
BEAWebLogic
Network
Gatekeeper™

Architectural Overview

Version 3.0™
Document Revised: 14 September 2007

Copyright
Copyright © 1995-2007 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2007 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Interaction, BEA AquaLogic Interaction Analytics, BEA
AquaLogic Interaction Collaboration, BEA AquaLogic Interaction Content Services, BEA AquaLogic Interaction Data
Services, BEA AquaLogic Interaction Integration Services, BEA AquaLogic Interaction Process, BEA AquaLogic
Interaction Publisher, BEA AquaLogic Interaction Studio, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Kodo, BEA Liquid Data for
WebLogic, BEA Manager, BEA MessageQ, BEA SALT, BEA Service Architecture Leveraging Tuxedo, BEA WebLogic
Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA WebLogic Enterprise
Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA WebLogic Mobility Server,
BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API,
BEA WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Real Time, BEA
WebLogic RFID Compliance Express, BEA WebLogic RFID Edge Server, BEA WebLogic RFID Enterprise Server,
BEA WebLogic Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic WorkGroup Edition, BEA
Workshop for WebLogic Platform, BEA Workshop JSP, BEA Workshop JSP Editor, BEA Workshop Struts, BEA
Workshop Studio, Dev2Dev, Liquid Computing, and Think Liquid are trademarks of BEA Systems, Inc. Accelerated
Knowledge Transfer, AKT, BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA SOA
Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

 Architectural Overview i

Contents

1. Document Roadmap
Document Scope and Audience . 1-1

Guide to This Document . 1-2

Terminology . 1-3

Related Documentation. 1-6

2. Introducing WebLogic Network Gatekeeper
Overview . 2-1

What Network Gatekeeper Provides . 2-2

APIs based on well-known Web Services standards . 2-2

Robust security. 2-2

Common access control for both internal and 3rd party applications 2-3

Policy-based execution for flexible application authorization control 2-3

Access to many standard telecom network service capabilities 2-3

Access to WebLogic SIP server for connectivity to SIP network infrastructure . . . 2-3

Built-in network routing . 2-3

Extensible architecture. 2-4

Enhanced network protection. 2-4

Integration with Operation Support Systems . 2-4

Integration with Billing and Charging Systems. 2-4

Carrier grade and fully scalable architecture . 2-4

Application Development Tools . 2-4

ii Architectural Overview

Partner Relationship Management Interfaces . 2-5

3. Software Architecture Overview
Overview . 3-1

Traffic Paths . 3-2

Access Tier . 3-3

Network Tier . 3-3

Network Gatekeeper Core and Core Services . 3-4

Storage . 3-4

4. Introducing Traffic Paths
Overview . 4-2

How it works . 4-2

Typical Application-initiated Traffic Flow . 4-3

Typical Network-initiated Traffic Flow . 4-5

Platform-wide Functionality. 4-6

Service Level Agreements . 4-6

Policy Enforcement and Policy Decision Points. 4-7

Security . 4-9

Authentication . 4-10

Authorization and service access . 4-10

Confidentiality and integrity . 4-10

Auditing and non-repudiation . 4-10

Network node authentication . 4-10

Database integrity . 4-11

Administrative access . 4-11

Events, Alarms, and Charging . 4-11

Event handling in the Access Tier . 4-12

 Architectural Overview iii

Event handling in the Network Tier . 4-12

Alarm handling. 4-14

Charging Data Records. 4-16

Statistics and Transaction Units (Licensing) . 4-18

Short Code Translation . 4-18

Traffic Path Types . 4-18

Parameter Tunneling (MP01) . 4-19

5. Developing and Testing Applications
Overview. 5-1

References. 5-3

Tools . 5-3

6. Managing Application Service Providers
Overview. 6-1

The Administration Model . 6-2

Partner Relationship Management Interfaces . 6-4

Other Tasks Associated with Administering Service Providers. 6-4

7. Managing Network Gatekeeper: OAM
Overview. 7-1

The WLS and Network Gatekeeper Management Console . 7-2

OAM Tasks Overview . 7-2

OSS Integration. 7-3

8. Charging
Overview. 8-1

CDR-based Charging . 8-1

Data Generation. 8-2

iv Architectural Overview

Content Based Charging and Accounting . 8-2

Billing System Integration . 8-2

Billing gateways . 8-2

CDR database . 8-3

Payment plug-in . 8-4

9. Redundancy, Load Balancing, and High Availability
Tiering . 9-2

Traffic Management Inside Network Gatekeeper . 9-3

Application-initiated Traffic . 9-3

Network-triggered Traffic . 9-4

Registering Notifications with Network Nodes . 9-7

Network Node Supports Primary and Secondary Notification 9-8

Network Node Supports Only Single Notification . 9-9

Network Configuration. 9-11

Geographic Redundancy . 9-12

10. Service Extensibility
Overview . 10-1

The Extension Toolkit . 10-1

11. Backwards Compatibility 2.2 to 3.0
Web Services-based Application Clients . 1-1

Interfaces . 1-2

Authentication . 1-2

External Listeners. 1-2

Extension Traffic Paths and Plug-ins . 1-2

Overview of the Internal Structure of Backwards Compatible Traffic Paths 1-3

 Architectural Overview v

A. Standards and Specifications
Application-facing interfaces .A-1

Parlay X 2.1 .A-1

Extended Web Services .A-2

Network protocol plug-ins .A-3

Security .A-7

B. Connecting to OSA/Parlay Gateways
Defining Connections . B-1

Connection lookup . B-3

C. Technical Specifications
Supported Configurations . C-1

Overview of Network Gatekeeper Base platform . C-1

Common configuration requirements . C-1

HP-UX 11.23 on Intel Itanium2 . C-3

Configuration requirements for Access tier servers . C-3

Configuration requirements for Network tier servers C-3

Configuration requirements for Database tier servers C-5

Linux Redhat AS4 on Intel Xeon . C-5

Configuration requirements Access tier servers. C-6

Configuration requirements for Network tier servers C-6

Configuration requirements for Database tier servers C-8

Solaris 9 or Solaris 10 on Sun UltraSPARC . C-8

Configuration requirements Access tier servers. C-9

Configuration requirements for Network tier servers C-9

Configuration requirements for Database tier servers C-10

Supported databases . C-10

vi Architectural Overview

Load balancer and tier 3 switches . C-10

Firewall . C-11

Disc storage. C-11

General characteristics . C-11

Programmable Interfaces . C-12

Architectural Overview 1-1

C H A P T E R 1

Document Roadmap

The following sections describe both the audience for and organization of this document:

Document Scope and Audience

Guide to This Document

Terminology

Related Documentation

Document Scope and Audience
This document provides a high-level account of WebLogic Network Gatekeeper, its structure and
capabilities, consisting of:

an overview of how it works and what benefits it provides

an explanation of the interfaces it offers third-party application developers, including a
description of the tools it furnishes for development and testing

a summary view of its internals, including:

– service capabilities

– OAM mechanisms

– policy enforcement

– security

Document Roadmap

1-2 Architectural Overview

– billing capabilities

– integration with PRM/CRMs and OSS tools

– product extensibility

a description of supported hardware architecture and components

a description of software architecture

The document will be of use to third-party application developers who wish to integrate
telephony-based functionality into their products and operator-based system developers who
wish to extend the functionality of the WebLogic Network Gatekeeper or to integrate it with PRM
and/or OSS tools. It will also be of use to system administrators charged with installing and
maintaining WebLogic Network Gatekeeper. Managers, support engineers, and sales and
marketing people will also find information of value here.

Guide to This Document
The document contains the following chapters:

Chapter 1, “Document Roadmap.” This chapter

Chapter 2, “Introducing WebLogic Network Gatekeeper.” An overview of the benefits
Network Gatekeeper provides both application developers and network operators

Chapter 3, “Software Architecture Overview.” A high level look at Network Gatekeeper’s
internal architecture

Chapter 4, “Introducing Traffic Paths.” An overview of the traffic path functionality

Chapter 5, “Developing and Testing Applications.” The interfaces offered to third-party
developers and the tools available to aid in testing and development

Chapter 6, “Managing Application Service Providers.” An overview of the administration
model for third-party application service providers

Chapter 7, “Managing Network Gatekeeper: OAM.”The Network Gatekeeper’s application
management tool and the main Operation, Administration and Maintenance (OAM) tasks.
Integrating with OSS

Chapter 8, “Charging.” Supported charging types. Integrating WebLogic Network
Gatekeeper’s internal charging mechanism with external billing and settlement systems

Te rmino logy

Architectural Overview 1-3

Chapter 9, “Redundancy, Load Balancing, and High Availability.” Fault tolerance, high
availability, and load balancing mechanisms from an application and network perspective.
Geo-redundancy.

Chapter 10, “Service Extensibility.” Extending WebLogic Network Gatekeeper by creating
modules to support additional application service providers and/or network connectivity
interfaces

Chapter 11, “Backwards Compatibility 2.2 to 3.0.”Overview of the relationship between
Network Gatekeeper 2.2 and 3.0

Appendix A, “Standards and Specifications.” Detailed description of the standards and
specifications supported by Network Gatekeeper’s application-facing interfaces, network
facing protocols, and security mechanisms

Appendix B, “Connecting to OSA/Parlay Gateways.” Overview of how WebLogic
Network Gatekeeper connects to OSA/Parlay Gateways

Appendix C, “Technical Specifications.” Detailed description of supported configurations

Terminology
The following terms and acronyms are used in this document:

Account—A registered application or service provider, associated with an SLA

Account group—Multiple registered service providers or services which share a common
SLA

Administrative User—Someone who has privileges on the Network Gatekeeper
management tool. This person has an administrative user name and password

Alarm—The result of an unexpected event in the system, often requiring corrective action

API—Application Programming Interface

Application—A TCP/IP based, telecom-enabled program accessed from either a telephony
terminal or a computer

Application-facing Interface—The Application Services Provider facing interface

Application Service Provider—An organization offering application services to end users
through a telephony network

AS—Application Server

Document Roadmap

1-4 Architectural Overview

Application User—An Application Service Provider from the perspective of internal
Network Gatekeeper administration. An Application User has a user name and password

CBC—Content Based Charging

End User—The ultimate consumer of the services that an application provides. An end
user can be the same as the network subscriber, as in the case of a prepaid service or they
can be a non-subscriber, as in the case of an automated mail-ordering application where the
subscriber is the mail-order company and the end user is a customer to this company

Enterprise Operator —See Service Provider

Event—A trackable, expected occurrence in the system, of interest to the operator

HA —High Availability

HTML—Hypertext Markup Language

IP—Internet Protocol

JDBC—Java Database Connectivity, the Java API for database access

Location Uncertainty Shape—A geometric shape surrounding a base point specified in
terms of latitude and longitude. It is used in terminal location

MAP—Mobile Application Part

Mated Pair—Two physically distributed installations of WebLogic Network Gatekeeper
nodes sharing a subset of data allowing for high availability between the nodes

MM7—A multimedia messaging protocol specified by 3GPP

MPP—Mobile Positioning Protocol

Network Plug-in—The WebLogic Network Gatekeeper module that implements the
interface to a network node or OSA/Parlay SCS through a specific protocol

NS—Network Simulator

OAM —Operation, Administration, and Maintenance

Operator—The party that manages the Network Gatekeeper. Usually the network operator

OSA—Open Service Access

PAP—Push Access Protocol

Te rmino logy

Architectural Overview 1-5

Plug-in—See Network Plug-in

Plug-in Manager—The Network Gatekeeper module charged with routing an
application-initiated request to the appropriate network plug-in

Policy Engine—The Network Gatekeeper module charged with evaluating whether a
particular request is acceptable under the rules

Presence Information—A status indicator that conveys the accessibility and the willingness
of a potential communication partner.

Presentity—A supplier of presence information.

Quotas—Access rule based on an aggregated number of invocations. See also Rates

Rates—Access rule based on allowable invocations per time period. See also Quotas

Rules—The customizable set of criteria - based on SLAs and operator-desired additions -
according to which requests are evaluated

SCF—Service Capability Function or Service Control Function, in the OSA/Parlay sense.

SCS—Service Capability Server, in the OSA/Parlay sense. WebLogic Network Gatekeeper
can interact with these on its network-facing interface

Service Capability—Support for a specific kind of traffic within WebLogic Network
Gatekeeper. Defined in terms of traffic paths

Service Provider—See Application Service Provider

SIP—Session Initiation Protocol

SLA—Service Level Agreement

SMPP—Short Message Peer-to-Peer Protocol

SMS—Short Message Service

SMSC—Short Message Service Centre

SNMP—Simple Network Management Protocol

SOAP—Simple Object Access Protocol

SPA—Service Provider APIs

SS7—Signalling System 7

Document Roadmap

1-6 Architectural Overview

Subscriber—A person or organization that signs up for access to an application. The
subscriber is charged for the application service usage. See End User

SQL—Structured Query Language

TCP—Transmission Control Protocol

Traffic Path—The data flow of a particular request through WebLogic Network
Gatekeeper. Different Service Capabilities use different traffic paths

USSD—Unstructured Supplementary Service Data

VAS—Value Added Service

VLAN—Virtual Local Area Network

VPN—Virtual Private Network

Watcher—A consumer of presence information

WebLogic Network Gatekeeper Core—The container that holds the Core Utilities

WebLogic Network Gatekeeper Core Utilities—A set of utilities common to all traffic
paths

WSDL —Web Services Definition Language

XML—Extended Markup Language

Related Documentation
This architectural overview is a part of the WebLogic Network Gatekeeper documentation set.
The other documents include:

System Administrator’s Guide

Handling Alarms

Installation Guide

Integration Guidelines for Partner Relationship Management

Managing Service Providers and Applications

Statement of Compliance

Application Development Guide

Rela ted Documentat ion

Architectural Overview 1-7

SDK User Guide

Extension Toolkit - Developer’s Guide

System Backup and Restoration Guide

Licensing

Traffic Path Reference

Additionally, many documents in the WebLogic Server 9.2 documentation set are of interest to
users of WebLogic Network Gatekeeper, including:

Introduction to BEA WebLogic Service and BEA WebLogic Expresstm

WebLogic Server - Installation Guide

Managing Server Startup and Shutdown

Programming Web Services for WebLogic Server

Developing Manageable Application with JMX

Configuring and Using the WebLogic Diagnostics Framework

Using WebLogic Clusters

Securing WebLogic Server

http://edocs.bea.com/wls/docs92/intro/index.html
http://edocs.bea.com/wls/docs92/webserv/index.html
http://e-docs.bea.com/wls/docs92/jmxinst/
http://e-docs.bea.com/wls/docs92/wldf_configuring/
http://e-docs.bea.com/wls/docs92/cluster/index.html
http://e-docs.bea.com/wls/docs92/secmanage/
http://e-docs.bea.com/common/docs92/install/
http://edocs.bea.com/wls/docs92/server_start/index.html

Document Roadmap

1-8 Architectural Overview

Architectural Overview 2-1

C H A P T E R 2

Introducing WebLogic Network
Gatekeeper

The following sections provide an overview of WebLogic Network Gatekeeper's functionality:

Overview

What Network Gatekeeper Provides

Overview
The worlds of TCP/IP applications and of telephony networks continue to converge. But the
relationship between them is often overly complex and difficult to manage. What is needed is a
powerful, flexible, secure interface providing, on the one hand, a simple way for application
developers to include telephony-based functionality in their software applications and, on the
other, features that guarantee the security, stability, and performance required by network
operators and demanded by their subscribers. BEA's WebLogic Network Gatekeeper is designed
to do exactly this.

In t roduc ing WebLogic Network Gatekeeper

2-2 Architectural Overview

Figure 2-1 WebLogic Network Gatekeeper in Context

What Network Gatekeeper Provides
WebLogic Network Gatekeeper offers a host of benefits for both application developers and
network operators.

