
BEA
WebLogic
Network
Gatekeeper™

Application Development
Guide
Version 3.0 ™

Document Revised: 14 September 2007

Copyright
Copyright © 1995-2007 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Interaction, BEA AquaLogic Interaction Analytics, BEA
AquaLogic Interaction Collaboration, BEA AquaLogic Interaction Content Services, BEA AquaLogic Interaction Data
Services, BEA AquaLogic Interaction Integration Services, BEA AquaLogic Interaction Process, BEA AquaLogic
Interaction Publisher, BEA AquaLogic Interaction Studio, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Kodo, BEA Liquid Data for
WebLogic, BEA Manager, BEA MessageQ, BEA SALT, BEA Service Architecture Leveraging Tuxedo, BEA WebLogic
Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA WebLogic Enterprise
Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA WebLogic Mobility Server,
BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API,
BEA WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Real Time, BEA
WebLogic RFID Compliance Express, BEA WebLogic RFID Edge Server, BEA WebLogic RFID Enterprise Server,
BEA WebLogic Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic WorkGroup Edition, BEA
Workshop for WebLogic Platform, BEA Workshop JSP, BEA Workshop JSP Editor, BEA Workshop Struts, BEA
Workshop Studio, Dev2Dev, Liquid Computing, and Think Liquid are trademarks of BEA Systems, Inc. Accelerated
Knowledge Transfer, AKT, BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA SOA
Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

Contents
Document Roadmap
Document Scope and Audience . 2-1

Guide to This Document . 2-1

Terminology. 2-2

Related Documentation . 2-5

Creating Applications for WebLogic Network Gatekeeper
Basic Concepts . 3-1

Traffic Paths . 3-2

Traffic Types . 3-2

Management Structures . 3-3

Functional Overview . 3-4

Application Testing Workflow . 3-6

Interacting with Network Gatekeeper
The SOAP Header . 4-2

Authentication. 4-2

Session Management . 4-7

Service Correlation . 4-8

Parameter Tunneling . 4-9

SOAP attachments . 4-10

Managing SOAP headers and SOAP attachments programmatically 4-12
Application Development Guide 1

Using WorkShop Controls with Network Gatekeeper

Session management Web Service
Interface: SessionManager . 6-1

Operation: getSession . 6-1

Operation: changeApplicationPassword . 6-2

Operation: getSessionRemainingLifeTime . 6-3

Operation: refreshSession . 6-4

Operation: destroySession . 6-4

Examples . 6-5

Extended Web Services WAP Push
Namespaces. 7-1

Endpoint . 7-2

Sequence Diagram. 7-2

XML Schema data type definition . 7-3

PushResponse structure . 7-3

ResponseResult structure . 7-4

ReplaceMethod enumeration . 7-6

MessageState enumeration. 7-6

Web Service interface description. 7-7

Interface: PushMessage . 7-7

Interface: PushMessageNotification . 7-11

WSDLs . 7-12

Error Codes . 7-13

Sample Send WAP Push Message . 7-13

Parlay X 2.1 Interfaces
Parlay X 2.1 Third Party Call . 8-1
2 Application Development Guide

Interface: ThirdPartyCall . 8-1

Error Codes. 8-2

Parlay X 2.1 Part 3: Call Notification . 8-3

Interface: CallDirection . 8-3

Interface: CallNotification . 8-4

Interface: CallNotificationManager . 8-4

Interface: CallDirectionManager . 8-5

Error Codes. 8-5

Parlay X 2.1 Part 4: Short messaging . 8-5

Interface: SendSms. 8-5

Interface: SmsNotification . 8-7

Interface: ReceiveSms . 8-8

Interface: SmsNotificationManager . 8-8

Error Codes. 8-9

Parlay X 2.1 Part 5: Multimedia messaging . 8-10

Interface: SendMessage . 8-10

Interface: ReceiveMessage. 8-11

Interface: MessageNotification . 8-11

Interface: MessageNotificationManager . 8-12

Error Codes. 8-12

Parlay X 2.1 Part 6: Payment. 8-14

Interface: AmountCharging . 8-14

Interface: VolumeCharging. 8-14

Interface: ReserveAmountCharging . 8-15

Interface: ReserveVolumeCharging . 8-15

Error Codes. 8-16

Parlay X 2.1 Part 8: Terminal Status . 8-17

Interface: TerminalStatus . 8-17
Application Development Guide 3

Interface: TerminalStatusNotificationManager . 8-17

Interface: TerminalNotification . 8-18

Error Codes . 8-18

Parlay X 2.1 Part 9: Terminal location . 8-19

Interface: TerminalLocation. 8-19

Interface: TerminalLocationNotificationManager . 8-19

Interface: TerminalLocationNotification . 8-20

Error Codes . 8-20

Parlay X 2.1 Part 10: Call handling. 8-21

Interface: CallHandling . 8-21

Error Codes . 8-22

Parlay X 2.1 Part 11: Audio call . 8-22

Interface: PlayAudio . 8-22

Error Codes . 8-23

Parlay X 2.1 Part 14: Presence . 8-23

Interface: PresenceConsumer. 8-23

Interface: PresenceNotification . 8-24

Interface: PresenceSupplier . 8-25

Error Codes . 8-25

About notifications . 8-26

General error codes . 8-26

General policy error codes . 8-27

Code examples . 8-28

Example: sendSMS . 8-28

Example: startSmsNotification . 8-29

Example: getReceivedSms. 8-30

Example: sendMessage . 8-30

Example: getLocation . 8-33
4 Application Development Guide

Access Web Service (deprecated)
Interface: Access . 9-2

Operation: applicationLogin. 9-2

Operation: applicationLogout. 9-3

Operation: changeApplicationPassword . 9-4

Operation: getLoginTicketRemainingLifeTime. 9-4

Operation: refreshLoginTicket . 9-5

Exceptions . 9-7

Examples . 9-7

Defining the security header. 9-7
Application Development Guide 5

6 Application Development Guide

Application Development Guide 2-1

C H A P T E R 1

Document Roadmap

This chapter describes the audience for and the organization of this document: It includes:

Document Scope and Audience

Guide to This Document

Terminology

Related Documentation

Document Scope and Audience
This document provides information for those developers who wish to integrate functionality
provided by telecom networks into their programs by using the Web Services offered by
WebLogic Network Gatekeeper. It includes a high-level overview of the process, including the
login and security procedures, and a description of the interfaces and operations that are available
for use.

Guide to This Document
The document contains the following chapters:

Chapter 1, “Document Roadmap”: This chapter

Chapter 2, “Creating Applications for WebLogic Network Gatekeeper”: A general introduction
to the concepts involved in using Network Gatekeeper

Document Roadmap

2-2 Application Development Guide

Chapter 3, “Interacting with Network Gatekeeper”: SOAP message requirements in Network
Gatekeeper

Chapter 4, “Using WorkShop Controls with Network Gatekeeper”: Using WebLogic WorkShop
with Network Gatekeeper

Chapter 5, “Session management Web Service”: A detailed description of the Session Manager
Web Service

Chapter 6, “Extended Web Services WAP Push”: A detailed description of the available
operations used to send WAP Push messages

Chapter 7, “Parlay X 2.1 Interfaces”: A description of the Parlay X 2.1 interfaces available with
details on how they are implemented in Network Gatekeeper.

Chapter 8, “Access Web Service (deprecated)”: A description of the Access Web Service

Terminology
The following terms and acronyms are used in this document:

Account—A registered application or service provider, associated with an SLA

Account group—Multiple registered service providers or services which share a common
SLA

Administrative User—Someone who has privileges on the Network Gatekeeper
management tool. This person has an administrative user name and password

Alarm—The result of an unexpected event in the system, often requiring corrective action

API—Application Programming Interface

Application—A TCP/IP based, telecom-enabled program accessed from either a telephony
terminal or a computer

Application-facing Interface—The Application Services Provider facing interface

Application Service Provider—An organization offering application services to end users
through a telephony network

AS—Application Server

Application User—An Application Service Provider from the perspective of internal
Network Gatekeeper administration. An Application User has a user name and password

Te rmino logy

Application Development Guide 2-3

CBC—Content Based Charging

End User—The ultimate consumer of the services that an application provides. An end
user can be the same as the network subscriber, as in the case of a prepaid service or they
can be a non-subscriber, as in the case of an automated mail-ordering application where the
subscriber is the mail-order company and the end user is a customer to this company

Enterprise Operator —See Service Provider

Event—A trackable, expected occurrence in the system, of interest to the operator

HA —High Availability

HTML—Hypertext Markup Language

IP—Internet Protocol

JDBC—Java Database Connectivity, the Java API for database access

Location Uncertainty Shape—A geometric shape surrounding a base point specified in
terms of latitude and longitude. It is used in terminal location

MAP—Mobile Application Part

Mated Pair—Two physically distributed installations of WebLogic Network Gatekeeper
nodes sharing a subset of data allowing for high availability between the nodes

MM7—A multimedia messaging protocol specified by 3GPP

MPP—Mobile Positioning Protocol

Network Plug-in—The WebLogic Network Gatekeeper module that implements the
interface to a network node or OSA/Parlay SCS through a specific protocol

NS—Network Simulator

OAM —Operation, Administration, and Maintenance

Operator—The party that manages the Network Gatekeeper. Usually the network operator

OSA—Open Service Access

PAP—Push Access Protocol

Plug-in—See Network Plug-in

Document Roadmap

2-4 Application Development Guide

Plug-in Manager—The Network Gatekeeper module charged with routing an
application-initiated request to the appropriate network plug-in

Policy Engine—The Network Gatekeeper module charged with evaluating whether a
particular request is acceptable under the rules

Quotas—Access rule based on an aggregated number of invocations. See also Rates

Rates—Access rule based on allowable invocations per time period. See also Quotas

Rules—The customizable set of criteria - based on SLAs and operator-desired additions -
according to which requests are evaluated

SCF—Service Capability Function or Service Control Function, in the OSA/Parlay sense.

SCS—Service Capability Server, in the OSA/Parlay sense. WebLogic Network Gatekeeper
can interact with these on its network-facing interface

Service Capability—Support for a specific kind of traffic within WebLogic Network
Gatekeeper. Defined in terms of traffic paths

Service Provider—See Application Service Provider

SIP—Session Initiation Protocol

SLA—Service Level Agreement

SMPP—Short Message Peer-to-Peer Protocol

SMS—Short Message Service

SMSC—Short Message Service Centre

SNMP—Simple Network Management Protocol

SOAP—Simple Object Access Protocol

SPA—Service Provider APIs

SS7—Signalling System 7

Subscriber—A person or organization that signs up for access to an application. The
subscriber is charged for the application service usage. See End User

SQL—Structured Query Language

TCP—Transmission Control Protocol

Rela ted Documentat ion

Application Development Guide 2-5

Traffic Path—The data flow of a particular request through WebLogic Network
Gatekeeper. Different Service Capabilities use different traffic paths

USSD—Unstructured Supplementary Service Data

VAS—Value Added Service

VLAN—Virtual Local Area Network

VPN—Virtual Private Network

WebLogic Network Gatekeeper Core—The container that holds the Core Utilities

WebLogic Network Gatekeeper Core Utilities—A set of utilities common to all traffic
paths

WSDL —Web Services Definition Language

XML—Extended Markup Language

Related Documentation
This application development guide is a part of the WebLogic Network Gatekeeper
documentation set. The other documents include:

Architectural Overview

System Administrator’s Guide

Installation Guide

Integration Guidelines for Partner Relationship Management

Managing Service Providers and Applications

Statement of Compliance

Handling Alarms

SDK User Guide

Extension Toolkit - Developer’s Guide

System Backup and Restoration Guide

Licensing

Document Roadmap

2-6 Application Development Guide

Traffic Path Reference

Application Development Guide 3-1

C H A P T E R 2

Creating Applications for WebLogic
Network Gatekeeper

As the worlds of Internet applications and of telephony-based functionality continue to converge,
many application developers have become frustrated by the unfamiliar and often complex
telecom interfaces that they need to master to add even simple telephony-based features to their
programs. By using WebLogic Network Gatekeeper, telecom operators can instead offer
developers a secure, easy-to-develop-for single point of contact with their networks, made up of
simple Web Service interfaces that can easily be accessed from the Internet using a wide range
of tools and languages.

The following chapter presents an overview of Network Gatekeeper’s functionality, and the ways
that application developers can use this functionality to simplify their development projects,
including:

Basic Concepts

Functional Overview

Application Testing Workflow

Basic Concepts
There are a few basic concepts you need to understand to create applications that can interact with
WebLogic Network Gatekeeper:

Traffic Paths

Traffic Types

Creat ing App l icat ions fo r WebLog ic Netwo rk Gatekeepe r

3-2 Application Development Guide

– Application-initiated Traffic

– Network-triggered Traffic

Management Structures

Traffic Paths
The basic functional unit in WebLogic Network Gatekeeper is the traffic path. A traffic path
consists of a service type (Short Messaging, User Location, etc.), an application-facing interface
(also called a “north” interface), and a network-facing interface (also called a “south” interface).
A request for service enters through one interface, is subjected to internal processing, including
evaluation for policy and protocol translation, and is then sent on using the other interface.

Note: Because a single application-facing interface may be connected to multiple protocols and
hardware types in the underlying telecom network, it’s important to understand that an
application is communicating, finally, with a specific traffic path, and not just the north
interface. So in some cases it is possible that an application request sent to two different
carriers, with different underlying network structures, might behave in slightly different
ways, even though the initial request uses exactly the same north interface.

Traffic Types
In some Network Gatekeeper traffic paths, request traffic can travel in two directions - from the
application to the underlying network and from the underlying network to the application - and
in others traffic flows in one direction only.

Application-initiated Traffic
In application-initiated traffic, the application sends a request to Network Gatekeeper, the request
is processed, and a response of some kind is returned synchronously. So, for example, an
application could use the Third Party Call interface to set up a call. The initial operation,
MakeCall, is sent to Network Gatekeeper (which sends it on to the network) and a string, the
CallIdentifier, is returned to the application synchronously. To find out the status of the call,
the application makes a new request, GetCallInformation, using the CallIdentifier to
identify the specific call, and then receives the requested information back from Network
Gatekeeper synchronously.

Network-triggered Traffic
In many cases, application-initiated traffic provides all the functionality necessary to accomplish
the desired tasks. But there are certain situations in which useful information may not be

Bas ic Concepts

Application Development Guide 3-3

immediately available for return to the application. For example, the application might send an
SMS to a mobile phone that the user has turned off. The network won’t deliver the message until
the user turns the phone back on, which might be hours or even days later. The application can
poll to find out whether or not the message has been delivered, using GetSmsDeliveryStatus,
which functions much like GetCallInformation described above. But given the possibly
extended period of time involved, it would be convenient simply to have the network notify the
application once delivery to the mobile phone has been accomplished. To do this, two things must
happen:

The application must inform Network Gatekeeper that it wishes to receive information that
originates from the network. It does this by subscribing or registering for notifications via
an application-initiated request. (In certain cases, this can also be accomplished by the
operator, using OAM procedures.) Often this subscription includes filtering criteria that
describes exactly what kinds of traffic it wishes to receive. Depending on the underlying
network configuration, Network Gatekeeper itself, or the operator using manual steps,
informs the underlying network about the kind of data that is requested. These notifications
may be status updates, as described above, or, in some instances, may even include short or
multimedia messages from a terminal on the telecom network.

