a successful addSubscriptionReq request.

addSubscriptionErr Result of a failed addSubscriptionReq request.

removeSubscriptionRes Result of a successful removeSubscriptionReq request.

removeSubscriptionErr Result of a failed removeSubscriptionReq request.

Subscr ibe r pr of i l e

12-6 Extension SDK for WebLogic Network Gatekeeper

Figure 12-2 Application-initiated usage of Subscriber profile plug-in.

Details about the sequence diagram:

Prior to this sequence the Subscriber profile client (for example the subscriber profile
ESPA SC) has received a plug-in. See “General usage (application-initiated events)” on
page 2-15.

The Subscriber profile client application performs a getSubscriberProfileCtx to the
implementation of the IrSubscriberProfile interface. This interface is implemented in the
plug-in. An identifier for the session, along with the interface is returned to the client.

The client request to get information about the subscriber via getInfopropertyReg. The
client defines which properties of a subscriber to be fetched from the plug-in and the result
is returned asynchronously to the IrAppSubscriberProfile interface implemented by the
Subscriber profile plug-in client.

The requested data is provided by the plug-in via the call getInfoPropertyRes. If the
plug-in experiences an error when getting the requested properties, the method
getInfoPropertyErr is invoked instead. The data is given as name-value pairs.

The Subscriber profile plug-in sets data in the plug-in via setInfoPropertyReq. The data is
provided as name-value pairs.

IrSubscriberProfileSP Client IrAppSubscriberProfile IrSubscriberProfileResource

getSubscriberProfileCtx

new

new

setInfoPropertyReq

setInfoPropertyRes

getInfoPropertyReq

getInfoPropertyRes

IrSubscriberProfileSubscriptio
nExt

IrAppSubscriberProfileSubscrip
tionExt

getSubscriptionRes

getSubscriptionReq

new

new

release

Use cases fo r Subsc r ibe r p ro f i l e

Extension SDK for WebLogic Network Gatekeeper 12-7

The result of the setInfoPropertyReq request is returned asynchronously to the
IrAppSubscriberProfile interface implemented by the Subscriber profile plug-in client via
setInfoPropertyRes. If the plug-in experiences an error when setting the requested
properties, the method setInfoPropertyErr is invoked instead.

Subscription information can also be fetched and defined using the
IrSubscriberProfileSubscriptionExt interface.

The Subscriber profile client retrieves information on which subscriptions the subscriber
has by calling getSubscriptionReq.

The response is sent back asynchronously from the plug-in using getSubscriptionRes on
the IrAppSubscriberProfileSubscriptionExt interface implemented by the Subscriber profile
client. If the plug-in experienced problems, getSubscriptionErr is invoked instead.

When the interaction with the subscriber profile plug-in is finished, the Subscriber profile
client invokes release, and the session is destroyed. It is the responsibility of the plug-in to
remove all objects.

Subscr ibe r pr of i l e

12-8 Extension SDK for WebLogic Network Gatekeeper

Extension SDK for WebLogic Network Gatekeeper 13-1

C H A P T E R 13

User Location

The following sections contain descriptions of plug-ins of User location type:

Network plug-in

Use cases for user location

Network plug-in

User location interfaces
All User location interfaces are defined in the file UlResource_IF.idl in
bea\wlng21\esdk\idl\plugin_if\mobility.

The interfaces use definitions in the files UlResource_data.idl and MobilityResource_data.idl.

User Locat i on

13-2 Extension SDK for WebLogic Network Gatekeeper

Figure 13-1 User location plugin interface

Interfaces that should be implemented by the plug-in are listed in the table below.

Table 13-1 Interfaces that shall be implemented by a plug-in for user location

Interface Description

Resource Initial object obtained from Plug-in Manager. Base interface implemented
by all plug-ins.

IrUserLocation The user location plug-in interface provides functions for getting the
position for a terminal, starting triggered and period location request.

IrUserLocationExt The extended user location plug-in interface provides functions for getting
the position for a terminal, starting triggered and period location request.

Network p lug- in

Extension SDK for WebLogic Network Gatekeeper 13-3

Interfaces that are implemented by the user location SC.

Table 13-2 Interfaces that are implemented by the user location SC, used by a user location plug-in.

IrUserLocation
IrUserLocation inherits from the Resource interface and contains and adds an method for using
ordering positioning requests.

Table 13-3 IrUserLocation

IrUserLocationExt
IrUserLocationExt is an extended version of the IrUserLocationExt interface and should be used
instead of this.

Table 13-4 IrUserLocationExt

Interface Description

IrAppUserLocation Call back interface for positioning results.

IrAppUserLocationExt Extended call back interface for positioning results.

Method Description

locationReportReq Deprecated.

extendedLocationReportReq Deprecated.

triggeredLocationReportingStart
Req

Deprecated.

triggeredLocationReportingStop Stops a previously started triggered location report request.

Method Description

locationReportCtxReq Request of a report on the location of one or several terminals

extendedLocationReportCtxReq Request of a report on the location of one or several terminals. More
information, such as altitude, can be provided in the response to the
request that in the response to locationReportCtxReq.

User Locat i on

13-4 Extension SDK for WebLogic Network Gatekeeper

IrAppUserLocation
IrAppUserLocation listens for events originating in the plug-in. There may be several listeners
registered for each plug-in.

This interface inherits from the SCS interface. It makes it possible to narrow a SC object retrieved
from the SC Manager to an IrAppUserLocation.

Table 13-5 IrAppUserLocation

triggeredLocationReportingStartCtx
Req

 Request for user location reports when the location of a terminal is
changed, so it enters or exits a specific location. The reports are
triggered by location change.

geoLocationReportReq Request of report on the location for one or several terminals where the
result is delivered as geographical data such as address, zip code and so
on.

periodicLocationReportingStartReq Request to start a periodic report on the location for one or several
terminal. The desired interval between positioning reports is defined.

periodicLocationReportingStop Request to stop a previously started periodic report.

Method Description

Method Description

locationReportRes Delivers a report containing locations for one or several terminals to the
Service Capability implementation.

locationReportErr Informs the Service Capability implementation that a location report
request has failed.

 extendedLocationReportRes Delivers a report containing extended location information about one or
several users to the Service Capability implementation.

extendedLocationReportErr Informs the Service Capability implementation that an extended location
report request has failed.

triggeredLocationReport Delivers a report containing triggered location information about one or
several terminals to the Service Capability implementation.

triggeredLocationReportErr Informs the Service Capability implementation that a triggered location
report request has failed.

Use cases fo r user l oca t i on

Extension SDK for WebLogic Network Gatekeeper 13-5

IrAppUserLocationExt
IrAppUserLocationExt listens for events originating in the plug-in. There may be several
listeners registered for each plug-in. This interface extends the IrAppUserLocation interface and
should be used instead of that.

This interface inherits from the SCS interface. It makes it possible to narrow a SC object retrieved
from the SC Manager to an MessageListener.

Table 13-6 IrAppUserLocationExt

Use cases for user location

Application-initiated user location
The following sequence diagram show a basic positioning request and an extended user location
request between a User location client (for example ESPA user location SC) and a plug-in.

Method Description

 geoLocationReportRes Delivers a report containing locations for one or several terminals.

triggeredGeoLocationReport Delivers a report containing geographical information on the position for
one or several terminals. The position data is geographical data such as
address, zip code and so on.

triggeredGeoLocationReportErr Informs the Service Capability implementation that a triggered
geographical location report request has failed.

periodicLocationReport Delivers a periodic report containing locations for one or several terminals.

periodicLocationReportErr Informs the Service Capability implementation that a periodic location
report request has failed.

User Locat i on

13-6 Extension SDK for WebLogic Network Gatekeeper

Figure 13-2 Application-initiated send message

Details about the sequence diagram:

Prior to this sequence the user location client has received a plug-in. See “General usage
(application-initiated events)” on page 2-15.

The MessagingResourceClient application performs a locationReportCtxReq call to the
implementation of the IrUserLocationExt interface. This interface is implemented in the
plug-in. The call-back interface, IrAppUserLocation, is provided in call.

The plug-in reports the location via locationReportRes. If the plug-in experienced problems
getting the position, locationReportErr is used.

The MessagingResourceClient application performs a extendedLocationReportCtxReq call
to the implementation of the IrUserLocationExt interface. This interface is implemented in
the plug-in. The call-back interface, IrAppUserLocation, is provided in call. The response
to extendedLocationReportCtxReq provides can provide more detailed information such as
altitude.

The plug-in reports the location via extendedLocationReportRes. If the plug-in experienced
problems getting the position, extendedLocationReportErr is used.

Network-triggered user location request
The current implementation of the ESPA User location SC, does not support network triggered
events. A new user location implementation can however benefit from the network triggered parts
of the user location plug-in interface.

IrUserLocationExtUser location Client IrAppUserLocationExt IrUserLocation

new

locationReportRes

IrAppUserLocation

locationReportCtxReq

extendedLocationReportCtxReq

extendedLocationReportRes

Use cases fo r user l oca t i on

Extension SDK for WebLogic Network Gatekeeper 13-7

The network triggered part of the user location uses the IrUserLocationExt interface, and starts a
triggered location report using triggeredLocationReportingStartCtxReq. Supplied with this
request is the call-back interface and the area of interest, together with information on wether the
information shall be supplied when entering or leaving this specified area.

Note that the area can be either an area defined by longitude and latitudes or as an abstract
geographical area, such as an a street or city.

The responses to the triggered user location request shall be sent to triggeredGeoLocationReport,
defined in the IrAppUserLocationExt interface, or triggeredLocationReport, defined in the
IrAppUserLocation interface.

User Locat i on

13-8 Extension SDK for WebLogic Network Gatekeeper

Extension SDK for WebLogic Network Gatekeeper 14-1

C H A P T E R 14

Policy rules and Policy Utilities

The following sections contain descriptions of Policy Rules and Policy Utilities:

Mapping policy request data to variables in a Policy Rule

Adding a rule to Policy Decision Point

Defining a Policy Utility class

Example Policy Utility

Mapping policy request data to variables in a Policy Rule
The policy request data is put in a PolicyRequest object which is sent to the Policy Service for
evaluation. The data in the PolicyRequest object can be used from the rules evaluating the
request.

The PolicyRequest object is created and sent to the rules engine in the Policy Enforcement Point
(PEP).

For information on how a PEP is implemented is described in “PolicyManager” on page 3-7.

In the PEP, the PolicyRequest object, can be populated with the following standard data as
described below:

applicationID, the application ID of the requesting party.

serviceProviderID, the Service Provider ID of the requesting party.

nodeID, ignore this parameter.

Pol ic y ru les and Po l i c y Ut i l i t i es

14-2 Extension SDK for WebLogic Network Gatekeeper

serviceName, the name of the software module from where the policy request originates.
Used in the rules to check service contracts in the SLAs and for look-up of rules specific
for the service.

methodName, the name of the method which is evaluated.

serviceGroup, must be “espa”.

serviceCode, the service code provided by the application.

requesterID, the service code provided by the application.

All of the above are Strings.

transactionID, ignore this parameter.

noOfActiveSessions, ignore this parameter.

timeStamp, the time stamp when the request was fed to the Policy Engine. Use SLEE Time
manager to get this timestamp.

reqCounter, insert the number of target addresses in the request. If only one target address
is used in the request set this value to 1. If using multiple target addresses in the request,
use the number of target addresses.

All of these are Long values.

In addition to these standard values, it is possible to add AdditionalParameters, which consists of
an array of AdditionalDataValue. This datatype provides a mechanism for the transferring other
request data that the predefined to the Policy Decision Point. AdditionalDataValue consist of a
name-value pair, where different types of values can be defined in the value part. The following
datatypes can be defined in an AdditionalDataValue object.

intValue(int val), for integer values.

longValue(long val), for long values.

stringValue(String val), for Strings.

stringArrayValue(String[] val), for Arrays of String values.

booleanValue(boolean val), for boolean values.

shortValue(short val), for short values.

charValue(char val), for char values.

Add ing a ru le to Po l i c y Dec is i on Po in t

Extension SDK for WebLogic Network Gatekeeper 14-3

floatValue(float val), for float values.

doubleValue(double val), for double values.

intArrayValue(int[] val), for arrays of int values.

The name of the name-value pair is defined in the dataName member variable in the
AdditionalData object.

Listing 14-1 Defining AdditionalData

AdditionalData adArray[] = new AdditionalData[1];

AdditionalDataValue targetAddressValue = new AdditionalDataValue();

AdditionalData adTargetAddressString = new AdditionalData();

targetAddressValue.stringValue(address);

adTargetAddressString.dataName = "targetAddress";

adTargetAddressString.dataValue = targetAddressValue;

adArray[0] = adTargetAddressString;

policyRequest.additionalParameters = adArray;

See Adding a rule to Policy Decision Point for information on how to use the PolicyRequest
object in the rule.

Adding a rule to Policy Decision Point
The first thing to do when adding a rule to a Policy Decision Point is to define the name of the
rule and to defined the priority of the rule. There are a set of pre-defined priority levels, which
are mapped to a numerical value:

minimum, where the value is -1*109

low, where the value is -1*106

high, where the value is 1*106

maximum, where the value is 1*109

Pol ic y ru les and Po l i c y Ut i l i t i es

14-4 Extension SDK for WebLogic Network Gatekeeper

Rules with high priority are evaluated prior to rules of low priority.

Listing 14-2 Skeleton of a rule

rule DenySubscriberNotExists

{

priority = high;

 when

 {

// fetch the policy request data and perform evaluations.

}

then

 {

// Take action on

}

};

Getting data defined in the PolicyRequest
The PolicyRequest object that was sent to the rule engine can be retrieved in the rules.

The standard requests data is found in the rules via the same names as they are defined in the
PolicyRequest object created in the PEP. Below is an example on how the rule assigns the
PolicyRequest member variable serviceName to the rule variable sname via the PolicyRequest
object. The rule object pr is assigned to the PolicyRequest object.

Listing 14-3 Policy Request data is fetched

?pr: event PolicyRequest(?sname: serviceName);

Add ing a ru le to Po l i c y Dec is i on Po in t

Extension SDK for WebLogic Network Gatekeeper 14-5

When the policy rule has evaluated the request and the decision is to deny the request, the rule’s
representation of the PolicyRequest object must be retracted. Retracting the PolicyRequest object
aborts further rule enforcement.

Listing 14-4 Retract a request

retract (?pr);

The requests must also be retracted for allowed requests in the last rule of the execution flow. This
could be achieved by adding a general finalizing allow rule that retracts the request. This rule
should have priority minimum.

Listing 14-5 General finalizing allow rule that retracts a request

rule AllowServiceRequest

{

 priority = minimum;

 when

 {

?pr: event PolicyRequest();

 }

 then

 {

retract (?pr);

?pr.allow();

 }

};

Pol ic y ru les and Po l i c y Ut i l i t i es

14-6 Extension SDK for WebLogic Network Gatekeeper

To fetch data defined as AdditionalValues, the data is fetched by name according to the example
below. In the example the AdditionalValue named targetAdress is stored in the variable
adddDataValue. The PolicyRequest object is pr.

Listing 14-6 Fetching AdditionalValue data

bind ?addDataValue = ?pr.getAdditionalDataStringValue("targetAddress");

Depending on the type, the data is fetched via different methods:

getAdditionalDataIntValue(...), for int values.

getAdditionalDataLongValue(...), for long values.

getAdditionalDataStringValue(...), for String values.

getAdditionalDataStringArrayValue(...), for arrays of String values.

getAdditionalDataBooleanValue(...), for boolean values.

getAdditionalDataShortValue(...), for short values.

getAdditionalDataCharValue(...), for char values.

getAdditionalDataFloatValue(...), for float values.

getAdditionalDataDoubleValue(...), for double values.

getAdditionalDataIntArrayValue(...), for arrays of int values.

If the datatype is unknown, it can be determined by invoking the discriminator method on the
AdditionalDataValue object.

Listing 14-7 Determine the type of an AdditionalDatavalue

bind ?type = ?pr.getAdditionalData.dataValue.discriminator().value();

Extend ing Se rv i ce Leve l Ag reements

Extension SDK for WebLogic Network Gatekeeper 14-7

Where type is one of the following:

AdditionalDataType._P_ADDITIONAL_INT

AdditionalDataType._P_ADDITIONAL_LONG

AdditionalDataType._P_ADDITIONAL_STRING

AdditionalDataType._P_ADDITIONAL_STRING_ARRAY

AdditionalDataType._P_ADDITIONAL_BOOLEAN

AdditionalDataType._P_ADDITIONAL_SHORT

AdditionalDataType._P_ADDITIONAL_CHAR

AdditionalDataType._P_ADDITIONAL_FLOAT

AdditionalDataType._P_ADDITIONAL_DOUBLE

AdditionalDataType._P_ADDITIONAL_INT_ARRAY

Also see the JavaDoc for PolicyRequest.

Extending Service Level Agreements
Service Level Agreements (SLAs) are XML files that contains data which is enforced by Policy
rules. The Service Level Agreements are created and loaded into the Policy Engine on these
levels:

Service provider

Application

Service provider traffic

Total traffic

There are separate Policy rules that enforces these SLAs, one on service provider level and one
on application level. The traffic SLAs are both enforced using one rule.

When extending Service Level Agreements, the following steps must be taken:

The SLA schema file must be updated.

The SLA schema file must be loaded into the Policy service.

The rule files that operates on the data must be updated and loaded.

Pol ic y ru les and Po l i c y Ut i l i t i es

14-8 Extension SDK for WebLogic Network Gatekeeper

The SLAs must be updated

The updated SLAs must be loaded

Update SLA Schema
The SLA schema files are located in

<installation directory>/bin/policy/sla_schema.

There are three different SLA schema files:

app_sla_file.xsd, which defines the SLA schema for the application level SLAs.

sp_sla_file.xsd, which defines the SLA schema for the service provider level SLAs.

node_sla_file.xsd, which defines the SLA schema for the service provider traffic and
total traffic SLA.

Update the schema file with the new element. For example, if the service provider SLA schema
needs a new element that defines a String value stated in the service provider SLAs as
<additionalData>mydata</additionalData>, update the serviceContract in the schema file with
the following element:

<xs:element name="additionalData" minOccurs="0" maxOccurs="1" type="xs:int"/>

Load new SLA schema into the Policy Service
Load the SLA schema into the Policy service using the Network Gatekeeper Management Tool
using the following methods in the Policy service:

reloadApplicationXmlDriver, for reloading application level SLA schemas.

reloadServiceProviderXmlDriver, for reloading service provider level SLA schemas.

reloadNodeXmlDriver, for service provider traffic and total traffic SLA schemas.

Update and load rule files
In order to enforce the SLA data in, the rule files have to be updated with rules that enforce the
new data in the SLA.

The data in the SLA is fetched from an object model the Policy engine creates from the data
defined in the SLAs. The data in an SLA is fetched from the Policy Rules by name. For example,
if a a tag in the SLA is <additionalData>, the data is fetched using the same name, as described
below.

Extend ing Se rv i ce Leve l Ag reements

Extension SDK for WebLogic Network Gatekeeper 14-9

The rule gets the parameter aParam from the Policy request object, and puts in the local variable
pr. The parameter aParam is compared with the data fetched from the SLA, and denies the request
if the parameter given in the SLA is larger than the parameter provided in the Policy request.

Listing 14-8 Get SLA data and compare with a parameter in a Policy request

rule denyAParamValueNotAllowed

{

 priority = high;

 when

 {

?pr: event PolicyRequest(?serviceName: serviceName;

 ?aParam: aParam);

?sc: ServiceContract(?scs: scs;

 ?scs equals ?serviceName;

?aParam > additionalData);

}

 then

 {

retract (?pr);

?pr.deny("The parameter is not allowed!");

}

};

The rules must be loaded into the Policy engine, this is performed using the Network Gatekeeper
Management Tool using the following methods in the Policy Service:

loadApplicationRules, for loading application level rules.

loadServiceProviderRules, for loading service provider level rules.

Pol ic y ru les and Po l i c y Ut i l i t i es

14-10 Extension SDK for WebLogic Network Gatekeeper

loadNodeRules, for loading service provider traffic and total traffic rules.

