‘."

.,
S’ 7
L/

BEAWebLogic
Network
Gatekeeper-

Developer’s Guide for
Parlay X

Version 2.2
Document Revised: May 15, 2006

Copyright

Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks

Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Interaction, BEA AquaLogic Interaction Analytics, BEA
AquaLogic Interaction Collaboration, BEA AquaLogic Interaction Content Services, BEA AquaLogic Interaction Data
Services, BEA AquaLogic Interaction Integration Services, BEA AquaLogic Interaction Process, BEA AquaLogic
Interaction Publisher, BEA Aqualogic Interaction Studio, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Kodo, BEA Liquid Data for
WebLogic, BEA Manager, BEA MessageQ, BEA SALT, BEA Service Architecture Leveraging Tuxedo, BEA WebLogic
Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA WebLogic Enterprise
Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA WebLogic Mobility Server,
BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API,
BEA WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Real Time, BEA
WebLogic RFID Compliance Express, BEA WebLogic RFID Edge Server, BEA WebLogic RFID Enterprise Server,
BEA WebLogic Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic WorkGroup Edition, BEA
Workshop for WebLogic Platform, BEA Workshop JSP, BEA Workshop JSP Editor, BEA Workshop Struts, BEA
Workshop Studio, Dev2Dev, Liquid Computing, and Think Liquid are trademarks of BEA Systems, Inc. Accelerated
Knowledge Transfer, AKT, BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA SOA
Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

Contents

1. Introduction and Roadmap

Document Scope and AUdience.ttt e 1-1
Guide to this Documento 1-1
Terminology.o 1-2
Related Documentation i 1-2

2. Introduction and Overall Workflow for Parlay X 1.0

About WebLogic Network Gatekeeper Web Services applications 2-1
ATChItECTULE . . . o .ottt et e e e e e 2-2

Parlay X based applicationsttt 2-2
Development enVIrONMENt.ottt ettt e e et 2-3
Information eXchange it e e 2-3
Overall development workflows i 2-6

Client-side Web SEIVICEScouutttn e 2-7

Server-side Web Servicest 2-8

Example: Server-side Web Service. 2-9
Testing an applicationttt 2-10

3. Parlay X 1.0 Web Services API

About Parlay X Web Services APIs 3-2
WSDL fIles . ..o 3-3
Aboutthe examples 3-5
Workflow . . .o 3-5

WebLogic Network Gatekeeper Developer’s Guide for Parlay X v

vi

Login and retrieve loginticket i 3-6

Define the security header i 3-7
Get a handle to the Web Services portot 3-7
Addsecurityheader 3-8
Invokeamethod. 3-8
LOgOUL. . .t 3-8
Overview of Supported Capabilitiesttt 3-9
ACCESS. et 3-9
Third Party Call e 3-9
Call APL. .o 3-9
Network Initiated Call 3-9
Call APL. . oo 3-9

S S 3-10
Send SMS API ... o 3-10
SMS Notification APL. 3-11
Receive SMS APL 3-11
Multimedia MeSSage vtnii et e 3-11
Send Message APL i 3-11
Receive Message APL. i 3-11
Message Notification API. i 3-12
Payment 3-12
Amount Charging APL 3-12
Volume Charging APL. i 3-12
Reserved Amount Charging APL. iiin.. 3-13
Reserved Volume Charging APL. iiiiiiin.. 3-13
Terminal Location i 3-13
Terminal Location APT 3-13
USer Statusot 3-13

WebLogic Network Gatekeeper Developer’s Guide for Parlay X

User Status APL 3-13

AdAresSes . . . oot 3-14
EXamples.o 3-14
Data types and enumerationsttt 3-14

4. Using the Parlay X 2.1 interfaces

Using the Access Web Service 4-1
Parlay X 2.1 WSDL fileso e 4-2
Parlay X 2.1 interfaces.ot e 4-2
Part 1: Common 4-2
Data TYPeS - oottt 4-3
EXCePtiONSottt 4-3

Part 4: Short Messagingottt e e 4-4
Interface SendSms. e 4-4
Interface SmsNotification i 4-4
Interface ReceiveSms 4-5
SmsNotificationManager.ottt 4-5

Part 5: Multimedia MesSagingttt 4-6
Interface SendMesSage oottt 4-6
Interface ReceiveMessageottt 4-6
Interface MessageNotification.c.. .. 4-7
Interface MessageNotificationManager.t .. 4-7

Part 9: Terminal Locationt 4-8
Interface TerminalLocationc.. i, 4-8
Interface TerminalLocationNotificationManager 4-8
Interface TerminalLocationNotification 4-9

Support for dual senderName and senderAddress parameters 4-9

WebLogic Network Gatekeeper Developer’s Guide for Parlay X vii

5. Parlay X 1.0 Examples

Aboutthe examples. 5-2
Send SV S .o 5-2
SMS NOHHICALIONS .+« o v vttt et e e e e e e e e e e e 5-3
Send MM S . . L 5-5
Poll fornew MMSESot 5-7
Receive notifications about new MMSeso 5-9
Get an MMS by it’s message reference ID 5-10
Handling SOAP Attachments 0 iuiiiiiiiinenn.. 5-11

Encoding a multipart SOAP attachment. 5-11

Retrieving and Decoding a multipart SOAP attachment 5-13
Setting up a two-party call from an application. 5-15
Handling network-initiated calls 5-18
Get LOCAtION . .« .ttt et e 5-22
Get USEr STATUS . . . o .ottt 5-24
Reserve and charge anaccounti ittt 5-26

A. References

viii

WebLogic Network Gatekeeper Developer’s Guide for Parlay X

Introduction and Roadmap

The following sections describe the audience for and organization of this document:

“Document Scope and Audience” on page 1-1

“Guide to this Document” on page 1-1

“Terminology” on page 1-2

e “Related Documentation” on page 1-2

Document Scope and Audience

This guide describes how to develop telecom-enabled applications based on the Parlay X 1.0 and
2.1 APIs and how to access and use the APIs/interfaces as exposed by WebLogic Network
Gatekeeper.

This guide contains code fragments from example applications written in Java to illustrate
different aspects of the usage of the interfaces.

The purpose of this guide is not to describe Web Service development in general, but rather how
to use the specific interfaces.

All example code is Axis-specific.

Guide to this Document

e Chapter 1, “Introduction and Roadmap,”The structure and contents of this document, the
writing conventions used, and related documentation.

WebLogic Network Gatekeeper Developer’s Guide for Parlay X 1-1

Introduction and Roadmap

e Chapter 2, “Introduction and Overall Workflow for Parlay X 1.0,” An introduction to the
two main types of WebLogic Network Gatekeeper Web services applications.The
programming environment and development workflows.

e Chapter 3, “Parlay X 1.0 Web Services APL,” Adding telecom functions to your Web
Services Application using Parlay X 1.0.

e Chapter 4, “Using the Parlay X 2.1 interfaces,” An overview of the interfaces and
operations supported in the Palray X 2.1 interface.

e Chapter 5, “Parlay X 1.0 Examples,” Code examples using Parlay X 1.0.

Terminology

The following terms and acronyms are used in the document:
API —Application Programming Interface
CORBA —Common Object Request Broker Architecture
HTML —Hypertext Markup Language
MMS —Multimedia Message Service
RPC —Remote Procedure Call
ORB —Object Request Broker
SMS —Short Message Service
SwA —SOAP with Attachments
WSDL —Web Services Definition Language
WSI-I —Web Services Interoperability
SPA —Service Provider API
XML —Extended Markup Language

Related Documentation

This Developer’s Guide is a part of WebLogic Network Gatekeeper documentation set. The
following documents contain other types information:

e API Description Parlay X 1.0 for WebLogic Network Gatekeeper

1-2 WebLogic Network Gatekeeper Developer's Guide for Parlay X

Related Documentation

The API description describes the Parlay X 1.0 API and it’s implementation in WebLogic
Network Gatekeeper.

o Parlay X 1.0 Specification, http://www.parlay.org

The Parlay X 1.0 specification describes the Parlay X 1.0 APIs available for programmers
and applications.

e Parlay X 2.1 Specification,
http://portal.etsi.org/docbox/TISPAN/Open/OSA/Parlay X2 1.html

The Parlay X 2.1 specification describes the Parlay X 2.1 APIs available for programmers
and applications. The 3GPP edition of the specification is used.

WebLogic Network Gatekeeper Developer’'s Guide for Parlay X 1-3

Introduction and Roadmap

1-4 WebLogic Network Gatekeeper Developer's Guide for Parlay X

CHAPTERa

Introduction and Overall Workflow for
Parlay X 1.0

The following sections provide an overview of developing applications using the Parlay X 1.0
APIs:

e “About WebLogic Network Gatekeeper Web Services applications” on page 2-1
e “Architecture” on page 2-2

e “Development environment” on page 2-3

e “Information exchange” on page 2-3

e “Overall development workflows” on page 2-6

e “Testing an application” on page 2-10

About WebLogic Network Gatekeeper Web Services
applications

The WebLogic Network Gatekeeper Web Services interfaces make it possible for TCP/IP based
applications to offer their users access to telecom functionality. The Network Gatekeeper offers
three separate sets of Web Services APIs: Parlay X 1/0; Parlay X 2.1 (partial); and Extended Web
Services. The choice of which API to use depends on the application’s needs for network
functionality and means of access.

For applications that wish to provide only basic telecom functionality, the standardized Parlay X
APIs may be a good choice. For applications with a need for more granular control, the Extended
Web Services interfaces may be more appropriate.

WebLogic Network Gatekeeper Developer’s Guide for Parlay X 2-1

Introduction and Overall Workflow for Parlay X 1.0

This section describes how to develop Parlay X 1.0 applications that connect to an underlying
telecom network using WebLogic Network Gatekeeper. Using the Parlay X APIs you can quickly
develop powerful telecom-enabled applications using any programming environment that
supports Web Services.

Architecture

Figure 2-1, “Parlay X Web Services interfaces,” on page 2-2 illustrates different ways of using
the Web Services APIs as provided by WebLogic Network Gatekeeper, as well as examples of
different execution environments for applications.

J2SE J2EE .Net

§§ SOAP/HTTP §§ SOAP/HTTP §§ SOAP/HTTP
Parlay X
APIs

Service Capabilities

WebLogic Network Gatekeeper

Figure 2-1 Parlay X Web Services interfaces

Applications using the Parlay X APIs can execute in any environment capable of handling Web

Services, as the applications communicate with WebLogic Network Gatekeeper using
SOAP/HTTP.

2-2 WebLogic Network Gatekeeper Developer's Guide for Parlay X

Development environment

Parlay X based applications
A Web Services Parlay X application:

e Uses an API that is standardized
e Has a well-defined, small set of available methods

o Is stateless.

