
Oracle® Communication Services Gatekeeper
Application Development Guide

Release 4.0

June 2008

Oracle Communication Services Gatekeeper Application Development Guide, Release 4.0

Copyright © 2007, 2008, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

Contents
Document Roadmap
Document Scope and Audience . 2-1

Guide to This Document . 2-1

Terminology. 2-2

Related Documentation . 2-5

Creating Applications for WebLogic Network Gatekeeper
Basic Concepts . 3-1

Communication Services . 3-2

Traffic Types . 3-2

Management Structures . 3-3

Functional Overview . 3-4

Application Testing Workflow . 3-5

Interacting with Network Gatekeeper
The SOAP Header . 4-2

Authentication. 4-2

Session Management . 4-7

Service Correlation . 4-8

Parameter Tunneling . 4-9

SOAP attachments . 4-10

Managing SOAP headers and SOAP attachments programmatically 4-12
Application Development Guide 1

Session Manager Web Service
Interface: SessionManager . 5-1

Operation: getSession . 5-2

Operation: changeApplicationPassword . 5-2

Operation: getSessionRemainingLifeTime . 5-3

Operation: refreshSession . 5-4

Operation: destroySession . 5-5

Examples . 5-5

Extended Web Services Binary SMS
Namespaces. 6-1

Endpoint . 6-2

Sequence Diagram. 6-2

XML Schema data type definition . 6-3

BinaryMessage structure . 6-3

Web Service interface description. 6-4

Interface: BinarySms . 6-4

WSDLs . 6-6

Error Codes . 6-7

Sample Send Binary SMS. 6-7

Extended Web Services WAP Push
Namespaces. 7-1

Endpoint . 7-2

Sequence Diagram. 7-2

XML Schema data type definition . 7-3

PushResponse structure . 7-3

ResponseResult structure . 7-4
2 Application Development Guide

ReplaceMethod enumeration . 7-6

MessageState enumeration . 7-6

Web Service interface description . 7-7

Interface: PushMessage . 7-7

Interface: PushMessageNotification. 7-11

WSDLs . 7-13

Sample Send WAP Push Message. 7-13

Extended Web Services Subscriber Profile
Namespaces . 8-2

Endpoint. 8-2

Address schemes . 8-2

XML Schema data type definition. 8-3

PropertyTuple structure . 8-3

Web Service interface description . 8-3

Interface: SubscriberProfile . 8-3

WSDLs . 8-6

Extended Web Services Common
Namespace. 9-1

XML Schema datatype definition . 9-2

AdditionalProperty structure . 9-2

ChargingInformation structure . 9-2

SimpleReference structure . 9-2

Fault definitions . 9-3

ServiceException . 9-3

PolicyException . 9-4
Application Development Guide 3

Parlay X 2.1 Interfaces
Parlay X 2.1 Part 2: Third Party Call . 10-2

Interface: ThirdPartyCall . 10-3

Error Codes . 10-3

Parlay X 2.1 Part 3: Call Notification . 10-3

Interface: CallDirection . 10-3

Interface: CallNotification . 10-4

Interface: CallNotificationManager . 10-5

Interface: CallDirectionManager . 10-5

Error Codes . 10-5

Parlay X 2.1 Part 4: Short messaging . 10-6

Interface: SendSms . 10-6

Interface: SmsNotification . 10-7

Interface: ReceiveSms . 10-8

Interface: SmsNotificationManager . 10-8

Error Codes . 10-9

Parlay X 2.1 Part 5: Multimedia messaging . 10-9

Interface: SendMessage . 10-9

Interface: ReceiveMessage . 10-10

Interface: MessageNotification . 10-11

Interface: MessageNotificationManager . 10-12

Error Codes . 10-13

Parlay X 2.1 Part 9: Terminal location . 10-13

Interface: TerminalLocation. 10-13

Interface: TerminalLocationNotificationManager . 10-16

Interface: TerminalLocationNotification . 10-18

Error Codes . 10-19
4 Application Development Guide

Parlay X 2.1 Part 14: Presence . 10-19

Interface: PresenceConsumer . 10-19

Interface: PresenceNotification . 10-20

Interface: PresenceSupplier . 10-20

Error Codes. 10-21

About notifications . 10-21

General Exceptions . 10-21

General error codes . 10-22

Code examples. 10-25

Example: sendSMS . 10-25

Example: startSmsNotification. 10-26

Example: getReceivedSms . 10-26

Example: sendMessage . 10-27

Example: getLocation. 10-29

Parlay X 3.0 Interfaces
Interaction between Audio Call, Third Party Call, and Call Notification 11-2

Parlay X 3.0 Part 2: Third Party Call. 11-2

Interface: ThirdPartyCall . 11-3

Parlay X 3.0 Part 3: Call Notification . 11-12

Interface: CallDirection . 11-12

Interface: CallNotification . 11-13

Interface: CallNotificationManager . 11-14

Interface: CallDirectionManager . 11-19

Parlay X 3.0 Part 11: Audio call . 11-22

Interface: PlayMedia . 11-22

Interface: CaptureMedia. 11-24

Interface: Multimedia . 11-27
Application Development Guide 5

General Exceptions . 11-27

Access Web Service (deprecated)
Interface: Access . 12-2

Operation: applicationLogin . 12-2

Operation: applicationLogout . 12-3

Operation: changeApplicationPassword . 12-4

Operation: getLoginTicketRemainingLifeTime. 12-4

Operation: refreshLoginTicket. 12-5

Exceptions . 12-7

Examples . 12-7

Defining the security header . 12-7
6 Application Development Guide

Application Development Guide 2-1

C H A P T E R 1

Document Roadmap

This chapter describes the audience for and the organization of this document: It includes:

Document Scope and Audience

Guide to This Document

Terminology

Related Documentation

Document Scope and Audience
This document provides information for those developers who wish to integrate functionality
provided by telecom networks into their programs by using the Web Services offered by
WebLogic Network Gatekeeper. It includes a high-level overview of the process, including the
login and security procedures, and a description of the interfaces and operations that are available
for use.

Guide to This Document
The document contains the following chapters:

Chapter 1, “Document Roadmap”: This chapter

Chapter 2, “Creating Applications for WebLogic Network Gatekeeper”: A general introduction
to the concepts involved in using Network Gatekeeper

Document Roadmap

2-2 Application Development Guide

Chapter 3, “Interacting with Network Gatekeeper”: SOAP message requirements in Network
Gatekeeper

Chapter 4, “Session Manager Web Service”: A detailed description of the Session Manager Web
Service

Chapter 7, “Extended Web Services Subscriber Profile”: A detailed description of the available
operations used to get subscriber profile data

Chapter 5, “Extended Web Services Binary SMS”: A detailed description of the available
operations used to send SMSes with binary content

Chapter 8, “Extended Web Services Common”: A detailed description of the datatypes shared
among the Extended Web Services interfaces

Chapter 9, “Parlay X 2.1 Interfaces”: A description of the Parlay X 2.1 interfaces available with
details on how they are implemented in Network Gatekeeper.

Chapter 10, “Parlay X 3.0 Interfaces”: A description of the Parlay X 3.0 interfaces available with
details on how they are implemented in Network Gatekeeper.

Chapter 11, “Access Web Service (deprecated)”: A description of the Access Web Service

Terminology
The following terms and acronyms are used in this document:

Account—A registered application or service provider. An account belongs to an account
group, which is tied to a common SLA

Account group—Multiple registered service providers or services which share a common
SLA

Administrative User—Someone who has privileges on the Network Gatekeeper
management tool. This person has an administrative user name and password

Alarm—The result of an unexpected event in the system, often requiring corrective action

API—Application Programming Interface

Application—A TCP/IP based, telecom-enabled program accessed from either a telephony
terminal or a computer

Application-facing interface—The Application Services Provider facing interface

Te rmino logy

Application Development Guide 2-3

Application Service Provider—An organization offering application services to end users
through a telephony network

AS—Application Server

Application Instance—An Application Service Provider from the perspective of internal
Network Gatekeeper administration. An Application Instance has a user name and
password or certificate

CBC—Content Based Charging

End User—The ultimate consumer of the services that an application provides. An end
user can be the same as the network subscriber, as in the case of a prepaid service or they
can be a non-subscriber, as in the case of an automated mail-ordering application where the
subscriber is the mail-order company and the end user is a customer to this company

Enterprise Operator —See Service Provider

Event—A trackable, expected occurrence in the system, of interest to the operator

HA —High Availability

HTML—Hypertext Markup Language

IP—Internet Protocol

JDBC—Java Database Connectivity, the Java API for database access

Location Uncertainty Shape—A geometric shape surrounding a base point specified in
terms of latitude and longitude. It is used in terminal location

MAP—Mobile Application Part

Mated Pair—Two physically distributed installations of WebLogic Network Gatekeeper
nodes sharing a subset of data allowing for high availability between the nodes

MM7—A multimedia messaging protocol specified by 3GPP

MPP—Mobile Positioning Protocol

Network Plug-in—The WebLogic Network Gatekeeper module that implements the
interface to a network node or OSA/Parlay SCS through a specific protocol

NS—Network Simulator

OAM —Operation, Administration, and Maintenance

Document Roadmap

2-4 Application Development Guide

Operator—The party that manages the Network Gatekeeper. Usually the network operator

OSA—Open Service Access

PAP—Push Access Protocol

Plug-in—See Network Plug-in

Plug-in Manager—The Network Gatekeeper module charged with routing an
application-initiated request to the appropriate network plug-in

Quotas—Access rule based on an aggregated number of invocations. See also Rates

Rates—Access rule based on allowable invocations per time period. See also Quotas

Rules—An optional set of customizable criteria in addition to those located in SLAs
according to which requests are evaluated

SCF—Service Capability Function or Service Control Function, in the OSA/Parlay sense.

SCS—Service Capability Server, in the OSA/Parlay sense. WebLogic Network Gatekeeper
can interact with these on its network-facing interface

Service Capability—Support for a specific kind of traffic within WebLogic Network
Gatekeeper. Defined in terms of traffic paths

Service Provider—See Application Service Provider

SIP—Session Initiation Protocol

SLA—Service Level Agreement

SMPP—Short Message Peer-to-Peer Protocol

SMS—Short Message Service

SMSC—Short Message Service Centre

SNMP—Simple Network Management Protocol

SOAP—Simple Object Access Protocol

SPA—Service Provider APIs

SS7—Signalling System 7

Subscriber—A person or organization that signs up for access to an application. The
subscriber is charged for the application service usage. See End User

Rela ted Documentat ion

Application Development Guide 2-5

SQL—Structured Query Language

TCP—Transmission Control Protocol

Traffic Path—The data flow of a particular request through WebLogic Network
Gatekeeper. Different Service Capabilities use different traffic paths

USSD—Unstructured Supplementary Service Data

VAS—Value Added Service

VLAN—Virtual Local Area Network

VPN—Virtual Private Network

WebLogic Network Gatekeeper Core—The container that holds the Core Utilities

WebLogic Network Gatekeeper Core Utilities—A set of utilities common to all traffic
paths

WSDL —Web Services Definition Language

XML—Extended Markup Language

Related Documentation
This application development guide is a part of the WebLogic Network Gatekeeper
documentation set. The other documents include:

System Administrator’s Guide

Integration Guidelines for Partner Relationship Management

SDK User Guide

Managing Accounts and SLAs

Statement of Compliance and Protocol Mapping

Concepts and Architectural Overview

Communications Services Reference

Handling Alarms

Licensing

http://e-docs.bea.com/wlcp/wlng40/admin/index.html
http://e-docs.bea.com/wlcp/wlng40/integrprm/index.html
http://e-docs.bea.com/wlcp/wlng40/sdk/index.html
http://e-docs.bea.com/wlcp/wlng40/spappmgmt/index.html
http://e-docs.bea.com/wlcp/wlng40/soc/index.html
http://e-docs.bea.com/wlcp/wlng40/archoverview/index.html
http://e-docs.bea.com/wlcp/wlng40/tpref/index.html
http://e-docs.bea.com/wlcp/wlng40/alarms/index.html
http://e-docs.bea.com/wlcp/wlng40/licensing/index.html

Document Roadmap

2-6 Application Development Guide

Installation Guide

Platform Development Studio - Developer’s Guide

http://e-docs.bea.com/wlcp/wlng40/installguide/index.html
http://e-docs.bea.com/wlcp/wlng40/extension/index.html

Application Development Guide 3-1

C H A P T E R 2

Creating Applications for WebLogic
Network Gatekeeper

As the worlds of Internet applications and of telephony-based functionality continue to converge,
many application developers have become frustrated by the unfamiliar and often complex
telecom interfaces that they need to master to add even simple telephony-based features to their
programs. By using WebLogic Network Gatekeeper, telecom operators can instead offer
developers a secure, easy-to-develop-for single point of contact with their networks, made up of
simple Web Service interfaces that can easily be accessed from the Internet using a wide range
of tools and languages.

The following chapter presents an overview of Network Gatekeeper’s functionality, and the ways
that application developers can use this functionality to simplify their development projects,
including:

Basic Concepts

Functional Overview

Application Testing Workflow

Basic Concepts
There are a few basic concepts you need to understand to create applications that can interact with
WebLogic Network Gatekeeper:

Communication Services

Traffic Types

Creat ing App l icat ions fo r WebLog ic Netwo rk Gatekeepe r

3-2 Application Development Guide

– Application-initiated Traffic

– Network-triggered Traffic

Management Structures

Communication Services
The basic functional unit in WebLogic Network Gatekeeper is the communication service. A
communication service consists of a service type (Short Messaging, User Location, etc.), an
application-facing interface (also called a “north” interface), and a network-facing interface (also
called a “south” interface). A request for service enters through one interface, is subjected to
internal processing, including evaluation for policy and protocol translation, and is then sent on
using the other interface.

Note: Because a single application-facing interface may be connected to multiple protocols and
hardware types in the underlying telecom network, it’s important to understand that an
application is communicating, finally, with a specific communication service, and not
just the north interface. So in some cases it is possible that an application request sent to
two different carriers, with different underlying network structures, might behave in
slightly different ways, even though the initial request uses exactly the same north
interface.

Traffic Types
In some Network Gatekeeper communication services, request traffic can travel in two directions
- from the application to the underlying network and from the underlying network to the
application - and in others traffic flows in one direction only.

Application-initiated Traffic
In application-initiated traffic, the application sends a request to Network Gatekeeper, the request
is processed, and a response of some kind is returned synchronously. So, for example, an
application could use the Third Party Call interface to set up a call. The initial operation,
MakeCall, is sent to Network Gatekeeper (which sends it on to the network) and a string, the
CallIdentifier, is returned to the application synchronously. To find out the status of the call,
the application makes a new request, GetCallInformation, using the CallIdentifier to
identify the specific call, and then receives the requested information back from Network
Gatekeeper synchronously.

Bas ic Concepts

Application Development Guide 3-3

Network-triggered Traffic
In many cases, application-initiated traffic provides all the functionality necessary to accomplish
the desired tasks. But there are certain situations in which useful information may not be
immediately available for return to the application. For example, the application might send an
SMS to a mobile phone that the user has turned off. The network won’t deliver the message until
the user turns the phone back on, which might be hours or even days later. The application can
poll to find out whether or not the message has been delivered, using GetSmsDeliveryStatus,
which functions much like GetCallInformation described above. But given the possibly
extended period of time involved, it would be convenient simply to have the network notify the
application once delivery to the mobile phone has been accomplished. To do this, two things must
happen:

The application must inform Network Gatekeeper that it wishes to receive information that
originates from the network. It does this by subscribing or registering for notifications via
an application-initiated request. (In certain cases, this can also be accomplished by the
operator, using OAM procedures.) Often this subscription includes filtering criteria that
describes exactly what kinds of traffic it wishes to receive. Depending on the underlying
network configuration, Network Gatekeeper itself, or the operator using manual steps,
informs the underlying network about the kind of data that is requested. These notifications
may be status updates, as described above, or, in some instances, may even include short or
multimedia messages from a terminal on the telecom network.

The application must arrange to receive the network-triggered information, either by
implementing a Web Service endpoint on its own site to which Network Gatekeeper
dispatches the notifications, or by polling Network Gatekeeper to retrieve them.
Notifications are kept in Network Gatekeeper for retrieval for only limited amounts of
time.

Management Structures
In order to help telecom operators organize their relationships with application providers,
Network Gatekeeper uses a hierarchical system of accounts. Each application is assigned a
unique application instance ID which is tied to an Application Account. All the Application
Accounts that belong to a single entity are assigned to a Service Provider Account. Application
Accounts with similar requirements are put into Application Groups and Service Providers with
similar requirements are put into Service Provider Groups. Each Application Group is associated
with an Application Group Service Level Agreement (SLA) and each Service Provider Group are
associated with Service Provider Group SLAs. These Service Level Agreements define and
regulate the contractual agreements between the telecom operator and the application service

Creat ing App l icat ions fo r WebLog ic Netwo rk Gatekeepe r

3-4 Application Development Guide

provider, and cover such things as which services the application may access, the maximum
bandwidth available for use, and the number of concurrent sessions that are supported.

Functional Overview
Network Gatekeeper provides eleven different types of communication services. The
application-facing interfaces of these communication services are largely based on the Parlay X
2.1 and 3.0 specifications. The functionality supported by these communication services
includes:

Third Party Call (Parlay X 2.1 and 3.0)
Using this communication service, an application can set up a call between two parties
(the caller and the callee), poll for the status of the call, and end the call. In addition, using
the 3.0 communication only, an application can set up a call among multiple participants
and add, delete, or transfer those participants. The application can also use the Audio Call
communication service to play audio messages to one or multiple of the call participants
set up using Third Party Call and, using notifications set up with Call Notification PX 3.0,
can also collect digits in response to playing the audio message.

Audio Call (Parlay X 3.0)
Using this communication service, an application can play audio to one or more call
participants in an existing call session set up by PX 3.0 Third Party call, find out if the
audio is currently being played, and explicitly end playing the audio. It can also collect
digits from a participant in response to an audio message, and in conjunction with a
notification set up using Call Notification PX 3. 0, can return that information to the
application. It can also interrupt an ongoing interaction such as on-hold music.

Call Notification (Parlay X 2.1 and 3.0)
Using this communication service, an application can set up and end notifications on call
events, such as a callee in a third party call attempt is busy. In addition, in some cases the
application can then reroute the call to another party. In addition, using the PX 3.0
communication service, an application can interact with PX 3.0 Audio Call to return digits
collected from a call participant back to the application and to end calls.

Short Messaging (Parlay X 2.1)
Using this communication service, an application can send SMS text messages, ringtones,
or logos to one or multiple addresses, set up and receive notifications for final delivery
receipts of those sent items, and arrange to receive SMSes meeting particular criteria from
the network.

Binary SMS (Extended Web Services)

http://www.parlay.org/en/specifications/pxws.asp
http://www.parlay.org/en/specifications/pxws.asp
http://www.parlay.org/en/specifications/pxws.asp

App l i ca t i on Tes t ing Work f l ow

Application Development Guide 3-5

Using this communication service, an application can use Short Messaging to send
generic binary object attachments, such as vCards.

Multimedia Messaging (Parlay X 2.1)
Using this communication service, an application can send Multimedia Messages to one
or multiple addresses, set up and receive notifications for final delivery receipts of those
sent items, and arrange to receive MMSes meeting particular criteria from the network or
to poll for such messages.

Terminal Location (Parlay X 2.1)
Using this communication service, an application can request the position of one or more
terminals or the distance between a given position and a terminal. It can also set up and
receive notifications based on geographic location or time intervals.

Presence (Parlay X 2.1)
Using this communication service, an application can be a watcher for presence
information published by a presentity, an end user who has agreed to have certain data,
such as current activity, available communication means, and contact addresses made
available to others. So a presentity might say that at this moment he is in the office and
prefers to be contacted by SMS at this number. Before the watcher can receive this
information, it must subscribe and be approved by the presentity. Once this is done, the
watcher can either poll for specific presentity information, or set up status notifications
based on a wide range of criteria published by the presentity.

Subscriber Profile (Extended Web Services)
Using this communication service, an application can retrieve particular information or an
entire profile (subject to internal filtering) for a subscriber from an LDAP server attached
to the network.

Application Testing Workflow
Application testing in a telecom environment is usually conducted in a stepwise manner. For the
first step, applications are run against simulators like the optional WebLogic Network Gatekeeper
Simulator. The Network Gatekeeper Simulator emulates both the Network Gatekeeper and the
underlying network, and allows developers to sort out basic functional issues without having to
be connected to a network or network simulator. Once basic functional issues are sorted through,
the application is connected to an instance of the Network Gatekeeper attached to a network
simulator for non-functional testing. Next the application is tested against a test network, to
eliminate any network related issues. Finally, the application can be placed into production on a
live network. Figure 2-1 shows the complete application test flow, from the developer’s
functional tests to deployment in a live network. While Simulator-based tests may be performed

Creat ing App l icat ions fo r WebLog ic Netwo rk Gatekeepe r

3-6 Application Development Guide

in-house by an Application Service Provider, the other tests require the cooperation of the target
network operator.

