
BEAWebLogic
SIP Server™

Developing SIP Servlets
with WebLogic SIP
Server

Version 2.1
Revised: December 2, 2005

Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic
Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Developing SIP Servers with WebLogic SIP Server iii

Contents

1. Overview of SIP Servlets
What is a SIP Servlet? . 1-1

Differences from HTTP Servlets . 1-3

Multiple Responses. 1-3

Receiving Responses . 1-4

Proxy Functions . 1-5

Message Body. 1-6

ServletRequest . 1-7

ServletResponse. 1-7

SipServletMessage. 1-7

Roles of a Servlet Container . 1-8

Application Management. 1-8

SIP Messaging . 1-10

Utility Functions . 1-12

2. Requirements and Best Practices for WebLogic SIP Server
Applications

Overview of Developing and Porting Applications for WebLogic SIP Server 2.1 2-1

Avoid Thread Creation. 2-2

Servlets Must Be Non-Blocking . 2-3

Store all Application Data in the Session. 2-3

All Session Data Must Be Serializable . 2-3

iv Developing SIP Servers with WebLogic SIP Server

. Use setAttribute() to Persist All Changes to Session State2-3

send() Calls Are Buffered . 2-4

Mark SIP Servlets as Distributable . 2-4

Observe Best Practices for J2EE Applications . 2-4

. 2-5

3. Composing SIP Applications
Overview of SIP Application Composition . 3-1

Application Composition Model. 3-1

Managing Proxied Requests. 3-3

Sample Composer Application . 3-4

Troubleshooting Application Composition. 3-6

4. Securing SIP Servlet Resources
Overview of SIP Servlet Security . 4-1

WebLogic SIP Server Role Mapping Features . 4-2

Using Implicit Role Assignment . 4-3

Assigning Roles Using security-role-assignment . 4-4

Important Requirement for WebLogic SIP Server 2.1. 4-4

Assigning Roles at Deployment Time . 4-6

Dynamically Assigning Roles Using the Administration Console 4-6

Assigning run-as Roles . 4-7

Role Assignment Precedence for SIP Servlet Roles . 4-8

Debugging Security Features . 4-9

weblogic.xml Deployment Descriptor Reference . 4-9

5. Developing SIP Servlets Using Eclipse
Overview . 5-1

SIP Servlet Organization . 5-2

Developing SIP Servers with WebLogic SIP Server v

Setting Up the Development Environment . 5-2

Creating a WebLogic SIP Server Domain . 5-3

Creating a New Eclipse Project . 5-3

Creating an Ant Build File . 5-4

Building and Deploying the Project . 5-6

Debugging SIP Servlets. 5-6

6. Enabling Access Logging
Overview . 6-1

Enabling Access Logging . 6-2

Specifying a Predefined Logging Level . 6-2

Customizing Log Records . 6-2

Example Access Log Configuration and Output . 6-5

vi Developing SIP Servers with WebLogic SIP Server

Developing SIP Servlets with WebLogic SIP Server 1-1

C H A P T E R 1

Overview of SIP Servlets

What is a SIP Servlet?
The SIP Servlet API is a part of JAIN APIs and being standardized as JSR116 of JCP (Java
Community Process). The SIP Servlet API version 1.0 was published in February, 2003.

Note: In this document, the term “SIP Servlet” is used to represent the API, and “SIP servlet”
is used to represent an application created with the API.

J2EE provides Java Servlet that is a main technology of building Web applications. Although
Java Servlet is used only to develop HTTP protocol-based applications on a Web application
server, it basically has functions as a generic API for server applications. SIP Servlet is defined
as the generic servlet API with SIP-specific functions added.

Figure 1-1 Servlet API and SIP Servlet API

SIP Servlets are very similar to HTTP Servlets, and HTTP servlet developers will quickly adapt
to the programming model. The service level defined by both HTTP and SIP Servlets is very

Overv iew o f S IP Serv le ts

1-2 Developing SIP Servlets with WebLogic SIP Server

similar, and you can easily design applications that support both HTTP and SIP. Listing 1 shows
an example of a simple SIP servlet.

Listing 1-1 List 1: SimpleSIPServlet.java

package com.bea.example.simple;

import java.io.IOException;

import javax.servlet.*;

import javax.servlet.sip.*;

public class SimpleSIPServlet extends SipServlet {

 protected void doMessage(SipServletRequest req)

throws ServletException, IOException

{

SipServletResponse res = req.createResponse(200);

res.send();

}

}

The above example shows a simple SIP servlet that sends back a 200 OK response to the SIP
MESSAGE request. As you can see from the list, SIP Servlet and HTTP Servlet have many things
in common:

1. Servlets must inherit the base class provided by the API. HTTP servlets must inherit
HttpServlet, and SIP servlets must inherit SipServlet.