The application must arrange to receive the network-triggered information, either by
implementing a Web Service endpoint on its own site to which Network Gatekeeper
dispatches the notifications, or by polling Network Gatekeeper to retrieve them.
Notifications are kept in Network Gatekeeper for retrieval for only limited amounts of
time.

Management Structures
In order to help telecom operators organize their relationships with application providers,
Network Gatekeeper uses a hierarchical system of accounts. Each application is assigned a
unique username (same as application instance group ID) and that username is tied to an
Application Account. All the Application Accounts that belong to a single entity are assigned to
a Service Provider Account. Application Accounts with similar requirements are put into
Application Groups and Service Providers with similar requirements are put into Service
Provider Groups. Each Application Group is associated with an Application Group Service Level
Agreement (SLA) and each Service Provider Group are associated with Service Provider Group
SLAs. See Figure 2-1 for more information. These Service Level Agreements define and regulate
the contractual agreements between the telecom operator and the application provider, and cover
such things as which services the application may access, the maximum bandwidth available for
use, and the number of concurrent sessions that are supported.

Creat ing App l icat ions fo r WebLog ic Netwo rk Gatekeepe r

3-4 Application Development Guide

Figure 2-1 Accounts, Groups, and SLAs

Functional Overview
Network Gatekeeper provides eleven different types of traffic paths. The application-facing
interfaces of these traffic paths are largely based on the Parlay X 2.1 specifications. The
functionality supported by these traffic paths includes:

Third Party Call
Using this traffic path, an application can set up a call between two parties (the caller and
the callee), poll for the status of the call, and end the call.

Audio Call
Using this traffic path, an application can set up a call to a telephone subscriber and then,
when the subscriber answers, play an audio message, such as a meeting reminder.

Call Notification
Using this traffic path, an application can set up and end notifications on call events, such
as the callee in a third party call attempt is busy. In addition, in some cases the application
can then reroute the call to another party.

Call Handling
Using this traffic path, an application can establish rules that will automatically handle
calls that meet certain criteria. These rules might establish, for example, that calls from a
particular number are always blocked, or are always forwarded if the initial callee is busy.
In addition, the application can retrieve rules that are currently in place.

http://www.parlay.org/en/specifications/pxws.asp

Funct iona l Overv i ew

Application Development Guide 3-5

Short Messaging
Using this traffic path, an application can send SMS text messages, ringtones, or logos to
one or multiple addresses, set up and receive notifications for final delivery receipts of
those sent items, and arrange to receive SMSes meeting particular criteria from the
network.

Multimedia Messaging
Using this traffic path, an application can send Multimedia Messages to one or multiple
addresses, set up and receive notifications for final delivery receipts of those sent items,
and arrange to receive MMSes meeting particular criteria from the network.

Terminal Status
Using this traffic path, an application can request the status (reachable, unreachable, or
busy) of one or more terminals and set up and receive notifications for a change in status
for particular terminals.

Terminal Location
Using this traffic path, an application can request the position of one or more terminals or
the distance between a given position and a terminal. It can also set up and receive
notifications based on geographic location or time intervals.

Presence
Using this traffic path, an application can be a watcher for presence information published
by a presentity, an end user who has agreed to have certain data, such as current activity,
available communication means, and contact addresses made available to others. So a
presentity might say that at this moment he is in the office and prefers to be contacted by
SMS at this number. Before the watcher can receive this information, it must subscribe
and be approved by the presentity. Once this is done, the watcher can either poll for
specific presentity information, or set up status notifications based on a wide range of
criteria published by the presentity.

Payment
Using this traffic path, an application can communicate charging information to an
operator in situations where the cost of the service is based on the nature of the content
delivered and not on connect time. For example, an end user could request the download
of a music video, which costs a specific amount. The application can notify the operator
that the user should be charged a particular amount or be refunded a particular amount. In
the case of pre-paid accounts, it can also reserve a certain amount of the user’s available
funds and then charge or release the reservation depending, say, on whether or not the
download was successful.

WAP Push

Creat ing App l icat ions fo r WebLog ic Netwo rk Gatekeepe r

3-6 Application Development Guide

The application-facing interface of this traffic path, unlike the previous ten, is not based
on the Parlay X 2.1 specification. Many elements within it, however, are based on widely
distributed standards. Using this traffic path, an application can send a WAP Push
message, send a replacement WAP Push message, or set up status notifications about
previously sent messages.

Application Testing Workflow
Application testing in a telecom environment is usually conducted in a stepwise manner. For the
first step, applications are run against simulators like the optional WebLogic Network Gatekeeper
Simulator. The Network Gatekeeper Simulator emulates both the Network Gatekeeper and the
underlying network, and allows developers to sort out basic functional issues without having to
be connected to a network or network simulator. Once basic functional issues are sorted through,
the application is connected to an instance of the Network Gatekeeper attached to a network
simulator for non-functional testing. Next the application is tested against a test network, to
eliminate any network related issues. Finally, the application can be placed into production on a
live network. Figure 2-2 shows the complete application test flow, from the developer’s
functional tests to deployment in a live network. While Simulator-based tests may be performed
in-house by an Application Service Provider, the other tests require the cooperation of the target
network operator.

App l i ca t i on Tes t ing Work f l ow

Application Development Guide 3-7

Figure 2-2 Application Testing Cycle

Application

Functional Test
Functional Test

+
Non-Functional Test

Network Test Operation

Application

Time

ApplicationApplication

Network
Simulator

Simulator

Test
Network

Live
Network

WebLogic
Network

Gatekeeper

WebLogic
Network

Gatekeeper

WebLogic
Network

Gatekeeper

Creat ing App l icat ions fo r WebLog ic Netwo rk Gatekeepe r

3-8 Application Development Guide

Application Development Guide 4-1

C H A P T E R 3

Interacting with Network Gatekeeper

In order to interact with Network Gatekeeper, applications must manipulate the SOAP messages
that they use to make requests in certain specialized ways. They must add specific information to
the SOAP header, and, if they are using Multimedia Messaging or WAP Push, they must send
their message payload as a SOAP attachment. The following chapter presents a high-level
description of these mechanisms, and how they function to manage the interaction between
Network Gatekeeper and the application. It covers:

The SOAP Header

– Authentication

– Session Management

– Service Correlation

– Parameter Tunneling

SOAP attachments

The mechanisms for dealing with these requirements programmatically depend on the
environment in which the application is being developed.

Note: Clients created using Axis 1.2 or older will not work with some traffic paths. Developers
should use Axis 1.4 or newer if they wish to use Axis.

For examples using the WebLogic Server environment to accomplish these sorts of tasks, see the
final section of this chapter:

Managing SOAP headers and SOAP attachments programmatically

In te rac t ing w i th Network Gatekeeper

4-2 Application Development Guide

The SOAP Header
There are three types of elements you may need to add to your application’s SOAP messages to
Network Gatekeeper.

Authentication
In order to secure Network Gatekeeper and the telecom networks to which it provides access,
applications are usually required to provide authentication information in every SOAP request
which the application submits. Network Gatekeeper leverages the WLS Web Services Security
framework to process this information.

Note: WS Security provides three separate modes of providing security between a Web Service
client application and the Web Service itself for message level security - Authentication,
Digital Signatures, and Encryption. For an overview of WLS WS Security, see
Programming Web Services of WebLogic Server, the “Configuring Security” chapter.

Network Gatekeeper supports three authentication types:

Username Token

X.509 Certificate Token

SAML Token

The type of token that the particular Network Gatekeeper operator requires is indicated in the
Policy section of the WSDL files that the operator makes available for each application-facing
interface it supports. In the following WSDL fragment, for example, the required form of
authentication, indicated by the <wssp:Identity> element, is Username Token.

Listing 3-1 WSDL fragment showing Policy

<s0:Policy s1:Id="Auth.xml">

<wssp:Identity>

<wssp:SupportedTokens>

<wssp:SecurityToken

TokenType="http://docs.oasisopen.org/wss/2004/01/oasis200401wssusernametok

enprofile1.0#UsernameToken">

<wssp:UsePassword

Type="http://docs.oasisopen.org/wss/2004/01/oasis200401wssusernametokenpro

file1.0#PasswordText"/>

http://e-docs.bea.com/wls/docs92/webserv/security.html

The SOAP Header

Application Development Guide 4-3

</wssp:SecurityToken>

<wssp:SecurityToken

TokenType="http://docs.oasisopen.org/wss/2004/01/oasis200401wssx509tokenpr

ofile1.0#X509v3"/>

</wssp:SupportedTokens>

</wssp:Identity>

</s0:Policy>

<wsp:UsingPolicy n1:Required="true"/>

Note: If the WSDL also has a <wssp: Integrity> element, digital signing is required
(WebLogic Server provides WS-Policy: sign.xml). If it has a
<wssp:Confidentiality> element, encryption is required (WebLogic Server provides
WS-Policy: encrypt.xml).

SOAP Header Element for Authentication
Below are examples of the three types of authentication that can be used with Network
Gatekeeper.

Username Token
In the Username Token mechanism, which is specified by the use of the
<wsse:UsernameToken> element in the header, authentication is based on a username, specified
in the <wsse:Username> element and a password, specified in the <wsse:Password> element.

Two types of passwords are possible, indicated by the Type attribute in the Password element:

PasswordText indicates the password is in clear text format.

PasswordDigest indicates that the sent value is a Base64 encoded, SHA-1 hash of the
UTF8 encoded password.

There are two more optional elements in Username Token, introduced to provide a
countermeasure for replay attacks:

<wsse:Nonce>, a random value that the application creates.

<wsu:Created>, a timestamp.

In te rac t ing w i th Network Gatekeeper

4-4 Application Development Guide

If either or both the Nonce and Created elements are present, the Password Digest is computed
as: Password_Digest = Base64(SHA-1(nonce+created+password))

When the application sends a SOAP message using Username Token, the WSEE implementation
in Network Gatekeeper evaluates the username using the associated authentication provider. The
authentication provider connects to the Network Gatekeeper database and authenticates the
username and the password. In the database, passwords are stored as MD5 hashed representations
of the actual password.

Listing 3-2 Example of a WSSE: Username Token SOAP header element

<wsse:UsernameToken wsu:Id="Example-1">

<wsse:Username> myUsername </wsse:Username>

<wsse:Password Type="PasswordText">myPassword</wsse:Password>

<wsse:Nonce EncodingType="..."> ... </wsse:Nonce>

<wsu:Created> ... </wsu:Created>

</wsse:UsernameToken>

The UserName is equivalent to the string that was called the Application Instance Group ID in
Network Gatekeeper 2.2. The Password part is the password associated with this UserName when
the application was provisioned in Network Gatekeeper.

For more information on Username Token, see
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf

X.509 Certificate Token
In the X.509 Token mechanism, the application’s identity is authenticated by the use of an X.509
digital certificate. See http://dev2dev.bea.com/pub/advisory/30.

Typically a certificate binds the certificate holder’s public key with a set of attributes linked to
the holder’s real world identity – for example the individual’s name, organization and so on. The
certificate also contains a validity period in the form of two date and time fields, specifying the
beginning and end of the interval during which the certificate is recognized.

The entire certificate is (digitally) signed with the key of the issuing authority. Verifying this
signature guarantees

http://dev2dev.bea.com/pub/advisory/30
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf

The SOAP Header

Application Development Guide 4-5

that the certificate was indeed issued by the authority in question

that the contents of the certificate have not been forged, or tampered with in any way since
it was issued

For more information on X.509 Token, see
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf

The default identity assertion provider in Network Gatekeeper verifies the authenticity of X.509
tokens and maps them to valid Network Gatekeeper users.

Note: While it is possible to use the out-of-the-box keystore configuration in Network
Gatekeeper for testing purposes, these should not be used for production systems. The
digital certificates in these out-of-the-box keystores are only signed by a demonstration
certificate authority For information on configuring keystores for production systems,
refer to Securing WebLogic Server, the Configuring Identity and Trust section.

The x.509 certificate common name (CN) for an application must be the same as the account
UserName, which is the string that was referred to as the applicationInstanceGroupId in
previous versions of Network Gatekeeper. This is provided by the operator when the account is
provisioned.

Listing 3-3 Example of a WSSE: X.509 Certificate SOAP header element

<wsse:Security xmlns:wsse="..." xmlns:wsu="...">

<wsse:BinarySecurityToken wsu:Id="binarytoken"

ValueType="wsse:X509v3"

EncodingType="wsse:Base64Binary">

MIIEZzCCA9CgAwIBAgIQEmtJZc0…

</wsse:BinarySecurityToken>

<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<ds:SignedInfo>

<ds:Reference URI="#body">…</ds:Reference>

<ds:Reference URI="#binarytoken">…</ds:Reference>

</ds:SignedInfo>

<ds:SignatureValue>HFLP…</ds:SignatureValue>

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://edocs.bea.com/wls/docs92/secmanage/identity_trust.html

In te rac t ing w i th Network Gatekeeper

4-6 Application Development Guide

<ds:KeyInfo>

<wsse:SecurityTokenReference>

<wsse:Reference URI="#binarytoken" />

</wsse:SecurityTokenReference>

</ds:KeyInfo>

</ds:Signature>

</wsse:Security>

SAML Token
Network Gatekeeper, using WebLogic Server’s WSSE implementation, supports SAML versions
1.0 and 1.1. The versions are similar. See
http://www.oasis-open.org/committees/download.php/3412/sstc-saml-diff-1.1-draft-01.pdf for
an overview of the differences between the versions.

In SAML, a third party, the Asserting Party, provides the identity information for a Subject that
wishes to access the services of a Relying Party. This information is carried in an Assertion. In
the SAML Token type of Authentication, the Assertion (or a reference to an Assertion) is
provided inside the <WSSE:Security> header in the SOAP message. The Relying Party (which
in this case is Network Gatekeeper, using the WebLogic Security framework) then evaluates the
trustworthiness of the assertion, using one of two confirmation methods.

Holder-of-Key

Sender-Voucher

For more information on these confirmation methods, see “SAML Token Profile Support in
WebLogic Web Services” in Understanding WebLogic Security.