Figure 2-1 Application Testing Cycle

Application

Functional Test
Functional Test

+
Non-Functional Test

Network Test Operation

Application

Time

ApplicationApplication

Network
Simulator

Simulator

Test
Network

Live
Network

WebLogic
Network

Gatekeeper

WebLogic
Network

Gatekeeper

WebLogic
Network

Gatekeeper

Application Development Guide 4-1

C H A P T E R 3

Interacting with Network Gatekeeper

In order to interact with Network Gatekeeper, applications must manipulate the SOAP messages
that they use to make requests in certain specialized ways. They must add specific information to
the SOAP header, and, if they are using for example Multimedia Messaging, they must send their
message payload as a SOAP attachment. The following chapter presents a high-level description
of these mechanisms, and how they function to manage the interaction between Network
Gatekeeper and the application. It covers:

The SOAP Header

– Authentication

– Session Management

– Service Correlation

– Parameter Tunneling

SOAP attachments

The mechanisms for dealing with these requirements programmatically depend on the
environment in which the application is being developed.

Note: Clients created using Axis 1.2 or older will not work with some communication services.
Developers should use Axis 1.4 or newer if they wish to use Axis.

For examples using the WebLogic Server environment to accomplish these sorts of tasks, see the
final section of this chapter:

Managing SOAP headers and SOAP attachments programmatically

In te rac t ing w i th Network Gatekeeper

4-2 Application Development Guide

The SOAP Header
There are four types of elements you may need to add to your application’s SOAP messages to
Network Gatekeeper.

Authentication
In order to secure Network Gatekeeper and the telecom networks to which it provides access,
applications are usually required to provide authentication information in every SOAP request
which the application submits. Network Gatekeeper leverages the WLS Web Services Security
framework to process this information.

Note: WS Security provides three separate modes of providing security between a Web Service
client application and the Web Service itself for message level security - Authentication,
Digital Signatures, and Encryption. For an overview of WLS WS Security, see WebLogic
Web Services: Security.

Network Gatekeeper supports three authentication types:

Username Token

X.509 Certificate Token

SAML Token

The type of token that the particular Network Gatekeeper operator requires is indicated in the
Policy section of the WSDL files that the operator makes available for each application-facing
interface it supports. In the following WSDL fragment, for example, the required form of
authentication, indicated by the <wssp:Identity> element, is Username Token.

Listing 3-1 WSDL fragment showing Policy

<s0:Policy s1:Id="Auth.xml">

<wssp:Identity>

<wssp:SupportedTokens>

<wssp:SecurityToken

TokenType="http://docs.oasisopen.org/wss/2004/01/oasis200401wssusernametok

enprofile1.0#UsernameToken">

<wssp:UsePassword

Type="http://docs.oasisopen.org/wss/2004/01/oasis200401wssusernametokenpro

file1.0#PasswordText"/>

http://edocs.bea.com/wls/docs100/webserv_sec/
http://edocs.bea.com/wls/docs100/webserv_sec/

The SOAP Header

Application Development Guide 4-3

</wssp:SecurityToken>

<wssp:SecurityToken

TokenType="http://docs.oasisopen.org/wss/2004/01/oasis200401wssx509tokenpr

ofile1.0#X509v3"/>

</wssp:SupportedTokens>

</wssp:Identity>

</s0:Policy>

<wsp:UsingPolicy n1:Required="true"/>

Note: If the WSDL also has a <wssp: Integrity> element, digital signing is required
(WebLogic Server provides WS-Policy: sign.xml). If it has a
<wssp:Confidentiality> element, encryption is required (WebLogic Server provides
WS-Policy: encrypt.xml).

SOAP Header Element for Authentication
Below are examples of the three types of authentication that can be used with Network
Gatekeeper.

Username Token
In the Username Token mechanism, which is specified by the use of the
<wsse:UsernameToken> element in the header, authentication is based on a username, specified
in the <wsse:Username> element and a password, specified in the <wsse:Password> element.

Two types of passwords are possible, indicated by the Type attribute in the Password element:

PasswordText indicates the password is in clear text format.

PasswordDigest indicates that the sent value is a Base64 encoded, SHA-1 hash of the
UTF8 encoded password.

There are two more optional elements in Username Token, introduced to provide a
countermeasure for replay attacks:

<wsse:Nonce>, a random value that the application creates.

<wsu:Created>, a timestamp.

In te rac t ing w i th Network Gatekeeper

4-4 Application Development Guide

If either or both the Nonce and Created elements are present, the Password Digest is computed
as: Password_Digest = Base64(SHA-1(nonce+created+password))

When the application sends a SOAP message using Username Token, the WSEE implementation
in Network Gatekeeper evaluates the username using the associated authentication provider. The
authentication provider connects to the Network Gatekeeper database and authenticates the
username and the password. In the database, passwords are stored as MD5 hashed representations
of the actual password.

Listing 3-2 Example of a WSSE: Username Token SOAP header element

<wsse:UsernameToken wsu:Id="Example-1">

<wsse:Username> myUsername </wsse:Username>

<wsse:Password Type="PasswordText">myPassword</wsse:Password>

<wsse:Nonce EncodingType="..."> ... </wsse:Nonce>

<wsu:Created> ... </wsu:Created>

</wsse:UsernameToken>

The UserName is equivalent to the application instance ID. The Password part is the password
associated with this UserName when the application credentials was provisioned in Network
Gatekeeper.

For more information on Username Token, see
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf

X.509 Certificate Token
In the X.509 Token mechanism, the application’s identity is authenticated by the use of an X.509
digital certificate. See http://dev2dev.bea.com/pub/advisory/30.

Typically a certificate binds the certificate holder’s public key with a set of attributes linked to
the holder’s real world identity – for example the individual’s name, organization and so on. The
certificate also contains a validity period in the form of two date and time fields, specifying the
beginning and end of the interval during which the certificate is recognized.

The entire certificate is (digitally) signed with the key of the issuing authority. Verifying this
signature guarantees

http://dev2dev.bea.com/pub/advisory/30
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-profile-1.0.pdf

The SOAP Header

Application Development Guide 4-5

that the certificate was indeed issued by the authority in question

that the contents of the certificate have not been forged, or tampered with in any way since
it was issued

For more information on X.509 Token, see
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf

The default identity assertion provider in Network Gatekeeper verifies the authenticity of X.509
tokens and maps them to valid Network Gatekeeper users.

Note: While it is possible to use the out-of-the-box keystore configuration in Network
Gatekeeper for testing purposes, these should not be used for production systems. The
digital certificates in these out-of-the-box keystores are only signed by a demonstration
certificate authority For information on configuring keystores for production systems,
refer to Securing WebLogic Server, the Configuring Identity and Trust section.

The x.509 certificate common name (CN) for an application must be the same as the account
UserName, which is the string that was referred to as the applicationInstanceGroupId in
previous versions of Network Gatekeeper. This is provided by the operator when the account is
provisioned.

Listing 3-3 Example of a WSSE: X.509 Certificate SOAP header element

<wsse:Security xmlns:wsse="..." xmlns:wsu="...">

<wsse:BinarySecurityToken wsu:Id="binarytoken"

ValueType="wsse:X509v3"

EncodingType="wsse:Base64Binary">

MIIEZzCCA9CgAwIBAgIQEmtJZc0…

</wsse:BinarySecurityToken>

<ds:Signature xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

<ds:SignedInfo>

<ds:Reference URI="#body">…</ds:Reference>

<ds:Reference URI="#binarytoken">…</ds:Reference>

</ds:SignedInfo>

<ds:SignatureValue>HFLP…</ds:SignatureValue>

http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf
http://edocs.bea.com/wls/docs100/secmanage/identity_trust.html

In te rac t ing w i th Network Gatekeeper

4-6 Application Development Guide

<ds:KeyInfo>

<wsse:SecurityTokenReference>

<wsse:Reference URI="#binarytoken" />

</wsse:SecurityTokenReference>

</ds:KeyInfo>

</ds:Signature>

</wsse:Security>

SAML Token
Network Gatekeeper, using WebLogic Server’s WSSE implementation, supports SAML versions
1.0 and 1.1. The versions are similar. See
http://www.oasis-open.org/committees/download.php/3412/sstc-saml-diff-1.1-draft-01.pdf for
an overview of the differences between the versions.

In SAML, a third party, the Asserting Party, provides the identity information for a Subject that
wishes to access the services of a Relying Party. This information is carried in an Assertion. In
the SAML Token type of Authentication, the Assertion (or a reference to an Assertion) is
provided inside the <WSSE:Security> header in the SOAP message. The Relying Party (which
in this case is Network Gatekeeper, using the WebLogic Security framework) then evaluates the
trustworthiness of the assertion, using one of two confirmation methods.

Holder-of-Key

Sender-Voucher

For more information on these confirmation methods, see “SAML Token Profile Support in
WebLogic Web Services” in Understanding WebLogic Security.

Listing 3-4 Example of a WSSE: SAML Token SOAP header element

<wsse:Security>

<saml:Assertion MajorVersion="1" MinorVersion="0"

AssertionID="186CB370-5C81-4716-8F65-F0B4FC4B4A0B"

Issuer="www.test.com" IssueInstant="2001-05-31T13:20:00-05:00">

http://www.oasis-open.org/committees/download.php/3412/sstc-saml-diff-1.1-draft-01.pdf
http://www.oasis-open.org/committees/download.php/3412/sstc-saml-diff-1.1-draft-01.pdf
http://e-docs.bea.com/wls/docs100/secintro/archtect.html
http://e-docs.bea.com/wls/docs100/secintro/archtect.html

The SOAP Header

Application Development Guide 4-7

<saml:Conditions NotBefore="2001-05-31T13:20:00-05:00"

NotAfter="2001-05-31T13:25:00-05:00"/>

<saml:AuthenticationStatement AuthenticationMethod="password"

AuthenticationInstant="2001-05-31T13:21:00-05:00">

<saml:Subject>

<saml:NameIdentifier>

<SecurityDomain>"www.bea.com"</SecurityDomain>

<Name>"cn=localhost,co=bea,ou=sales"</Name>

</saml:NameIdentifier>

</saml:Subject>

</saml:AuthenticationStatement>

</saml:Assertion>

...

</wsse:Security>

Session Management
Network Gatekeeper can be configured to run in session mode or sessionless mode. In session
mode, an application must establish a session using the Session Manager Web Service before it
is allowed to run traffic through Network Gatekeeper. The session allows Network Gatekeeper
to keep track of all of the traffic sent by a particular application for the duration of the session,
which lasts until the session times out, based on an operator-set interval, or until the application
closes the session. The session is good for an entire WebLogic Network Gatekeeper domain,
across clusters, and covers all communication services to which the application has contractual
access.

In sessionless mode, the application is not required to establish a session.

Session Mode
An application establishes a session in Network Gatekeeper by invoking the getSession()
operation on the Session Manager Web Service. This is the only request that does not require a

In te rac t ing w i th Network Gatekeeper

4-8 Application Development Guide

SessionID. In the response to this operation, a string representing the Session ID is returned to
the client, and a Network Gatekeeper session, identified by the ID, is established. The session is
valid until either the session is terminated by the application or an operator-established time
period has elapsed. The SessionID must appear in the wlng:Session element in the header of
every subsequent SOAP request.

Listing 3-5 Example of a SessionID SOAP header element

<Session>

<SessionId>app:-2810834922008400383</SessionId>

</Session>

Sessionless Mode
It is also possible to run Network Gatekeeper without using the session mechanism. In this case
the application simply uses whichever WS-Security mechanism is required by the Network
Gatekeeper operator.

Service Correlation
In some cases the service that an application provides to its end-users may involve accessing
multiple Network Gatekeeper communication services. For example, a mobile user might send
an SMS to an application asking for the pizza place nearest to his current location. The
application then makes a Terminal Location request to find the user’s current location, looks up
the address of the closest pizza place, and then sends the user an MMS with all the appropriate
information. Three Network Gatekeeper communication services are involved in executing what
for the application is a single service. In order to be able to correlate the three communication
service requests, Network Gatekeeper uses a Service Correlation ID, or SCID. This is a string that
is captured in all the CDRs and EDRs generated by Network Gatekeeper. The CDRs and EDRs
can then be orchestrated in order to provide special treatment for a given chain of service
invocations, by, for example, applying charging to the chain as a whole rather than to the
individual invocations.

The SCID is not provided by Network Gatekeeper. When the chain of services is initiated by an
application-initiated request, the application must provide, and ensure the uniqueness of, the
SCID within the chain of service invocations.

The SOAP Header

Application Development Guide 4-9

Note: In certain circumstances, it is also possible for a custom service correlation service to
supply the SCID, in which case it is the custom service’s responsibility to ensure the
uniqueness of the SCID.

When the chain of services is initiated by a network-triggered request, Network Gatekeeper calls
an external interface to get the SCID. This interface must be implemented by an external system.
No utility or integration is provided out-of the box; this must be a part of a system integration
project. It is the responsibility of the external system to provide, and ensure the uniqueness of, the
SCID.

The SCID is passed between Network Gatekeeper and the application through an additional
SOAP header element, the SCID element. Because not every application requires the service
correlation facility, this is an optional element. This option is available only with enhanced
communication services.

Listing 3-6 Example of a SCID SOAP header element

<scid>myId</scid>

Parameter Tunneling
Parameter tunneling is a feature that allows an application to send additional parameters to
Network Gatekeeper and lets a plug-in use these parameters. This feature makes it possible for
an application to tunnel parameters that are not defined in the interface that the application is
using and can be seen as an extension to the application-facing interface.

The application sends the tunneled parameters in the SOAP header of a Web Services request.

The parameters are defined using key-value pairs encapsulated by the tag <xparams>. The
xparams tag can include one or more <param> tags. Each <param> tag have a key attribute that
identifies the parameter and a value attribute that defines the value of the parameter. In the
example below, the application tunnels the parameter aParameterName and assigns it the value
aParameterValue.

Listing 3-7 SOAP header with a tunneled parameter.

<soapenv:Header>

In te rac t ing w i th Network Gatekeeper

4-10 Application Development Guide

...

<xparams>

<param key="aParameterName" value="aParameterValue" />

</xparams>

...

</soapenv:Header>

Depending on the plug-in the request reaches, the parameter is fetched and used in the request
towards the network node.

SOAP attachments
In some cases, the payloads are sent as SOAP attachments. Listing 3-8 below shows a
Multimedia Messaging sendMessage operation that contains an attachment carrying a jpeg
image.

Listing 3-8 Example of a SOAP message with attachment (full content is not shown)

POST /parlayx21/multimedia_messaging/SendMessage HTTP/1.1

Content-Type: multipart/related; type="text/xml";
start="<1A07DC767BC3E4791AF25A04F17179EE>";
boundary="----=_Part_0_2633821.1170785251635"

Accept: application/soap+xml, application/dime, multipart/related, text/*

User-Agent: Axis/1.4

Host: localhost:8000

Cache-Control: no-cache

Pragma: no-cache

SOAPAction: ""

Content-Length: 4652

Connection: close

SOAP a t tachments

Application Development Guide 4-11

------=_Part_0_2633821.1170785251635

Content-Type: text/xml; charset=UTF-8

Content-Transfer-Encoding: binary

Content-Id: <1A07DC767BC3E4791AF25A04F17179EE>

<?xml version="1.0" encoding="UTF-8"?>

<soapenv:Envelope
xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"

xmlns:xsd="http://www.w3.org/2001/XMLSchema"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<soapenv:Header>

<ns1:Security ns1:Username="app:-4206293882665579772"

ns1:Password="app:-4206293882665579772"

soapenv:actor="wsse:PasswordToken"

soapenv:mustUnderstand="1"
xmlns:ns1="/parlayx21/multimedia_messaging/SendMessage">

</ns1:Security>

</soapenv:Header>

<soapenv:Body>

<sendMessage xmlns=

"http://www.csapi.org/schema/parlayx/multimedia_messaging/send/v2_4/
local">

<addresses>tel:234</addresses>

<senderAddress>tel:567</senderAddress>

<subject>Default Subject Text</subject>

<priority>Normal</priority>

<charging>

<description xmlns="">Default</description>

<currency xmlns="">USD</currency>

<amount xmlns="">1.99</amount>

In te rac t ing w i th Network Gatekeeper

4-12 Application Development Guide

<code xmlns="">Example_Contract_Code_1234</code>

</charging>

</sendMessage>

</soapenv:Body>

</soapenv:Envelope>

------=_Part_0_2633821.1170785251635

Content-Type: image/jpeg

Content-Transfer-Encoding: binary

Content-Id:

<9FFD47E472683C870ADE632711438CC3>???? JFIF ??
C#%$""!&+7/&)4)!"0A149;>>>%.DIC<H7=>;??
C;("(;;?? ? w" ?? ??
7 !1AQ"aq2???#?BRr?3Cb????? ?? ' !1"AQ2Raq???? ?
??{?????>?"7B?7!1???????Z e{????ax??5??CC??-Du?
??X?)Y!??=R@??g?????T??c????f?Wc??eCi?l?????5s??\E???6I??(?x?^???=??d?#?itoi?{
;? ??G.......

------=_Part_0_2633821.1170785251635--

Managing SOAP headers and SOAP attachments
programmatically

This section illustrates how to manage the Network Gatekeeper required SOAP headers and
SOAP attachments when you are using WebLogic Server and WebLogic Server tools to generate
stubs for your Web Services clients. If you are using a different environment, the steps you need
to take to accomplish these tasks will be different.

For an overview of using WebLogic Server to create Web Service clients, see the Invoking Web
Services chapter of Programming Web Services for WebLogic Server. The following examples
show particularly the use of a SOAP message handler as covered in that chapter.

These examples show the use of a single message handler to add both SOAP Headers and SOAP
attachments.

The WebLogic Server environment relies heavily on using supplied Ant tasks. In Listing 3-9 a
supplied Ant task, clientgen, is added to the standard build.xml file. A handler configuration

http://e-docs.bea.com/wls/docs100/webserv/client.html
http://e-docs.bea.com/wls/docs100/webserv/client.html

Managing SOAP headers and SOAP at tachments programmat ica l l y

Application Development Guide 4-13

file, SOAPHandlerConfig.xml is added as the value for the handlerChainFile attribute.
SOAPHandlerConfig.xml is shown in Listing 3-10.

Listing 3-9 Snippet from build.xml

<clientgen

wsdl="${wsdl-file}"

destDir="${class-dir}"

handlerChainFile="SOAPHandlerConfig.xml"

packageName="com.bea.wlcp.wlng.test"

autoDetectWrapped="false"

generatePolicyMethods="true"

/>

The configuration file for the message handler contains the handler-name and the associated
handler-class. The handler class, TestClientHandler, is described in Listing 3-11.

Listing 3-10 SOAPHandlerConfig.xml

<weblogic-wsee-clientHandlerChain

xmlns="http://www.bea.com/ns/weblogic/90"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:j2ee="http://java.sun.com/xml/ns/j2ee">

<handler>

<j2ee:handler-name>clienthandler1</j2ee:handler-name>

<j2ee:handler-class>

com.bea.wlcp.wlng.client.TestClientHandler

</j2ee:handler-class>

</handler>

In te rac t ing w i th Network Gatekeeper

4-14 Application Development Guide

</weblogic-wsee-clientHandlerChain>

TestClientHandler provides the following functionality:

Adds a Session ID to the SOAP header, see Session Management. The session ID is
hardcoded into the member variable sessionId.

Adds a service correlation ID to the SOAP header. See Service Correlation for more
information.

Adds a SOAP attachment in the form of a MIME message with content-type text/plain. See
SOAP attachments for more information.