APIs based on well-known Web Services standards
Third-party application developers can access standard network capabilities such as SMS or
MMS through a set of Web Services-based interfaces - both Parlay X 2.1 standard and (for WAP
Push) WebLogic Network Gatekeeper Extended - tailored to their needs. Because the interfaces
are published in standard WSDL files, developers can use their choice of toolsets, increasing ease
of production and reducing development time.

Robust security
WebLogic Network Gatekeeper leverages the flexible security framework of WebLogic Server
9.2. Applications can be authenticated using plaintext or digest passwords, X.509 certificates, or

What Network Gatekeeper P rov ides

Architectural Overview 2-3

SAML 1.0/1.1 tokens. XML encryption, based on the W3C’s standard, can be applied, either to
the whole SOAP request, or only to a portion of it. And, to ensure message integrity, requests can
be digitally signed, using the W3C XML digital signature standard.

Common access control for both internal and 3rd party
applications
A single point of contact providing common authentication, authorization, and access control
procedures secures the integrity of the network.

Policy-based execution for flexible application
authorization control
Policy-based authorization control built on dynamically customizable Service Level Agreement
(SLA) data and other rules can be easily adjusted, shaping application access to fit operators'
business models and their security requirements. The power of the Policy Engine can be accessed
either as part of a traffic path or through the callable policy API.

Access to many standard telecom network service
capabilities
Operators can easily provide applications with access to GSM, cdmaOne, cdma2000, 1xEVDO,
WDCDMA, GPRS, SIP, IN, or 3G service nodes either directly through IP-based service nodes
such as SMSCs or MMSCs or via OSA/Parlay gateways.

Access to WebLogic SIP server for connectivity to SIP
network infrastructure
Calls set up using the Third Party Call traffic path can be routed either through standard
OSA/Parlay protocols or through the SIP protocol, using WebLogic SIP server. Call Notification
functionality is also supported on SIP. Presence watchers (consumers of presence information)
can also be established.

Built-in network routing
Routing of service requests to appropriate network nodes can be based on address plans and
actual destination address.

In t roduc ing WebLogic Network Gatekeeper

2-4 Architectural Overview

Extensible architecture
A flexible architecture using the robust capabilities of WebLogic Server 9.2 means that operators
can both extend existing traffic paths to support new network interfaces, for example
Unstructured Supplementary Service Data, and create entirely new traffic paths to expose unique
network capabilities, should conditions warrant. This makes it easy to create attractive service
offerings based on a network's particular features, using the Network Gatekeeper’s Extension
Toolkit.

Enhanced network protection
Because application service providers are assigned various priority levels, their network access
can be managed accordingly, providing:

Network node access control

Network node traffic throttling

Integration with Operation Support Systems
All or selected parts of the Network Gatekeeper management application can be integrated with
external Operation Support Systems through JMX/JMS or SNMP interfaces, simplifying
administrative tasks.

Integration with Billing and Charging Systems
WebLogic Network Gatekeeper can be integrated with existing billing systems (prepaid,
postpaid, and rating). The billing systems can then, if desired, be exposed to third party
applications through a Payment (Content Based Charging) Web Services API or, if preferred,
kept internal to Network Gatekeeper.

Carrier grade and fully scalable architecture
A highly distributed and replicated system design provides carrier grade performance.

Application Development Tools
To assist application developers, Network Gatekeeper provides:

Web Services WSDL files

What Network Gatekeeper P rov ides

Architectural Overview 2-5

A Developer Guide

In addition, as part of an optional module, Network Gatekeeper can also provide:

The WebLogic Network Gatekeeper SDK

The WebLogic Network Gatekeeper Simulator, a graphical test and verification
environment for SMS, MMS, Terminal Location, and WAP Push traffic

Partner Relationship Management Interfaces
This optional module provides operators with interfaces to manage large sets of partners. The
interfaces support automation of traditionally work intensive tasks such as registration,
activation, administration and supervision of 3rd party and in-house service providers and their
applications.

The interfaces also allow operators to create groups of partners sharing sets of data. This
functionality can be used for tiering or segmentation of partners allowing operators to focus their
administrative and partner management resources on the most rewarding partners.

In t roduc ing WebLogic Network Gatekeeper

2-6 Architectural Overview

Architectural Overview 3-1

C H A P T E R 3

Software Architecture Overview

The following chapter provides an overview of WebLogic Network Gatekeeper’s software
architecture, including:

Overview

Traffic Paths

Network Gatekeeper Core and Core Services

Storage

Overview
The 3.0 release marks a substantial shift in WebLogic Network Gatekeeper’s architecture. With
this version, Network Gatekeeper has been ported to run on WebLogic Server 9.2, which
provides a robust, secure, and highly performant environment for Network Gatekeeper’s
operation, and its overall structure has been more closely aligned with J2EE standards.

In general, Network Gatekeeper’s internal functioning can be divided into three aspects:

Traffic Paths

Network Gatekeeper Core and Core Services

Storage

So f tware Arch i tec ture Overv iew

3-2 Architectural Overview

Traffic Paths
All traffic in Network Gatekeeper flows in traffic paths. A traffic path consists of an
application-facing interface, with Web Services Security enforcement, a Service Capability, and
a network plug-in, where requests are translated between the application-facing interface and
underlying network node protocols. A more detailed description of this flow can be found in
Chapter 4, “Introducing Traffic Paths.”

Traffic paths are deployed in two clustered tiers, an Access Tier and a Network Tier. In a single
physical site installation, this corresponds to a single WLS administration domain.

Note: This description covers the enhanced traffic path type. The backwards compatible traffic
path type is similar, but not identical. For more information on backwards compatibility
in Network Gatekeeper generally, see Chapter 11, “Backwards Compatibility 2.2 to 3.0.”

Figure 3-1 below gives an overview of the basic traffic path structure.

Figure 3-1 Software architecture overview

Traf f i c Paths

Architectural Overview 3-3

Access Tier
The Access Tier handles communication with application service providers through its Web
Services interfaces. It also provides authentication, confidentiality, and session management.
Using the WLS Web Services Container, incoming SOAP messages are transformed into Java
objects, which are then marshalled and sent to the Network Tier using RMI. No state is held in
the Access Tier, so any Network Tier instance can use any Access Tier instance to make callbacks
to application service provider clients. For added security, the Access and Network Tiers can be
separated by a firewall.

Network Tier
The Network Tier provides request routing and protocol translation. It also manages policy
enforcement and traffic throttling. Once a request enters the Network Tier, a transaction is started.
This transaction mechanism makes sure that state is properly maintained should the request fail.

An application request enters the Network Tier through a Service Capability module, which is a
very lightweight proxy. The Service Capability queries the Plug-in Manager for an appropriate
plug-in, based on a set of criteria.

The plug-in has both a north, or application-facing, interface, and a south, or network-facing
interface. Tasks common to all traffic paths are completed at these interfaces. For example, policy
enforcement is managed at the north interface of the plug-in. As the request enters from the
Access Tier, the request’s parameters are bundled and sent to the Policy Engine, where they are
evaluated according to SLA data and the rules. On the other hand, processing network-initiated
requests, such as callbacks from underlying network nodes, requires special handling to be
associated with the application that originally requested them. In this case code attached to the
south interface handles this task.

Once the request enters the plug-in, it is translated into a form appropriate for its target. If a
targeted network node requires that state be maintained - as, for example, the call state in the case
of a Call Control request - it is maintained in the plug-in. If the underlying node does not require
state to be held, Network Gatekeeper holds none. No state is ever held in the Access Tier.

Events and alarms that are raised in the Access Tier occur in the context of standard J2EE Web
Applications, and are processed using standard WebLogic Server mechanisms. Because
processing in the Network Tier uses the Network Gatekeeper Core and Core Services, Network
Gatekeeper specific mechanisms have been introduced to capture such status information that
arises in this tier. Event data, alarms, charging data, and usage statistics all begin as events, which
are fired when predefined points are encountered or error conditions occur. These events are then
sent through filters and delivered to listeners, which are divided by type. Out of the box, these

So f tware Arch i tec ture Overv iew

3-4 Architectural Overview

types include Alarms, Event Data Records (EDRs), and Charging Data Records (CDRs). For
more information, see Events, Alarms, and Charging

Note: For the purposes of backwards compatibility, Network Gatekeeper 2.2 style events,
alarms, and charging records, generated by the 2.2-based Event, Alarm, and Charging
Services, can be published and delivered to 2.2 style, as well as 3.0 style, listeners, but
this mechanism is deprecated in version 3.0.

Network Gatekeeper Core and Core Services
Previous versions of Network Gatekeeper ran in a Service Logic Execution Environment (SLEE)
which supplied the necessary container-based services. The port of Network Gatekeeper to
WebLogic Server 9.2 means that the many standard container services WLS provides can be
leveraged in the running of Network Gatekeeper itself. Nonetheless, a number of Network
Gatekeeper specific services continue to be required in Network Gatekeeper 3.0. These services
make up the Network Gatekeeper Core module, and include such things as the Event Channel
Service, Budget Service, Policy Manager, DB Manager, Geo-Redundancy Service, Plug-in
Manager, and so on.

Note: Because these services originally existed as SLEE services, some of the names you see
in the Web Logic Network Gatekeeper Console User Interface include the string SLEE.
This is simply a legacy of the older code.

Storage
Modules running in Network Gatekeeper often need to store cluster wide and highly available
information in order to function properly. In version 2.2, this was usually done using database
tables, but in 3.0 a storage service has been introduced. This service takes care of traffic path
storage needs for both short-lived and longer-lived data. For backwards compatibility Network
Gatekeeper continues to expose the proprietary configuration store and global store APIs from
2.2.

 Architectural Overview 4-1

C H A P T E R 4

Introducing Traffic Paths

The following chapter presents an overview of Network Gatekeeper’s traffic paths in general,
including:

Overview

– How it works

– Typical Application-initiated Traffic Flow

Platform-wide Functionality

– Service Level Agreements

– Policy Enforcement and Policy Decision Points

– Events, Alarms, and Charging

– Statistics and Transaction Units (Licensing)

Short Code Translation

Traffic Path Types

A separate document, the Network Gatekeeper Traffic Path Reference, offers a more detailed
look at specific paths.

In t roduc ing T ra f f i c Paths

4-2 Architectural Overview

Overview
All application request data flows through Network Gatekeeper on Traffic Paths. A traffic path
consists of a service type (Messaging, User Location, etc.), an application-facing interface (also
called a “north” interface), and a network-facing interface (also called “south” interface).

How it works
Network Gatekeeper is deployed into two tiers: the Access Tier, that manages interactions with
applications, and the Network Tier, that contains the mechanisms necessary for dealing with the
underlying network nodes. For increased security, these tiers can be separated by a firewall.

Applications begin their Network Gatekeeper sessions by logging into the Access Tier, using the
Session Manager interface.This interface returns a Session ID. The application must add this
Session ID to the header of all its subsequent SOAP requests. Network Gatekeeper uses this value
to keep track of all the traffic that an application sends for the duration of the session.

Once the session has been established, the application can begin sending request traffic.
Application-initiated requests (also called mobile terminated, or MT) enter through the Access
Tier and are then sent on to the Network Tier. The Network Tier manages service authorization,
charging, and traffic throttling. The Network Tier then translates the request into a form
appropriate for the underlying network node.

Network-initiated (also called mobile originated, or MO) traffic is also supported by Network
Gatekeeper, so that applications can choose to receive data from the telecom network. To do so,
the application must first send a request to Network Gatekeeper (or have the operator perform the
equivalent task using OAM methods) to register a description of the types of data it is interested
in - delivery notifications, incoming messages, etc. - and any criteria that the data must be meet
to be acceptable. For example, an application might specify that it is only interested in receiving
incoming SMSes that are addressed to the short code “12345” and that begin with the string
“blue”.

Note: For more on short codes, see Short Code Translation

Overv i ew

 Architectural Overview 4-3

Typical Application-initiated Traffic Flow
Figure 4-1 below illustrates typical application-initiated traffic flow.

Figure 4-1 Typical Application-initiated Traffic Flow

1. An application establishes a session by using Network Gatekeeper’s own Session
Management Web Service in the Access Tier. Authentication is managed by WebLogic
Server’s WS-Security, and supports plaintext or digest passwords, X.509 certificates, or
SAML tokens. The particular security requirements of the installation are specified in the
WS-Policy section of the published WSDL file, and the request may be created using any
toolset the application developer wishes to use.

Note: It is possible to simply use the standard Parlay X 2.1 WSDL to create requests, but
the developer would then be required to ascertain the appropriate security type from
the operator, and insert the information manually.

Service Capability (EJB)

1-3 # 4

Application

5-6RMI

Parlay X 2.1
& EWS WS

 # 7Network
Tier

Plug-in

Access
Tier

Network Node

8

9-10

11-13

Session
Management WS

Network Gatekeeper

Plug-in Manager

#14

In t roduc ing T ra f f i c Paths

4-4 Architectural Overview

2. Network Gatekeeper verifies that the maximum number of instances specified in the Service
Level Agreement (SLA) for this application and its service provider has not been exceeded.

3. A session is established, and the SessionID is returned to the application. Once the application
has been established, it may access multiple traffic paths across the cluster transparently.

Note: The availability of the functionalities of various traffic paths, and the degree to which
they are supported depends on the specifics of the installation, the protocols being
used, and the types of network nodes to which they are connecting.

4. The session is valid until the application logs out or an operator-established time period has
elapsed.

5. A request for a particular operation enters at the application-facing interface - implemented
as a J2EE Web Service - in the Access Tier and is pre-processed. The SOAP envelope is
removed and the request is transformed into a Java object.

6. The request is passed on to the Network Tier using RMI. The request enters the Network Tier
through the Service Capability module, which is implemented as an EJB. The EJB serves as
the entrance point for the Network Tier and provides the starting point for
application-initiated transactions.

7. The request is evaluated for traffic throttling purposes.

8. The Service Capability queries the Plug-in Manager for an appropriate and available network
plug-in. The plug-in will complete processing the request.

9. The request is sent to the plug-in the Manager returned. The bulk of the processing that the
request undergoes takes place in the plug-in, and, as a result, most configuration tasks focus
here.

10. Service authorization takes place in the plug-in, using the policy engine. The policy engine
evaluates the request according to the rules. The rules are based on a set of SLAs (service
provider and application specific). These rules indicate, for example, whether this particular
application or service provider is authorized to use a specific telecom network node. The rules
may also include any additional criteria the operator chooses to employ. In some cases the
policy engine can also be used to alter method parameters, to add information or to make them
compatible with the target network node. For more information, see Figure 4-3

11. The request is translated into the protocol suitable for the underlying network node. Any state
information required by the underlying network node is kept within the plug-in.

12. The request is passed to the network.

Overv i ew

 Architectural Overview 4-5

13. When the node acknowledges the request, charging data about the completed request are
recorded.

14. The transaction commits.

Typical Network-initiated Traffic Flow
The key difference between application-initiated traffic flow and network-initiated traffic flow
(other than the direction) is that the application must first indicate to Network Gatekeeper that it
is interested in receiving traffic from the network. It does this by registering for (or subscribing
to) notifications, either by sending a request to Network Gatekeeper or by having the operator set
up the notification using OAM methods. In Figure 4-2 below, the application sends Network
Gatekeeper a request to begin receiving SMSes from the network, indicating that it is only
interested in SMSes that are sent to the address 12345 and that begin with the string blue. Not
noted in the diagram, but also part of the request, is the URL of the Web Service that the
application has implemented to receive these notifications back.