2. Methods doXxx must be overridden and implemented. HTTP servlets have doGet/doPost
methods corresponding to GET/POST methods. Similarly, SIP servlets have doXxx
methods corresponding to the method name (in the above example, the MESSAGE
method). Application developers override and implement necessary methods.

3. The lifecycle and management method (init, destroy) of SIP Servlet are exactly the same as
HTTP Servlet. Manipulation of sessions and attributes is also the same.

4. Although not appeared in the API, there is a deployment descriptor called sip.xml for a SIP
servlet, which corresponds to web.xml. Application developers and service managers can
edit this file to configure applications using multiple SIP servlets.

However, there are several differences between SIP and HTTP servlets. A major difference
comes from protocols. The next section describes these differences as well as features of SIP
servlets.

Di f f erences f r om HTTP Serv le ts

Developing SIP Servlets with WebLogic SIP Server 1-3

Differences from HTTP Servlets

Multiple Responses
You might notice from the List 1 that the doMessage method has only one argument. In HTTP,
a transaction consists of a pair of request and response, so arguments of a doXxx method specify
a request (HttpServletRequest) and its response (HttpServletResponse). An application takes
information such as parameters from the request to execute it, and returns its result in the body of
the response.

protected void doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, IOException

For SIP, more than one response may be returned to a single request.

Figure 1-2 Example of Request and Response in SIP

The above figure shows an example of a response to the INVITE request. In this example, the
server sends back three responses 100, 180, and 200 to the single INVITE request. To implement
such sequence, in SIP Servlet, only a request is specified in a doXxx method, and an application
generates and returns necessary responses in an overridden method.

Currently, SIP Servlet defines the following doXxx methods:

protected void doInvite(SipServletRequest req);

protected void doAck(SipServletRequest req);

protected void doOptions(SipServletRequest req);

protected void doBye(SipServletRequest req);

Overv iew o f S IP Serv le ts

1-4 Developing SIP Servlets with WebLogic SIP Server

protected void doCancel(SipServletRequest req);

protected void doSubscribe(SipServletRequest req);

protected void doNotify(SipServletRequest req);

protected void doMessage(SipServletRequest req);

protected void doInfo(SipServletRequest req);

protected void doPrack(SipServletRequest req);

Receiving Responses
One of the major features of SIP is that roles of a client and server are not fixed. In HTTP, Web
browsers always send HTTP requests and receive HTTP responses: They never receive HTTP
requests and send HTTP responses. In SIP, however, each terminal needs to have functions of
both a client and server.

For example, both of two SIP phones must call to the other and disconnect the call.

Figure 1-3 Relationship between Client and Server in SIP

The above example indicates that a calling or disconnecting terminal acts as a client. In SIP, roles
of a client and server can be changed in one dialog. This client function is called UAC (User

Di f f erences f r om HTTP Serv le ts

Developing SIP Servlets with WebLogic SIP Server 1-5

Agent Client) and server function is called UAS (User Agent Server), and the terminal is called
UA (User Agent). SIP Servlet defines methods to receive responses as well as requests.

protected void doProvisionalResponse(SipServletResponse res);

protected void doSuccessResponse(SipServletResponse res);

protected void doRedirectResponse(SipServletResponse res);

protected void doErrorResponse(SipServletResponse res);

These doXxx response methods are not the method name of the request. They are named by the
type of the response as follows:

doProvisionalResponse—A method invoked on the receipt of a provisional response (or
1xx response).

doSuccessResponse—A method invoked on the receipt of a success response.

doRedirectResponse—A method invoked on the receipt of a redirect response.

doErrorResponse—A method invoked on the receipt of an error response (or 4xx, 5xx, 6xx
responses).

Existence of methods to receive responses indicates that in SIP Servlet requests and responses are
independently transmitted an application in different threads. Applications must explicitly
manage association of SIP messages. An independent request and response makes the process
slightly complicated, but enables you to write more flexible processes.

Also, SIP Servlet allows applications to explicitly create requests. Using these functions, SIP
servlets can not only wait for requests as a server (UAS), but also send requests as a client (UAC).

Proxy Functions
Another function that is different from the HTTP protocol is “forking.” Forking is a process of
proxying one request to multiple servers simultaneously (or sequentially) and used when multiple
terminals (operators) are associated with one telephone number (such as in a call center).

Overv iew o f S IP Serv le ts

1-6 Developing SIP Servlets with WebLogic SIP Server

Figure 1-4 Proxy Forking

SIP Servlet provides a utility to proxy SIP requests for applications that have proxy functions.

Message Body
As the figure below, the structure of SIP messages is the same as HTTP.

Figure 1-5 SIP Message Example

HTTP is basically a protocol to transfer HTML files and images. Contents to be transferred are
stored in the message body. HTTP Servlet defines stream manipulation-based API to enable
sending and receiving massive contents.