Listing 3-11 TestClientHandler

package com.bea.wlcp.wlng.client;

import javax.xml.rpc.handler.Handler;

import javax.xml.rpc.handler.HandlerInfo;

import javax.xml.rpc.handler.MessageContext;

import javax.xml.rpc.handler.soap.SOAPMessageContext;

import javax.xml.soap.*;

import javax.xml.namespace.QName;

public class TestClientHandler implements Handler{

public String sessionId = "myID";

public String SCID = "mySCId";

public String contenttype = "text/plain";

public String content = "The content";

public boolean handleRequest(MessageContext ctx) {

if (ctx instanceof SOAPMessageContext) {

try {

Managing SOAP headers and SOAP at tachments programmat ica l l y

Application Development Guide 4-15

SOAPMessageContext soapCtx = (SOAPMessageContext) ctx;

SOAPMessage soapmsg = soapCtx.getMessage();

SOAPHeader header = soapCtx.getMessage().getSOAPHeader();

SOAPEnvelope envelope =

soapCtx.getMessage().getSOAPPart().getEnvelope();

// Begin: Add session ID

Name headerElementName = envelope.createName("session","",

"http://schemas.xmlsoap.org/soap/envelope/");

SOAPHeaderElement headerElement =

header.addHeaderElement(headerElementName);

headerElement.setMustUnderstand(false);

headerElement.addNamespaceDeclaration("soap",

"http://schemas.xmlsoap.org/soap/envelope/");

SOAPElement sessionId = headerElement.addChildElement("SessionId");

sessionId.addTextNode(sessionId);

// End: Add session ID

// Begin: Add Combined Services ID

Name headerElementName = envelope.createName("SCID","",

"http://schemas.xmlsoap.org/soap/envelope/");

SOAPHeaderElement headerElement =

header.addHeaderElement(headerElementName);

headerElement.setMustUnderstand(false);

headerElement.addNamespaceDeclaration("soap",

"http://schemas.xmlsoap.org/soap/envelope/");

SOAPElement sessionId = headerElement.addChildElement("SCID");

sessionId.addTextNode(SCID);

// End: Add Combined Services ID

In te rac t ing w i th Network Gatekeeper

4-16 Application Development Guide

// Begin: Add SOAP attachment

AttachmentPart part = soapmsg.createAttachmentPart();

part.setContent(content, contenttype);

soapmsg.addAttachmentPart(part);

// End: Add SOAP attachment

} catch (Exception e) {

e.printStackTrace();

}

}

return true;

}

public boolean handleResponse(MessageContext ctx) {

return true;

}

public boolean handleFault(MessageContext ctx) {

return true;

}

public void init(HandlerInfo config) {

}

public void destroy() {

}

public QName[] getHeaders() {

return null;

}

}

Application Development Guide 5-1

C H A P T E R 4

Session Manager Web Service

The Session Manager Web Service contains operations for establishing a session with Network
Gatekeeper, changing the application’s password, querying the amount of time remaining in the
session, refreshing the session, and terminating the session.

Note: Not all installations of Network Gatekeeper require session management. The contents
of this chapter apply only to those installations that do.

When an operator requires it, an application must establish a session with Network Gatekeeper
before the application can perform any operations on the Parlay X or Extended Web Services
interfaces. When a session is established, a session ID is returned which must be used in each
subsequent operation towards Network Gatekeeper.

Endpoint
The WSDL for the Session Manager can be found at
http://<host>:<port>/session_manager/SessionManager

where host and port depend on the Network Gatekeeper deployment.

Interface: SessionManager
Operations to establish a session, change a password, get the remaining lifetime of a session,
refresh a session and destroy a session.

Sess ion Manager Web Serv i ce

5-2 Application Development Guide

Operation: getSession
Establishes a session using Web Services Security. Authentication information must be provided
according to WS-Security. See Authentication.

Input message: getSession

Output message: getSessionResponse

Referenced faults
GeneralException

Operation: changeApplicationPassword
Changes the password for an application.

Input message: changeApplicationPassword

Part name Part type Optional Description

- - - -

Part name Part type Optional Description

getSessionR
eturn

xsd:String N The session ID to use in subsequent requests.

Part name Part type Optional Description

sessionId xsd:string N The ID of an established session.

I n te r face : Sess ionManager

Application Development Guide 5-3

Output message: changeApplicationPasswordResponse

Referenced faults
-

Operation: getSessionRemainingLifeTime
Gets the remaining lifetime of an established session. The default lifetime is configured in
Network Gatekeeper.

Input message: getSessionRemainingLifeTime

oldPassword xsd:string N The current password.

newPasswor
d

xsd:string N The new password.

Part name Part type Optional Description

- - - -

Part name Part type Optional Description

sessionId xsd:string N The ID of an established session.

Part name Part type Optional Description

Sess ion Manager Web Serv i ce

5-4 Application Development Guide

Output message: getSessionRemainingLifeTimeResponse

Referenced faults
-

Operation: refreshSession
Refreshes the lifetime of an session. The session can be refreshed during a time interval after the
a session has expired. This time interval is configured in Network Gatekeeper.

Input message: refreshSession

Output message: refreshSessionResponse

Referenced faults
-

Part name Part type Optional Description

getSessionR
emainingLif
eTimeReturn

xsd:string N The remaining lifetime of the session.

Given in milliseconds.

Part name Part type Optional Description

sessionId xsd:string N The ID of an established session.

Part name Part type Optional Description

refreshSessi
onReturn

xsd:string N The session ID to be used in subsequent requests.
The same ID as the original session ID is returned.

Examples

Application Development Guide 5-5

Operation: destroySession
Destroys an established session.

Input message: destroySession

Output message: destroySessionResponse

Referenced faults
-

Examples
The code below illustrates how to get the Session Manager and how to prepare the generated stub
with Web Service security information. The stub is generated from the Session Manager Web
Service.

Listing 4-1 Get hold of the Session Manager

protected ClientSessionManImpl(String sessionManagerURL, PolicyBase pbase)
throws Exception {

SessionManagerService accessservice =

new SessionManagerService_Impl(sessionManagerURL+"?WSDL");

Part name Part type Optional Description

sessionId xsd:string N The ID of an established session.

Part name Part type Optional Description

destroySessi
onReturn

xsd:boolean N True if the session was destroyed.

Sess ion Manager Web Serv i ce

5-6 Application Development Guide

port = accessservice.getSessionManager();

pbase.prepareStub((Stub)port);

 }

Below illustrates how to prepare the Session Manager stub with Username Token information
according to WS-Policy.

Listing 4-2 Prepare the Session Manager with Username Token information

package com.bea.wlcp.wlng.client.access.wspolicy;

import weblogic.wsee.security.unt.ClientUNTCredentialProvider;

import weblogic.xml.crypto.wss.WSSecurityContext;

import javax.xml.rpc.Stub;

import java.util.ArrayList;

import java.util.List;

public class UsernameTokenPolicy implements PolicyBase {

 private String username;

 private String password;

public UsernameTokenPolicy(String username, String password) {

 this.username = username;

 this.password = password;

 }

 public void prepareStub(Stub stub) throws Exception {

 List<ClientUNTCredentialProvider> credProviders = new
ArrayList<ClientUNTCredentialProvider>();

Examples

Application Development Guide 5-7

 credProviders.add(new ClientUNTCredentialProvider(username.getBytes(),

 password.getBytes()));

 System.out.println("setting standard wssec");

 stub._setProperty(WSSecurityContext.CREDENTIAL_PROVIDER_LIST,

 credProviders);

 }

}

Sess ion Manager Web Serv i ce

5-8 Application Development Guide

Application Development Guide 6-1

C H A P T E R 5

Extended Web Services Binary SMS

The Extended Web Services Binary SMS Web Service allows for the sending of any generic
binary content via SMS. The binary content can be other than the Logos and Ringtones as
specified by Parlay X SMS Web service. An example would be a vCard.

Applications can poll for the delivery status of a message sent using this interface using
GetSmsDeliveryStatus as specified in Parlay X 2.1 Part 4: Short messaging, Interface: SendSms.

Applications can receive asynchronous delivery notifications for messages sent using this
interface by implementing NotifySmsDeliveryReceipt as specified in Parlay X 2.1 Part 4: Short
messaging, Interface: ReceiveSms.

Namespaces
The BinarySMS interface and service use the namespaces:

http://www.bea.com/wlcp/wlng/wsdl/ews/binary_sms/interface

http://www.bea.com/wlcp/wlng/wsdl/ews/binary_sms/service

In addition, Extended Web Services Binary SMS uses common data type definitions common for
all Extended Web Services interfaces, see Extended Web Services Common.

Fault definitions are according to ETSI ES 202 391-1 V1.2.1 (2006-10) Open Service Access
(OSA); Parlay X Web Services; Part 1: Common (Parlay X 2).

Extended Web Serv i ces B inary SMS

6-2 Application Development Guide

Endpoint
The endpoint for the BinarySMS interface is:
http://<host:port>/ews/binary_sms/BinarySms

The values for host and port depend on the specific Network Gatekeeper deployment.

Sequence Diagram
The following diagram shows the general message sequence for sending a binary SMS message
from an Extended Web Services Binary SMS application to the network. In this message
sequence the application also receives a notification from the network indicating the delivery
status of the SMS, that is, that the message has reached its destination. It also displays how an
application can query the delivery status of the message.

The interaction between the network and Network Gatekeeper is illustrated in a protocol-agnostic
manner. The exact operations and sequences depend on which network protocol is being used.

Note: The delivery notifications are sent from the Parlay X 2.1 Short Messaging
implementation.

XML Schema data t ype de f in i t i on

Application Development Guide 6-3

Figure 5-1 Sequence diagram Extended Web Services Binary SMS

XML Schema data type definition
The following data structures are used in the Extended Web Services Binary SMS Web Service.

BinaryMessage structure
Defines the binary payload of the SMS.
Defines the TP-User Data (TP-UD).

For a description of TP-User Data (TP-UD), TP-User-Data-Header-Indicator (TP UDHI), see 3GPP TS
23.040 V6.5.0, Technical realization of the Short Message Service (SMS).

http://www.3gpp.org/ftp/Specs/html-info/23040.htm
http://www.3gpp.org/ftp/Specs/html-info/23040.htm

Extended Web Serv i ces B inary SMS

6-4 Application Development Guide

Web Service interface description
The following describes the interfaces and operations that are available in the Extended Web
Services Binary SMS Web Service.

Interface: BinarySms
Operations to send SMSs with binary content.

Operation: sendBinarySMS
Sends an SMS with any binary data as content.

Input message: sendBinarySMS

Element Name Element type Optional Description

udh xsd:base64Binary Y Defines if the TP-User Data (TP-UD) field
contains only the short message or if it contains a
header in addition to the short message.

Must be formatted according to
TP-User-Data-Header-Indicator (TP UDHI).

message xsd:base64Binary Y Binary message data.

Must be formatted according to TP-User Data
(TP-UD) excluding the
TP-User-Data-Header-Indicator (TP UDHI).

Part name Part type Optional Description

addresses xsd:anyURI[1.
.unbounded]

N An array of end-user terminal addresses.

Example: tel:1234

senderName xsd:string Y The name of the sender. Alphanumeric.

Example: tel:7485, Mycompany.

Web Serv ice in te r face desc r ip t i on

Application Development Guide 6-5

dcs xsd:byte N Defines the data encoding scheme for the
binaryMessage parameter.

Formatted according to data_coding parameter in
SMPP v3.4.

See http://www.smsforum.net/

binaryMessa
ge

binary_sms_x
sd:BinaryMes
sage[1..unbou
nded]

N Message payload.

An array comprised of UDH elements and message
elements, see BinaryMessage structure.

This array must be equal to or less than 140 bytes in
size.

protocolId xsd:byte Y TP-Protocol-Identifier (TP-PID) according to 3GPP
TS 23.040 V6.5.0, Technical realization of the Short
Message Service (SMS).

Specifies the higher layer protocol being used, or
indicates interworking with a certain type of
telematic device.

validityPerio
d

xsd:string Y Defines the validity period for the short message.

Formatted according to validity_period parameter in
SMPP v3.4.

See http://www.smsforum.net/

charging ews_common
_xsd:Charging
Information

Y Charging information.

See ChargingInformation structure.

receiptReque
st

ews_common
_xsd:SimpleR
eference

Y It defines the application endpoint, interfaceName
and correlator that will be used to notify the
application when the message has been delivered to
the terminal or if delivery is impossible.

See SimpleReference structure

Part name Part type Optional Description

http://www.smsforum.net/
http://www.3gpp.org/ftp/Specs/html-info/23040.htm
http://www.3gpp.org/ftp/Specs/html-info/23040.htm
http://www.smsforum.net/

Extended Web Serv i ces B inary SMS

6-6 Application Development Guide

Output message: sendBinarySMSResponse

Referenced faults

WSDLs
The document/literal WSDL representation of the BinarySms interface can be retrieved from the
Web Services endpoint.

Part name Part type Optional Description

result xsd:string N Identifies a specific SMS delivery request.

Table 5-1 Exceptions an error codes

Exception Error code Reason/Action

SVC0001 BSMS-000001 Unable to perform action. Network error

SVC0001 BSMS-000002 Unable to retrieve configuration, internal error.

SVC0001 BSMS-000003 The used address type is not supported

SVC0001 BSMS-000004 Unable to encode message segments.

make sure the number of message segments is
not 0.

SVC0001 BSMS-000005 GSM message format error.

SVC0001 BSMS-000006 Binary Message has too many segments.

SVC0002 n/a

SVC0003 n/a

SVC0004 n/a

SVC0005 n/a

EPOL0001 n/a

Er ro r Codes

Application Development Guide 6-7

Where host and port are depending on the Network Gatekeeper deployment.

Error Codes
The following error codes are defined for SVC0001: Service error:

See General error codes.

Error codes defined for Parlay X 2.1 Short Messaging, see Error Codes.

16133 Too many segments in message.

The following error codes are defined for EPOL0001: Policy error:

See Code examples.

Policy error codes defined for Parlay X 2.1 Short Messaging, see Error Codes.

Sample Send Binary SMS

Listing 5-1 Example Send Binary SMS

BinarySmsService service = new
BinarySmsService_Impl(“http://localhost:8001/ews/binary_sms/BinarySms?WSDL”);

BinarySms port = service.getBinarySms();

com.bea.wlcp.wlng.schema.ews.binary_sms.local.SendBinarySms parameters =

new com.bea.wlcp.wlng.schema.ews.binary_sms.local.SendBinarySms();

URI[] addresses = new URI[1];

addresses[0] = new URI("tel:1234");

parameters.setAddresses(addresses);

parameters.setDcs((byte)0);

parameters.setProtocolId((byte)0x7b);

parameters.setSenderName("tel:7878");

parameters.setValidityPeriod("020610233429000R");

com.bea.wlcp.wlng.schema.ews.binary_sms.BinaryMessage[] binaryMessages =

Extended Web Serv i ces B inary SMS

6-8 Application Development Guide

new com.bea.wlcp.wlng.schema.ews.binary_sms.BinaryMessage[1];

binaryMessages[0] = new
com.bea.wlcp.wlng.schema.ews.binary_sms.BinaryMessage();

byte[] udh = {0};

byte[] message = {0x4d, 0x61, 0x64, 0x65, 0x20, 0x69, 0x6e, 0x20, 0x2e};

binaryMessages[0].setUdh(udh);

binaryMessages[0].setMessage(message);

parameters.setBinaryMessage(binaryMessages);

port.sendBinarySms(parameters);

Application Development Guide 7-1

C H A P T E R 6

Extended Web Services WAP Push

The Extended Web Services WAP Push Web Service allows for the sending of messages, which
are rendered as WAP Push messages by the adressee’s terminal. The content of the message is
coded as a PAP message. It also provides an asynchronous notification mechanism for delivery
status.

The payload of a WAP Push message must adhere to the following:

WAP Service Indication Specification, as specified in Service Indication Version
31-July-2001, Wireless Application Protocol WAP-167-ServiceInd-20010731-a.

WAP Service Loading Specification, as specified in Service Loading Version 31-Jul-2001,
Wireless Application Protocol WAP-168-ServiceLoad-20010731-a.

WAP Cache Operation Specification, as specified in Cache Operation Version 31-Jul-2001,
Wireless Application Protocol WAP-175-CacheOp-20010731-a.

See http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html for links to the
specifications.

The payload is sent as a SOAP attachment.

Namespaces
The PushMessage interface and service use the namespaces:

http://www.bea.com/wlcp/wlng/wsdl/ews/push_message/interface

http://www.bea.com/wlcp/wlng/wsdl/ews/push_message/service

http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.html

Extended Web Serv i ces WAP Push

7-2 Application Development Guide

The PushMessageNotification interface and service use the namespaces:

http://www.bea.com/wlcp/wlng/wsdl/ews/push_message/notification/interface

http://www.bea.com/wlcp/wlng/wsdl/ews/push_message/notification/service

The data types are defined in the namespace:

http://www.bea.com/wlcp/wlng/schema/ews/push_message

In addition, Extended Web Services WAP Push uses definitions common for all Extended Web
Services interfaces:

The datatypes are defined in the namespace:

– http://www.bea.com/wlcp/wlng/schema/ews/common

The faults are defined in the namespace:

– targetNamespace="http://www.bea.com/wlcp/wlng/wsdl/ews/common/faults"

Endpoint
The endpoint for the PushMessage interface is:
http://<host:port>/ews/push_message/PushMessage

Where host and port depend on the Network Gatekeeper deployment.

Sequence Diagram
The following diagram shows the general message sequence for sending a WAP Push message
from an Extended Web Services WAP Push application to the network. In this message sequence
the application also receives a notification from the network indicating the delivery status of the
WAP Push message, that is, that the message has been read The interaction between the network
and Network Gatekeeper is illustrated in a protocol-agnostic manner. The exact operations and
sequences depend on which network protocol is being used.

Note: Zero or more resultNotificationmesages are sent to the application, depending on
parameters provided in the initial SendPushMessage request.

XML Schema data t ype de f in i t i on

Application Development Guide 7-3

Figure 6-1 Sequence diagram Extended Web Services WAP Push

XML Schema data type definition
The following data structures are used in the Extended Web Services WAP Push Web Service.

PushResponse structure
Defines the response that the Network Gatekeeper returns from a sendPushMessage operation.

Extended Web Serv i ces WAP Push

7-4 Application Development Guide

ResponseResult structure
Defines the result element in the PushResponse structure, which is used in the response returned
from a sendPushMessage operation.

Element Name Element type Optional Description

result push_message_xs
d:ResponseResult

N The ResponseResult allows the
server to specify a code for the
outcome of sending the push
message. See ResponseResult
structure

pushId xsd:string N The push ID provided in the
request.

senderAddress xsd:string Y Contains the address to which the
message was originally sent, for
example the URL to the network
node.

senderName xsd:string Y The descriptive name of the server.

replyTime xsd:dateTime Y The date and time associated with
the creation of the response.

additionalProperties ews_common_xs
d:AdditionalProp
erty

Y Additional properties.The
supported properties are: pap.stage,
pap.note, pap.time

Element Name Element type Optional Description

code xsd:string N A code representing the outcome
when sending the push message.
Generated by the network node.

Possible status codes are listed in
Table 6-1.

description xsd:string N Textual description.

XML Schema data t ype de f in i t i on

Application Development Guide 7-5

Table 6-1 Outcome status codes

Status code Description

1000 OK.

1001 Accepted for processing.

2000 Bad request.

2001 Forbidden.

2002 Address error.

2003 Address not found.

2004 Push ID not found.

2005 Capabilities mismatch.

2006 Required capabilities not supported.

2007 Duplicate push ID.

2008 Cancellation not possible.

3000 Internal server error.

3001 Not implemented.

3002 Version not supported.

3003 Not possible.

3004 Capability matching not possible.

3005 Multiple addresses not supported.

3006 Transformation failure.

3007 Specified delivery method not possible.

3008 Capabilities not available.

3009 Required network not available.

3010 Required bearer not available.

Extended Web Serv i ces WAP Push

7-6 Application Development Guide

ReplaceMethod enumeration
Defines the values for the replacePushId parameter in the sendPushMessage operation. This
parameter is used to replace an existing message based on a given push ID. This parameter is
ignored if it is set to NULL.

MessageState enumeration
Defines the values for the messageState parameter in a resultMessageNotification.

3011 Replacement not supported.

4000 Service failure.

4001 Service unavailable.

Enumeration value Description

all Indicates that this push message MUST be treated as a new push
submission for all recipients, no matter if a previously submitted push
message with pushId equal to the replacePushId in this push message can
be found or not.

pending-only Indicates that this push message should be treated as a new push
submission only for those recipients who have a pending push message
that is possible to cancel.

In this case, if no push message with pushId equal to the replacePushId in
this push message can be found, the server responds with status code
PUSH_ID_NOT_FOUND in the responseResult.

Status code CANCELLATION_NOT_POSSIBLE may be returned in the
responseResult if no message can be cancelled.

Status code CANCELLATION_NOT_POSSIBLE may also be returned
in a subsequent resultNotification to indicate a non-cancellable message
for an individual recipient.

Status code Description

Web Serv ice in te r face desc r ip t i on

Application Development Guide 7-7

Web Service interface description
The following describes the interfaces and operations that are available in the Extended Web
Services WAP Push Web Service.

Interface: PushMessage
Operations to send, or to manipulate previously sent, WAP Push messages.