Figure 4-2 Registering for notifications

This registration for notifications is stored in the appropriate network plug-in, which in most
cases passes it on to the underlying network node itself (in certain cases the Network Gatekeeper
operator must do this manually.) When a matching SMS reaches the plug-in from the network,

Application Network Gatekeeper SMSC

startSMSNotification(12345, “blue:)

deliverSM(98765, “red”)processDeliverSM

deliverSMResp(error)

deliverSM(12345, “blue”)

processDeliverSM

notifySmsReception
deliverSMResp(OK)

In t roduc ing T ra f f i c Paths

4-6 Architectural Overview

the plug-in sends it off to the Policy Engine for evaluation, and then, using RMI, passes the
notification, along with the appropriate URL from the registration, to the callback EJB in the
Access Tier, which sends it to the Web Service implementation for processing, and then on to the
application.

Platform-wide Functionality
Some functionality is common to all traffic paths. This functionality includes:

Service Level Agreements

Policy Enforcement and Policy Decision Points

Security

Events, Alarms, and Charging

Statistics and Transaction Units (Licensing)

Service Level Agreements
All application access to WebLogic Network Gatekeeper’s traffic paths is governed by a set of
Service Level Agreements (SLAs) between the application service provider and the Network
Gatekeeper operator. Network Gatekeeper uses a two tiered account system to track SLAs:
Service Level Agreements are established per service provider group and, within that service
provider group, per application group. For more information on the account system, see The
Administration Model.

The following levels of data are specified in each type of SLAs:

SLA Level Criteria

Service Provider Traffic and charging related data, by service provider group.
(For example, the authorized network capabilities, maximum
bandwidth available, and so forth by service provider) It also
specifies access to charging capabilities and revenue sharing
schemas.

Application Traffic and charging related data, by application group. (For
example, the authorized network capabilities, maximum
bandwidth available, and so forth by application group) It also
specifies access to charging capabilities and revenue sharing
schemas.

P la t fo rm-wide Funct i ona l i t y

 Architectural Overview 4-7

These SLAs govern a service provider/application’s access to a particular traffic path, and
regulate any Quality of Service (QoS) agreements into which the operator and the service
provider may have entered, such as specifying the guaranteed number of requests a service
provider may send through a particular traffic path in a given period of time. Specific
enforcement can be tied to Time of Day/Day of Week, with differing Service Level Agreements
in force based on the time at which the request is processed. As well, service access can be
modulated both by rate (invocations per time period) and quota (aggregated number of
invocations). For a detailed look at Service Provider and Application SLA structure, see the
“Defining Service Provider Level and Application Level Service Agreements” chapter in
Managing Service Providers and Applications. For a traffic path-focussed description, see the
respective traffic path chapters in the Traffic Path Reference. These books are separate
documents in the Network Gatekeeper documentation set.

In addition, there are also SLAs that help protect the underlying network node by setting priorities
for sending requests. If a particular node is overloaded, lower priority traffic can be rejected all
together. For more information on these Traffic (sometimes called Node) SLAs, The
Administration Model. For more detailed information on these SLAs, see the “Managing and
Configuring Routes and Node SLAs” chapter in the System Administrator's Guide.

Policy Enforcement and Policy Decision Points
Some SLA enforcement is handled by the traffic path itself, in conjunction with services provided
by WebLogic Server. But most SLA enforcement and some additional policy enforcement takes
place in Network Gatekeeper’s policy engine. As request data enters the Network Plug-in,
incoming request parameters are sent off to the policy engine for evaluation. Within the policy
engine are Policy Decision Points, or PDPs, where the incoming requests are weighed based on
rules based on data defined in the SLAs. Once the request is evaluated, it is returned to the
Plug-in. It is also possible to use this process to modify the request’s parameters, as, for example,
by aliasing subscriber information to protect subscriber privacy or adding a rating to allow for
Content Based Charging. All incoming parameters in an application’s request are available for
manipulation in this way.

Backwards compatible and enhanced traffic paths present their parameters in slightly different
ways, but there is a subset of parameters that all requests may include, depending on whether the
the parameter has been mapped:

String applicationID: The application ID associated with the request.

String serviceProviderID: The service provider ID associated with the request.

In t roduc ing T ra f f i c Paths

4-8 Architectural Overview

String serviceName: Service name from which the request originates or to which it is
destined.

String methodName: Method that triggered the request.

String requesterID: Used only by the Extended Web Services interfaces.

long timeStamp: Time the request was sent to the rules engine for processing.
Milliseconds from start of UNIX epoch.

WebLogic Network Gatekeeper also supports the development of custom policies, that is,
operator specific policies defined by the operator and implemented by BEA Systems or a selected
partner. For more information on PDPs, see Figure 4-3 below.

P la t fo rm-wide Funct i ona l i t y

 Architectural Overview 4-9

Figure 4-3 Simplified traffic path policy execution flow

Note: Some network-triggered requests are also evaluated using the Policy Engine.

Security
WebLogic Network Gatekeeper secures the traffic that passes through it in seven ways:

Authentication

Authorization and service access

Confidentiality and integrity

Policy

Repository

Service request from

Network

Policy Decision Point (PDP)

Request

an application

Network Gatekeeper
Engine

Database

Provisioning
Tool

Data and Rule Provisioning

 Network Gatekeeper

Protocol translation

External Database

Rule

Rule
Builder

1

3

4

WebLogic

2
Network

Tier
Modules

In t roduc ing T ra f f i c Paths

4-10 Architectural Overview

Auditing and non-repudiation

Network node authentication

Database integrity

Administrative access

Authentication
Network Gatekeeper uses special SOAP headers to authenticate service provider applications.
These headers are documented in each interface’s WSDL file, in the WS-Policy section.
Processing is managed by WebLogic Server’s WS-Security, which supports plaintext or digest
passwords, X.509 certificates, or SAML tokens for authentication. For more information on
WebLogic Server’s capabilities, see the “Configuring Security” chapter in Programming Web
Services for WebLogic Server, a separate document in the WLS set.

Authorization and service access
Access to a particular traffic path is based on the two types of SLAs discussed in Service Level
Agreements.

Confidentiality and integrity
To guarantee the confidentiality of communication between WebLogic Network Gatekeeper and
the application, all traffic can be encrypted - fully or partially - using W3C’s standard XML
encryption. Message integrity can be assured using the W3C XML digital signature standard.
Again, the WS-Policy section of the published WSDL for each interface describes if and how
either of these standards is being used.

Auditing and non-repudiation
Both successful and unsuccessful login attempts generate events/EDRs. All transactions are
stored as CDRs in the database. Alarms are generated when service requests are denied due to
SLA violations. As well, standard J2EE artifacts such as HTTP logs are generated.

Network node authentication
If the underlying network node provides an authentication interface, WebLogic Network
Gatekeeper protocol plug-ins can register and be authenticated with it, making the request’s
transfer to the network secure.

http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/xmlenc-core/
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/
http://e-docs.bea.com/wls/docs92/webserv/security.html

P la t fo rm-wide Funct i ona l i t y

 Architectural Overview 4-11

Note: This is highly dependent on the protocol and the specific implementation in the node and
the plug-in.

Database integrity
Access to WebLogic Network Gatekeeper database is protected by username and password
combinations.

Sensitive data, such as user and database passwords, user certificates, and private keys are
encrypted before being stored in the database.

Administrative access
WebLogic Network Gatekeeper is administered through the WebLogic Server Console and the
Network Gatekeeper extension within that console. Using the console requires a username and
password, which are encrypted before being stored in the WebLogic Network Gatekeeper
database. At registration all administrative users are provided with an access level. The access
level is one of the following:

To limit administrative users' access to the different parts of the platform, logical administration
groups can be created. The groups are created by the operator to fit the operator’s OAM
organization. One group consists of one or more logically related software modules.

The administrative users are connected to one or more of these administrative groups depending
on their responsibilities. A user maintains the same access level throughout all groups to which
he or she is connected.

Events, Alarms, and Charging
All WebLogic Network Gatekeeper modules can produce general events, alarms and charging
events. General events are expected system occurrences that are of importance to the operator,
but do not need corrective action. Alarms are system occurrences that are unexpected and may

Read only A read only user can only read registered data.

Standard read and write A standard read and write user can read all types of data
but only set non-critical data.

Administrator An administrator user can read and set all types of data
including user accounts.

In t roduc ing T ra f f i c Paths

4-12 Architectural Overview

require corrective action. Charging events are the basis for CDRs, the records that provide the
information needed to charge for services.

Event handling in the Access Tier
The Access Tier runs in the WebLogic Server’s Web Services Container, so events or alarms that
are raised there can be monitored through standard JMX mechanisms or by using the WebLogic
Diagnostics Framework.

See Developing Manageable Applications with JMX and Configuring and Using the WebLogic
Diagnostics Framework for more information on how this works.

Event handling in the Network Tier
In the Network Tier, much of the functionality comes from the interaction between traffic paths
and the Network Gatekeeper Core and Core Services. To capture this specialized level of
information, Network Gatekeeper has developed specific mechanisms to record the data.

In enhanced traffic paths, all status information generated by the Network Tier - events, alarms,
charging data, and usage statistics - begins as an event, which is fired whenever designated
methods are called or exceptions are thrown. These events are then sent to the EDR Service. In
the EDR Service, events are processed through XML-based filters, which provide the criteria by
which the events are classified into types. The filters can also be used to transform the data in the
original event, including adding other useful information. Once the information has been
processed by the filters, it is delivered to type-specific listeners. Out of the box, there are three
types of filters (edr.xml, cdr.xml, alarm.xml) that produce three distinct types of data: Event Data
Records (EDRs), Charging Data Records (CDRs), and Alarms. All three of these filters can be
customized as desired. These filters can also deliver desired event-based information to external
JMS-based listeners. These listeners are set up as standard JMS topic subscribers and can be
anywhere on the network.

Note: For the purposes of backwards compatibility, Network Gatekeeper 2.2 style events,
alarms, and charging records, generated by the 2.2-based Event, Alarm, and Charging
Services, can be published and delivered to 2.2 style, as well as 3.0 style, listeners, but
this mechanism is deprecated in version 3.0.

See the WebLogic Network Gatekeeper - System Administrator’s Guide for more information on
setting up these filters.

Each 3.0 style EDR always includes:

http://e-docs.bea.com/wls/docs90/wldf_configuring/
http://e-docs.bea.com/wls/docs90/wldf_configuring/
http://e-docs.bea.com/wls/docs90/jmxinst/

P la t fo rm-wide Funct i ona l i t y

 Architectural Overview 4-13

In addition, most events include:

EdrId The type of EDR

ServiceName The service type (SMS, Call Handling, etc.) that produced
the event

ServerName The name of the WLS host

Timestamp The time at which the event was triggered (in milliseconds
from midnight 1 January 1970)

ContainterTransactionID The transaction ID from WebLogic Server, if available.
This identifies the thread on which the request is executed

Class The name of the class that logged the event

Method The name of the method that logged the event

Source The kind of event. There are two possible values for this
field:
• Method: the event was fired in relation to a method

call
• Exception: the event was fired in relation to an

exception being thrown

Direction The direction in which the request is traveling. There are
two possible values for this field:
• South: traveling toward the network node
• North: traveling toward the application

Position The position of the EDR relative to the method that logged
the EDR. There are two possible values for this field:
• Before: the event occurred before the method
• After: the event occurred after the method

In t roduc ing T ra f f i c Paths

4-14 Architectural Overview

Alarm handling
Network Tier alarms are those events that are of immediate interest to the operator. These are
either 3.0 style EDRs that are defined via filters created in the internal alarm configuration file or
2.2 style alarms from the deprecated Alarm Service. While each 3.0 style alarm begins as an
EDR, not all the information available in the EDR is stored when the alarm is written to the
database (although that information can be retrieved using an external listener). Each alarm entry
in the database includes the following information:

Interface The interface at which the EDR is logged. There are three
possible values for this field:
• North: the event was logged at the north plug-in

interface
• South: the event was logged at the south plug-in

interface
• Other: the event was logged someplace other than the

north or south interfaces

Exception The name of the exception that triggered the EDR

SessionId The application’s session identifier

ServiceProviderId The service provider account identifier

ApplicationId The application account identifier

AppInstanceGroupId The authentication user name of the Application Account.
This is a string that is equivalent to the 2.2 value:
Application Instance Group ID

DestAddress The destination address. If this is a send list, the first
address will be listed here. Additional addresses are stored
in the AdditionalInfo field.

AdditionalInfo Variable information depending on the traffic path. Stored
as “key=value\n” pairs.

P la t fo rm-wide Funct i ona l i t y

 Architectural Overview 4-15

Management integration
Network Gatekeeper supports integration of its alarm and event mechanisms with external
management tools.

OSS

An Operation Support System (OSS) can integrate with WebLogic Network Gatekeeper alarm
and event services through the creation of external JMS listeners. As well, integration can be
managed via OAM scripts through the use of JMX-based tools.

SNMP

WebLogic Network Gatekeeper also supports the sending of alarms as SNMP traps to SNMP
managers. The alarms sent to the SNMP managers can be filtered on alarm severity.

alarm_id A unique sequential identifier

source The name of the software module that raised the alarm and
the IP address of the server in which the module runs. This
is not the same as the Source field in the event

timestamp The time at which the event was triggered (in milliseconds
from midnight 1 January 1970)

severity The importance of the alarm. There are four possible
values for this field:
• warning
• minor
• major
• critical

identifier The alarm type

alarm_info Information provided by the module that raised the alarm

additional_info 3.0 style alarms only. This field includes:
• Service Provider ID
• Application ID
• Application Instance Group ID
• Other information depending on context

In t roduc ing T ra f f i c Paths

4-16 Architectural Overview

Charging Data Records
Charging Data Records can originate either as filtered 3.0 style EDRs or as 2.2 style CDRs from
the deprecated Charging Service. While each 3.0 style CDR begins as an EDR, not all the
information available in the EDR is stored when the CDR is written to the database (although that
information can be retrieved using an external listener). Each CDR entry in the database includes
the following information:

transaction_id The Network Gatekeeper transaction sequence number

service_name The traffic path whose use is being tracked

service_provider The Service Provider ID

application_id The Application ID

application_instance_id The login user name of the Application Account. This is a
string that is equivalent to the 2.2 value: Application
Instance Group ID

container_transaction_id 3.0 style CDRs only.The transaction ID from WebLogic
Server, if available. This identifies the thread on which the
request is executed

server_name 3.0 style CDRs only. The name of the server in which the
CDR was generated

timestamp 3.0 style CDRs only. The time at which the event was
triggered (in milliseconds from midnight 1 January 1970)

service_correlation_ID 3.0 style CDRs only. An identifier that allows the usage of
multiple service types to be correlated into a single
charging unit

charing_session_id An ID correlating related transactions within a service
capability module that belong to one charging session. For
example, a call containing three call-legs will produce
three separate transactions within the same session. Not
necessarily the same as the SessionId, the application
session identifier, although the traffic path could choose
to use the SessionId for this purpose.

P la t fo rm-wide Funct i ona l i t y

 Architectural Overview 4-17

start_of_usage The date and time the request began to use the services of
the underlying network.

connect_time The date and time the destination party responded. Used
for Call Control traffic only.

end_of_usage The date and time the request stopped using the services
of the underlying network.

duration_of_usage The total time the request used the services of the
underlying network.

amount_of_usage The used amount. Used when the charging is not time
dependent, as in, for example, flat rate services.

originating_party The originating party's address.

destination_party The destination party's address. This is the first address in
the case of send lists, with all additional addresses placed
in the additional_info field.

charging_info A service code added by the application or by the policy
service.

additional_info If the traffic path supports send lists, all destination
addresses other than the first, under the key
“destinationParty”. Any information from 2.2 style
additional_info, under the key “oldInfo”. In addition any
additional information provided by the traffic path

revenue_share_percentage 2.2 style CDRs only. Kept for backwards compatibility
and deprecated for 3.0

party_to_charge 2.2 style CDRs only. Kept for backwards compatibility
and deprecated for 3.0

slee_instance 2.2 style CDRs only. Kept for backwards compatibility
and deprecated for 3.0

network_transaction_id 2.2 style CDRs only. Kept for backwards compatibility
and deprecated for 3.0

network_plugin_id 2.2 style CDRs only. Kept for backwards compatibility
and deprecated for 3.0

In t roduc ing T ra f f i c Paths

4-18 Architectural Overview

Statistics and Transaction Units (Licensing)
Licensing for WebLogic Network Gatekeeper is based on a maximum allowed rate (measured in
transaction units per second or TUPS) during a specific time period per 24-hour interval. Two
TUPS rates are measured: Base Platform - the more general rate - and BEA Module - which
covers only Network Gatekeeper-supplied traffic paths. For more information on how these rates
are calculated, see WebLogic Network Gatekeeper - Licensing, a separate document in this set.