Development environment

This is a simple Web Services development environment. Integrated programming environments,
like Visual Studio .Net can be used for development of Web Services applications, but this guide
uses a minimalistic approach. For the purpose of this guide, the following will do::

e an ordinary text editor.
e Java 2 SDK 1.4.2, see J2SE SDK, http://java.sun.com.

e Axis 1.1, see “Apache Axis, http://ws.apache.org/axis”.

axis.jar

axis-ant.jar

commons-discovery.jar

commons-logging.jar

jaxrpe.jar

saaj.jar

wsdl4j.jar

e JavaMail API 1.2, see “JavaMail, http://java.sun.com”, for messaging applications
handling multimedia messages.

— mail.jar

— activation.jar

Information exchange

Before an application is developed, the application developer/service provider and the Network
Gatekeeper operator must exchange information regarding resources.

WebLogic Network Gatekeeper Developer’'s Guide for Parlay X 2-3

Introduction and Overall Workflow for Parlay X 1.0

e Decide what functionality is needed, and the Network Gatekeeper modules that support
that functionality - Messaging, Call Control, Location, etc. - and map it to the appropriate
Parlay X API. More information on the functionality supported by the Network Gatekeeper
is available in Architectural Overview - Web Logic Network Gatekeeper, a separate
document in this set.

e Based on the functionality you choose, exchange information with the Network Gatekeeper
operator based on Table 2-1. The WebLogic Network Gatekeeper operator must also
communicate which services and methods are supported by the deployment.

Information related to commercial and security considerations and privacy regulations must also
be exchanged. For example:

e Charging plans
e Number of concurrent application instances you expect to be running.

e Projected usage amounts: for example, the number of sendsuMs requests you expect to
process per time period.

e Black/white lists of addresses.

o Allow/deny lists for User Status and User Location requests.

2-4 WebLogic Network Gatekeeper Developer's Guide for Parlay X

Table 2-1 Information exchange between Parlay X 1.0 application developer and WebLogic Network

Gatekeeper operator

Information exchange

Module

API

Information to be provided by the

Application developer

WebLogic Network
Gatekeeper Operator

Access

Access

Application ID.
Service provider ID.

Application Instance
Group ID.

Password for the
Application Instance
Group.

Network-Initi
ated Third
Party Call

Call

URL of the end-point.

If the application is to be
triggered when the calling
party goes off-hook.

Access number to the
application, ifany. Can be
a range of numbers.

SMS

Send SMS

Mailbox ID and
corresponding password.

SMS
Notification

URL of the end-point.

Access number to the
application.

Mailbox ID and
corresponding password.

WebLogic Network Gatekeeper Developer’'s Guide for Parlay X

2-5

Introduction and Overall Workflow for Parlay X 1.0

Table 2-1 Information exchange between Parlay X 1.0 application developer and WebLogic Network
Gatekeeper operator

Module API Information to be provided by the

Application developer WebLogic Network
Gatekeeper Operator

Receive SMS Mailbox ID and
corresponding password.

Multimedia Send Message Mailbox ID and
Message corresponding password.
Receive Mailbox ID and
Message corresponding password.
Message URL of the end-point. Access number to the
Notification application.
Mailbox ID and

corresponding password.

Overall development workflows

There are two main types of workflow for the development of Web Services applications based
on Parlay X APIs:

e The WebLogic Network Gatekeeper acts as a server and the application is the client. In this
scenario, the application uses a Web Service provided by WebLogic Network Gatekeeper.
For example, the application invokes the sendsms operation on the Network Gatekeeper.
This is the more common mode.

e The application acts as a server and WebLogic Network Gatekeeper is the client. In this
scenario, the application itself is the provider of a Web Service and WebLogic Network
Gatekeeper invokes methods on this Web Service. .

Often, an application acts as both server and client.

2-6 WebLogic Network Gatekeeper Developer's Guide for Parlay X

Overall development workflows

The endpoint of the application’s
server side is registered by the
service provider

Y

WebLogic
Network Gate-

T Publishes the Web Services
Application >

<Server side> Invokes methods

Invokes methods

A 1. . »
PpleEien Publishes the web service
<Client side> -

Figure 2-2 Subscribing for notifications

The methods that the application invokes on Network Gatekeeper are defined in WSDL files, one
for each service capability, where the name of the file reflects the capability.There are also
WSDLs that define the methods that the application must implement to receive various
notifications from WebLogic Network Gatekeeper. In Parlay X, all methods starting with
“handle” or “notify,” such as handleBusy, are methods that WebLogic Network Gatekeeper
invokes on the application’s server-part. The application must implement these methods. All
WSDLs for Parlay X 1.0 use an RPC/encoded binding, while the WSDLs for Parlay x 2.1 use
document/literal.

The method invocations are SOAP requests over HTTP, which means that if the application
wishes to receive notifications, the server part of the application must be capable of handling
SOAP requests. For example, while the Simple Axis Server could be used as a SOAP engine
during the testing phase, in a production system, Axis in combination with Tomcat would be
required.

Client-side Web Services

Below is a high level description of the work sequence for developing clients for telecom-enabled
Web Services::

1. Retrieve the necessary IDs for the resources the application will use from the service provider.
Examples are mailbox IDs, short numbers for network triggered applications and so on.

2. Retrieve the WSDL file that handles user login from the operator provided endpoint.

WebLogic Network Gatekeeper Developer’'s Guide for Parlay X 2-1

Introduction and Overall Workflow for Parlay X 1.0

3. Retrieve WSDL files for the services the application is to use from the operator provided
endpoint.

4. Generate stubs/proxy classes for the language in which you are implementing the
application. The simplest way to do this is to use a tool that converts the WSDL into a
proxy/stub for the preferred language. Examples of such tools include WSDL2Java and
Soap Toolkit..

5. Compile and create jar-files from the Java stubs.
6. Use the generated APIs to add telecom functionality to the application.
7. Compile the application.

8. Test the application in a test environment like the WebLogic Network Gatekeeper
Application Test Environment.

9. Connect the application to WebLogic Network Gatekeeper with a connection to a live
telecom network.

Server-side Web Services

Below is a high level description of the work sequence for developing server-side Web Services
for interacting with Network Gatekeeper:

1. Retrieve the necessary IDs for the resources the application will use from the Network
Gatekeeper operator. These include mailbox IDs, short numbers for network-triggered
applications and so on.

2. Retrieve the WSDL files for the listeners you want to use from the operator provided
endpoint.

3. Generate skeleton classes for the language in which you are implementing the application.
The simplest way to do this is to use a tool that converts the WSDL into a stuf for the
preferred language. Examples of such tools are WSDIL2Java and Soap Toolkit.

4. Compile and create jar-files from the Java stubs.

5. Implement the generated interfaces , adding the ability to receive notifications and other
requests from Network Gatekeeper to the application..

6. Adapt the generated WSDD file to bind the SOAP requests to the appropriate class.

7. Compile the application.

2-8 WebLogic Network Gatekeeper Developer's Guide for Parlay X

Overall development workflows

8. Deploy the application in an environment capable of decoding HTTP/SOAP messages, such
as Axis.

9. Communicate the end-point of the new application to the Network Gatekeeper operator,
who will register them using OAM.

10. Test the application in a test environment like the WebLogic Network Gatekeeper
Application Test Environment.

11. Connect the application to WebLogic Network Gatekeeper with a connection to a live
telecom network.

Example: Server-side Web Service

The example below shows how to create a Web Service to receive notification from Network
Gatekeeper that a new SMS for the application has arrived from the network. The Web Service
implements the the SMS notification API, containing the method notifySmsReception ().

For this example, the Simple Axis Server is used as deployment environment for the application.
1. Retrieve the WSDL files from the endpoint specified by the Network Gatekeeper operator.
2. Generate Java skeletons from the WSDL files (here using WSDL2Java):

%java org.apache.axis.wsdl.WSDL2Java --server-side
--skeletonDeploy true parlayx sms_notification_service.wsdl

Note: The Axis files must be in the classpath.
3. Compile and create jar-files from the skeletons.

4. Move the empty implementation of the generated interfaces to the source directory of the
application.

Note: Inthe example, the class is named SmsNotificationBindingImpl. When generating
skeletons using WSDL2Java, the empty interface implementations are named <Name of
API>BindingImpl.Other tools may have different naming conventions.

5. Adapt the generated Web Service Deployment Descriptor (WSDD) files to bind the SOAP
request to the appropriate class.

The WSDD files are used when deploying and undeploying services. Two files are
generated: deploy.wsdd and undeploy.wsdd.

In the example, the tag

WebLogic Network Gatekeeper Developer’'s Guide for Parlay X 2-9

Introduction and Overall Workflow for Parlay X 1.0

<parameter name="className"
value="org.csapi.www.wsdl.parlayx.sms.vl_0O.notification.SmsNotification
BindingSkeleton" />

is replaced with

<parameter name="className"
value="com.acme.apps.getSmsApp.SmsNotification"/>

in order to bind to the appropriate class.
6. Compile the application.

7. Verify that the application is deployed correctly by using a Web browser and pointing it to
the URL of the web service. In the case of Simple Axis Server, the deployed Web Services
can be found at the URL http://<host>:<port>/axis/services.

8. Provide the Network Gatekeeper operator with the URL to the Web Service, along with the
data that identifies the application to Network Gatekeeper: the application ID and
application instance group ID.

9. Run the application. The adapted file deploy.wsdd is used when instantiating the Simple
Axis Server.

Testing an application

Figure 2-3, “Application test flow,” on page 2-11 shows the application test flow, from the
application developer’s functional test to deployment in a live network. An application developer
can perform functional tests using WebLogic Network Gatekeeper Application Test
Environment. The other tests in the flow are performed in cooperation between the application
provider and the Network Gatekeeper operator.

2-10 WebLogic Network Gatekeeper Developer's Guide for Parlay X

Testing an application

Functional Test

Functional Test + Network Test Operation
Non-Functional Test

P Time
Appllcatlon Appllcatlon Appllcatlon Application
Application Application Application
Hub Hub Hub

Network
Simulator
Test
Network

Figure 2-3 Application test flow

First the application is connected to the WebLogic Network Gatekeeper Application Test
Environment (ATE), which emulates WebLogic Network Gatekeeper, using endpoints that
belong to the ATE. It can then be attached to a Network Gatekeeper which is connected to a
network simulator, using the endpoints in the Network Gatekeeper. Finally it connects to a
Network Gatekeeper that is attached to a test network before it is put into a production system.

An overview of the relation between WebLogic Network Gatekeeper Application Test
Environment and WebLogic Network Gatekeeper is shown in Figure 2-4, “ATE in relation to
WebLogic Network Gatekeeper,” on page 2-12.