Operation: sendPushMessage
Sends a WAP Push message. The message Content Entity (the payload) is provided as a SOAP
attachment in MIME format. The Content Entity is a MIME body part containing the content to
be sent to the wireless device. The content type is not defined, and can be any type as long as it
can be described by MIME. The Content Entity is included only in the push submission and is
not included in any other operation request or response.

Enumeration value Description

rejected Message was not accepted by the network.

pending Message is being processed.

delivered Message successfully delivered to the network.

undeliverable The message could not be delivered.

expired The message reached the maximum allowed age or could not be delivered
by the time specified when the message was sent.

Note: Some network elements allows for defining policies on maximum
age of messages.

aborted The end-user terminal aborted the message.

timeout The delivery process timed out.

cancelled The message was cancelled.

unknown The state of the message is unknown.

Extended Web Serv i ces WAP Push

7-8 Application Development Guide

Input message: sendPushMessage

Part name Part type Optional Description

pushId xsd:string N Provided by the application. Serves as a message ID.
The application is responsible for its uniqueness, for
example, by using an address within its control (for
example a URL) combined with an identifier for the
push message as the value for pushId. Supported
types are PLMN and USER.

For example: "www.wapforum.org/123" or
"123@wapforum.org"

destinationA
ddresses

xsd:string
[1..unbounded
]

N An array of end-user terminal addresses.

The addresses should be formatted according to the
Push Proxy Gateway Service Specification
(WAP-249-PPGService-20010713-a).

Example addresses:
• WAPPUSH=+155519990730

TYPE=PLMN@ppg.carrier.com
• WAPPUSH=john.doe%40wapforum.org

TYPE=USER@ppg.carrier.com

resultNotific
ationEndpoi
nt

xsd:anyURI Y Specifies the URL the application uses to return
result notifications.

The presence of this parameter indicates that a
notification is requested. If the application does not
want a notification, this parameter must be set to
NULL.

Web Serv ice in te r face desc r ip t i on

Application Development Guide 7-9

replacePushI
d

xsd:string Y The pushId of the still pending message to replace.

The presence of this parameter indicates that the
client is requesting that this message replace one
previously submitted, but still pending push
message.

The following rules apply:
• Setting the replacePushId parameter to

NULL indicates that it is a new message. It does
not replace any previously submitted message.

• The initial pending (pending delivery to the
end-user terminal) message is cancelled, if
possible, for all recipients of the message. This
means that it is possible to replace a message for
only a subset of the recipients of the original
message.

• Message replacement will occur only for the
recipients for whom the pending message can be
cancelled.

replaceMeth
od

push_message
_xsd:Replace
Method

N Defines how to replace a previously sent message.
Used in conjunction with the replacePushId
parameter described above.

Ignored if replacePushId is NULL.

deliverBefor
eTimestamp

xsd:dateTime Y Defines the date and time by which the content must
be delivered to the end-user terminal.

The message is not delivered to the end-user terminal
after this time and date.

If the network node does not support this parameter,
the message is rejected.

deliverAfter
Timestamp

xsd:dateTime Y Specifies the date and time after which the content
should be delivered to the wireless device.

The message is delivered to the end-user terminal
after this time and date.

If the network node does not support this parameter,
the message is be rejected.

Part name Part type Optional Description

Extended Web Serv i ces WAP Push

7-10 Application Development Guide

Output message: sendPushMessageResponse

sourceRefere
nce

xsd:string Y A textual name of the content provider.

progressNot
esRequested

xsd:boolean Y This parameter informs the network node if the client
wants to receive progress notes.

TRUE means that progress notes are requested.

Progress notes are delivered via the
PushMessageNotification interface.

If not set, progress notes are not sent.

serviceCode xsd:string N Used for charging purposes.

requesterID xsd:string N The application ID as given by the operator.

additionalPr
operties

ews_common
_xsd:Addition
alProperty
[0...unbounde
d]

Y Additional properties, defined as name/value pairs,
can be sent using this parameter. The supported
properties are: pap.priority, pap.delivery-method,
pap.network, pap.network-required, pap.bearer,
pap.bearer-required.

Part name Part type Optional Description

result push_message
_xsd:PushRes
ponse

N The response that Network Gatekeeper returns for
sendPushMessage operation

Part name Part type Optional Description

Web Serv ice in te r face desc r ip t i on

Application Development Guide 7-11

Referenced faults

Interface: PushMessageNotification

Operation: resultNotificationMessage

Input message: resultNotificationMessage

Table 6-2 Exceptions an error codes

Exception Error code Reason/Action

SVC0001 WNG-000001 Internal problem in Network Gatekeeper.

Contact Network Gatekeeper administrator.

SVC0001 WNG-000002 Internal problem in Network Gatekeeper.

Contact Network Gatekeeper administrator.

SVC0001 PUSHMSG-000002 Failed to create push message.

SVC0001 PUSHMSG-000003 Unable to retrieve configuration.

SVC0001 PUSHMSG-000001 Failed to submit push message to PPG.

Part name Part type Optional Description

pushId xsd:string N Defined by the application in the corresponding
sendPushMessage operation.

Used to match the notification to the message.

address xsd:string N The address of the end-user terminal.

messageStat
e

push_message
_xsd:Message
State

N State of the message.

code xsd:string N Final status of the message.

Extended Web Serv i ces WAP Push

7-12 Application Development Guide

Output message: resultNotificationMessageResponse

description xsd:string Y Textual description of the notification. Supplied by
the network. May or may not be present, depending
on the network node used.

senderAddre
ss

xsd:string Y Address of the network node.

May or may not be present, depending on the
network node used.

senderName xsd:string Y Name of the network node.

May or may not be present, depending on the
network node used.

receivedTim
e

xsd:dateTime Y Time and date when the message was received at the
network node.

eventTime xsd:dateTime Y Time and date when the message reached the
end-user terminal.

additionalPr
operties

ews_common
_xsd:Addition
alProperty

Y Additional properties can be sent using this
parameter in the form of name/value pairs. The
supported properties are:
• pap.priority
• pap.delivery-method
• pap.network
• pap.network-required
• pap.bearer
• pap.bearer-required

Which properties are sent, if any, is dependent on the
network node.

Part name Part type Optional Description

none

Part name Part type Optional Description

WSDLs

Application Development Guide 7-13

Referenced faults

WSDLs
The document/literal WSDL representation of the PushMessage interface can be retrieved from
the Web Services endpoint.
The document/literal WSDL representation of the PushMessageNotification interface can be
downloaded from
http://<host>:<port>/ews/push_message/wsdls/ews_common_types.xsd
http://<host>:<port>/ews/push_message/wsdls/ews_push_message_notification_
interface.wsdl
http://<host>:<port>/ews/push_message/wsdls/ews_push_message_notification_
service.wsdl

http://<host>:<port>/ews/push_message/wsdls/ews_push_message_types.xsd

Where host and port are depending on the Network Gatekeeper deployment.

Sample Send WAP Push Message

Listing 6-1 Example Send WAP Push Message

// Add handlers for MIME types needed for WAP MIME-types

MailcapCommandMap mc = (MailcapCommandMap) CommandMap.getDefaultCommandMap();

mc.addMailcap("text/vnd.wap.si;;x-java-content-handler=com.sun.mail.handlers.t
ext_xml");

CommandMap.setDefaultCommandMap(mc);

// Create a MIME-message where with the actual content of the WAP Push message.

InternetHeaders headers = new InternetHeaders();

Table 6-3 Exceptions an error codes

Exception Error code Reason/Action

SVC0001 PUSHMSG-000004 Failed to send result notification to the
application.

Extended Web Serv i ces WAP Push

7-14 Application Development Guide

headers.addHeader("Content-type", "text/plain; charset=UTF-8");

headers.addHeader("Content-Id", "mytext");

byte[] bytes = "Test message".getBytes();

MimeBodyPart mimeMessage = new MimeBodyPart(headers, bytes);

// Create PushMessage with only the manadatory parameters

// SendPushMessage is provided in the stubs generated from the WSDL.

SendPushMessage sendPushMessage = new SendPushMessage();

String [] destinationAddresses = {"wappush=461/type=user@ppg.o.se"};

sendPushMessage.setDestinationAddresses(destinationAddresses);

// Create “unique” pushId, using a combination of timestamp and domain.

sendPushMessage.setPushId(System.currentTimeMillis() + "@wlng.bea.com");

// ReplaceMethod is provided by the stubs generated from the WSDL.

sendPushMessage.setReplaceMethod(ReplaceMethod.pendingOnly);

// Defined by the operator/service provider contractual agreement

sendPushMessage.setServiceCode(”Service Code xxx”);

// Defined by the operator/service provider contractual agreement

sendPushMessage.setRequesterID(”Requester ID xxx”);

// Endpoint to send notifications to. Implemented on the application side.

String notificationEndpoint =
"http://localhost:80/services/PushMessageNotification";

sendPushMessage.setResultNotificationEndpoint(new URI(notificationEndpoint));

// Send the WAP Push message

PushMessageService pushMessageService = null;

// Define the endpoint of the WAP Push Web Service

String endpoint = "http://localhost:8001/ews/push_message/PushMessage?WSDL";

Sample Send WAP Push Message

Application Development Guide 7-15

try {

// Instantiate an representation of the Web Service from the generated stubs.

pushMessageService = new PushMessageService_Impl(endpoint);

} catch (ServiceException e) {

e.printStackTrace();

throw e;

}

PushMessage pushMessage = null;

try {

// Get the Web Service interface to operate on.

pushMessage = pushMessageService.getPushMessage();

} catch (ServiceException e) {

e.printStackTrace();

throw e;

}

SendPushMessageResponse sendPushMessageResponse = null;

try {

// Send the WAP Push message.

sendPushMessageResponse = pushMessage.sendPushMessage(sendPushMessage);

} catch (RemoteException e) {

e.printStackTrace();

throw e;

} catch (PolicyException e) {

e.printStackTrace();

throw e;

} catch (com.bea.wlcp.wlng.schema.ews.common.ServiceException e) {

e.printStackTrace();

Extended Web Serv i ces WAP Push

7-16 Application Development Guide

throw e;

}

// Assign the pushId provided in the in the response to a local variable.

String pushId = sendPushMessageResponse.getPushId();

Application Development Guide 8-1

C H A P T E R 7

Extended Web Services Subscriber
Profile

The Extended Web Services Subscriber Profile Web Service allows for getting
subscriber-specific data from data sources within the network operator’s domain.

Examples of data sources are subscriber databases containing information about terminal types
in use, preferred language, and currency types. This information can be used by applications in
order to control rendering options for rich media, charging information, and the language to be
used in voice and text interaction with the end-user.

The interface is built around a model where the data can be retrieved in two different ways:

Individual attributes, identified using a path.

A collection of attributes.

The attributes are keyed on a subscriber ID, that uniquely identifies the subscriber for whom the
attributes are valid or by an address, that uniquely identifies the terminal for whom the attributes
are valid. An attribute is identified by a path name, which corresponds to a specific property. The
following is an example of a path name:

serviceName/accessControlId/accessControlId

The syntax for the path is similar to relative file system paths in UNIX.

A collection of attributes is specified in a subscriber profile filter for the for the application or the
service provider. Only allowed attributes, as specified in the filter, are returned.

The returned attributes are returned in the form of name-value pairs, or property tuples, where the
name is expressed as a path name with a associated property value.

The interface is based on a proposal for a Parlay X Subscriber Profile Web Service interface.

Extended Web Serv i ces Subsc r ibe r P ro f i l e

8-2 Application Development Guide

Namespaces
The SubscriberProfile interface and service use the namespaces:

http://www.bea.com/wlcp/wlng/wsdl/ews/subscriber_profile/interface

http://www.bea.com/wlcp/wlng/wsdl/ews/subscriber_profile/service

The data types are defined in the namespace:

http://www.bea.com/wlcp/wlng/schema/ews/subscriber_profile

In addition, Extended Web Services Subscriber Profile uses definitions common for all Extended
Web Services interfaces:

The datatypes are defined in the namespace:

– http://www.bea.com/wlcp/wlng/schema/ews/common

The faults are defined in the namespace:

– http://www.bea.com/wlcp/wlng/wsdl/ews/common/faults

Endpoint
The endpoint for the PushMessage interface is:
http://<host>:<port>/ews/subscriber_profile/SubscriberProfile

Where host and port depend on the Network Gatekeeper deployment.

Address schemes

Table 7-1 Supported address schemes

Address scheme Valid for Communication service

tel Extended Web Services Subscriber profile for LDAPv3

id Extended Web Services Subscriber profile for LDAPv3

imsi Extended Web Services Subscriber profile for LDAPv3

ipv4 Extended Web Services Subscriber profile for LDAPv3

XML Schema data t ype de f in i t i on

Application Development Guide 8-3

XML Schema data type definition
The following data structures are used in the Extended Web Services Subscriber Profile Web
Service.

PropertyTuple structure
Defines the response that the Network Gatekeeper returns from Operation: get and Operation:
getProfile.

Web Service interface description
The following describes the interfaces and operations that are available in the Extended Web
Subscriber Profile Web Service.

Interface: SubscriberProfile
Operations to obtain specific subscriber profile attributes and operations to obtain a set of profile
properties grouped together in a profile.

Operation: get
Gets specific subscriber profile attributes. The requested attributes are identified by the
pathNames parameter, and the possible values are restricted by the configured capabilities of the
underlying data source. The allowed path name values are also restricted individually per service
provider and application in the SLA.

Element Name Element type Optional Description

pathName xsd:string N The key of the name-value pair.

Expressed as a relative UNIX path.

Example:
serviceName/accessControlId/ac
cessControlId

propertyValue xsd:string N The value associated with the key.

Extended Web Serv i ces Subsc r ibe r P ro f i l e

8-4 Application Development Guide

Input message: get

Output message: getResponse

Referenced faults

Part name Part type Optional Description

address xsd:anyURI N Identity to get profile attributes for.

pathNames xsd:string
[1..unbounded
]

N Requested subscriber properties.

Expressed as a relative UNIX path.

Example:
serviceName/accessControlId/accessCo
ntrolId

Part name Part type Optional Description

properties PropertyTuple
[1..unbounded
]

N All retrieved subscription property name and value
pairs which are requested by application and allowed
by the usage policies as specified in a filter.

See PropertyTuple structure.

Table 7-2 Exceptions an error codes

Exception Error code Reason/Action

ESVC0001 WNG000002 Internal problem in Network Gatekeeper.

Contact Network Gatekeeper administrator.

ESVC0001 SP000001 Internal problem in Network Gatekeeper.

The LDAP connection is not working. There
might be a configuration error for with the
underlying LDAP server or a network error.

Contact Network Gatekeeper administrator.

Web Serv ice in te r face desc r ip t i on

Application Development Guide 8-5

Operation: getProfile
Gets a set of profile properties grouped together in a profile identified by a certain profile ID.

Input message: getProfile

Profile ID is ignored when connecting the to the network using the LDAPv3 network protocol
plug-in. The collection of attributes that identifies the profile are provisioned as filters.

Output message: getResponse

ESVC0001 SP000002 Internal problem in Network Gatekeeper.

LDAP operation failed.

Contact Network Gatekeeper administrator.

ESVC0001 SP000003 Internal problem in Network Gatekeeper.

Contact Network Gatekeeper administrator.

ESVC0001 SP000004 Internal problem in Network Gatekeeper.

Contact Network Gatekeeper administrator.

Part name Part type Optional Description

subscriberID xsd:string N Identity to get profile attributes for.

profileID xsd:string N Identity of the profile to get.

Part name Part type Optional Description

properties PropertyTuple
[1..unbounded
]

N All retrieved subscription property name and value
pairs which are requested by application and allowed
by the usage policies as specified in a filter.

See PropertyTuple structure.

Table 7-2 Exceptions an error codes

Exception Error code Reason/Action

Extended Web Serv i ces Subsc r ibe r P ro f i l e

8-6 Application Development Guide

Referenced faults

WSDLs
The document/literal WSDL representation of the SubcriberProfile interface can be retrieved
from the Web Services endpoint, see Endpoint, or:
http://<host>:<port>/ews/subscriber_profile/SubscriberProfile?WSDL

http://<host>:<port>/ews/subscriber_profile/SubscriberProfile?WSDL/ews_sub

scriber_profile_interface.wsdl

http://<host>:<port>/ews/subscriber_profile/SubscriberProfile?WSDL/ews_com

mon_types.xsd

Where host and port depend on the Network Gatekeeper deployment.

Table 7-3 Exceptions an error codes

Exception Error code Reason/Action

SVC0001 WNG-000002 Internal problem in Network Gatekeeper.

Contact Network Gatekeeper administrator.

SVC0001 SP-000001 Internal problem in Network Gatekeeper.

The LDAP connection is not working. There
might be a configuration error for with the
underlying LDAP server or a network error.

Contact Network Gatekeeper administrator.

SVC0001 SP-000002 Internal problem in Network Gatekeeper.

LDAP operation failed.

Contact Network Gatekeeper administrator.

SVC0001 SP-000003 Internal problem in Network Gatekeeper.

Contact Network Gatekeeper administrator.

SVC0001 SP-000004 Internal problem in Network Gatekeeper.

Contact Network Gatekeeper administrator.

Application Development Guide 9-1

C H A P T E R 8

Extended Web Services Common

The Extended Web Services set of Web Services share common definitions described in this
section:

Namespace

XML Schema datatype definition

– AdditionalProperty structure

– ChargingInformation structure

– SimpleReference structure

Fault definitions

– ServiceException

– PolicyException

Namespace
The namespace for the common data types is:

http://www.bea.com/wlcp/wlng/schema/ews/common

The namespace for the common faults is:

http://www.bea.com/wlcp/wlng/wsdl/ews/common/faults

Extended Web Serv i ces Common

9-2 Application Development Guide

XML Schema datatype definition

AdditionalProperty structure
Defines a name-value pair.

ChargingInformation structure
For services that include charging as an inline message part, the charging information is provided
in this data structure.

SimpleReference structure
For those services that require a reference to a Web Service, the information required to create
the endpoint information is contained in this type.

Element Name Element type Optional Description

name xsd:string Y Name part.

value xsd:string Y Value part.

Element Name Element type Optional Description

description xsd:string N Description text to be use for
information and billing text.

currency xsd:string Y Currency identifier as defined in
ISO 4217.

amount xsd:decimal Y Amount to be charged.

code xsd:string Y Charging code, referencing a
contract under which the charge is
applied.

Fau l t de f in i t i ons

Application Development Guide 9-3

Fault definitions

ServiceException
Faults related to the operation of the service, not including policy related faults, result in the
return of a ServiceException message.

Service Exception are related to the operation of the service itself. The following exceptions are
general:

SVC0001: Service error.

SVC0002: Invalid input value

SVC0003: Invalid input value with list of valid values

SVC0004: No valid addresses

Element Name Element type Optional Description

endpoint xsd:anyURI N Description text to be use for
information and billing text.

interfaceName xsd:string Y Name of interface.

correlator xsd:decimal Y Correlation information.

Element Name Element type Optional Description

messageId xsd:string N Message identifier, with prefix
SVC.

text xsd:string N Message text, with replacement
variables marked with %#

variables xsd:string
[0...unbounded]

Y Variables to substitute into text
string.

Extended Web Serv i ces Common

9-4 Application Development Guide

SVC0005: Duplicate correlator

SVC0006: Invalid group

SVC0007: Invalid charging information

SVC0008: Overlapping Criteria

PolicyException
Faults related to policies associated with the service, result in the return of a PolicyException

message.

PolicyExceptions are thrown when a policy has been violated, including violations of a service
level agreements. The following general PolicyExceptions are defined:

POL0001: Policy error

POL0002: Privacy error

POL0003: Too many addresses specified

POL0004: Unlimited notifications not supported

POL0005: Too many notifications requested

POL0006: Groups not allowed

POL0007: Nested groups not allowed

POL0008: Charging not supported

Element Name Element type Optional Description

messageId xsd:string N Message identifier, with prefix
POL.

text xsd:string N Message text, with replacement
variables marked with %#

variables xsd:string
[0...unbounded]

Y Variables to substitute into text
string.

Fau l t de f in i t i ons

Application Development Guide 9-5

POL0009: Invalid frequency requested

Extended Web Serv i ces Common

9-6 Application Development Guide

Application Development Guide 10-1

C H A P T E R 9

Parlay X 2.1 Interfaces

This chapter describes the supported Parlay X 2.1 interfaces and contains information that is
specific for Network Gatekeeper, and not found in the specifications. For detailed descriptions of
the interfaces, methods and parameters, refer to the specifications.

See http://parlay.org/en/specifications/pxws.asp for links to the specifications.