Short Code Translation
A common feature of Messaging capable networks is the use of short codes and message prefixes
to help route traffic and to make access to certain features easier for the end user. Instead of
having to use the entire address, users can enter shorter sequences when they dial, which are then
mapped to the full address in the network. WebLogic Network Gatekeeper supports short codes
and message prefixes, which allow the same short code to be mapped to multiple addresses, based
on what is prepended to the enclosed message.

Traffic Path Types
This release of WebLogic Network Gatekeeper marks a significant change in the basic
architecture of the core Network Gatekeeper product, including a port to WebLogic Server. As a
result of these changes, some traffic paths now exist in a somewhat reformulated, but backwards
compatible version of themselves while others have been completely rewritten and exist in fully
Network Gatekeeper 3.0, enhanced versions. In terms of processing traffic, the two types are
essentially the same, but there are some small differences in OAM procedures. See the WebLogic
Network Gatekeeper - System Administrator’s Guide for more information.

Network Gatekeeper operators who have created extension traffic paths or network plug-ins will
need to make certain changes in their code to allow those extensions to run in the new
environment. The necessary changes are covered in some detail in the Extension Toolkit
Developer’s Guide, a separate document in the Toolkit set. New extensions should be written
using the enhanced architecture.

transaction_part_number 2.2 style CDRs only. Kept for backwards compatibility
and deprecated for 3.0

completion_status 2.2 style CDRs only. Kept for backwards compatibility
and deprecated for 3.0

Parameter Tunne l ing (MP01)

 Architectural Overview 4-19

Parameter Tunneling (MP01)
Beginning with version 3.0 MP01, a mechanism has been put in place to allow applications to
include parameters that are not specified in the application-facing interface in their requests. This
functionality can be used to supply additional information to the underlying network. The
mechanism involves adding the additional information to the header of the SOAP request. The
traffic path retrieves the tunneled parameters and inserts them into the request before it goes to
the network.

To use parameter tunneling, the traffic path must be created specifically to support it. The only
out-of-the-box traffic path in Network Gatekeeper 3.0 MP01 that has this capability is the SMS
to SMPP traffic path (see the Traffic Path Reference for detailed information). Extension traffic
path creators, however, can add this functionality as the needs of their system require.

In t roduc ing T ra f f i c Paths

4-20 Architectural Overview

 Architectural Overview 5-1

C H A P T E R 5

Developing and Testing Applications

The following sections introduce developing applications to interact with WebLogic Network
Gatekeeper:

Overview

References

Tools

Overview
Network Gatekeeper provides application developers with two types of easy to use Web Services
APIs, those based on the Parlay X 2.1 standard and an additional one to cover WAP Push
functionality, which is not supported by Parlay X. These interfaces include:

Third Party Call
Using this traffic path, an application can set up a call between two parties (the caller and
the callee), poll for the status of the call, and end the call.

Audio Call
Using this traffic path, an application can set up a call to a telephone subscriber and then,
when the subscriber answers, play an audio message, such as a meeting reminder.

Call Notification
Using this traffic path, an application can set up and end notifications on call events, such
as the callee in a third party call attempt is busy. In addition, in some cases the application
can then reroute the call to another party.

Deve lop ing and Tes t ing App l icat i ons

5-2 Architectural Overview

Call Handling
Using this traffic path, an application can establish rules that will automatically handle
calls that meet certain criteria. These rules might establish, for example, that calls from a
particular number are always blocked, or are always forwarded if the initial callee is busy.
In addition, the application can retrieve rules that are currently in place.

Short Messaging
Using this traffic path, an application can send SMS text messages, ringtones, or logos to
one or multiple addresses, set up and receive notifications for final delivery receipts of
those sent items, and arrange to receive SMSes meeting particular criteria from the
network.

Multimedia Messaging
Using this traffic path, an application can send Multimedia Messages to one or multiple
addresses, set up and receive notifications for final delivery receipts of those sent items,
and arrange to receive MMSes meeting particular criteria from the network.

Terminal Status
Using this traffic path, an application can request the status (reachable, unreachable, or
busy) of one or more terminals and set up and receive notifications for a change in status
for particular terminals.

Terminal Location
Using this traffic path, an application can request the position of one or more terminals or
the distance between a given position and a terminal. It can also set up and receive
notifications based on geographic location or time intervals.

Presence
Using this traffic path, an application can be a watcher for presence information published
by a presentity, an end user who has agreed to have certain data, such as current activity,
available communication means, and contact addresses made available to others. So a
presentity might say that at this moment he is in the office and prefers to be contacted by
SMS at this number. Before the watcher can receive this information, it must subscribe
and be approved by the presentity. Once this is done, the watcher can either poll for
specific presentity information, or set up status notifications based on a wide range of
criteria published by the presentity.

Payment
Using this traffic path, an application can communicate charging information to an
operator in situations where the cost of the service is based on the nature of the content
delivered and not on connect time. For example, an end user could request the download
of a music video, which costs a specific amount. The application can notify the operator
that the user should be charged a particular amount or be refunded a particular amount. In

Refe rences

 Architectural Overview 5-3

the case of pre-paid accounts, it can also reserve a certain amount of the user’s available
funds and then charge or release the reservation depending, say, on whether or not the
download was successful.

WAP Push
The application-facing interface of this traffic path, unlike the previous ten, is not based
on the Parlay X 2.1 specification. Many elements within it, however, are based on widely
distributed standards. Using this traffic path, an application can send a WAP Push
message, send a replacement WAP Push message, or set up status notifications about
previously sent messages.

References
WebLogic Network Gatekeeper ships with the WebLogic Network Gatekeeper - Application
Development Guide, which covers both the APIs themselves and some additional information an
application developer needs to create applications that work with Network Gatekeeper. Because
all of the APIs are Web Services based, applications can be developed using any environment that
the developer chooses.

Tools
As an option, application developers for WebLogic Network Gatekeeper can also access a set of
tools created to ease the development process, the WebLogic Network Gatekeeper SDK,
including the Network Gatekeeper Simulator, a GUI-based testing environment for MMS, SMS,
WAP Push, and Terminal Location applications.

The WebLogic Network Gatekeeper Simulator is an interactive, graphical test environment in
which telecom-enabled applications designed to use WebLogic Network Gatekeeper can be
tested. The current version supports MMS, SMS, WAP Push, and Terminal Location
applications. Applications use the interfaces in the test environment just as they would the
interfaces on Network Gatekeeper.

Deve lop ing and Tes t ing App l icat i ons

5-4 Architectural Overview

Figure 5-1 WebLogic Network Gatekeeper Simulator

The testing interface of the Simulator consists of a GUI which displays a map. The map can be
changed to represent different geographical areas. Mobile terminals representing the
application’s end users are added to the map and given a phone number. These terminals can then
be used as testing targets, sending and receiving messages, and querying for location. Once the
terminals have been defined, they can be moved to different locations on the map.

Also included with the Simulator is a developer’s copy of WebLogic Server, the environment in
which the Simulator runs. For more on what is needed to use the SDK and run the Simulator, see
the SDK User Guide, a separate volume in this document set.

Architectural Overview 6-1

C H A P T E R 6

Managing Application Service
Providers

The following sections describe the framework for managing service providers and applications:

Overview

The Administration Model

Partner Relationship Management Interfaces

Other Tasks Associated with Administering Service Providers

Overview
Managing partner relationships is key to the successful convergence of third-party application
services and telecom network operations. WebLogic Network Gatekeeper provides a partner
administration model to help operators handle the needs and demands of their partners in a
flexible and powerful way:

Application service providers are registered with WebLogic Network Gatekeeper, by
service provider account and application account.

Each account type is associated with a group that is tied to a Service Level Agreement that
defines its access to both Network Gatekeeper and underlying network nodes.

The service provider and application registration are performed either internally through the
WebLogic Network Gatekeeper Management Console or through external management systems
integrated with WebLogic Network Gatekeeper using the Network Gatekeeper Partner
Relationship Management Interfaces.

Managing Appl ica t i on Serv i ce P rov iders

6-2 Architectural Overview

The Administration Model
The WebLogic Network Gatekeeper administration model allows operators to manage
application service provider access at increasingly granular levels of control. An application
service provider registers with WebLogic Network Gatekeeper and is given a service provider
account. To support tiering, service provider accounts are associated together into account
groups. These groups are then associated with their own Network Gatekeeper Service Level
Agreements.

Within a service provider account are individual application accounts, registered on their
respective service provider accounts. As in the case of service provider accounts, these
application accounts are grouped together into account groups, each of which is associated with
its own SLA.

Network Gatekeeper SLAs on the service provider and application level regulate, for example,
the type of service capability made available, the maximum bandwidth use allowed and the
number of concurrent sessions supported. They may also specify access to charging capabilities
and revenue sharing schemas. See Figure 6-1 for more information.

Figure 6-1 Service Provider and Application Administration Model

In addition to Network Gatekeeper SLAs, WebLogic Network Gatekeeper supports two types of
traffic SLAs, contracts designed to protect the underlying telecom network. Service provider
traffic SLAs regulate the relationship between a service provider group and the network nodes to
which it has access. See Figure 6-2 for more information.

The Admin is t ra t i on Mode l

Architectural Overview 6-3

Figure 6-2 Service Provider Traffic SLAs

In Figure 6-2 above, service providers in service provider group 1 are allowed to access all
network nodes, since their service provider traffic SLA (valid for all service providers within the
group) contains node contracts for all nodes.

Service providers in service provider group 2 are only allowed to access network node 1 and 3,
because their service provider traffic SLA only contains node contracts for node 1 and 3.

Service provider 1

WebLogic Network
Gatekeeper

Service provider
traffic SLA for
SP group 1:
Node 1 contract
Node 2 contract
Node 3 contract

Service provider
traffic SLA for
SP group 2:
Node 1 contract
Node 3 contract

Node 1
contract

Service provider 2
Service provider 5

Service provider 3

Node 2
contract

Node 3
contract

1 2
3

Network nodes

Appl Appl

Service provider 4

Appl

Service provider
group 2

Appl Appl

ApplAppl

Appl Appl

Appl

Appl

Service provider
group 1

Managing Appl ica t i on Serv i ce P rov iders

6-4 Architectural Overview

The second type of traffic SLA, the total traffic SLA, regulates the relationship between the
Network Gatekeeper itself and the underlying nodes.

Partner Relationship Management Interfaces
The WebLogic Network Gatekeeper Partner Relationship Management Interfaces provide
support for the automation of the traditionally work intensive tasks related to service provider and
application administration, including supporting workflows, with a request/approve model. Most
of the work of registration can be shifted to the service provider, as the operator's role changes
from that of entering registration data to that of approving registration data. Large numbers of
service provider and application accounts can be managed without increasing administration
overhead. Service providers are also provided with a defined and structured channel to
communicate desired account changes and to retrieve usage statistics for the accounts.

For a detailed description of the Partner Relationship Management Interfaces, see the document
Integration Guidelines for Partner Relationship Management for WebLogic Network
Gatekeeper.

As a part of an integration project, the Partner Relationship Management Interfaces can also be
integrated with back end systems and network nodes, such as SMSCs, MMSCs, and pre-paid
systems for creating and updating accounts.

Other Tasks Associated with Administering Service
Providers

For an application to use content based charging or messaging service capabilities, mechanisms
internal to Network Gatekeeper must be set up. To use user interaction service, announcements
must be recorded and installed in the network. For more information on these areas, see
WebLogic Network Gatekeeper - System Administrator’s Guide

Architectural Overview 7-1

C H A P T E R 7

Managing Network Gatekeeper: OAM

The following sections describe Operation, Administration, and Maintenance (OA&M)
functionality for WebLogic Network Gatekeeper

Overview

The WLS and Network Gatekeeper Management Console

OAM Tasks Overview

OSS Integration

Overview
WebLogic Network Gatekeeper is usually controlled through the WebLogic Network Gatekeeper
Management Console, a specialized extension of the general WebLogic Server Console. The
Console is a web-based tool, and can be run in any environment that supports appropriate web
browsers. For general information on the WLS Console, see the “Overview of the Administration
Console” chapter of the Introduction to BEA WebLogic Server and BEA WebLogic Express™.
For some tasks, you can also use scripts that run in the Web Logic Scripting Tool. For general
information, see WebLogic Scripting Tool. In addition, all or selected parts of the management
application can be integrated with external Operation Support Systems (OSS) using JMX/JMS
and alarms can be distributed using SNMP traps. And the application service provider
management tool functionality can be integrated with PRM and CRM systems using the Network
Gatekeeper Partner Relationship Management Interfaces.

http://e-docs.bea.com/wls/docs92/intro/console.html
http://e-docs.bea.com/wls/docs92/intro/console.html
http://e-docs.bea.com/wls/docs92/config_scripting/index.html

Managing Network Gatekeeper : OAM

7-2 Architectural Overview

Administrative users can be divided into user groups with access to different aspects of the
administrative functionality. Within user groups, individual users can have differing levels of
access. See WebLogic Network Gatekeeper - System Administrator’s Guide for more
information.

The WLS and Network Gatekeeper Management Console
The BEA WebLogic Network Gatekeeper Management Console is a Web browser-based,
graphical user interface that you use to manage a WebLogic Server domain. A standard
production installation for WebLogic Network Gatekeeper consists of at least one WebLogic
Server domain.

One instance of WebLogic Server in each domain is configured as an Administration Server. The
Administration Server provides a central point for managing a WebLogic Network Gatekeeper
domain. All other server instances in the domain are called Managed Servers. In Network
Gatekeeper, they are divided into Access Tiers and Network Tiers. In a domain with only a single
WebLogic Server instance, that server functions both as Administration Server and both
Managed Servers. The Administration Server hosts the Administration Console, which is a Web
application accessible from any supported Web browser with network access to the
Administration Server. To access the console, use the following URL:

http://hostname:port/console

where hostname is the DNS name or IP address of the Administration Server and port is the
listen port on which the Administration Server is listening for requests.

OAM Tasks Overview
Use the Administration Console to:

Configure, start, and stop Network Gatekeeper instances

Configure Network Gatekeeper clusters

Configure Network Gatekeeper services, such as database connectivity (JDBC) and
messaging (JMS)

Configure security parameters, including managing users, groups, and roles

Monitor server and application performance

View server and domain log files

OSS In tegrat ion

Architectural Overview 7-3

View application deployment descriptors

Edit selected runtime application deployment descriptor elements

Use the WebLogic Network Gatekeeper specific section (accessed through the Domain Structure
tree on the left side of the Administration Console) to:

Configure Network Gatekeeper traffic paths

Provision Application Service Providers

Monitor alarms

Tasks performed outside the Console

Extend Network Gatekeeper’s functionality

Backup and restore the system

Upgrade the system

Complete information about WebLogic Network Gatekeeper OAM can be found in the WebLogic
Network Gatekeeper - System Administrator’s Guide.