Listing 3-4 Example of a WSSE: SAML Token SOAP header element

<wsse:Security>

<saml:Assertion MajorVersion="1" MinorVersion="0"

AssertionID="186CB370-5C81-4716-8F65-F0B4FC4B4A0B"

Issuer="www.test.com" IssueInstant="2001-05-31T13:20:00-05:00">

http://www.oasis-open.org/committees/download.php/3412/sstc-saml-diff-1.1-draft-01.pdf
http://www.oasis-open.org/committees/download.php/3412/sstc-saml-diff-1.1-draft-01.pdf
http://e-docs.bea.com/wls/docs92/secintro/archtect.html#wp1068771

The SOAP Header

Application Development Guide 4-7

<saml:Conditions NotBefore="2001-05-31T13:20:00-05:00"

NotAfter="2001-05-31T13:25:00-05:00"/>

<saml:AuthenticationStatement AuthenticationMethod="password"

AuthenticationInstant="2001-05-31T13:21:00-05:00">

<saml:Subject>

<saml:NameIdentifier>

<SecurityDomain>"www.bea.com"</SecurityDomain>

<Name>"cn=localhost,co=bea,ou=sales"</Name>

</saml:NameIdentifier>

</saml:Subject>

</saml:AuthenticationStatement>

</saml:Assertion>

...

</wsse:Security>

Session Management
Before an application can begin sending requests through Network Gatekeeper, it must establish
a session, using the Session Manager Web Service. The session allows Network Gatekeeper to
keep track of all of the traffic sent by a particular application for the duration of the session, which
lasts until the session times out, based on an operator-set interval, or until the application logs out.
The session is good for an entire WebLogic Network Gatekeeper domain, across clusters, and
covers all traffic paths to which the application has contractual access

An application establishes a session in Network Gatekeeper by invoking the getSession()
operation on the Session Manager Web Service. This is the only request that does not require a
SessionID. In the response to this operation, a string representing the Session ID is returned to
the client, and a Network Gatekeeper session, identified by the ID, is established. The session is
valid until either the session is terminated by the application or an operator-established time
period has elapsed. The SessionID must appear in the wlng:Session element in the header of
every subsequent SOAP request.

In te rac t ing w i th Network Gatekeeper

4-8 Application Development Guide

Listing 3-5 Example of a SessionID SOAP header element

<Session>

<wlng:SessionId>app:-2810834922008400383</wlng:SessionId>

</Session>

Service Correlation
In some cases the service that an application provides to its end-users may involve accessing
multiple Network Gatekeeper traffic paths. For example, a mobile user might send an SMS to an
application asking for the pizza place nearest to his current location. The application then makes
a Terminal Location request to find the user’s current location, looks up the address of the closest
pizza place, and then sends the user an MMS with all the appropriate information. Three Network
Gatekeeper traffic paths are involved in executing what for the application is a single service. In
order to be able to correlate the three traffic path requests, Network Gatekeeper uses a Service
Correlation ID, or SCID. This is a string that is captured in all the CDRs and EDRs generated by
Network Gatekeeper. The CDRs and EDRs can then be orchestrated in order to provide special
treatment for a given chain of service invocations, by, for example, applying charging to the chain
as a whole rather than to the individual invocations.

The SCID is not provided by Network Gatekeeper. When the chain of services is initiated by an
application-initiated request, the application must provide, and ensure the uniqueness of, the
SCID within the chain of service invocations.

Note: In certain circumstances, it is also possible for a custom service correlation service to
supply the SCID, in which case it is the custom service’s responsibility to ensure the
uniqueness of the SCID.

When the chain of services is initiated by a network-triggered request, Network Gatekeeper calls
an external interface to get the SCID. This interface must be implemented by an external system.
No utility or integration is provided out-of the box; this must be a part of a system integration
project. It is the responsibility of the external system to provide, and ensure the uniqueness of, the
SCID.

The SCID is passed between Network Gatekeeper and the application through an additional
SOAP header element, the SCID element. Because not every application requires the service

The SOAP Header

Application Development Guide 4-9

correlation facility, this is an optional element. In version 3.0, this option is available only with
enhanced traffic paths.

Listing 3-6 Example of a SCID SOAP header element

<scid id="myid"/>

Parameter Tunneling
Parameter tunneling is a feature that allows an application to send additional parameters to
Network Gatekeeper and lets a plug-in use these parameters. This feature makes it possible for
an application to tunnel parameters that are not defined in the interface that the application is
using and can be seen as an extension to the application-facing interface.

The application sends the tunneled parameters in the SOAP header of a Web Services request.

The parameters are defined using key-value pairs encapsulated by the tag <xparams>. The
xparams tag can include one or more <param> tags. Each <param> tag have a key attribute that
identifies the parameter and a value attribute that defines the value of the parameter. In the
example below, the application tunnels the parameter aParameterName and assigns it the value
aParameterValue.

Listing 3-7 SOAP header with a tunneled parameter.

<soapenv:Header>

...

<xparams>

<param key="aParameterName" value="aParameterValue" />

</xparams>

...

</soapenv:Header>

In te rac t ing w i th Network Gatekeeper

4-10 Application Development Guide

Depending on the plug-in the request reaches, the parameter is fetched and used in the request
towards the network node.

SOAP attachments
The payloads for Multimedia Messages and WAP Push messages in Network Gatekeeper are sent
as SOAP attachments. Listing 3-8 below shows a Multimedia Messaging sendMessage
operation that contains an attachment carrying a jpeg image.

Listing 3-8 Example of a SOAP message with attachment (full content is not shown)

POST /parlayx21/multimedia_messaging/SendMessage HTTP/1.1

Content-Type: multipart/related; type="text/xml";
start="<1A07DC767BC3E4791AF25A04F17179EE>";
boundary="----=_Part_0_2633821.1170785251635"

Accept: application/soap+xml, application/dime, multipart/related, text/*

User-Agent: Axis/1.4

Host: localhost:8000

Cache-Control: no-cache

Pragma: no-cache

SOAPAction: ""

Content-Length: 4652

Connection: close

------=_Part_0_2633821.1170785251635

Content-Type: text/xml; charset=UTF-8

Content-Transfer-Encoding: binary

Content-Id: <1A07DC767BC3E4791AF25A04F17179EE>

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

SOAP a t tachments

Application Development Guide 4-11

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Header>

<ns1:Security ns1:Username="app:-4206293882665579772"

ns1:Password="app:-4206293882665579772"

soapenv:actor="wsse:PasswordToken"

soapenv:mustUnderstand="1"
xmlns:ns1="/parlayx21/multimedia_messaging/SendMessage">

</ns1:Security>

</soapenv:Header>

<soapenv:Body>

<sendMessage xmlns=

"http://www.csapi.org/schema/parlayx/multimedia_messaging/send/v2_4/
local">

<addresses>tel:234</addresses>

<senderAddress>tel:567</senderAddress>

<subject>Default Subject Text</subject>

<priority>Normal</priority>

<charging>

<description xmlns="">Default</description>

<currency xmlns="">USD</currency>

<amount xmlns="">1.99</amount>

<code xmlns="">Example_Contract_Code_1234</code>

</charging>

</sendMessage>

</soapenv:Body>

</soapenv:Envelope>

------=_Part_0_2633821.1170785251635

Content-Type: image/jpeg

In te rac t ing w i th Network Gatekeeper

4-12 Application Development Guide

Content-Transfer-Encoding: binary

Content-Id:

<9FFD47E472683C870ADE632711438CC3>???? JFIF ??
C#%$""!&+7/&)4)!"0A149;>>>%.DIC<H7=>;??
C;("(;;?? ? w" ?? ??
7 !1AQ"aq2???#?BRr?3Cb????? ?? ' !1"AQ2Raq???? ?
??{?????>?"7B?7!1???????Z e{????ax??5??CC??-Du?
??X?)Y!??=R@??g?????T??c????f?Wc??eCi?l?????5s??\E???6I??(?x?^???=??d?#?itoi?{
;? ??G.......

------=_Part_0_2633821.1170785251635--

Managing SOAP headers and SOAP attachments
programmatically

This section illustrates how to manage the Network Gatekeeper required SOAP headers and
SOAP attachments when you are using WebLogic Server and WebLogic Server tools to generate
stubs for your Web Services clients. If you are using a different environment, the steps you need
to take to accomplish these tasks will be different.

For an overview of using WebLogic Server to create Web Service clients, see the Invoking Web
Services chapter of Programming Web Services for WebLogic Server. The following examples
show particularly the use of a SOAP message handler as covered in that chapter.

Note: These examples show the use of a single message handler to add both SOAP Headers and
SOAP attachments. Chains of custom message handlers are not supported in Network
Gatekeeper.

The WebLogic Server environment relies heavily on using supplied Ant tasks. In Listing 3-9 a
supplied Ant task, clientgen, is added to the standard build.xml file. A handler configuration
file, SOAPHandlerConfig.xml is added as the value for the handlerChainFile attribute.
SOAPHandlerConfig.xml is shown in Listing 3-10.

Listing 3-9 Snippet from build.xml

<clientgen

wsdl="${wsdl-file}"

destDir="${class-dir}"

http://e-docs.bea.com/wls/docs92/webserv/client.html
http://e-docs.bea.com/wls/docs92/webserv/client.html

Managing SOAP headers and SOAP at tachments programmat ica l l y

Application Development Guide 4-13

handlerChainFile="SOAPHandlerConfig.xml"

packageName="com.bea.wlcp.wlng.test"

autoDetectWrapped="false"

generatePolicyMethods="true"

/>

The configuration file for the message handler contains the handler-name and the associated
handler-class. The handler class, TestClientHandler, is described in Listing 3-11.

Listing 3-10 SOAPHandlerConfig.xml

<weblogic-wsee-clientHandlerChain

xmlns="http://www.bea.com/ns/weblogic/90"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:j2ee="http://java.sun.com/xml/ns/j2ee">

<handler>

<j2ee:handler-name>clienthandler1</j2ee:handler-name>

<j2ee:handler-class>

com.bea.wlcp.wlng.client.TestClientHandler

</j2ee:handler-class>

</handler>

</weblogic-wsee-clientHandlerChain>

TestClientHandler provides the following functionality:

Adds a Session ID to the SOAP header, see Session Management. The session ID is
hardcoded into the member variable sessionId.

In te rac t ing w i th Network Gatekeeper

4-14 Application Development Guide

Adds a service correlation ID to the SOAP header. See Service Correlation for more
information.

Adds a SOAP attachment in the form of a MIME message with content-type text/plain. See
SOAP attachments for more information.

Listing 3-11 TestClientHandler

package com.bea.wlcp.wlng.client;

import javax.xml.rpc.handler.Handler;

import javax.xml.rpc.handler.HandlerInfo;

import javax.xml.rpc.handler.MessageContext;

import javax.xml.rpc.handler.soap.SOAPMessageContext;

import javax.xml.soap.*;

import javax.xml.namespace.QName;

public class TestClientHandler implements Handler{

public String sessionId = "myID";

public String SCID = "mySCId";

public String contenttype = "text/plain";

public String content = "The content";

public boolean handleRequest(MessageContext ctx) {

if (ctx instanceof SOAPMessageContext) {

try {

SOAPMessageContext soapCtx = (SOAPMessageContext) ctx;

SOAPMessage soapmsg = soapCtx.getMessage();

SOAPHeader header = soapCtx.getMessage().getSOAPHeader();

SOAPEnvelope envelope =

soapCtx.getMessage().getSOAPPart().getEnvelope();

Managing SOAP headers and SOAP at tachments programmat ica l l y

Application Development Guide 4-15

// Begin: Add session ID

Name headerElementName = envelope.createName("session","",

"http://schemas.xmlsoap.org/soap/envelope/");

SOAPHeaderElement headerElement =

header.addHeaderElement(headerElementName);

headerElement.setMustUnderstand(false);

headerElement.addNamespaceDeclaration("soap",

"http://schemas.xmlsoap.org/soap/envelope/");

SOAPElement sessionId = headerElement.addChildElement("SessionId");

sessionId.addTextNode(sessionId);

// End: Add session ID

// Begin: Add Combined Services ID

Name headerElementName = envelope.createName("SCID","",

"http://schemas.xmlsoap.org/soap/envelope/");

SOAPHeaderElement headerElement =

header.addHeaderElement(headerElementName);

headerElement.setMustUnderstand(false);

headerElement.addNamespaceDeclaration("soap",

"http://schemas.xmlsoap.org/soap/envelope/");

SOAPElement sessionId = headerElement.addChildElement("SCID");

sessionId.addTextNode(SCID);

// End: Add Combined Services ID

// Begin: Add SOAP attachment

AttachmentPart part = soapmsg.createAttachmentPart();

part.setContent(content, contenttype);

soapmsg.addAttachmentPart(part);

// End: Add SOAP attachment

In te rac t ing w i th Network Gatekeeper

4-16 Application Development Guide

} catch (Exception e) {

e.printStackTrace();

}

}

return true;

}

public boolean handleResponse(MessageContext ctx) {

return true;

}

public boolean handleFault(MessageContext ctx) {

return true;

}

public void init(HandlerInfo config) {

}

public void destroy() {

}

public QName[] getHeaders() {

return null;

}

}

Application Development Guide 5-1

C H A P T E R 4

Using WorkShop Controls with Network
Gatekeeper

BEA Workshop for WebLogic Platform 9.2 Controls can be used to develop applications for
Network Gatekeeper.

WebLogic Workshop needs to be patched with patch ID AYKE (CR309605) and patch ID 442J
(CR309605).

Using WebLogic WorkShop, generate Service Controls from the WSDLs provided by Network
Gatekeeper. For information on how to use WebLogic Workshop, see the documentation for
BEA Workshop for WebLogic Platform.

Network Gatekeeper uses information in the SOAP header for various purposes, such as
maintaining a session ID, service correlation, attachments for payload in MMS messages, and
more. The Service Controls do not have methods to set these elements directly. A Document must
be created using DOM, and then use it as a factory to create the SOAP Header Elements which
are passed to the setOutputHeaders method as defined in the Interface ServiceControl in
com.bea.control. Below is an outline of the workflow:

1. Create client Web Service.

2. Add the Service Control reference.

3. Add the code described below to the client code which calls the control method, as, for
example sendSMS.

The following imports are necessary for creating SOAP headers:

http://edocs.bea.com/workshop/docs92/platform.html

Using WorkShop Cont ro l s w i th Network Gatekeepe r

5-2 Application Development Guide

Listing 4-1 Imports needed for creating SOAP headers

import javax.xml.parsers.DocumentBuilderFactory;

import javax.xml.parsers.ParserConfigurationException;

import org.w3c.dom.Attr;

import org.w3c.dom.Document;

import org.w3c.dom.Element;

The header is created using DocumentBuilderFactory as described below.

Listing 4-2 Create header element

Document doc = null;

try {

//create the document factory

DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();

factory.setNamespaceAware(true);

doc = factory.newDocumentBuilder().newDocument();

} catch (ParserConfigurationException pce) {

//add exception

}

Element header =
doc.createElementNS("http://schemas.xmlsoap.org/soap/envelope/",
"SOAP-ENV:Header");

Below is an example of how to create WSSE UsernameToken header elements and add them to
the SOAP header.