Di f f erences f r om HTTP Serv le ts

Developing SIP Servlets with WebLogic SIP Server 1-7

ServletRequest
ServletInputStream getInputStream()

BufferedReader getReader()

ServletResponse
ServletOutputStream getOutputStream()

PrintWriter getWriter()

int getBufferSize()

void setBufferSize(int size)

void resetBuffer()

void flushBuffer()

In SIP, however, only low-volume contents are stored in the message body since SIP is intended
for real-time communication. Therefore, above methods are provided only for compatibility, and
their functions are disabled.

In SIP, contents stored in the body include:

SDP (Session Description Protocol)—A protocol to define multimedia sessions used
between terminals. This protocol is defined in RFC2373.

Presence Information—A message that describes presence information defined in CPIM.

IM Messages—IM (instant message) body. User-input messages are stored in the message
body.

Since the message body is in a small size, processing it in a streaming way increases overhead.
SIP Servlet re-defines API to manipulate the message body on memory as follows:

SipServletMessage
void setContent(Object content, String contentType)

Object getContent()

byte[] getRawContent()

Overv iew o f S IP Serv le ts

1-8 Developing SIP Servlets with WebLogic SIP Server

Roles of a Servlet Container
The following sections describes major functions provided by WebLogic SIP Server as a SIP
servlet container:

Application Management—Describes functions such as application management by servlet
context, lifecycle management of servlets, application initialization by deployment
descriptors.

SIP Messaging—Describes functions of parsing incoming SIP messages and delivering
appropriate SIP servlets, sending messages created by SIP servlets to appropriate UAS, and
automatically setting SIP header fields.

Utility Functions—Describes functions such as sessions, factories, and proxying that are
available in SIP servlets.

Application Management
Like HTTP servlet containers, SIP servlet containers manage applications by servlet context (see
Figure 6). Servlet contexts (applications) are normally archived in a WAR format and deployed
in each application server.

Note: The method of deploying in application servers varies depending on your product. Refer
to the documentation of your application server.

Figure 1-6 Servlet Container and Servlet Context

A servlet context for a converged SIP and Web application can include multiple SIP servlets,
HTTP servlets, and JSPs.

WebLogic SIP Server can deploy applications using the same method as the application server
you use as the platform. However, if you deploy applications including SIP servlets, you need a
SIP specific deployment descriptor (sip.xml) defined by SIP servlets. The table below shows the
file structure of a general converged SIP and Web application.

Di f f erences f r om HTTP Serv le ts

Developing SIP Servlets with WebLogic SIP Server 1-9

Table 1-1 File Structure Example of Application

Information specified in the sip.xml file is similar to that in the web.xml except
<servlet-mapping> setting that is different from HTTP servlets. In HTTP you specify a servlet
associated with the file name portion of URL. But SIP has no concept of the file name. You set
filter conditions using URI or the header field of a SIP request. The following example shows that
a SIP servlet called “register” is assigned all REGISTER methods.

Listing 1-2 List 1: Filter Condition Example of sip.xml

 <servlet-mapping>

 <servlet-name>registrar</servlet-name>

 <pattern>

 <equal>

 <var>request.method</var>

 <value>REGISTER</value>

 </equal>

 </pattern>

File Description

WEB-INF/ Place your configuration and executable files of your converged SIP and
Web application in the directory. You cannot directly refer to files in this
directory on Web (servlets can do this).

WEB-INF/web.xml The J2EE standard configuration file for the Web application.

WEB-INF/sip.xml The SIP Servlet-defined configuration files for the SIP application.

WEB-INF/classes/ Store compiled class files in the directory. You can store both HTTP and
SIP servlets in this directory.

WEB-INF/lib/ Store class files archived as Jar files in the directory. You can store both
HTTP and SIP servlets in this directory.

*.jsp, *.jpg Files comprising the Web application (e.g. JSP) can be deployed in the
same way as J2EE.

Overv iew o f S IP Serv le ts

1-10 Developing SIP Servlets with WebLogic SIP Server

 </servlet-mapping>

Once deployed, lifecycle of the servlet context is maintained by the servlet container. Although
the servlet context is normally started and shutdown when the server is started and shutdown, the
system administrator can explicitly start, stop, and reload the servlet context.

SIP Messaging
SIP messaging functions provided by a SIP servlet container are classified under the following
types:

Parsing received SIP messages.

Delivering parsed messages to the appropriate SIP servlet.

Sending SIP servlet-generated messages to the appropriate UA

Automatically generating a response (such as “100 Trying”).

Automatically managing the SIP header field.

All SIP messages that a SIP servlet handles are represented as a SipServletRequest or
SipServletResponse object. A received message is first parsed by the parser and then translated
to one of these objects and sent to the SIP servlet container.