OSS Integration
All or selected parts of the management application can also be integrated with external
Operation Support Systems (OSS) through secured JMX/JMS interfaces. For more information
on working with JMX, see Developing Manageable Applications and Configuring and Using the
WebLogic Diagnostic Framework. Alarm supervision systems can set up external JMS listeners
to receive user definable types of event-based data, including standard alarms. For more
information on using JMS listeners, see Events, Alarms, and Charging. SNMP traps are sent to
any registered SNMP managers.

http://e-docs.bea.com/wls/docs90/jmxinst/
http://e-docs.bea.com/wls/docs90/wldf_configuring/
http://e-docs.bea.com/wls/docs90/wldf_configuring/

Managing Network Gatekeeper : OAM

7-4 Architectural Overview

Architectural Overview 8-1

C H A P T E R 8

Charging

The following sections describe WebLogic Network Gatekeeper charging functionality:

Overview

CDR-based Charging

Content Based Charging and Accounting

Billing System Integration

Overview
WebLogic Network Gatekeeper makes it possible to tailor the type of charging associated with
each application service. An application can use one or more of the following alternatives:

Charging based on time used or per-use services (CDR based)

Charging based on the content or value of the used service (CBC)

CDR-based Charging
CDRs are used for charging based either on time used or on access to certain per-use services.
Charging based on time used is typically employed for calls. Per-use might be employed, for
example, to charge for a positioning service.

Charg ing

8-2 Architectural Overview

CDR data can be stored in WebLogic Network Gatekeeper's internal charging database or
retrieved in real-time by billing and post processing systems through a billing gateway (this
requires integration with the billing gateway: see Billing System Integration).

Data Generation
Charging data is generated every time an application uses a traffic path. The charging data is
recorded by the traffic path during the period the application interacts with the network. When
the interaction is closed, the traffic path stores the charging data as a CDR in the Network
Gatekeeper's database. (If WebLogic Network Gatekeeper is integrated with a billing gateway,
the charging data is sent directly to the billing gateway.) For an overview of what is stored in a
CDR in the database, see Charging Data Records

Content Based Charging and Accounting
Content or value based charging makes it is possible to charge a user or subscriber based on the
variable value of a used service rather than on time used or flat rates. This can be used, for
example, when down loading music video clips or in m-commerce applications. WebLogic
Network Gatekeeper supports both pre-paid and post-paid end-user accounts using various
mechanisms.

Billing System Integration
Network Gatekeeper can be integrated with external billing systems, either those that receive
charging data directly or those that automatically retrieve information from Network
Gatekeeper’s database. CDRs can be customized to fit the requirements of these systems, both in
terms of format and behavior.

Billing gateways
Real-time settlement of pre-paid accounts using CDR based charging requires integration
through a billing gateway. This method can also be used to support post-paid services.

Bi l l ing Sys tem In tegrat ion

Architectural Overview 8-3

Figure 8-1 Billing integration through billing gateway

When integrating through a billing gateway, the billing gateway retrieves the CDRs in real-time
through an external JMS-based charging listener. Rating, rating management, billing information
storage, and pre-paid accounts settlement are handled by the billing gateway. The flow is shown
above in Figure 8-1.

CDR database
In the case of applications that use post-paid accounts, it is possible to integrate billing by
retrieving CDRs that have been stored in the Network Gatekeeper database.

Billing
Gateway

Post-Paid
Database

CDRs

Rating
Management

Charg ing

8-4 Architectural Overview

Figure 8-2 Billing integration using the database

When integrating using this method, a CDR batch retrieval tool retrieves the CDRs from the
database and stores them in a file format. The CDR file is processed by a rating system that
transforms it into billing information and then stores it in a post-paid accounts database. The flow
is shown above in Figure 8-2.

Payment plug-in
Applications using the Payment traffic path (for Content Based Charging) need to have a
connection with an accounts database. The integration between the Payment traffic path and the
database is made via a customized plug-in, developed to fit the characteristics of the accounts
database. Both pre-paid and post-paid accounts can be handled using this method. For example,
it is possible to check to make sure that there are funds available in a pre-paid account before a
call is set up.

The flow is shown below in Figure 8-3

CDRs

CDR Batch
Retrieval

Tool

Rating
System

CDR
Database

Post-Paid
Database

CDR File

Scheduling
Rating

Management

Bi l l ing Sys tem In tegrat ion

Architectural Overview 8-5

Figure 8-3 Billing integration through a Payment plug-in.
Po

lic
y

Se
rv

ic
e

C
D

R
 b

as
ed

 c
ha

rg
in

g

WebLogic Network Gatekeeper

Charging
Request from
Application

Payment Traffic Path
with specialized

Plug-ins

 Plug-in

Post-Paid
Accounts

Pre-Paid
Accounts

Rating
System

Payment
Traffic Path

Network

Charg ing

8-6 Architectural Overview

Architectural Overview 9-1

C H A P T E R 9

Redundancy, Load Balancing, and High
Availability

Redundancy, load balancing and high availability are essential for true carrier grade performance.
WebLogic Network Gatekeeper uses both software and hardware components to achieve these
important ends:

Tiering

Traffic Management Inside Network Gatekeeper

– Application-initiated Traffic

– Network-triggered Traffic

Registering Notifications with Network Nodes

– Network Node Supports Primary and Secondary Notification

– Network Node Supports Only Single Notification

Network Configuration

Geographic Redundancy

WebLogic Network Gatekeeper’s high availability mechanisms are supported by the clustering
mechanisms made available by its container, WebLogic Server. For general information about
WebLogic Server and clustering, see Using WebLogic Server Clusters.

http://edocs.bea.com/wls/docs92/cluster/index.html

Redundancy , Load Ba lanc ing , and H igh Ava i lab i l i t y

9-2 Architectural Overview

Tiering
For both high availability and security reasons, Network Gatekeeper is split into two tiers: the
Access Tier and the Network Tier. Each tier consists of a cluster, with at least two server instances
per cluster, and all server instances run in active mode, independently of each other. The servers
in both clusters are, in the context of WebLogic Server, managed servers. Together the clusters
make up a single WebLogic Server administration domain, controlled through an administration
server.

Figure 9-1 Example Production Domain

Communication between the Access Tier and the Network Tier takes place using Java RMI.
Application requests are load-balanced between the Access Tier and the Network Tier and
failover mechanisms are present between the two. See Traffic Management Inside Network
Gatekeeper for more information on these mechanisms in application-initiated and
network-triggered traffic flows.

There is an additional tier containing the database. Within the cluster, data is made highly
available using a cluster-aware storage service which ensures that session state data is made
available among Network Tier instances since multiple invocations can relate to the same session.

Traf f i c Management Ins ide Network Gatekeeper

Architectural Overview 9-3

Traffic Management Inside Network Gatekeeper
Potential failure is possible at many stages along the path that traffic follows as it moves through
Network Gatekeeper. The following sections detail, tier by tier, how Network Gatekeeper deals
with problems that might arise in both application-initiated and network-triggered traffic.

Application-initiated Traffic
Application-initiated traffic consists of all requests that travel from applications through Network
Gatekeeper to underlying network nodes.

The example below follows the worst-case scenario for application-initiated traffic as it passes
through Network Gatekeeper, and the failover mechanisms that attempt to keep the request alive.

Figure 9-2 Failover mechanisms in application-initiated traffic

Redundancy , Load Ba lanc ing , and H igh Ava i lab i l i t y

9-4 Architectural Overview

1. The application sends a request to Network Gatekeeper. In a production environment, this
request is routed through a hardware load balancer, usually protocol-aware. If the request
towards the initial Access Tier server fails (1.1), either a time-out or a failure is reported. The
load-balancer, or the application itself, is responsible for retrying the request.

2. The request is retried on a second server in the cluster (1.2) and it succeeds. It then attempts
to send the request on to the Network Tier.

3. The request either fails to reach the Network Tier or fails during the process of
marshalling/unmarshalling the request as it travels to the Network Tier server (1.2.1).

4. A fail-over mechanism in the Access Tier sends the request to a different server in the
Network Tier cluster and it succeeds (1.2.2). It then attempts to send the request on to the
network node.

Note: If the request fails within the Network Tier, failover does not occur. In this case, an
exception is thrown to the application, which can then re-send the request.

5. The attempt to send the request to the telecom network node fails (1.2.2.1).

6. If a redundant pair of network nodes exists, the request is forwarded to the redundant node
(1.2.2.2). If this request fails, the failure is reported to the application.

Network-triggered Traffic
Network-triggered traffic can consist of the following:

Requests that contain a payload, such as terminal location or an SMS

Acknowledgements from the underlying network node that an application-initiated request
has been processed by the network node itself. A typical example might indicate that an
SMS has reached the SMSC. From an application’s perspective, this is normally processed
as part of a synchronous request, although it may be asynchronous from the point of view
of the network

Acknowledgements from the underlying network node that the request has been processed
by the destination end-user terminal; for example, an SMS delivery receipt indicating that
the SMS has been delivered to the end-user terminal. From an application’s perspective,
this is normally handled as a incoming notification

For network-triggered traffic, Network Gatekeeper relies heavily on the telecom network node,
or other external artifacts such as load-balancers with failover capabilities, to do failover.

In the case of network nodes that can handle the registration of multiple callback interfaces, such
as a Parlay Gateway, Network Gatekeeper registers one primary and one secondary callback

Traf f i c Management Ins ide Network Gatekeeper

Architectural Overview 9-5

interface. If the Parlay Gateway is unable to send a request to the network plug-in registered as
the primary callback interface, the Parlay Gateway is responsible for retrying the request, sending
it to the plug-in that is registered as the secondary callback interface. This secondary callback
interface is found in a network plug-in residing in another Network Tier instance. The plug-ins
are responsible for communicating with each other and making sure that both callback interfaces
are registered. See Network Node Supports Primary and Secondary Notification below for more
information.

For HTTP-based protocols, such as MM7, MLP, and PAP, Network Gatekeeper relies on an
HTTP load balancer with failover functionality between the telecom network node and Network
Gatekeeper. See Network Node Supports Only Single Notification below for more information.

If a telecom network protocol does not support load balancing and high availability, a single point
of failure is unavoidable. In this case, all traffic associated with a specific application is routed
through the same Network Tier server and each plug-in has one single connection to one telecom
network node.

The worst-case scenario for network triggered traffic for medium life span notifications using a
network node that supports primary and secondary callback interfaces is described below.

Note: For more information on life spans, see Registering Notifications with Network Nodes.

Redundancy , Load Ba lanc ing , and H igh Ava i lab i l i t y

9-6 Architectural Overview

Figure 9-3 Failover mechanisms in network-triggered traffic

1. A telecom network node sends a request to the Network Gatekeeper network plug-in that has
been registered as the primary. It fails (1.1) due to either a communication or server failure.

2. The telecom network node resends the request, this time to the plug-in that is registered as the
secondary call-back interface. This plug-in is in a different server instance within the Network
Tier cluster.

3. The Network Tier attempts to send the message to the callback EJB in the Access Tier. It fails
(1.2.1)

4. If the request fails to reach the Access Tier, or failure occurs during the
marshalling/unmarshalling process, the Network Tier retries, targeting another server in the
Access Tier. It succeeds (1.2.2). If, however, the failure occurs after processing has begun in
the Access Tier, failover does not occur and an error is reported to the network node.

5. The callback EJB in the Access Tier attempts to send the request to the application (1.2.2.1).
If the application is unreachable or does not respond, the request is considered failed, and an
error is reported to the network node.

Regis te r ing No t i f i cat ions w i th Network Nodes

Architectural Overview 9-7

Registering Notifications with Network Nodes
Before applications can receive network-triggered traffic, or notifications, they must register their
interest in doing so with Network Gatekeeper, either by sending a request or having the operator
set the notification up using OAM methods. In turn these notifications must be registered with
the underlying network node that will be supplying them. The form of this registration is
dependent on the capabilities of that node.

If registration for notifications is supported by the underlying network node protocol, the traffic
path’s network plug-in is responsible for performing it, whether the registration is the result of an
application-initiated registration request or an on-line provisioning step in Network Gatekeeper.
For example, all OSA/Parlay Gateway interfaces support such registration for notifications.

Some network protocols may not support all registration types. For example, in MM7 an
application can register to receive notifications for delivery reports on messages is sent from the
application, but not to receive notifications on messages sent to the application from the network.
In this case, registration for such notifications can be done as an off-line provisioning step in the
MMSC.

Network Gatekeeper is responsible for correlating all network-triggered traffic with its
corresponding application, whether the original registration for notification was completed using
a request from the application or OAM methods.

There are three categories for such registrations, based on the expected life span of the
notification. These categories determine the failover strategies used:

Short life span
These notifications are very short-lived, with an expected life span of a few seconds.
Typically these are delivery acknowledgements for hand-off of the request to the network
node, where the response to the request is reported asynchronously. For this category, a
single plug-in, the originating one, is deemed sufficient to handle the response from the
network node.

Medium life span
These notifications are neither short- nor long-lived, with an expected life span of minutes
up to a few days. Typically these are delivery acknowledgements for message delivery to
an end-user terminal. For this category, the delivery notification criteria that have been
registered are replicated to exactly one additional instance of the network protocol
plug-in. The plug-in that receives the notification is responsible for registering a
secondary notification with the network node, if possible.

Long life span

Redundancy , Load Ba lanc ing , and H igh Ava i lab i l i t y

9-8 Architectural Overview

These notifications are long-lived, with an expected life span of more than a a few days.
Typically these are registrations for notifications for network-triggered SMS and MMS
messages or calls that need to be forwarded to an application. For this category, the
delivery notification criteria are replicated to all instances of the network plug-in. Each
plug-in that receives the notification is responsible for registering an interface with the
network node.

Network Node Supports Primary and Secondary Notification
Figure below illustrates how Network Gatekeeper registers both primary and secondary
notifications with network nodes that support it. This capability must be supported both by the
network protocol in the abstract, and by the implementation of the protocol as it exists in both the
network node and the traffic path’s network plug-in.

Note: The scenario assumes that the network node supports registration for notifications with
overlapping criteria (primary/secondary).

Figure 9-4 Registration flow with primary/secondary notifications

1. The request to register for notifications enters the network protocol plug-in from the
application.

Regis te r ing No t i f i cat ions w i th Network Nodes

Architectural Overview 9-9

2. The primary notification is registered with the telecom network node.

3. The notification information is propagated to another instance of the network protocol
plug-in.

4. The secondary notification is registered with the telecom network node.

Note: The concept of primary/secondary notification is not necessarily ordered. The most
recently registered notification may, for example, be designated the primary notification.

When a network-triggered request that matches the criteria in a previously registered notification
reaches the telecom network node, the node first tries the network plug-in that registered the
primary notification. If that request fails, the network node has the responsibility of retrying,
using the plug-in that registered the secondary notification. The secondary plug-in will have all
necessary information to propagate the request through Network Gatekeeper and on to the correct
application.

Network Node Supports Only Single Notification
Figure 9-5 below illustrates the registration step in Network Gatekeeper if the underlying
network node does not support primary/secondary notification registration.

Note: The scenario assumes that the network node does not support registration for
notifications with overlapping criteria. Only one notification for a given criteria is
allowed.

Figure 9-5 Registration flow with single notification node

Redundancy , Load Ba lanc ing , and H igh Ava i lab i l i t y

9-10 Architectural Overview

1. The request to register for notifications enters the network protocol plug-in from the
application.

2. The primary notification is registered with the telecom network node.

3. The notification information (matching criteria, target URL, etc.) is propagated to another
instance of the network protocol plug-in. The plug-in makes the necessary arrangements to be
able to receive notifications.

As is clear from the above illustration, in this situation the underlying network node has a
callback interface to only a single network plug-in. In order to achieve high-availability and
load-balancing a load balancer with fail-over support must be introduced between the network
protocol plug-in and the network node, as in Figure 9-6 below.

Note: Whether of not this is possible depends on the network protocol, as the load-balancer
must be protocol-aware.

Figure 9-6 Traffic flow with single notification node

Network Conf igurat ion

Architectural Overview 9-11

Network Configuration
In addition to the specific hardware components listed above, the general structure of a Network
Gatekeeper installation is designed to support redundancy and high availability. A typical
installation consists of a number of UNIX/Linux servers connected through duplicated switches.
Each server has redundant network cards connected to separate switches. The servers are
organized into clusters, with the number of servers in the cluster determined by the needed
capacity.