WebLogic Network Gatekeeper Developer’'s Guide for Parlay X 2-11

Introduction and Overall Workflow for Parlay X 1.0

2-12

Execution.
Env. A

Network

Gatekeeper

OSA GW/
Network node

Figure 2-4 ATE in relation to WebLogic Network Gatekeeper

For a applications based on Web Services, the applications uses the endpoints provided by ATE
during test. After successful verification, the application uses endpoints provided by WebLogic

Network Gatekeeper.

Execution
Env. B

“a¥

ATE

vd

ATE
GUI

———P» Connection to network via WebLogic Network Gatekeeper

- — P Connection to test environment

WebLogic Network Gatekeeper Developer's Guide for Parlay X

CHAPTERa

Parlay X 1.0 Web Services AP

The following sections describe the Parlay X Web Services API:

“About Parlay X Web Services APIs” on page 3-2
e “WSDL files” on page 3-3

e “About the examples” on page 3-5

e “Workflow” on page 3-5

e “Overview of Supported Capabilities” on page 3-9
— “Access” on page 3-9

— “Third Party Call” on page 3-9

— “Network Initiated Call” on page 3-9

— “SMS” on page 3-10

— “Multimedia Message” on page 3-11

— “Payment” on page 3-12

— “Terminal Location” on page 3-13

— “User Status” on page 3-13
e “Addresses” on page 3-14

e “Data types and enumerations” on page 3-14

WebLogic Network Gatekeeper Developer’s Guide for Parlay X 3-1

Parlay X 1.0 Web Services API

About Parlay X Weh Services APls

3-2

The Parlay X Web Services API offers a high-level abstraction of telecom network functionality
for use in any application that can function in a Web Services environment.

The API is designed for rapid application development. From an architectural point of view, the
implementation of the API resides on top of the service capability modules in WebLogic Network
Gatekeeper. For more information on the structure of WebLogic Network Gatekeeper, see
Architectural Overview - WebLogic Network Gatekeeper, a separate document in this set.

All applications accessing WebLogic Network Gatekeeper through the Web Services interfaces
use a Kerberos type of service token-based authentication. The application is provided with a user
name (the application instance group ID) and a password. When an application wants access to
WebLogic Network Gatekeeper the application instance logs in using the user name and
password together with the application account ID and service provider ID to retrieve a service
token. These IDs are established by the Network Gatekeeper operator, and provided either to the
application developer directly, or through the service provider group to which the application
belongs. This mechanism may be extended, using, for example Passport or other extended
Kerberos Key Distribution Centre (KDC) authentication solutions, according to the WSSE (Web
Services Security) standard.

To develop an application using the Parlay X 1.0 APIs, the developer needs:

e Access to either an instance of WebLogic Network Gatekeeper or WebLogic Network
Gatekeeper Application Test Environment

e The WSDL files that define the interfaces for the desired services

e Login credentials and IDs of resources to use, which must be provided by the Network
Gatekeeper operator.

WebLogic Network Gatekeeper Developer's Guide for Parlay X

WSDL files

The interfaces are separated into different modules. Each main type of telecom service is
contained in a specific module. The modules are::

Module Defines

Third party call Methods for handling application initiated calls.

Network-initiated third party call Methods for handling network initiated calls.

SMS Methods for handling sending and reception of
SMSes.

Multimedia Message Methods for handling sending and reception of
MMSes.

Payment Methods for handling charging based on content.

Terminal location Methods for retrieving the geographical position
of a mobile terminal.

User status Methods for retrieving information on the status of
mobile terminals.

In addition there is a Network Gatekeeper specific API, Access, that the application must use to
log into Network Gatekeeper.

All Parlay X APIs except Account Management are supported by WebLogic Network
Gatekeeper. For detailed information on individual methods and WebLogic Network Gatekeeper
specifics not covered by the standard, see API Description Parlay X 1.0 for WebLogic Network
Gatekeeper. For information on the standard itself, see Parlay X 1.0 Specification,
http://www.parlay.org.

WSDL files

The interfaces for the Network Gatekeeper implementation of Parlay X 1.0 interfaces are
published in WSDL files using the RPC/encoded binding:

e By default the service endpoints and the WSDLs for setting up client side implementations
can be found at http: //<URL to WebLogic Network
Gatekeeper>/parlayx/servlet/AxisServlet

WebLogic Network Gatekeeper Developer’'s Guide for Parlay X 3-3

Parlay X 1.0 Web Services API

e Also by default, the WSDL files for the northbound (Listener) interfaces can be fetched
from
http://<URL to WebLogic Network Gatekeeper>/parlayx/wsdl

Module WSDL-file to download API
Access Access Access
This API is specific for
WebLogic Network
Gatekeeper, and not part
of the Parlay X
specification.
Third Party Call parlayx_third party calling_service Call
Network Initiated parlayx_network_initiated call_service | Call
Third Party Call
SMS parlayx_sms_service Send SMS
parlayx sms_notification_service SMS Notification
Multimedia Message | parlayx mm_service Send Message
parlayx_mm_service Receive Message
parlayx_mm_notification_service Message Notification
Payment parlayx_payment service Amount Charging
parlayx _payment service Volume Charging
parlayx_payment servicet Reserved Amount
Charging
parlayx payment service Reserved Volume
Charging
Terminal Location parlayx_terminal location_service Terminal Location
User Status parlayx user status_service User Status

3-4 WebLogic Network Gatekeeper Developer's Guide for Parlay X

About the examples

For a description of the methods in each API, see API Description Parlay X 1.0 for WebLogic
Network Gatekeeper.

About the examples

The examples in this chapter use Java and Axis. The invocation techniques used is JAX-RPC
using Dynamic Invocation Interface. The WSDL files describing the services are used to generate
stubs and skeletons in Java.

Workflow

The main program control flow when executing applications based on Parlay X Web Services is
described in pseudo code in Figure 3-1, “Application execution workflow,” on page 3-5.

START

<

Login and retrieve ticket

Define the security header

Get a handle to the Web Service port

Repeat for each
Amouse

Add the security header

Repeat for each
method to use

< o |[€] ° €] T |« o

Invoke the method

o

=

f Logout

END

Figure 3-1 Application execution workflow

WebLogic Network Gatekeeper Developer’'s Guide for Parlay X 3-5

Parlay X 1.0 Web Services API

a. See “Login and retrieve login ticket” on page 3-6.

b. See “Define the security header” on page 3-7.

c. See “Get a handle to the Web Services port” on page 3-7.
d. See “Add security header” on page 3-8.

e. See “Invoke a method” on page 3-8.

f. See “Logout” on page 3-8

Login and retrieve login ticket

Before your application can make a request to any telecom service using WebLogic Network
Gatekeeper, it must acquire a login ticket. This login ticket identifies the session and is included
in the SOAP header of every subsequent request during the session. The login ticket is valid either
until a logout is performed or until an operator-established time period has elapsed. If the latter
occurs, the application may be able to request a refreshed ticket, or it may need to re-login,
depending on the way the operator has configured the Network Gatekeeper

Details about locators, endpoints, so on are explained later in this section

Listing 3-1 Login

AccessService accessService = new AccessServicelLocator();
java.net .URL endpoint = new java.net.URL(wsdlUrl) ;
Access access = accessService.getAccess (endpoint) ;
String sessionId = access.applicationLogin(spID,
appID,
appInstGroupID,

appInstGroupPassword) ;

The login ticket ID retrieved when invoking applicationLogin is used in each consecutive
invocation towards WebLogic Network Gatekeeper. See “Define the security header” on
page 3-7.

3-6 WebLogic Network Gatekeeper Developer's Guide for Parlay X

Workflow

TheloghlmedenﬁﬂsspID,appID,appInstGroupId,andappinstGoupPasswordaN:
generated by the Network Gatekeeper operator and are provided either directly to the application
developer by the operator or via of the service provider group to which the application belongs.

Define the security header

Once the login ticket is acquired, it is sent in the SOAP header together with a
username/password combination each time a Web Service method is invoked.

Listing 3-2 Define the security header

org.apache.axis.message.SOAPHeaderElement header =

new org.apache.axis.message.SOAPHeaderElement (wsdlUrl, "Security", "");
header.setActor ("wsse:PasswordToken") ;

header.addAttribute (wsdlUrl, "Username", ""+userName) ;
header.addAttribute (wsdlUrl, "Password", ""+sessionId);

header.setMustUnderstand (true) ;

Note that the login ticket is supplied in the Password attribute. The userName attribute is
defined by the operator, normally in the format <myUserName>@<myapplication>

Axis 1.1 does not contain WSSE helper classes, so this must be performed manually.

The header is added to the Web Services request. Also see “Add security header” on page 3-8.

Get a handle to the Web Services port

Next you must get a handle for invoking a method, using, in this example, the SendSms interface.

Listing 3-3 Get hold of a port

SendSmsService sendSmsService = new SendSmsServiceLocator () ;
java.net.URL endpoint = new java.net.URL(sendSmsWsdlUrl) ;

SendSmsPort sendSms = sendSmsService.getSendSmsPort (endpoint) ;

WebLogic Network Gatekeeper Developer’'s Guide for Parlay X 3-7

Parlay X 1.0 Web Services API

3-8

The details on the parameters of the send SMS API are described in API Description Parlay X
1.0 for WebLogic Network Gatekeeper.

Add security header

Adding the security header to a request is straightforward, as illustrated below. For information
on creating the header, see “Define the security header” on page 3-7.

Listing 3-4 Add security header

((org.apache.axis.client.Stub)sendSms) .setHeader (header) ;

Invoke a method

Using the handle you acquired above, invoke a method - in this case sendSms.

Listing 3-5 Invoke a method

String sendID = sendSms.sendSms (eui, myMailbox, "CP_FREE", myMessage);

The details on the parameters of the send SMS API are described in API Description Parlay X
1.0 for WebLogic Network Gatekeeper.

Logout

Close the session..

Listing 3-6 Logout

access.applicationLogout (sessionId) ;

WebLogic Network Gatekeeper Developer's Guide for Parlay X

Overview of Supported Capabilities

The login Ticket is destroyed and cannot be used in consecutive method invocations.

Overview of Supported Capabilities

Access

This API is specificto WebLogic Network Gatekeeper, and is not part of the Parlay X
specification. It provides the following functionality:

e Login an application to WebLogic Network Gatekeeper.
e Logout an application from WebLogic Network Gatekeeper.

e Change password.

For a description on using this API see “Login and retrieve login ticket” on page 3-6 and
“Logout” on page 3-8. There is also support for changing the password.

Third Party Call
Call API

This API contains Web Services methods for handling application initiated, two-party telephony
calls.The following functionality is provided:

e Connect two parties in a call.
e End the call.
e Get information about an ongoing call.

e Cancel call setup.

Network Initiated Call
Call API

This API contains Web Services methods for handling network initiated calls. It is a listener
interface, which is implemented on the server-side of the application.The following functionality
is provided:

e Check to see if the terminal of a called party is busy (off-hook before the call attempt).