A SIP servlet container receives the following three types of SIP messages, for each of which you
determine a target servlet.

First SIP Request—When the SIP servlet container received a request that does not belong
to any SIP session, it uses filter conditions in the sip.xml file (described in the previous
section) to determine the target SIP servlet. Since the container creates a new SIP session
when the initial request is delivered, any SIP requests received after that point are
considered as subsequent requests.

Note: Filtering should be done carefully. In WebLogic SIP Server, when the received SIP
message matches multiple SIP servlets, it is delivered only to any one SIP servlet.

Subsequent SIP Request—When the SIP servlet container received a request that belongs
to any SIP session, it delivers the request to a SIP servlet associated with that session.
Whether the request belongs to a session or not is determined using dialog ID.

SIP Response—When the received response is to a request that a SIP servlet proxied, the
response is automatically delivered to the same servlet since its SIP session had been
determined. When a SIP servlet sends its own request, you must first specify a servlet that
receives a response in the SIP session. For example, if the SIP servlet sending a request

Di f f erences f r om HTTP Serv le ts

Developing SIP Servlets with WebLogic SIP Server 1-11

also receives the response, the following handler setting must be specified in the SIP
session.

SipServletRequest req = getSipFactory().createRequest(appSession, ...);

req.getSession().setHandler(getServletName());

Normally, in SIP a “session” means a real-time session by RTP/RTSP. On the other hand, in
HTTP Servlet a “session” refers to a way of relating multiple HTTP transactions. In this
document, session-related terms are defined as follows:

Table 1-2 Session-Related Terminology

WebLogic SIP Server automatically execute the following response and retransmission
processes:

Sending “100 Trying”—When WebLogic SIP Server receives an INVITE request, it
automatically creates and sends “100 Trying.”

Response to CANCEL—When WebLogic SIP Server receives a CANCEL request, it
executes the following processes if the request is valid.

a. Sends a 200 response to the CANCEL request.

b. Sends a 487 response to the INVITE request to be cancelled.

c. Invokes a doCancel method on the SIP servlet. This allows the application to abort the
process within the doCancel method, eliminating the need for explicitly sending back a
response.

Realtime Session A realtime session established by RTP/RTSP.

HTTP Session A session defined by HTTP Servlet. A means of relating multiple HTTP
transactions.

SIP Session A means of implementing the same concept as in HTTP session in SIP. SIP
(RFC3261) has a similar concept of “dialog,” but in this document this is
treated as a different term since its lifecycle and generation conditions are
different.

Application Session A means for applications using multiple protocols and dialogs to associate
multiple HTTP sessions and SIP sessions. Also called “AP session.”

Overv iew o f S IP Serv le ts

1-12 Developing SIP Servlets with WebLogic SIP Server

Sends ACK to an error response to INVITE—When a 4xx, 5xx, or 6xx response is
returned for INVITE that were sent by a SIP servlet, WebLogic SIP Server automatically
creates and sends ACK. This is because ACK is required only for a SIP sequence, and the
SIP servlet does not require it.

When the SIP servlet sends a 4xx, 5xx, or 6xx response to INVITE, it never receives ACK
for the response.

Retransmission process when using UDP—SIP defines that sent messages are retransmitted
when low-trust transport including UDP is used. WebLogic SIP Server automatically do
the retransmission process according to the specification.

Mostly, applications do not need to explicitly set and see header fields In HTTP Servlet since
HTTP servlet containers automatically manage these fields such as Content-Length and
Content-Type. SIP Servlet also has the same header management function.

In SIP, however, since important information about message delivery exists in some fields, these
headers are not allowed to change by applications. Headers that can not be changed by SIP
servlets are called “system headers.” The table below lists system headers:

Table 1-3 System Headers

Utility Functions
SIP Servlet defines the following utilities that are available to SIP servlets:

Header Name Description

Call-ID Contains ID information to associate multiple SIP messages as Call.

From, To Contains Information on the sender and receiver of the SIP request (SIP,
URI, etc.). tag parameters are given by the servlet container.

CSeq Contains sequence numbers and method names.

Via Contains a list of servers the SIP message passed through. This is used
when you want to keep track of the pass to send a response to the request.

Record-Route, Route Used when the proxy server mediates subsequent requests.

Contact Contains network information (such as IP address and port number) that is
used for direct communication between terminals. For a REGISTER
message, 3xx, or 485 response, this is not considered as the system header
and SIP servlets can directly edit the information.