Update SLAs
The SLAs needs to be updated with the tag and the data in the new tag. If extending the SLA with
the tag defined in the schema file, update the service provider SLA with the tag and data:

<additionalData>mydata</additionalData>

Load new SLAs
The SLAs holding the new parameters must be loaded in to the Policy engine. See Network
Gatekeeper User’s guide for information on how to load a new SLAs.

Using a Policy Utility
A Policy Utility is a Java object that is used from a rule.

The rule language, Ilog IRL, makes it possible to perform basic evaluation and parameter
substitution, but for more complex processing, call-outs to Java object might be necessary. Java
objects can also be used for interaction with external systems such as databases, or prepaid
systems.

Below is an example of how a Policy Utility object is called from a rule file.

Listing 14-9 Invoking a Policy Utility from a rule

if (MyPolicyUtility.getInstance().subscriberExists(?address,

?sp,

?app,

?reqID,

?sCode) == false) {

retract (?pr);

?pr.deny("The Subscriber " + ?address + " is not in database.");

}

Def in ing a Po l i c y Ut i l i t y c lass

Extension SDK for WebLogic Network Gatekeeper 14-11

In the example above, the rule calls the method subscriberExists in the class MyPolicyUtility.

Defining a Policy Utility class
A Policy utility class has the following set of characteristics:

It executes as a SLEE service

It is a Singleton class

A Policy Utility class executes as a singleton class in order to be callable from the rule. The Policy
Utility registers its classes in the Policy service, where they are instantiated and executed. As a
consequence of the classloader hierarchy, there is a need of two consecutive restarts of the SLEE
in which the Policy utility is installed in order to load the Policy Utility -one for the Policy utility
to install itself in the SLEE and one to load the Policy Utility into the Policy Service.

When the Policy Utility is instantiated, it registers itself into Policy service. The constructor shall
be private since it is a singleton class. A static public class is created to get the Policy Utility Class
from the rule, and to instantiate the class if necessary.

Since the Policy Utility class will execute in the Policy service, it fetches the service context for
the Policy via reflection.

Listing 14-10 Registering the Policy Utility class

Class internalPolicyContextClass =

Class.forName("com.incomit.policy.InternalPolicyContext");

java.lang.reflect.Method getServiceContextMethod =

internalPolicyContextClass.getMethod("getServiceContext", null);

java.lang.Object serviceContextResultObj =

getServiceContextMethod.invoke(null, null);

m_sc = (ServiceContext) serviceContextResultObj;

The Policy Utility will also use the same POA as the Policy service. The POA is only necessary
when the Policy Utility creates new CORBA objects, for example listener objects when
connecting to a plug-in.

Pol ic y ru les and Po l i c y Ut i l i t i es

14-12 Extension SDK for WebLogic Network Gatekeeper

Listing 14-11 Getting the POA in a Policy Utility Class

java.lang.reflect.Method getChildPOAMethod =

internalPolicyContextClass.getMethod("getChildPOA", null);

java.lang.Object poaResultObj = getChildPOAMethod.invoke(null, null);

m_poa = (org.omg.PortableServer.POA) poaResultObj;

The rule calls a method in the singleton class via a static method that checks if that the class is
already instantiated, instantiates it if necessary, and returns the object. In the example in
Listing 14-9 this method is named getInstance().

Example Policy Utility
In the example template modules in the Extension SDK, there is an example of a Policy Utility
in the directory module_templates\policy_utility.

The Policy Utility is invoked from a rule and it checks if the address parameter is present is a
subscriber database.

The subscriber database is interfaced using a Subscriber profile plug-in, and the Policy Utility
uses the Plug-in Manager to get the plug-in.

Extension SDK for WebLogic Network Gatekeeper 15-1

C H A P T E R 15

Using the Extension SDK templates

The Extension SDK for WebLogic Network Gatekeeper consists of template source code and
build tools that assists the creation of WESPA modules, SESPA modules, ESPA service
capabilities, and network plug-ins that execute in WebLogic Network Gatekeeper. It also
contains examples of a Policy utility class that can be used from Policy rules.

The template source code illustrates how a request from an application is propagated through the
internal layers of the Network Gatekeeper down to the plug-in. It also illustrates how a network
initiated request is propagated from the plug-in, through the different layers and up to an
application. The network initiated part of the templates also illustrates how the application
registers to listen to network initiated events.

The following sections contain descriptions of the Extension SDK templates:

Prerequisites

Installing the Extension SDK

About WESPA, SESPA, ESPA service capability, and network plug-in software modules

About the flow descriptions

Traffic flow for application initiated requests

Registration flow for network triggered requests

Directory structure for the templates

Introduction to the network plug-in

Using the Extensi on SDK templa tes

15-2 Extension SDK for WebLogic Network Gatekeeper

Files for the SLEE service part of the network plug-in interfaces

Introduction to the ESPA service capability

Files for the ESPA service capability interfaces

Files for the ESPA service capability implementation

Files for the Policy utility

Introduction to the SESPA module

Files for the SESPA module interface

Files for the SESPA module implementation

Introduction to the WESPA module

Files for the WESPA module interface

Files for the WESPA module implementation

Introduction to the test application

Files for the test application

Introduction to the network simulator

Files for the network simulator application

Preparing the development environment

Using the templates from Eclipse

Prerequisites
Understanding of the network plug-in, ESPA service capability module, SESPA module, and
WESPA module concepts as outlined in WebLogic Network Gatekeeper Product Description.

All template source code is written in Java and some modules use CORBA, so experience with
Java and CORBA is essential.

The build environment is based upon the Ant build tool, so experience with Ant and Ant build
files is necessary.

Orbacus 4.1.2 or 4.3 must be installed.

Java 2 SDK 1.4.2 must be installed.

I nstal l ing the Ex t ens ion SDK

Extension SDK for WebLogic Network Gatekeeper 15-3

It is necessary to have working knowledge of how to handle the WebLogic Network Gatekeeper.

When deploying software modules created with the Extension SDK, the software modules must
be deployed to a WebLogic Network Gatekeeper 2.1 with the following patches installed:

x_sespa_access.jar, patch version: R_WLNG_2_1_0_4

slee.jar, patch version: R_WLNG_2_1_0_5

Installing the Extension SDK

Installation prerequisites
The following prerequisites must be fulfilled before starting to install an Extension SDK:

Access to the product CDs or access to the Download Center.

A password for extracting the installation file. The password was provided when you
ordered Extension SDK for Network Gatekeeper

The Java SDK for the platform must be downloaded and installed.

Orbacus 4.1.2 or 4.3 must be installed.

Installation procedure
1. Download the Extension SDK software from the Download Center, or copy the file from the

product CD, to the local file system.

2. The Extension SDK is installed by extracting the ZIP file esdk21_wlng21.zip to the file
system. The file is extracted to the directory bea\wlng21\esdk. The directory structure
described in “Directory structure for the templates” on page 15-15 is created.

Note: A password is required to extract this file. The password was provided when you ordered
Extension SDK for Network Gatekeeper and can also be obtained from the BEA
eLicense system.

3. Add the path to the Orbacus binary directory in the path environment variable. The Orbacus
binaries are located in <Orbacus installation path>\bin.

4. Define the ANT_HOME environment variable to the Ant directory provided by the Extension
SDK. The ant directory is located in <install path to Extension
SDK>\bea\wlng21\esdk\dev_tools\ant

Using the Extensi on SDK templa tes

15-4 Extension SDK for WebLogic Network Gatekeeper

5. Add the path to the ant binary directory in the path environment variable. The Ant binaries
are located in <install path to Extension
SDK>\bea\wlng21\esdk\dev_tools\ant\bin.

6. Define the JAVA_HOME environment variable to the Java 1.4.2 directory.

7. Add the path to the Java binary directory in the path environment variable.

8. Define the properties described in “Preparing the development environment” on
page 15-39.

9. If using Eclipse as a development environment, follow the instructions in “Using the
templates from Eclipse” on page 15-43.

About WESPA, SESPA, ESPA service capability, and network
plug-in software modules

There are some alternatives when extending the WebLogic Network Gatekeeper:

1. Developing a new network plug-in to support a new network node. The corresponding ESPA
service capability and above SW modules are already available in WebLogic Network
Gatekeeper and providing service capability access through one or more existing network
plug-ins.

2. Developing a whole traffic path including network plug-in, ESPA service capability, SESPA
module, and WESPA module to provide a new service capability towards the applications.

3. Developing an application facing interfaces that uses an existing SESPA module.

An overview of the WebLogic Network Gatekeeper software architecture supporting the above
extension alternatives is shown in Figure 15-1.

About WESPA , SESPA , ESPA se rv ice capab i l i t y , and ne twork p lug- in sof tware modu les

Extension SDK for WebLogic Network Gatekeeper 15-5

Figure 15-1 Software module and interface overview

.

WebLogic Network Gatekeeper is designed around a layered architecture model. This is reflected
in the Extension SDK.

ESPA service
capability

SLEE Part of
Network plug-in

Application

Network node

M
an

ag
em

en
t t

oo
l

SESPA
module

MyServiceCapability.idl

WESPA
module

Tomcat/Axis

sespa_sc_if

MyPluginOAM.idl

MyServiceCapability
OAM.idl

wespa_sc_if.wsdl

MyServiceCapability
OAM.idl

SLEE

my_plugin_if.idl

Web Services Part of
Network plug-in

Tomcat/Axis

Using the Extensi on SDK templa tes

15-6 Extension SDK for WebLogic Network Gatekeeper

The southern most layer, the plug-in layer, contains logic for communication with underlying
network systems. The interface between the ESPA Service Capability and the plug-in, the plug-in
interface, is an asynchronous CORBA interface used for communication with the service
capability layer, and is defined in my_plugin_if.idl. The south bound interface of a plug-in is
undefined and depends on the underlying network system. Each plug-in specifies it's type (for
example CALL_CONTROL) and it's supported address plans (for example E164). The type can
be customized and could be any string. Based on these criteria, plug-ins are accessed from the
service capability layer.

The middle most layer, the service capability layer, enforces traffic restrictions and policies. On
the northbound side of the service capability layer is the CORBA based ESPA interface and the
south bound is the plug-in interface. ESPA service capability implementations register
themselves in the ESPA access framework from which they can be accessed, ensuring that they
can only be accessed after client authenticity has been assured by ESPA access. ESPA service
capabilities can for each service request get a a plug-in that the request shall be mapped onto
based on plug-in type and address plan as described above.

The Extension SDK can be used to create web services based access interfaces. These interface
modules are divided in two, one SESPA part which makes a stateless native Java representation
of the ESPA CORBA interface, and one web services part (WESPA) executing in Tomcat/Axis.

The south bound interface of the SESPA layer is hence the ESPA interface. The northbound
SESPA interface is defined using plain java classes. WESPA will access SESPA from the web
services environment executing in Tomcat/Axis, therefore both SESPA and WESPA must be
loaded in the same Java class loader. A utility in the SLEE is used for this purpose, the SLEE
CommonLoader. The WESPA services' northbound interface is defined in plain java files, from
which WSDL files are generated. A client can use the WSDL files to generate it's own stubs in
the language it uses.

About the flow descriptions
The sections:

“Traffic flow for application initiated requests” on page 15-7

“Registration flow for network triggered requests” on page 15-9

“Traffic flow for network triggered requests” on page 15-12

describe the flow through the template software modules provided in the module_templates
directory in the Extension SDK. Use the decription together with the code provided in the
templates.

T ra f f i c f l ow fo r app l i ca t i on in i t i at ed r eques ts

Extension SDK for WebLogic Network Gatekeeper 15-7

Traffic flow for application initiated requests

WESPA service capability
For the application initiated requests, the template exposes two methods to an application in the
WESPA service capability, myMethod(...) and myMethodWait(...). The method myMethod(...)
returns the result asynchronously via a call to the Web Service method myMethodResult(...), or
if an error has occurred via myMethodError(...). The corresponding calls are tied together via an
assignment ID given by the application in myMethod(...) and provided as parameters in
myMethodResult(...) and MyMethodError(...). The methods myMethodResult(...) and
MyMethodError(...) are calling a Web Service that shall be implemented by the application.

The method myMethodWait(...) returns the result synchronously via the return value. The
WESPA implementation calls the corresponding methods myMethod(...) and myMethodWait(...)
exposed by the SESPA Service Capability module. These calls are pure Java calls.

The application must login to the WESPA Access module prior to calling myMethod(...) or
myMethodWait(...).

See Network Gatekeeper Developer's Guide for Extended Web Services and Network
Gatekeeper API Description for Extended Web Services for information on how to login to
WESPA Access.

If the login was successful, a login ticket representing the session is returned. The login ticket
must be provided by the application in every consecutive call to the WESPA module. The ticket
is provided in the SOAP header and is retrieved by calling the method getCurrentSessionId() in
com.bea.wespa.util.SOAPHeaderHandler. The session ID returned is provided as a parameter to
the call to both myMethodWait(...) and myMethodWait(...) exposed by the SESPA service
capability.

SESPA service capability module
For the application initiated requests, the template exposes two methods to the WESPA module
in the SESPA service capability, myMethod(...) and myMethodWait(...). The method
myMethod(...) returns the result asynchronously via a call to the WESPA method
myMethodResult(...), or if an error has occurred via myMethodError(...). The corresponding calls
are tied together via an assignment ID given by an application in myMethod(...) and provided as
parameters in myMethodResult(...) and MyMethodError(...). The method myMethodWait(...)
returns the result synchronously via the return value. The SESPA implementation calls the
method myMethod(...) exposed by the ESPA Service Capability module.

Using the Extensi on SDK templa tes

15-8 Extension SDK for WebLogic Network Gatekeeper

For the method myMethodWait(...) exposed to the SESPA module, the asynchronous method
myMethod(...) exposed by the ESPA module is called. The SESPA module waits for the ESPA
module to call either the method myMethodResult(...) or myMethodError(...) on the SESPA
modules listener interface until returning. The method could also return if the timer associated
with the call to myMethodWait(...) expires. It is important to convert any, from an application
point of view, synchronous calls to asynchronous as early as possible, in order to block as few
threads as possible in the Network Gatekeeper. This means that these conversions should be done
in the SESPA layer.

For each traffic method invocation, the SESPA service capability module retrieves the CORBA
client session objects from the login ticket. First, the application session object is retrieved using
the database helper utility defined in com.incomit.sespa.util.DbHelper. The object is provided in
the constructor of MyServiceCapabilityImpl. By calling getApplicationSession(...) the
application session object is returned. This object is provided as a parameter in when the traffic
method request is propagated to the ESPA service capability module. The ESPA Manager object
is also retrieved using the database helper utility. By calling getEspaManager(...) on the database
helper utility the correct ESPA Manager object is returned. The Manager object is found based
on the login ticket and the SLEE service name the ESPA Service capability module is registered
under. The traffic method request is performed on the ESPA Manager object.

ESPA service capability module
For the application initiated requests, the template exposes one asynchronous method,
myMethod(...), to the SESPA module. The result of the method myMethod(...) is reported
asynchronously via a call to the SESPA callback method myMethodResult(...), or if an error has
occurred via myMethodError(...).

The method myMethod(...) calls an internal method, myMethodInternal(...) which implements a
Policy Enforcement Point. If the request is allowed, the class MyServiceCapabilityPluginTask is
instantiated and provided in the request to scheduleResourceTask(...) on the plug-in manager.
When the plug-in manager has found a suitable plug-in and allocated a task, the SLEE will call
doTask(...) on MyServiceCapabilityPluginTask. A reference to the plug-in is provided as an
argument to doTask(...). In the doTask(...) method, the ESPA service capability module call the
method myMethodReq(...) exposed by the plug-in. The result of the call to the method
myMethodReq(...) is reported asynchronously to the call back interface implementation
MyPluginListener_impl via the methods myMethodRes(...) or myMethodErr(...).

For each traffic method invocation, the SESPA service capability module checks if the ESPA
service capability module is suspended and if it is overloaded. If not, it checks if the application
session is valid. This is done by calling checkSessionValidity(...) on the ESPA utility class

Reg is t ra t i on f l ow f or network t r iggered r eques ts

Extension SDK for WebLogic Network Gatekeeper 15-9

com.incomit.espa.util.ApplicationSessionValidityHelper.session. The Application session
object is provided as a parameter in each traffic method invocation.

Network protocol plug-in SLEE service part
For the application initiated requests, the template exposes one asynchronous method,
myMethodReq(...), to the ESPA module. The method myMethodReq(...) schedules a new task
using scheduleSLEETask(...) on the SLEE Task Manager. As an argument to
scheduleSLEETask(...) is an instance of MyMethodReqTask which is the class that will perform
the actual protocol-specific communication with the underlying network node. In
MyMethodReqTask the method doTask(...) will be invoked when the SLEE Task manager has
assigned a new task. In the implementation of doTask(...), the interface to the Web Services part
of the plug-in is fetched from the SLEE Common Loader via a call to
SleeCommonLoader.getInstance().getObject(OBJ_NETWORK_INTERFACE). The Web
Services part of the plug-in is called via myNetworkMethod(...) and a call to the call-back is
performed via a call to myMethodRes(...) on the listener object.

Network protocol plug-in Web Services part
In the Web services part of the network plug-in, the communication with the underlying network
node takes place.

The SLEE services part of the network plug-in called the method myNetworkMethod(...) in the
class NetworkInterfaceImpl. This method class the underlying node via a Web Services call and
returns the result to the SLEE services part of the network plug-in.

Registration flow for network triggered requests
The network triggered part of the template is divided into two parts, a registration part where an
application registers for network initiated events the traffic flow part where a request reaches the
network plug-in and is propagated through the template traffic path up to an application. The
registration part is initiated by the application and described below. The traffic path is described
in “Traffic flow for network triggered requests” on page 15-12.

WESPA service capability
For the registration for network triggered notifications, the template exposes two methods to an
application in the WESPA service capability, enableNetworkTriggeredEvents(...) and
disableNetworkTriggeredEvents(...). The method enableNetworkTriggeredEvents(...) returns a

Using the Extensi on SDK templa tes

15-10 Extension SDK for WebLogic Network Gatekeeper

ticket identifying the notification. The method disableNetworkTriggeredEvents(...) removes the
registration for network initiated notifications. The WESPA implementation calls the
corresponding methods enableNetworkTriggeredEvents(...) and
disableNetworkTriggeredEvents(...) exposed by the SESPA Service Capability module. These
calls are pure Java calls.

The application must login to the WESPA Access module prior to calling
enableNetworkTriggeredEvents(...) or disableNetworkTriggeredEvents(...). See the Network
Gatekeeper development documentation for information on how to login to WESPA Access. If
the login was successful, a login ticket representing the session is returned. The login ticket must
be provided by the application in every consecutive call to the WESPA module. The ticket is
provided in the SOAP header and is retrieved by calling the method getCurrentSessionId() in
com.bea.wespa.util.SOAPHeaderHandler. The session ID returned is provided as a parameter to
the call to both enableNetworkTriggeredEvents(...) and disableNetworkTriggeredEvents(...)
exposed by the SESPA service capability.

SESPA service capability module
For the registration part for network triggered notifications, the template exposes two methods to
the WESPA module in the SESPA service capability, enableNetworkTriggeredEvents(...) and
disableNetworkTriggeredEvents(...). When the method enableNetworkTriggeredEvents(...) is
invoked, an object representing the notification, NotificationInfoId, is created and a check is
performed that there are not other applications that have registered for notifications with the same
criteria using getIdenticalNotifications(...) on the helper class
MyServiceCapabilityPersistentStorage. If there are identical notification criteria, and the
notification is created by the same application, the notification is fetched from the database by
calling getNotification(...) on the helper class MyServiceCapabilityPersistentStorage. The
listener object is created using the method internalAddNetworkListener(...) and the listener is
stored in the database using storeNotification(...) on the helper class
MyServiceCapabilityPersistentStorage. An event is broadcasted to other instances of the SESPA
module via a call to generateEnableNotificationEvent(...) on the event helper class
MyServiceCapabilityEventHelper. The method internalAddNetworkListener(...) creates a
listener object from the class MyESPAServiceCapabilityNetworkListener_impl.

ESPA service capability module
When the ESPA Service capability module becomes activated, it registers the callback interface
for the communication between the plug-in and the ESPA Service Capability module. The

Reg is t ra t i on f l ow f or network t r iggered r eques ts

Extension SDK for WebLogic Network Gatekeeper 15-11

listener object is registered in the SC manger. The plug-in will query the SC manager for a
suitable ESPA Service capability when a network triggered event occurs.