WebLogic Network Gatekeeper Developer’'s Guide for Parlay X 3-9

Parlay X 1.0 Web Services API

e Check to see if the terminal of a called party is not reachable (for example, if it is turned
off.

e Check to see if a called party does not go off-hook (does not answer) within a certain
time-interval which has been defined by the telecom network.

e Check to see if a called party goes off-hook (answers)

Several possible actions can be taken when any of the above listed information reaches the
application. It can:

e Continue handling the call as it would normally be performed in the network.
e Re-route the call to a destination specified by the application.

e End the call.

In each of the above scenarios, Network Gatekeeper invokes a Web Service method on an
endpoint on the server-side of the application in order to learn what action the application wishes
Network Gatekeeper to perform. The endpoint of the server-side application must be
communicated to the operator by the application provider, as the information must be entered into
Network Gatekeeper manually, using OAM methods.

For more information on implementing Web Services, see “Server-side Web Services” on
page 2-8 and “Example: Server-side Web Service” on page 2-9.

SMS
Send SMS API

This API contains Web Services methods for sending SMSes.
The following functionality is provided:

e Send SMS.

Send SMS logo.

Send SMS ringtone.

Get the delivery status of an SMS.

3-10 WebLogic Network Gatekeeper Developer's Guide for Parlay X

Overview of Supported Capabilities

SMS Notification API

This API contains Web Services methods for being notified on the arrival of new incoming
SMSes. It is a listener interface, which is implemented on the server-side of the application. The
following functionality is provided:

e Receive notification that a new SMS for the application has arrived at WebLogic Network
Gatekeeper.

In this case, Network Gatekeeper invokes a Web Service method on an endpoint on the
server-side of the application in order to inform the application that the SMS has arrived. The
endpoint of the server-side application must be communicated to the operator by the application
provider, as the information must be entered into Network Gatekeeper manually, using OAM
methods.

For more information on implementing Web Services, see “Server-side Web Services” on
page 2-8 and “Example: Server-side Web Service” on page 2-9.

Receive SMS API
This API contains Web Services methods for fetching SMSes.

The following functionality is provided:

e Get SMSes for the application that have arrived at WebLogic Network Gatekeeper.

Multimedia Message
Send Message API

This API contains Web Services methods for sending multimedia messages. MMS and e-mail are
supported. The following functionality is provided:

e Send message.
e Get delivery status of a sent message.

Receive Message API

This API contains Web Services methods for fetching multimedia messages. The following
functionality is provided:

e Poll for new messages.

WebLogic Network Gatekeeper Developer’'s Guide for Parlay X 3-11

Parlay X 1.0 Web Services API

e Fetch individual messages.

Message Notification API

This API contains Web Services methods for receiving notifications on new incoming
multimedia messages. It is a listener interface, which is implemented on the server-side of the
application. The following functionality is provided:

e Receive notification when a new multimedia message for the application has arrived at
Network Gatekeeper.

In this case, Network Gatekeeper invokes a Web Service method on an endpoint on the
server-side of the application in order to inform the application that the MMS has arrived. The
endpoint of the server-side application must be communicated to the operator by the application
provider, as the information must be entered into Network Gatekeeper manually, using OAM
methods.

For more information on implementing Web Services, see “Server-side Web Services” on
page 2-8 and “Example: Server-side Web Service” on page 2-9.

Payment
Amount Charging API

This API contains Web Services methods for handling charging in amount units based on content.
The following functionality is provided:

e Charge an amount from a user’s account.

e Refund an amount to a user’s account.

Volume Charging API

This API contains Web Services methods for handling charging in volume units based on content.
The following functionality is provided:

e Charge a volume from a user’s account.
e Refund a volume to a user’s account.

e Convert a volume to an amount.

3-12 WebLogic Network Gatekeeper Developer's Guide for Parlay X

Overview of Supported Capabilities

Reserved Amount Charging API

This API contains Web Services methods for reservation of amount units based on content. The
following functionality is provided:

e Reserve an amount from a user’s account.
e Reserve and unreserved an additional amount.
e Charge a reservation.

e Refund funds left in a reservation and release the reservation.

Reserved Volume Charging API

This API contains Web Services methods for reservation of volume units based on content. The
following functionality is provided:

e Get the amount that corresponds to a given volume.
e Reserve a volume from a user’s account.

e Reserve an additional volume.

e Charge a reservation.

Refund funds left in a reservation and release the reservation.

Terminal Location

Terminal Location API

This API contains Web Services methods to get the geographical position of a mobile terminal.
The following functionality is provided:

o Get the location of a mobile terminal.

User Status
User Status API

This API contains Web Services methods to get the status of a terminal, for example busy and off
hook. The following functionality is provided:

WebLogic Network Gatekeeper Developer’'s Guide for Parlay X 3-13

Parlay X 1.0 Web Services API

e Get the status of a user. Status can be one of the following: online, offline, busy, and other.

Addresses

Addresses are specified as EnduserIdentifiers. This is a datatype defined by Parlay X.

The EnduserIdentifier is defined as an Uniform Resource Identifier specified as a URI:
[scheme]:[schemeSpecificPart] (RFC 2396, amended by RFC 2732).

Where scheme is one of the following: [tel | sip | mailto] and schemeSpecificPart is the actual
address.

Examples
If the address is a telephone number, the EnduserIdentifier is as follows: “tel:+461234567”

If the address is an e-mail address, the EnduserIdentifier is as follows:
“mailto:someone@somecompany.com”

If the address is a sip telephone number, the EnduserIdentifier is as follows:
“sip:someone@somecompany.com’

Data types and enumerations

Some datatypes, like, for example, EndUserIdentifier, are defined by the Parlay X standard.
These datatypes are defined using WSDL. Some other datatypes are enumerations of values.
Different programming languages use different approaches to handling variables or classes of
these types.

Using Java, an EnduserIdentifier which holds a telephone number would look like this:

EndUserIdentifier eu = new EndUserIdentifier();
eu.setValue(new URI("tel", "4654176700"));

For a information on all datatypes, see API Description Parlay X 1.0 for WebLogic Network
Gatekeeper.

3-14 WebLogic Network Gatekeeper Developer's Guide for Parlay X

CHAPTERa

Using the Parlay X 2.1 interfaces

The Parlay X 2.1 interfaces provided by Network Gatekeeper follows the same architecture and
structure as the Parlay X 1.0 interfaces. This section provides a description of the Parlay X 2.1
interfaces and how they are supported by Network Gatekeeper.

e “Using the Access Web Service” on page 4-1
e “Parlay X 2.1 WSDL files” on page 4-2

e “Parlay X 2.1 interfaces” on page 4-2

The Parlay X 2.1 interfaces exposed are compliant with the 3GPP Specification (TS 29.199
2005-12).

In section “Parlay X 2.1 interfaces” on page 4-2, the endpoints of the web services and which
operations supported are stated. For a full description of the interfaces, refer to the specification.

Using the Access Web Service

All applications using Parlay X 2.1 must login to WebLogic Network Gatekeeper using the
non-Parlay X Access interface in the same manner as applications based on Parlay X 1.0.

This interface returns a login ticket, which must be included in the SOAP header of all subsequent
requests. More information on using this interface and on login tickets in general can be found in
the section “Workflow” on page 3-5.

The service endpoint for Access used with Parlay X 2.1 is:
http://<IP-address>:<port>/parlayx2/services/Access

WebLogic Network Gatekeeper Developer’s Guide for Parlay X 4-1

Using the Parlay X 2.1 interfaces

Parlay X 2.1 WSDL files

To acquire the WSDL file for each service, add »wsd1 to the service endpoint URL. For example:
http://<IP-address>:<port>/parlayx2/services/SendSms?wsdl

The notification WSDLs can be found at:
http:/<IP-address>:<port>/parlayx2/wsdl/

Where <1P-address> and <port> are the locations at which the Network Gatekeeper is
configured to expose the Web Services interfaces.

The WSDL binding style is WS-I basic profile, doc/lit compliant

Parlay X 2.1 interfaces

Network Gatekeeper exposes the following Parlay X 2.1 interfaces:
e Common according to 3GPP TS 29.199-1 V6.2.0 (2005-06)
e Short Messaging according to 3GPP TS 29.199-4 V6.3.0 (2005-06)
e Multimedia Messaging according to 3GPP TS 29.199-5 V6.3.0 (2005-06)
e Terminal Location according to 3GPP TS 29.199-9 V6.2.0 (2005-06)

See the sections below for detailed information about methods and parameters.

Part 1: Common

The following datatypes an exceptions are supported.

Data Types
Type Compliant Comments
TimeMetric Yes
ChargingInformation Yes See note below.
SimpleReference Yes

4-2 WebLogic Network Gatekeeper Developer's Guide for Parlay X

Parlay X 2.1 interfaces

Exceptions
Exception Compliant Comments
ServiceException Yes
PolicyException Yes

Note: In some situations, applications sending SMS or MMS messages need to include
charging data as an inline message part. According to specification, this data is to be
presented in a ChargingInformation structure

Element name Element type Optional Description

description xsd:string No Description text to be used for
information and billing text

currency xsd:string Yes Currency identifier as defined in
ISO 4217[12]

amount xsd:string Yes Amount to be charged

code xsd:string Yes Charging code, referencing a
contract under which the charge
is applied

The Parlay X 2.1 implementation supports this structure, but has a total string length (description
+ currency + amount + code) limit of 85 characters. If the data length exceeds this limit, a
ServiceException, id SVC1005, is thrown.

Part 4: Short Messaging

Interface SendSms

Service Endpoint found at:
http://<IP-address>:<port>/parlayx2/services/SendSms

WebLogic Network Gatekeeper Developer’'s Guide for Parlay X 4-3

Using the Parlay X 2.1 interfaces

44

Operation Compliant

Comments

sendSms Yes

See “Support for dual senderName and
senderAddress parameters” on page 4-9.

sendSmsLogo Yes

See “Support for dual senderName and
senderAddress parameters’ on page 4-9.

Logos must be in either SmartMessaging or
EMS format.

The image is not scaled.

The SmsFormat parameter is required.

sendSmsRingtone Yes

See “Support for dual senderName and
senderAddress parameters” on page 4-9.

Ringtones must be in either SmartMessaging or
EMS (iMelody) format.

The SmsFormat parameter is required

getSmsDeliveryStatus Yes

See “Support for dual senderName and
senderAddress parameters” on page 4-9.

Interface SmsNotification

Service Endpoint is given by the application

Operation Compliant

Comments

notifySmsReception Yes

notifySmsDeliveryReceipt Yes

Interface ReceiveSms

Service Endpoint found at:

http://<IP-address>:<port>/parlayx2/services/ReceiveSms

WebLogic Network Gatekeeper Developer's Guide for Parlay X

Parlay X 2.1 interfaces

Operation Compliant Comments

getReceivedSms Yes The format of the parameter
registrationldentifier is <mailbox
ID>\<mailbox password>

Mailbox ID and password are supplied by the
service provider.