Di f f erences f r om HTTP Serv le ts

Developing SIP Servlets with WebLogic SIP Server 1-13

1. SIP Session, Application Session

2. SIP Factory

3. Proxy

SIP Session, Application Session
As stated before, SIP Servlet provides a “SIP session” whose concept is the same as a HTTP
session. In HTTP, multiple transactions are associated using information like Cookie. In SIP, this
association is done with header information (Call-ID and tag parameters in From and To). Servlet
containers maintain and manage SIP sessions. Messages within the same dialog can refer to the
same SIP session. Also, For a method that does not create a dialog (such as MESSAGE),
messages can be managed as a session if they have the same header information.

SIP Servlet has a concept of an “application session,” which does not exist in HTTP Servlet. An
application session is an object to associate and manage multiple SIP sessions and HTTP
sessions. It is suitable for applications such as B2BUA.

Note: In WebLogic SIP Server, HTTP sessions are not associated with application sessions.

SIP Factory
A SIP factory (SipFactory) is a factory class to create SIP Servlet-specific objects necessary for
application execution. You can generate the following objects:

Table 1-4 Objects Generated with SipFactory

SipFactory is located in the servlet context attribute under the default name. You can take this
with the following code.

ServletContext context = getServletContext();

Class Name Description

URI, SipURI, Address Can generate address information including SIP URI from String.

SipApplicationSession Creates a new application session. It is invoked when a SIP servlet starts a
new SIP signal process.

SipServletRequest Used when a SIP servlet acts as UAC to create a request. Such requests can
not be sent with Proxy.proxyTo. They must be sent with
SipServletRequest.send.

Overv iew o f S IP Serv le ts

1-14 Developing SIP Servlets with WebLogic SIP Server

SipFactory factory =

 (SipFactory) context.getAttribute("javax.servlet.sip.SipFactory");

Proxy
Proxy is a utility used by a SIP servlet to proxy a request. In SIP, proxying has its own sequences
including forking. You can specify the following settings in proxying with Proxy:

Recursive routing (recurse)—When the destination of proxying returns a 3xx response, the
request is proxied to the specified target.

Record-Route setting—Sets a <code>Record-Route</code> header in the specified request.

Parallel/Sequential (parallel)—Determines whether forking is executed in parallel or
sequentially.

stateful—Determines whether proxying is transaction stateful.

Supervising mode—In the event of the state change of proxying (response receipts), an
application reports this.

Developing SIP Servlets with WebLogic SIP Server 2-1

C H A P T E R 2

Requirements and Best Practices for
WebLogic SIP Server Applications

The following sections requirements and best practices for developing applications for
deployment to WebLogic SIP Server:

“Overview of Developing and Porting Applications for WebLogic SIP Server 2.1” on
page 2-1

“Avoid Thread Creation” on page 2-2

“Servlets Must Be Non-Blocking” on page 2-3

“Store all Application Data in the Session” on page 2-3

“All Session Data Must Be Serializable” on page 2-3

“Use setAttribute() to Persist All Changes to Session State” on page 2-3

“send() Calls Are Buffered” on page 2-4

“Mark SIP Servlets as Distributable” on page 2-4

“Observe Best Practices for J2EE Applications” on page 2-4

Overview of Developing and Porting Applications for WebLogic
SIP Server 2.1

In a typical production environment, SIP applications are deployed to a cluster of WebLogic SIP
Server instances that form the engine tier cluster. A separate cluster of servers in the data tier
provides a replicated, in-memory database of the call states for active calls. In order for

Requ i rements and Best P ract ices fo r WebLog ic S IP Se rve r Appl i ca t ions

2-2 Developing SIP Servlets with WebLogic SIP Server

applications to function reliably in this environment, you must observe the programming
practices and conventions described in the sections that follow to ensure that multiple deployed
copies of your application perform as expected in the clustered environment.

If you are porting an application from a previous version of WebLogic SIP Server, many of the
conventions and restrictions described below may be new to you, because previous WebLogic
SIP Server implementations did not support a clustering. As always, thoroughly test and profile
your ported applications to discover problems and ensure adequate performance in the new
environment.

Avoid Thread Creation
WebLogic SIP Server is a multi-threaded application server that carefully manages resource
allocation, concurrency, and thread synchronization for the modules it hosts. To obtain the
greatest advantage from the WebLogic SIP Server architecture, construct your application
modules according to the SIP Servlet and J2EE API specifications.

In most cases, you should avoid application designs that require creating new threads in
server-side modules such as SIP Servlets:

Applications that create their own threads do not scale well. Threads in the JVM are a
limited resource that must be allocated thoughtfully. Your applications may break or cause
poor WebLogic SIP Server performance when the server load increases. Problems such as
deadlocks and thread starvation may not appear until the application is under a heavy load.

Multithreaded modules are complex and difficult to debug. Interactions between
application-generated threads and WebLogic Server threads are especially difficult to
anticipate and analyze.

In rare situations, creating threads may be appropriate in spite of these warnings. If you must use
threads in your application code, create a finite pool of threads so that you can control the number
of threads your application creates. Understand where your threads can deadlock and handle the
deadlocks when they occur. Review your design carefully to ensure that your threads do not
compromise the security system.