For the registration part for network triggered notifications, the template exposes two methods to
the SESPA module in the ESPA service capability, addNetworkTriggeredEventListener(...) and
removeNetworkTriggeredEventListener(...). When the method
addNetworkTriggeredEventListener(...) is invoked a check that the application session is valid is
performed. After this check, the method addNetworkTriggeredEventListenerInternal(...) is
invoked. This method implements the Policy Evaluation Point and enables the notification via the
NotificationHandler class. This class handles distribution of events between the different
instances of the ESPA Service Capability module. The events are distributed when one of the
following occurs:

A new notification was added via the method addNetworkTriggeredEventListener(...).

An existing notification was disabled via the method
removeNetworkTriggeredEventListener(...).

A callback interface was added to an already existing notification via the method
addNetworkTriggeredEventListener(...).

A callback interface was removed from an existing notification the method
removeNetworkTriggeredEventListener(...).

An object was declared non-functional by the SLEEZombieObjectSupervisor and was
therefore removed from the listener.

NotificationHandler holds a hashtable, represented by the variable m_notifications, containing
registered notifications and callback interfaces. The NotificationHandler class distributes the
details about the notification, such as which application that has requested the notification and
stores the information in the database using the NotificationHelper class and distributes the
notification information to all other instances of the ESPA service capability module via the
SLEE Event Handler. The event is created using generateEvent on the SLEE event channel.

The processEvent(...) method in the class NotificationHandler listens to the events and updates
the instance of the ESPA Service Capability module according to the events.

Network protocol plug-in
The SLEE service part of the network protocol plug-in is not involved when registering for
network triggered notifications. A listener, MyWPluginNetworkTriggeredEventListenerImpl, is

Using the Extensi on SDK templa tes

15-12 Extension SDK for WebLogic Network Gatekeeper

instantiated and registered in the SLEE Common loader when the SLEE service is instantiated.
The plug-in also registers in the Plug-in manager when it becomes activated.

The Web Services part of the plug-in registers the implementation of the network triggered
interface NetworkInterfaceImpl and MyWPluginNetworkTriggeredEventResultListenerImpl in
the SLEE Common Loader, when MyWPluginServlet.init(...) is called at startup of the servlet.

Traffic flow for network triggered requests
The network triggered part of the template is divided into two parts, a registration part where an
application registers for network initiated events and the traffic flow part where a request reaches
the network plug-in and is propagated through the template traffic path up to an application. The
traffic flow is described below and the registration part is described in “Registration flow for
network triggered requests” on page 15-9.

Web Services part of the network protocol plug-in
The network node performs the Web Services call myDeliverNetworkTriggeredEventMethod on
the Web Service implemented in the Web Services part of the plug-in. The Web Service is bound
to the class NetworkTriggeredEventListenerSoapBindingImpl.

The method myDeliverNetworkTriggeredEventMethod(...) is invoked on the class
NetworkTriggeredEventListenerSoapBindingImpl. Via the method
NetworkTriggeredEventListenerSoapBindingImpl.nameLookUp() the object in the SLEE
service part of the plug-in is retrieved from the SLEE Common Loader via the name,
OBJ_NETWORK_TRIGGERED_EVENT_LISTENER

The object in the SLEE Service part of the plug-in, implemented in
MyWPluginNetworkTriggeredEventListenerImpl was registered in the SLEE Common loader
when it was activated.

SLEE Service part of the network protocol plug-in
The Web Services part of the plug-in has performed a call to
MyWPluginNetworkTriggeredEventListenerImpl.myDeliverNetworkTriggeredEventMethod(...
).

MyWPluginNetworkTriggeredEventListenerImpl, which implements the listener for network
triggered events, was instantiated and registered in the SLEE Common Loader when the SLEE
service part of the plug-in was activated, that is when doActivated() is invoked by the SLEE on
the class MyPluginSleeService.

T ra f f i c f l ow f or network t r iggered r eques ts

Extension SDK for WebLogic Network Gatekeeper 15-13

The class DeliverNetworkTriggeredEventTask is instantiated and provided as a scheduled task to
the SLEE Task Manager via a call to scheduleSLEETask(...).

In DeliverNetworkTriggeredEventTask the method doTask(...) is invoked when the SLEE Task
manager has assigned a new task.

In DeliverNetworkTriggeredEventTask.doTask() the class
MyPluginNetworkTriggeredEventResultListenerImpl is instantiated. This class is used by the
ESPA SC to send back responses to the plug-in describing the outcome of the request.

DeliverNetworkTriggeredEventTask.getListener().myDeliverNetworkTriggeredEventMethod(..
.) is invoked, where DeliverNetworkTriggeredEventTask.getListener() asks the SC manager for
an object in the ESPA SC that listens for network initiated request and returns the listener. This
object is instantiated from the class DeliverNetworkTriggeredEventTask in ESPA.

ESPA service capability module
The class MyPluginNetworkTriggeredEventListener_impl implements the listener object the
SLEE service part of the plug-in calls when new network initiated events arrives. The class was
instantiated and registered in the SC manager when it was activated.

The SLEE service part of the plug-in calls
MyPluginNetworkTriggeredEventListener_impl.myDeliverNetworkTriggeredEventMethod(...)
where the class DeliverNetworkTriggeredEventTask is instantiated and provided as a scheduled
task to the SLEE Task Manager via a call to scheduleSLEETask(...).

In DeliverNetworkTriggeredEventTask the method doTask(...) is invoked when the SLEE Task
manager has assigned a new task.

First, DeliverNetworkTriggeredEventTask.doTask() calls internalNotificationArrived(...) on the
singleton class NotificationHandler.

The method NotificationHandler.internalNotificationArrived(...) checks if any application has
registered for notifications for the events via the method
NotificationHandler.findEnabledNotification(...). The method findEnabledNotification(...)
returns a list of notifications enabled by the applications.

NotificationHandler.findEnabledNotification(...) checks in the Hashtable m_notifications for
notifications registered by the applications. The method returns an object of type
MyServiceCapabilityNotification which holds information on which application has registered
for notifications and an array of IORs to the SESPA listeners that represents the listeners
registered by the applications.

Using the Extensi on SDK templa tes

15-14 Extension SDK for WebLogic Network Gatekeeper

A Policy Evaluation Point is implemented where it is verified if the application is permitted to
receive notifications. If the policy rules denies the request, a CDR is generated that the
notifications could not be delivered because of a policy violation. If the policy rules permits the
request, the method NotificationHandler.executeNotificationArrived(...) is invoked.

In NotificationHandler.executeNotificationArrived(...) the class
MyServiceCapabilityNetworkTriggeredEventResultListenerImpl is instantiated. This object is
used by the SESPA SC to report successful or failed deliveries of notifications to the ESPA SC.
The method MyServiceCapabilityNotification.getCallback() is invoked. This method returns a
SESPA object representing a callback that SESPA has registered for an application.
MyServiceCapabilityNotification.getCallback() returns the IOR to the SESPA listeners that
corresponds to a listener registered by an application.

If no such object is returned,
MyServiceCapabilityNetworkTriggeredEventResultListenerImpl.myDeliverNetworkTriggered
EventMethodError(...) is called.

If a callback object is found, the method
MyServiceCapabilityNetworkTriggeredEventListener.myDeliverNetworkTriggeredEventMeth
od(...) is called to the SESPA SC.

SESPA service capability module
The class MyESPAServiceCapabilityNetworkTriggeredEventListener_impl implements the
listener object in the SESPA module. The class was instantiated and provided to ESPA when the
application enabled the network triggered event listener.

ESPA calls myDeliverNetworkTriggeredEventMethod(...) on the object instantiated from the
class MyESPAServiceCapabilityNetworkTriggeredEventListener_impl where the class
DeliverNetworkTriggeredEventTask is instantiated and provided as a scheduled task to the SLEE
Task Manager via a call to scheduleSLEETask(...).

In DeliverNetworkTriggeredEventTask the method doTask(...) is invoked when the SLEE Task
manager has assigned a new task.

First, DeliverNetworkTriggeredEventTask.doTask() calls
MyESPAServiceCapabilityNetworkTriggeredEventListener_impl.getNextCallback() which
returns an object instantiated from the class MyServiceCapabilityCallbackInfo. The method gets
the object from the AbstractList m_callbackList which holds a list of object instantiated from the
class MyServiceCapabilityCallbackInfo. The class MyServiceCapabilityCallbackInfo holds
information about the notification ticket and the endpoint of the Web Service implemented by the
application that enabled network triggered notifications.

Direct or y s t ruc tu re fo r t he t empl ates

Extension SDK for WebLogic Network Gatekeeper 15-15

Then the object in the WESPA SC that performs the Web Services call to the application is
fetched from the SLEE Common loader. The object returned is instantiated from the class
MyServiceCapabilityNetworkTriggeredEventListener. The method
myDeliverNetworkTriggeredEventMethod(...) is invoked on the class
MyServiceCapabilityNetworkTriggeredEventListenerImpl in the WESPA SC.

After the calls has been returned from the WESPA SC, and the application, the method
myDeliverNetworkTriggeredEventMethodResult(...) is called on the object provided as result
listener. This object is instantiated from the class
MyServiceCapabilityNetworkTriggeredEventResultListenerImpl. The method passes the result
to the plug-in.

WESPA service capability module
The class MyServiceCapabilityNetworkTriggeredEventListenerImpl implements the method
myDeliverNetworkTriggeredEventMethod(...). This method is called from the SESPA SC
module.

myDeliverNetworkTriggeredEventMethod(...) calls getMyScNetworkListener(...) which returns
an object instantiated from MyServiceCapabilityNetworkTriggeredEventListener.

getMyScNetworkListener uses the Axis generated class
MyServiceCapabilityNetworkTriggeredEventListenerServiceLocator to create a proxy object for
the application Web Service.

Finally the call to the Web Service implementation in the application is performed using a call to
MyServiceCapabilityNetworkTriggeredEventListener.myDeliverNetworkTriggeredEventMeth
od(...). When the application has returned the call, the execution proceeds in the ESPA SC
module.

Directory structure for the templates
The following directory structure is used for the Extension SDK.

dev_tools\

doc\

eclipse\

idl\

espa_if\

Using the Extensi on SDK templa tes

15-16 Extension SDK for WebLogic Network Gatekeeper

plugin_if\

lib\

module_templates\

build\

client_impl\

espa_sc_if\

espa_sc_impl\

network_if\

network_simulator_impl\

plugin_if\

plugin_impl\

policy\

rules\

sla\

policy_util_impl\

sespa_sc_if\

sespa_sc_impl\

wespa_sc_if\

wespa_sc_impl\

wplugin_if\

wplugin_impl\

thirdparty\

wsdl\

The actual templates for the services are found under module_templates.

For each module there is an ant build file in build.xml directly under each module.

Source code is found under src and IDL interface files are found under idl. Any stubs generated
from IDL files will be put under a directory generated, while compiled class files and packaged
jar files will be stored under lib.

Direct or y s t ruc tu re fo r t he t empl ates

Extension SDK for WebLogic Network Gatekeeper 15-17

Below is a description of the individual directories

dev_tools

Contains the Ant build tool.

doc

Contains Java doc for all relevant interfaces.

eclipse

Contains files for setting up an Eclipse development environment for the templates.

idl\espa_if

Contains IDL-files for the interfaces to the standard ESPA service capability modules.

idl\plugin_if

Contains IDL-files for the interfaces to the standard plug-ins.

module_templates

Contains templates for interfaces and implementations of the extension modules. See
description below for each sub-directory.

Directly under module_templates\build there are two files:

build.xml

This is a main build file for the entire Extension SDK. This build file prepares the
environment by extracting necessary jar files under lib, and builds all targets under
module_templates. Note that each module may be built by itself under
module_templates\<module_name>\build, but this file must be built once initially to
do the preparations.

build.properties

Contains configuration settings for Extension SDK.

module_templates\client_impl

Contains templates for the an application using the interfaces exposed by the Web Services
interfaces.

module_templates\espa_sc_if

Contains templates for the ESPA service capability module interface.

module_templates\espa_sc_impl

Using the Extensi on SDK templa tes

15-18 Extension SDK for WebLogic Network Gatekeeper

Contains templates for the ESPA service capability module implementation.

module_templates\network_if

Contains example WSDL interface descriptions for the communication between the Web
Services part of the plug-in to an example network node (the example network simulator
application).

module_templates\network_simulator_impl

Contains templates for a network simulator.

module_templates\plugin

Contains templates for the SLEE Service part of the plug-in implementation.

module_templates\plugin_if

Contains templates for the SLEE Service part of the plug-in interface.

module_templates\policy

Rules files and SLAs on service provider and application level.

module_templates\policy_util_impl

Contains templates for a Policy utility class.

module_templates\sespa_sc_if

Contains templates for the SESPA module interface.

module_templates\sespa_sc_impl

Contains templates for the SESPA module implementation.

module_templates\wespa_sc_if

Contains templates for the WESPA module interface.

module_templates\wespa_sc_impl

Contains templates for the WESPA module interface.

module_templates\wespa_sc_impl

Contains templates for the WESPA module implementation.

module_templates\wplugin_if

Contains templates for the interface part of the plug-in that executes in Tomcat (Web
Services part).

I nt roduc t ion to the ne two rk p lug- in

Extension SDK for WebLogic Network Gatekeeper 15-19

module_templates\wplugin_impl

Contains templates for the implementation part of the plug-in that executes in Tomcat
(Web Services part).

lib

Jar files necessary for compiling the templates.

thirdparty

Necessary third party libraries and binaries.

wsdl

Interface definition file for the Access Web Service interface.

Introduction to the network plug-in
A network plug-in collaborates with a set of actors:

SLEE

ESPA service capability

Plug-in manager

SC manager

Underlying network, or other, node.

The plug-in is built-up by a set of classes and IDL-files.

The SLEE Service part of the plug-in uses a set of utility classes that implements the Basic SLEE
services interfaces ServiceDeployable and ServiceAccessible, and extends these classes as
described in “Help classes for network plug-ins” on page 2-8.

Files for the SLEE service part of the network plug-in interfaces

my_plugin_if.idl
Location: plugin_if\idl

This template file defines the interfaces between the network plug-in and the ESPA service
capability module.

Using the Extensi on SDK templa tes

15-20 Extension SDK for WebLogic Network Gatekeeper

The module definitions in this file are used by both the ESPA service capability module
implementation and the plug-in implementation. The template holds these interfaces:

MyPluginListener, MyPlugin, and MyPluginNetworkListener

MyPlugin is used by the ESPA service capability module to invoke methods on the plug-in. The
method definition myMethodReq serves as a template for an asynchronous method request. It uses
the parameter assignmentID to keep track of corresponding requests and responses. The
parameter MyPluginListener is the callback interface as defined in the interface
MyPluginListener.

MyPluginListener is used by the plug-in to invoke callback methods implemented by the
ESPA service capability module. It holds two template methods:

myMethodRes and myMethodErr.

myMethodRes is invoked upon successful completion of a method invocation and myMethodErr
is invoked upon a failed completion of a method invocation.

It is the responsibility of the plug-in to invoke these methods, while it is the responsibility of the
ESPA service capability module to implement them.

MyPluginNetworkListener is used by the plug-in to invoke methods implemented by the
ESPA service capability module when network triggered events arrives to the plug-in. It holds
the method:

myDeliverNetworkTriggeredEventMethod which is invoked when the plug-in receives a
network initiated event. It is the responsibility of the plug-in to invoke this method, while it is the
responsibility of the ESPA service capability module to implement it.

F i les fo r the SLEE serv ice ne two rk p lug- in impl ementa t i on

Extension SDK for WebLogic Network Gatekeeper 15-21

Files for the SLEE service network plug-in implementation

MyPluginOAM.idl
Location: plugin_impl\idl

The purpose of this file is to define the interface between the plug-in and the OAM functionality
of the SLEE. Methods defined in this interface will be accessible via the Network Gatekeeper
OAM interface and the Management Tool.

The module definition in this file reflects the module definition in the plug-in interface.

MyPluginContext.java
Location: plugin_impl\src\com\acompany\plugin\myplugintype

Implements the class MyPluginContext. The purpose of this class is to define the service context
for the plug-in and to hold data that is global for the plug-in. This class extends the wrapper class
PluginContext. The following static variables are defined:

PLUGIN_TYPE defines the plug-in type that the plug-in specifies when registering in the
plug-in manager. Service capability implementations will use this type identifier when
retrieving plug-ins for handling service requests. The type must match one of the allowed
types in the plug-in manager service. Custom types are allowed, but must be registered in
the plug-in manager.

ADDRESS_PLANS is an array holding information on the address plans supported by the
plug-in. Example:

new TrAddressPlan[] {TrAddressPlan.R_ADDRESS_PLAN_IP}

Possible values are defined in the JavaDoc for the plug-in interfaces.

The package name reflects the module definition in the plug-in interface.

MyPluginSLEEService.java
Location: plugin_impl\src\com\acompany\plugin\myplugintype

Implements the class MyPluginSleeService. The purpose of this class is to implement the state
control of the plug-in as a SLEE service and to instantiate and provide a reference to the class that
implements the traffic interface, the class MyPlugin_impl.

When the service gets activated and started, when the doActivated() and doStarted() methods are
invoked, it creates the object that listens for network initiated traffic from the class

Using the Extensi on SDK templa tes

15-22 Extension SDK for WebLogic Network Gatekeeper

MyPluginNetworkTriggeredInterfaceImpl, and it registers it in the SLEE Common Loader so it
will be accessible by the Web Services part of the plug-in. See “Plug-ins that executes as a SLEE
service and a web application” on page 7-1 for more information about interaction between the
web application part of a plug-in and the SLEE service part of a plug-in.

MyPlugin_impl.java
Location: plugin_impl\src\com\acompany\plugin\myplugintype

Implements the class MyPlugin_impl. The purpose of this class is to implement the traffic
interface of the plug-in as a SLEE service and to implement the plug-in interface used by the
ESPA service capability. The template implements the plug-in interface, used by the ESPA
service capability module. The actual logic is performed in a separate class, MyMethodReqTask.
This task class is scheduled as a SLEE task. The SLEE will put it in it's transaction queue and
assign a thread to it and let it execute in due time.

public void myMethodReq(....) {

...

 MyMethodReqTask task = new MyMethodReqTask(Context.getServiceContext(),

listener, address, data, assignmentID);

Context.getServiceContext().getSLEEContext().getTaskManager().scheduleSLEE

Task(task);

...

}

The class MyMethodReqTask performs the actual processing. See MyMethodReqTask.java.

Since the implementation of the interface used by the ESPA service capability module resides in
this class, the class must extend the generated POA implementation of the IDL interface:

public class MyPlugin_impl extends MyPluginPOA

The POA name MyPluginPOA reflects the name of the plug-in interface. In this case MyPlugin.
See the description of my_plugin_if.idl.

The methods defined in the plug-in interface are implemented here. The method myMethodReq
serves as a template for all methods to be used in the plug-in interface. All methods defined in the
plug-in interface must be implemented here. Also the corresponding callback interface must be

F i les fo r the SLEE serv ice ne two rk p lug- in impl ementa t i on

Extension SDK for WebLogic Network Gatekeeper 15-23

used. For example, the method myMethodReq and the callback interface myPluginListener is
defined in the plug-in interface, and myMethodReq method signature is:

myMethodReq(.,., int assignmentID, MyPluginListener, listener)

The assignmentID is used to keep corresponding requests and responses together.

MyMethodReqTask.java
Location: plugin_impl\src\com\acompany\plugin\myplugintype

Implements the class MyMethodReqTask. This class performs the operations towards the Web
Service part of the plug-in. It is implemented in a separate class in order to use the SLEE task
processing functions for asynchronous operations. It fetches the object that defines the interface
to the Web Services part of the plug-in from the SLEE Common Loader and calls the method
myNetworkMethod implemented in the Web Services part of the plug-in.

The package name reflects the module definition in the plug-in interface.

DeliverNetworkTriggeredEventTask.java
Location: plugin_impl\src\com\acompany\plugin\myplugintype

Implements the class DeliverNetworkTriggeredEventTask. The purpose of this class is to deliver
an network triggered event to the ESPA SC via the SC manager.