Example:
"tel:50000\apassword"

SmsNotificationManager

Service Endpoint found at:
http://<IP-address>:<port>/parlayx2/services/SmsNotificationManager

Operation Compliant Comments

startSmsNotification Yes The format of the parameter
SmsServiceActivationNumber is
tel:<mailbox ID>;mboxPwd=<mailbox
password>

Mailbox ID and password are supplied by
the service provider.

Example:
"tel:50000;mboxPwd=apassword"

Also see
http://www.ietf.org/rfc/rfc3966.txt

stopSmsNotification Yes

WebLogic Network Gatekeeper Developer’'s Guide for Parlay X 4-5

Using the Parlay X 2.1 interfaces

Part 5: Multimedia Messaging

Interface SendMessage

Service Endpoint found at:
http://<IP-address>:<port>/parlayx2/services/SendMessage

Operation Compliant Comments

sendMessage Yes Messages sent as Attachments. Only MMS
applicable; Email not supported.

See “Support for dual senderName and
senderAddress parameters” on page 4-9.

getMessageDeliveryStatus Yes The priority parameter not supported.

Interface ReceiveMessage

Service Endpoint found at:
http:/<IP-address>:<port>/parlayx2/services/ReceiveMessage

Operation Compliant Comments

getReceivedMessages Yes The registrationldentifier is required. The
priority parameter is not supported.

The format of the parameter
registrationldentifier is tel:<mailbox
ID>\<mailbox password>

Mailbox ID and password are supplied by the
service provider.

Example:
"tel:50000\apassword"

getMessageURIs No

getMessage Yes

4-6 WebLogic Network Gatekeeper Developer's Guide for Parlay X

Parlay X 2.1 interfaces

Interface MessageNotification
Service Endpoint is provided by the application

Operation Compliant Comments

notifyMessageReception Yes

Interface MessageNotificationManager

Service Endpoint found at:
http://<IP-address>:<port>/parlayx2/services/MessageNotificationManager

Operation Compliant Comments

startMessageNotification Yes The format of the parameter
MessageServiceActivationNumber is
tel:<mailbox ID>;mboxPwd=<mailbox
password>

Mailbox ID and password are supplied by the
service provider.

Example:
"tel:50000;mboxPwd=apassword"
Also see http://www.ietf.org/rfc/rfc3966.txt

stopMessageNotification Yes

Part 9: Terminal Location

Interface TerminalLocation

Service Endpoint found at:
http://<IP-address>:<port>/parlayx2/services/TerminalLocation

WebLogic Network Gatekeeper Developer’'s Guide for Parlay X 4-7

Using the Parlay X 2.1 interfaces

Operation Compliant Comments

getLocation Yes Charging based on Requestor not supported
AcceptableAccuracy not supported

getTerminalDistance Yes Charging based on Requestor not supported

getLocationForGroup Yes Charging based on Requestor not supported
AcceptableAccuracy not supported

Interface TerminalLocationNotificationManager

Service Endpoint found at:
http://<IP-address>:<port>/parlayx2/services/
TerminalLocationNotificationManager

Operation Compliant Comments

startGeographicalNotification No

startPeriodicNotification Yes Duration not supported

endNotification Yes

Interface TerminalLocationNotification
Service Endpoint provided by the application

Operation Compliant Comments
locationNotification Yes

locationError Yes Address not supported
locationEnd Yes

4-8 WebLogic Network Gatekeeper Developer's Guide for Parlay X

Parlay X 2.1 interfaces

Support for dual senderName and senderAddress parameters

The Parlay X 1.0 implementation in WebLogic Network Gatekeeper uses a non-standard
structure for the senderName parameter in the sendSms, sendSmsLogo and SendSmsRingtone
operations of the SendSMS interface and the senderaddress parameter in the sendMessage
operation of the SendMessage interface. The format for this string is as follows:

tel:<mailbox ID>\<mailbox password>\tel:<originator address>.

This format continues to be supported for Parlay X 2.1 (It must be used if the application also uses
Parlay X 1.0 interfaces.).

The Network Gatekeeper Parlay X 2.1 implementation also supports the specification-defined
format for the senderName parameter.

To use this format the mailbox ID and mailbox password must be configured by the operator
when the application account is created in the Network Gatekeeper.

WebLogic Network Gatekeeper Developer’'s Guide for Parlay X 4-9

Using the Parlay X 2.1 interfaces

4-10 WebLogic Network Gatekeeper Developer's Guide for Parlay X

Parlay X 1.0 Examples

The following sections describe the Parlay X Web Service examples:

“About the examples” on page 5-2

“Send SMS” on page 5-2

“SMS Notifications” on page 5-3

“Send MMS” on page 5-5

“Poll for new MMSes” on page 5-7

“Receive notifications about new MMSes” on page 5-9
“Get an MMS by it’s message reference ID” on page 5-10
“Handling SOAP Attachments” on page 5-11

“Setting up a two-party call from an application” on page 5-15
“Handling network-initiated calls” on page 5-18

“Get location” on page 5-22

“Get user status” on page 5-24

“Reserve and charge an account” on page 5-26

WebLogic Network Gatekeeper Developer’s Guide for Parlay X

5-1

Parlay X 1.0 Examples

About the examples

Below are a set of examples given that illustrates how to use of the Parlay X Web services using
AXIS and Java.

Send SMS

5-2

Get hold of the Send SMS Web Service.

Listing 5-1 Get hold of the SMS Service

SendSmsService sendSmsService = new SendSmsServiceLocator() ;
java.net.URL endpoint = new java.net.URL (sendSmsWsdlUrl) ;

SendSmsPort sendSms = sendSmsService.getSendSmsPort (endpoint) ;

The security header is created as outlined in Listing 3-2, “Define the security header,” on

page 3-7 and the header is added to the port. The destination address parameter is defined, and
the method is invoked. The second parameter of the sendSms method is a combination of the
mailbox ID as given by the service provider, the corresponding password and the originator
address. The format is "<mailboxID>\<mailboxPassword>\<originator>", for example
"tel:50001\thepassword\tel: +46547600". The third parameter is operator-specific, it is used for
charging purposes. The message is an ordinary String. An ID is returned. This ID can be used to
retrieve delivery status information for the SMS.

Listing 5-2 Add the security header and send the SMS

header.setMustUnderstand (true) ;
((org.apache.axis.client.Stub) sendSms) .setHeader (header) ;
EndUserIdentifier[] eui = new EndUserIdentifier[1l];

eui[0] = new EndUserIdentifier();

eui[0].setValue(new org.apache.axis.types.URI("tel:" + destAddress));

String sendID = sendSms.sendSms (eui, myMailbox, "CP_FREE", myMessage);

WebLogic Network Gatekeeper Developer's Guide for Parlay X

SMS Notifications

Below is outlined how the ID is used to get hold of delivery status information.

Listing 5-3 Get delivery status

DeliveryStatusType[] status = sendSms.getSmsDeliveryStatus (sendID) ;

System.out.println("Delivery status:"

+status[0] .getDeliveryStatus () .toString()) ;

SMS Notifications

SMS notifications are sent asynchronously from WebLogic Network Gatekeeper. This means
that the application must implement a Web Service. The initial thing is to start the Web Service
server and deploy the implementation of the Web service into the server. The deployment is made
using a deployment descriptor that is automatically generated when the Web Service java
skeletons are generated.

Listing 5-4 Start SimpleAxis server

// start SimpleAxisServer

org.apache.axis.transport.http.SimpleAxisServerserver =

new org.apache.axis.transport.http.SimpleAxisServer () ;
System.out.println("Opening server on port: "+ port);
ServerSocket ss = new ServerSocket (port) ;
server.setServerSocket (ss) ;

server.start () ;

System.out.println("Starting server...");

// Read the deployment description of the service

InputStream is = new FileInputStrem(deploymenDescriptorFileName) ;

// Now deploy our web service

WebLogic Network Gatekeeper Developer’'s Guide for Parlay X 5-3

Parlay X 1.0 Examples

org.apache.axis.client.AdminClient adminClient;
adminClient = new org.apache.axis.client.AdminClient () ;
System.out.println("Deploying receiver server web service...");

adminClient.process (new org.apache.axis.utils.Options(new String|]
{"-ddd", "-tlocal"}), deploymentDescriptorStream) ;

System.out.println("Server started. Waiting for connections on: " + port);

The deployment descriptor (deploy.wsdd) was modified to refer to the class that implements the
Web Service interface. This class is outlined in Listing 5-5, “Implementation of the
smsNotification Web Service,” on page 5-4. The class is based on the auto-generated file
SmsNotificationBindingImpl.java.

Listing 5-5 Implementation of the smsNotification Web Service

public class SmsNotification implements

org.csapi.www.wsdl.parlayx.sms.v1l_0.notification.SmsNotificationPort{

public void notifySmsReception(String registrationIdentifier,
String smsServiceActivationNumber,
EndUserIdentifier senderAddress,
String message)

throws java.rmi.RemoteException, ApplicationException {
System.out.println("->New SMS arrived");

System.out.println(" Registration Indentifier " +

registrationIdentifier);

System.out.println(" Service activation number " +

smsServiceActivationNumber) ;
System.out.println(" Sender adress " + senderAddress.getValue());
System.out.println(" Message " + message);

}

5-4 WebLogic Network Gatekeeper Developer's Guide for Parlay X

Send MMS

Send MMS

First is a handle to the send MMS service retrieved.

Listing 5-6 Get hold of the Send MMS service

SendMessageServiceLocator sendMmsService = new SendMessageServiceLocator () ;
java.net.URL endpoint = new java.net.URL (sendMmsWsdlUrl) ;

SendMessagePort sendMms = sendMmsService.getSendMessagePort (endpoint) ;

The security header is created as outlined in Listing 3-2, “Define the security header,” on
page 3-7 and the header is added to the port.

Listing 5-7 Add security header

((org.apache.axis.client.Stub) sendMms) .setHeader (header) ;

The contents of the MMS are sent as SOAP attachment in MIME format, consisting of several
attachment parts. The method defineattAchmentPart described in Listing 5-18, “Define an
attachment part,” on page 5-12. Each attachment part is added to the header of the object
representing the call.