Parlay X 2.1 Part 2: Third Party Call

– Interface: ThirdPartyCall

– Error Codes

Parlay X 2.1 Part 3: Call Notification

– Interface: CallDirection

– Interface: CallNotification

– Interface: CallNotificationManager

– Interface: CallDirectionManager

– Error Codes

Parlay X 2.1 Part 4: Short messaging

– Interface: SendSms

– Interface: SmsNotification

– Interface: ReceiveSms

http://parlay.org/en/specifications/pxws.asp

Par lay X 2 .1 In te r faces

10-2 Application Development Guide

– Interface: SmsNotificationManager

– Error Codes

Parlay X 2.1 Part 5: Multimedia messaging

– Interface: SendMessage

– Interface: ReceiveMessage

– Interface: MessageNotification

– Interface: MessageNotificationManager

– Error Codes

Parlay X 2.1 Part 9: Terminal location

– Interface: TerminalLocation

– Interface: TerminalLocationNotificationManager

– Interface: TerminalLocationNotification

– Error Codes

Parlay X 2.1 Part 14: Presence

– Interface: PresenceConsumer

– Interface: PresenceNotification

– Interface: PresenceSupplier

– Error Codes

About notifications

General error codes

Code examples

Code examples

Parlay X 2.1 Part 2: Third Party Call
This set of interfaces is compliant to ETSI ES 202 391-2 V1.2.1 (2006-12) Open Service Access
(OSA); Parlay X Web Services; Part 2: Third Party Call (Parlay X 2).

Par lay X 2 .1 Par t 3 : Ca l l No t i f i cat i on

Application Development Guide 10-3

Interface: ThirdPartyCall
The endpoint for this interface is:
http://<host>:<port>/parlayx21/third_party_call/ThirdPartyCall

Where values for host and port depend on the Network Gatekeeper deployment.

MakeCall
Sets up a call between two parties.

GetCallInformation
Displays information about a call.

EndCall
Ends a call.

CancelCall
Cancels a call setup procedure.

Error Codes
See General error codes.

Parlay X 2.1 Part 3: Call Notification
This set of interfaces is compliant to ETSI ES 202 391-3 V1.2.1 (2006-12) Open Service Access
(OSA); Parlay X Web Services; Part 3: Call Notification (Parlay X 2).

Interface: CallDirection
This interface is implemented by an application, and the consumer of this interface is Network
Gatekeeper. The WSDL that defines the interface can be downloaded from:
http://<host>:<port>/parlayx21/call_notification/wsdls/parlayx_call_direct
ion_interface_2_2.wsdl

http://<host>:<port>/parlayx21/call_notification/wsdls/parlayx_call_direct
ion_service_2_2.wsdl

http://<host>:<port>/parlayx21/call_notification/wsdls/parlayx_call_notifi
cation_types_2_2.xsd

Par lay X 2 .1 In te r faces

10-4 Application Development Guide

Where values for host and port depend on the Network Gatekeeper deployment.

HandleBusy
Network Gatekeeper calls this method, which is implemented by an application, when the called
party is busy.

HandleNotReachable
Network Gatekeeper calls this method, which is implemented by an application, when the called
party is not reachable.

HandleNoAnswer
Network Gatekeeper calls this method, which is implemented by an application, when the called
party does not answer.

HandleCalledNumber
Network Gatekeeper calls this method, which is implemented by an application, prior to call
setup.

Interface: CallNotification
This interface is implemented by an application, and the consumer of this interface is Network
Gatekeeper. The WSDL that defines the interface can be downloaded from:
http://<host>:<port>/parlayx21/call_notification/wsdls/parlayx_call_notifi
cation_interface_2_2.wsdl

http://<host>:<port>/parlayx21/call_notification/wsdls/parlayx_call_notifi
cation_service_2_2.wsdl

http://<host>:<port>/parlayx21/call_notification/wsdls/parlayx_call_notifi
cation_types_2_2.xsd

NotifyBusy
Network Gatekeeper calls this method, which is implemented by an application, when the called
party is busy.

NotifyNotReachable
Network Gatekeeper calls this method, which is implemented by an application, when the called
party is not reachable.

Par lay X 2 .1 Par t 3 : Ca l l No t i f i cat i on

Application Development Guide 10-5

NotifyNoAnswer
Network Gatekeeper calls this method, which is implemented by an application, when the called
party does not answer.

NotifyCalledNumber
Network Gatekeeper calls this method, which is implemented by an application, prior to call
setup.

Interface: CallNotificationManager
The endpoint for this interface is:
http://<host>:<port>/parlayx21/call_notification/CallNotificationManager

Where values for host and port depend on the Network Gatekeeper deployment.

StartCallNotification
Starts a subscription for call notifications.

StopCallNotification
Stops a subscription for call notifications.

Interface: CallDirectionManager
The endpoint for this interface is:
http://<host>:<port>/parlayx21/call_notification/CallDirectionManager

Where values for host and port depend on the Network Gatekeeper deployment.

StartCallDirectionNotification
Starts a subscription for call direction notifications.

StopCallDirectionNotification
Stops a subscription for call direction notifications.

Error Codes
See General error codes.

Par lay X 2 .1 In te r faces

10-6 Application Development Guide

Parlay X 2.1 Part 4: Short messaging
This set of interfaces is compliant to ETSI ES 202 391-4 V1.2.1 (2006-12) Open Service Access
(OSA); Parlay X Web Services; Part 4: Short Messaging (Parlay X 2).

Interface: SendSms
The endpoint for this interface is: http://<host>:<port>/parlayx21/sms/SendSms

Where values for host and port depend on the Network Gatekeeper deployment.

If a backwards-compatible communication service is used:

The parameter senderAddress is either of the format tel:<mailbox ID>\<mailbox
password>\<Sender name> or just <sender name> depending on how the application was
provisioned in Network Gatekeeper.

The priority parameter is not supported.

SendSms
Sends an SMS to one or more destinations.

SendSmsLogo
Sends an SMS Logo to one or more destinations.

Logos in SmartMessaging and EMS are supported. The image is not scaled.

Logos in the following raw image formats are supported:

bmp

gif

jpg

png

The logos are in pure black and white (gray scale not supported). Animated images are not
supported. Scaling is not supported.

If the logo shall be converted to SmartMessaging format, the image cannot be larger than 72x14
pixels.

If the logo shall be is sent in EMS format, the following rules apply:

Par lay X 2 .1 Par t 4 : Sho r t messag ing

Application Development Guide 10-7

If the image is 16x16 pixels, the logo is sent as an EMS small picture.

If the image is 32x32 pixels, the logo is sent as an EMS large picture.

If the image is of any other size, the logo is sent as an EMS variable picture.

Images up to 1024 pixels are supported.

SendSmsRingtone
Sends an SMS Ringtone to one or more destinations.

Ringtones can be in any of these formats:

RTX

SmartMessaging

EMS (iMelody)

GetSmsDeliveryStatus
Gets the delivery status of a previously sent SMS.

It is possible to query delivery status of an SMS only if a callback reference was not defined when
the SMS was sent. If a callback reference was defined, NotifySmsDeliveryReceipt is invoked by
Network Gatekeeper and the delivery status is not stored. If the delivery status is stored in
Network Gatekeeper, it is stored for a configurable period of time.

Interface: SmsNotification
This interface is implemented by an application, and the consumer of this interface is Network
Gatekeeper. The WSDL that defines the interface can be downloaded from:
http://<host>:<port>/parlayx21/sms/wsdls/parlayx_sms_notification_interfac
e_2_2.wsdl

http://<host>:<port>/parlayx21/sms/wsdls/parlayx_sms_notification_service_
2_2.wsdl

http://<host>:<port>/parlayx21/sms/wsdls/parlayx_sms_types_2_2.xsd

Where values for host and port depend on the Network Gatekeeper deployment.

Par lay X 2 .1 In te r faces

10-8 Application Development Guide

NotifySmsReception
Sends an SMS that is received by Network Gatekeeper to an application given that the SMS
fulfills a set of criteria. The criteria is either defined by the application itself, using
startSmsNotification or defined using a provisioning step in Network Gatekeeper.

Shortcode translation, if appropriate, is applied.

NotifySmsDeliveryReceipt
Sends a delivery receipt that a previously sent SMS has been received by its destination. The
delivery receipt is propagated to the application given that the application provided a callback
reference when sending the SMS.

Interface: ReceiveSms
The endpoint for this interface is: http://<host>:<port>/parlayx21/sms/ReceiveSms

Where values for host and port depend on the Network Gatekeeper deployment.

GetReceivedSms
Gets messages that have been received by Network Gatekeeper. The SMSs are fetched using a
registrationIdentifier used when the notification was registered using a provisioning step in
Network Gatekeeper.

Interface: SmsNotificationManager
The endpoint for this interface is: http://<host>:<port>/parlayx21/sms/SmsNotificationManager

Where values for host and port depend on the Network Gatekeeper deployment.

StartSmsNotification
Initiates notifications to the application for a given service activation number and criteria.

Note: Service activation number may be provisioned to cater for a range of numbers via short
code translations.

Note: The equivalent to this operation may have been performed as an off-line provisioning
step by the Network Gatekeeper administrator.

Par lay X 2 .1 Par t 5 : Mu l t imedia messag ing

Application Development Guide 10-9

StopSmsNotification
Ends a previously started notification.

Error Codes
See General error codes.

Parlay X 2.1 Part 5: Multimedia messaging
This set of interfaces is compliant to ETSI ES 202 391-5 V1.2.1 (2006-12) Open Service Access
(OSA); Parlay X Web Services; Part 5: Multimedia Messaging (Parlay X 2).

Interface: SendMessage
The endpoint for this interface is:
http://<host>:<port>/parlayx21/multimedia_messaging/SendMessage

Where values for host and port depend on the Network Gatekeeper deployment.

SendMessage
Sends a multimedia message. The content of the message is sent as a SOAP attachment. E-mail
is not supported.

Table 9-1 exceptions and error codes

Exception Error code Reason/Action

SVC0001 WNG-000002 Internal problem in Network Gatekeeper.

Contact Network Gatekeeper administrator.

SVC0001 MMS-000001 Internal problem in Network Gatekeeper.

Contact Network Gatekeeper administrator.

SVC0001 MMS-000002 Internal problem in Network Gatekeeper.

Contact Network Gatekeeper administrator.

SVC0001 MMS-000003 Address is utilizing an unsupported address type.

SVC0001 MMS-000005 Message could not be delivered to MMSC.

Par lay X 2 .1 In te r faces

10-10 Application Development Guide

GetMessageDeliveryStatus
Gets the delivery status of a previously sent MMS.

It is possible to query delivery status of an MMS only if a callback reference was not defined
when the message was sent. If a callback reference was defined, NotifyMessageDeliveryReceipt
is invoked by Network Gatekeeper and the delivery status is not stored. If the delivery status is
stored in Network Gatekeeper, it is stored for a configurable period of time.

Note: Network Gatekeeper may be configured not to store delivery status for MMS.

Interface: ReceiveMessage
The endpoint for this interface is:
http://<host>:<port>/parlayx21/multimedia_messaging/ReceiveMessage

Where the values for host and port depend on the Network Gatekeeper deployment.

GetReceivedMessages
Polls Network Gatekeeper for received messages.

The registrationIdentifier is required. Received message are stored in Network Gatekeeper only
for a configurable period of time.

Table 9-2 exceptions and error codes

Exception Error code Reason/Action

SVC0001 WNG-000002 Internal problem in Network Gatekeeper.

Contact Network Gatekeeper administrator.

SVC0002 RequestIdentifier Message is not found.

Par lay X 2 .1 Par t 5 : Mu l t imedia messag ing

Application Development Guide 10-11

GetMessageURIs
Not supported.

GetMessage
Gets a specific message that was received by Network Gatekeeper and belongs to the application.

Interface: MessageNotification
This interface is implemented by an application, and the consumer of this interface is Network
Gatekeeper. The WSDL that defines the interface can be downloaded from:
http://<host>:<port>/parlayx21/multimedia_messaging/wsdls/parlayx_mm_notif
ication_interface_2_4.wsdl

http://<host>:<port>/parlayx21/multimedia_messaging/wsdls/parlayx_mm_notif
ication_service_2_4.wsdl

Table 9-3 exceptions and error codes

Exception Error code Reason/Action

SVC0001 WNG-000002 Internal problem in Network Gatekeeper.

Contact Network Gatekeeper administrator.

SVC0002 MMS-000002 Internal problem in Network Gatekeeper.

Contact Network Gatekeeper administrator.

Table 9-4 exceptions and error codes

Exception Error code Reason/Action

SVC0001 WNG-000002 Internal problem in Network Gatekeeper.

Contact Network Gatekeeper administrator.

SVC0001 MMS-000004 Correlator does not exist, no notification
corresponds to the correlator.

Par lay X 2 .1 In te r faces

10-12 Application Development Guide

http://<host>:<port>/parlayx21/multimedia_messaging/wsdls/parlayx_mm_types
_2_4.xsd

Where the values for host and port depend on the Network Gatekeeper deployment.

NotifyMessageReception
Sends a notification to an application that an MMS destined for the application is received by
Network Gatekeeper.

NotifyMessageDeliveryReceipt
Sends a notification to an application that a previously sent MMS has been delivered to its
destination.

Note: Network Gatekeeper can be configured to support delivery notifications or not.

Interface: MessageNotificationManager
The endpoint for this interface is:
http://<host>:<port>/parlayx21/multimedia_messaging/MessageNotificationManager

Where the values for host and port depend on the Network Gatekeeper deployment.

StartMessageNotification
Initiates notifications to the application for a given service activation number and criteria.

Note: Service activation number may be provisioned to cater for a range of numbers via short
code translations.

Note: The equivalent to this operation may have been performed as an off-line provisioning
step by the Network Gatekeeper administrator.

Table 9-5 exceptions and error codes

Exception Error code Reason/Action

SVC0001 WNG-000002 Internal problem in Network Gatekeeper.

Contact Network Gatekeeper administrator.

Par lay X 2 .1 Par t 9 : Te rmina l l ocat ion

Application Development Guide 10-13

StopMessageNotification
Ends a previously started notification.

Error Codes
See General error codes.

Parlay X 2.1 Part 9: Terminal location
This set of interfaces is compliant to ETSI ES 202 391-9 V1.2.1 (2006-12), Open Service Access
(OSA); Parlay X Web Services; Part 9: Terminal Location (Parlay X 2).

Interface: TerminalLocation
The endpoint for this interface is:
http://<host>:<port>/parlayx21/terminal_location/TerminalLocation

Where values for host and port depend on the Network Gatekeeper deployment.

GetLocation
Gets the location for a terminal.

Table 9-6 exceptions and error codes

Exception Error code Reason/Action

SVC0001 WNG-000002 Internal problem in Network Gatekeeper.

Contact Network Gatekeeper administrator.

SVC0002 Correlator Correlator does not exist, no notification
corresponds to the correlator.

Par lay X 2 .1 In te r faces

10-14 Application Development Guide

GetTerminalDistance
Gets the distance from a certain point to the location of a terminal.

Table 9-7 exceptions and error codes

Exception Error code Reason/Action

SVC0001 TL-000007 Communication problems between Network
Gatekeeper and the network node. Contact
Network Gatekeeper administrator.

SVC0001 TL-000010 Communication problems between Network
Gatekeeper and the network node, unable to
interpret response. Contact Network Gatekeeper
administrator.

SVC0001 TL-000009 No location data received from network.

SVC0001 TL-000011 Unknown error received from network.

SVC0002 Invalid parameter provided in request.

SVC0200 Accuracy of location is not within acceptable
limit.

POL0001 General policy error.

POL0002 Privacy error.

POL0230 Requested accuracy not supported.

Par lay X 2 .1 Par t 9 : Te rmina l l ocat ion

Application Development Guide 10-15

GetLocationForGroup
Gets the location for one or more terminals.

Table 9-8 exceptions and error codes

Exception Error code Reason/Action

SVC0001 TL-000007 Communication problems between Network
Gatekeeper and network node. Contact Network
Gatekeeper administrator.

SVC0001 TL-000010 Communication problems between Network
Gatekeeper and network node, unable to
interpret response. Contact Network Gatekeeper
administrator.

SVC0001 TL-000009 No location data received from network.

SVC0001 TL-000011 Unknown error received from network.

SVC0002 Invalid parameter provided in request.

SVC0200 Accuracy of location is not within acceptable
limit.

POL0001 General policy error.

POL0002 Privacy error.

POL0230 Requested accuracy not supported.

Par lay X 2 .1 In te r faces

10-16 Application Development Guide

Interface: TerminalLocationNotificationManager
The endpoint for this interface is:
http://<host>:<port>/parlayx21/terminal_location/TerminalLocationNotificationManager

Where values for host and port depend on the Network Gatekeeper deployment.

StartGeographicalNotification
Initiates location notifications to the application when one or more terminal changes their
location according to a criteria.

Table 9-9 exceptions and error codes

Exception Error code Reason/Action

SVC0001 TL-000007 Communication problems between Network
Gatekeeper and network node. Contact Network
Gatekeeper administrator.

SVC0001 TL-000010 Communication problems between Network
Gatekeeper and network node, unable to
interpret response. Contact Network Gatekeeper
administrator.

SVC0001 TL-000009 No location data received from network.

SVC0001 TL-000011 Unknown error received from network.

SVC0002 Invalid parameter provided in request.

SVC0004 No valid addresses.

SVC0200 Accuracy of location is not within acceptable
limit.

POL0001 General policy error.

POL0002 Privacy error.

POL0230 Requested accuracy not supported.

Par lay X 2 .1 Par t 9 : Te rmina l l ocat ion

Application Development Guide 10-17

StartPeriodicNotification
Initiates location notifications to the application on a periodic basis.

Table 9-10 exceptions and error codes

Exception Error code Reason/Action

SVC0001 TL-000003 Unable to start geographical notification due to a
network error. Contact Network Gatekeeper
administrator.

SVC0001 TL-000004 Unable to start geographical notification due to
an internal error. Contact Network Gatekeeper
administrator.

SVC0002 Invalid parameter provided in request.

SVC0004 No valid addresses.

SVC0005 Correlator already exists.

POL0001 General policy error.

Table 9-11 exceptions and error codes

Exception Error code Reason/Action

SVC0001 TL-000005 Unable to start periodic notification due to a
network error. Contact Network Gatekeeper
administrator.

SVC0001 TL-000006 Unable to start periodic notification due to an
internal error. Contact Network Gatekeeper
administrator.

SVC0002 Invalid parameter provided in request.

SVC0004 No valid addresses.

Par lay X 2 .1 In te r faces

10-18 Application Development Guide

EndNotification
Ends a previously started notification.

Interface: TerminalLocationNotification
This interface is implemented by an application, and the consumer of this interface is Network
Gatekeeper. The WSDL that defines the interface can be downloaded from:
http://<host>:<port>/parlayx21/terminal_location/wsdls/parlayx_terminal_lo
cation_notification_interface_2_2.wsdl

http://<host>:<port>/parlayx21/terminal_location/wsdls/parlayx_terminal_lo
cation_notification_service_2_2.wsdl

http://<host>:<port>/parlayx21/terminal_location/wsdls/parlayx_terminal_lo
cation_types_2_2.xsdl

Where values for host and port depend on the Network Gatekeeper deployment.

SVC0005 Correlator already exists.

POL0001 General policy error.

Table 9-12 exceptions and error codes

Exception Error code Reason/Action

SVC0001 TL-000001 Unable to start geographical notification due to a
network error. Contact Network Gatekeeper
administrator.

SVC0001 TL-000002 Unable to start geographical notification due to
an internal error. Contact Network Gatekeeper
administrator.

SVC0002 Invalid parameter provided in request.

POL0001 General policy error.

Table 9-11 exceptions and error codes

Exception Error code Reason/Action

Par lay X 2 .1 Par t 14 : P resence

Application Development Guide 10-19

LocationNotification
Notifies an application about a change of location for a terminal.

LocationError
Notifies an application that the subscription for location notifications was cancelled by network
Gatekeeper.

LocationEnd
Notifies an application that no more location notifications are being sent to the application.

Error Codes
See General error codes.

Parlay X 2.1 Part 14: Presence
This set of interfaces is compliant to ETSI ES 202 391-14 V1.2.1 (2006-12), Open Service
Access (OSA); Parlay X Web Services; Part 14: Presence (Parlay X 2).

Interface: PresenceConsumer
The endpoint for this interface is: http://<host>:<port>//parlayx21/presence/PresenceConsumer

Where values for host and port depend on the Network Gatekeeper deployment.

subscribePresence
Subscription to get presence information about a presentity.

For the parameter presentity, only SIP URI can be used. Group-URI is not supported

getUserPresence
Get presence information about a presentity.

For the parameter presentity, only SIP URI can be used. Group-URI is not supported

startPresenceNotification
Initiates presence notifications to the application when one or more presence attributes changes
for a presentity.