MyPluginNetworkTriggeredEventResultListenerImpl.java
Location: plugin_impl\src\com\acompany\plugin\myplugintype

Implements the class MyPluginNetworkTriggeredEventResultListenerImpl. The purpose of this
class is to receive the result from a previously delivered network triggered event from the ESPA
SC. The results are processed in the methods
myDeliverNetworkTriggeredEventMethodResult(...) and
myDeliverNetworkTriggeredEventMethodError(...). Both these methods schedules SLEE Tasks
that performs the actual processing, in the classes
MyDeliverNetworkTriggeredEventMethodResultTask and
MyDeliverNetworkTriggeredEventMethodErrorTask.

MyWPluginNetworkTriggeredEventListenerImpl.java
Location: plugin_impl\src\com\acompany\plugin\myplugintype

Using the Extensi on SDK templa tes

15-24 Extension SDK for WebLogic Network Gatekeeper

Implements the class MyWPluginNetworkTriggeredEventListenerImpl. The purpose of this
class is to receive notifications on network triggered events from the Web Services part of the
plug-in and to schedule a SLEE Task on the class DeliverNetworkTriggeredEventTask when a
notification arrives.

MyPluginOAM_impl.java
Location: plugin_impl\src\com\acompany\plugin\myplugintype

Implements the class MyPluginOAM_impl. The purpose of this class is to implement the OAM
methods that are offered towards the plug-in.

The package name reflects the module definition in the plug-in interface.

F i les fo r the Web Se rv i ces ne two rk p lug- in impl ementa t i on

Extension SDK for WebLogic Network Gatekeeper 15-25

Files for the Web Services network plug-in implementation

MyWPluginNetworkTriggeredEventResultListenerImpl.java
Location: wplugin_impl\src\com\acompany\wplugin\myplugintype

The purpose of this file is to propagate the result a previously delivered network initiated requests
to the network node.

MyWPluginServlet.java
Location: wplugin_impl\src\com\acompany\wplugin\myplugintype

The purpose of this file is to add the object implementing the interface the SLEE service part of
the plug-in uses to propagate the request to the Web Services part of the plug-in. The object is
added to the SLEE Common loader in the init(...) method of the servlet.

NetworkInterfaceImpl.java
Location: wplugin_impl\src\com\acompany\wplugin\myplugintype

The purpose of this file is implement the interface to the network node.

NetworkTriggeredEventListenerSoapBindingImpl.java
Location: wplugin_impl\src\com\acompany\wplugin\myplugintype

This class implements the Web Service called by an underlying network node when network
initiated requests arrives. It implements the Web Service method
myDeliverNetworkTriggeredEventMethod(...) and calls the corresponding method
implemented in the SLEE Service part of the plug-in.

Introduction to the ESPA service capability
An ESPA service capability module collaborates with the following set of actors:

SLEE

Application

SESPA module

Network plug-in

Using the Extensi on SDK templa tes

15-26 Extension SDK for WebLogic Network Gatekeeper

Policy service

The ESPA service capability module is built-up by a set of classes and IDL-files.

Files for the ESPA service capability interfaces

MyServiceCapability_if.idl
Location: espa_sc_module_if/idl

This template file defines the interfaces between the ESPA service capability module and a
SESPA module.

The module definitions in this file are used by both the ESPA service capability module
implementation and the SESPA module.

In contrary to the plug-in interface, which is asynchronous only, the ESPA interface offers both
synchronous and asynchronous request methods to it's clients (SESPA in this case). A client that
uses the synchronous request method (see below) does not have to implement or use the callback
interface.

The template holds two interfaces for southbound requests:

MyServiceCapabilityManager

MyServiceCapabilityListener

The MyServiceCapabilityManager interface is used by a SESPA module to invoke methods
on the ESPA service capability module. It contains the methods:

myMethod, a template for an asynchronous method request. It returns an assignmentID to
keep track of corresponding requests and responses.

addNetworkTriggeredEventListener, for enabling listeners for network triggered
events.

removeNetworkTriggeredEventListener, for removing listeners for network
triggered events.

The MyServiceCapabilityListener interface is used by the ESPA service capability module
to provide the result of an asynchronous method invocation made by a SESPA module. It contains
two methods:

myMethodResult and myMethodError.

Fi l es fo r t he ESPA se rv ice capabi l i t y impl ementat i on

Extension SDK for WebLogic Network Gatekeeper 15-27

myMethodResult is invoked upon successful completion of an asynchronous method invocation
and myMethodError is invoked upon a failed completion of an asynchronous method invocation.

For network initiated traffic three are two interfaces:

MyServiceCapabilityNetworkTriggeredEventListener, for forwarding network
initiated requests to the SESPA SC.

MyServiceCapabilityNetworkTriggeredEventResultListener, for delivering the
result of previously delivered network triggered notifications.

Files for the ESPA service capability implementation

MyServiceCapabilityOAM.idl
Location: espa_sc_impl\idl

The purpose of this file is to define the interface between the ESPA service capability module and
the OAM functionality of the SLEE.

ChargingHelper.java
Location: espa_sc_impl\src\com\acompany\espa\mysctype

Performs charging, that is generate Charging Data Records (CDRs).

DeliverNetworkTriggeredEventTask.java
Location: espa_sc_impl\src\com\acompany\espa\mysctype

Delivers notifications on network triggered events to the SESPA SC.

MyPluginNetworkTriggeredEventListener_impl.java
Location: espa_sc_impl\src\com\acompany\espa\mysctype

Listens for network triggered notifications from the plug-in and orders to the SLEE Task
Manager to execute doTask in DeliverNetworkTriggeredEventTask.

MyServiceCapabilityNetworkTriggeredEventResultListenerImp
l.java
Location: espa_sc_impl\src\com\acompany\espa\mysctype

Using the Extensi on SDK templa tes

15-28 Extension SDK for WebLogic Network Gatekeeper

Listens for results of previously delivered network triggered notifications.

MyPluginListener_impl.java
Location: espa_sc_impl\src\com\acompany\espa\mysctype

This file holds a class that implements the plug-in callback interface
(MyPluginListener_impl). It also handles a supervision timer on request invocations towards
the plug-in to avoid session hangs if the plug-in fails to deliver a result or error callback.

It delivers the result to the ESPA listener in SESPA. For result deliverance to the ESPA clients,
it uses an the inner helper class MyMethodResultTask and MyMethodErrorTask.

MyServiceCapabilityOAM_impl.java
Location: espa_sc_impl\src\com\acompany\espa\mysctype

This class implements the OAM interface of the ESPA service capability. It utilizes the
MyServiceCapabilityPersistentStorage class to store data of persistent nature in the
database.

MyServiceCapabilityPersistentStorage.java
Location: espa_sc_impl\src\com\acompany\espa\mysctype

This file holds a helper class used for storing and retrieving configuration data in the database.

MyServiceCapabilityService_impl.java
Location: espa_sc_impl\src\com\acompany\espa\mysctype

This file holds the class serving as the service deployable interface. It handles notifications about
SLEE service state change and also implements the ESPA Service interface defined in ESPA
Access. This interface must be supported by any service that should be accessible via the ESPA
Access framework.

NotificationHandler.java
Location: espa_sc_impl\src\com\acompany\espa\mysctype

This file contains a class with methods for distributing events to other ESPA SCs. It broadcasts
and listens to events originating from an application adding or removing listeners for network

Fi l es fo r t he ESPA se rv ice capabi l i t y impl ementat i on

Extension SDK for WebLogic Network Gatekeeper 15-29

triggered events. It uses incoming network triggered notifications from the network plug-in and
connects them with listeners that has been registered by the SESPA SC.

MyServiceCapabilityManager_impl.java
Location: espa_sc_impl\src\com\acompany\espa\mysctype

This file implements the server part of the MyServiceCapabilityManager interface. It
implements the Policy Enforcement Point (PEP) and utilizes an inner helper class
MyServiceCapabilityPluginTask for performing the actual invocations towards the plug-in.

The following line schedules the helper class as a SLEE resource task, which causes the SLEE to
obtain a plug-in according to the type defined in PLUGIN_TYPE and executes the task from a
separate thread:

getResourceManager().scheduleResourceTask(new TrProperty[0],

MyServiceCapabilityContext.PLUGIN_TYPE,

TrAddress,

resourceContext,

0, // prio

MyServiceCapabilityContext.POLICY_SERVICE_GROUP,

1, // sendlist size

task,

MyServiceCapabilityContext.getServiceContext());

MyServiceCapabilityContext.java
Location: espa_sc_impl\src\com\acompany\espa\mysctype

The purpose of this file is to define the service context for the ESPA service capability module
and to hold global data for the ESPA service capability. The following static variables are
defined:

POLICY_SERVICE_NAME defines the service name, visible in the Policy service Rule files
for this service are loaded with this name.

POLICY_SERVICE_GROUP defines the Policy service group of this service.

Using the Extensi on SDK templa tes

15-30 Extension SDK for WebLogic Network Gatekeeper

PLUGIN_TYPE defines the plug-in type string that the service uses when obtaining plug-in
references from the plug-in manager. This must be the same name as the plug-in uses when
it registers itself in the plug-in manager.

SERVICE_TYPE to define the ESPA service capability type the ESPA service capability
module belongs to. Possible values are defined in the JavaDoc for the ESPA service
capability and plug-in interfaces.

Other service types than specified in the JavaDoc are also allowed. These are registered through
the Management tool at installation.

Policy implementation concept
A Policy Enforcement Point (PEP) forwards data about a certain method invocation to a Policy
Decision Point (PDP), where the data is evaluated, and possible manipulated, by a policy rule.
The data, which may be modified, is returned to the PEP and the execution continues if the
request was allowed according to the PDP. If the request was not allowed, an exception is thrown.

The implementation of a PEP resides in the method definition of the method that will implement
a PEP. In the templates, the file MyServiceCapabilityManager_impl.java in the directory
espa_sc_impl\src\com\acompany\espa\mysctype holds an example on how a PEP may be
implemented.

Below is a description of how to implement a PEP, based on the example in the Extension SDK.

The example PEP resides in the method myMethodInternal(...). The basic implementation
steps of building a PEP is creating an instance of the class PolicyRequest_impl and populating
it with service context specific data, and then passing it to the policy service for evaluation. Policy
evaluation may result in approval or denial of the service request. Denial is communicated to the
PEP implementor through exceptions. If a PEP is accepted, the PolicyRequest is returned by
the policy service, containing the same data as the original PolicyRequest except for that some
data may have been modified by the policy rule.

The template example code in myMethodInternal() shows how the PolicyRequest is
instantiated and populated with mandatory parameters. Any properties specific to the particular
context where the PEP is enforced may be passed to policy rules as optional additional parameters
in the PolicyRequest. In the example, the data and address parameters are passed as optional.

F i les fo r the Po l i c y ut i l i t y

Extension SDK for WebLogic Network Gatekeeper 15-31

Files for the Policy utility

MyPolicyUtility.java
Location: policy_util_impl\src\com\acompany\policy\util

The purpose of this class is to expose a public method, subscriberExists, that checks in a
database if a user exists. The class is a singleton class in order to be called from a Policy Rule. It
uses the Subscriber profile plug-in interface to fetch subscriber data. The plug-in is found in
lib\b_db_sp_resource.jar. See “Creating an example Policy Utility” on page 18-1 for
information on how to deploy the plug-in and to provision users in the database.

The Policy Utility called from the example rule DenySubscriberNotExists, found in
ESPA_myservicecapability.ilr in policy\rules\sp\. The rule is triggered from PEP
in the template ESPA Service Capability, see “Policy implementation concept” on page 15-30.

MyPolicyUtilityOAM_impl.java
Location: policy_util_impl\src\com\acompany\policy\util

Implements the OAM interface for the Policy Utility. In the template, there are no OAM methods.

MyPolicyUtilityException.java
Location: policy_util_impl\src\com\acompany\policy\util

Defines an exception for the Policy Utility class.

Introduction to the SESPA module
A SESPA module collaborates with the following set of actors:

SLEE

WESPA module

ESPA service capability

The SESPA module is built-up by a set of classes and IDL-files.

Using the Extensi on SDK templa tes

15-32 Extension SDK for WebLogic Network Gatekeeper

Files for the SESPA module interface

MyServiceCapability.java and
MyESPAServiceCapabilityListener.java
Location: sespa_sc_if\src\com\acompany\sespa\mysctype

These template files define the interfaces between the SESPA module and a WESPA module.

The name of these files reflect the name of the SESPA module.

The templates define two interfaces:

MyServiceCapability

MyServiceCapabilityListener

The MySESPAServiceCapability interface is used by a WESPA module to invoke methods on
the SESPA module. It contains these methods:

myMethod, a template for an asynchronous method request. It returns an assignmentID to
keep track of corresponding requests and responses.

myMethodWait, a template for a synchronous method request. It returns the result of the
request.

enableNetworkTriggeredEvents, a template for enabling listeners for network triggered
requests.

disableNetworkTriggeredEvents, a template for disabling of previously registered
listeners for network triggered requests.

The MyServiceCapabilityListener interface is a callback interface used by the SESPA
module to provide the result of an asynchronous method invocation made by a WESPA module.
It contains two methods, myMethodResult and myMethodError.

myMethodResult is invoked upon successful completion of an asynchronous method invocation
and myMethodError is invoked upon a failed completion of an asynchronous method invocation.

MyServiceCapabilityNetworkTriggeredEventListener.java
Location: sespa_sc_if\src\com\acompany\sespa\mysctype

This template file define the interface between the SESPA module and a WESPA module for
network triggered notifications.

F i l es f or the SESPA modu le impl ementa t i on

Extension SDK for WebLogic Network Gatekeeper 15-33

The MyServiceCapabilityNetworkTriggeredEventListener interface is used by a SESPA
module to invoke methods on the WESPA module. It contains the method:

myDeliverNetworkTriggeredEventMethod, for delivering network initiated requests to
the WESPA SC.

Files for the SESPA module implementation

MyServiceCapabilityOAM.idl
Location: sespa_sc_impl\idl

The purpose of this file is to define the interface between the SESPA service capability module
and the OAM functionality of the SLEE.

MyServiceCapabilityOAM.idl
Location: sespa_sc_impl\idl

The purpose of this file is to deliver notifications on network triggered events from the SESPA
SC module to the WESPA SC module.

The purpose of this file is to define the interface between the SESPA service capability module
and the OAM functionality of the SLEE.

MyESPAServiceCapabilityListener_impl.java
Location: sespa_sc_impl\src\com\acompany\sespa\mysctype

This is the asynchronous ESPA callback interface implementation. It forwards results received
from ESPA to the WESPA module.

MyESPAServiceCapabilityNetworkTriggeredEventListener_imp
l.java
Location: sespa_sc_impl\src\com\acompany\sespa\mysctype

The purpose of this class is to implement the listener the ESPA SC module calls when the ESPA
SC receives notifications on network triggered notifications. It also maps ESPA login
information and notification IDs to login tickets and notification IDs used in the WESPA SC.

Using the Extensi on SDK templa tes

15-34 Extension SDK for WebLogic Network Gatekeeper

MyServiceCapabilityEventHelper.java
Location: sespa_sc_impl\src\com\acompany\sespa\mysctype

The purpose of this class is to keep the different instances of the SESPA SC in sync. It generates
events when an application has registered for notifications on network triggered events and it also
handles reception of these events. It is also responsible for acting on events related to the login
ticket expirations and refresh.

MyServiceCapabilityService.java
Location: sespa_sc_impl\src\com\acompany\sespa\mysctype

The purpose of this class is to implement the service deployable interface. It instantiates help
classes when the SESPA module’s state is changed from installed to started and performs
class loader registration at activation. At deactivation the classes are unregistered from the class
loader. Clean up procedures are performed both when the module is deactivated and stopped.

The reason for the class loader registrations is that the interface between SESPA and WESPA is
a normal Java interface. Class definitions and objects must therefore be loaded into a class loader
that is common for both SESPA and WESPA. The interface class files,
MySESPAServiceCapability.class and MySESPAServiceCapabilityListener.class,
must only be included in the SESPA jar file and not in the WESPA war file since the services
must share a common definition. The SLEECommonLoader class loader is used by both services
for registering and retrieving classes and objects. This is a parent class loader of both services,
the WESPA service executes in Tomcat, and Tomcat has SLEECommonLoader as parent class
loader.

MyServiceCapabilityOAM_impl.java
Location: sespa_sc_impl\src\com\acompany\sespa\mysctype

The purpose of this class is to implement the service manageable object and the OAM methods
defined in the MyServiceCapabilityOAM.idl file. In addition, it sets the service context and
creates a child POA for the ESPA service capability listeners.

MyServiceCapabilityPersistentStorage.java
Location: sespa_sc_impl\src\com\acompany\sespa\mysctype

The purpose of this class is to handle operations towards the database.

I n t roduct ion t o t he WESPA modu le

Extension SDK for WebLogic Network Gatekeeper 15-35

MyServiceCapabilityContext.java
Location: sespa_sc_impl\src\com\acompany\sespa\mysctype

This file is a helper class that keeps track of the ESPA service capability listeners and other
service context related data.

MyServiceCapabilityImpl.java
Location: sespa_sc_impl\src\com\acompany\sespa\mysctype

This is the SESPA interface implementation. It performs the mapping between the SESPA and
ESPA interfaces. In addition, it validates the login ticket received from WESPA.

NotificationInfo.java and NotificationInfoId.java
Location: sespa_sc_impl\src\com\acompany\sespa\mysctype

Holds data about notifications for network triggered events.

Introduction to the WESPA module
An WESPA module collaborates with the following set of actors:

client application

SESPA module

The WESPA module is built-up by a set of classes.

Files for the WESPA module interface

MyServiceCapability.java and
MyServiceCapabilityListener.java
Location: wespa_sc_if\src\com\acompany\wespa\mysctype

These template files define the interfaces between the WESPA module and an application.

The name of these files reflect the name of the WESPA module.

The templates hold these interfaces for application initiated requests:

MyServiceCapability

Using the Extensi on SDK templa tes

15-36 Extension SDK for WebLogic Network Gatekeeper

MyServiceCapabilityListener

The MyServiceCapability interface is used by a client to invoke methods on the SESPA
module. It contains these methods:

myMethod, a template for an asynchronous method request. It returns an assignmentID to
keep track of corresponding requests and responses.

myMethodWait, a template for a synchronous method request. It returns the result of the
request.

enableNetworkTriggeredEvents, for enabling listeners for network triggered events.

disableNetworkTriggeredEvents, for disabling previously registered listeners for
network triggered events.

The MyServiceCapabilityListener interface is a callback interface used by the WESPA
module to provide the result of an asynchronous method invocation made by a client. It contains
two methods, myMethodResult and myMethodError.

myMethodResult is invoked upon successful completion of an asynchronous method invocation
and myMethodError is invoked upon a failed completion of an asynchronous method
invocation.

MyServiceCapabilityException.java
Location: wespa_sc_if\src\com\acompany\wespa\mysctype

The file is a class that implements exception handling.

MyServiceCapabilityNetworkTriggeredEventListener.java
Location: wespa_sc_if\src\com\acompany\wespa\mysctype

This file defines the interface for delivering notifications on network triggered events.

Files for the WESPA module implementation

MyServiceCapabilityListenerImpl.java
Location: wespa_sc_impl\src\com\acompany\wespa\mysctype

This is the asynchronous SESPA callback interface implementation. It forwards results received
from SESPA to the application.

In t roduct ion t o the tes t appl ica t i on

Extension SDK for WebLogic Network Gatekeeper 15-37

MyServiceCapabilityNetworkTriggeredEventListenerImpl.java
Location: wespa_sc_impl\src\com\acompany\wespa\mysctype

This is the implementation of the interface used for delivering network triggered notifications to
an application.

MyServiceCapabilitySoapBindingImpl.java
Location: wespa_sc_impl\src\com\acompany\wespa\mysctype

This class implements the server part of the WESPA MyServiceCapability interface. It is
deployed in the Axis web services engine.

Introduction to the test application
The test application uses the Web Service implemented by the WESPA Service capability
module and implements the Web Service called by the WESPA Service Capability module.

Files for the test application

LoginHelper.java and LoginInfo.java
Location: client_impl\src\com\acompany\test

Handles login towards WESPA Access and holds the login information.

MyScHelper.java
Location: client_impl\src\com\acompany\test

Performs the calls towards the Web Service exposed by the WESPA Service Capability.