To avoid undesirable interactions with WebLogic SIP Server threads, do not let your threads call
into WebLogic Server modules. For example, do not use Enterprise JavaBeans or Servlets from
threads that you create. Application threads are best used for independent, isolated tasks, such as
conversing with an external service or, with proper locking, reading or writing to files. A
short-lived thread that accomplishes a single purpose and ends (or returns to the thread pool) is
less likely to interfere with other threads.

Se rv le ts Must Be Non-Block ing

Developing SIP Servlets with WebLogic SIP Server 2-3

Avoid creating daemon threads in modules that are packaged in applications deployed on
WebLogic Server. When you create a daemon thread in an application module such as a Servlet,
you will not be able to redeploy the application because the daemon thread created in the original
deployment will remain running.

Test all multithreaded code under increasingly heavy loads, adding clients even to the point of
failure. Observe the application performance and WebLogic SIP Server behavior and then add
checks to prevent failures from occurring in production.

Servlets Must Be Non-Blocking
SIP and HTTP Servlets must not block threads in the body of a SIP method. For example, no
Servlet method should actively wait for data to be retrieved or written before returning control to
the SIP Servlet container.

Store all Application Data in the Session
If you deploy your application to more than one engine tier server (in a replicated WebLogic SIP
Server configuration) you must store all application data in the session as session attributes. In a
replicated configuration, engine tier servers maintain no cached information; all application data
must be de-serialized from the session attribute available in data tier servers.

All Session Data Must Be Serializable
To support in-memory replication of SIP application call states, you must ensure that all objects
stored in the SIP Servlet session are serializable. Every field in an object must be serializable or
transient in order for the object to be considered serializable. If the Servlet uses a combination of
serializable and non-serializable objects, WebLogic SIP Server cannot replicate the session state
of the non-serializable objects.

Use setAttribute() to Persist All Changes to Session State
Use the SIP Session’s setAttribute method to change attributes in a session object. If you set
attributes in a session object with setAttribute, the object and its attributes are replicated in
the data tier cluster. If you use other set methods to change objects within a session, WebLogic
SIP Server cannot replicate those changes. Any time a change is made to an object that is in the
session, call setAttribute to update that object across the data tier cluster. Likewise, use
removeAttribute to remove an attribute from a session object.

Requ i rements and Best P ract ices fo r WebLog ic S IP Se rve r Appl i ca t ions

2-4 Developing SIP Servlets with WebLogic SIP Server

Also note that the WebLogic SIP Server container does not modify the call state after a Servlet
makes a call to setAttribute. For example, in the following code sample the call to
modifyState() does not persist call state data in the data tier:

Foo foo = new Foo(..);

appSession.setAttribute("name", foo); // This persists the call state.

foo.modifyState(); // This change is not persisted.

Instead, ensure that your Servlet code modifies the call state before calling setAttribute, as in:

Foo foo = new Foo(..);

foo.modifyState();

appSession.setAttribute("name", foo);

send() Calls Are Buffered
If your SIP Servlet calls the send() method within a SIP request method such as doInvite(),
doAck(), doNotify(), and so forth, keep in mind that the WebLogic SIP Server container
buffers all send() calls and transmits them in order after the SIP method returns. Applications
cannot rely on send() calls to be transmitted immediately as they are called.

Warning: Applications must not wait or sleep after a call to send(), because the request or
response is not transmitted until control returns to the SIP Servlet container.

Mark SIP Servlets as Distributable
If you have designed and programmed your SIP Servlet to be deployed to a cluster environment,
you must include the distributable marker element in the Servlet’s deployment descriptor
when deploying the application to a cluster of engine tier servers. If you omit the distributable
element, WebLogic SIP Server will not deploy the Servlet to a cluster of engine tier servers.

The distributable element is not required, and is ignored if you deploy to a single,
combined-tier (non-replicated) WebLogic SIP Server instance.

Observe Best Practices for J2EE Applications
If you are deploying applications that use other J2EE APIs, observe the basic clustering
guidelines associated with those APIs. For example, if you are deploying EJBs you should design
all methods to be idempotent and make EJB homes clusterable in the deployment descriptor. See
Clustering Best Practices in the WebLogic Server 8.1 Documentation for more information.

http://e-docs.bea.com/wls/docs81/cluster/best.html

Developing SIP Servlets with WebLogic SIP Server 2-5

Requ i rements and Best P ract ices fo r WebLog ic S IP Se rve r Appl i ca t ions

2-6 Developing SIP Servlets with WebLogic SIP Server

Developing SIP Servlets with WebLogic SIP Server 3-1

C H A P T E R 3

Composing SIP Applications

The following sections describe how to use WebLogic SIP Server 2.1 application composition
features:

“Overview of SIP Application Composition” on page 3-1

“Application Composition Model” on page 3-1

“Sample Composer Application” on page 3-4

“Troubleshooting Application Composition” on page 3-6

Overview of SIP Application Composition
Application composition is the process of “chaining” multiple SIP applications, such as Proxies,
User Agent Servers (UAS), User Agent Clients (UAC), redirect servers, and Back-to-Back User
Agents (B2BUA), into a logical path that processes a given SIP request. WebLogic SIP Server
provides support for an application composition model that enables applications to create and
maintain a logical composition of multiple SIP applications. By using this programming model,
you can easily define an order list of applications that should process a given initial SIP request,
and the WebLogic SIP Server container ensures that each application remains on the call path for
all subsequent requests.

Application Composition Model
The basic WebLogic SIP Server application composition model involves creating a main
“composer” application that examines initial SIP requests to determine which deployed

Compos ing SIP App l i cat i ons

3-2 Developing SIP Servlets with WebLogic SIP Server

applications should process the request, and in what order. (For example, a composer application
may examine the user specified in the Request-URI header and select applications based on the
user’s subscription level.) The composer application then inserts one or more Route headers into
the request, with each Route header specifying the name and location of a deployed SIP
application that should process the request. Application names are defined similar to user
addresses, using the format:

application@address

where application is the deployment name of the SIP application and address is the address
of the load balancer used to contact the WebLogic SIP Server installation, the cluster address, or
the listen address of the server itself (for example, proxyapp1@mycompany.com). The order of
the Route headers in the message dictate the required order of application execution. The
Request-URI header of the initial request should remain unchanged.

After inserting Route headers to chain the required applications, the composer application then
calls proxyTo() to proxy the message using the original Request-URI. The WebLogic SIP
Server container examines the contents of the initial Route header in the request to determine if
the user portion of the address refers to an application name. If the user name matches a deployed
application name and the address matches a configured server address, then the server ignores
any configured Servlet mapping rules and instead delivers the request to the named application.

App l i cat i on Composi t i on Mode l

Developing SIP Servlets with WebLogic SIP Server 3-3

Figure 3-1 Composed Application Model

After processing a request, applications that are part of a composed application path should
remove the first Route header and proxyTo() the original Request-URI so that WebLogic SIP
Server can direct the request to any additional applications specified in Route headers.

In this manner, WebLogic SIP Server honors the configured chain of applications that were
defined by the composer application using Route headers. Figure 3-1 shows a summary of the
application composition model.

Managing Proxied Requests
In addition to chaining applications for an initial SIP request, WebLogic SIP Server preserves the
composed application chain for subsequent requests proxied to other servers. If a request is
proxied to another server, the SIP Servlet container inserts the session IDs of chained applications
into the Record-Route header of the message. WebLogic SIP Server examines the session IDs to
ensure that each server hosting a chained application remains in the call path for subsequent
requests.

Compos ing SIP App l i cat i ons

3-4 Developing SIP Servlets with WebLogic SIP Server

Sample Composer Application
Listing 3-1 shows the organization of a simple composer application.

Listing 3-1 Sample Composer Application

package example;

import javax.servlet.sip.SipFactory;

import javax.servlet.sip.SipServletRequest;

import javax.servlet.sip.SipURI;

import javax.servlet.sip.SipServlet;

import javax.servlet.ServletConfig;

import javax.servlet.ServletException;

import java.io.IOException;

public class Composer extends SipServlet {

 private SipFactory factory;

 private static final String CLUSTER_ADDRESS = "example.com";

 public void init(ServletConfig sc) throws ServletException {

 super.init(sc);

 factory = (SipFactory)

 getServletContext().getAttribute("javax.servlet.sip.SipFactory");

 }

 protected void doRequest(SipServletRequest req)

 throws ServletException, IOException {

Sample Compose r Appl ica t i on

Developing SIP Servlets with WebLogic SIP Server 3-5

 if (!req.isInitial()) {

 super.doRequest(req);

 return;

 }

 SipURI[] routeSet = getRouteSet(req);

 for (int i = 0; i < routeSet.length; i++) {

 req.pushRoute(routeSet[i]);

 }

 req.getProxy().proxyTo(req.getRequestURI());

 }

 /*

 * Returns application route set for specified request. Ideally, this route

 * set should be based on the requesting user's subscribed services. In

 * this example, it is fixed for all users.

 */

 private SipURI[] getRouteSet(SipServletRequest req) {

 return new SipURI[] { createRouteURI("app1"), createRouteURI("app2") };

 }

 private SipURI createRouteURI(String appName) {

 SipURI uri = factory.createSipURI(appName, CLUSTER_ADDRESS);

 uri.setLrParam(true);

 return uri;

Compos ing SIP App l i cat i ons

3-6 Developing SIP Servlets with WebLogic SIP Server

 }

}

Troubleshooting Application Composition
WebLogic SIP Server examines the first Route header in a message to determine two things:

1. Does the username portion of the header match the name of a deployed SIP application?

2. Does the address portion of the header indicate that the application is intended for this
WebLogic SIP Server instance?