Par lay X 2 .1 In te r faces

10-20 Application Development Guide

For the parameter presentity, only SIP URI can be used. Group-URI is not supported

The parameter frequency is not supported. The application is notified when an update of presence
information is received from the network.

endPresenceNotification
Ends a previously started notification.

Interface: PresenceNotification
This interface is implemented by an application, and the consumer of this interface is Network
Gatekeeper. The WSDL that defines the interface can be downloaded from:
http://<host>:<port>/parlayx21/presence/wsdls/parlayx_presence_notificatio
n_interface_2_3.wsdl

http://<host>:<port>/parlayx21/presence/wsdls/parlayx_presence_notificatio
n_service_2_3.wsdl

http://<host>:<port>/parlayx21/presence/wsdls/parlayx_presence_types_2_3.x
sd

Where values for host and port depend on the Network Gatekeeper deployment.

statusChanged
Notifies an application about a change of presence attributes for a presentity.

statusEnd
Notifies an application that no more notifications will be sent to the application.

notifySubscription
Notifies an application that the presentity has handled the request for presence information.

subscriptionEnded
Notifies an application that the subscription for presence information has ended.

Interface: PresenceSupplier
This interface is not supported.

About no t i f i cat i ons

Application Development Guide 10-21

publish
Not supported.

getOpenSubscriptions
Not supported.

updateSubscriptionAuthorization
Not supported.

getMyWatchers
Not supported.

getSubscribedAttributes
Not supported.

blockSubscription
Not supported.

Error Codes
See General error codes.

About notifications
When an application has started a notification, the notification is persisted. This means that if an
application has started a notification and destroys the session, the notification is still registered
and matching notifications are sent to the application when it connects to Network Gatekeeper.

General Exceptions
This section describes the exception handling for the Parlay X 2.1 interfaces.

These exception types are defined:

Service Exceptions

Policy Exceptions

Par lay X 2 .1 In te r faces

10-22 Application Development Guide

Service Exception are related to the operation of the service itself. The following exceptions are
general:

SVC0001: Service error.

SVC0002: Invalid input value

SVC0003: Invalid input value with list of valid values

SVC0004: No valid addresses

SVC0005: Duplicate correlator

SVC0006: Invalid group

SVC0007: Invalid charging information

SVC0008: Overlapping Criteria

PolicyExceptions are thrown when a policy has been violated, including violations of a service
level agreements. The following general PolicyExceptions are defined:

POL0001: Policy error

POL0002: Privacy error

POL0003: Too many addresses specified

POL0004: Unlimited notifications not supported

POL0005: Too many notifications requested

POL0006: Groups not allowed

POL0007: Nested groups not allowed

POL0008: Charging not supported

POL0009: Invalid frequency requested

Within the exception, an error code is defined. The error code details why the exception was
thrown. See General error codes

General error codes
The following are general error codes for SVC0001: Service error:

Genera l e r ro r codes

Application Development Guide 10-23

Null sessionID (loginTicket) expired.

WNG-000000 No error.

WNG-000001 Unknown error.

WNG-000002 Storage service error.

PLG-000001 Could not find remote ejb home in access tier.

PLG-000002 Could not create the ejb.

PLG-000003 Could not access callback ejb.

SIP-000001 Could not find remote ejb home.

SIP-000002 Could not create the ejb.

SIP-000003 Could not access remote ejb.

SIP-000004 Could not create SIP session.

SIP-000005 Failed to send SIP message.

SIP-000006 Internal SIP stack error.

CN-000001 Two requests for call direction overlap with each other

CN-000002 Internal error when accessing the subscription storage

CN-000003 Could not find the call-back plug-in

CN-000004 The call direction routing address is not valid

PRESENCE-000001 Failed to use the default 'duration' for a notification.

PRESENCE-000002 Failed to use the default value for count for a notification.

PRESENCE-000003 The application has no SIP-URI mapping configured.

PRESENCE-000004 Internal error. Failed to put data in WorkContext.

PLC-000001 Internal policy engine error

OSA-000001 Invalid network state.

OSA-000002 Invalid interface type.

OSA-000003 Invalid event type.

Par lay X 2 .1 In te r faces

10-24 Application Development Guide

OSA-000004 Unsupported address plan.

OSA-000005 Communication failure between OSA Gateway and network Gatekeeper.

TL-000001 Unable to end notification, network error

TL-000002 Unable to end notification, internal error

TL- 000003 Unable to start geographical notification, network error.

TL-000004 Unable to start geographical notification, internal error

TL-000005 Unable to start periodic notification, network error.

TL-000006 Unable to start periodic notification, internal error.

TL-000007 Unable to get location, network error.

TL-000008 Unable to get location, internal error.

TL-000009 Unable to get location, no data found.

TL-000010 Failed to parse response, internal error.

TL-000011 Failed to get location information, error returned from MLP server.

MMS-000001 Unable to perform action. Network error.

MMS-000002 Unable to retrieve configuration, internal error.

MMS-000003 The used address type is not supported.

MMS-000004 An error occurred when an attachment was put into the request context.

MMS-000005 The MM7 Relay server responded with an error code.

SMS-000001 Unable to perform action. Network error.

SMS-000002 Unable to retrieve configuration, internal error.

SMS-000003 The used address type is not supported

SMS-000004 Unable to encode message segments

SMS-000005 GSM message format incorrect

TPC-000001 Unable to retrieve configuration, internal error

Code examples

Application Development Guide 10-25

Code examples
Below are some code examples that illustrate how to use the Parlay X 2.1 interfaces.

Example: sendSMS
Below is an example of sending an SMS.

Listing 9-1 SendSMS example

org.csapi.schema.parlayx.sms.send.v2_2.local.SendSms request =

new org.csapi.schema.parlayx.sms.send.v2_2.local.SendSms();

SimpleReference sr = new SimpleReference();

sr.setEndpoint(new
URI("http://localhost:8111/SmsNotificationService/services/SmsNotification?WSD
L"));

sr.setCorrelator("cor188");

sr.setInterfaceName("InterfaceName");

ChargingInformation charging = new ChargingInformation();

charging.setAmount(new BigDecimal("1.1"));

charging.setCode("qwerty");

charging.setCurrency("USD");

charging.setDescription("some charging info");

sendInf.setCharging(charging);

URI[] uri = new URI[1];

uri[0] = new URI("1234");

request.setAddresses(uri);

request.setCharging(charging);

request.setReceiptRequest(sr);

request.setMessage("we are testing sms!");

request.setSenderName(“6001”);

Par lay X 2 .1 In te r faces

10-26 Application Development Guide

org.csapi.schema.parlayx.sms.send.v2_2.local.SendSmsResponse response =

smport.sendSms(request);

String sendresult = response.getResult();

System.out.println("result: " + sendresult);

Example: startSmsNotification
Below is an example of using startSmsNotification.

Listing 9-2 startSmsNotification example

org.csapi.schema.parlayx.sms.notification_manager.v2_3.local.StartSmsNotificat
ion parameters =

new
org.csapi.schema.parlayx.sms.notification_manager.v2_3.local.StartSmsNotificat
ion();

parameters.setCriteria("hello");

SimpleReference sr = new SimpleReference();

sr.setEndpoint(new
URI("http://localhost:8111/SmsNotificationService/services/SmsNotification?WSD
L"));

sr.setCorrelator("cor189");

sr.setInterfaceName("interfaceName");

parameters.setReference(sr);

URI uri = new URI("tel:6001;mboxPwd=6001");

parameters.setSmsServiceActivationNumber(uri);

port.startSmsNotification(parameters);

Example: getReceivedSms
Below is an example of polling for SMSes using getReceivedSms.

Code examples

Application Development Guide 10-27

Listing 9-3 getReceivedSms example

org.csapi.schema.parlayx.sms.receive.v2_2.local.GetReceivedSms parameters =

new org.csapi.schema.parlayx.sms.receive.v2_2.local.GetReceivedSms();

parameters.setRegistrationIdentifier("1");

org.csapi.schema.parlayx.sms.receive.v2_2.local.GetReceivedSmsResponse
response =

port.getReceivedSms(parameters);

org.csapi.schema.parlayx.sms.v2_2.SmsMessage[] msgs =

response.getResult();

if(msgs != null) {

for(org.csapi.schema.parlayx.sms.v2_2.SmsMessage msg : msgs) {

System.out.println(msg.getMessage());

}

}

Example: sendMessage
Below is an example of sending an MMS.

Listing 9-4 sendMessage example

org.csapi.schema.parlayx.multimedia_messaging.send.v2_4.local.SendMessage
request =

new
org.csapi.schema.parlayx.multimedia_messaging.send.v2_4.local.SendMessage();

ChargingInformation charging = new ChargingInformation();

charging.setAmount(new BigDecimal("1.1"));

charging.setCode("qwerty");

charging.setCurrency("USD");

Par lay X 2 .1 In te r faces

10-28 Application Development Guide

charging.setDescription("some charging info");

sendInf.setCharging(charging);

SimpleReference sr = new SimpleReference();

if(getProperty("notification_mt").equalsIgnoreCase("true")) {

sr.setEndpoint(new
URI(getProperty(ClientConstants.NOTIFICATION_LISTENER_URL)));

sr.setCorrelator(getProperty("correlator"));

sr.setInterfaceName(getProperty("interfacename"));

}

URI[] uri = new URI[1];

uri[0] = new URI("1234");

request.setAddresses(uri);

request.setCharging(charging);

request.setPriority(MessagePriority.fromString("Default"));

request.setReceiptRequest(sr);

request.setSenderAddress("6001");

request.setSubject("subject");

org.csapi.schema.parlayx.multimedia_messaging.send.v2_4.local.SendMessageRespo
nse response =

smport.sendMessage(request);

String sendresult = response.getResult();

System.out.println("sendresult: " + sendresult);

Example: getReceivedMessages and getMessage
Below is an example of polling for a received MMS.

Example : ge tRece ivedMessages and getMessage

Application Development Guide 10-29

Listing 9-5 getReceivedMessages and getMessage example

org.csapi.schema.parlayx.multimedia_messaging.receive.v2_4.local.GetReceivedMe
ssages parameters =

new
org.csapi.schema.parlayx.multimedia_messaging.receive.v2_4.local.GetReceivedMe
ssages();

parameters.setPriority(org.csapi.schema.parlayx.multimedia_messaging.v2_4.Mess
agePriority.fromString("Default"));

parameters.setRegistrationIdentifier("2");

org.csapi.schema.parlayx.multimedia_messaging.receive.v2_4.local.GetReceivedMe
ssagesResponse result =

port.getReceivedMessages(parameters);

org.csapi.schema.parlayx.multimedia_messaging.v2_4.MessageReference[] refs =

result.getResult();

if(refs != null) {

for(org.csapi.schema.parlayx.multimedia_messaging.v2_4.MessageReference ref :
refs) {

String id = ref.getMessageIdentifier();

org.csapi.schema.parlayx.multimedia_messaging.receive.v2_4.local.GetMessag
e p2 =

new
org.csapi.schema.parlayx.multimedia_messaging.receive.v2_4.local.GetMessage();

p2.setMessageRefIdentifier(id);

port.getMessage(p2);

}

}

Example: getLocation
Below is an example of getting the location of a terminal.

Par lay X 2 .1 In te r faces

10-30 Application Development Guide

Listing 9-6 getLocation example

org.csapi.schema.parlayx.terminal_location.v2_2.local.GetLocation parameters =

new org.csapi.schema.parlayx.terminal_location.v2_2.local.GetLocation();

parameters.setAcceptableAccuracy(5);

parameters.setAddress(new URI("1234"));

parameters.setRequestedAccuracy(5);

TimeMetric maximumAge = new TimeMetric();

maximumAge.setMetric(TimeMetrics.fromString("Hour"));

maximumAge.setUnits(10);

parameters.setMaximumAge(maximumAge);

TimeMetric responseTime = new TimeMetric();

responseTime.setMetric(TimeMetrics.fromString("Hour"));

responseTime.setUnits(1);

parameters.setResponseTime(responseTime);

DelayTolerance tolerance = DelayTolerance.fromString("NoDelay");

parameters.setTolerance(tolerance);

org.csapi.schema.parlayx.terminal_location.v2_2.local.GetLocationResponse
response =

port.getLocation(parameters);

org.csapi.schema.parlayx.terminal_location.v2_2.LocationInfo result =

response.getResult();

System.out.println("accuracy : " + result.getAccuracy());

System.out.println("altitude : " + result.getAltitude().floatValue());

System.out.println("latitude : " + result.getLatitude());

System.out.println("longitude : " + result.getLongitude());

System.out.println("timestamp : " + result.getTimestamp());

Application Development Guide 11-1

C H A P T E R 10

Parlay X 3.0 Interfaces

This chapter describes the supported Parlay X 3.0 interfaces and contains information that is
specific for Network Gatekeeper, and not found in the specifications. For detailed descriptions of
the interfaces, methods and parameters, refer to the specifications.

See http://parlay.org/en/specifications/pxws.asp for links to the specifications.

Interaction between Audio Call, Third Party Call, and Call Notification

Parlay X 3.0 Part 2: Third Party Call

– Interface: ThirdPartyCall

Parlay X 3.0 Part 3: Call Notification

– Interface: CallDirection

– Interface: CallNotification

– Interface: CallNotificationManager

– Interface: CallDirectionManager

Parlay X 3.0 Part 11: Audio call

– Interface: PlayMedia

http://parlay.org/en/specifications/pxws.asp

Par lay X 3 .0 In te r faces

11-2 Application Development Guide

Interaction between Audio Call, Third Party Call, and Call
Notification

The Parlay X 3.0 Part 2: Third Party Call, Parlay X 3.0 Part 3: Call Notification, and Parlay X 3.0
Part 11: Audio call interfaces, when used together with the Parlay-type plug-ins, are designed to
interact so they can be used to implement, for example, a conference call application using a
combination of the services exposed by these interfaces:

Call setup

Call redirection and transfer

Playing of announcements

Collection of input from participants in the call using DTMF

A call can have several participants.The call as a whole is represented by a callSessionIdentifier,
and each participant is identified by it’s URI (the phone number, with scheme tel:) can be added
to the call.

Note: When the call is initiated from an application, the callSessionIdentifier is returned from
Network Gatekeeper when the call session is established. When the call is initiated from
the network, the callSessionIdentifier is provided by Network Gatekeeper in the requests
that reports the event.

Application-initiated call setup, tear-down, and transfer is managed using the Parlay X 3.0 Part
2: Third Party Call interfaces.

Subscribing for notification on network-initiated calls, and taking action depending on the events
is done using the Parlay X 3.0 Part 3: Call Notification interfaces.

Playing of announcements and initiating collection of input from call participants is done using
the Parlay X 3.0 Part 11: Audio call interfaces. Results from the collection of input are reported
using Parlay X 3.0 Part 3: Call Notification.

Parlay X 3.0 Part 11: Audio call interfaces must be used together with either Parlay X 3.0 Part 2:
Third Party Call or Parlay X 3.0 Part 3: Call Notification since Audio Call does not have any
operations to establish a call.

Parlay X 3.0 Part 2: Third Party Call
This set of interfaces is compliant to ETSI ES 202 504-2 v0.0.5 (2007-06) Open Service Access
(OSA); Parlay X Web Services; Part 2: Third Party Call (Parlay X 3).

Par lay X 3 .0 Par t 2 : Th i rd Pa r t y Ca l l

Application Development Guide 11-3

Interface: ThirdPartyCall
The endpoint for this interface is:
http://<host>:<port>/parlayx30/third_party_call/ThirdPartyCall

Where values for host and port depend on the Network Gatekeeper deployment.

makeCallSession
Sets up a call between two parties.

The parameter:

mediaInfo must be set to NULL.

changeMediaNotAllowed must be set to false.

Table 10-1 exceptions and error codes

Exception Error code Explanation

SVC0001 TPC-000001 Error reported from the telecom network.

SVC0001 TPC-000002 Error reported from the telecom network.

SVC0001 OSA-000001 Error reported from the telecom network.

SVC0001 OSA-000002 Error reported from the telecom network.

SVC0001 OSA-000003 Error reported from the telecom network.

SVC0001 OSA-000004 Error reported from the telecom network.

SVC0001 OSA-000006 Error reported from the telecom network.

SVC0001 OSA-000007 Error reported from the telecom network.

SVC0001 OSA-000008 Error reported from the telecom network.

SVC0001 OS-A000009 Error reported from the telecom network.

SVC0001 OS-A000010 Error reported from the telecom network.

SVC0001 OS-A000011 Error reported from the telecom network.

SVC0001 OSA-000012 Error reported from the telecom network.

Par lay X 3 .0 In te r faces

11-4 Application Development Guide

addCallParticipant
Adds a participant to a an existing call session. The call session may have been established using
makeCallSession or any of the methods in Interface: CallDirection and Interface:
CallNotification.

parameter mediaInfo must be set to NULL.

SVC0001 OS-A000013 Error reported from the telecom network.

SVC0001 OSA-000014 Error reported from the telecom network.

SVC0001 OSA-000015 Error reported from the telecom network.

SVC0001 WNG-000002 Failed to store information in Network Gatekeeper.

SVC0002 n/a Invalid input parameter.

POL0001 Faults related to policies associated with the service,
including service level agreements.

POL0008 Charging not supported.

POL0011 Media type not supported.

Table 10-1 exceptions and error codes

Exception Error code Explanation

Table 10-2 exceptions and error codes

Exception Error code Explanation

SVC0001 TPC-000002 Error reported from the telecom network.

SVC0001 OSA-000001 Error reported from the telecom network.

SVC0001 OSA-000002 Error reported from the telecom network.

SVC0001 OSA-000003 Error reported from the telecom network.

SVC0001 OSA-000004 Error reported from the telecom network.

SVC0001 OSA-000006 Error reported from the telecom network.

Par lay X 3 .0 Par t 2 : Th i rd Pa r t y Ca l l

Application Development Guide 11-5

transferCallParticipant
Transfers a participant from one call session to another call session.

SVC0001 OSA-000007 Error reported from the telecom network.

SVC0001 OSA-000008 Error reported from the telecom network.

SVC0001 OSA-000009 Error reported from the telecom network.

SVC0001 OSA-000010 Error reported from the telecom network.

SVC0001 OSA-000011 Error reported from the telecom network.

SVC0001 OSA-000012 Error reported from the telecom network.

SVC0001 OSA-000014 Error reported from the telecom network.

SVC0001 OSA-000015 Error reported from the telecom network.

SVC0001 WNG-000002 Failed to store information in Network Gatekeeper.

SVC0002 n/a Call session identifier is null.

Or

Error reported from the telecom network.

SVC0261 n/a The call is already terminated.

POL0001 The application is not the owner of the call.

Error reported form the network.

POL0011 n/a Media type not supported.

POL0240 n/a Too many participants.

Table 10-2 exceptions and error codes

Exception Error code Explanation

Par lay X 3 .0 In te r faces

11-6 Application Development Guide

Table 10-3 exceptions and error codes

Exception Error code Explanation

SVC0001 TPC-000002 No call leg identifier reported form network. Error
reported from the telecom network.

SVC0001 TPC-000003 The destination call session reference or call leg
reference is null, internal error.

SVC0001 TPC-000007 The participant does not belong to this call.

SVC0001 OSA-000001 Error reported from the telecom network.

SVC0001 OSA-000002 Error reported from the telecom network.

SVC0001 OSA-000003 Error reported from the telecom network.

SVC0001 OSA-000004 Error reported from the telecom network.

SVC0001 OSA-000006 Error reported from the telecom network.

SVC0001 OSA-000007 Error reported from the telecom network.

SVC0001 OSA-000008 Error reported from the telecom network.

SVC0001 OSA-000009 Error reported from the telecom network.

SVC0001 OSA-000010 Error reported from the telecom network.

SVC0001 OSA-000011 Error reported from the telecom network.

SVC0001 OSA-000012 Error reported from the telecom network.

SVC0001 OSA-000014 Error reported from the telecom network.

SVC0001 OSA-000015 Error reported from the telecom network.

SVC0001 WNG-000002 Failed to store information in Network Gatekeeper.

Par lay X 3 .0 Par t 2 : Th i rd Pa r t y Ca l l

Application Development Guide 11-7

getCallParticipantInformation
Gets information about a certain participant in a call session.

SVC0002 Error reported from the telecom network.

Or

Source call session identifier is invalid.

Or

Destination call session identifier is invalid.

Or

Participant part is invalid.

SVC0261 n/a The call is already terminated.

POL0001 TPC100001

POL0240 n/a Too many participants.

Table 10-3 exceptions and error codes

Exception Error code Explanation

Table 10-4 exceptions and error codes

Exception Error code Explanation

SVC0001 TPC-000007 The participant does not belong to this call.