MyServiceCapabilityListenerImpl.java
Location: client_impl\src\com\acompany\test

Implements the Web Service the WESPA Service Capability module uses to reports results of
asynchronous application triggered requests.

Using the Extensi on SDK templa tes

15-38 Extension SDK for WebLogic Network Gatekeeper

TestClient.java
Location: client_impl\src\com\acompany\test

Main program for the test client that implements a menu and call the different parts of the test
client according to the menu choices and information given.

TraceLogService_impl.java and TraceLogService.java
Location: client_impl\src\com\acompany\test

Helper class and interface to perform trace.

WespaHelper.java
Location: client_impl\src\com\acompany\test

Helper class that creates Web Services calls and creates security headers.

Introduction to the network simulator
The network simulator application uses a Web Service implemented by the Web Services part of
the network plug-in and implements the Web Service called by the Web Services part of the
network plug-in. For application initiated requests it receives the request and prints the request
data to System.out. For network initiated requests it performs a Web Services call to the Web
Services part of the network plug-in.

Files for the network simulator application

NetworkTriggeredInterfaceHelper.java
Location: network_simulator_impl\src\com\acompany\test

Performs network initiated requests to the Web Services part of the network plug-in. Uses a Web
Service.

NetworkInterfaceImpl.java
Location: network_simulator_impl\src\com\acompany\test

Receives application triggered requests from the plug-in. Implements a Web Service.

Prepar ing the deve lopment env i ronment

Extension SDK for WebLogic Network Gatekeeper 15-39

TestClient.java
Location: network_simulator_impl\src\com\acompany\test

Main program for the test client that implements a menu and call the different parts of the test
client according to the menu choices and information given.

TraceLogService_impl.java and TraceLogService.java
Location: network_simulator_impl\src\com\acompany\test

Helper class and interface to perform trace.

Preparing the development environment

Copy templates
In order to create a new set of modules, copy the relevant modules from
bea\wlng21\esdk\module_templates to a new directory where the development will take
place. This directory will be referred to as exampleproj.

Preparing the build environment
In the file exampleproj\build.properties, change the properties described below.

Note: All slashes that separates directories, should be regular slashes, not back slashes (\) on
Windows systems also.

Define the property:

wlng.root.dir to the directory where the test environments WebLogic Network Gatekeeper
is installed, for example C:/wlng21

wlng.sleeManager.username to the username for the user that manages the Network
Gatekeeper, by default this is install.

wlng.sleeManager.password to the password for the user that manages the Network
Gatekeeper, by default this is install.

esdk.root.dir to the directory where the Extension SDK is installed, for example
C:/bea/wlng21/esdk

thirdparty.orbacus.dir to the directory where Orbacus is installed.

Using the Extensi on SDK templa tes

15-40 Extension SDK for WebLogic Network Gatekeeper

pipe.root.dir to the directory where the new modules will be developed. In the example this
directory is exampleproj.

Adapting the build files for the modules
Depending on which modules to be developed, the build files for these module needs to be
adapted to reflect the new modules. All module-specific build files are named build.xml, and are
located directly under the directory for the module.

For a completely new traffic path, there is a main build file, exampleproj\build\build.xml,
that calls a a set of build files specific for the individual modules. If the new project does not
include all modules this build file should be adapted to include only the relevant modules.

Properties common for all modules
The following properties can be changed in the module-specific build files to reflect any changes
in interface names, module name etc:

local.majorVersion, main version information for the module.

local.minorVersion, sub-version of the module.

The version information will be added to the deployment descriptor for the module.

local.prodName, the name of the module, used in JavaDoc generation.

local.jarName, the name of the generated jar file.

local.deployName, the name of module as seen in the Management tool. This name will be
added to the deployment descriptor.

local.deployMaxAlarms, the maximum number of the severe alarms the software module is
permitted to emit before it is put into state deactivated.

local.deploySvcDeployable, the class that implements the Service Deployable interface.
Full package name must be given.

local.deploySvcAccessible, the class that implements the Service Accessible interface. Full
package name must be given.

local.deploySvcManageable, the class that implements the Service Manageable interface.
Full package name must be given.

local.deploySvcManageableIdl, the name of the IDL file describing the OAM interface for
the module.

Prepar ing the deve lopment env i ronment

Extension SDK for WebLogic Network Gatekeeper 15-41

local.javadocFilename, the file name of the zipped JavaDoc.

local.javadocTitle, the title of the JavaDoc.

local.javadocIncludedPaths, the paths to which JavaDoc to be built.

local.javadocIncludedPackages, the packages to include in the JavaDoc.

local.javadocExcludedPackages, the packages to exclude from the JavaDoc.

Deployment descriptor
All software modules executing as SLEE services are packed in a jar file. This is automatically
performed by the build files.

In the root of the jar file there is a deployment descriptor. This is an XML file describing how the
software module is deployed. The name of the XML file is always srv_depl.xml, and the build
files automatically creates this file in the ant target “jar”. Below is a description of the tags in the
XML file.

<SLEE_SERVICE> Defines the service deployment descriptor. It has the following attributes:

name: the name of the SLEE Service, fetched from the property local.deployName.

version: the version of the service, fetched from the property local.fullVersion.

max_alarms:-maximum number of CRITICAL alarms the service is allowed to generate
before the service is set is state ERROR by the SLEE.

company: unused.

trace: ON or OFF. Defines if trace shall be activated for the service when it is started for
the first time.

db_share: unused.

parent_class_loader_service: Which service to be used as parent class loader. If the service
shall interact with a servlet or a Web Service executing in Embedded Tomcat, this attribute
shall be set to “Slee_common_loader”. If it is a SESPA service, set this attribute to
“SESPA_access”. SESPA_Access has the Slee_common_loader as a parent class loader,
so the SESPA services have access to the classes in the SLEE Common loader. See
“Plug-ins that executes as a SLEE service and a web application” on page 7-1 and
“Stateless adapter framework” on page 5-4 for more information on SLEE Common
Loader.

<SERVICE_DEPLOYABLE> Defines the class that implements the ServiceDeployable interface.

Using the Extensi on SDK templa tes

15-42 Extension SDK for WebLogic Network Gatekeeper

<SERVICE_ACCESSIBLE> Defines the class that implements the ServiceAccessible interface.
Contains the following tag:

<NAMESERVICE_VISIBILITY> ON or OFF. Defines if the CORBA objects that implements
the ServiceAccessible interface shall be registered in the CORBA nameservice, and be
reachable from outside the SLEE.

<SERVICE_MANAGEABLE> Defines the class that implements the ServiceManageable interface.
Contains the following tag:

<SERVICE_MANAGEABLE_IDL> Defines the IDL file that describes the OAM interface.

Properties for the plug-in implementation
local.pluginIfIdl.dir, the path to the plug-in interface IDL definition.

local.pluginIfLib.dir, the path to the plug-in interface class files.

local.pluginIfLib.packages, the package name of the plug-in interfaces.

local.pluginIf.jar, the name of the jar-file for the plug-in interfaces.

Properties for the ESPA implementation
local.espaIfLib.dir, the path to the ESPA interface class files.

local.espaIf.jar, name of the jar-file for the ESPA interface class files.

local.pluginIfLib.dir, the path to the plug-in interface class files.

local.pluginIf.jar, the name of the jar-file for the plug-in interfaces.

oamFile, the name of the IDL file defining the OAM interface.

Properties for the SESPA implementation
local.sespaIfLib.dir, the path to the SESPA interface class files.

local.sespaIf.jar, name of the jar-file for the SESPA interface class files.

local.espaIfLib.dir, the path to the ESPA interface class files.

local.espaIf.jar, name of the jar-file for the ESPA interface class files.

local.classForRmi, name of the class implementing the RMI interface exposed by SESPA.

Us ing the templates f rom Ec l ipse

Extension SDK for WebLogic Network Gatekeeper 15-43

oamFile, the name of the IDL file defining the OAM interface.

Properties for the WESPA implementation
local.sespaIfLib.dir, the path to the SESPA interface class files.

local.sespaIf.jar, name of the jar-file for the SESPA interface class files.

local.wespaIfLib.dir, the path to the WESPA interface class files.

local.wespaIf.jar, name of the jar-file for the WESPA interface class files.

Properties for the WESPA client
myScWsdl, the path to the WSDL file describing the WESPA Web Service.

myScListenerWsdl, the path to the WSDL file describing the WESPA listener.

wespaAccessWsdl, the path to the WSDL file describing the WESPA Access Web Service.

Using the templates from Eclipse
The templates and the build environment supports Eclipse 3.1.1.

Below is a suggestion on how to setup an Eclipse workspace for the templates.

1. Extract the file bea\wlng21\esdk\eclipse\lib_eclipse.zip to bea\wlng21\esdk.

2. Extract the file bea\wlng21\esdk\eclipse\thirdparty_eclipse.zip to
bea\wlng21\esdk.

3. Extract the file bea\wlng21\esdk\eclipse\module_templates_eclipse.zip to
bea\wlng21\esdk\module_templates.

4. Copy the directory bea\wlng21\esdk\module_templates to the working directory for
your project. This directory will be referred to as exampleproj.

5. Start Eclipse.

6. Select the workspace to be bea\wlng21\esdk\example_proj

The following projects should be defined:

– build

– client_impl

Using the Extensi on SDK templa tes

15-44 Extension SDK for WebLogic Network Gatekeeper

– espa_sc_if

– espa_sc_impl

– lib

– network_if

– network_simulator_impl

– plugin_if

– plugin_impl

– policy_util_impl

– sespa_sc_if

– sespa_sc_impl

– thirdparty

– wespa_sc_if

– wespa_sc_impl

– wplugin_if

– wplugin_impl

7. Delete the project lib. Do not delete the contents.

8. Create a new Java Project referring to bea\wlng21\esdk\lib by:

a. Selecting File, New Project...

b. Select Java Project and click Next.

c. Name the project lib, and choose Create a project from existing source and choose the
directory bea\wlng21\esdk\lib.

d. Click Finish.

Now a project named lib is created.

9. Delete the project thirdparty. Do not delete the contents.

10. Create a new Java Project referring to bea\wlng21\esdk\thirdparty by:

a. Selecting File, New Project...

b. Select Java Project and click Next.

Us ing the templates f rom Ec l ipse

Extension SDK for WebLogic Network Gatekeeper 15-45

c. Name the project thirdparty, and choose Create a project from existing source and choose
the directory bea\wlng21\esdk\thirdparty.

d. Click Finish.

Now a project named thirdparty is created.

11. Define the Ant Home property by Choosing Window, Preferences... and then select Ant
Runtime. Click the Ant Home... Button and select the directory
bea\wlng21\esdk\dev_tools\ant.

12. Make sure that the additional Ant targets are known in the workspace.

a. Select Preferences... in the Windows menu item.

b. Under Ant, Runtime click on Add External Jars... and select the files ant-contrib.jar
and idldepend-0-8-1.jar in the directory bea\wlng21\esdk\dev_tools\ant\lib.

13. Edit build.properties in the build project to reflect your installation. See “Preparing the
development environment” on page 15-39 for information on which properties to edit.

14. Run the ant task named dist on the file build.xml in the build project. Right-click on the file
and select Run As... and select Ant Build...

Now the project starts to build.

15. For each project, select the project and do a refresh by Choosing File, Refresh.

The indicators on the project symbol, white crosses on a red background, should disappear
when refreshing the project.

16. The local build files, located directly under the sub directory for each module needs to be
adapted to the desired structure, see “Adapting the build files for the modules” on
page 15-40.

Using the Extensi on SDK templa tes

15-46 Extension SDK for WebLogic Network Gatekeeper

Extension SDK for WebLogic Network Gatekeeper 16-1

C H A P T E R 16

Creating an example network plug-in

The following section provides a description on how to create an example network protocol
plug-in:

General preparations for the SLEE part of the plug-in

Preparing the SLEE plug-in interface

Preparing the SLEE plug-in implementation

Compilation of the SLEE plug-in implementation

Installing the SLEE plug-in

Setting up a plug-in route

General preparations for the Web Services part of the plug-in

Preparing the Web Services plug-in interface

Compilation of the Web Services plug-in implementation

Installing the Web Service plug-in

In this section, the example network plug-in is described.

The plug-in consists of two parts:

a SLEE service part that executes as a SLEE service

A Web Services part that executes as a Web Service

Creat ing an e xample netwo rk p l ug- i n

16-2 Extension SDK for WebLogic Network Gatekeeper

The SLEE service part of the example plug-in has the following properties:

Package: com.acompany.plugin.myplugintype

Interface used by ESPA service capability: MyPlugin

Interface used by the network plug-in acting on the ESPA service capability:
MyPluginListener

Method implemented by the plug-in, defined in the plug-in interface:

– myMethodReq

– myDeliverNetworkTriggeredEventMethodResult

– myDeliverNetworkTriggeredEventMethodError

Methods invoked from the plug-in:

– MyMethodRes

– MyMethodErr

– myDeliverNetworkTriggeredEventMethod

Type for the plug-in: MYPLUGIN_TYPE

Address format supported: E164

Project names: plugin_if and plugin_impl

Product names: My_Plugin_IF and My_Plugin_Impl

Jar file names: plugin_myplugin_if.jar and b_plugin_myplugin.jar

The Web Services part of the example plug-in has the following properties:

Package: com.acompany.wplugin.myplugintype

Interface used by the SLEE Service part of the plug-in service capability:
MyPluginNetworkInterface

Interface used by the Web Service network plug-in acting on the SLEE part of the plug-in:
MyWPluginNetworkTriggeredEventResultListener

Method implemented by the Web Services network plug-in, defined in the plug-in
interface:

– myMethodReq

Genera l p repara t i ons fo r the SLEE par t o f t he p lug- in

Extension SDK for WebLogic Network Gatekeeper 16-3

– myDeliverNetworkTriggeredEventMethodResult

– myDeliverNetworkTriggeredEventMethodError

Methods used by the plug-in, invoked from the plug-in:

– MyMethodRes

– MyMethodErr

– myDeliverNetworkTriggeredEventMethod

Project names: wplugin_if and wplugin_impl

Product names: wplugin_if and wplugin_impl

Jar file names: wplugin_if.jar and wplugin.war

General preparations for the SLEE part of the plug-in
1. Make sure the files for the SLEE plug-in and SLEE plug-in interfaces are copied to the

directory exampleproj. That is, all files and directories in
module_templates\plugin_impl and module_templates\plugin_if.

2. Make sure the files for the Web Services part of the plug-in interfaces are copied to the
directory exampleproj. That is, all files and directories in
module_templates\wplugin_if and module_templates\wplugin_impl

3. Change directory to bea\wlng21\esdk\exampleproj\build and issue the command ant

Preparing the SLEE plug-in interface

Set up the build environment
4. Edit the file exampleproj\plugin_if\build.xml.

5. Edit the properties described in “Adapting the build files for the modules” on page 15-40 to
reflect the desired names.

Define the plug-in interface structure
6. In the file exampleproj\plugin_if\idl\my_plugin_if.idl, change the plug-in

interface structure to reflect the desired package structure. For example, the structure:

module com {

Creat ing an e xample netwo rk p l ug- i n

16-4 Extension SDK for WebLogic Network Gatekeeper

 module acompany{

 module myplugintype{

Will create the plug-in structure com.acompany.myplugintype

Interfaces in the plug-in
These interfaces are defined:

MyPluginListener, which will be implemented by the ESPA service capability
implementation.

MyPlugin, which will be implemented by the plug-in implementation.

MyPluginNetworkTriggeredEventListener, which will be implemented by the ESPA
service capability implementation.

MyPluginNetworkTriggeredEventResultListener, which will be implemented by
the plug-in implementation.

In the example two methods related to application-initiated request will be called from by the
plug-in to the ESPA service capability, myMethodRes and myMethodErr. Both methods are
responses to the operation exampleMethodReq, invoked by the ESPA service capability and
implemented by the plug-in.

myMethodRes will be invoked if the operation myMethodReq was successful

myMethodErr will be invoked if the operation myMethodReq failed.

assignmentID is the ID that connects an invocation to myMethodReq and the corresponding
invocation of myMethodRes or myMethodErr.

In the example one method related to network initiated request will be called from by the plug-in
to the ESPA service capability, myDeliverNetworkTriggeredEventMethod. This method is
used to deliver network triggered events to the ESPA service capability. As a response to a
network triggered event, the following methods will be invoked from the ESPA service
capability:

myDeliverNetworkTriggeredEventMethodResult will be invoked if the operation
myDeliverNetworkTriggeredEventMethod was successful

myDeliverNetworkTriggeredEventMethodError will be invoked if the operation
myDeliverNetworkTriggeredEventMethod failed.

Compi la t ion of the SLEE plug- i n i nt er face

Extension SDK for WebLogic Network Gatekeeper 16-5

networkTransactionId is the ID that connects an invocation to
myDeliverNetworkTriggeredEventMethod and the corresponding invocation of
myDeliverNetworkTriggeredEventMethodResult or
myDeliverNetworkTriggeredEventMethodError.

7. Add or change additional methods to be used in the interface between the ESPA service
capability and the plug-in. Use the definitions in
exampleproj\plugin_if\idl\my_plugin_if.idl as templates.

Compilation of the SLEE plug-in interface
8. Compile the Web Services plug-in interface by changing directory to

exampleproj\wplugin_if and execute the command ant

This compiles the interface between the SLEE plug-in and the Web services part of the
plug-in to be used by the SLEE plug-in implementation.

9. Compile the SLEE plug-in interface by changing directory to exampleproj\plugin_if
and execute the command ant

This compiles the SLEE plug-in interface, and generates Java and CORBA files to be used
by the plug-in implementation.

Preparing the SLEE plug-in implementation

Set up the build environment
10. Edit the file exampleproj\plugin_impl\build.xml.

11. Edit the properties described in “Adapting the build files for the modules” on page 15-40 to
reflect the desired names.

Note: Always use a prefix in the jar name. The autostarted SLEE services are started in
alphabetic order based on the jar name. All network plug-ins should have a prefix so
they are started prior to the ESPA service capability modules.

Defining the plug-in OAM methods
12. Edit the files exampleproj\plugin_impl\idl\MyPluginOAM.idl. Define any

additional OAM methods.

Creat ing an e xample netwo rk p l ug- i n

16-6 Extension SDK for WebLogic Network Gatekeeper

Adapting the plug-in interface implementation
13. Adapt the plug-in interface so it implements the plug-in interface as defined in Interfaces in

the plug-in.

14. Edit the file MyPlugin_impl.java in
exampleproj\plugin_impl\src\com\acompany\plugin\myplugintype.

15. If the name of the interface in the plug-in has changed, change the name of the POA the
class extends to reflect the new name.

16. If the methods in the plug-in interface has changed, also change the names of the
implementing methods in this class.

17. Edit the file MyMethodReqTask.java in
exampleproj\plugin_impl\src\com\acompany\plugin\myplugintype

Adapt the methods so they use call-back methods defined in the plug-in interface as
defined in Interfaces in the plug-in.

Plug-in type definition
Each plug-in has a type definition and information on supported address plans.

18. Edit the file MyPluginContext.java in
exampleproj\plugin_impl\src\com\acompany\plugin\ and change the
PLUGIN_TYPE definition to the desired type.

Define which address plan(s) that is (are) supported in the TrAddressPlan[] structure.

As default, the address plan is TrAddressPlan.R_ADDRESS_PLAN_E164, see the JavaDoc
for the ESPA service capability and plug-in interfaces for a list of address plans.

Compilation of the SLEE plug-in implementation
Compile the plug-in implementation by changing directory to exampleproj\plugin_impl and
execute the command ant

Installing the SLEE plug-in
This section describes how to install and deploy the plug-in that was created using the instructions
in this section. For instructions on how to use the Management Tool and how to register a plug-in
in more detail, see WebLogic Network Gatekeeper User’s Guide.

Set t ing up a p lug- in r ou te

Extension SDK for WebLogic Network Gatekeeper 16-7

1. Make sure you have access (by ftp directly to the file system) to the SLEE the plug-in shall
be installed in.

2. Open the Management Tool and select the SLEE where to install the plug-in.

3. In the management tool, select the Plugin_Manager service, and invoke the method
addType. Use the type defined for the plug-in.

In the example, the plug-in type is MYPLUGIN_TYPE, as defined in step 18. in “Plug-in
type definition”.