Application Development Guide 5-3

Listing 4-3 Create WSSE Element

String nameSpace
="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.
0.xsd";

//create Security Element

Element headerContent = doc.createElementNS(nameSpace, "wsse:Security");

//Create UsernameToken Element

Element userTokenElement = doc.createElementNS(nameSpace,"wsse:UsernameToken");

//Create Username Element

Element userElement = doc.createElementNS(nameSpace, "wsse:Username");

//Append usernametext

userElement.appendChild(doc.createTextNode("usrName"));

userTokenElement.appendChild(userElement);

//Create Password Element

Element pwdElement = doc.createElementNS(nameSpace, "wsse:Password");

Attr nsAttr = doc.createAttributeNS(nameSpace, "Type");

nsAttr.setValue("PasswordText");

pwdElement.setAttributeNodeNS(nsAttr);

pwdElement.appendChild(doc.createTextNode("passwd"));

userTokenElement.appendChild(pwdElement);

headerContent.appendChild(userTokenElement);

//append Security element

header.appendChild(headerContent);

Below is an example of how to create a session element and add it to the SOAP header.

Using WorkShop Cont ro l s w i th Network Gatekeepe r

5-4 Application Development Guide

Listing 4-4 Create a session element

//Create Session Element

String ns1= "";

Element session = doc.createElementNS(ns1,"Session");

Element sessionId = doc.createElementNS(ns1, "SessionId");

sessionId.appendChild(doc.createTextNode("sessionValue"));

session.appendChild(sessionId);

//append Session Element

header.appendChild(session);

When the SOAP header is created it must be added to the Service Control as described below.

Listing 4-5 Append header to the Control

smsServiceControl.setOutputHeaders(new Element[] { header });

Application Development Guide 6-1

C H A P T E R 5

Session management Web Service

The Session Manager Web Service contains operations for establishing a session with Network
Gatekeeper, changing the application’s password, querying the amount of time remaining in the
session, refreshing the session, and terminating the session.

Before an application can perform any operations on the Parlay X or Extended Web Services
interfaces, a session must be established with Network Gatekeeper. When a session is established,
a session ID is returned which must be used in each subsequent operation towards Network
Gatekeeper.

Endpoint
The WSDL for the Session Manager can be found at
http://<host>:<port>/session_manager/SessionManager

where host and port depend on the Network Gatekeeper deployment.

Interface: SessionManager
Operations to establish a session, change a password, get the remaining lifetime of a session,
refresh a session and destroy a session.

Operation: getSession
Establishes a session using Web Services Security. Authentication information must be provided
according to WS-Security. See Authentication.

Sess ion management Web Se rv i ce

6-2 Application Development Guide

Input message: getSession

Output message: getSessionResponse

Referenced faults
GeneralException

Operation: changeApplicationPassword
Changes the password for an application.

Input message: changeApplicationPassword

Part name Part type Optional Description

- - - -

Part name Part type Optional Description

getSessionR
eturn

xsd:String N The session ID to use in subsequent requests.

Part name Part type Optional Description

sessionId xsd:string N The ID of an established session.

oldPassword xsd:string N The current password.

newPasswor
d

xsd:string N The new password.

I n te r face : Sess ionManager

Application Development Guide 6-3

Output message: changeApplicationPasswordResponse

Referenced faults
-

Operation: getSessionRemainingLifeTime
Gets the remaining lifetime of an established session. The default lifetime is configured in
Network Gatekeeper.

Input message: getSessionRemainingLifeTime

Output message: getSessionRemainingLifeTimeResponse

Referenced faults
-

Part name Part type Optional Description

- - - -

Part name Part type Optional Description

sessionId xsd:string N The ID of an established session.

Part name Part type Optional Description

getSessionR
emainingLif
eTimeReturn

xsd:string N The remaining lifetime of the session.

Given in milliseconds.

Sess ion management Web Se rv i ce

6-4 Application Development Guide

Operation: refreshSession
Refreshes the lifetime of an session. The session can be refreshed during a time interval after the
a session has expired. This time interval is configured in Network Gatekeeper.

Input message: refreshSession

Output message: refreshSessionResponse

Referenced faults
-

Operation: destroySession
Destroys an established session.

Input message: destroySession

Part name Part type Optional Description

sessionId xsd:string N The ID of an established session.

Part name Part type Optional Description

refreshSessi
onReturn

xsd:string N The session ID to be used in subsequent requests.
The same ID as the original session ID is returned.

Part name Part type Optional Description

sessionId xsd:string N The ID of an established session.

Examples

Application Development Guide 6-5

Output message: destroySessionResponse

Referenced faults
-

Examples
The code below illustrates how to get the Session Manager and how to prepare the generated stub
with Web Service security information. The stub is generated from the Session Manager Web
Service.

Listing 5-1 Get hold of the Session Manager

protected ClientSessionManImpl(String sessionManagerURL, PolicyBase pbase)
throws Exception {

SessionManagerService accessservice =

new SessionManagerService_Impl(sessionManagerURL+"?WSDL");

port = accessservice.getSessionManager();

pbase.prepareStub((Stub)port);

 }

Below illustrates how to prepare the Session Manager stub with Username Token information
according to WS-Policy.

Part name Part type Optional Description

destroySessi
onReturn

xsd:boolean N True if the session was destroyed.

Sess ion management Web Se rv i ce

6-6 Application Development Guide

Listing 5-2 Prepare the Session Manager with Username Token information

package com.bea.wlcp.wlng.client.access.wspolicy;

import weblogic.wsee.security.unt.ClientUNTCredentialProvider;

import weblogic.xml.crypto.wss.WSSecurityContext;

import javax.xml.rpc.Stub;

import java.util.ArrayList;

import java.util.List;

public class UsernameTokenPolicy implements PolicyBase {

 private String username;

 private String password;

public UsernameTokenPolicy(String username, String password) {

 this.username = username;

 this.password = password;

 }

 public void prepareStub(Stub stub) throws Exception {

 List<ClientUNTCredentialProvider> credProviders = new
ArrayList<ClientUNTCredentialProvider>();

 credProviders.add(new ClientUNTCredentialProvider(username.getBytes(),

 password.getBytes()));

 System.out.println("setting standard wssec");

 stub._setProperty(WSSecurityContext.CREDENTIAL_PROVIDER_LIST,

 credProviders);

 }

Examples

Application Development Guide 6-7

}

Sess ion management Web Se rv i ce

6-8 Application Development Guide

Application Development Guide 7-1

C H A P T E R 6

Extended Web Services WAP Push

The Extended Web Services WAP Push Web Service allows for the sending of messages, which
are rendered as WAP Push messages by the adressee’s terminal. The content of the message is
coded as a PAP message. It also provides an asynchronous notification mechanism for delivery
status.

The payload of a WAP Push message must adhere to the following:

WAP Service Indication Specification, as specified in Service Indication Version
31-July-2001, Wireless Application Protocol WAP-167-ServiceInd-20010731-a.

WAP Service Loading Specification, as specified in Service Loading Version 31-Jul-2001,
Wireless Application Protocol WAP-168-ServiceLoad-20010731-a.

WAP Cache Operation Specification, as specified in Cache Operation Version 31-Jul-2001,
Wireless Application Protocol WAP-175-CacheOp-20010731-a.

See http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html for links to the
specifications.

The payload is sent as a SOAP attachment.

Namespaces
The PushMessage interface and service use the namespaces:

http://www.bea.com/wlcp/wlng/wsdl/ews/push_message/interface

http://www.bea.com/wlcp/wlng/wsdl/ews/push_message/service

http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html

Extended Web Serv i ces WAP Push

7-2 Application Development Guide

The PushMessageNotification interface and service use the namespaces:

http://www.bea.com/wlcp/wlng/wsdl/ews/push_message/notification/interface

http://www.bea.com/wlcp/wlng/wsdl/ews/push_message/notification/service

The data types are defined in the namespace:

http://www.bea.com/wlcp/wlng/schema/ews/push_message

In addition, Extended Web Services WAP Push uses definitions common for all Extended Web
Services interfaces:

The datatypes are defined in the namespace:

– http://www.bea.com/wlcp/wlng/schema/ews/common

The faults are defined in the namespace:

– targetNamespace="http://www.bea.com/wlcp/wlng/wsdl/ews/common/faults"

Endpoint
The endpoint for the PushMessage interface is:
http://<host:port>/ews/push_message/PushMessage

Where host and port depend on the Network Gatekeeper deployment.

Sequence Diagram
The following diagram shows the general message sequence for sending a WAP Push message
from an Extended Web Services WAP Push application to the network. In this message sequence
the application also receives a notification from the network indicating the delivery status of the
WAP Push message, that is, that the message has been read The interaction between the network
and Network Gatekeeper is illustrated in a protocol-agnostic manner. The exact operations and
sequences depend on which network protocol is being used.

Note: Zero or more resultNotificationmesages are sent to the application, depending on
parameters provided in the initial SendPushMessage request.

XML Schema data t ype de f in i t i on

Application Development Guide 7-3

Figure 6-1 Sequence diagram Extended Web Services WAP Push

XML Schema data type definition
The following data structures are used in the Extended Web Services WAP Push Web Service.

PushResponse structure
Defines the response that the Network Gatekeeper returns from a sendPushMessage operation.

Extended Web Serv i ces WAP Push

7-4 Application Development Guide

ResponseResult structure
Defines the result element in the PushResponse structure, which is used in the response returned
from a sendPushMessage operation.

Element Name Element type Optional Description

result push_message_xs
d:ResponseResult

N The ResponseResult allows the
server to specify a code for the
outcome of sending the push
message. See ResponseResult
structure

pushId xsd:string N The push ID provided in the
request.

senderAddress xsd:string Y Contains the address to which the
message was originally sent, for
example the URL to the network
node.

senderName xsd:string Y The descriptive name of the server.

replyTime xsd:dateTime Y The date and time associated with
the creation of the response.

additionalProperties ews_common_xs
d:AdditionalProp
erty

Y Additional properties.The
supported properties are: pap.stage,
pap.note, pap.time

Element Name Element type Optional Description

code xsd:string N A code representing the outcome
when sending the push message.
Generated by the network node.

Possible status codes are listed in
Table 6-1.

description xsd:string N Textual description.

XML Schema data t ype de f in i t i on

Application Development Guide 7-5

Table 6-1 Outcome status codes

Status code Description

1000 OK.

1001 Accepted for processing.

2000 Bad request.

2001 Forbidden.

2002 Address error.

2003 Address not found.

2004 Push ID not found.

2005 Capabilities mismatch.

2006 Required capabilities not supported.

2007 Duplicate push ID.

2008 Cancellation not possible.

3000 Internal server error.

3001 Not implemented.

3002 Version not supported.

3003 Not possible.

3004 Capability matching not possible.

3005 Multiple addresses not supported.

3006 Transformation failure.

3007 Specified delivery method not possible.

3008 Capabilities not available.

3009 Required network not available.

3010 Required bearer not available.

Extended Web Serv i ces WAP Push

7-6 Application Development Guide

ReplaceMethod enumeration
Defines the values for the replacePushId parameter in the sendPushMessage operation. This
parameter is used to replace an existing message based on a given push ID. This parameter is
ignored if it is set to NULL.

MessageState enumeration
Defines the values for the messageState parameter in a resultMessageNotification.

3011 Replacement not supported.

4000 Service failure.

4001 Service unavailable.

Enumeration value Description

all Indicates that this push message MUST be treated as a new push
submission for all recipients, no matter if a previously submitted push
message with pushId equal to the replacePushId in this push message can
be found or not.

pending-only Indicates that this push message should be treated as a new push
submission only for those recipients who have a pending push message
that is possible to cancel.

In this case, if no push message with pushId equal to the replacePushId in
this push message can be found, the server responds with status code
PUSH_ID_NOT_FOUND in the responseResult.

Status code CANCELLATION_NOT_POSSIBLE may be returned in the
responseResult if no message can be cancelled.

Status code CANCELLATION_NOT_POSSIBLE may also be returned
in a subsequent resultNotification to indicate a non-cancellable message
for an individual recipient.

Status code Description

Web Serv ice in te r face desc r ip t i on

Application Development Guide 7-7

Web Service interface description
The following describes the interfaces and operations that are available in the Extended Web
Services WAP Push Web Service.

Interface: PushMessage
Operations to send, or to manipulate previously sent, WAP Push messages.

Operation: sendPushMessage
Sends a WAP Push message. The message Content Entity (the payload) is provided as a SOAP
attachment in MIME format. The Content Entity is a MIME body part containing the content to
be sent to the wireless device. The content type is not defined, and can be any type as long as it
can be described by MIME. The Content Entity is included only in the push submission and is
not included in any other operation request or response.

Enumeration value Description

rejected Message was not accepted by the network.

pending Message is being processed.

delivered Message successfully delivered to the network.

undeliverable The message could not be delivered.

expired The message reached the maximum allowed age or could not be delivered
by the time specified when the message was sent.

Note: Some network elements allows for defining policies on maximum
age of messages.

aborted The end-user terminal aborted the message.

timeout The delivery process timed out.

cancelled The message was cancelled.

unknown The state of the message is unknown.

Extended Web Serv i ces WAP Push

7-8 Application Development Guide

Input message: sendPushMessage

Part name Part type Optional Description

pushId xsd:string N Provided by the application. Serves as a message ID.
The application is responsible for its uniqueness, for
example, by using an address within its control (for
example a URL) combined with an identifier for the
push message as the value for pushId. Supported
types are PLMN and USER.

For example: "www.wapforum.org/123" or
"123@wapforum.org"

destinationA
ddresses

xsd:string
[1..unbounded
]

N An array of end-user terminal addresses.

The addresses should be formatted according to the
Push Proxy Gateway Service Specification
(WAP-249-PPGService-20010713-a).

Example addresses:
• WAPPUSH=+155519990730

TYPE=PLMN@ppg.carrier.com
• WAPPUSH=john.doe%40wapforum.org

TYPE=USER@ppg.carrier.com

resultNotific
ationEndpoi
nt

xsd:anyURI Y Specifies the URL the application uses to return
result notifications.

The presence of this parameter indicates that a
notification is requested. If the application does not
want a notification, this parameter must be set to
NULL.

Web Serv ice in te r face desc r ip t i on

Application Development Guide 7-9

replacePushI
d

xsd:string Y The pushId of the still pending message to replace.

The presence of this parameter indicates that the
client is requesting that this message replace one
previously submitted, but still pending push
message.

The following rules apply:
• Setting the replacePushId parameter to

NULL indicates that it is a new message. It does
not replace any previously submitted message.

• The initial pending (pending delivery to the
end-user terminal) message is cancelled, if
possible, for all recipients of the message. This
means that it is possible to replace a message for
only a subset of the recipients of the original
message.

• Message replacement will occur only for the
recipients for whom the pending message can be
cancelled.

replaceMeth
od

push_message
_xsd:Replace
Method

N Defines how to replace a previously sent message.
Used in conjunction with the replacePushId
parameter described above.