Listing 5-8 Creating two attachment parts.

int index = 1;

AttachmentPart ap = new AttachmentPart();

ap = defineAttachmentPart("file:../img/afile.jpg",
"image/jpeg",
"afile",

index++) ;

WebLogic Network Gatekeeper Developer’'s Guide for Parlay X 5-5

Parlay X 1.0 Examples

((org.apache.axis.client.Stub)sendMms) .addAttachment (ap) ;
ap = defineAttachmentPart ("file:../img/anotherfile.jpg",
"image/jpeg",
"anotherfile",
index++) ;

((org.apache.axis.client.Stub)sendMms) .addAttachment (ap) ;

When the attachment parts have been defined and added to the call object, the method
sendMessage is invoked. The second parameter of the sendMessage method is a combination of
the mailbox ID as given by the service provider, the corresponding password and the originator
address. The format is "<mailboxID>\<mailboxPassword>\<originator>", for example
"tel:50001\thepassword\tel: +46547600".

Listing 5-9 Send the MMS

EndUserIdentifier[] eul = new EndUserIdentifier[1l];
eul[0] = new EndUserIdentifier();
eui[0].setValue(new org.apache.axis.types.URI("tel:" + destAddress));

String sendID = sendMms.sendMessage (eui, myMailbox, "A subject line",

MessagePriority.Default, "CP_FREE") ;

System.out.println("Send ID:" + sendID);

The delivery status of the message can be retrieved as outlined in Listing 5-10, “Check the
delivery status,” on page 5-6.

Listing 5-10 Check the delivery status

DeliveryStatusType[] status = sendMms.getMmsDeliveryStatus (sendID) ;

System.out.println("Delivery status:"

+status[0] .getDeliveryStatus () .toString());

5-6 WebLogic Network Gatekeeper Developer's Guide for Parlay X

Poll for new MMSes

Poll for new MMSes

An application can poll for new messages. A list of references to the unread messages are
returned. The messages are retrieved using these references.

Listing 5-11 Get hold of Receive Message service

receiveMmsService = new ReceiveMessageServiceLocator () ;
java.net .URL endpoint = new java.net.URL(ReceiveMmsWsdlUrl) ;

ReceiveMessagePort receiveMms =

receiveMmsService.getReceiveMessagePort (endpoint) ;

The security header is created as outlined in Listing 3-2, “Define the security header,” on
page 3-7 and the header is added.

Listing 5-12 Add the security header

((org.apache.axis.client.Stub)receiveMms) .setHeader (header) ;

In Listing 5-13, “Poll and receive new messages,” on page 5-8, the mailbox is polled for new
messages. A MessageRefldentifier is retrieved for each new message. The first parameter in
getRecievedMessages is specified as <mailboxID>\<mailboxpassword>, for example
“tel:10000\thepassword”. The mailboxID and the corresponding password is defined by the
service provider.

For each new message, the MessageContext is retrieved. The MessageContext makes it possible
to retrieve the response message, where the contents of the MMS is found. The MMS message is
found in the SOAP header of the HTTP response of the request to getMessage. The number of
attachments are retrieved and also the number of attachment parts. The method

WebLogic Network Gatekeeper Developer’'s Guide for Parlay X 5-1

Parlay X 1.0 Examples

extractAttachment can be implemented as described in Listing 5-21, “Extract the attachments,”
on page 5-14.

Listing 5-13 Poll and receive new messages

String[] messageRef;

messageRef = receiveMms.getReceivedMessages (myMailbox,

MessagePriority.Default) ;
if (messageRef.length != 0) {
int 1=0;
// For each new message
while (i< messageRef.length) {
System.out.println("Messageref: " + messageRef[i]);
receiveMms.getMessage (messageRef [i] .getMessageRefIdentifier());
System.out.println("getMessage returned OK");
// Get the context of the SOAP message
MessageContext context;
context = receiveMmsService.getCall () .getMessageContext () ;
// Get the last response message.
org.apache.axis.Message regMsg = context.getResponseMessage() ;
// Get the SOAP attachmnents
Attachments attachments = regMsg.getAttachmentsImpl () ;

System.out.println("Number of attachments: " +
attachments.getAttachmentCount()) ;

// Get the actual SOAP attachmnent
java.util.Collection ¢ = attachments.getAttachments() ;
extractAttachments (c) ;

i++;

5-8 WebLogic Network Gatekeeper Developer's Guide for Parlay X

Receive notifications about new MMSes

} else {

System.out.println("No messages found in Mailbox " + myMailbox) ;

Receive notifications ahout new MMSes

Notifications about new MMS are handled in the same manner as for notifications about new
SMSes. See Listing , “SMS Notifications,” on page 5-3, the wen service environment is started
in the same way as outlined in Listing 5-4, “Start SimpleAxis server,” on page 5-3, and the
deployment descriptor is read in the same manner. The deployment descriptor to use is auto
generated from the WSDL file for Multimedia Message Notifications. The implementation of the
interface is also based on the auto generated class MmNotificationBindingImpl. The adapted
implementation of this class file is outlined in Listing 5-14, “Implementation of listener
interface,” on page 5-9.

Listing 5-14 Implementation of listener interface

public class MmsNotification implements MmNotificationPort({

public void notifyMessageReception (String registrationIdentifier,
MessageRef messageRef)

throws java.rmi.RemoteException, ApplicationException {
System.out.println("->New Message arrived");

System.out.println("Registration Indentifier " +

registrationIdentifier);
System.out.println(" Message reference " + messageRef);
GetMms aMessage = new GetMms () ;
aMessage.get (messageRef) ;

}

WebLogic Network Gatekeeper Developer’'s Guide for Parlay X 5-9

Parlay X 1.0 Examples

The parameter messageref can be used to fetch the actual MMS. In the example above this is
performed using the class GetMMS. For simplicity this call is not threaded, which it should be in
a live system.

Get an MMS by it’s message reference ID

5-10

The message reference ID can be retrieved notifications from WebLogic Network Gatekeeper, as
outlined in “Receive notifications about new MMSes” on page 5-9.

The example below illustrates how to fetch the actual MMS.

A handle to the receive message web service is retrieved as outlined in Listing 5-11, “Get hold of
Receive Message service,” on page 5-7.

The security header is created as outlined in Listing 3-2, “Define the security header,” on
page 3-7 and the header is added to the port.

The getMessage method is invoked using the message reference ID as an inparameter, see
Listing 5-15, “Get Message,” on page 5-10. This ID can be retrieved as outlined in “Receive
notifications about new MMSes” on page 5-9.

Listing 5-15 Get Message

receiveMms.getMessage (messageRef.getMessageRefIdentifier());

System.out.println("getMessage returned OK") ;

The method returns void, and the contents of the MMS is returned as attachments in the SOAP
header of the HTPP response. In Listing 5-16, “Get the context of the SOAP message,” on
page 5-10, the SOAP header and the attachments are retrieved.

Listing 5-16 Get the context of the SOAP message

MessageContext context = receiveMmsService.getCall () .getMessageContext () ;
// Get the last response message.
org.apache.axis.Message regMsg = context.getResponseMessage() ;

// Get the SOAP attachmnents

WebLogic Network Gatekeeper Developer's Guide for Parlay X

Handling SOAP Attachments

Attachments attachments = regMsg.getAttachmentsImpl () ;

System.out.println ("Number of attachments: " +
attachments.getAttachmentCount ()) ;

The different parts of the attachments are extracted as outlined in Listing 5-13, “Poll and receive
new messages,” on page 5-8.

Handling SOAP Attachments

When sending and receiving multimedia messages, the content is handled as attachments in
MIME or DIME using SwA, SOAP with Attachments. This technique combines SOAP with
MIME, allowing any arbitrary data to be included in a SOAP message.

An SwA message is identical with a normal SOAP message, but the header of the HTTP request
contains a Content-Type tag of type “multipart/related”, and the attachment block(s) after the
termination tag of the SOAP envelope.

Axis and Java Mail classes can be used to construct and deconstruct MIME/DIME SwA
messages.

Encoding a multipart SOAP attachment

Listing 5-17, “Create an attachment,” on page 5-11 gives an example on how to create an
attachment and to add it to the SOAP header. Two attachment parts are created.

Listing 5-17 Create an attachment

SendMessageServicelLocator sendMmsService = new SendMessageServiceLocator () ;
java.net.URL endpoint = new java.net.URL (sendMmsWsdlUrl) ;

SendMessagePort sendMms = sendMmsService.getSendMessagePort (endpoint) ;
AttachmentPart ap = new AttachmentPart () ;

ap = defineAttachmentPart("file:../img/imgl.jpg",
"image/jpeg",
" lmgl " ,

index++) ;

WebLogic Network Gatekeeper Developer’'s Guide for Parlay X 5-11

Parlay X 1.0 Examples

((org.apache.axis.client.Stub)sendMms) .addAttachment (ap) ;

ap = defineAttachmentPart ("file:../img/img2.jpg",
"image/jpeg",
"img2",

index++) ;

((org.apache.axis.client.Stub) sendMms) .addAttachment (ap) ;

The method defineAttachmentPart is illustrated Listing 5-18, “Define an attachment part,” on

page 5-12. The method creates an attachment part. The method is invoked with the following
parameters:

e String mmsInfo, the full URL to the attachment.
® String contentType, the mime type
e String contentId, ID of attachment part, unique within the attachment.

e int index, ID of attachment part, unique within the attachment.

Listing 5-18 Define an attachment part

private AttachmentPart defineAttachmentPart (String mmsInfo,
String contentType,
String contentId,

int index) {
AttachmentPart apPart = new AttachmentPart () ;
try {
URL fileurl = new URL (mmsInfo) ;

BufferedInputStream bis =

new BufferedInputStream(fileurl.openStream()) ;
apPart.setContent (bis, contentType);
apPart.setMimeHeader ("Ordinal", String.valueOf (index)) ;
//reference the attachment by contentId.

apPart.setContentId(contentId) ;

5-12 WebLogic Network Gatekeeper Developer's Guide for Parlay X

Handling SOAP Attachments

} catch (Exception ex) {
ex.printStackTrace () ;

}

return apPart;

Retrieving and Decoding a multipart SOAP attachment

In order to get a SOAP attachment, the response message is necessary since the SOAP attachment
is returned in as an attachment in the SOAP header of the HTTP response. In Listing 5-19, “Get
a response message,” on page 5-13, the response message is retrieved.

Listing 5-19 Get a response message

// Get the context of the SOAP message
MessageContext context = receiveMmsService.getCall () .getMessageContext () ;
// Get the last response message.

org.apache.axis.Message regMsg = context.getResponseMessage () ;

When a handle to the response message is retrieved, the SOAP attachments can be fetched.

Listing 5-20 Get the SOAP attachments

Attachments attachments = regMsg.getAttachmentsImpl () ;

java.util.Collection ¢ = attachments.getAttachments() ;

WebLogic Network Gatekeeper Developer’'s Guide for Parlay X 5-13

Parlay X 1.0 Examples

5-14

Each attachment, and each attachment part, is traversed and decoded. In the example the
attachments are saved to file.