As described previously, Network Gatekeeper is divided into an Access Tier, which manages
connections to applications and a Network Tier, which manages connections to the underlying
telecom network. For security, the Network Tier is usually connected only to Access Tier servers,
the appropriate underlying network nodes, and the WebLogic Server administration server,
which manages the domain. A third tier hosts the database. This tier should be hosted on
dedicated, redundant servers. For physical storage, a Network Attached Storage via fibre channel
controller cards is an option.

Because the different tiers perform different tasks, their servers should be optimized with
different physical profiles, including amount of RAM, disk-types, and CPUs. Each tier scales
individually, so the number of servers in a specific layer tier can be increased without affecting
the other tiers.

A sample configuration is shown in Figure 9-7. Smaller systems in which the Access Tier and the
Network Tier are co-located in the same physical servers are possible, but only for
non-production systems,. Particular hardware configurations depend on the specific deployment
requirements, and are worked out in the dimensioning and capacity planning stage.

Redundancy , Load Ba lanc ing , and H igh Ava i lab i l i t y

9-12 Architectural Overview

Figure 9-7 Sample hardware configuration

In high availability mode, all hardware components are duplicated, eliminating single point of
failure. This means that there are at least two servers executing the same software modules, that
each server has two network cards, and that each server has a fault-tolerant disk system, for
example RAID.

The administration server may have duplicate network cards, connected to each switch. The
optional PRM servers should run on separate, dedicated servers.

For security reasons, the servers used for the Access Tier can be separated from the Network Tier
servers using firewalls. The Access Tier servers reside in a Demilitarized Zone (DMZ) while the
Network Tier servers are in a trusted environment.

Geographic Redundancy
All Network Gatekeeper modules in production systems are deployed in clusters to ensure high
availability. This prevents single points of failure in general usage. To prevent service failure in
the face of catastrophic events - natural disasters or massive system outages like power failures -

Geograph ic Redundancy

Architectural Overview 9-13

Network Gatekeeper can also be deployed at two geographically distant sites as site pairs. Each
site, which is a Network Gatekeeper domain, has a site peer. See Figure 9-8 for more information.

Figure 9-8 Overview of geographically redundant site pairs

Note: The geographic distribution of the sites is not transparent to the applications accessing
Network Gatekeeper. There is no single sign-on mechanism across sites and an
application must establish a session with each site it intends to use. In case of site failure,
an application must manually fail-over to a different site. Provisioning for each site must
be performed individually.

SLA enforcement is synchronized across geographic sites and SLAs are enforced across
predefined pairs. Each site is configured to have a reference to its peer site. A subset of all SLAs
for a given site is designated as being enforceable across sites. Exactly which parts are selected
depends on particular applications and their usage patterns.

Each site maintains a designated hub node that responsible for accounting and the enforcement
of SLAs at that site. The service executing on the hub node is highly available and is migrated to
another server should server failure occur. Cross-site enforcement is accomplished through
hub-to-hub synchronization of global usage counts. The accuracy of enforcement across site pairs

Redundancy , Load Ba lanc ing , and H igh Ava i lab i l i t y

9-14 Architectural Overview

is configurable through an accuracy factor, which is translated into a synchronization interval
based on, among other settings, the number of servers.

Applications that normally use only a single site for their traffic can failover to their peer site
while maintaining ongoing SLA enforcement. This scenario is particularly relevant for SLA
aspects that have longer term impact such as quotas.

Figure 9-9 Geographically redundant site pairs and applications

The geographic redundancy design does not maintain state for ongoing conversations.
Conversations in this sense are defined in terms of the correlation identifiers that are returned to
the applications by Network Gatekeeper or passed into Network Gatekeeper from the
applications. Any state associated with a correlation identifier exists on only a single geographic
site and is lost in the event of a site-wide disaster. Conversational state includes, but is not limited

Geograph ic Redundancy

Architectural Overview 9-15

to, call state and registration for network triggered notifications. This type of state is considered
volatile, or transient, and is not replicated at the site level.

By implication, therefore, conversations must be conducted and complete on their site of origin.
If an application wishes to maintain conversational state cross-site - for example, a registration
for network-triggered traffic - it must register with each site individually.

On the other hand, this type of affinity does not prevent load balancing between sites for different
or new conversations. An example might be sending an SMS message. Because each such a
request constitutes a new conversation, sending SMS messages could be balanced between the
sites.

Below is a high-level outline of the redundancy functionality:

The SLA format supports contracts being able to be enforced across geographic site
domains. There is an option to configure the system to enforce the SLA across domains.
This can be configured per SLA on both on the service provider group and application
group level. By default, SLAs are not enforced across sites.

Connection lost alarms will be raised whenever the peer sites fail to establish connection a
certain number of times. The number of retries is configurable.

The Network Gatekeeper Budget Service is used to enforce SLA request and quota limits.
The budget state is distributed to the other geographic sites. Network Gatekeeper
automatically determines the optimal synchronization interval.

These are the categories of data that are candidates for replication to other sites depending
on the restrictions on application load balancing and fail-over between sites you choose to
support.

– SLA quota counters
Quotas that span over longer period of time are persisted in the database to avoid
losing state information during server or site failures. The replication is performed
at the level of the Network Gatekeeper as a whole as opposed to relying on the
databases to do the replication.

– SLA request limits
Request limits that span over longer period of time are persisted, in a manner
similar to that of quota counters.

Alarms are generated if a site does not have identical service provider group and
application group level SLA configuration between peer sites.

Alarms are generated if site A treats site B as a peer, but site B does not recognize site A
as a peer.

Redundancy , Load Ba lanc ing , and H igh Ava i lab i l i t y

9-16 Architectural Overview

Limitations:

Provisioning accounts
Service provider, application group (including SLA) and account data are not replicated
across sites. Provisioning must be performed at each individual site.

Notifications
Applications are expected to either register for notifications from all the sites or to
re-register for notifications upon site failure.

Application sessions
If application requests are to be load balanced across sites, the applications must establish
sessions with each site separately.

Fail-back
If an application fails over to the back-up site, Network Gatekeeper does not support
fail-back to the original site.

SLA Overrides
SLAs may use overrides that, for example, set traffic levels based on time-of-day.
Overrides are not enforced across sites, even if Network Gatekeeper is otherwise
configured to enforce SLAs across sites. If overrides are present in these SLAs, alarms are
emitted.

Architectural Overview 10-1

C H A P T E R 10

Service Extensibility

The following sections describes how to extend the WebLogic Network Gatekeeper
functionality, including:

Overview

The Extension Toolkit

Overview
Networks change. Existing functionality is parsed in new ways to support new features. New
nodes with new or modified abilities are added. Because of WebLogic Network Gatekeeper's
highly modular design, exposing these new features to partners is a straightforward proposition.
There are three ways to extend Network Gatekeeper:

Entirely new traffic paths

New network plug-ins that can work with existing application facing interfaces

New and/or extended policy rules and SLA data.

The Extension Toolkit
To help operators and systems integrators, WebLogic Network Gatekeeper ships with the Web
Logic Network Gatekeeper Extension Toolkit. The Toolkit comprises the following features:

An installer

Se rv i ce Ex tens ib i l i t y

10-2 Architectural Overview

The Toolkit is available as an install option in the Network Gatekeeper installer. It creates
a directory hierarchy that parallels that of the Network Gatekeeper hierarchy.

An Eclipse plug-in
The developer supplies information to an Eclipse plug-in wizard, which automatically sets
up an Extension Project. Included within this project can be a substantial amount of
generated code, including:

• The entire Access Tier, with the Web Service implementation and any callback EJBs
that are necessary

Note: The Extension Toolkit only supports building traffic paths based on Web Services
application-facing interfaces.

• Most of the Service Capability EJB layer of the Network Tier

• A skeleton of the code required for the Network plug-in layer of the Network Tier

A complete sample traffic path

A component library including code for commonly used functionality in network plug-ins.

A testing tools suite, including:

– An Ant task for automatically generating Web Service client stubs

– A component library including functionality for logging in and maintaining a Network
Gatekeeper session

– General testing utilities

– Support for adding automatic configuration of Network Gatekeeper to tests

– A sample test case

Policy and SLA examples to aid the developer in developing new rules and SLA data.

Backwards Compatibility for 2.2 Extensions
The Extension Toolkit can also be used to create much of the code required to port Network
Gatekeeper 2.2 style extensions and plug-ins to the new version 3.0 framework.

Architectural Overview 1-1

C H A P T E R 11

Backwards Compatibility 2.2 to 3.0

Version 3.0 represents a substantial re-working of the basic architecture of WebLogic Network
Gatekeeper based upon the Java Enterprise Edition. Nonetheless, significant work has been done
to insure key forms of backwards compatibility with code created by end-users to run in version
2.2, including:

Web Services-based Application Clients

External Listeners

Extension Traffic Paths and Plug-ins

The following provides a high-level description of the mechanisms by means of which older code
can run in the context of the new architecture.

Note: Any code based on the 2.2 model is supported for 3.0, but deprecated.

In addition, there is a section that gives an overview of the internal structure of backwards
compatible traffic paths, which may be of use to those administrators who are charged with
configuring those paths.

Web Services-based Application Clients
Service Provider application clients may need to make changes in two aspects of their code:

Interfaces

Authentication

Backwards Compat ib i l i t y 2 .2 to 3 .0

1-2 Architectural Overview

Interfaces
The Web Services-based supplied traffic paths in previous versions of Network Gatekeeper used
interfaces based on multiple sources - the Parlay X 1.0 standard, the Parlay X 2.1 draft standard,
and Extended Web Services, Network Gatekeeper’s own in-house interface set. With the release
of 3.0, all interfaces for the supplied traffic paths have been upgraded to the Parlay X 2.1 standard,
with the exception of WAP Push interface, which continues to use the Extended Web Services
set. Service Provider applications that wish to interact with these supplied traffic paths must
update to support these standards. Service Provider applications that wish to interact with
operator provided extension traffic paths that were created in the 2.2 framework should be able
to continue to use the same interfaces.

Authentication
Authentication in Network Gatekeeper 2.2 was based on obtaining a login ticket from the Access
Web Service. This mode of authentication continues to be supported in Network Gatekeeper 3.0,
but it is deprecated. The preferred mode of authentication is based on WS-Policy, and uses the
Session Management Web Service instead of the Access Web Service. For more information on
the difference between these two modes, see the Application Development Guide, another
document in this set.

External Listeners
Network Gatekeeper 2.2 provided a mechanism for developing CORBA based listeners for
events, alarms, and charging. This mechanism continues to be supported in 3.0, but is deprecated.
The actual data the 2.2 style listeners receive is identical to the data they received in 2.2, which
may not be exactly the same data propagated to 3.0 style listeners. Because 3.0 style enhanced
traffic paths may generate slightly different data than 2.2 style paths, some fields in the data these
paths deliver to 2.2 listeners may be empty. These fields are deprecated going forward. For more
information on the new event/alarm/charging model, see Events, Alarms, and Charging .

Extension Traffic Paths and Plug-ins
Some operators may have customized 2.2 style traffic paths and plug-ins that they have created
to support specialized features of their networks and/or needs of their service providers. These
traffic paths can be upgraded to run within the context of the 3.0 architecture using tools provided
in the Network Gatekeeper Extension Toolkit. Very little additional code needs to be written to

Ove rv iew o f the In te rna l S t ruc ture o f Backwards Compat ib l e T ra f f i c Paths

Architectural Overview 1-3

make the necessary changes. For more information, see the Extension Toolkit - Developer’s
Guide, a separate document in this set.

Overview of the Internal Structure of Backwards
Compatible Traffic Paths

The backwards compatible traffic paths provided with Network Gatekeeper 3.0 retain in a
modified form some of the layered architectural features of version 2.2 traffic paths. Each of these
layers may require some configuration, depending on the needs of the traffic path, and they use
a CORBA-based connection model to connect to each other rather than the Java-based model
used elsewhere in v3.0.

Backwards Compat ib i l i t y 2 .2 to 3 .0

1-4 Architectural Overview

Architectural Overview A-1

A P P E N D I X A

Standards and Specifications

The following appendix provides a description of the specific standards that WebLogic Network
Gatekeeper supports, along with, where possible, links to the actual specifications. A detailed
statement of compliance is available upon request. This detailed statement of compliance is
provided only under the terms of a non-disclosure agreement.

Application-facing interfaces

Parlay X 2.1
The Network Gatekeeper application-facing interfaces support the following parts of the Parlay
X 2.1 specification.

Note: See http://parlay.org/en/specifications/pxws.asp for links to the specifications.

Common, ETSI ES 202 391-1 V1.2.1 (2006-12) Open Service Access (OSA); Parlay X
Web Services; Part 1: Common (Parlay X 2).

Third Party Call, ETSI ES 202 391-2 V1.2.1 (2006-12) Open Service Access (OSA);
Parlay X Web Services; Part 2: Third Party Call (Parlay X 2).

Call Notification, ETSI ES 202 391-3 V1.2.1 (2006-12) Open Service Access (OSA);
Parlay X Web Services; Part 3: Call Notification (Parlay X 2).

Short Messaging, ETSI ES 202 391-4 V1.2.1 (2006-12) Open Service Access (OSA);
Parlay X Web Services; Part 4: Short Messaging (Parlay X 2).

http://parlay.org/en/specifications/pxws.asp

Standards and Spec i f ica t ions

A-2 Architectural Overview

Multimedia Messaging, ETSI ES 202 391-5 V1.2.1 (2006-12) Open Service Access
(OSA); Parlay X Web Services; Part 5: Multimedia Messaging (Parlay X 2).

Payment, ETSI ES 202 391-6 V1.2.1 (2006-12), Open Service Access (OSA); Parlay X
Web Services; Part 6: Payment (Parlay X 2).

Terminal Status, ETSI ES 202 391-8 V1.2.1 (2006-12), Open Service Access (OSA);
Parlay X Web Services; Part 8: Terminal Status (Parlay X 2).

Terminal Location, ETSI ES 202 391-9 V1.2.1 (2006-12), Open Service Access (OSA);
Parlay X Web Services; Part 9: Terminal Location (Parlay X 2).

Call Handling, ETSI ES 202 391-10 V1.2.1 (2006-12), Open Service Access (OSA);
Parlay X Web Services; Part 10: Call Handling (Parlay X 2).

Audio Call, ETSI ES 202 391-11 V1.2.1 (2006-12), Open Service Access (OSA); Parlay
X Web Services; Part 11: Audio Call (Parlay X 2).

Presence, ETSI ES 202 391-14 V1.2.1 (2006-12), Open Service Access (OSA); Parlay X
Web Services; Part 14: Presence (Parlay X 2).

Extended Web Services
The Extended Web Services are Network Gatekeeper’s proprietary application-facing interfaces.
These interfaces are implementations of commonly requested functionality, including, in this
release, WAP Push. Although the interfaces themselves are not standardized, they often use
standardized elements.

Note: Below is a list of such standardized elements. See
http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html for links to the
specifications.

The payload of a WAP Push message shall adhere to:

WAP Service Indication Specification, as specified in Service Indication Version
31-July-2001 Wireless Application Protocol WAP-167-ServiceInd-20010731-a.

WAP Service Loading Specification, as specified in Service Loading Version
31-Jul-2001 Wireless Application Protocol WAP-168-ServiceLoad-20010731-a.

WAP Cache Operation Specification, as specified in Cache Operation Version
31-Jul-2001 Wireless Application Protocol WAP-175-CacheOp-20010731-a.

Note: The Extended Web Services WAP Push traffic path does not verify the payload. It simply
passes it on to the underlying network node.