SVC0001 OSA-000001 Error reported from the telecom network.

SVC0001 OSA-000002 Error reported from the telecom network.

SVC0001 OSA-000003 Error reported from the telecom network.

SVC0001 OSA-000004 Error reported from the telecom network.

SVC0001 OSA-000006 Error reported from the telecom network.

SVC0001 OSA-000007 Error reported from the telecom network.

SVC0001 OSA-000008 Error reported from the telecom network.

SVC0001 OSA-000009 Error reported from the telecom network.

Par lay X 3 .0 In te r faces

11-8 Application Development Guide

getCallSessionInformation
Displays information about a call session.

SVC0001 OSA-000010 Error reported from the telecom network.

SVC0001 OSA-000011 Error reported from the telecom network.

SVC0001 OSA-000012 Error reported from the telecom network.

SVC0001 OSA-000014 Error reported from the telecom network.

SVC0001 OSA-000015 Error reported from the telecom network.

SVC0001 WNG-000002 Failed to store information in Network Gatekeeper.

SVC0002 n/a Call session identifier is invalid.

SVC0261 n/a The call is already terminated.

POL0001 TPC-100001 The application is not the owner of the call session.

Table 10-4 exceptions and error codes

Exception Error code Explanation

Table 10-5 exceptions and error codes

Exception Error code Explanation

SVC0001 TPC-000007 The participant does not belong to this call.

SVC0001 OSA-000001 Error reported from the telecom network.

SVC0001 OSA-000002 Error reported from the telecom network.

SVC0001 OSA-000003 Error reported from the telecom network.

SVC0001 OSA-000004 Error reported from the telecom network.

SVC0001 OSA-000006 Error reported from the telecom network.

SVC0001 OSA-000007 Error reported from the telecom network.

SVC0001 OSA-000008 Error reported from the telecom network.

Par lay X 3 .0 Par t 2 : Th i rd Pa r t y Ca l l

Application Development Guide 11-9

deleteCallParticipant
Deletes a participant from a call session.

SVC0001 OSA-000009 Error reported from the telecom network.

SVC0001 OSA-000010 Error reported from the telecom network.

SVC0001 OSA-000011 Error reported from the telecom network.

SVC0001 OSA-000012 Error reported from the telecom network.

SVC0001 OSA-000014 Error reported from the telecom network.

SVC0001 OSA-000015 Error reported from the telecom network.

SVC0001 WNG-000002 Failed to store information in Network Gatekeeper.

SVC0002 n/a network error.

Or

Call session identifier is invalid.

SVC0261 n/a The call is already terminated.

POL0001 TPC-100001 The application is not the owner of the call session.

Table 10-5 exceptions and error codes

Exception Error code Explanation

Table 10-6 exceptions and error codes

Exception Error code Explanation

SVC0001 TPC-000006 There are no participants in this call.

SVC0001 OSA-000001 Error reported from the telecom network.

SVC0001 OSA-000002 Error reported from the telecom network.

SVC0001 OSA-000003 Error reported from the telecom network.

SVC0001 OSA-000004 Error reported from the telecom network.

SVC0001 OSA-000006 Error reported from the telecom network.

Par lay X 3 .0 In te r faces

11-10 Application Development Guide

endCallSession
Ends a call session.

SVC0001 OSA-000007 Error reported from the telecom network.

SVC0001 OSA-000008 Error reported from the telecom network.

SVC0001 OSA-000009 Error reported from the telecom network.

SVC0001 OSA-000010 Error reported from the telecom network.

SVC0001 OSA-000011 Error reported from the telecom network.

SVC0001 OSA-000012 Error reported from the telecom network.

SVC0001 OSA-000014 Error reported from the telecom network.

SVC0001 OSA-000015 Error reported from the telecom network.

SVC0001 WNG-000002 Failed to store information in Network Gatekeeper.

SVC0002 n/a Network error.

Or

Call session identifier is invalid.

Or

Call participant identifier is invalid.

SVC0261 n/a The call is already terminated.

POL0001 TPC-100001 The application is not the owner of the call session.

Table 10-6 exceptions and error codes

Exception Error code Explanation

Par lay X 3 .0 Par t 2 : Th i rd Pa r t y Ca l l

Application Development Guide 11-11

Table 10-7 exceptions and error codes

Exception Error code Explanation

SVC0001 TPC-000005 The call reference in Network Gatekeeper storage is
invalid.

SVC0001 TPC-000006 There are no participants in the call session.

SVC0001 OSA-000001 Error reported from the telecom network.

SVC0001 OSA-000002 Error reported from the telecom network.

SVC0001 OSA-000003 Error reported from the telecom network.

SVC0001 OSA-000004 Error reported from the telecom network.

SVC0001 OSA-000006 Error reported from the telecom network.

SVC0001 OSA-000007 Error reported from the telecom network.

SVC0001 OSA-000008 Error reported from the telecom network.

SVC0001 OSA-000009 Error reported from the telecom network.

SVC0001 OSA-000010 Error reported from the telecom network.

SVC0001 OSA-000011 Error reported from the telecom network.

SVC0001 OSA-000012 Error reported from the telecom network.

SVC0001 OSA-000014 Error reported from the telecom network.

SVC0001 OSA-000015 Error reported from the telecom network.

SVC0001 WNG-000002 Failed to store information in Network Gatekeeper.

SVC0002 n/a Error reported from the telecom network.

Or

Call session identifier is invalid.

Or

Call participant identifier is invalid.

Par lay X 3 .0 In te r faces

11-12 Application Development Guide

Parlay X 3.0 Part 3: Call Notification
This set of interfaces is compliant to ETSI ES 202 504-3 v0.0.3 (2007-06) Open Service Access
(OSA); Parlay X Web Services; Part 3: Call Notification (Parlay X 3).

Interface: CallDirection
This interface is implemented by an application, and the consumer of this interface is Network
Gatekeeper. The WSDL that defines the interface can be downloaded from:
http://<host>:<port>/parlayx30/call_notification/wsdls/parlayx_call_direct
ion_service_3_2.wsdl

http://<host>:<port>/parlayx30/call_notification/wsdls/parlayx_call_direct
ion_interface_3_2.wsdl

http://<host>:<port>/parlayx30/call_notification/wsdls/parlayx_common_type
s_3_1.xsd

http://<host>:<port>/parlayx30/call_notification/wsdls/parlayx_common_faul
ts_3_0.wsdl

http://<host>:<port>/parlayx30/call_notification/wsdls/parlayx_call_notifi
cation_types_3_1.xsd

Where values for host and port depend on the Network Gatekeeper deployment.

HandleBusy
Network Gatekeeper calls this method, which is implemented by an application, when the called
party is busy.

HandleNotReachable
Network Gatekeeper calls this method, which is implemented by an application, when the called
party is not reachable.

SVC0261 n/a The call is already terminated.

POL0001 TPC-100001 The application is not the owner of the call session.

Table 10-7 exceptions and error codes

Exception Error code Explanation

Par lay X 3 .0 Par t 3 : Ca l l No t i f i cat i on

Application Development Guide 11-13

HandleNoAnswer
Network Gatekeeper calls this method, which is implemented by an application, when the called
party does not answer.

HandleCalledNumber
Network Gatekeeper calls this method, which is implemented by an application, prior to call
setup.

Interface: CallNotification
This interface is implemented by an application, and the consumer of this interface is Network
Gatekeeper. The WSDL that defines the interface can be downloaded from:
http://<host>:<port>/parlayx30/call_notification/wsdls/parlayx_call_notifi
cation_interface_3_2.wsdl

http://<host>:<port>/parlayx30/call_notification/wsdls/parlayx_call_notifi
cation_service_3_2.wsdl

http://<host>:<port>/parlayx30/call_notification/wsdls/parlayx_common_type
s_3_1.xsd

http://<host>:<port>/parlayx30/call_notification/wsdls/parlayx_common_faul
ts_3_0.wsdl

http://<host>:<port>/parlayx30/call_notification/wsdls/parlayx_call_notifi
cation_types_3_1.xsd

Where values for host and port depend on the Network Gatekeeper deployment.

notifyBusy
Network Gatekeeper calls this method, which is implemented by an application, when the called
party is busy.

notifyNotReachable
Network Gatekeeper calls this method, which is implemented by an application, when the called
party is not reachable.

notifyNoAnswer
Network Gatekeeper calls this method, which is implemented by an application, when the called
party does not answer.

Par lay X 3 .0 In te r faces

11-14 Application Development Guide

notifyCalledNumber
Network Gatekeeper calls this method, which is implemented by an application, prior to call
setup.

notifyAnswer
Network Gatekeeper calls this method, which is implemented by an application, when the called
party answered.

notifyPlayAndCollectEvent
Network Gatekeeper calls this method, which is implemented by an application, to provide the
result of a media interaction of type play and collect information.

notifyPlayAndRecordEvent
Network Gatekeeper calls this method, which is implemented by an application, to provide the
result of a media interaction of type play and record information.

Interface: CallNotificationManager
The endpoint for this interface is:

http://<host>:<port>/parlayx30/call_notification/CallNotificationManager

Where values for host and port depend on the Network Gatekeeper deployment.

startCallNotification
Starts a subscription for call notifications.

Table 10-8 exceptions and error codes

Exception Error code Explanation

SVC0001 WNG-000002 Failed to store information in Network Gatekeeper.
Contact BEA support.

SVC0001 OSA-000002 P_INVALID_INTERFACE_TYPE thrown by OSA
Gateway.

check the interface name

Par lay X 3 .0 Par t 3 : Ca l l No t i f i cat i on

Application Development Guide 11-15

SVC0001 OSA-000003 P_INVALID_EVENT_TYPE thrown by OSA
Gateway

Check the event type

SVC0001 OSA-000006 TpCommonExceptions thrown by OSA Gateway.
Exception type is P_RESOURCE_UNAVAILABLE
(13). Check OSA Gateway status.

SVC0001 OSA-000007 TpCommonExceptions thrown by OSA Gateway.
Exception type is P_TASK_REFUSED(14). Check
OSA Gateway status.

SVC0001 OSA-000008 TpCommonExceptions thrown by OSA Gateway.
Exception type is P_TASK_CANCELLED(15).

Check WLNG invocation parameters of
createNotification()

SVC0001 OSA-000009 TpCommonExceptions thrown by OSA Gateway.
Exception type is
P_NO_CALLBACK_ADDRESS_SET (17).

Check OSA Gateway.

SVC0001 OSA-000010 TpCommonExceptions thrown by OSA Gateway.
Exception type is P_METHOD_NOT_SUPPORTED
(22).

Check OSA Gateway.

SVC0001 OSA-000011 TpCommonExceptions thrown by OSA Gateway.
Exception type is P_INVALID_STATE (744).

Check OSA Gateway.

SVC0001 OSA-000015 P_INVALID_CRITERIA thrown by OSA Gateway.

Check the criteria

SVC0002 reference Parameter reference is null.

SVC0002 correlator Parameter correlator is null.

SVC0002 endPoint Parameter endPoint is null or empty String.

Table 10-8 exceptions and error codes

Exception Error code Explanation

Par lay X 3 .0 In te r faces

11-16 Application Development Guide

startPlayAndCollectNotification
Starts a subscription for notifications on media interactions of type play and collect.

SVC0002 addresses Parameter reference is null.

SVC0005 <correlator value>,
reference

Correlator %1 specified in message part %2 is a
duplicate.

POL0001 Service contract not
found

No Service Level Agreement found for the service
provider or application associated with the request.

Table 10-8 exceptions and error codes

Exception Error code Explanation

Table 10-9 exceptions and error codes

Exception Error code Explanation

SVC0001 WNG-000002 Failed to store information in Network Gatekeeper.
Contact BEA support.

SVC0001 CN-000001 Parlay call session does not exist.

SVC0001 CN-000002 Parlay call session has terminated.

SVC0002 reference Parameter reference is null.

SVC0002 correlator Parameter correlator is null.

SVC0002 endPoint Parameter endPoint is null or empty String.

SVC0002 callSessionIdentifier Parameter callSessionIdentifier is null.

SVC0005 <correlator value>,
reference

Correlator %1 specified in message part %2 is a
duplicate.

Par lay X 3 .0 Par t 3 : Ca l l No t i f i cat i on

Application Development Guide 11-17

startPlayAndRecordNotification
Not supported.

stopCallNotification
Stops a subscription for call notifications.

SVC0005 callSessionId:<value> startPlayAndCollectNotification has been invoked
earlier on the same callSessionIdentifier or
startCallDirection has been invoked earlier with an
address that is identical to the address represented by
the call session.

POL0001 Service contract not
found

No Service Level Agreement found for the service
provider or application associated with the request.

Table 10-9 exceptions and error codes

Exception Error code Explanation

Table 10-10 exceptions and error codes

Exception Error code Explanation

SVC0001 WNG-000002 Failed to store information in Network Gatekeeper.
Contact BEA support.

SVC0001 CN-000003 The requester is not the owner of the notification, that
is, did not start the notification.

SVC0001 CN-000004 The parameter correlator does not exist.

SVC0001 OSA-000006 TpCommonExceptions thrown by OSA GW.
Exception type is P_RESOURCE_UNAVAILABLE
(13).Check OSA Gateway status.

SVC0001 OSA-000007 TpCommonExceptions thrown by OSA Gateway.
Exception type is P_TASK_REFUSED (14). Check
OSA Gateway status.

SVC0001 OSA-000008 TpCommonExceptions thrown by OSA Gateway.
Exception type is P_TASK_CANCELLED (15).
Check OSA Gateway status.

Par lay X 3 .0 In te r faces

11-18 Application Development Guide

stopMediaInteractionNotification
Stops a subscription for notifications on media interactions.

SVC0001 OSA-000009 TpCommonExceptions thrown by OSA Gateway.
Exception type is
P_NO_CALLBACK_ADDRESS_SET (17).

Check WLNG invocation parameters of
destroyNotification()

SVC0001 OSA-000010 TpCommonExceptions thrown by OSA Gateway.
Exception type is P_METHOD_NOT_SUPPORTED
(22).

Check OSA Gateway.

SVC0001 OSA-000011 TpCommonExceptions thrown by OSA Gateway.
Exception type is P_INVALID_STATE (744).

Check OSA Gateway.

SVC0001 correlator The parameter correlator does not exist.

POL0001 n/a No Service Level Agreement found for the service
provider or application associated with the request.

Table 10-10 exceptions and error codes

Exception Error code Explanation

Table 10-11 exceptions and error codes

Exception Error code Explanation

SVC0001 WNG-000002 Failed to store information in Network Gatekeeper.
Contact BEA support.

SVC0001 CN-000004 The parameter correlator does not exist.

SVC0001 CN-000003 The requester is not the owner of the notification, that
is, did not start the notification.

Par lay X 3 .0 Par t 3 : Ca l l No t i f i cat i on

Application Development Guide 11-19

Interface: CallDirectionManager
The endpoint for this interface is:

http://<host>:<port>/parlayx30/call_notification/CallDirectionManager

Where values for host and port depend on the Network Gatekeeper deployment.

StartCallDirectionNotification
Starts a subscription for call direction notifications.

SVC0001 correlator The parameter correlator does not exist.

POL0001 Service contract not
found

No Service Level Agreement found for the service
provider or application associated with the request.

Table 10-11 exceptions and error codes

Exception Error code Explanation

Table 10-12 exceptions and error codes

Exception Error code Explanation

SVC0001 WNG-000002 Failed to store information in Network Gatekeeper.
Contact BEA support.

SVC0001 OSA-000002 P_INVALID_INTERFACE_TYPE thrown by OSA
Gateway.

check the interface name

SVC0001 OSA-000003 P_INVALID_EVENT_TYPE thrown by OSA
Gateway

Check the event type

SVC0001 OSA-000015 P_INVALID_CRITERIA thrown by OSA Gateway.

Check the criteria

SVC0001 OSA-000006 TpCommonExceptions thrown by OSA GW.
Exception type is P_RESOURCE_UNAVAILABLE
(13).Check OSA Gateway status.

Par lay X 3 .0 In te r faces

11-20 Application Development Guide

StopCallDirectionNotification
Stops a subscription for call direction notifications.

SVC0001 OSA-000007 TpCommonExceptions thrown by OSA Gateway.
Exception type is P_TASK_REFUSED(14). Check
OSA Gateway status.

SVC0001 OSA-000008 TpCommonExceptions thrown by OSA Gateway.
Exception type is P_TASK_CANCELLED (15).
Check OSA Gateway status.

SVC0001 OSA-000009 TpCommonExceptions thrown by OSA Gateway.
Exception type is
P_NO_CALLBACK_ADDRESS_SET (17).

Check WLNG invocation parameters of
createNotification()

SVC0001 OSA-000010 TpCommonExceptions thrown by OSA Gateway.
Exception type is P_METHOD_NOT_SUPPORTED
(22).

Check OSA Gateway.

SVC0001 OSA-000011 TpCommonExceptions thrown by OSA Gateway.
Exception type is P_INVALID_STATE (744).

Check OSA Gateway.

SVC0002 reference Parameter reference is null.

SVC0002 correlator Parameter correlator is null.

SVC0002 endPoint Parameter endPoint is null or empty String.

SVC0002 addresses Parameter reference is null.

SVC0005 <correlator value>,
reference

Correlator %1 specified in message part %2 is a
duplicate.

POL0001 Service contract not
found

No Service Level Agreement found for the service
provider or application associated with the request.

Table 10-12 exceptions and error codes

Exception Error code Explanation

Par lay X 3 .0 Par t 3 : Ca l l No t i f i cat i on

Application Development Guide 11-21

Table 10-13 exceptions and error codes

Exception Error code Explanation

SVC0001 WNG-000002 Failed to store information in Network Gatekeeper.
Contact BEA support.

SVC0001 CN-000003 The requester is not the owner of the notification, that
is, did not start the notification.

SVC0001 CN-000004 The parameter correlator does not exist.

SVC0001 OSA-000006 TpCommonExceptions thrown by OSA GW.
Exception type is P_RESOURCE_UNAVAILABLE
(13).Check OSA Gateway status.

SVC0001 OSA-000007 TpCommonExceptions thrown by OSA Gateway.
Exception type is P_TASK_REFUSED (14). Check
OSA Gateway status.

SVC0001 OSA-000008 TpCommonExceptions thrown by OSA Gateway.
Exception type is P_TASK_CANCELLED (15).
Check OSA Gateway status.

SVC0001 OSA-000009 TpCommonExceptions thrown by OSA Gateway.
Exception type is
P_NO_CALLBACK_ADDRESS_SET (17).

Check WLNG invocation parameters of
destroyNotification()

SVC0001 OSA-000010 TpCommonExceptions thrown by OSA Gateway.
Exception type is P_METHOD_NOT_SUPPORTED
(22).

Check OSA Gateway.

SVC0001 OSA-000011 TpCommonExceptions thrown by OSA Gateway.
Exception type is P_INVALID_STATE (744).

Check OSA Gateway.

SVC0001 correlator The parameter correlator does not exist.

POL0001 n/a No Service Level Agreement found for the service
provider or application associated with the request.

Par lay X 3 .0 In te r faces

11-22 Application Development Guide

Parlay X 3.0 Part 11: Audio call
This set of interfaces is compliant to ETSI ES 202 504-11 v0.0.3 (2007-06), Open Service Access
(OSA); Parlay X Web Services; Part 11: Audio Call (Parlay X 3).

Interface: PlayMedia
The endpoint for this interface is:
http://<host>:<port>/parlayx30/audio_call/AudioCallPlayMedia

Where values for host and port depend on the Network Gatekeeper deployment.

playTextMessage
Not supported.

playAudioMessage
Plays a message to the given destination address. The message is given as a URL to an audio file.
The file must be reachable by the underlying telecom network node and the audio-format must
be supported by the telecom network.

Table 10-14 exceptions and error codes

Exception Error code Explanation

SVC0001 AC-100001 Call session has expired.

SVC0001 AC-100003 Call state is invalid.

SVC0001 AC-100004 Participant is not connected.

SVC0001 AC-100005 Not all participants are available. Possibly in already in
playing or collecting mode.

SVC0001 AC-100006 Could not find callleg session information. Callsession
may be empty.

SVC0001 OSA-000001 P_INVALID_NETWORK_STATE exception
received from OSA Gateway.

Par lay X 3 .0 Par t 11 : Aud io ca l l

Application Development Guide 11-23

playVoiceXmlMessage
Not supported.

playVideoMessage
Not supported.

getMessageStatus
Gets the status of a message, that is, if the message is currently being played, if it is has finished
playing and more.

SVC0001 OSA-000011 EC_OSA_P_INVALID_STATE exception received
from OSA Gateway.