Ignored if replacePushId is NULL.

deliverBefor
eTimestamp

xsd:dateTime Y Defines the date and time by which the content must
be delivered to the end-user terminal.

The message is not delivered to the end-user terminal
after this time and date.

If the network node does not support this parameter,
the message is rejected.

deliverAfter
Timestamp

xsd:dateTime Y Specifies the date and time after which the content
should be delivered to the wireless device.

The message is delivered to the end-user terminal
after this time and date.

If the network node does not support this parameter,
the message is be rejected.

Part name Part type Optional Description

Extended Web Serv i ces WAP Push

7-10 Application Development Guide

Output message: sendPushMessageResponse

Referenced faults
ServiceException:

ESVC0001 -A service error occurred. Error code is %1

ESVC0002 -Invalid input value for message part %1

ESVC000331 -No valid addresses provided in message part %1";

ESVC0004 -System several overloaded

sourceRefere
nce

xsd:string Y A textual name of the content provider.

progressNot
esRequested

xsd:boolean Y This parameter informs the network node if the client
wants to receive progress notes.

TRUE means that progress notes are requested.

Progress notes are delivered via the
PushMessageNotification interface.

If not set, progress notes are not sent.

serviceCode xsd:string N Used for charging purposes.

requesterID xsd:string N The application ID as given by the operator.

additionalPr
operties

ews_common
_xsd:Addition
alProperty
[0...unbounde
d]

Y Additional properties, defined as name/value pairs,
can be sent using this parameter. The supported
properties are: pap.priority, pap.delivery-method,
pap.network, pap.network-required, pap.bearer,
pap.bearer-required.

Part name Part type Optional Description

result push_message
_xsd:PushRes
ponse

N The response that Network Gatekeeper returns for
sendPushMessage operation

Part name Part type Optional Description

Web Serv ice in te r face desc r ip t i on

Application Development Guide 7-11

ESVC0005 -The service request timed out.

PolicyException:

EPOL0001 -The policy service denied the service request. Error code is %1 and error message is
%2

Interface: PushMessageNotification

Operation: resultNotificationMessage

Input message: resultNotificationMessage

Part name Part type Optional Description

pushId xsd:string N Defined by the application in the corresponding
sendPushMessage operation.

Used to match the notification to the message.

address xsd:string N The address of the end-user terminal.

messageStat
e

push_message
_xsd:Message
State

N State of the message.

code xsd:string N Final status of the message.

description xsd:string Y Textual description of the notification. Supplied by
the network. May or may not be present, depending
on the network node used.

senderAddre
ss

xsd:string Y Address of the network node.

May or may not be present, depending on the
network node used.

senderName xsd:string Y Name of the network node.

May or may not be present, depending on the
network node used.

receivedTim
e

xsd:dateTime Y Time and date when the message was received at the
network node.

Extended Web Serv i ces WAP Push

7-12 Application Development Guide

Output message: resultNotificationMessageResponse

Referenced faults
None.

WSDLs
The document/literal WSDL representation of the PushMessage interface can be retrieved from
the Web Services endpoint.
The document/literal WSDL representation of the PushMessageNotification interface can be
downloaded from
http://<host>:<port>/ews/push_message/wsdls/ews_common_types.xsd
http://<host>:<port>/ews/push_message/wsdls/ews_push_message_notification_
interface.wsdl
http://<host>:<port>/ews/push_message/wsdls/ews_push_message_notification_

eventTime xsd:dateTime Y Time and date when the message reached the
end-user terminal.

additionalPr
operties

ews_common
_xsd:Addition
alProperty

Y Additional properties can be sent using this
parameter in the form of name/value pairs. The
supported properties are:
• pap.priority
• pap.delivery-method
• pap.network
• pap.network-required
• pap.bearer
• pap.bearer-required

Which properties are sent, if any, is dependent on the
network node.

Part name Part type Optional Description

none

Part name Part type Optional Description

Er ro r Codes

Application Development Guide 7-13

service.wsdl

http://<host>:<port>/ews/push_message/wsdls/ews_push_message_types.xsd

Where host and port are depending on the Network Gatekeeper deployment.

Error Codes
The following error codes are defined for ESVC0001: Service error:

See General error codes.

6001 Push response processing error.

6002 Bad message response.

6003 Push message parameter validation error.

11000 Invalid address.

11001 Invalid notification method.

6100 Push message send error.

The following error codes are defined for EPOL0001: Policy error:

See General policy error codes.

900 Content type is not allowed for service provider.

901 Content type is not allowed for service provider.

902 Message size limit exceeded for service provider.

903 Message size limit exceeded for service provider.

Sample Send WAP Push Message

Listing 6-1 Example Send WAP Push Message

// Add handlers for MIME types needed for WAP MIME-types

MailcapCommandMap mc = (MailcapCommandMap) CommandMap.getDefaultCommandMap();

mc.addMailcap("text/vnd.wap.si;;x-java-content-handler=com.sun.mail.handlers.t
ext_xml");

Extended Web Serv i ces WAP Push

7-14 Application Development Guide

CommandMap.setDefaultCommandMap(mc);

// Create a MIME-message where with the actual content of the WAP Push message.

InternetHeaders headers = new InternetHeaders();

headers.addHeader("Content-type", "text/plain; charset=UTF-8");

headers.addHeader("Content-Id", "mytext");

byte[] bytes = "Test message".getBytes();

MimeBodyPart mimeMessage = new MimeBodyPart(headers, bytes);

// Create PushMessage with only the manadatory parameters

// SendPushMessage is provided in the stubs generated from the WSDL.

SendPushMessage sendPushMessage = new SendPushMessage();

String [] destinationAddresses = {"wappush=461/type=user@ppg.o.se"};

sendPushMessage.setDestinationAddresses(destinationAddresses);

// Create “unique” pushId, using a combination of timestamp and domain.

sendPushMessage.setPushId(System.currentTimeMillis() + "@wlng.bea.com");

// ReplaceMethod is provided by the stubs generated from the WSDL.

sendPushMessage.setReplaceMethod(ReplaceMethod.pendingOnly);

// Defined by the operator/service provider contractual agreement

sendPushMessage.setServiceCode(”Service Code xxx”);

// Defined by the operator/service provider contractual agreement

sendPushMessage.setRequesterID(”Requester ID xxx”);

// Endpoint to send notifications to. Implemented on the application side.

String notificationEndpoint =
"http://localhost:80/services/PushMessageNotification";

sendPushMessage.setResultNotificationEndpoint(new URI(notificationEndpoint));

// Send the WAP Push message

Sample Send WAP Push Message

Application Development Guide 7-15

PushMessageService pushMessageService = null;

// Define the endpoint of the WAP Push Web Service

String endpoint = "http://localhost:8001/ews/push_message/PushMessage?WSDL";

try {

// Instantiate an representation of the Web Service from the generated stubs.

pushMessageService = new PushMessageService_Impl(endpoint);

} catch (ServiceException e) {

e.printStackTrace();

throw e;

}

PushMessage pushMessage = null;

try {

// Get the Web Service interface to operate on.

pushMessage = pushMessageService.getPushMessage();

} catch (ServiceException e) {

e.printStackTrace();

throw e;

}

SendPushMessageResponse sendPushMessageResponse = null;

try {

// Send the WAP Push message.

sendPushMessageResponse = pushMessage.sendPushMessage(sendPushMessage);

} catch (RemoteException e) {

e.printStackTrace();

throw e;

} catch (PolicyException e) {

e.printStackTrace();

Extended Web Serv i ces WAP Push

7-16 Application Development Guide

throw e;

} catch (com.bea.wlcp.wlng.schema.ews.common.ServiceException e) {

e.printStackTrace();

throw e;

}

// Assign the pushId provided in the in the response to a local variable.

String pushId = sendPushMessageResponse.getPushId();

Application Development Guide 8-1

C H A P T E R 7

Parlay X 2.1 Interfaces

This chapter describes the supported Parlay X 2.1 interfaces and contains information that is
specific for Network Gatekeeper, and not found in the specifications. For detailed descriptions of
the interfaces, methods and parameters, refer to the specifications.

See http://parlay.org/en/specifications/pxws.asp for links to the specifications.

Parlay X 2.1 Third Party Call
This set of interfaces is compliant to ETSI ES 202 391-2 V1.2.1 (2006-12) Open Service Access
(OSA); Parlay X Web Services; Part 2: Third Party Call (Parlay X 2).

Interface: ThirdPartyCall
The endpoint for this interface is:
http://<host>:<port>/parlayx21/third_party_call/ThirdPartyCall

Where values for host and port depend on the Network Gatekeeper deployment.

MakeCall
Sets up a call between two parties.

GetCallInformation
Displays information about a call.

http://parlay.org/en/specifications/pxws.asp

Par lay X 2 .1 In te r faces

8-2 Application Development Guide

EndCall
Ends a call.

CancelCall
Cancels a call setup procedure.

Error Codes
The following error codes are defined for SVC0001: Service error:

See General error codes.

4001 Unknown Error.

4002 Invalid criteria.

4003 Invalid interface type.

4004 Invalid event type.

4005 Invalid session ID.

4006 Invalid network state.

4007 Invalid address.

4008 Unsupported address plan.

4009 Invalid assignment ID.

SVC0002 Invalid input

SVC0260 Trying to cancel a call already connected

SVC0261 Trying to terminate a call already terminated

The following error codes are defined for POL0001: Policy error:

See General policy error codes.

500 Max number of call legs exceeded for service provider.

501 Max number of call legs exceeded for application.

502 Call event criteria not allowed for service provider.

Par lay X 2 .1 Par t 3 : Ca l l No t i f i cat i on

Application Development Guide 8-3

503 Call event criteria not allowed for application.

Parlay X 2.1 Part 3: Call Notification
This set of interfaces is compliant to ETSI ES 202 391-3 V1.2.1 (2006-12) Open Service Access
(OSA); Parlay X Web Services; Part 3: Call Notification (Parlay X 2).

Interface: CallDirection
This interface is implemented by an application, and the consumer of this interface is Network
Gatekeeper. The WSDL that defines the interface can be downloaded from:
http://<host>:<port>/parlayx21/call_notification/wsdls/parlayx_call_direct
ion_interface_2_2.wsdl

http://<host>:<port>/parlayx21/call_notification/wsdls/parlayx_call_direct
ion_service_2_2.wsdl

http://<host>:<port>/parlayx21/call_notification/wsdls/parlayx_call_notifi
cation_types_2_2.xsd

Where values for host and port depend on the Network Gatekeeper deployment.

HandleBusy
Network Gatekeeper calls this method, which is implemented by an application, when the called
party is busy.

HandleNotReachable
Network Gatekeeper calls this method, which is implemented by an application, when the called
party is not reachable.

HandleNoAnswer
Network Gatekeeper calls this method, which is implemented by an application, when the called
party does not answer.

HandleCalledNumber
Network Gatekeeper calls this method, which is implemented by an application, prior to call
setup.

Par lay X 2 .1 In te r faces

8-4 Application Development Guide

Interface: CallNotification
This interface is implemented by an application, and the consumer of this interface is Network
Gatekeeper. The WSDL that defines the interface can be downloaded from:
http://<host>:<port>/parlayx21/call_notification/wsdls/parlayx_call_notifi
cation_interface_2_2.wsdl

http://<host>:<port>/parlayx21/call_notification/wsdls/parlayx_call_notifi
cation_service_2_2.wsdl

http://<host>:<port>/parlayx21/call_notification/wsdls/parlayx_call_notifi
cation_types_2_2.xsd

NotifyBusy
Network Gatekeeper calls this method, which is implemented by an application, when the called
party is busy.

NotifyNotReachable
Network Gatekeeper calls this method, which is implemented by an application, when the called
party is not reachable.

NotifyNoAnswer
Network Gatekeeper calls this method, which is implemented by an application, when the called
party does not answer.

NotifyCalledNumber
Network Gatekeeper calls this method, which is implemented by an application, prior to call
setup.

Interface: CallNotificationManager
The endpoint for this interface is:
http://<host>:<port>/parlayx21/call_notification/CallNotificationManager

Where values for host and port depend on the Network Gatekeeper deployment.

StartCallNotification
Starts a subscription for call notifications.

Par lay X 2 .1 Par t 4 : Sho r t messag ing

Application Development Guide 8-5

StopCallNotification
Stops a subscription for call notifications.

Interface: CallDirectionManager
The endpoint for this interface is:
http://<host>:<port>/parlayx21/call_notification/CallDirectionManager

Where values for host and port depend on the Network Gatekeeper deployment.

StartCallDirectionNotification
Starts a subscription for call direction notifications.

StopCallDirectionNotification
Stops a subscription for call direction notifications.

Error Codes
The following error codes are defined for SVC0001: Service error:

See General error codes.

CN-000001Two requests for call direction overlap with each other.

CN-000002 Internal error to access the subscription storage.

CN-000003 Could not find the callback plug-in.

The following error codes are defined for POL0001: Policy error:

See General policy error codes.

Parlay X 2.1 Part 4: Short messaging
This set of interfaces is compliant to ETSI ES 202 391-4 V1.2.1 (2006-12) Open Service Access
(OSA); Parlay X Web Services; Part 4: Short Messaging (Parlay X 2).

Interface: SendSms
The endpoint for this interface is: http://<host>:<port>/parlayx21/sms/SendSms

Where values for host and port depend on the Network Gatekeeper deployment.

Par lay X 2 .1 In te r faces

8-6 Application Development Guide

If a backwards-compatible traffic path is used:

The parameter senderAddress is either of the format tel:<mailbox ID>\<mailbox
password>\<Sender name> or just <sender name> depending on how the application was
provisioned in Network Gatekeeper.

The priority parameter is not supported.

SendSms
Sends an SMS to one or more destinations.

SendSmsLogo
Sends an SMS Logo to one or more destinations.

Logos in SmartMessaging and EMS are supported. The image is not scaled.

Logos in the following raw image formats are supported:

bmp

gif

jpg

png

The logos are in pure black and white (gray scale not supported). Animated images are not
supported. Scaling is not supported.

If the logo shall be converted to SmartMessaging format, the image cannot be larger than 72x14
pixels.

If the logo shall be is sent in EMS format, the following rules apply:

If the image is 16x16 pixels, the logo is sent as an EMS small picture.

If the image is 32x32 pixels, the logo is sent as an EMS large picture.

If the image is of any other size, the logo is sent as an EMS variable picture.

Images up to 1024 pixels are supported.

SendSmsRingtone
Sends an SMS Ringtone to one or more destinations.

Par lay X 2 .1 Par t 4 : Sho r t messag ing

Application Development Guide 8-7

Ringtones can be in any of these formats:

RTX

SmartMessaging

EMS (iMelody)

GetSmsDeliveryStatus
Gets the delivery status of a previously sent SMS.