Network p ro toco l p lug- ins

Architectural Overview A-3

Network protocol plug-ins
Off-the shelf, Network Gatekeeper supports the network protocols listed in Table 11-1 through
the use of network protocol plug-ins. Although each plug-in is a part of a given traffic path,
certain protocols can be used by multiple traffic paths for different purposes. In these cases there
may be multiple implementations of the same protocol for use in different traffic paths.

Below is a list of supported network protocols organized per traffic path.

Table 11-1 Network plug-ins organized per traffic path.

Traffic Path Network protocol
plug-in

Specification

Parlay X 2.1 Third Party
Call

Parlay 3.3
MultiParty Call
Control

ETSI ES 201 915-4 V1.4.1 (2003-07), Open
Service Access (OSA); Application Programming
Interface (API); Part 4: Call Control SCF (Parlay
3), part MultiParty Call Control Service. Section
MultiParty Call Control Service.

http://parlay.org/en/specifications/apis_archives.a
sp

SIP RFC 3261.

http://www.ietf.org/rfc/rfc3261.txt

Parlay X 2.1 Call
Notification

Parlay 3.3
MultiParty Call
Control

 ETSI ES 201 915-4 V1.4.1 (2003-07), Open
Service Access (OSA); Application Programming
Interface (API); Part 4: Call Control SCF (Parlay
3), part MultiParty Call Control Service. Section
MultiParty Call Control Service.

http://parlay.org/en/specifications/apis_archives.a
sp

SIP RFC 3261.

http://www.ietf.org/rfc/rfc3261.txt

http://parlay.org/en/specifications/apis_archives.asp
http://www.ietf.org/rfc/rfc3261.txt
http://parlay.org/en/specifications/apis_archives.asp
http://www.ietf.org/rfc/rfc3261.txt

Standards and Spec i f ica t ions

A-4 Architectural Overview

Parlay X 2.1 Short
Messaging

Parlay 5.0
Multimedia
Messaging

 ETSI ES 203 915-15 V1.1.1 (2005-04), Open
Service Access (OSA); Application
Programming Interface (API); Part 15:
Multi-Media Messaging SCF (Parlay 5).

http://parlay.org/en/specifications/apis_archiv
es.asp

SMPP v3.4 Short Message Peer to Peer, Protocol
Specification v3.4, Document Version:-
12-Oct-1999 Issue 1.2.

http://smsforum.net/
Parlay X 2.1 Multimedia
Messaging:

Parlay 5.0
Multimedia
Messaging

ETSI ES 203 915-15 V1.1.1 (2005-04), Open
Service Access (OSA); Application
Programming Interface (API); Part 15:
Multi-Media Messaging SCF (Parlay 5).

http://parlay.org/en/specifications/apis_archiv
es.asp

MM7 v 5.3.0
Ericsson MM7 1.0

Ericsson MM7 R2.0
ACA 03

Ericsson MM7 R2.5
ACA 04

Note: Only one of
the above
listed
protocols
can be used
at the same
moment for
a given node
in a domain.

3rd Generation Partnership Project; Technical
Specification Group Terminals; Multimedia
Messaging Service (MMS); Functional
description; Stage 2 (Release 5), 3GPP TS
23.140 V5.3.0.

Messages are compliant with XSD schemes
defined with name space
http://www.3gpp.org/ftp/Specs/html-info/23
140.htm

Table 11-1 Network plug-ins organized per traffic path.

Traffic Path Network protocol
plug-in

Specification

http://parlay.org/en/specifications/apis_archives.asp
http://smsforum.net/
http://parlay.org/en/specifications/apis_archives.asp
http://www.3gpp.org/ftp/Specs/html-info/23140.htm

Network p ro toco l p lug- ins

Architectural Overview A-5

Parlay X 2.1 Payment Parlay 3.3 Charging ETSI ES 201 915-12 V1.4.1 (2003-07), Open
Service Access (OSA); Application Programming
Interface (API); Part 12: Charging SCF (Parlay 3).

http://parlay.org/en/specifications/apis_archives.a
sp

Parlay X 2.1 Terminal
Status

Parlay 3.3 Mobility,
User Status

ETSI ES 201 915-6 V1.4.1 (2003-07), Open
Service Access (OSA); Application Programming
Interface (API); Part 6: Mobility SCF (Parlay 3).
User Status part.

http://parlay.org/en/specifications/apis_archives.a
sp

Parlay X 2.1 Terminal
Location

Parlay 3.3 Mobility,
User Location

ETSI ES 201 915-6 V1.4.1 (2003-07), Open
Service Access (OSA); Application Programming
Interface (API); Part 6: Mobility SCF (Parlay 3).
User Location part.

http://parlay.org/en/specifications/apis_archives.a
sp

MLP 3.0

MLP 3.2

Note: Only one of
the above
listed
protocols
can be used
at the same
moment for
a given node
in a domain.

Location Inter-operability Forum (LIF) Mobile
Location Protocol, LIF TS 101 Specification
Version 3.0.0

and

Mobile Location Protocol 3.2 Draft Version 3.2
Open Mobile Alliance,
OMA-TS-MLP-V3_2-20050914-D.

MLP 3.0:
http://www.openmobilealliance.org/tech/affiliates
/lif/lifindex.html

MLP 3.2:
http://www.openmobilealliance.org/release_progr
am/mls_v1_0.html

Table 11-1 Network plug-ins organized per traffic path.

Traffic Path Network protocol
plug-in

Specification

http://parlay.org/en/specifications/apis_archives.asp
http://parlay.org/en/specifications/apis_archives.asp
http://parlay.org/en/specifications/apis_archives.asp
http://parlay.org/en/specifications/apis_archives.asp
http://parlay.org/en/specifications/apis_archives.asp
http://www.openmobilealliance.org/tech/affiliates/lif/lifindex.html
http://www.openmobilealliance.org/release_program/mls_v1_0.html
http://www.openmobilealliance.org/release_program/mls_v1_0.html

Standards and Spec i f ica t ions

A-6 Architectural Overview

Parlay X 2.1 Call Handling Parlay 3.3 Call User
Interaction and
Parlay 3.3
MultiParty Call
Control

Open Service Access (OSA); Application
Programming Interface (API); Part 4: Call Control
SCF, ETSI ES 201 915-4 V1.4.1 section
MultiParty Call Control Service

Open Service Access (OSA); Application
Programming Interface (API); Part 5: User
Interaction SCF (Parlay 3), ETSI ES 201 915-5
V1.4.1.

http://parlay.org/en/specifications/apis_archives.a
sp

Parlay X 2.1 Audio Call Parlay 3.3 Call User
Interaction and
Parlay 3.3
MultiParty Call
Control

ETSI ES 201 915-4 V1.4.1 (2003-07), Open
Service Access (OSA); Application Programming
Interface (API); Part 4: Call Control SCF (Parlay
3). Section MultiParty Call Control Service

ETSI ES 201 915-5 V1.4.1 (2003-07), Open
Service Access (OSA); Application Programming
Interface (API); Part 5: User Interaction SCF
(Parlay 3). Call user interaction parts.

http://parlay.org/en/specifications/apis_archives.a
sp

Parlay X 2.1 Presence SIP RFC 3261.

http://www.ietf.org/rfc/rfc3261.txt

Table 11-1 Network plug-ins organized per traffic path.

Traffic Path Network protocol
plug-in

Specification

http://parlay.org/en/specifications/apis_archives.asp
http://parlay.org/en/specifications/apis_archives.asp
http://parlay.org/en/specifications/apis_archives.asp
http://parlay.org/en/specifications/apis_archives.asp
http://www.ietf.org/rfc/rfc3261.txt

Secur i t y

Architectural Overview A-7

Security
Network Gatekeeper supports the security standards listed below. The security standards are
applicable for the application-facing interfaces. Network Gatekeeper leverage Web Services
Security mechanisms provided by WebLogic Server. For more information, see Understanding
WebLogic Security and Programming Web Services for WebLogic Server,

Note: See http://www.oasis-open.org/specs/index.php for links to the specifications.

WS-Security Core Specification 1.0, as described in Web Services Security: SOAP Message
Security 1.1 (WS-Security 2004) OASIS Standard Specification, 1 February 2006.

Extended Web Services
WAP Push

PAP 2.0 Push Access Protocol, WAP Forum™,
WAP-247-PAP-20010429-a.

http://www.openmobilealliance.org

Parlay 5.0
Multimedia
Messaging

ETSI ES 203 915-15 V1.1.1 (2005-04), Open
Service Access (OSA); Application
Programming Interface (API); Part 15:
Multi-Media Messaging SCF (Parlay 5).
http://parlay.org/en/specifications/apis_archives.as
p

Not applicable Parlay 3.3
Framework

Note: This is a
network-fac
ing protocol
that does not
belong to a
certain
traffic path.
It is used by
all Parlay
plug-ins.

ETSI ES 201 915-3 V1.4.1 (2003-07), Open
Service Access (OSA); Application Programming
Interface (API); Part 3: Framework (Parlay 3).

http://parlay.org/en/specifications/apis_archives.a
sp

Table 11-1 Network plug-ins organized per traffic path.

Traffic Path Network protocol
plug-in

Specification

http://edocs.bea.com/wls/docs92/secintro/index.html
http://edocs.bea.com/wls/docs92/secintro/index.html
http://edocs.bea.com/wls/docs92/webserv/security.html
http://www.oasis-open.org/specs/index.php
http://www.openmobilealliance.org
http://parlay.org/en/specifications/apis_archives.asp
http://parlay.org/en/specifications/apis_archives.asp

Standards and Spec i f ica t ions

A-8 Architectural Overview

UsernameToken Profile 1.0, as specified in Web Services Security UsernameToken Profile 1.0
OASIS Standard 200401, March 2004.

X.509 Certificate Token Profile, as specified in Web Services Security X.509 Certificate Token
Profile OASIS Standard 200401, March 2004.

SAML Token Profile 1.1, as specified in Web Services Security: SAML Token Profile 1.1
OASIS Standard, 1 February 2006.

SOAP Message Security 1.0 (WS-Security 2004), as specified in Web Services Security: SOAP
Message Security 1.0 (WS-Security 2004) OASIS Standard 200401, March 2004.

Transport-level security mechanisms such as SSL or VPN tunneling can be used for the PRM
interfaces.

Architectural Overview B-1

A P P E N D I X B

Connecting to OSA/Parlay Gateways

In some cases Network Gatekeeper does not connect directly to an underlying telecom network
node. Instead it connects to the network using an OSA/Parlay Gateway. For some traffic paths
there may even be multiple OSA/Parlay Gateways that can carry traffic to the network. For
example, the Parlay X 2.1 Multimedia Messaging traffic path can be configured, off the shelf, to
connect to one or more Parlay 5.0 Multimedia Messaging SCSes and/or one or more Parlay 3.3
User Interaction SCSes. From the point of view of Network Gatekeeper, an OSA/Parlay Gateway
is a network node, while the Gateway sees Network Gatekeeper as an OSA/Parlay application.

Because the OSA/Parlay Gateway sees Network Gatekeeper as an OSA/Parlay application,
certain parameters defining the connection must be set up in Network Gatekeeper using the
Management Console before a connection can be made. This chapter provides a high level
overview of this type of connection. For more information on the specific OAM methods used to
set up a given connection, see the “Managing and Configuring OSA/Parlay Gateway
Connections” chapter in the System Administrator’s Guide, a separate document in this set.

Defining Connections
The modules involved in defining a connection between Network Gatekeeper and an OSA/Parlay
Gateway are shown in Figure 11-1 below.

Connect ing to OSA/Par lay Gateways

B-2 Architectural Overview

Figure 11-1 OSA Gateway Connection Model

These modules include:

An OSA Gateway, which represents the actual OSA Gateway. Each OSA Gateway (more
than one are possible) that is available is registered in Network Gatekeeper

Each OSA Gateway has one or more OSA Gateway Connections. Multiple connections
are used if the actual OSA Gateway contains more than one OSA Framework.

Because the OSA Gateway needs Network Gatekeeper to be an OSA Client, an OSA
Client module (more than one are possible) represents the user credentials part of a
standard OSA Client that are not normally a part of the information that Network
Gatekeeper sends to the network.

Connect ion l ookup

Architectural Overview B-3

An OSA Client Mapping (more than one are possible) maps the normal credentials that
the application supplies when it logs into Network Gatekeeper together with the OSA
Gateway specific credentials stored in the OSA Client module. There must be (at least) one
Client Mapping per OSA SCS. If the traffic path uses n OSA SCSs, n Client Mappings
must be defined.

Note: Wildcard mechanisms can be used in the Client Mapping, as described below.

a. The client mapping may be set up per application level, so there is a one to one mapping
between a Network Gatekeeper application and the equivalent OSA Client. This means
that every transaction originating from a specific application results in a transaction in the
OSA Gateway that is traceable to that specific application.

b. The client mapping can use a wildcard for the application level, but specify the service
provider, so multiple Network Gatekeeper applications that originate from a common
service provider are mapped to a single OSA Client. In this case, the transactions in the
OSA/Gateway are traceable only to the service provider.

c. The client mapping can use wildcards for both the service provider and the application
level, so all applications from all service providers are mapped to a single OSA Client. In
this case, transactions in the OSA/Gateway are traceable only to Network Gatekeeper.

Defining the OSA Client mapping is normally part of the provisioning chain in setting up service
provider and application accounts. If the authentication method used between the Network
Gatekeeper and an OSA/Parlay Gateway requires certificates and keys, these are set up when
establishing user mapping details.

Connection lookup
Network Gatekeeper traffic paths use an internal service, the OSA Access service, to manage all
connections with OSA/Parlay Gateways. The traffic path asks the OSA Access service for a
connection, and the service handles all of the details of Authentication, Service Discovery, and
Load Management towards the OSA/Parlay Framework before returning the handle for the SCS
to the traffic path.

Note: A connection can be configured to be initialized either when the OSA Client is first
created or when the first request involving the OSA Client is sent to the OSA/Parlay
Gateway.

The OSA Access service also uses the Load Management functionality provided by the
OSA/Parlay Framework to monitor the SCS. When the handle for the SCS is retrieved, the OSA
Access service caches the handle. The OSA Access service is thus responsible for both load
balancing and failover towards the OSA Gateway.

Connect ing to OSA/Par lay Gateways

B-4 Architectural Overview

Architectural Overview C-1

A P P E N D I X C

Technical Specifications

The following sections summarize the technical specifications of WebLogic Network
Gatekeeper:

Supported Configurations
The following sections describe the supported configurations for WebLogic Network
Gatekeeper.

Overview of Network Gatekeeper Base platform
Below is a summary of the operating systems and hardware platforms for WebLogic Network
Gatekeeper:

HP-UX 11.23 on Intel Itanium2

Linux Redhat AS4 on Intel Xeon

Solaris 9 or Solaris 10 on Sun UltraSPARC

The next sections describe the configuration requirements for access tier, network tier and
database tier servers. For a description of the different tiers, see Network Configuration

Common configuration requirements
All servers in the cluster building up the Network Gatekeeper must be dedicated servers.

The directory in which the software is installed must reside on the server’s local file system.

Techn ica l Spec i f i cat i ons

C-2 Architectural Overview

There must be at least 1 GB of diskspace available under /user/local.

Suppor ted Conf igu rat ions

Architectural Overview C-3

HP-UX 11.23 on Intel Itanium2

Configuration requirements for Access tier servers

Configuration requirements for Network tier servers

Table 11-2 Requirements for WebLogic Network Gatekeeper access tier servers on HP-UX 11.23 on Intel
Itanium2

Operating
System Version
and Patches

 HP-UX 11.23 with HP-UX patches for JavaTM

See http://www.hp.com/products1/unix/java/patches/index.html.