Listing 5-21 Extract the attachments

java.util.Collection ¢ = attachments.getAttachments();
Iterator it = c.iterator();

// For each attachment

while(it.hasNext ()){

org.apache.axis.attachments.AttachmentPart p =
(org.apache.axis.attachments.AttachmentPart)it.next () ;

javax.activation.DataHandler dh= p.getDataHandler () ;

BufferedInputStream bis = new BufferedInputStream(dh.getInputStream()) ;

ByteArrayOutputStream bos = new ByteArrayOutputStream() ;
while (bis.available() > 0) {

bos.write(bis.read()) ;

}
byte[] pmsg = bos.toByteArray () ;
System.out.println("Message Length: "+pmsg.length);
System.out.println("Content Type: "+p.getContentType());
System.out.println("Content ID: "+p.getContentId()) ;
// Convert mime identifier to file extension

String type =
p.getContentType () .substring (l+p.getContentType () .lastIndexOf (" /"
p.getContentType () .length())) ;

// Save attachment as file

FileOutputStream fos = new FileOutputStream("ContentID_ "
+p.getContentId()+
"."+ type);

fos.write(pmsg) ;

WebLogic Network Gatekeeper Developer's Guide for Parlay X

Setting up a two-party call from an application

fos.close();

Setting up a two-party call from an application

A two party call can be set up an controlled from an application using the Parlay X Third Party
Call APIL

The mechanism is, simplified, as follows:
1. The application orders the call to be set up between a calling party and a called party.
2. The first call leg is set up between the calling party and the MSC or the local exchange.

3. A call attempt is performed to the calling party. At this stage, no action has been performed
towards the called party.

4. When the calling party answers, a call attempt is performed to the called party.

5. When the called party answers, the two call legs are connected and the call is processed.

Naturally this is the ideal situation. A number of other scenarios can be identified, where either
the calling party or the called party:

e does not answer.
e busy because of an already ongoing call.

e is unreachable because of a switched-off mobile terminal.

Using the method cancelCallRequest, the request to setup the call can be cancelled. This
method is valid until both parties have answered.

When the call has been set up, the status of the call can be monitored using the method
getCallInformation. The call can also be ended by the application using the method endcall.

Below is an example of how to set up a call between two parties.

First, a handle to the Third Party Call service is retrieved.

WebLogic Network Gatekeeper Developer’'s Guide for Parlay X 5-15

Parlay X 1.0 Examples

Listing 5-22 Get hold of the Third Party Call service

ThirdPartyCallService thirdPartyCallService =

new ThirdPartyCallServiceLocator () ;
java.net.URL endpoint = new java.net.URL(thirdPartyCallWsdlUrl) ;

setupCall = thirdPartyCallService.getThirdPartyCallPort (endpoint) ;

The security header is created as outlined in Listing 3-2, “Define the security header,” on
page 3-7 and the header is added to the port.

Listing 5-23 Add security header

((org.apache.axis.client.Stub)setupCall) .setHeader (header) ;

The addresses, in URI-format (tel:<telephone number>) of the calling and the called party are
defined and the call is set up. An identifier of the call is returned.

The method makeacall returns before the actual call is setup.

Listing 5-24 Setup the call

String callingParty = "+46111111";

String calledParty = "+462222222";

EndUserIdentifier[] eul = new EndUserIdentifier[2];

eul[0] = new EndUserIdentifier();

eui[0].setValue(new org.apache.axis.types.URI("tel:" + callingParty));
eul[l] = new EndUserIdentifier () ;

eui[l].setValue(new org.apache.axis.types.URI("tel:" + calledParty));

m_callID = m_setupCall.makeACall(eui[0], euil[l], "cp_FREE");

5-16 WebLogic Network Gatekeeper Developer's Guide for Parlay X

Setting up a two-party call from an application

The status of the call can be retrieved in order to let the application survey the call processing.
The status is one of the following

o Calllnitial
e CallConnected

e CallTerminated

Listing 5-25 Retrieve the status of the call

CallInformationType status;
status = setupCall.getCallInformation(callID) ;

System.out.println("Call status: " + status.getCallStatus().toString()):;

When the call has terminated, information about the call can be retrieved as illustrated below.

Listing 5-26 Retrieve call information

System.out.println("Call Information");

System.out.println("-start time (YYYY-MM-DD HH:MM:SS:MSMS) " +
status.getStartTime () .get (Calendar.YEAR) + "-" +
status.getStartTime () .get (Calendar .MONTH) + "-" +
status.getStartTime () .get (Calendar.DAY_OF_MONTH) + " " +
status.getStartTime () .get (Calendar.HOUR_OF_DAY) + ":" +
status.getStartTime () .get (Calendar .MINUTE) + ":" +
status.getStartTime () .get (Calendar.SECOND) + ":" +

status.getStartTime () .get (Calendar .MILLISECOND)) ;
System.out.println(" -Call duration (s): " +status.getDuration());

System.out.println(" -Call termination cause: "

+status.getTerminationCause () .toString()) ;

WebLogic Network Gatekeeper Developer’'s Guide for Parlay X 5-11

Parlay X 1.0 Examples

Handling network-initiated calls

5-18

A call originating from the telecom network hand be controlled from an application using the
Parlay X Network Initiated Third Party Call API.

The mechanism is, simplified, as follows:
1. A call attempt is performed from a calling party to a called party.
2. The application is notified about the call attempt.

3. The application can:
— reroute, that is change the destination address of the called party.
— continue, that is leave the call as is and hand over the control of the call to the network.
— end the call.
Naturally this is the ideal situation. A number of other scenarios can be identified, where the
called party:
e does not answer.

e is busy because of an already ongoing call.

e is unreachable because of a switched-off mobile terminal.

It is also possible to route the calling party directly to the application, when he or she goes
off-hook, even before a destination number is dialled.

In all above scenarios it is possible for the application to define an operator-specific charging
parameter.

The be able to handle network-initiated calls from an application, the calls must be routed to
WebLogic Network Gatekeeper. This is normally done by provision data into an MSC or a local
exchange.

Notifications on network-initiated calls are sent asynchronously from WebLogic Network
Gatekeeper. This means that the application must implement a Web Service. The initial task is to
start the Web Service server and deploy the implementation of the Web service into the server.
The deployment is made using a deployment descriptor that is automatically generated when the
Web Service java skeletons are generated. See Listing 5-4, Start SimpleAxis server on page 3 for
an example on how the application is deployed into the Simple Axis Server.

The deployment descriptor (deploy.wsdd) is modified to refer to the class that implements the
Web Service interface. This class is outlined in Listing 5-27, “Implementation of the

WebLogic Network Gatekeeper Developer's Guide for Parlay X

Handling network-initiated calls

NotifyNwInitCallHandler Web Service,” on page 5-19. The class is based on the auto-generated
fileNetworkInitiatedCallBindingImpl.java, examples of implementations of the different
methods are given below.

Listing 5-27 Implementation of the NotifyNwInitCallHandler Web Service

public class HandleNwInitCall implements NetworkInitiatedCallPort/({

public Action handleCalledNumber (EndUserIdentifier callingParty,
EndUserIdentifier calledParty)
throws java.rmi.RemoteException, InvalidArgumentException,

UnknownEndUserException, ApplicationException {
// See example code for handleCalledNumber below.

}

public Action handleOffHook (EndUserIdentifier callingParty)
throws java.rmi.RemoteException, InvalidArgumentException,

UnknownEndUserException, ApplicationException {
// See example code for handleOffHook below.

}

public Action handleBusy (EndUserIdentifier callingParty,
EndUserIdentifier calledParty) throws
java.rmi.RemoteException, InvalidArgumentException,

UnknownEndUserException, ApplicationException {

// See example code for handleBusy below.

public Action handleNotReachable (EndUserIdentifier callingParty,
EndUserIdentifier calledParty)
throws java.rmi.RemoteException, InvalidArgumentException,

UnknownEndUserException, ApplicationException ({

// Handling of the scenario when the called party is busy.

WebLogic Network Gatekeeper Developer’'s Guide for Parlay X 5-19

Parlay X 1.0 Examples

public Action handleNoAnswer (EndUserIdentifier callingParty,
EndUserIdentifier calledParty)
throws java.rmi.RemoteException, InvalidArgumentException,

UnknownEndUserException, ApplicationException {
// Handling of the scenario when there is no answer from the called party.

}

Below is an example of an implementation of the method handleCalledNumber. In the
example, the action returned is defined to “Route” and the routing address is set to routeNumber.
This means that when the application is triggered, the number dialled by the calling party always
is replaced with 12345678. The charging parameter is also set.

Listing 5-28 Example on implementation of handleCalledNumber

public Action handleCalledNumber (EndUserIdentifier callingParty,
EndUserIdentifier calledParty)
throws java.rmi.RemoteException, InvalidArgumentException,

UnknownEndUserException, ApplicationException {

System.out.println("handleCalledNumber()") ;

System.out.println("Calling Party: " + callingParty.getValue());
System.out.println("Calling Party: " + calledParty.getvValue());
String routeNumber = "tel:12345678";

String charging_Param = "Free";

Action action = new Action();

try {
EndUserIdentifier eui = new EndUserIdentifier();
eui.setValue (new org.apache.axis.types.URI("tel:" + routeNumber)) ;
action.setActionToPerform(ActionValues.Route) ;
action.setRoutingAddress (eui) ;

action.setCharging (charging_Param) ;

5-20 WebLogic Network Gatekeeper Developer's Guide for Parlay X

Handling network-initiated calls

}
catch (Throwable e) {

return null;

}

return action;

Below is an example of an implementation of the method handle0f fHook. In the example, the
action returned is defined to “Route” and the routing address is set to routeNumber. This means
that when the calling party goes off hook, the application is triggered, and a call is setup to
12345678. The charging parameter is also set.

Listing 5-29 Example on implementation of handle0ffHook

public Action handleOffHook (EndUserIdentifier callingParty)
throws java.rmi.RemoteException, InvalidArgumentException,

UnknownEndUserException, ApplicationException {

System.out.println("handleOffHook () ") ;

System.out.println("Calling Party: " + callingParty.getValue());
String routeNumber = "tel:12345678";
String charging Param = "Free";

Action action = new Action();

try {
EndUserIdentifier eul = new EndUserIdentifier();
eui.setValue (new org.apache.axis.types.URI("tel:" + routeNumber)) ;

action.setActionToPerform(ActionValues.Route) ;
action.setRoutingAddress (eul) ;

action.setCharging (charging_Param) ;

WebLogic Network Gatekeeper Developer’'s Guide for Parlay X 5-21

Parlay X 1.0 Examples

catch (Throwable e) {
return null;

}

return action;

Below is an example of an implementation of the method hand1eBusy. In the example, the action
returned is defined to “Continue” which transfers the control of the call to the underlying telecom
network, which acts on the call as any other call. The charging parameter is also set.