It is possible to query delivery status of an SMS only if a callback reference was not defined when
the SMS was sent. If a callback reference was defined, NotifySmsDeliveryReceipt is invoked by
Network Gatekeeper and the delivery status is not stored. If the delivery status is stored in
Network Gatekeeper, it is stored for a configurable period of time.

Interface: SmsNotification
This interface is implemented by an application, and the consumer of this interface is Network
Gatekeeper. The WSDL that defines the interface can be downloaded from:
http://<host>:<port>/parlayx21/sms/wsdls/parlayx_sms_notification_interfac
e_2_2.wsdl

http://<host>:<port>/parlayx21/sms/wsdls/parlayx_sms_notification_service_
2_2.wsdl

http://<host>:<port>/parlayx21/sms/wsdls/parlayx_sms_types_2_2.xsd

Where values for host and port depend on the Network Gatekeeper deployment.

NotifySmsReception
Sends an SMS that is received by Network Gatekeeper to an application given that the SMS
fulfills a set of criteria. The criteria is either defined by the application itself, using
startSmsNotification or defined using provisioning step in Network Gatekeeper.

Shortcode translation is applied.

NotifySmsDeliveryReceipt
Sends a delivery receipt that a previously sent SMS has been received by its destination. The
delivery receipt is propagated to the application given that the application provided a callback
reference when sending the SMS.

Par lay X 2 .1 In te r faces

8-8 Application Development Guide

Interface: ReceiveSms
The endpoint for this interface is: http://<host>:<port>/parlayx21/sms/ReceiveSms

Where values for host and port depend on the Network Gatekeeper deployment.

GetReceivedSms
Gets messages that have been received by Network Gatekeeper. The SMSs are fetched using a
registrationIdentifier used when the notification was registered using a provisioning step in
Network Gatekeeper.

If a backwards-compatible traffic path is used:

The format of the parameter registrationIdentifier is tel:<mailbox ID>\<mailbox password>

Mailbox ID and password are defined as a part of the provisioning steps by the Network
Gatekeeper administrator.

Example:

"tel:50000\apassword"

Received message are stored in Network Gatekeeper only for a configurable period of time

Interface: SmsNotificationManager
The endpoint for this interface is: http://<host>:<port>/parlayx21/sms/SmsNotificationManager

Where values for host and port depend on the Network Gatekeeper deployment.

StartSmsNotification
Initiates notifications to the application for a given service activation number and criteria.

Note: Service activation number may be provisioned to cater for a range of numbers via short
code translations.

Note: The equivalent to this operation may have been performed as an off-line provisioning
step by the Network Gatekeeper administrator.

If a backwards-compatible traffic path is used:

The format of the parameter smsServiceActivationNumber is tel:<mailbox
ID>;mboxPwd=<mailbox password>.

Mailbox ID and password are provisioned by the Network Gatekeeper administrator.

Par lay X 2 .1 Par t 4 : Sho r t messag ing

Application Development Guide 8-9

Example:

"tel:50000;mboxPwd=apassword"

StopSmsNotification
Ends a previously started notification.

Error Codes
The following error codes are defined for SVC0001: Service error:

See General error codes.

3001 Unknown error.

3002 Address is not in URI format.

3003 Invalid authentication information.

3004 Invalid mailbox

3005 Invalid criteria

3006 Invalid assignment ID.

3007 Invalid message folder.

3008 Invalid property.

3009 property not set.

3010 Mailbox is locked.

3011 No matching properties found.

3012 No multimedia message.

3013 Insufficient privileges.

3014 Message not removed.

3015 Invalid message ID.

3016 Message property size too large.

3017 Mailbox folder too large.

Par lay X 2 .1 In te r faces

8-10 Application Development Guide

3018 Failed to find transaction number.

3019 Properties array empty.

The following error codes are defined for POL0001: Policy error:

See General policy error codes.

200 Message event criteria not allowed for service provider.

201 Message event criteria not allowed for application.

Parlay X 2.1 Part 5: Multimedia messaging
This set of interfaces is compliant to ETSI ES 202 391-5 V1.2.1 (2006-12) Open Service Access
(OSA); Parlay X Web Services; Part 5: Multimedia Messaging (Parlay X 2).

Interface: SendMessage
The endpoint for this interface is:
http://<host>:<port>/parlayx21/multimedia_messaging/SendMessage

Where values for host and port depend on the Network Gatekeeper deployment.

SendMessage
Sends a multimedia message. The content of the message is sent as a SOAP attachment. E-mail
is not supported.

The parameter senderAddress is either of the format tel:<mailbox ID>\<mailbox
password>\<Sender name> or just <sender name> depending on how the application was
provisioned in Network Gatekeeper.

The priority parameter is not supported.

GetMessageDeliveryStatus
Gets the delivery status of a previously sent MMS.

It is possible to query delivery status of an MMS only if a callback reference was not defined
when the message was sent. I a callback reference was defined, NotifyMessageDeliveryReceipt
is invoked by Network Gatekeeper and the delivery status is not stored. If the delivery status is
stored in Network Gatekeeper, it is stored for a configurable period of time.

Note: Network Gatekeeper may be configured not to store delivery status for MMS.

Par lay X 2 .1 Par t 5 : Mu l t imedia messag ing

Application Development Guide 8-11

Interface: ReceiveMessage
The endpoint for this interface is:
http://<host>:<port>/parlayx21/multimedia_messaging/ReceiveMessage

Where the values for host and port depend on the Network Gatekeeper deployment.

GetReceivedMessages
Polls Network Gatekeeper for received messages.

The registrationIdentifier is required. The priority parameter is not supported.

The format of the parameter registrationIdentifier is tel:<mailbox ID>\<mailbox password>

Mailbox ID and password are defined as a part of the provisioning steps by the Network
Gatekeeper administrator.

Example:

"tel:50000\apassword"

Received message are stored in Network Gatekeeper only for a configurable period of time.

GetMessageURIs
Not supported.

GetMessage
Gets a specific message that was received by WLNG and belongs to the application.

Interface: MessageNotification
This interface is implemented by an application, and the consumer of this interface is Network
Gatekeeper. The WSDL that defines the interface can be downloaded from:
http://<host>:<port>/parlayx21/multimedia_messaging/wsdls/parlayx_mm_notif
ication_interface_2_4.wsdl

http://<host>:<port>/parlayx21/multimedia_messaging/wsdls/parlayx_mm_notif
ication_service_2_4.wsdl

http://<host>:<port>/parlayx21/multimedia_messaging/wsdls/parlayx_mm_types
_2_4.xsd

Where the values for host and port depend on the Network Gatekeeper deployment.

Par lay X 2 .1 In te r faces

8-12 Application Development Guide

NotifyMessageReception
Sends a notification to an application that an MMS destined for the application is received by
Network Gatekeeper.

NotifyMessageDeliveryReceipt
Sends a notification to an application that a previously sent MMS has been delivered to its
destination.

Note: Network Gatekeeper can be configured to support delivery notifications or not.

Interface: MessageNotificationManager
The endpoint for this interface is:
http://<host>:<port>/parlayx21/multimedia_messaging/MessageNotificationManager

Where the values for host and port depend on the Network Gatekeeper deployment.

StartMessageNotification
Initiates notifications to the application for a given service activation number and criteria.

The format of the parameter MessageServiceActivationNumber is

tel:<mailbox ID>;mboxPwd=<mailbox password>

Mailbox ID and password are provisioned by the Network Gatekeeper administrator.

Example:

"tel:50000;mboxPwd=apassword"

StopMessageNotification
Ends a previously started notification.

Error Codes
The following error codes are defined for SVC0001: Service error:

See General error codes.

3001 Unknown error.

3002 Address is not in URI format.

Par lay X 2 .1 Par t 5 : Mu l t imedia messag ing

Application Development Guide 8-13

3003 Invalid authentication information.

3004 Invalid mailbox

3005 Invalid criteria

3006 Invalid assignment ID.

3007 Invalid message folder.

3008 Invalid property.

3009 property not set.

3010 Mailbox is locked.

3011 No matching properties found.

3012 No multimedia message.

3013 Insufficient privileges.

3014 Message not removed.

3015 Invalid message ID.

3016 Message property size too large.

3017 Mailbox folder too large.

3018 Failed to find transaction number.

3019 Properties array empty.

The following error codes are defined for POL0001: Policy error:

See General policy error codes.

200 Message event criteria not allowed for service provider.

201 Message event criteria not allowed for application.

202 Multi media content type not allowed for service provider.

203 Multi media content type not allowed for application.

204 Message encoding type not allowed for service provider.

205 Message encoding type not allowed for application.

Par lay X 2 .1 In te r faces

8-14 Application Development Guide

206 Multimedia message size limit exceeded for service provider.

207 Multimedia message size limit exceeded for application.

208 Message size limit exceeded for service provider.

209 Message size limit exceeded for application.

Parlay X 2.1 Part 6: Payment
This set of interfaces is compliant to ETSI ES 202 391-6 V1.2.1 (2006-12), Open Service Access
(OSA); Parlay X Web Services; Part 6: Payment (Parlay X 2).

Network Gatekeeper does not manage Payment operations, it passes on the requests to a network
node that performs these operations.

Interface: AmountCharging
The endpoint for this interface is: http://<host>:<port>/parlayx21/payment/AmountCharging

Where the values for host and port depend on the Network Gatekeeper deployment.

ChargeAmount
Charges an amount from an account.

RefundAmount
Refunds an amount to an account.

Interface: VolumeCharging
The endpoint for this interface is: http://<host>:<port>/parlayx21/payment/VolumeCharging

Where the values for host and port depend on the Network Gatekeeper deployment.

ChargeVolume
Charges a volume from an account.

GetAmount
Converts a volume to an amount.

Par lay X 2 .1 Par t 6 : Payment

Application Development Guide 8-15

RefundVolume
Refunds a volume to an account.

Interface: ReserveAmountCharging
The endpoint for this interface is:
http://<host>:<port>/parlayx21/payment/ReserveAmountCharging

Where the values for host and port depend on the Network Gatekeeper deployment.

ReserveAmount
Reserves an amount.

ReserveAdditionalAmount
Reserves an additional amount.

ChargeReservation
Charge the reserved amount.

ReleaseReservation
Releases the reserved amount.

Interface: ReserveVolumeCharging
The endpoint for this interface is:
http://<host>:<port>/parlayx21/payment/ReserveVolumeCharging

Where the values for host and port depend on the Network Gatekeeper deployment.

GetAmount
Converts a given volume to an amount.

ReserveVolume
Reserves a volume.

Par lay X 2 .1 In te r faces

8-16 Application Development Guide

ReserveAdditionalVolume
Reserves an additional volume.

ChargeReservation
Charges a reserved volume.

ReleaseReservation
Releases a reserved volume.

Error Codes
The following error codes are defined for SVC0001: Service error:

See General error codes.

5001 Unknown error.

5002 Invalid amount.

5003 Invalid unit.

5004 Invalid session ID.

5005 Invalid user.

5006 Invalid account.

5007 Invalid request number.

5008 Invalid currency.

5009 Invalid volume.

The following error codes are defined for POL0001: Policy error:

See General policy error codes.

100 Amount not allowed for service provider.

101 Amount not allowed for application.

102 Currency not allowed for service provider.

103 Currency not allowed for application.

Par lay X 2 .1 Par t 8 : Te rmina l S ta tus

Application Development Guide 8-17

Parlay X 2.1 Part 8: Terminal Status
This set of interfaces is compliant to ETSI ES 202 391-8 V1.2.1 (2006-12), Open Service Access
(OSA); Parlay X Web Services; Part 8: Terminal Status (Parlay X 2).

Network Gatekeeper does not hold status information, it passes on the requests to a network node
that performs these operations.

Interface: TerminalStatus
The endpoint for this interface is:
http://<host>:<port>//parlayx21/terminal_status/TerminalStatus

Where values for host and port depend on the Network Gatekeeper deployment.

GetStatus
Gets the status of a terminal.

GetStatusForGroup
Gets the status of a group of terminals.

Group URIs are not supported

Interface: TerminalStatusNotificationManager
The endpoint for this interface is:
http://<host>:<port>/parlayx21/terminal_status/TerminalStatusNotificationManager

Where the values for host and port depend on the Network Gatekeeper deployment.

StartNotification
Initiates status notifications to the application for a given address and criteria. Only status
changes matching the criteria are notified to the application.

Group URIs are not supported in the parameter Addresses.

The parameters Frequency and Duration are not supported.

When the number of notifications is equal to the number given in parameter Count, the
subscription for notifications is removed.

Par lay X 2 .1 In te r faces

8-18 Application Development Guide

EndNotification
Ends a previously started notification.

Interface: TerminalNotification
This interface is implemented by an application, and the consumer of this interface is Network
Gatekeeper. The WSDL that defines the interface can be downloaded from:
http://<host>:<port>/parlayx21/terminal_status/wsdls/parlayx_terminal_stat
us_notification_interface_2_2.wsdl

http://<host>:<port>/parlayx21/terminal_status/wsdls/parlayx_terminal_stat
us_notification_service_2_2.wsdl

http://<host>:<port>/parlayx21/terminal_status/wsdls/parlayx_terminal_stat
us_types_2_2.xsd

Where values for host and port depend on the Network Gatekeeper deployment.

StatusNotification
Notifies an application about a change of status for a terminal.

StatusError
Notifies an application that the subscription for status notifications was cancelled by network
Gatekeeper.

StatusEnd
Notifies an application that no more status notifications are being sent to the application.

Error Codes
The following error codes are defined for SVC0001: Service error:

See General error codes.

The following error codes are defined for POL0001: Policy error:

See General policy error codes.

Par lay X 2 .1 Par t 9 : Te rmina l l ocat ion

Application Development Guide 8-19

Parlay X 2.1 Part 9: Terminal location
This set of interfaces is compliant to ETSI ES 202 391-9 V1.2.1 (2006-12), Open Service Access
(OSA); Parlay X Web Services; Part 9: Terminal Location (Parlay X 2).

Interface: TerminalLocation
The endpoint for this interface is:
http://<host>:<port>/parlayx21/terminal_location/TerminalLocation

Where values for host and port depend on the Network Gatekeeper deployment.

GetLocation
Gets the location for a terminal.

GetTerminalDistance
Gets the distance from a certain point to the location of a terminal.

GetLocationForGroup
Gets the location for one or more terminals.

Interface: TerminalLocationNotificationManager
The endpoint for this interface is:
http://<host>:<port>/parlayx21/terminal_location/TerminalLocationNotificationManager

Where values for host and port depend on the Network Gatekeeper deployment.

StartGeographicalNotification
Initiates location notifications to the application when one or more terminal changes their
location according to a criteria.

StartPeriodicNotification
Initiates location notifications to the application on a periodic basis.

EndNotification
Ends a previously started notification.