4. In the SLEE_deployment service, select install. Enter the URL to the jar-file in the field
ServiceJarURL and click Invoke.

In the example, the path is:

file:///<drive>/exampleproj/plugin_impl/lib and the name was defined in the
build file property local.jarName.

Note: Use three (3) slashes before the drive name on Windows systems.

5. In the SLEE_deployment service, select start. Enter the SLEE name for the plug-in. Click
Invoke.

The name was defined in the build file property local.deployName.

6. In the SLEE_deployment service, select activate. Enter the SLEE name for the plug-in.
Click Invoke.

Setting up a plug-in route
It is necessary to define a route, so the plug-in can be selected by the plug-in manager.

7. In the management tool, select the Plugin_Manager service, and invoke the method
getIdList. Do not define any parameters.

An ID for the plug-in is returned.

8. In the management tool, choose the Plugin_Manager service, and invoke the method
addRoute. In the Id field, enter the ID returned from the previous operation.

In the addressExpression field, enter ^.* in order make the plug-in accept all destination
address numbers, or other routing criteria that is desired.

Creat ing an e xample netwo rk p l ug- i n

16-8 Extension SDK for WebLogic Network Gatekeeper

General preparations for the Web Services part of the plug-in
1. Make sure the files for the Web Service plug-in and plug-in interfaces are copied to the

directory exampleproj. That is, all files and directories in
module_templates\wplugin_impl and module_templates\wplugin_if.

2. Change directory to bea\wlng21\esdk\build and issue the command ant

Preparing the Web Services plug-in interface

Set up the build environment
3. Edit the file exampleproj\wplugin_if\build.xml.

4. Edit the properties described in “Adapting the build files for the modules” on page 15-40 to
reflect the desired names.

Interfaces in the plug-in
There are three interfaces defined:

MyWPluginNetworkInterface, which will be implemented by the Web Services part of
the plug-in and the request is passed on to the network.

MyWPluginNetworkTriggeredEventListener, which will be implemented by the SLEE
Service part of the plug-in implementation.

MyWPluginNetworkTriggeredEventResultListener, which is implemented Web
Services part of the plug-in.

In the example these methods will be called from the SLEE service part of the plug-in to Web
Services part of the plug-in.

myNetworkMethod will be invoked as a result of an application triggered request.

myDeliverNetworkTriggeredEventMethod will be invoked on the SLEE part of the
network plug-in as a result of a network triggered event.

myDeliverNetworkTriggeredEventMethodResult or
myDeliverNetworkTriggeredEventMethodError will be invoked on the Web Services
part of the plug-in by the SLEE part of the network plug-in as a result of a network
triggered event.

Compi la t ion o f t he Web Serv ices par t o f the p lug- in i nt er face

Extension SDK for WebLogic Network Gatekeeper 16-9

5. Add or change additional methods to be used in the interface between the SLEE service part
of the network plug-in and the Web Services part of the plug-in. Use the definitions in
exampleproj\wplugin\myplugintype as templates.

Compilation of the Web Services part of the plug-in interface
6. Compile the plug-in interface by changing directory to exampleproj\wplugin_if and

execute the command ant

This compiles the plug-in interface.

Preparing the Web Services part of the plug-in implementation

Set up the build environment
7. Edit the file exampleproj\plugin_impl\build.xml.

8. Edit the properties described in “Adapting the build files for the modules” on page 15-40 to
reflect the desired names.

Note: Always use a prefix in the jar name. The autostarted SLEE services are started in
alphabetic order based on the jar name. All network plug-ins should have a prefix so
they are started prior to the ESPA service capability modules.

Adapting the Web Services plug-in interface implementation
9. Adapt the plug-in interface so it implements the plug-in interface as defined in “Interfaces

in the plug-in” on page 16-8.

10. Edit the file NetworkInterfaceImpl.java,
MyWPluginNetworkTriggeredEventResultListenerImpl.java and
MyWPluginServlet.java in
exampleproj\wplugin_impl\src\com\acompany\wplugin\myplugintype.

11. If the names of the interfaces has changed, change the name of the names the classes
implements to reflect the new name.

12. If the methods in the interfaces has changed, also change the names of the implementing
methods in this class.

Creat ing an e xample netwo rk p l ug- i n

16-10 Extension SDK for WebLogic Network Gatekeeper

Compilation of the Web Services plug-in implementation
Generate Java stubs from the WSDL file that describes the interface between the Web Services
part of the plug-in and the network node, by changing directory to exampleproj\network_if
and execute the command ant

Compile the Web Services plug-in implementation by changing directory to
exampleproj\wplugin_impl and execute the command ant

Installing the Web Service plug-in
This section describes how to install and deploy the Web Services plug-in that was created using
the instructions in this section. For instructions on how to use the Management Tool, see
WebLogic Network Gatekeeper User’s Guide.

1. Make sure you have access (by ftp directly to the file system) to the SLEE the plug-in shall
be installed in.

1. Copy the generated war file to the /<install dir>/slee/bin/autowar directory in the
Network Gatekeeper.

2. Open the Management Tool and select the SLEE running on the server the file was copied
to.

I ns ta l l ing the Web Se rv ice p lug- in

Extension SDK for WebLogic Network Gatekeeper 16-11

3. In the Embedded_tomcat service, choose addContext. Enter the following parameter data:

4. Click Invoke.

The Web Service part of the plug-in is started.

Parameter Description

contextPath The context path to be used. For example: /exampleContext

The Web Service will be reached in the following URL:

http://<IP-address>:<port>/<contextPath>/services/<method>

docBase Document root. Can be a war-file or a directory. Can be specified
with an absolute or a relative path name or an URL. In the example
the files are stored in:
/usr/local/slee/bin/autowar/
<name of war file>.war

useCookies Enable cookies (TRUE/FALSE) for session handling. Use
FALSE.

autostart Start this context during next service restart (TRUE/FALSE). Use
TRUE.

Creat ing an e xample netwo rk p l ug- i n

16-12 Extension SDK for WebLogic Network Gatekeeper

Extension SDK for WebLogic Network Gatekeeper 17-1

C H A P T E R 17

Creating an example ESPA Service
Capability module

The following section provides a description on how to create an example ESPA service
capability module:

General preparations

Preparing the ESPA service capability interface

Compilation of the ESPA service capability module interface

Preparing the ESPA service capability module implementation

Implement the Policy Enforcement Point

Compilation of the ESPA service capability module implementation

Adapting the policy rules

Installing the ESPA service capability module

Update Service Level Agreements (SLAs)

Install policy rules

The example ESPA service capability will use the interfaces defined for the example network
plug-in prepared in “Creating an example network plug-in” on page 16-1. The ESPA service
capability has the following properties:

Package: com.acompany.espa.mysctype

Creat ing an e xample ESPA Se rv ice Capab i l i t y modu le

17-2 Extension SDK for WebLogic Network Gatekeeper

Interface used by the SESPA module, acting on the ESPA service capability for
application-initiated requests:
MyServiceCapabilityManager

Interface used by the ESPA service capability for application-initiated requests, acting on
the SESPA module:
MyServiceCapabilityListener

Methods implemented by the ESPA service capability for application-initiated requests,
defined in the MyServiceCapabilityManager interface:

– myMethod

– addNetworkTriggeredEventListener

– removeNetworkTriggeredEventListener

Methods invoked by the ESPA service capability, implemented the SESPA module:

– myMethodRes

– myMethodErr

Interface used by the SESPA module, acting on the ESPA service capability for
network-triggered requests:
MyServiceCapabilityNetworkTriggeredEventListener

Interface used by the ESPA service capability for application-triggered requests, acting on
the SESPA module:
MyServiceCapabilityNetworkTriggeredEventResultListener

Methods implemented by the SESPA service capability for network-triggered requests,
defined in the MyServiceCapabilityNetworkTriggeredEventListener interface:

– myDeliverNetworkTriggeredEventMethod

Methods invoke by the SESPA service capability, implemented by the ESPA module:

– myDeliverNetworkTriggeredEventMethodResult

– myDeliverNetworkTriggeredEventMethodError

ESPA service capability type: MY_SCS_TYPE

General preparations
This is general preparations.

Prepar ing the ESPA se rv ice capab i l i t y i nt er face

Extension SDK for WebLogic Network Gatekeeper 17-3

1. Make sure the files for the service capability and the service capability interfaces are copied
to the directory exampleproj. That is, all files and directories in
module_templates\espa_sc_impl and module_templates\espa_sc_if.

2. Change directory to bea\wlng21\esdk\build and issue the command ant

Preparing the ESPA service capability interface

Set up the build environment
3. Edit the file exampleproj\espa_sc_if\build.xml.

Edit the properties described in “Adapting the build files for the modules” on page 15-40 to
reflect the desired names.

Define the ESPA service capability module interface structure
4. In the file exampleproj\espa_sc_if\idl\MyServiceCapability_if.idl, change the

interface structure to reflect the desired package structure. For example, the structure:

module com {

module acompany {

module espa {

module mysctype {

This will create the ESPA service capability interface structure
com.acompany.espa.mysctype

Interfaces to the ESPA service capability module
5. Add or change additional methods to be used in the interface between the SESPA service

capability and the ESPA Service Capability. Use the definitions in
exampleproj\espa_sc_if\idl\MyServiceCapability_if.idl as templates.

In the template file, the method myMethod is an example of how to define an asynchronous
method invoked by an application on the ESPA service capability.

6. Edit the service name (used as ESPA service capability type) to the desired type, change the
definition of SERVICE_NAME

The service name is used as ESPA service capability type when registering the ESPA
service capability in the SC manager. It is also used as in the SLAs in the <scs> tag.

Creat ing an e xample ESPA Se rv ice Capab i l i t y modu le

17-4 Extension SDK for WebLogic Network Gatekeeper

Compilation of the ESPA service capability module interface
7. Compile the ESPA service capability interface by changing directory to

exampleproj\espa_sc_module_if\build\ and execute the command ant

This compiles the ESPA service capability interface and generates Java stubs from the IDL
interface.

Preparing the ESPA service capability module implementation

Set up the build environment
8. Edit the file exampleproj\espa_sc_impl\build.xml.

Edit the properties described in “Adapting the build files for the modules” on page 15-40
reflect the desired names.

Note: Always use a prefix in the jar name. The autostarted SLEE services are started in
alphabetic order based on the jar name. All Service Capabilities should have a prefix
so they are started after the network protocol plug-ins but before the SESPA modules.

Defining the OAM methods
9. Edit the files exampleproj\espa_sc_impl\MyServiceCapabilityOAM.idl. Define

any additional OAM methods.

ESPA service capability module plug-in listener interface
implementation
The plug-in interface implementation has to be updated with any changes to the plug-in interface
defined in “Interfaces in the plug-in” on page 16-4.

10. Open the file implementing the call-back interface from the plug-in,
MyPluginListener_impl.java in
exampleproj\spa_sc_impl\src\com\acompany\espa\mysctype\

11. Adapt the import statement for the plug-in interfaces if there has been any changes.

12. Adapt the name of the class that the extends the listener, the name of the class is the same as
as the classname for the callback interface, with the addition POA, for example:

Prepar ing the ESPA serv i ce capabi l i t y modu le impl ementa t i on

Extension SDK for WebLogic Network Gatekeeper 17-5

public class MyPluginListener_impl extends
com.my_company.my_plugin.MyPluginListenerPOA

13. Adapt the method names if there have been any changes or additions.

ESPA service capability module service manager
implementation
The interface has to be updated so it implements the MyServiceCapabilityManager interface
as defined in “Interfaces to the ESPA service capability module” on page 17-3.

14. Open the file MyServiceCapabilityManager_impl.java in
exampleproj\espa_sc_impl\src\com\acompany\espa\mysctype

15. Adapt the import statement for the plug-in interfaces if there have been any changes to
them.

16. In the doTask method, change the line:

MyPlugin myPlugin = MyPluginHelper.narrow(resource)

to reflect any changes in names.

17. Adapt the method names to reflect the names in the interface definitions.

ESPA service capability module persistent storage
18. Open the file MyServiceCapabilityPersistentStorage.java in

exampleproj\espa_sc_impl\src\com\acompany\espa\mysctype.

19. Edit the database table names, by changing GLOBAL_CONFIG_TABLE,
LOCAL_CONFIG_TABLE, and
ESPA_MYSERVICECAPABILITY_REQUEST_TIMEOUT_EVENT to a name for the
tables holding persistent data.

ESPA service capability module context
20. Open the file MyServiceCapabilityContext.java in

exampleproj\espa_sc_impl\src\com\acompany\espa\mysctype.

21. Change POLICY_SERVICE_NAME to a value that will be used to identify which Service
Capability the Policy request originates from.

Creat ing an e xample ESPA Se rv ice Capab i l i t y modu le

17-6 Extension SDK for WebLogic Network Gatekeeper

22. Change PLUGIN_TYPE to a value that will be used to identify which plug-in the Service
Capability will connect to. This is the same type as the plug-in registered itself as, see
“Plug-in type definition” on page 16-6.

Implement the Policy Enforcement Point
The Policy Enforcement Point (PEP) in the example ESPA module resides in
MyServiceCapabilityManager_impl.java, in the method myMethodInternal().

The service name is fetched from MyServiceCapabilityContext.POLICY_SERVICE_NAME.

The data that is to be accessible from rules executing at this PEP must be passed in the policy
request. These reside in the additionalParameters of the PolicyRequest class.

Each data parameter is contained in an AdditionalData class, containing one
AdditionalDataValue class and a data name which is an arbitrary string. The example code in
the template shows how strings are used as additional data, but the AdditionalData class also
supports the following data types:

intValue(int)

longValue(long)

stringValue(String)

stringArrayValue(String[])

booleanValue(boolean)

shortValue(short)

charValue(char)

floatValue(float)

doubleValue(double)

intArrayValue(int[])

It is up to the rule implementation to extract additional values according to their defined data
types. The PEP implementation must also extract any modified data returned in the modified
policy request (modifiedRequest in the example code).

Compilation of the ESPA service capability module
implementation

Prior to this, the plug-in interface and the ESPA service capability module interface must have
been built.

Adapt ing the po l i c y r u les

Extension SDK for WebLogic Network Gatekeeper 17-7

23. Compile the ESPA service capability module implementation by changing directory to
exampleproj\espa_sc_module_impl and execute the command ant

Adapting the policy rules
24. Open the files:

exampleproj\policy\rules\app\ESPA_myservicecapability.ilr

exampleproj\policy\rules\sp\ESPA_myservicecapability.ilr

25. Depending on the policy implementation (the PEP) the two rules listed under the heading
START_APP_My_Service_Capability_Specific_Rules and
START_SP_My_Service_Capability_Specific_Rules might have to be changed.

If the data format has been changed, the parameter

?dataString: getAdditionalDataStringValue has to be updated accordingly.

If the method name has been changed in the policy implementation, see “Implement the
Policy Enforcement Point” on page 17-6, the parameter ?methodName.equals has to be
updated.

Installing the ESPA service capability module
This section describes how to install and deploy the ESPA service capability module that was
created using the instructions in this section. For instructions on how to use the Management Tool
and how to register an ESPA service capability module in more detail, see WebLogic Network
Gatekeeper User’s Guide.

1. Make sure you have access (by ftp directly to the file system) to the SLEE in that the ESPA
service capability module shall be installed in.

2. Open the Management Tool and select the SLEE in which to install the ESPA service
capability module.

3. In the Management tool, select the SCS_Manager service, and invoke the method addType.
Use the type defined for the ESPA service capability.

In the example, the SCS type is MY_SCS_TYPE. This is defined in the plug-in interface
definition file, my_plug_in_if.idl in the constant MY_SCS_TYPE.

4. In the SLEE_deployment service, select install. Enter the URL to the jar-file in the field
ServiceJarURL and click Invoke.

Creat ing an e xample ESPA Se rv ice Capab i l i t y modu le

17-8 Extension SDK for WebLogic Network Gatekeeper

In the example, the path and file name is
file:///<drive>/exampleproj/espa_sc_module_impl/lib and the name was
defined in the build file property local.jarName.

Note: On Windows systems, use three (3) slashes prior to the disk name.

5. In the SLEE_deployment service, select start. Enter the SLEE name for the ESPA service
capability module. Click Invoke.

The name was defined in the build file property local.deployName.

6. In the SLEE_deployment service, select activate. Enter the SLEE name for the ESPA service
capability module. Click Invoke.

Update Service Level Agreements (SLAs)
Any application and service provider using the newly created ESPA service capability need to
have valid SLAs for the new ESPA service capability. The SLA-files need to be updated with
service contracts for the ESPA service capability. For information on how to write the SLA-files,
see WebLogic Network Gatekeeper User’s Guide.

The SC name (entered in the <scs></scs> tag) is the name defined as service name in Step 6.
on page 3.

Install policy rules
In order to enforce the SLA, load the policy rules defined in “Adapting the policy rules” on
page 17-7 into Network Gatekeeper.

1. In the Policy service, select loadApplicationRules. Enter the URL to the application rule
irl-file in the field irlUrl and the service name in the serviceName field. Click Invoke.

In the example, the path and file name is
file:///<drive>/exampleproj/policy/rules/app/ESPA_myservicecapability
.ilr

The service name is the name defined in Step 6. on page 3.

Note: On Windows systems, use three (3) slashes prior to the disk name.

2. In the Policy service, select loadServiceProviderRules. Enter the URL to the service provider
rule irl-file in the field irlUrl and the service name in the serviceName field. Click Invoke.

Ins ta l l po l i c y r u les

Extension SDK for WebLogic Network Gatekeeper 17-9

In the example, the path and file name is
file:///<drive>/exampleproj/policy/rules/sp/ESPA_myservicecapability.
ilr

Creat ing an e xample ESPA Se rv ice Capab i l i t y modu le

17-10 Extension SDK for WebLogic Network Gatekeeper

Extension SDK for WebLogic Network Gatekeeper 18-1

C H A P T E R 18

Creating an example Policy Utility

The following section provides a description on how to create an example PolicyUtility:

General preparations

Preparing the Policy utility

Installing the Policy Utility

Install policy rules

Install Subscriber profile plug-in

Provision data to the database

The example uses the data provided by the PEP, a rule will extract the relevant data and call the
Policy utility. The Policy utility uses a Subscriber Profile plug-in to do a look-up in the database
if a subscriber with a certain address is registered in the database. If defined, the Policy utility will
allow the requests, otherwise deny it. The Policy utility has the following properties:

Package: com.acompany.policy.util

Rule used to call the Policy Utility class: DenySubscriberNotExists

Methodname defined in the PEP: myMethod

Rule example in:
bea\wlng21\esdk\policy\rules\sp\ESPA_myservicecapability.ilr

Creat ing an example Po l i cy U t i l i t y

18-2 Extension SDK for WebLogic Network Gatekeeper

General preparations
This is general preparations. Do not perform these two steps if they already have been performed
when creating the network plug-in as described in “Creating an example network plug-in” on
page 16-1.

1. Make sure the files for the Policy utility are copied to the directory exampleproj. That is,
all files and directories in \module_templates\policy_util_impl

2. Change directory to bea\wlng21\esdk\build and issue the command ant

Preparing the Policy utility

Set up the build environment
3. Edit the file exampleproj\policy_util_impl\build.xml.

Edit the properties described in “Adapting the build files for the modules” on page 15-40 to
reflect the desired names.

Defining the OAM methods
4. Edit the files exampleproj\policy_util_impl\idl\MyPolicyUtilOAM.idl. Define

any additional OAM methods.

Policy utility implementation and rule files
The Policy utility implementation is a singleton class, that provides the public
methodsubscriberExists. This method is called from the rule.

5. Adapt the template Policy utility singleton class MyPolicyUtility.java in
exampleproj\policy_util_impl\src\com\acompany\policy\util to suit the specific
needs. The template implementation uses a subscriber profile plug-in t check if a
subscription exists, thus giving an example on how to interact with a subscriber profile
plug-in and the plug-in manager.

6. Adapt the import statement for Policy Utility class in the rule file if there have been any
changes.

7. Adapt the name of the class that is called in the rule file if there has been any changes.

8. Adapt the method names if there have been any changes or additions.

Ins ta l l ing the Po l i c y Ut i l i t y

Extension SDK for WebLogic Network Gatekeeper 18-3

Installing the Policy Utility
This section describes how to install and deploy the Policy Utility that was created using the
instructions in this section. For instructions on how to use the Management Tool in more detail,
see WebLogic Network Gatekeeper User’s Guide.