Listing 5-30 Example on implementation of handleBusy

public Action handleBusy (EndUserIdentifier callingParty,
EndUserIdentifier calledParty)
throws java.rmi.RemoteException, InvalidArgumentException,

UnknownEndUserException, ApplicationException ({
System.out.println("HandleBusy()");
System.out.println("Calling Party: " + callingParty.getValue());
System.out.println("Called Party: " + calledParty.getValue());
Action action = new Action();
action.setActionToPerform(ActionValues.Continue) ;
String charging Param = "Free";
action.setCharging (charging_ Param) ;

return action;

Get location

Get hold of the Terminal location Web Service.

5-22 WebLogic Network Gatekeeper Developer's Guide for Parlay X

Get location

Listing 5-31 Get hold of the Terminal Location

MobileTerminalLocationService mobileTerminalLocationService = new

MobileTerminallocationServiceLocator () ;
java.net .URL endpoint = new java.net.URL(mobileTerminallLocationWsdlUrl) ;

terminalLocation =

mobileTerminalLocationService.getMobileTerminalLocationPort (endpoint) ;

The security header is created as outlined in Listing 3-2, “Define the security header,” on
page 3-7 and the header is added to the port.

Listing 5-32 Add the security header

header.setMustUnderstand (true) ;

((org.apache.axis.client.Stub)terminalLocation) .setHeader (header) ;

In Listing 5-33, “Define parameters and get the location,” on page 5-23, the addresses of the
requesting party and the requested party are defined, both in URI-format. The desired accuracy
is defined and the method is invoked. An object of type LocationInfo is returned.

Listing 5-33 Define parameters and get the location

EndUserIdentifier requested = new EndUserIdentifier();

requested.setValue (new org.apache.axis.types.URI("tel:" +

requestedParty)) ;
EndUserIdentifier requester = new EndUserIdentifier();

requester.setValue (new org.apache.axis.types.URI("tel:" +

requesterParty)) ;

LocationAccuracy accuracy = LocationAccuracy.Medium;

WebLogic Network Gatekeeper Developer’'s Guide for Parlay X 5-23

Parlay X 1.0 Examples

locationInfo = terminallocation.getLocation (requested, requester,

accuracy) ;

The object holding the returned positioning information is used as outlined in Listing 5-34,
“Retrieve the coordinates,” on page 5-24.

Listing 5-34 Retrieve the coordinates

System.out.println("Longitude: " + locationInfo.getLongitude());
System.out.println("Latitude: " + locationInfo.getLatitude());
System.out.println("Accuracy:" + locationInfo.getAccuracy () .toString());

java.text.SimpleDateFormat dateFormat =

new java.text.SimpleDateFormat ("EEE, d MMM yyyy HH:mm:ss Z");

java.util.Date theTime = new

java.util.Date(locationInfo.getDateTime () .getTimeInMillis());

System.out.println("Location data updated at: " +

dateFormat. format (theTime)) ;

Get user status

Get hold of the User status Web Service.

Listing 5-35 Get hold of the User status web service

UserStatusService userStatusService = new UserStatusServiceLocator () ;
java.net .URL endpoint = new java.net.URL(userStatusWsdlUrl) ;

userStatus = userStatusService.getUserStatusPort (endpoint) ;

5-24 WebLogic Network Gatekeeper Developer's Guide for Parlay X

Get user status

The security header is created as outlined in Listing 3-2, “Define the security header,” on
page 3-7 and the header is added to the port.

Listing 5-36 Add the security header

header.setMustUnderstand (true) ;

((org.apache.axis.client.Stub)userStatus) .setHeader (header) ;

In Listing 5-37, “Define parameters and get the status,” on page 5-25, the addresses of the
requesting party and the requested party are defined, both in URI-format. An object of type
UserStatusData is returned.

Listing 5-37 Define parameters and get the status

EndUserIdentifier requested = new EndUserIdentifier();

requested.setValue (new org.apache.axis.types.URI("tel:" +

requestedParty)) ;
EndUserIdentifier requester = new EndUserIdentifier();
requester.setValue (new org.apache.axis.types.URI("tel:" +

requesterParty)) ;

System.out.println("Before getstatus");

UserStatusData userStatusData = userStatus.getUserStatus (requested,

requester) ;

The object holding the returned status information is used as outlined in Listing 5-38, “Retrieve
the status,” on page 5-26. If supported by the network, additional status data is provided

WebLogic Network Gatekeeper Developer’'s Guide for Parlay X 5-25

Parlay X 1.0 Examples

Listing 5-38 Retrieve the status

System.out.println("Status of the terminal is: " +
userStatusData.getUserStatusIndicator () .toString());
System.out.println("Extended Status information :" +

userStatusData.getAdditionalUserStatusInformation()) ;

Reserve and charge an account

Get hold of the Reserve Amount Charging Web Service, in order to make reservations and charge
the reservation.

Listing 5-39 Get hold of the Reserve Amount Charging web service

ReserveAmountChargingService reserveAmountChargingService = new

ReserveAmountChargingServiceLocator () ;

java.net.URL endpoint = new java.net.URL(reserveAmountChargingWsdlUrl) ;

reserveAmountCharging

reserveAmountChargingService.getReserveAmountChargingPort (endpoint) ;

The security header is created as outlined in Listing 3-2, “Define the security header,” on
page 3-7 and the header is added to the port.

Listing 5-40 Add the security header

header.setMustUnderstand(true) ;

((org.apache.axis.client.Stub)reserveAmountCharging) .setHeader (header) ;

Get hold of the Amount Charging Web Service, in order to directly charge an account.

5-26 WebLogic Network Gatekeeper Developer's Guide for Parlay X

Reserve and charge an account

Listing 5-41 Get hold of the Amount Charging web service

AmountChargingService amountChargingService = new

AmountChargingServiceLocator () ;
java.net .URL endpoint = new java.net.URL (amountChargingWsdlUrl) ;

amountCharging = amountChargingService.getAmountChargingPort (endpoint) ;

The security header is created as outlined in Listing 3-2, “Define the security header,” on
page 3-7 and the header is added to the port.

Listing 5-42 Add the security header

header.setMustUnderstand (true) ;

((org.apache.axis.client.Stub)amountCharging) .setHeader (header) ;

In Listing 5-43, “Make reservations and charge the reservation,” on page 5-27, the addresses of
the party to charge is defined, in URI-format. The amount to reserve (amountl) is defined and the
reservation is performed. A reservation ID is returned. This ID is used to identify the charging
session in the subsequent reservations via calls to reserveAdditional Amount. Finally the
reservation is charged (it may also be released).

Listing 5-43 Make reservations and charge the reservation

EndUserIdentifier partyToCharge = new EndUserIdentifier();
partyToCharge.setValue (new org.apache.axis.types.URI("tel:" + endUser)) ;
java.math.BigDecimal amountl = new java.math.BigDecimal (10.1);

String billingText ="Initial reservation";

String reservationID =
reserveAmountCharging.reserveAmount (partyToCharge,
amountl,
billingText) ;

WebLogic Network Gatekeeper Developer’s Guide for Parlay X 5-21

Parlay X 1.0 Examples

java.math.BigDecimal amount2 = new java.math.BigDecimal (7);
billingText ="Additional reservation";

reserveAmountCharging.reserveAdditionalAmount (reservationlID,
amount2,

billingText) ;
java.math.BigDecimal amount = new java.math.BigDecimal (0) ;
amount .add (amountl) ;
amount .add (amount?2) ;
billingText ="Charging the reservation";
java.lang.String referenceCode = "Unique referenceCode";

reserveAmountCharging.chargeReservation (reservationID, amount,

billingText, referenceCode) ;

As an alternative an amount can be charged directly without any prior reservations as outlined in
Listing 5-44, “Directly charge an account,” on page 5-28.

Listing 5-44 Directly charge an account

amount = new java.math.BigDecimal (10.1);
billingText ="Direct debit";
referenceCode = "Unique referenceCode";

amountCharging.chargeAmount (partyToCharge, amount, billingText,

referenceCode) ;

5-28 WebLogic Network Gatekeeper Developer's Guide for Parlay X

References

API Description Parlay X 1.0 for WebLogic Network Gatekeeper
Parlay X 1.0 Specification, http://www.parlay.org

Parlay X 2.1 Specification,
http://portal.etsi.org/docbox/TISPAN/Open/0OSA/ParlayX21l.html

Apache Axis, http://ws.apache.org/axis
J2SE SDK, http://java.sun.com

JavaMail, http://java.sun.com

WebLogic Network Gatekeeper Developer’s Guide for Parlay X 6-1

References

6-2 WebLogic Network Gatekeeper Developer's Guide for Parlay X

	Document Scope and Audience
	Guide to this Document
	Terminology
	Related Documentation
	About WebLogic Network Gatekeeper Web Services applications
	Architecture
	Parlay X based applications

	Development environment
	Information exchange
	Overall development workflows
	Client-side Web Services
	Server-side Web Services
	Example: Server-side Web Service

	Testing an application
	About Parlay X Web Services APIs
	WSDL files
	About the examples
	Workflow
	Login and retrieve login ticket
	Define the security header
	Get a handle to the Web Services port
	Add security header
	Invoke a method
	Logout

	Overview of Supported Capabilities
	Access
	Third Party Call
	Call API

	Network Initiated Call
	Call API

	SMS
	Send SMS API
	SMS Notification API
	Receive SMS API

	Multimedia Message
	Send Message API
	Receive Message API
	Message Notification API

	Payment
	Amount Charging API
	Volume Charging API
	Reserved Amount Charging API
	Reserved Volume Charging API

	Terminal Location
	Terminal Location API

	User Status
	User Status API

	Addresses
	Examples

	Data types and enumerations
	Using the Access Web Service
	Parlay X 2.1 WSDL files
	Parlay X 2.1 interfaces
	Part 1: Common
	Data Types
	Exceptions

	Part 4: Short Messaging
	Interface SendSms
	Interface SmsNotification
	Interface ReceiveSms
	SmsNotificationManager

	Part 5: Multimedia Messaging
	Interface SendMessage
	Interface ReceiveMessage
	Interface MessageNotification
	Interface MessageNotificationManager

	Part 9: Terminal Location
	Interface TerminalLocation
	Interface TerminalLocationNotificationManager
	Interface TerminalLocationNotification

	Support for dual senderName and senderAddress parameters

	About the examples
	Send SMS
	SMS Notifications
	Send MMS
	Poll for new MMSes
	Receive notifications about new MMSes
	Get an MMS by it’s message reference ID
	Handling SOAP Attachments
	Encoding a multipart SOAP attachment
	Retrieving and Decoding a multipart SOAP attachment

	Setting up a two-party call from an application
	Handling network-initiated calls
	Get location
	Get user status
	Reserve and charge an account

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