Par lay X 2 .1 In te r faces

8-20 Application Development Guide

Interface: TerminalLocationNotification
This interface is implemented by an application, and the consumer of this interface is Network
Gatekeeper. The WSDL that defines the interface can be downloaded from:
http://<host>:<port>/parlayx21/terminal_location/wsdls/parlayx_terminal_lo
cation_notification_interface_2_2.wsdl

http://<host>:<port>/parlayx21/terminal_location/wsdls/parlayx_terminal_lo
cation_notification_service_2_2.wsdl

http://<host>:<port>/parlayx21/terminal_location/wsdls/parlayx_terminal_lo
cation_types_2_2.xsdl

Where values for host and port depend on the Network Gatekeeper deployment.

LocationNotification
Notifies an application about a change of location for a terminal.

LocationError
Notifies an application that the subscription for location notifications was cancelled by network
Gatekeeper.

LocationEnd
Notifies an application that no more location notifications are being sent to the application.

Error Codes
The following error codes are defined for SVC0001: Service error:

See General error codes.

6001 Unknown error.

6002 Could not find a plug-in.

6003 Time-out in plug-in.

6004 Requested location information is not available.

6005 General problem in the underlying network.

6006 The network is unauthorized to obtain the location.

Par lay X 2 .1 Par t 10 : Ca l l hand l ing

Application Development Guide 8-21

6007 The application is not authorized to obtain the location.

6008 Unknown subscriber.

6009 The subscriber is currently not reachable.

6010 Failed to obtain the subscriber’s location.

6012 Timeout value not in accepted interval.

6013 NULL parameter not allowed.

6014 Periodic interval too low.

6015 Application is not activated.

6016 Invalid interface type.

6017 Requested accuracy can not be delivered.

6018 Requested response time can not be delivered.

6019 Invalid ID.

6020 Invalid reporting interval.

6022 Invalid trigger.

6023 Invalid trigger request.

6024 Invalid parameter.

The following error codes are defined for POL0001: Policy error:

See General policy error codes.

Parlay X 2.1 Part 10: Call handling
This set of interfaces is compliant to ETSI ES 202 391-10 V1.2.1 (2006-12), Open Service
Access (OSA); Parlay X Web Services; Part 10: Call Handling (Parlay X 2).

Interface: CallHandling
The endpoint for this interface is: http://<host>:<port>/parlayx21/call_handling/CallHandling

Where values for host and port depend on the Network Gatekeeper deployment.

Par lay X 2 .1 In te r faces

8-22 Application Development Guide

SetRules
Sets call handling rules for the destination of a call.

SetRulesForGroup
Sets call handling rules for multiple destinations of a call.

GetRules
Gets call handling rules for a given destination.

ClearRules
Clears all call handling rules for a the given destinations.

Error Codes
The following error codes are defined for SVC0001: Service error:

See General error codes.

The following error codes are defined for POL0001: Policy error:

See General policy error codes.

Parlay X 2.1 Part 11: Audio call
This set of interfaces is compliant to ETSI ES 202 391-11 V1.2.1 (2006-12), Open Service
Access (OSA); Parlay X Web Services; Part 11: Audio Call (Parlay X 2).

Interface: PlayAudio
The endpoint for this interface is: http://<host>:<port>/parlayx21/audio_call/AudioCall

Where values for host and port depend on the Network Gatekeeper deployment.

PlayTextMessage
Plays a message to the given destination address. The message is given as a text.

PlayAudioMessage
Plays a message to the given destination address. The message is given as an audio file.

Par lay X 2 .1 Par t 14 : P resence

Application Development Guide 8-23

PlayVoiceXmlMessage
Plays a message to the given destination address. The message is given as an VoiceXML file.

GetMessageStatus
Gets the status of a message, that is, if the message is currently being played, if it is has finished
playing and more.

EndMessage
Cancel or stops the playing of the message.

Error Codes
The following error codes are defined for SVC0001: Service error:

See General error codes.

The following error codes are defined for POL0001: Policy error:

See General policy error codes.

Parlay X 2.1 Part 14: Presence
This set of interfaces is compliant to ETSI ES 202 391-14 V1.2.1 (2006-12), Open Service
Access (OSA); Parlay X Web Services; Part 14: Presence (Parlay X 2).

Interface: PresenceConsumer
The endpoint for this interface is: http://<host>:<port>//parlayx21/presence/PresenceConsumer

Where values for host and port depend on the Network Gatekeeper deployment.

subscribePresence
Subscription to get presence information about a presentity.

For the parameter presentity, only SIP URI can be used. Group-URI is not supported

getUserPresence
Get presence information about a presentity.

For the parameter presentity, only SIP URI can be used. Group-URI is not supported

Par lay X 2 .1 In te r faces

8-24 Application Development Guide

startPresenceNotification
Initiates presence notifications to the application when one or more presence attributes changes
for a presentity.

For the parameter presentity, only SIP URI can be used. Group-URI is not supported

The parameter frequency is not supported. The application is notified when an update of presence
information is received from the network.

endPresenceNotification
Ends a previously started notification.

Interface: PresenceNotification
This interface is implemented by an application, and the consumer of this interface is Network
Gatekeeper. The WSDL that defines the interface can be downloaded from:
http://<host>:<port>/parlayx21/presence/wsdls/parlayx_presence_notificatio
n_interface_2_3.wsdl

http://<host>:<port>/parlayx21/presence/wsdls/parlayx_presence_notificatio
n_service_2_3.wsdl

http://<host>:<port>/parlayx21/presence/wsdls/parlayx_presence_types_2_3.x
sd

Where values for host and port depend on the Network Gatekeeper deployment.

statusChanged
Notifies an application about a change of presence attributes for a presentity.

statusEnd
Notifies an application that no more notifications will be sent to the application.

notifySubscription
Notifies an application that the presentity has handled the request for presence information.

subscriptionEnded
Notifies an application that the subscription for presence information has ended.

Par lay X 2 .1 Par t 14 : P resence

Application Development Guide 8-25

Interface: PresenceSupplier
This interface is not supported.

publish
Not supported.

getOpenSubscriptions
Not supported.

updateSubscriptionAuthorization
Not supported.

getMyWatchers
Not supported.

getSubscribedAttributes
Not supported.

blockSubscription
Not supported.

Error Codes
The following error codes are defined for SVC0001: Service error:

See General error codes.

PRESENCE-000001Failed to use the default duration for a notification.

PRESENCE-000002 Failed to use the default count for a notification.

PRESENCE-000003 The application have no SIP-URI mapping configured.

PRESENCE-000004 Internal error.

The following error codes are defined for POL0001: Policy error:

See General policy error codes.

Par lay X 2 .1 In te r faces

8-26 Application Development Guide

About notifications
When an application has started a notification, the notification is persisted. This means that if an
application has started a notification and destroys the session or logs out, the notification is still
registered and matching notifications are sent to the application when it connects to Network
Gatekeeper.

General error codes
The following are general error codes for SVC0001: Service error:

Null sessionID (loginTicket) expired.

WNG-000000 No error.

WNG-000001 Unknown error.

WNG-000002 Storage service error.

PLG-000001 Could not find remote ejb home in access tier.

PLG-000002 Could not create the ejb.

PLG-000003 Could not access callback ejb.

SIP-000001 Could not find remote ejb home.

SIP-000002 Could not create the ejb.

SIP-000003 Could not access remote ejb.

SIP-000004 Could not create the SIP session.

SIP-000005 Failed to send sip message.

SIP-000006 Internal sip stack error.

OSA-000001 Invalid network state.

OSA-000002 Invalid interface type.

OSA-000003 Invalid event type.

OSA-000004 Unsupported address plan.

OSA-000005 Communication failure.

Genera l po l i c y e r ro r codes

Application Development Guide 8-27

10000 Unknown error.

10001 Database errors.

10002 CORBA error, for example related to time-outs.

10003 System error, for example related to Network Gatekeeper Core.

10004 System severely overloaded.

10005 Policy deny.

10006 Invalid EndUserIdentifier.

10007 Invalid requester.

10008 Invalid service code.

10009 Invalid application session.

10010 No available plug-in.

10011 Invalid account.

General policy error codes
The following are general error codes for POL0001: Policy error:

0 Unspecified.

1 No service contract for service provider.

2 No service contract for application.

3 Service contract out of date application.

4 Service contract out of date for application.

5 Blacklisted method for service provider.

6 Blacklisted method for application.

7 Request limit reached for service provider.

8 Request limit reached for application.

11 Service provider is deactivated.

Par lay X 2 .1 In te r faces

8-28 Application Development Guide

12 Application account is deactivated.

13 Quota limit reached for service provider.

14 Quota limit reached for application.

Code examples
Below are some code examples that illustrate how to use the Parlay X interfaces.

Example: sendSMS
Below is an example of sending an SMS.

Listing 7-1 SendSMS example

org.csapi.schema.parlayx.sms.send.v2_2.local.SendSms request =

new org.csapi.schema.parlayx.sms.send.v2_2.local.SendSms();

SimpleReference sr = new SimpleReference();

sr.setEndpoint(new
URI("http://localhost:8111/SmsNotificationService/services/SmsNotification?WSD
L"));

sr.setCorrelator("cor188");

sr.setInterfaceName("InterfaceName");

ChargingInformation charging = new ChargingInformation();

charging.setAmount(new BigDecimal("1.1"));

charging.setCode("qwerty");

charging.setCurrency("USD");

charging.setDescription("some charging info");

sendInf.setCharging(charging);

URI[] uri = new URI[1];

uri[0] = new URI("1234");

request.setAddresses(uri);

Code examples

Application Development Guide 8-29

request.setCharging(charging);

request.setReceiptRequest(sr);

request.setMessage("we are testing sms!");

request.setSenderName(“6001”);

org.csapi.schema.parlayx.sms.send.v2_2.local.SendSmsResponse response =

smport.sendSms(request);

String sendresult = response.getResult();

System.out.println("result: " + sendresult);

Example: startSmsNotification
Below is an example on using startSmsNotification.

Listing 7-2 startSmsNotification example

org.csapi.schema.parlayx.sms.notification_manager.v2_3.local.StartSmsNotificat
ion parameters =

new
org.csapi.schema.parlayx.sms.notification_manager.v2_3.local.StartSmsNotificat
ion();

parameters.setCriteria("hello");

SimpleReference sr = new SimpleReference();

sr.setEndpoint(new
URI("http://localhost:8111/SmsNotificationService/services/SmsNotification?WSD
L"));

sr.setCorrelator("cor189");

sr.setInterfaceName("interfaceName");

parameters.setReference(sr);

URI uri = new URI("tel:6001;mboxPwd=6001");

parameters.setSmsServiceActivationNumber(uri);

Par lay X 2 .1 In te r faces

8-30 Application Development Guide

port.startSmsNotification(parameters);

Example: getReceivedSms
Below is an example on polling for SMSes using getReceivedSms.

Listing 7-3 getReceivedSms example

org.csapi.schema.parlayx.sms.receive.v2_2.local.GetReceivedSms parameters =

new org.csapi.schema.parlayx.sms.receive.v2_2.local.GetReceivedSms();

parameters.setRegistrationIdentifier("1");

org.csapi.schema.parlayx.sms.receive.v2_2.local.GetReceivedSmsResponse
response =

port.getReceivedSms(parameters);

org.csapi.schema.parlayx.sms.v2_2.SmsMessage[] msgs =

response.getResult();

if(msgs != null) {

for(org.csapi.schema.parlayx.sms.v2_2.SmsMessage msg : msgs) {

System.out.println(msg.getMessage());

}

}

Example: sendMessage
Below is an example on sending an MMS.

Listing 7-4 sendMessage example

org.csapi.schema.parlayx.multimedia_messaging.send.v2_4.local.SendMessage
request =

Code examples

Application Development Guide 8-31

new
org.csapi.schema.parlayx.multimedia_messaging.send.v2_4.local.SendMessage();

ChargingInformation charging = new ChargingInformation();

charging.setAmount(new BigDecimal("1.1"));

charging.setCode("qwerty");

charging.setCurrency("USD");

charging.setDescription("some charging info");

sendInf.setCharging(charging);

SimpleReference sr = new SimpleReference();

if(getProperty("notification_mt").equalsIgnoreCase("true")) {

sr.setEndpoint(new
URI(getProperty(ClientConstants.NOTIFICATION_LISTENER_URL)));

sr.setCorrelator(getProperty("correlator"));

sr.setInterfaceName(getProperty("interfacename"));

}

URI[] uri = new URI[1];

uri[0] = new URI("1234");

request.setAddresses(uri);

request.setCharging(charging);

request.setPriority(MessagePriority.fromString("Default"));

request.setReceiptRequest(sr);

request.setSenderAddress("6001");

request.setSubject("subject");

org.csapi.schema.parlayx.multimedia_messaging.send.v2_4.local.SendMessageRespo
nse response =

smport.sendMessage(request);

String sendresult = response.getResult();

System.out.println("sendresult: " + sendresult);

Par lay X 2 .1 In te r faces

8-32 Application Development Guide

Example: getReceivedMessages and getMessage
Below is an example on polling for a received MMS.

Listing 7-5 getReceivedMessages and getMessage example

org.csapi.schema.parlayx.multimedia_messaging.receive.v2_4.local.GetReceivedMe
ssages parameters =

new
org.csapi.schema.parlayx.multimedia_messaging.receive.v2_4.local.GetReceivedMe
ssages();

parameters.setPriority(org.csapi.schema.parlayx.multimedia_messaging.v2_4.Mess
agePriority.fromString("Default"));

parameters.setRegistrationIdentifier("2");

org.csapi.schema.parlayx.multimedia_messaging.receive.v2_4.local.GetReceivedMe
ssagesResponse result =

port.getReceivedMessages(parameters);

org.csapi.schema.parlayx.multimedia_messaging.v2_4.MessageReference[] refs =

result.getResult();

if(refs != null) {

for(org.csapi.schema.parlayx.multimedia_messaging.v2_4.MessageReference ref :
refs) {

String id = ref.getMessageIdentifier();

org.csapi.schema.parlayx.multimedia_messaging.receive.v2_4.local.GetMessag
e p2 =

new
org.csapi.schema.parlayx.multimedia_messaging.receive.v2_4.local.GetMessage();

p2.setMessageRefIdentifier(id);

port.getMessage(p2);

}

}

Example : ge tRece ivedMessages and getMessage

Application Development Guide 8-33

Example: getLocation
Below is an example of getting the location of a terminal.