9. Make sure you have access (by ftp directly to the file system) to the SLEE in that the Policy
utility shall be installed in.

10. Open the Management Tool and select the SLEE in which to install the Policy Utility.

11. In the SLEE_deployment service, select install. Enter the URL to the jar-file in the field
ServiceJarURL and click Invoke.

In the example, the path and file name is
file:///<drive>/exampleproj/policy_util_impl/lib and the name was defined
in the build file property local.jarName.

Note: On Windows systems, use three (3) slashes prior to the disk name.

12. In the SLEE_deployment service, select start. Enter the SLEE name for the Policy Utility.
Click Invoke.

The name was defined in the build file property local.deployName.

13. In the SLEE_deployment service, select activate. Enter the SLEE name for the Policy Utility.
Click Invoke.

Note: If a Policy utility class has been changed and needs to be reinstalled, uninstall the Policy
Utility using the methods deactivate, stop, and uninstall in the SLEE_deployment
service via the Management Tool. Then, install the new Policy Utility using the
procedure described above and restart the SLEE.

Install policy rules
In order to load the rules that calls the Policy utility, follow the instructions in “Install policy
rules” on page 17-8.

Install Subscriber profile plug-in
The rule uses the subscriber profile plug-in provided in
bea\wlng21\esdk\lib\b_db_sp_resource.jar.

Install this plug-in according to the schema described in “Installing the Policy Utility” on
page 18-3. The Plug-in has the SLEE name Plugin_subscriber_profile_DB.

Creat ing an example Po l i cy U t i l i t y

18-4 Extension SDK for WebLogic Network Gatekeeper

Provision data to the database
Via the Management Tool, use the OAM methods createSubscriber and deleteSubscriber in
the SLEE service Plugin_subscriber_profile_DB to add and delete users from the database.
The Policy utility checks if the user exists in this database.

Extension SDK for WebLogic Network Gatekeeper 19-1

C H A P T E R 19

Creating an example SESPA module

The following section provides a description on how to create an example SESPA module:

General preparations

Preparing the SESPA service capability interface

SESPA service capability module interface compilation

Preparing the SESPA service capability module implementation

Compilation of the SESPA service capability module implementation

Installing the SESPA service capability module

The example SESPA module will use the interfaces defined for the example ESPA service
capability module prepared in “Creating an example ESPA Service Capability module” on
page 17-1. The SESPA module will have the following properties:

package: com.acompany.espa.mysctype

Interface used by the WESPA module for application-initiated requests, acting on the
SESPA module: MyServiceCapability

Interface used by the SESPA module for application-initiated requests, acting on the
WESPA module: MyServiceCapabilityListener

Methods implemented by the SESPA module, defined in the MyServiceCapability
interface:

– myMethodWait

Creat ing an example SESPA modu le

19-2 Extension SDK for WebLogic Network Gatekeeper

– myMethod

– enableNetworkTriggeredEvents

– disableNetworkTriggeredEvents

Methods invoke by the WESPA service capability for application-initiated requests,
defined in the MyServiceCapabilityListener interface, and implemented by the
WESPA module:

– myMethodResult

– myMethodError

Interface used by the WESPA module for application-initiated requests, acting on the
SESPA module: MyServiceCapability

Interface used by the SESPA module for application-initiated requests, acting on the
WESPA module: MyServiceCapabilityListener

Methods implemented by the SESPA module, defined in the MyServiceCapability
interface:

– myMethodWait

– myMethod

– enableNetworkTriggeredEvents

– disableNetworkTriggeredEvents

Methods invoke by the WESPA service capability for application-initiated requests,
defined in the MyServiceCapabilityListener interface, and implemented by the
WESPA module:

– myMethodResult

– myMethodError

Interface used by the SESPA module for network-triggered requests, acting on the WESPA
module: MyServiceCapabilityNetworkTriggeredEventListener

Methods used by the SESPA module, defined in the
MyServiceCapabilityNetworkTriggeredEventListener interface:

– myDeliverNetworkTriggeredEventMethod

– deactivate

Gene ra l p reparat ions

Extension SDK for WebLogic Network Gatekeeper 19-3

General preparations
This is general preparations. Do not perform these two steps if they already have been performed
when creating the Service Capability as described in “Creating an example ESPA Service
Capability module” on page 17-1.

1. Make sure the files for the SESPA Module and the SESPA interfaces are copied to the
directory exampleproj. That is, all files and directories in
module_templates\sespa_sc_impl and module_templates\sespa_sc_if.

2. Change directory to bea\wlng21\esdk\build and issue the command ant

Preparing the SESPA service capability interface

Build environment
3. Edit the file exampleproj\sespa_sc_if\build.xml.

Edit the properties described in “Adapting the build files for the modules” on page 15-40 to
reflect the desired names.

SESPA service capability module interface structure
4. Rename the directories to reflect the desired package structure. Also change the package

definitions accordingly.

SESPA service capability module interfaces
5. Add any additional methods to be used in the interface between the SESPA service

capability and the WESPA module. Use the method definitions in
MyServiceCapability.java, MyServiceCapabilityListener.java and
MyServiceCapabilityNetworkTriggeredEventListener.java as templates.

In the template file, the method myMethod is an example of how to define an asynchronous
method invoked by the WESPA module on the SESPA module and myMethodWait is an
example of a synchronous method.

An assignmentID is given when invoking the method myMethod. The ID connects an
invocation to myMethod and the corresponding invocation of myMethodResult or
myMethodError.

Creat ing an example SESPA modu le

19-4 Extension SDK for WebLogic Network Gatekeeper

SESPA service capability module interface compilation
6. Compile the SESPA service capability interface by changing directory to

exampleproj\sespa_sc_if\ and execute the command ant

Preparing the SESPA service capability module implementation

Set up the build environment
7. Edit the file exampleproj\sespa_sc_impl\build.xml.

Edit the properties described in “Adapting the build files for the modules” on page 15-40
reflect the desired names.

Defining the OAM methods
8. Edit the files exampleproj\espa_sc_impl\MyServiceCapabilityOAM.idl. Define

any additional OAM methods and adapt the structure to the structure defined in “SESPA
service capability module interface structure” on page 19-3

SESPA service capability module structure
9. Rename the directories to reflect the desired package structure. Also change the package

definitions accordingly.

SESPA service capability module listener implementation
The listener interface implementation has to be updated so it implements the ESPA service
capability module listener interface as defined in “Interfaces to the ESPA service capability
module” on page 17-3.

10. Open the file MyESPAServiceCapabilityListener_impl.java in
exampleproj\sespa_sc_impl\src\com\acompany\sespa\mysctype.

11. Adapt the import statement for the ESPA Service Capability interface if there has been any
changes.

12. Adapt the name of the class that the extends the listener, the name of the class is the same as
as the classname for the callback interface, with the addition POA, for example:

public class MyESPAServiceCapabilityListener_impl extends
MyServiceCapabilityListenerPOA

Compi la t i on o f the SESPA serv ice capabi l i t y modu le impl ementa t i on

Extension SDK for WebLogic Network Gatekeeper 19-5

SESPA service capability module implementation
The interface has to be updated so it implements the MyServiceCapability interface as defined
in “SESPA service capability module interfaces” on page 19-3.

13. Open the file MyServiceCapabilityImpl.java in
exampleproj\sespa_sc_impl\src\com\acompany\sespa\mysctype.

Adapt the import statement for the ESPA Service Capability module manager if there has
been any changes to them.

14. IAdapt the method names to reflect the names in the interface definitions.

SESPA service capability module service
15. Open the file MyServiceCapabilityService.java in

exampleproj\sespa_sc_impl\src\com\acompany\sespa\mysctype.

16. Define the name that the WESPA modules will use to fetch the SESPA Service Capability
implementation. The name is defined when the SESPA Service Capability registers itself in
SLEE Common Loader, SleeCommonLoader.getInstance().addObject(...).

Compilation of the SESPA service capability module
implementation

Prior to this, the plug-in interface, ESPA service capability module interface, and the SESPA
service capability interface must have been built.

17. Compile the SESPA service capability module implementation by changing directory to
exampleproj\sespa_sc_impl and execute the command ant

Installing the SESPA service capability module
This section describes how to install and deploy the SESPA service capability module that was
created using the instructions in this section. For instructions on how to use Management tool and
how to register an SESPA service capability module in more detail, see WebLogic Network
gatekeeper User’s Guide.

1. Make sure you have access (by ftp directly to the file system) to the SLEE the SESPA service
capability module shall be installed in.

Creat ing an example SESPA modu le

19-6 Extension SDK for WebLogic Network Gatekeeper

2. Open the Management Tool and select the SLEE in which to install the SESPA service
capability module.

3. In the SLEE_deployment service, choose install. Enter the URL to the jar-file in the field
ServiceJarURL and click Invoke.

In the example, the path and file name is
file:///<drive>/exampleproj/sespa_sc_impl/lib and the name was defined in the
build file property local.jarName.

Note: On Windows systems, use three (3) slashes prior to the drive name.

4. In the SLEE_deployment service, choose start. Enter the SLEE name for the SESPA service
capability module. Click Invoke.

The name was defined in the build file property local.deployName.

5. In the SLEE_deployment service, choose activate. Enter the SLEE name for the SESPA
service capability module. Click Invoke.

The name was defined in the build file property local.deployName.

Extension SDK for WebLogic Network Gatekeeper 20-1

C H A P T E R 20

Creating an example WESPA module

The following section provides a description on how to create an example WESPA module:

General preparations

Preparing the WESPA service capability interface

WESPA service capability module interface compilation

Preparing the WESPA service capability module implementation

Compilation of the WESPA service capability module implementation

Installing the WESPA service capability module

The example WESPA module will use the interfaces defined for the example SESPA service
capability module prepared in “Creating an example SESPA module” on page 19-1. The WESPA
module will have the following properties:

package: com.acompany.wespa.mysctype

Interface used by the client, acting on the WESPA module:
MyServiceCapability

Interface used by the WESPA module, acting on the client:
MyServiceCapabilityListener

Method implemented by the WESPA module for application-initiated requests, defined in
the MyServiceCapability interface:

– myMethod

Creat ing an example WESPA modu le

20-2 Extension SDK for WebLogic Network Gatekeeper

– myMethoddWait

– enableNetworkTriggeredEvents

– disableNetworkTriggeredEvents

Methods invoked by the WESPA service capability for application-initiated requests,
defined in the MyServiceCapabilityListener interface, and implemented by the client:

– myMethodResult

– myMethodError

– deactivate

Interface used by the WESPA module, acting on the client:
MyServiceCapabilityNetworkTriggeredEventListener

Methods invoked by the WESPA service capability for network-triggered requests, defined
in the MyServiceCapabilityNetworkTriggeredEventListener interface, and
implemented by the client:

– myDeliverNetworkTriggeredEventMethod

– deactivate

General preparations
This is general preparations. Do not perform these two steps if they already have been performed
when creating the plug-in, ESPA service capability, or SESPA module in the previous chapters.

1. Make sure the files for the WESPA Module and the WESPA interfaces are copied to the
directory exampleproj. That is, all files and directories in
module_templates\wespa_sc_impl and module_templates\wespa_sc_if.

2. Change directory to bea\wlng21\esdk\build and issue the command ant

Preparing the WESPA service capability interface

Build environment
3. Edit the file exampleproj\wespa_sc_if\build.xml.

Edit the properties described in “Adapting the build files for the modules” on page 15-40 to
reflect the desired names.

WESPA se rv ice capab i l i t y modu le in te r face compi la t i on

Extension SDK for WebLogic Network Gatekeeper 20-3

4. Edit the Java to WSDL mapping. In all <axis-java2wsdl> tags, adapt the names, and
locations of the WSDL files to be generated, package names of the implementing classes,
and the namespace to use.

WESPA service capability module interface structure
5. Rename the directories to reflect the desired package structure. Also change the package

definitions accordingly.

WESPA service capability module interfaces
6. Add any additional methods to be used in the interface between an application and the

WESPA module. Use the method definitions in MyServiceCapability.java,
MyServiceCapabilityListener.java and
MyServiceCapabilityNetworkTriggeredEventListener.java as templates.

In the template file, the method myMethod is an example of how to define an asynchronous
method invoked by the WESPA module on the SESPA module and myMethodWait is an
example of a synchronous method.

There are dummy implementations of the interfaces, MyServiceCapability_dummy.java
and MyServiceCapabilityListener_dummy.java. Adapt the dummy implementations
to the interface definitions.

An assignmentID is given when invoking the method myMethod. The ID connects an
invocation to myMethod and the corresponding invocation of myMethodResult or
myMethodError.

WESPA service capability module interface compilation
7. Compile the WESPA module interface by changing directory to

exampleproj\wespa_sc_if and execute the command ant

Preparing the WESPA service capability module
implementation

Set up the build environment
8. Edit the file exampleproj\wespa_sc_impl\build.xml.

Creat ing an example WESPA modu le

20-4 Extension SDK for WebLogic Network Gatekeeper

9. Edit the properties described in “Adapting the build files for the modules” on page 15-40
reflect the desired names.

10. Edit the war-file name. Change the property local.warName to the name of the war file to
be deployed in Tomcat.

WESPA service capability module structure
11. Rename the directories to reflect the desired package structure. Also change the package

definitions accordingly.

SESPA service capability listener implementation
The listener interface implementation has to be updated so it implements the SESPA service
capability module listener interface as defined in “SESPA service capability module interfaces”
on page 19-3.

12. Open the file MyServiceCapabilityListenerImpl.java in
exampleproj\wespa_sc_impl\src\com\acompany\wespa\mysctype.

13. Open the file MyServiceCapabilityListenerImpl.java in
exampleproj\wespa_sc_impl\src\com\acompany\wespa\mysctype.

14. Adapt the import statement for the SESPA Service Capability interface if there has been any
changes.

15. Adapt the name of the class that the implements the listener, if necessary.

WESPA service capability SOAP binding implementation
The interface has to be updated so it implements the MyServiceCapability interface as defined
in “WESPA service capability module interfaces” on page 20-3.

16. Open the file MyServiceCapabilitySoapBindingImpl.java in
exampleproj\wespa_sc_impl\src\com\acompany\wespa\mysctype.

17. Adapt the import statement for the SESPA Service Capability interface if there has been any
changes.

18. The nameLookUp() method must be adapted to use fetch the SESPA implementation from
SLEE Common loader. The lookup i performed by name. The name was given in “SESPA
service capability module service” on page 19-5. The cast from Object obj must also be
adapted to any changes in package structures and class names.

Compi la t ion of the WESPA serv ice capabi l i t y modu le impl ementa t i on

Extension SDK for WebLogic Network Gatekeeper 20-5

19. Open the file web.xml in wespa_sc_impl\deploy\server

20. Edit the reference to the servlet implementation. Adapt the classnames and package
definitions in the tag <servlet> if necessary.

Compilation of the WESPA service capability module
implementation

Prior to this, the plug-in interface, SESPA and WESPA module interfaces must have been built.

21. Compile the WESPA module implementation by changing directory to
exampleproj\wespa_sc_impl and perform the command ant

Installing the WESPA service capability module
This section describes how to install and deploy the WESPA module that was created using the
instructions in this section. For detailed instructions on how to use the Management Tool, see
WebLogic Network Gatekeeper User’s Guide.

1. Copy the generated war file to the /<install dir>/slee/bin/autowar directory in the
Network Gatekeeper.

2. Open the Management Tool and select the SLEE running on the server the file was copied
to.

Creat ing an example WESPA modu le

20-6 Extension SDK for WebLogic Network Gatekeeper

3. In the Embedded_tomcat service, choose addContext. Enter the following parameter data:

4. Click Invoke.

The WESPA module is started.

Parameter Description

contextPath The context path to be used. For example: /exampleContext

The Web Service will be reached in the following URL:

http://<IP-address>:<port>/<contextPath>/services/<method>

docBase Document root. Can be a war-file or a directory. Can be specified
with an absolute or a relative path name or an URL. In the example
the files are stored in:
/usr/local/slee/bin/autowar/
<name of war file>.war

useCookies Enable cookies (TRUE/FALSE) for session handling. Use
FALSE.

autostart Start this context during next service restart (TRUE/FALSE). Use
TRUE.

Extension SDK for WebLogic Network Gatekeeper 21-1

C H A P T E R 21

Creating an example application

The following section provides a description on how to create an example application that uses
the interfaces defined for the example WESPA module prepared in “Creating an example
WESPA module” on page 20-1:

General preparations

Preparing the application

Compilation of the test application

Running the application

The application will have the following properties:

package com.acompany.test

Interface used by the test application client, acting on the WESPA module:
MyServiceCapability

Interface used by the WESPA module, acting on the test application:
MyServiceCapabilityListener

Interface used by the WESPA module to deliver network triggered notifications, acting on
the test application:
MyServiceCapabilityNetworkTriggeredEventListener

Method implemented by the WESPA module, defined in the MyServiceCapability
interface:

– myMethod

Creat ing an example appl i ca t ion

21-2 Extension SDK for WebLogic Network Gatekeeper

– myMethodWait

– enableNetworkTriggeredEvents

– disableNetworkTriggeredEvents

Methods invoke by the WESPA service capability, defined in the
MyServiceCapabilityListener interface, and implemented by the test application:

– myMethodResult

– myMethodError

Methods invoke by the WESPA service capability, defined in the
MyServiceCapabilityNetworkTriggeredEventListener interface, and implemented
by the test application:

– myDeliverNetworkTriggeredEventMethod

General preparations
This is general preparations. Do not perform these two steps if they already have been performed
when creating the SESPA Service Capability as described in “Creating an example SESPA
module” on page 19-1.

1. Make sure the files for the application are copied to the directory exampleproj. That is, all
files and directories in module_templates\client_impl.

2. Change directory to bea\wlng21\esdk\build and issue the command ant

Preparing the application
3. Open the file exampleproj\client_impl\build.xml.

4. Edit the location of the MyServiceCapability.wsdl and
MyServiceCapabilityListener.wsdl files. Change the properties myScWsdl and
myScListenerWsdl.

5. Edit the location of the MyServiceCapabilityNetworkTriggeredEventListener.wsdl
file. Change the property myScNetworkTriggeredEventListenerWsdl.

6. Edit mapping namespaces for the WSDL generation. Change the namespace mapping
properties if there have been any changes to classnames or package structure.

7. Edit the location of the deployment descriptor, in the replaceregexp tag, for the application’s
web service if there have been any changes to classnames or package structure.

Compi la t ion o f the tes t appl ica t i on

Extension SDK for WebLogic Network Gatekeeper 21-3

Adapt the application to use the example WESPA module
interfaces
8. Rename the directories to reflect the desired package structure. Also change the package

definitions accordingly.

Compilation of the test application
Prior to this, the WESPA module must have been built.

9. Compile the application by changing directory to exampleproj\client_impl and execute
the command ant

Running the application
This section describes how to prepare the start script, register the application in Network
Gatekeeper and how to set up the Service Level Agreement.

Prepare start script
10. Open the file exampleproj\client_impl\runMe.bat and edit the HOST variable to fit the

port that Network Gatekeeper listens to.

11. Edit the URL for the Web Service for the new service capability. Change:

http://%HOST%/wespa_myservicecapability/services/MyServiceCapability

To reflect any changes done in the deployment descriptor for the WESPA module.

The URL must be according to where the WESPA module was deployed, see “Installing
the WESPA service capability module” on page 20-5.

Register application data
The application has a text based interface through which the login is performed. The following
login data has to be registered in the Network Gatekeeper before the application can log in:

Service provider ID - for example: test_sp

Application ID - for example: test_appl

Application instance group ID - for example: test_group

Creat ing an example appl i ca t ion

21-4 Extension SDK for WebLogic Network Gatekeeper

Application instance group password - for example: test_group_pwd

For information on how to perform the actual application registration, see WebLogic Network
Gatekeeper User’s Guide.

Both the service provider and application level SLAs must allow the application to use the
ESPA_example_sc created in “Creating an example ESPA Service Capability module” on
page 17-1.

Run the application
12. Execute the start script exampleproj\client_impl\runMe.bat

13. In the application, make sure that the application is configured to use the Access Web
Service and the Web Service exposed by the WESPA SC module.