SVC0001 OSA-000012 TP_COMMON_EXCEPTIONS exception received
from OSA Gateway.

SVC0001 WNG-000002 Failed to store information in Network Gatekeeper.
Contact BEA support.

SVC0002 callSessionIdentifier Invalid input value for message part %1

SVC0002 callParticipants Invalid input value for message part %1

SVC0002 P_INVALID_SESSION_ID exception received from
OSA Gateway.

SVC0261 Call has already been terminated.

POL0001 Service contract not
found

No Service Level Agreement found.

POL0001 AC-100002 Application is not the owner of the call.

POL0008 Charging not supported.

Table 10-14 exceptions and error codes

Exception Error code Explanation

Par lay X 3 .0 In te r faces

11-24 Application Development Guide

endMessage
Cancel or stops the playing of the message.

Interface: CaptureMedia
The endpoint for this interface is:

http://<host>:<port>/parlayx30/audio_call/AudioCallCaptureMedia

Where values for host and port depend on the Network Gatekeeper deployment.

Table 10-15 exceptions and error codes

Exception Error code Explanation

SVC0001 WNG-000002 Failed to store information in Network Gatekeeper.
Contact BEA support.

SVC0002 correlator Invalid input value for message part %1.

POL0001 Service contract not
found

No Service Level Agreement found.

POL0001 AC-100002 Application is not the owner of the call.

Table 10-16 exceptions and error codes

Exception Error code Explanation

SVC0001 WNG-000002 Failed to fetch information from Network Gatekeeper.
Contact BEA support.

SVC0002 correlator Invalid input value for message part %1

POL0001 Service contract not
found

No Service Level Agreement found.

POL0001 AC-100002 Application is not the owner of the call.

Par lay X 3 .0 Par t 11 : Aud io ca l l

Application Development Guide 11-25

startPlayAndCollectInteraction
Starts a media interaction with one or all participants in a call session. Plays a media file and
collects digits from one or all call participants. The results of the interaction is notified using the
operation notifyPlayAndCollectEvent in the Parlay X 3.0 Part 3: Call Notification set of
interfaces.

Table 10-17 exceptions and error codes

Exception Error code Explanation

SVC0001 WNG-000002 Failed to store information in Network Gatekeeper.
Contact BEA support.

AC-100001 Call session has expired.

AC-100003 Call state is invalid.

AC-100004 Participant is not connected.

AC-100005 Not all participants are available. Possibly in already in
playing or collecting mode.

SVC0001 AC-100006 Could not find callleg session information. Callsession
may be empty.

SVC0001 OSA-000001 P_INVALID_NETWORK_STATE exception
received from OSA Gateway.

SVC0001 OSA-000011 EC_OSA_P_INVALID_STATE exception received
from OSA Gateway.

SVC0001 OSA-000012 TP_COMMON_EXCEPTIONS exception received
from OSA Gateway.

SVC0002 callSessionIdentifier Invalid input value for message part %1

SVC0002 callParticipants Invalid input value for message part %1

SVC0002 playFileLocation Invalid input value for message part %1

SVC0002 P_INVALID_SESSION_ID exception received from
OSA Gateway.

SVC0261 Call has already been terminated

Par lay X 3 .0 In te r faces

11-26 Application Development Guide

startPlayAndRecordInteraction
Not supported.

stopMediaInteraction
Explicitly stops an ongoing media interaction session.

POL0001 Service contract not
found

No Service Level Agreement found.

POL0001 AC-100002 Application is not the owner of the call.

POL0001 AC-100007 The value of maxDigits is too big.

POL0001 AC-100008 The value of minDigits is too small.

Table 10-17 exceptions and error codes

Exception Error code Explanation

Table 10-18 exceptions and error codes

Exception Error code Explanation

SVC0001 OSA-000001 P_INVALID_NETWORK_STATE exception
received from OSA Gateway.

SVC0001 OSA-000011 EC_OSA_P_INVALID_STATE exception received
from OSA Gateway.

SVC0001 OSA-000012 TP_COMMON_EXCEPTIONS exception received
from OSA Gateway.

SVC0001 WNG-000002 Failed to store information in Network Gatekeeper.
Contact BEA support.

SVC0002 mediaIdentifier Invalid input value for message part %1

SVC0002 P_INVALID_SESSION_ID exception received from
OSA Gateway.

Genera l Except ions

Application Development Guide 11-27

Interface: Multimedia

addMediaForParticipants
Not supported.

deleteMediaForParticipants
Not supported.

getMediaForParticipant
Not supported.

getMediaForCall
Not supported.

General Exceptions
This section describes the exception handling for the Parlay X 3.0 interfaces.

These exception types are defined:

Service Exceptions

Policy Exceptions

Service Exception are related to the operation of the service itself. The following exceptions are
general:

SVC0001: Service error.

SVC0002: Invalid input value

POL0001 Service contract not
found

No Service Level Agreement found.

POL0001 AC-100002 Application is not the owner of the call.

Table 10-18 exceptions and error codes

Exception Error code Explanation

Par lay X 3 .0 In te r faces

11-28 Application Development Guide

SVC0003: Invalid input value with list of valid values

SVC0004: No valid addresses

SVC0005: Duplicate correlator

SVC0006: Invalid group

SVC0007: Invalid charging information

SVC0008: Overlapping Criteria

PolicyExceptions are thrown when a policy has been violated, including violations of a service
level agreements. The following general PolicyExceptions are defined:

POL0001: Policy error

POL0002: Privacy error

POL0003: Too many addresses specified

POL0004: Unlimited notifications not supported

POL0005: Too many notifications requested

POL0006: Groups not allowed

POL0007: Nested groups not allowed

POL0008: Charging not supported

POL0009: Invalid frequency requested

Within the exception, an error code is defined. The error code details why the exception was
thrown.

Application Development Guide 12-1

C H A P T E R 11

Access Web Service (deprecated)

Note: The Access Web Service is not deployed in a standard installation.

It is deprecated and should only be used by older, existing applications, in order to
provide a migration path for these applications. WebLogic Server Web Services security
cannot be used when using the Access Web Service and must be turned off in WebLogic
Network Gatekeeper to be able to use the Access Web Service.

The Access Web Service contains operations for establishing a session with Network Gatekeeper,
changing the application’s password, querying the amount of time remaining in the session,
refreshing the session, and terminating the session.

Before an application can perform any operations on the Parlay X or Extended Web Services
interfaces, a session must be established with Network Gatekeeper. When a session is established,
a session ID (loginTicket) is returned which must be used in each subsequent operation towards
Network Gatekeeper.

The loginTicket shall be present in the SOAP Header element Security, see below. Once the login
ticket is acquired, it must be sent in the SOAP header together with a username/password
combination each time a Web Service method is invoked. See Examples.

Endpoint
The WSDL for the Access Web Service can be found at
http://<host:port>/parlayx21/access/Access

where host and port depend on the Network Gatekeeper deployment.

Access Web Serv ice (deprecated)

12-2 Application Development Guide

Interface: Access
Operations to establish a session, change a password, get the remaining lifetime of a session,
refresh a session and destroy a session.

Operation: applicationLogin
Logs the application into the WebLogic Network Gatekeeper and retrieves a login ticket. This
login ticket represents the session and must be added to the SOAP header of every subsequent
request that the application makes to the Network Gatekeeper.

In most cases, the login ticket is only valid for a certain time interval, set by the operator. Once
the time period has expired, the application has a second operator-set time period to refresh the
login ticket. Until the ticket is refreshed, the application can not make any other requests. The
operation used to refresh the ticket is refreshLoginTicket, see Operation: refreshLoginTicket. If
the ticket is not refreshed during this second period, the session is destroyed, and the application
must log back in.

Input message: applicationLoginRequest

Part name Part type Optional Description

serviceProvi
der

s1:String N ID of the service provider as given by the operator or
the service provider.

application s1:String N ID of the application as given by the operator or the
service provider.

applicationIn
stanceGroup

s1:String N ID of the application instance group as given by the
operator or the service provider.

password s1:String N Password for the application as given by the operator
or the service provider. Note that this may also have
been changed by the by the application provider.

In te r face : Access

Application Development Guide 12-3

Output message: applicationLoginResponse

Referenced faults
AccessException

GeneralException

Operation: applicationLogout
Logs an application out of the Network Gatekeeper. Destroys the login session and the
corresponding login ticket.

Input message: applicationLogoutRequest

Output message: applicationLogoutResponse

Part name Part type Optional Description

applicationL
oginReturn

s1:string N ID of the login-session. This ID is used for each
request towards WebLogic Network Gatekeeper. It
must be included in the SOAP header of every
subsequent request.

If an application logs in several times, the same ID is
returned.

Part name Part type Optional Description

loginTicket s1:string N ID of the login-session. The login ticket is retrieved
when the application logs in or when it refreshes the
login ticket.

Part name Part type Optional Description

- - - -

Access Web Serv ice (deprecated)

12-4 Application Development Guide

Referenced faults
AccessException

GeneralException

Operation: changeApplicationPassword
Changes the password for an application.

Input message: changeApplicationPasswordRequest

Output message: changeApplicationPasswordResponse

Referenced faults
AccessException

GeneralException

Operation: getLoginTicketRemainingLifeTime
Reports the remaining amount of time the login ticket is valid.

Part name Part type Optional Description

loginTicket s1:string N ID of the login-session. The login ticket is retrieved
when the application logs in or when it refreshes the
login ticket.

oldPassword s1:string N The current password.

newPasswor
d

s1:string N The new password.

Part name Part type Optional Description

- - - -

In te r face : Access

Application Development Guide 12-5

Input message: getLoginTicketRemainingLifeTimeRequest

Output message: getLoginTicketRemainingLifeTimeReturn

Referenced faults
AccessException

GeneralException

Operation: refreshLoginTicket
Refreshes the login ticket. This refreshed login ticket must be provided in the SOAP header in all
subsequent method calls. The login ticket can be refreshed for a limited, operator-set time interval
after the previous login ticket has expired. If this time interval expires, the application must login
again. Network Gatekeeper expiration timers are reset, but the same login ticket is returned.

Part name Part type Optional Description

sessionId s1:string N ID of the login-session. The login ticket is retrieved
when the application logs in or when it refreshes the
login ticket.

Part name Part type Optional Description

getLoginTic
ketRemainin
gLifeTimeR
eturn

s1:int N The time until the login ticket expires. The time is
given in minutes.

Access Web Serv ice (deprecated)

12-6 Application Development Guide

Input message: refreshLoginTicketRequest

Output message: refreshLoginTicketResponse

Referenced faults
AccessException

GeneralException

Part name Part type Optional Description

loginTicket s1:string N The ID of an established session.

serviceProvi
derID

s1:string N ID of the service provider as given by the operator or
the service provider.

applicationI
D

s1:string N ID of the application as given by the operator or the
service provider.

applicationIn
stanceGroup
ID

s1:string N ID of the application instance group as given by the
operator or the service provider.

password s1:string N Password for the application as given by the operator
or the service provider. Note that this may also have
been changed by the by the application provider.

Part name Part type Optional Description

refreshLogin
TicketReturn

s1:string N The refreshed ID of the login-session. This ID is used
in each request towards WebLogic Network
Gatekeeper. It must be included in the SOAP header
of every subsequent request.

Examples

Application Development Guide 12-7

Exceptions

AccessException
Exceptions of this type are raised when there are error conditions related to the Access Web
Service. Other error conditions are reported using the exception GeneralException.

GeneralException
Exceptions of this type are raised when the applications session has expired or there are
communication problems with the underlying platform.

Examples

Defining the security header
The loginTicket shall be present in the SOAP Header element Security, see below. Once the login
ticket is acquired, it must be sent in the SOAP header together with a username/password
combination each time a Web Service method is invoked.

The Access Web Service uses a security header described below.

The loginTicket is supplied in the Password attribute.

Part name Part type Optional Description

exceptionMe
ssage

xsd:string Y Description of exception.

errorCode xsd:int N Code defining the exception.

Part name Part type Optional Description

exceptionMe
ssage

xsd:string Y Description of exception.

errorCode xsd:int N Code defining the exception.

Access Web Serv ice (deprecated)

12-8 Application Development Guide

Listing 11-1 Access security header (example)

<soapenv:Header>

<ns1:Security ns1:Username="app:-2810834922008400383"

ns1:Password="app:-2810834922008400383" soapenv:actor="wsse:PasswordToken"

soapenv:mustUnderstand="1"
xmlns:ns1="http://localhost:6001/parlayx21/terminal_location/TerminalLocat

ion">

</ns1:Security>

</soapenv:Header>

Below is an example of how to add an Access security header using Axis. The Username attribute
must be present but is not used. The header must be added to the Web Service request.

Listing 11-2 Access security header (Axis)

org.apache.axis.message.SOAPHeaderElement header =

 new org.apache.axis.message.SOAPHeaderElement(wsdlUrl, "Security", "");

header.setActor("wsse:PasswordToken");

 header.addAttribute(wsdlUrl, "Username", ""+userName);

 header.addAttribute(wsdlUrl, "Password", ""+loginTicket);

 header.setMustUnderstand(true)

	Oracle® Communication Services Gatekeeper
	Release 4.0

	Oracle Communication Services Gatekeeper Application Development Guide, Release 4.0
	Document Roadmap
	Document Scope and Audience
	Guide to This Document
	Terminology
	Related Documentation

	Creating Applications for WebLogic Network Gatekeeper
	Basic Concepts
	Communication Services
	Traffic Types
	Application-initiated Traffic
	Network-triggered Traffic

	Management Structures

	Functional Overview
	Application Testing Workflow

	Interacting with Network Gatekeeper
	The SOAP Header
	Authentication
	SOAP Header Element for Authentication

	Session Management
	Session Mode
	Sessionless Mode

	Service Correlation
	Parameter Tunneling

	SOAP attachments
	Managing SOAP headers and SOAP attachments programmatically

	Session Manager Web Service
	Interface: SessionManager
	Operation: getSession
	Input message: getSession
	Output message: getSessionResponse
	Referenced faults

	Operation: changeApplicationPassword
	Input message: changeApplicationPassword
	Output message: changeApplicationPasswordResponse
	Referenced faults

	Operation: getSessionRemainingLifeTime
	Input message: getSessionRemainingLifeTime
	Output message: getSessionRemainingLifeTimeResponse
	Referenced faults

	Operation: refreshSession
	Input message: refreshSession
	Output message: refreshSessionResponse
	Referenced faults

	Operation: destroySession
	Input message: destroySession
	Output message: destroySessionResponse
	Referenced faults

	Examples

	Extended Web Services Binary SMS
	Namespaces
	Endpoint
	Sequence Diagram
	XML Schema data type definition
	BinaryMessage structure

	Web Service interface description
	Interface: BinarySms
	Operation: sendBinarySMS

	WSDLs
	Error Codes
	Sample Send Binary SMS

	Extended Web Services WAP Push
	Namespaces
	Endpoint
	Sequence Diagram
	XML Schema data type definition
	PushResponse structure
	ResponseResult structure
	ReplaceMethod enumeration
	MessageState enumeration

	Web Service interface description
	Interface: PushMessage
	Operation: sendPushMessage

	Interface: PushMessageNotification
	Operation: resultNotificationMessage

	WSDLs
	Sample Send WAP Push Message

	Extended Web Services Subscriber Profile
	Namespaces
	Endpoint
	Address schemes
	XML Schema data type definition
	PropertyTuple structure

	Web Service interface description
	Interface: SubscriberProfile
	Operation: get
	Operation: getProfile

	WSDLs

	Extended Web Services Common
	Namespace
	XML Schema datatype definition
	AdditionalProperty structure
	ChargingInformation structure
	SimpleReference structure

	Fault definitions
	ServiceException
	PolicyException

	Parlay X 2.1 Interfaces
	Parlay X 2.1 Part 2: Third Party Call
	Interface: ThirdPartyCall
	MakeCall
	GetCallInformation
	EndCall
	CancelCall

	Error Codes

	Parlay X 2.1 Part 3: Call Notification
	Interface: CallDirection
	HandleBusy
	HandleNotReachable
	HandleNoAnswer
	HandleCalledNumber

	Interface: CallNotification
	NotifyBusy
	NotifyNotReachable
	NotifyNoAnswer
	NotifyCalledNumber

	Interface: CallNotificationManager
	StartCallNotification
	StopCallNotification

	Interface: CallDirectionManager
	StartCallDirectionNotification
	StopCallDirectionNotification

	Error Codes

	Parlay X 2.1 Part 4: Short messaging
	Interface: SendSms
	SendSms
	SendSmsLogo
	SendSmsRingtone
	GetSmsDeliveryStatus

	Interface: SmsNotification
	NotifySmsReception
	NotifySmsDeliveryReceipt

	Interface: ReceiveSms
	GetReceivedSms

	Interface: SmsNotificationManager
	StartSmsNotification
	StopSmsNotification

	Error Codes

	Parlay X 2.1 Part 5: Multimedia messaging
	Interface: SendMessage
	SendMessage
	GetMessageDeliveryStatus

	Interface: ReceiveMessage
	GetReceivedMessages
	GetMessageURIs
	GetMessage

	Interface: MessageNotification
	NotifyMessageReception
	NotifyMessageDeliveryReceipt

	Interface: MessageNotificationManager
	StartMessageNotification
	StopMessageNotification

	Error Codes

	Parlay X 2.1 Part 9: Terminal location
	Interface: TerminalLocation
	GetLocation
	GetTerminalDistance
	GetLocationForGroup

	Interface: TerminalLocationNotificationManager
	StartGeographicalNotification
	StartPeriodicNotification
	EndNotification

	Interface: TerminalLocationNotification
	LocationNotification
	LocationError
	LocationEnd

	Error Codes

	Parlay X 2.1 Part 14: Presence
	Interface: PresenceConsumer
	subscribePresence
	getUserPresence
	startPresenceNotification
	endPresenceNotification

	Interface: PresenceNotification
	statusChanged
	statusEnd
	notifySubscription
	subscriptionEnded

	Interface: PresenceSupplier
	publish
	getOpenSubscriptions
	updateSubscriptionAuthorization
	getMyWatchers
	getSubscribedAttributes
	blockSubscription

	Error Codes

	About notifications
	General Exceptions
	General error codes
	Code examples
	Example: sendSMS
	Example: startSmsNotification
	Example: getReceivedSms
	Example: sendMessage
	Example: getLocation

	Parlay X 3.0 Interfaces
	Interaction between Audio Call, Third Party Call, and Call Notification
	Parlay X 3.0 Part 2: Third Party Call
	Interface: ThirdPartyCall
	makeCallSession
	addCallParticipant
	transferCallParticipant
	getCallParticipantInformation
	getCallSessionInformation
	deleteCallParticipant
	endCallSession

	Parlay X 3.0 Part 3: Call Notification
	Interface: CallDirection
	HandleBusy
	HandleNotReachable
	HandleNoAnswer
	HandleCalledNumber

	Interface: CallNotification
	notifyBusy
	notifyNotReachable
	notifyNoAnswer
	notifyCalledNumber
	notifyAnswer
	notifyPlayAndCollectEvent
	notifyPlayAndRecordEvent

	Interface: CallNotificationManager
	startCallNotification
	startPlayAndCollectNotification
	startPlayAndRecordNotification
	stopCallNotification
	stopMediaInteractionNotification

	Interface: CallDirectionManager
	StartCallDirectionNotification
	StopCallDirectionNotification

	Parlay X 3.0 Part 11: Audio call
	Interface: PlayMedia
	playTextMessage
	playAudioMessage
	playVoiceXmlMessage
	playVideoMessage
	getMessageStatus
	endMessage

	Interface: CaptureMedia
	startPlayAndCollectInteraction
	startPlayAndRecordInteraction
	stopMediaInteraction

	Interface: Multimedia
	addMediaForParticipants
	deleteMediaForParticipants
	getMediaForParticipant
	getMediaForCall

	General Exceptions

	Access Web Service (deprecated)
	Interface: Access
	Operation: applicationLogin
	Input message: applicationLoginRequest
	Output message: applicationLoginResponse
	Referenced faults

	Operation: applicationLogout
	Input message: applicationLogoutRequest
	Output message: applicationLogoutResponse
	Referenced faults

	Operation: changeApplicationPassword
	Input message: changeApplicationPasswordRequest
	Output message: changeApplicationPasswordResponse
	Referenced faults

	Operation: getLoginTicketRemainingLifeTime
	Input message: getLoginTicketRemainingLifeTimeRequest
	Output message: getLoginTicketRemainingLifeTimeReturn
	Referenced faults

	Operation: refreshLoginTicket
	Input message: refreshLoginTicketRequest
	Output message: refreshLoginTicketResponse
	Referenced faults

	Exceptions
	AccessException
	GeneralException

	Examples
	Defining the security header