Chip
Architecture
and Minimum
Processor
Speed

Intel Itanium2 (1.5 GHz)

JDK HP-UX JDK for the Java 2 Standard Edition platform version 5.0.03
with Java HotSpotTM Server VM (32-bit) and all later JDK 5.0.*
service packs for development and production deployment on HP-UX

RAM 1 GB required; 2 GB recommended

Disk 2 x 36 GB

Network cards 2 x LAN interface card

Table 11-3 Requirements for WebLogic Network Gatekeeper network tier servers on HP-UX 11.23 on Intel
Itanium2

Operating
System Version
and Patches

 HP-UX 11.23 with HP-UX patches for JavaTM

See http://www.hp.com/products1/unix/java/patches/index.html.

Chip
Architecture
and Minimum
Processor
Speed

Intel Itanium2 (1.5 GHz)

http://www.hp.com/products1/unix/java/patches/index.html
http://www.hp.com/products1/unix/java/patches/index.html

Techn ica l Spec i f i cat i ons

C-4 Architectural Overview

JDK HP-UX JDK for the Java 2 Standard Edition platform version 5.0.03
with Java HotSpotTM Server VM (32-bit) and all later JDK 5.0.*
service packs for development and production deployment on HP-UX

RAM 1 GB required; 2 GB recommended

Disk 2 x 36 GB

Network cards 2 x LAN interface card

Table 11-3 Requirements for WebLogic Network Gatekeeper network tier servers on HP-UX 11.23 on Intel
Itanium2

Suppor ted Conf igu rat ions

Architectural Overview C-5

Configuration requirements for Database tier servers

Linux Redhat AS4 on Intel Xeon

Table 11-4 Requirements for WebLogic Network Gatekeeper database tier servers on HP-UX 11.23 on Intel
Itanium2

Operating
System Version
and Patches

 HP-UX 11.23 with HP-UX patches for JavaTM

See http://www.hp.com/products1/unix/java/patches/index.html.

Chip
Architecture
and Minimum
Processor
Speed

Intel Itanium2 (1.5 GHz)

JDK HP-UX JDK for the Java 2 Standard Edition platform version 5.0.03
with Java HotSpotTM Server VM (32-bit) and all later JDK 5.0.*
service packs for development and production deployment on HP-UX

RAM 2 GB required; >6 GB recommended

Disk 2 x 36 GB

Network cards 2 x LAN interface card

RDBMS See Supported databases

Database
storage system

Network attached storage using fibre channel interface.

http://www.hp.com/products1/unix/java/patches/index.html

Techn ica l Spec i f i cat i ons

C-6 Architectural Overview

Configuration requirements Access tier servers

Configuration requirements for Network tier servers

Table 11-5 Requirements for WebLogic Network Gatekeeper access tier servers on Linux Redhat AS4 on
Intel Xeon

Operating
System Version
and Patches

 Red Hat Enterprise Linux AS release 4 (Nahant Update 2) Kernel
version 2.6.9-22.Elsmp glibc-2.3.4-2.13 and later updates and errata
levels

Chip
Architecture
and Minimum
Processor
Speed

Intel Xeon (3.4 GHz)

JVM Sun: Version 1.5.0_10 and all later JDK 5.0.* service packs

JRockit: Version 1.5.0_11, build R27.3.1

RAM 1 GB required; 2 GB recommended

Disk 2 x 36 GB

Network cards 2 x LAN interface card

Table 11-6 Requirements for WebLogic Network Gatekeeper network tier servers on Linux Redhat AS4 on
Intel Xeon

Operating
System Version
and Patches

Red Hat Enterprise Linux AS release 4 (Nahant Update 2) Kernel
version 2.6.9-22.Elsmp glibc-2.3.4-2.13 and later updates and errata
levels

Chip
Architecture
and Minimum
Processor
Speed

Intel Xeon (3.4 GHz)

JVM Sun: Version 1.5.0_10 and all later JDK 5.0.* service packs

JRockit: Version 1.5.0_11, build R27.3.1

RAM 1 GB required; 2 GB recommended

Suppor ted Conf igu rat ions

Architectural Overview C-7

Disk 2 x 36 GB

Network cards 2 x LAN interface card

Table 11-6 Requirements for WebLogic Network Gatekeeper network tier servers on Linux Redhat AS4 on
Intel Xeon

Techn ica l Spec i f i cat i ons

C-8 Architectural Overview

Configuration requirements for Database tier servers

Solaris 9 or Solaris 10 on Sun UltraSPARC

Table 11-7 Requirements for WebLogic Network Gatekeeper database tier servers on Linux Redhat AS4 on
Intel Xeon

Operating
System Version
and Patches

Red Hat Enterprise Linux AS release 4 (Nahant Update 2) Kernel
version 2.6.9-22.Elsmp glibc-2.3.4-2.13 and later updates and errata
levels

Chip
Architecture
and Minimum
Processor
Speed

Intel Xeon (3.4 GHz)

JVM Sun: Version 1.5.0_10 and all later JDK 5.0.* service packs

JRockit: Version 1.5.0_11, build R27.3.1

RAM 2 GB required; >6GB recommended

Disk 2 x 36 GB

Network cards 2 x LAN interface card

RDBMS See Supported databases

Database
storage system

Network attached storage using fibre channel interface.

Suppor ted Conf igu rat ions

Architectural Overview C-9

Configuration requirements Access tier servers

Configuration requirements for Network tier servers

Table 11-8 Requirements for WebLogic Network Gatekeeper access tier servers on Solaris 9/10 on
UltraSPARC

Operating
System Version
and Patches

 Solaris 9/10

Chip
Architecture
and Minimum
Processor
Speed

UltraSPARC IIIi (1.5 Ghz)

JVM Sun - Version 1.5.0_10 and all later JDK 5.0.* service packs

RAM 1 GB required; 2 GB recommended

Disk 2 x 35 GB

Network cards 2 x LAN interface card

Table 11-9 Requirements for WebLogic Network Gatekeeper network tier servers on Solaris 9/10 on
UltraSPARC

Operating
System Version
and Patches

 Solaris 9/10

Chip
Architecture
and Minimum
Processor
Speed

UltraSPARC IIIi (1.5 Ghz)

JVM Sun - Version 1.5.0_10 and all later JDK 5.0.* service packs

RAM 1 GB required; 2 GB recommended

Disk 2 x 35 GB

Network cards 2 x LAN interface card

Techn ica l Spec i f i cat i ons

C-10 Architectural Overview

Configuration requirements for Database tier servers

Supported databases

Load balancer and tier 3 switches
Per customer preference.

Table 11-10 Requirements for WebLogic Network Gatekeeper database tier servers on Solaris 9/10 on
UltraSPARC

Operating
System Version
and Patches

 Solaris 9/10

Chip
Architecture
and Minimum
Processor
Speed

UltraSPARC IIIi (1.5 Ghz)

JVM Sun - Version 1.5.0_10 and all later JDK 5.0.* service packs

RAM 2 GB required; >6 GB recommended

Disk 2 x 36 GB

Network cards 2 x LAN interface card

RDBMS See Supported databases

Database
storage system

Network attached storage using fibre channel interface.

Oracle 10g
RAC

Full DB Failover and Fault Tolerance

Oracle 10g
Single Instance

MySQL 4.1.22
Single Instance

Genera l charac te r is t i cs

Architectural Overview C-11

Firewall
Optional. Per customer preferences.

Disc storage
While disc storage can be an ordinary disk system, for performance and high availability reasons,
a RAID system should be used.

General characteristics

CORBA version CORBA 2.5

Java version JRE 1.5, JDBC 3.0

Database Oracle, Single Instance or RAC:
• Oracle 10g R1 (Oracle 10.1.0.4 and later patch sets of

10.1.x)
• Oracle 10g R2 (Oracle 10.2.0.1 and later patch sets of

10.2.x)

MySQL 4.1.22 Single Instance only

ORB Orbacus 4.3

Parlay X 2.1

Rule engine JRules 6.5.2

SNMP version v1, v2

SOAP version 1.1, 1.2

SOAP engine WLS

Techn ica l Spec i f i cat i ons

C-12 Architectural Overview

Programmable Interfaces
Interface Description

Plug-in interfaces for:
• Audio Call
• Third Party Call
• Call Handling
• Call Notification
• Short Messaging
• Multimedia

Messaging
• Terminal Location
• Terminal Status
• Presence
• Payment
• WAP Push

Makes it possible to add new network plug-ins for extended
network/protocol support.

Parlay X 2.1 based
interfaces:
• Audio Call
• Third Party Call
• Call Handling
• Call Notification
• Short Messaging
• Multimedia

Messaging
• Terminal Location
• Terminal Status
• Presence
• Payment

Provides high level telecom Web Services APIs

Extended API based
interfaces for:
• Access/Session

Management
• WAP Push

Provides high level telecom Web Service APIs

Programmable In te r faces

Architectural Overview C-13

API for Callable Policy Provides access to the Policy Engine via Web Service API

Utility service interfaces
for:
• Alarm handling
• Charging
• Event handling
• Time
• Trace

Facilitates development by providing support functions.

Interface Description

Techn ica l Spec i f i cat i ons

C-14 Architectural Overview

	Document Roadmap
	Document Scope and Audience
	Guide to This Document
	Terminology
	Related Documentation

	Introducing WebLogic Network Gatekeeper
	Overview
	What Network Gatekeeper Provides
	APIs based on well-known Web Services standards
	Robust security
	Common access control for both internal and 3rd party applications
	Policy-based execution for flexible application authorization control
	Access to many standard telecom network service capabilities
	Access to WebLogic SIP server for connectivity to SIP network infrastructure
	Built-in network routing
	Extensible architecture
	Enhanced network protection
	Integration with Operation Support Systems
	Integration with Billing and Charging Systems
	Carrier grade and fully scalable architecture
	Application Development Tools
	Partner Relationship Management Interfaces

	Software Architecture Overview
	Overview
	Traffic Paths
	Access Tier
	Network Tier

	Network Gatekeeper Core and Core Services
	Storage

	Introducing Traffic Paths
	Overview
	How it works
	Typical Application-initiated Traffic Flow

	1. An application establishes a session by using Network Gatekeeper’s own Session Management Web Service in the Access Tier. Aut...
	2. Network Gatekeeper verifies that the maximum number of instances specified in the Service Level Agreement (SLA) for this application and its service provider has not been exceeded.
	3. A session is established, and the SessionID is returned to the application. Once the application has been established, it may access multiple traffic paths across the cluster transparently.
	4. The session is valid until the application logs out or an operator-established time period has elapsed.
	5. A request for a particular operation enters at the application-facing interface - implemented as a J2EE Web Service - in the Access Tier and is pre-processed. The SOAP envelope is removed and the request is transformed into a Java object.
	6. The request is passed on to the Network Tier using RMI. The request enters the Network Tier through the Service Capability mo...
	7. The request is evaluated for traffic throttling purposes.
	8. The Service Capability queries the Plug-in Manager for an appropriate and available network plug-in. The plug-in will complete processing the request.
	9. The request is sent to the plug-in the Manager returned. The bulk of the processing that the request undergoes takes place in the plug-in, and, as a result, most configuration tasks focus here.
	10. Service authorization takes place in the plug-in, using the policy engine. The policy engine evaluates the request according...
	11. The request is translated into the protocol suitable for the underlying network node. Any state information required by the underlying network node is kept within the plug-in.
	12. The request is passed to the network.
	13. When the node acknowledges the request, charging data about the completed request are recorded.
	14. The transaction commits.
	Typical Network-initiated Traffic Flow

	Platform-wide Functionality
	Service Level Agreements
	Policy Enforcement and Policy Decision Points
	Security
	Authentication
	Authorization and service access
	Confidentiality and integrity
	Auditing and non-repudiation
	Network node authentication
	Database integrity
	Administrative access

	Events, Alarms, and Charging
	Event handling in the Access Tier
	Event handling in the Network Tier
	Alarm handling
	Charging Data Records

	Statistics and Transaction Units (Licensing)

	Short Code Translation
	Traffic Path Types
	Parameter Tunneling (MP01)

	Developing and Testing Applications
	Overview
	References
	Tools

	Managing Application Service Providers
	Overview
	The Administration Model
	Partner Relationship Management Interfaces
	Other Tasks Associated with Administering Service Providers

	Managing Network Gatekeeper: OAM
	Overview
	The WLS and Network Gatekeeper Management Console
	OAM Tasks Overview
	OSS Integration

	Charging
	Overview
	CDR-based Charging
	Data Generation

	Content Based Charging and Accounting
	Billing System Integration
	Billing gateways
	CDR database
	Payment plug-in

	Redundancy, Load Balancing, and High Availability
	Tiering
	Traffic Management Inside Network Gatekeeper
	Application-initiated Traffic

	1. The application sends a request to Network Gatekeeper. In a production environment, this request is routed through a hardware...
	2. The request is retried on a second server in the cluster (1.2) and it succeeds. It then attempts to send the request on to the Network Tier.
	3. The request either fails to reach the Network Tier or fails during the process of marshalling/unmarshalling the request as it travels to the Network Tier server (1.2.1).
	4. A fail-over mechanism in the Access Tier sends the request to a different server in the Network Tier cluster and it succeeds (1.2.2). It then attempts to send the request on to the network node.
	5. The attempt to send the request to the telecom network node fails (1.2.2.1).
	6. If a redundant pair of network nodes exists, the request is forwarded to the redundant node (1.2.2.2). If this request fails, the failure is reported to the application.
	Network-triggered Traffic

	1. A telecom network node sends a request to the Network Gatekeeper network plug-in that has been registered as the primary. It fails (1.1) due to either a communication or server failure.
	2. The telecom network node resends the request, this time to the plug-in that is registered as the secondary call-back interface. This plug-in is in a different server instance within the Network Tier cluster.
	3. The Network Tier attempts to send the message to the callback EJB in the Access Tier. It fails (1.2.1)
	4. If the request fails to reach the Access Tier, or failure occurs during the marshalling/unmarshalling process, the Network Ti...
	5. The callback EJB in the Access Tier attempts to send the request to the application (1.2.2.1). If the application is unreachable or does not respond, the request is considered failed, and an error is reported to the network node.
	Registering Notifications with Network Nodes
	Network Node Supports Primary and Secondary Notification

	1. The request to register for notifications enters the network protocol plug-in from the application.
	2. The primary notification is registered with the telecom network node.
	3. The notification information is propagated to another instance of the network protocol plug-in.
	4. The secondary notification is registered with the telecom network node.
	Network Node Supports Only Single Notification

	1. The request to register for notifications enters the network protocol plug-in from the application.
	2. The primary notification is registered with the telecom network node.
	3. The notification information (matching criteria, target URL, etc.) is propagated to another instance of the network protocol plug-in. The plug-in makes the necessary arrangements to be able to receive notifications.
	Network Configuration
	Geographic Redundancy

	Service Extensibility
	Overview
	The Extension Toolkit

	Backwards Compatibility 2.2 to 3.0
	Web Services-based Application Clients
	Interfaces
	Authentication

	External Listeners
	Extension Traffic Paths and Plug-ins
	Overview of the Internal Structure of Backwards Compatible Traffic Paths

	Standards and Specifications
	Application-facing interfaces
	Parlay X 2.1
	Extended Web Services

	Network protocol plug-ins
	Security

	Connecting to OSA/Parlay Gateways
	Defining Connections
	Connection lookup

	Technical Specifications
	Supported Configurations
	Overview of Network Gatekeeper Base platform
	Common configuration requirements
	HP-UX 11.23 on Intel Itanium2
	Configuration requirements for Access tier servers
	Configuration requirements for Network tier servers
	Configuration requirements for Database tier servers

	Linux Redhat AS4 on Intel Xeon
	Configuration requirements Access tier servers
	Configuration requirements for Network tier servers
	Configuration requirements for Database tier servers

	Solaris 9 or Solaris 10 on Sun UltraSPARC
	Configuration requirements Access tier servers
	Configuration requirements for Network tier servers
	Configuration requirements for Database tier servers

	Supported databases
	Load balancer and tier 3 switches
	Firewall
	Disc storage

	General characteristics
	Programmable Interfaces