Make sure that the network simulator application is started and configured as described in
“Creating an example network simulator” on page 22-1.

Print the configuration to make sure the server and login information is set up correctly, otherwise
configure login information and server details.

Perform a login.

Use menu option 5. Start MySc test, synchronous mode to send an application initiated
synchronous request to the WESPA SC.

Use menu option 6. Start MySc test, asynchronous mode to send an application initiated
asynchronous request to the WESPA SC.

Provide an assignment ID that will be provided to the WESPA SC. The destination address and
the payload data are automatically provided by the test application.

In both the synchronous and the asynchronous call the test application will output the outcome of
the request.

The payload data, together with the destination address and the transaction ID is propagated
through the modules and delivered to the network simulator which returns a reply. If there is an
error the application will printout an error message. A network transaction ID provided by the
network simulator is returned.

When an application performs an application triggered request, data about the request is printed
in the console of the network simulator.

In order for the application to receive network triggered notifications, it must enable notifications
for a specific address.

Runn ing the appl ica t i on

Extension SDK for WebLogic Network Gatekeeper 21-5

Use menu option 7. Enable network triggered events to enable the notifications.

An listener ID is returned. Use this ID when disabling network triggered events.

Use menu option 8. Disable network triggered events to enable the notifications.

See “Creating an example network simulator” on page 22-1 for information on how to build and
run the network simulator application.

Creat ing an example appl i ca t ion

21-6 Extension SDK for WebLogic Network Gatekeeper

Extension SDK for WebLogic Network Gatekeeper 22-1

C H A P T E R 22

Creating an example network simulator

The following section provides a description on how to create an example network simulator that
uses the interfaces defined for the network node that communicates with the Web Services part
of the plug-in, see “Creating an example network plug-in” on page 16-1:

General preparations

Preparing the network simulator application

Compilation of the network simulator application

Running the network simulator application

The network simulator application will have the following properties:

package com.acompany.test

Interface used by the Web Services plug-in module, acting on the network simulator
application:
NetworkInterface.wsdl

Interface used by the network simulator application to deliver network triggered
notifications, acting on the Web Services part of the network plug-in:
NetworkTriggeredEventListener.wsdl

Interface used by the Web Services plug-in module, in response to an network triggered
event: NetworkTriggeredEventResultListener.wsdl

Method used by the Web Services plug-in module, defined in NetworkInterface.wsdl,
implemented by the network simulator application

Creat ing an e xample netwo rk s imu lator

22-2 Extension SDK for WebLogic Network Gatekeeper

– myNetworkMethod

Method used by the Web Services plug-in module, defined in the
NetworkTriggeredEventResultListener.wsdl, and implemented by the test
application:

– myDeliverNetworkTriggeredEventMethodResult

– myDeliverNetworkTriggeredEventMethodError

Methods invoked by the network simulator application, defined in
NetworkTriggeredEventListener.wsdl, and implemented by the Web Services part of
the plug-in:

– myDeliverNetworkTriggeredEventMethod

General preparations
This is general preparations.

1. Make sure the files for the network simulator application are copied to the directory
exampleproj. That is, all files and directories in module_templates\client_impl.

2. Change directory to bea\wlng21\esdk\build and issue the command ant

Preparing the network simulator application
3. Open the file exampleproj\client_impl\build.xml.

4. Edit the location of the NetworkInterface.wsdl,
NetworkTriggeredEventListener.wsdl, and
NetworkTriggeredEventResultListener.wsdl files. Change the properties
networkTriggeredEventListenerWsdl,
networkTriggeredEventResultListenerWsdl and networkInterfaceWsdl.

5. Edit mapping namespaces for the WSDL generation. Change the namespace mapping
properties if there have been any changes to classnames or package structure.

6. Edit the location of the deployment descriptor, in the replaceregexp tag, for the application’s
web service if there have been ably changes to classnames or package structure.

Compi lat ion o f the ne twork s imu la to r appl ica t i on

Extension SDK for WebLogic Network Gatekeeper 22-3

Compilation of the network simulator application
7. Compile the network simulator application by changing directory to

network_simulator_impl and execute the command ant

Running the network simulator application
This section describes how to prepare the start script for the network simulator application.

Prepare start script
8. Open the file exampleproj\network_simulator_impl\runMe.bat and edit the HOST

variable to fit the port that Network Gatekeeper listens to.

9. Edit the namesspace for the Web Service that implements the Web Service used by the
network simulator application and implemented in the Web Services part of the plug-in.
Adapt:

http://%HOST%/wplugin/services/NetworkTriggeredEventListener

To reflect any changes done when deploying the Web Services part of the plug-in.

The namespace must be according to where the Web Services part of the plug-in was
deployed, see “Installing the Web Service plug-in” on page 16-10.

Run the network simulator application
10. Execute the start script exampleproj\network_simulator_impl\runMe.bat

11. In the network simulator application, make sure that the network simulator is configured to
use the Web Service that the Web Services part of the plug-in implements for listening to
network initiated events. By default, the Web service is deployed in
http://<Tomcat URL>:8080/wplugin/services/NetworkTriggeredEventListener

Use menu option 5 -Deliver network triggered event to send a network triggered event
to the Web Services part of the plug-in. Provide the payload data, originating address, destination
address, and a network transaction ID. Make sure that the test application has enabled network
triggered events for the destination address.

The data provided, together with an originating address, a destination address and a network
transaction ID is propagated through the modules and delivered to the application. If there is an
error the network simulator application will printout an error message.

Creat ing an e xample netwo rk s imu lator

22-4 Extension SDK for WebLogic Network Gatekeeper

When an application performs an application triggered request, data about the request is printed
in the console of the network simulator.

See “Creating an example application” on page 21-1 for information on how to build and use the
example application.

Extension SDK for WebLogic Network Gatekeeper 23-1

C H A P T E R 23

Release notes

What is the Extension SDK for Network Gatekeeper 2.1
The Extension SDK for Network Gatekeeper is a new product that allows developers to create
extensions to the WebLogic Network Gatekeeper.

Extensions can be made as completely new traffic flows from northbound interfaces to network
protocol plug-ins. Extensions can also be made to the northbound interfaces, while reusing the
existing Service capabilities and creating new northbound interfaces that uses the existing
interfaces provided by the SESPA part of the Service Capabilities. Extension can also be created
on the network protocol layer, that is creating new plug-ins that implement the existing plug-in
interfaces.

A set of code templates and rule file templates, together with a build environment for the
extensions are included in the Extension SDK.

Notes on installation
In order to deploy extension that are created using the Extension SDK in a WebLogic Network
Gatekeeper, the following patches are necessary to Network Gatekeeper 2.1:

x_sespa_access.jar, patch version: R_WLNG_2_1_0_4

slee.jar, patch version: R_WLNG_2_1_0_5

Release no tes

23-2 Extension SDK for WebLogic Network Gatekeeper

Interface changes
The Extension SDK, and software modules developed using the Extension SDK use interfaces
internal in the Network Gatekeeper as well as utility classes specific for the Extension SDK.

The code template structure for the ESPA and SESPA modules may change in the next release of
the Extension SDK. The current structure will however continue to be supported.

Documentation
The documentation for Extension SDK for WebLogic Network Gatekeeper 2.1, is available
on e-docs. The URL is password protected, the login details are provided when ordering
the software.

Operating system and third party software versions

Operating system
The Extension SDK has been tested using the following configurations.

HP-UX 11.23

SunOS 5.9 (Solaris 9)

Red Hat Enterprise Linux AS release 3

Windows XP

Java
For HP-UX: sdk14_14207_1122, version 1.4.2.07. JavaTM for HP-UX 11i Out-of-Box tool:
2.0.3

For Linux: jrockit-j2sdk1.4.2_05-linux-ia32

For Sun Solaris: j2sdk-1_4_2_04-solaris-sparc

For Windows: j2sdk-1_4_2_04-windows-i586-p

ORB
Orbacus 4.1.2 or 4.3.

Known I ssues

Extension SDK for WebLogic Network Gatekeeper 23-3

Orbacus is not provided with the Extension SDK. A developer needs to acquire this separately.
Visit http://www.iona.com for more information.

Ant
Ant 1.6.5. Ant is provided with the Extension SDK.

Known Issues
The following section describes known issues, and notes about these issues, in Extension SDK
for Network Gatekeeper 2.1.

Change Request Number Description

CR256059 Login session validity period checks must be disabled in the Network
Gatekeeper in order to support network triggered events.

When having login session validity period checks enabled in the Network
Gatekeeper, the network triggered part of the example provided in the
module templates will not work. See Network Gatekeeper User’s guide for
information on how to disable checking of validity periods for the login
tickets.

Release no tes

23-4 Extension SDK for WebLogic Network Gatekeeper

	Introduction and Roadmap
	Document Scope and Audience
	Prerequisites
	Guide to this Document
	Terminology
	Related Documentation
	WebLogic Network Gatekeeper documentation

	Actors
	Extending WebLogic Network Gatekeeper
	Network plug-in
	Traffic interfaces
	Plug-in states
	Suspending a plug-in
	Switching plug-in
	Best practises for the plug-in interfaces
	Help classes for network plug-ins

	Plug-in manager
	Accessing the Plug-in Manager
	Plug-in manager interfaces
	Use cases

	SC manager
	Accessing the SC Manager
	Interfaces
	Use cases

	Service capability
	SESPA SC
	Web Services interface implementation

	Interacting with the SLEE and the SLEE Utility Services
	Basic SLEE interfaces
	ServiceAccessible
	ServiceDeployable
	ServiceDeployableExt
	ServiceManageable
	ServiceContext
	SLEEContext

	SLEE utility interfaces
	Services fetched from the ServiceContext
	PolicyManager
	Services fetched from the SLEEContext

	SLEE utility classes
	Alarm
	LoadEvent
	SLEECyclicIDManager
	SLEEDBTable
	SLEECyclicIDManager
	SLEEIDManager
	SLEEGlobalCounterManager
	SLEEGlobalCounter
	SupervisedList
	SupervisedListListener

	OAM
	Implementing OAM access control

	Using the database
	Using the alarm service
	Using the event service
	Using the charging service
	Using the time service
	Using the trace service

	General sequence diagrams
	Asynchronous application-initiated
	Synchronous application-initiated
	Network-triggered
	Registering the listener
	Handling incoming events

	Frameworks
	Interacting with the SLEE
	Web Services framework
	Retrieving the login ticket from the SOAP Header
	Interworking with the stateless adapters (SLEE common loader)

	Stateless adapter framework
	Interworking with a WESPA SC (SLEE common loader)
	Getting an ESPA session based on the loginticket

	Service capability framework
	Plug-in framework

	High availability
	Introduction
	Plug-in Manager and SC Manager
	SC Manager
	Plug-ins using SC Manager
	Incoming traffic
	Outgoing traffic

	SESPA and ESPA

	Plug-ins that executes as a SLEE service and a web application
	Introduction
	Interaction between the web application part of a plug-in and the SLEE service part of a plug-in
	Interface class registration
	Incoming requests
	Outgoing requests

	Call Control
	Network plug-in
	Use cases
	Application-initiated two-party call
	Network-triggered call

	Call user interaction
	Network plug-in
	Call user interaction interfaces
	UserInteractionCallResource
	IrUICallManager -deprecated-
	IrUICallManagerExt
	IrUI
	IrUICall
	IrAppUI
	IrAppUICall

	Use cases for Call user interaction
	Application-initiated usage of a Call user interaction plug-in

	SMS and MMS messaging
	Network plug-in
	SMS Interfaces
	MMS Interfaces

	Use cases for SMS
	ESPA Service Capability registers SC
	Application-initiated send message
	Network-triggered messages

	Content based charging
	Network plug-in
	Content based charging interfaces
	ChargingResource
	IrChargingSession
	IrAppChargingSession

	Use cases for Content based charging
	Application-initiated usage of a Content based charging plug-in

	Subscriber profile
	Network plug-in
	Subscriber profile interfaces
	IrSubscriberProfileResource
	IrSubscriberProfile
	IrSubscriberProfileSubscriptionExt
	IrAppSubscriberProfile
	IrAppSubscriberProfileSubscriptionExt

	Use cases for Subscriber profile
	Application-initiated usage of a Subscriber profile plug-in

	User Location
	Network plug-in
	User location interfaces

	Use cases for user location
	Application-initiated user location
	Network-triggered user location request

	Policy rules and Policy Utilities
	Mapping policy request data to variables in a Policy Rule
	Adding a rule to Policy Decision Point
	Getting data defined in the PolicyRequest

	Extending Service Level Agreements
	Update SLA Schema
	Load new SLA schema into the Policy Service
	Update and load rule files
	Update SLAs
	Load new SLAs

	Using a Policy Utility
	Defining a Policy Utility class
	Example Policy Utility

	Using the Extension SDK templates
	Prerequisites
	Installing the Extension SDK
	Installation prerequisites
	Installation procedure

	About WESPA, SESPA, ESPA service capability, and network plug-in software modules
	About the flow descriptions
	Traffic flow for application initiated requests
	WESPA service capability
	SESPA service capability module
	ESPA service capability module
	Network protocol plug-in SLEE service part
	Network protocol plug-in Web Services part

	Registration flow for network triggered requests
	WESPA service capability
	SESPA service capability module
	ESPA service capability module
	Network protocol plug-in

	Traffic flow for network triggered requests
	Web Services part of the network protocol plug-in
	SLEE Service part of the network protocol plug-in
	ESPA service capability module
	SESPA service capability module
	WESPA service capability module

	Directory structure for the templates
	Introduction to the network plug-in
	Files for the SLEE service part of the network plug-in interfaces
	my_plugin_if.idl
	MyPluginOAM.idl
	MyPluginContext.java
	MyPluginSLEEService.java
	MyPlugin_impl.java
	MyMethodReqTask.java
	DeliverNetworkTriggeredEventTask.java
	MyPluginNetworkTriggeredEventResultListenerImpl.java
	MyWPluginNetworkTriggeredEventListenerImpl.java
	MyPluginOAM_impl.java
	MyWPluginNetworkTriggeredEventResultListenerImpl.java
	MyWPluginServlet.java
	NetworkInterfaceImpl.java
	NetworkTriggeredEventListenerSoapBindingImpl.java

	Introduction to the ESPA service capability
	Files for the ESPA service capability interfaces
	MyServiceCapability_if.idl

	Files for the ESPA service capability implementation
	MyServiceCapabilityOAM.idl
	ChargingHelper.java
	DeliverNetworkTriggeredEventTask.java
	MyPluginNetworkTriggeredEventListener_impl.java
	MyServiceCapabilityNetworkTriggeredEventResultListenerImp l.java
	MyPluginListener_impl.java
	MyServiceCapabilityOAM_impl.java
	MyServiceCapabilityPersistentStorage.java
	MyServiceCapabilityService_impl.java
	NotificationHandler.java
	MyServiceCapabilityManager_impl.java
	MyServiceCapabilityContext.java
	Policy implementation concept

	Files for the Policy utility
	MyPolicyUtility.java
	MyPolicyUtilityOAM_impl.java
	MyPolicyUtilityException.java

	Introduction to the SESPA module
	Files for the SESPA module interface
	MyServiceCapability.java and MyESPAServiceCapabilityListener.java
	MyServiceCapabilityNetworkTriggeredEventListener.java

	Files for the SESPA module implementation
	MyServiceCapabilityOAM.idl
	MyServiceCapabilityOAM.idl
	MyESPAServiceCapabilityListener_impl.java
	MyESPAServiceCapabilityNetworkTriggeredEventListener_imp l.java
	MyServiceCapabilityEventHelper.java
	MyServiceCapabilityService.java
	MyServiceCapabilityOAM_impl.java
	MyServiceCapabilityPersistentStorage.java
	MyServiceCapabilityContext.java
	MyServiceCapabilityImpl.java
	NotificationInfo.java and NotificationInfoId.java

	Introduction to the WESPA module
	Files for the WESPA module interface
	MyServiceCapability.java and MyServiceCapabilityListener.java
	MyServiceCapabilityException.java
	MyServiceCapabilityNetworkTriggeredEventListener.java

	Files for the WESPA module implementation
	MyServiceCapabilityListenerImpl.java
	MyServiceCapabilityNetworkTriggeredEventListenerImpl.java
	MyServiceCapabilitySoapBindingImpl.java

	Introduction to the test application
	Files for the test application
	LoginHelper.java and LoginInfo.java
	MyScHelper.java
	MyServiceCapabilityListenerImpl.java
	TestClient.java
	TraceLogService_impl.java and TraceLogService.java
	WespaHelper.java

	Introduction to the network simulator
	Files for the network simulator application
	NetworkTriggeredInterfaceHelper.java
	NetworkInterfaceImpl.java
	TestClient.java
	TraceLogService_impl.java and TraceLogService.java

	Preparing the development environment
	Copy templates
	Preparing the build environment
	Adapting the build files for the modules

	Using the templates from Eclipse

	Creating an example network plug-in
	General preparations for the SLEE part of the plug-in
	Preparing the SLEE plug-in interface
	Set up the build environment
	Define the plug-in interface structure
	Interfaces in the plug-in

	Compilation of the SLEE plug-in interface
	Preparing the SLEE plug-in implementation
	Set up the build environment
	Defining the plug-in OAM methods
	Adapting the plug-in interface implementation
	Plug-in type definition

	Compilation of the SLEE plug-in implementation
	Installing the SLEE plug-in
	Setting up a plug-in route
	General preparations for the Web Services part of the plug-in
	Preparing the Web Services plug-in interface
	Set up the build environment
	Interfaces in the plug-in

	Compilation of the Web Services part of the plug-in interface
	Preparing the Web Services part of the plug-in implementation
	Set up the build environment
	Adapting the Web Services plug-in interface implementation

	Compilation of the Web Services plug-in implementation
	Installing the Web Service plug-in

	Creating an example ESPA Service Capability module
	General preparations
	Preparing the ESPA service capability interface
	Set up the build environment
	Define the ESPA service capability module interface structure
	Interfaces to the ESPA service capability module

	Compilation of the ESPA service capability module interface
	Preparing the ESPA service capability module implementation
	Set up the build environment
	Defining the OAM methods
	ESPA service capability module plug-in listener interface implementation
	ESPA service capability module service manager implementation
	ESPA service capability module persistent storage
	ESPA service capability module context

	Implement the Policy Enforcement Point
	Compilation of the ESPA service capability module implementation
	Adapting the policy rules
	Installing the ESPA service capability module
	Update Service Level Agreements (SLAs)
	Install policy rules

	Creating an example Policy Utility
	General preparations
	Preparing the Policy utility
	Set up the build environment
	Defining the OAM methods
	Policy utility implementation and rule files

	Installing the Policy Utility
	Install policy rules
	Install Subscriber profile plug-in
	Provision data to the database

	Creating an example SESPA module
	General preparations
	Preparing the SESPA service capability interface
	Build environment
	SESPA service capability module interface structure
	SESPA service capability module interfaces

	SESPA service capability module interface compilation
	Preparing the SESPA service capability module implementation
	Set up the build environment
	Defining the OAM methods
	SESPA service capability module structure
	SESPA service capability module listener implementation
	SESPA service capability module implementation
	SESPA service capability module service

	Compilation of the SESPA service capability module implementation
	Installing the SESPA service capability module

	Creating an example WESPA module
	General preparations
	Preparing the WESPA service capability interface
	Build environment
	WESPA service capability module interface structure
	WESPA service capability module interfaces

	WESPA service capability module interface compilation
	Preparing the WESPA service capability module implementation
	Set up the build environment
	WESPA service capability module structure
	SESPA service capability listener implementation
	WESPA service capability SOAP binding implementation

	Compilation of the WESPA service capability module implementation
	Installing the WESPA service capability module

	Creating an example application
	General preparations
	Preparing the application
	Adapt the application to use the example WESPA module interfaces

	Compilation of the test application
	Running the application
	Prepare start script
	Register application data
	Run the application

	Creating an example network simulator
	General preparations
	Preparing the network simulator application
	Compilation of the network simulator application
	Running the network simulator application
	Prepare start script
	Run the network simulator application

	Release notes
	What is the Extension SDK for Network Gatekeeper 2.1
	Notes on installation
	Interface changes
	Documentation
	Operating system and third party software versions
	Operating system
	Java
	ORB
	Ant

	Known Issues

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