Listing 7-6 getLocation example

org.csapi.schema.parlayx.terminal_location.v2_2.local.GetLocation parameters =

new org.csapi.schema.parlayx.terminal_location.v2_2.local.GetLocation();

parameters.setAcceptableAccuracy(5);

parameters.setAddress(new URI("1234"));

parameters.setRequestedAccuracy(5);

TimeMetric maximumAge = new TimeMetric();

maximumAge.setMetric(TimeMetrics.fromString("Hour"));

maximumAge.setUnits(10);

parameters.setMaximumAge(maximumAge);

TimeMetric responseTime = new TimeMetric();

responseTime.setMetric(TimeMetrics.fromString("Hour"));

responseTime.setUnits(1);

parameters.setResponseTime(responseTime);

DelayTolerance tolerance = DelayTolerance.fromString("NoDelay");

parameters.setTolerance(tolerance);

org.csapi.schema.parlayx.terminal_location.v2_2.local.GetLocationResponse
response =

port.getLocation(parameters);

org.csapi.schema.parlayx.terminal_location.v2_2.LocationInfo result =

response.getResult();

System.out.println("accuracy : " + result.getAccuracy());

System.out.println("altitude : " + result.getAltitude().floatValue());

System.out.println("latitude : " + result.getLatitude());

Par lay X 2 .1 In te r faces

8-34 Application Development Guide

System.out.println("longitude : " + result.getLongitude());

System.out.println("timestamp : " + result.getTimestamp());

Application Development Guide 9-1

C H A P T E R 8

Access Web Service (deprecated)

Note: The Access Web Service is deprecated and should only be used by older, existing
applications, in order to provide a migration path for these applications. WebLogic Server
Web Services security cannot be used when using the Access Web Service and must be
turned off in WebLogic Network Gatekeeper to be able to use the Access Web Service.

The Access Web Service contains operations for establishing a session with Network Gatekeeper,
changing the application’s password, querying the amount of time remaining in the session,
refreshing the session, and terminating the session.

Before an application can perform any operations on the Parlay X or Extended Web Services
interfaces, a session must be established with Network Gatekeeper. When a session is established,
a session ID (loginTicket) is returned which must be used in each subsequent operation towards
Network Gatekeeper.

The loginTicket shall be present in the SOAP Header element Security, see below. Once the login
ticket is acquired, it must be sent in the SOAP header together with a username/password
combination each time a Web Service method is invoked. See Examples.

Endpoint
The WSDL for the Access Web Service can be found at
http://<host:port>/parlayx21/access/Access

where host and port depend on the Network Gatekeeper deployment.

Access Web Serv ice (deprecated)

9-2 Application Development Guide

Interface: Access
Operations to establish a session, change a password, get the remaining lifetime of a session,
refresh a session and destroy a session.

Operation: applicationLogin
Logs the application into the WebLogic Network Gatekeeper and retrieves a login ticket. This
login ticket represents the session and must be added to the SOAP header of every subsequent
request that the application makes to the Network Gatekeeper.

In most cases, the login ticket is only valid for a certain time interval, set by the operator. Once
the time period has expired, the application has a second operator-set time period to refresh the
login ticket. Until the ticket is refreshed, the application can not make any other requests. The
operation used to refresh the ticket is refreshLoginTicket, see Operation: refreshLoginTicket. If
the ticket is not refreshed during this second period, the session is destroyed, and the application
must log back in.

Input message: applicationLoginRequest

Part name Part type Optional Description

serviceProvi
der

s1:String N ID of the service provider as given by the operator or
the service provider.

application s1:String N ID of the application as given by the operator or the
service provider.

applicationIn
stanceGroup

s1:String N ID of the application instance group as given by the
operator or the service provider.

password s1:String N Password for the application as given by the operator
or the service provider. Note that this may also have
been changed by the by the application provider.

In te r face : Access

Application Development Guide 9-3

Output message: applicationLoginResponse

Referenced faults
AccessException

GeneralException

Operation: applicationLogout
Logs an application out of the Network Gatekeeper. Destroys the login session and the
corresponding login ticket.

Input message: applicationLogoutRequest

Output message: applicationLogoutResponse

Part name Part type Optional Description

applicationL
oginReturn

s1:string N ID of the login-session. This ID is used for each
request towards WebLogic Network Gatekeeper. It
must be included in the SOAP header of every
subsequent request.

If an application logs in several times, the same ID is
returned.

Part name Part type Optional Description

loginTicket s1:string N ID of the login-session. The login ticket is retrieved
when the application logs in or when it refreshes the
login ticket.

Part name Part type Optional Description

- - - -

Access Web Serv ice (deprecated)

9-4 Application Development Guide

Referenced faults
AccessException

GeneralException

Operation: changeApplicationPassword
Changes the password for an application.

Input message: changeApplicationPasswordRequest

Output message: changeApplicationPasswordResponse

Referenced faults
AccessException

GeneralException

Operation: getLoginTicketRemainingLifeTime
Reports the remaining amount of time the login ticket is valid.

Part name Part type Optional Description

loginTicket s1:string N ID of the login-session. The login ticket is retrieved
when the application logs in or when it refreshes the
login ticket.

oldPassword s1:string N The current password.

newPasswor
d

s1:string N The new password.

Part name Part type Optional Description

- - - -

In te r face : Access

Application Development Guide 9-5

Input message: getLoginTicketRemainingLifeTimeRequest

Output message: getLoginTicketRemainingLifeTimeReturn

Referenced faults
AccessException

GeneralException

Operation: refreshLoginTicket
Refreshes the login ticket. This refreshed login ticket must be provided in the SOAP header in all
subsequent method calls. The login ticket can be refreshed for a limited, operator-set time interval
after the previous login ticket has expired. If this time interval expires, the application must login
again. Network Gatekeeper expiration timers are reset, but the same login ticket is returned.

Part name Part type Optional Description

sessionId s1:string N ID of the login-session. The login ticket is retrieved
when the application logs in or when it refreshes the
login ticket.

Part name Part type Optional Description

getLoginTic
ketRemainin
gLifeTimeR
eturn

s1:int N The time until the login ticket expires. The time is
given in minutes.

Access Web Serv ice (deprecated)

9-6 Application Development Guide

Input message: refreshLoginTicketRequest

Output message: refreshLoginTicketResponse

Referenced faults
AccessException

GeneralException

Part name Part type Optional Description

loginTicket s1:string N The ID of an established session.

serviceProvi
derID

s1:string N ID of the service provider as given by the operator or
the service provider.

applicationI
D

s1:string N ID of the application as given by the operator or the
service provider.

applicationIn
stanceGroup
ID

s1:string N ID of the application instance group as given by the
operator or the service provider.

password s1:string N Password for the application as given by the operator
or the service provider. Note that this may also have
been changed by the by the application provider.

Part name Part type Optional Description

refreshLogin
TicketReturn

s1:string N The refreshed ID of the login-session. This ID is used
in each request towards WebLogic Network
Gatekeeper. It must be included in the SOAP header
of every subsequent request.

Examples

Application Development Guide 9-7

Exceptions

AccessException
Exceptions of this type are raised when there are error conditions related to the Access Web
Service. Other error conditions are reported using the exception GeneralException.

GeneralException
Exceptions of this type are raised when the applications session has expired or there are
communication problems with the underlying platform.

Examples

Defining the security header
The loginTicket shall be present in the SOAP Header element Security, see below. Once the login
ticket is acquired, it must be sent in the SOAP header together with a username/password
combination each time a Web Service method is invoked.

Network Gatekeeper 2.2 used a non-standard security header, as described below.

The loginTicket is supplied in the Password attribute.

Part name Part type Optional Description

exceptionMe
ssage

xsd:string Y Description of exception.

errorCode xsd:int N Code defining the exception.

Part name Part type Optional Description

exceptionMe
ssage

xsd:string Y Description of exception.

errorCode xsd:int N Code defining the exception.

Access Web Serv ice (deprecated)

9-8 Application Development Guide

Listing 8-1 Network Gatekeeper 2.2 security header (example)

<soapenv:Header>

<ns1:Security ns1:Username="app:-2810834922008400383"

ns1:Password="app:-2810834922008400383" soapenv:actor="wsse:PasswordToken"

soapenv:mustUnderstand="1"
xmlns:ns1="http://localhost:6001/parlayx21/terminal_location/TerminalLocat

ion">

</ns1:Security>

</soapenv:Header>

Below is an example of how to add a Network Gatekeeper 2.2 security header using Axis. The
Username attribute must be present but is not used. The header must be added to the Web Service
request.

Listing 8-2 Add a Network Gatekeeper 2.2 security header (Axis)

org.apache.axis.message.SOAPHeaderElement header =

 new org.apache.axis.message.SOAPHeaderElement(wsdlUrl, "Security", "");

header.setActor("wsse:PasswordToken");

 header.addAttribute(wsdlUrl, "Username", ""+userName);

 header.addAttribute(wsdlUrl, "Password", ""+loginTicket);

 header.setMustUnderstand(true)

	Document Roadmap
	Document Scope and Audience
	Guide to This Document
	Terminology
	Related Documentation

	Creating Applications for WebLogic Network Gatekeeper
	Basic Concepts
	Traffic Paths
	Traffic Types
	Application-initiated Traffic
	Network-triggered Traffic

	Management Structures

	Functional Overview
	Application Testing Workflow

	Interacting with Network Gatekeeper
	The SOAP Header
	Authentication
	SOAP Header Element for Authentication

	Session Management
	Service Correlation
	Parameter Tunneling

	SOAP attachments
	Managing SOAP headers and SOAP attachments programmatically

	Using WorkShop Controls with Network Gatekeeper
	1. Create client Web Service.
	2. Add the Service Control reference.
	3. Add the code described below to the client code which calls the control method, as, for example sendSMS.

	Session management Web Service
	Interface: SessionManager
	Operation: getSession
	Input message: getSession
	Output message: getSessionResponse
	Referenced faults

	Operation: changeApplicationPassword
	Input message: changeApplicationPassword
	Output message: changeApplicationPasswordResponse
	Referenced faults

	Operation: getSessionRemainingLifeTime
	Input message: getSessionRemainingLifeTime
	Output message: getSessionRemainingLifeTimeResponse
	Referenced faults

	Operation: refreshSession
	Input message: refreshSession
	Output message: refreshSessionResponse
	Referenced faults

	Operation: destroySession
	Input message: destroySession
	Output message: destroySessionResponse
	Referenced faults

	Examples

	Extended Web Services WAP Push
	Namespaces
	Endpoint
	Sequence Diagram
	XML Schema data type definition
	PushResponse structure
	ResponseResult structure
	ReplaceMethod enumeration
	MessageState enumeration

	Web Service interface description
	Interface: PushMessage
	Operation: sendPushMessage

	Interface: PushMessageNotification
	Operation: resultNotificationMessage

	WSDLs
	Error Codes
	Sample Send WAP Push Message

	Parlay X 2.1 Interfaces
	Parlay X 2.1 Third Party Call
	Interface: ThirdPartyCall
	MakeCall
	GetCallInformation
	EndCall
	CancelCall

	Error Codes

	Parlay X 2.1 Part 3: Call Notification
	Interface: CallDirection
	HandleBusy
	HandleNotReachable
	HandleNoAnswer
	HandleCalledNumber

	Interface: CallNotification
	NotifyBusy
	NotifyNotReachable
	NotifyNoAnswer
	NotifyCalledNumber

	Interface: CallNotificationManager
	StartCallNotification
	StopCallNotification

	Interface: CallDirectionManager
	StartCallDirectionNotification
	StopCallDirectionNotification

	Error Codes

	Parlay X 2.1 Part 4: Short messaging
	Interface: SendSms
	SendSms
	SendSmsLogo
	SendSmsRingtone
	GetSmsDeliveryStatus

	Interface: SmsNotification
	NotifySmsReception
	NotifySmsDeliveryReceipt

	Interface: ReceiveSms
	GetReceivedSms

	Interface: SmsNotificationManager
	StartSmsNotification
	StopSmsNotification

	Error Codes

	Parlay X 2.1 Part 5: Multimedia messaging
	Interface: SendMessage
	SendMessage
	GetMessageDeliveryStatus

	Interface: ReceiveMessage
	GetReceivedMessages
	GetMessageURIs
	GetMessage

	Interface: MessageNotification
	NotifyMessageReception
	NotifyMessageDeliveryReceipt

	Interface: MessageNotificationManager
	StartMessageNotification
	StopMessageNotification

	Error Codes

	Parlay X 2.1 Part 6: Payment
	Interface: AmountCharging
	ChargeAmount
	RefundAmount

	Interface: VolumeCharging
	ChargeVolume
	GetAmount
	RefundVolume

	Interface: ReserveAmountCharging
	ReserveAmount
	ReserveAdditionalAmount
	ChargeReservation
	ReleaseReservation

	Interface: ReserveVolumeCharging
	GetAmount
	ReserveVolume
	ReserveAdditionalVolume
	ChargeReservation
	ReleaseReservation

	Error Codes

	Parlay X 2.1 Part 8: Terminal Status
	Interface: TerminalStatus
	GetStatus
	GetStatusForGroup

	Interface: TerminalStatusNotificationManager
	StartNotification
	EndNotification

	Interface: TerminalNotification
	StatusNotification
	StatusError
	StatusEnd

	Error Codes

	Parlay X 2.1 Part 9: Terminal location
	Interface: TerminalLocation
	GetLocation
	GetTerminalDistance
	GetLocationForGroup

	Interface: TerminalLocationNotificationManager
	StartGeographicalNotification
	StartPeriodicNotification
	EndNotification

	Interface: TerminalLocationNotification
	LocationNotification
	LocationError
	LocationEnd

	Error Codes

	Parlay X 2.1 Part 10: Call handling
	Interface: CallHandling
	SetRules
	SetRulesForGroup
	GetRules
	ClearRules

	Error Codes

	Parlay X 2.1 Part 11: Audio call
	Interface: PlayAudio
	PlayTextMessage
	PlayAudioMessage
	PlayVoiceXmlMessage
	GetMessageStatus
	EndMessage

	Error Codes

	Parlay X 2.1 Part 14: Presence
	Interface: PresenceConsumer
	subscribePresence
	getUserPresence
	startPresenceNotification
	endPresenceNotification

	Interface: PresenceNotification
	statusChanged
	statusEnd
	notifySubscription
	subscriptionEnded

	Interface: PresenceSupplier
	publish
	getOpenSubscriptions
	updateSubscriptionAuthorization
	getMyWatchers
	getSubscribedAttributes
	blockSubscription

	Error Codes

	About notifications
	General error codes
	General policy error codes
	Code examples
	Example: sendSMS
	Example: startSmsNotification
	Example: getReceivedSms
	Example: sendMessage
	Example: getLocation

	Access Web Service (deprecated)
	Interface: Access
	Operation: applicationLogin
	Input message: applicationLoginRequest
	Output message: applicationLoginResponse
	Referenced faults

	Operation: applicationLogout
	Input message: applicationLogoutRequest
	Output message: applicationLogoutResponse
	Referenced faults

	Operation: changeApplicationPassword
	Input message: changeApplicationPasswordRequest
	Output message: changeApplicationPasswordResponse
	Referenced faults

	Operation: getLoginTicketRemainingLifeTime
	Input message: getLoginTicketRemainingLifeTimeRequest
	Output message: getLoginTicketRemainingLifeTimeReturn
	Referenced faults

	Operation: refreshLoginTicket
	Input message: refreshLoginTicketRequest
	Output message: refreshLoginTicketResponse
	Referenced faults

	Exceptions
	AccessException
	GeneralException

	Examples
	Defining the security header