Both of these conditions must be met in order for the SIP Servlet container to route a request to
an application specified in the Route header. If either condition is not met, Weblogic SIP Server
uses the default Servlet mapping rules defined in the Servlet’s deployment descriptor to process
the request.

For example, if username portion of the first Route header does not match a deployed application
name, default Servlet mapping rules are used to process the request. Always ensure that the
composer application embeds the correct application names into Route headers when chaining
applications together.

Even if the username matches a deployed application, the address portion must also match one of
the configured addresses for the WebLogic SIP Server instance:

A load balancer URI configured in sipserver.xml

The cluster address for the WebLogic SIP Server engine tier

A listen address for the server instance itself (default listen address or the listen address of
a network channel)

To ensure that the address of an application matches the server address, ensure that the composer
application is embedding the proper address string in Route headers. Also ensure that the server
instances are configured using the same address string. See loadbalancer and Configuring
WebLogic SIP Server Network Resources in Configuring and Managing WebLogic SIP Server.

{DOCROOT}/adminguide/enginetier_dd.html#loadbalancer
{DOCROOT}/adminguide/network.html
{DOCROOT}/adminguide/network.html
{DOCROOT}/adminguide/index.html

Developing SIP Servlets with WebLogic SIP Server 4-1

C H A P T E R 4

Securing SIP Servlet Resources

The following sections describe how to apply security constraints to SIP Servlet resources when
deploying to WebLogic SIP Server 2.1:

“Overview of SIP Servlet Security” on page 4-1

“WebLogic SIP Server Role Mapping Features” on page 4-2

“Using Implicit Role Assignment” on page 4-3

“Assigning Roles Using security-role-assignment” on page 4-4

“Assigning run-as Roles” on page 4-7

“Role Assignment Precedence for SIP Servlet Roles” on page 4-8

“Debugging Security Features” on page 4-9

“weblogic.xml Deployment Descriptor Reference” on page 4-9

Overview of SIP Servlet Security
The SIP Servlet API specification defines a set of deployment descriptor elements that can be
used for providing declarative and programmatic security for SIP Servlets. The primary method
for declaring security constraints is to define one or more security-constraint elements in
the sip.xml deployment descriptor. The security-constraint element defines the actual
resources in the SIP Servlet, defined in resource-collection elements, that are to be
protected. security-constraint also identifies the role names that are authorized to access the

Secur ing SI P Se rv l et Resources

4-2 Developing SIP Servlets with WebLogic SIP Server

resources. All role names used in the security-constraint are defined elsewhere in sip.xml
in a security-role element.

SIP Servlets can also programmatically refer to a role name within the Servlet code, and then map
the hard-coded role name to an alternate role in the sip.xml security-role-ref element
during deployment. Roles must be defined elsewhere in a security-role element before they
can be mapped to a hard-coded name in the security-role-ref element.

The SIP Servlet specification also enables Servlets to propagate a security role to a called
Enterprise JavaBean (EJB) using the run-as element. Once again, roles used in the run-as
element must be defined in a separate security-role element in sip.xml.

Chapter 14 in the SIP Servlet API specification provides more details about the types of security
available to SIP Servlets. SIP Servlet security features are similar to security features available
with HTTP Servlets; you can find additional information about HTTP Servlet security by
referring to these sections in the WebLogic Server 8.1 SP5 documentation:

J2EE Security Model in Programming WebLogic Security provides an overview of
declarative and programmatic security models for Servlets.

EJB Security-Related Deployment Descriptors in Securing Enterprise JavaBeans (EJBs)
describes all security-related deployment descriptor elements for EJBs, including the
run-as element used for propagating roles to called EJBs.

See also the example sip.xml excerpt in Listing 4-1, “Declarative Security Constraints in
sip.xml,” on page 4-4.

WebLogic SIP Server Role Mapping Features
When you deploy a SIP Servlet, security-role definitions that were created for declarative and
programmatic security must be assigned to actual principals and/or roles available in the Servlet
container. WebLogic SIP Server 2.1 uses the security-role-assignment element in
weblogic.xml to help you map security-role definitions to actual principals and roles.
security-role-assignment provides two different ways to map security roles, depending on
how much flexibility you require for changing role assignment at a later time:

The security-role-assignment element can define the complete list of principal names
and roles that map to roles defined in sip.xml. This method defines the role assignment at
deployment time, but at the cost of flexibility; to add or remove principals from the role,
you must edit weblogic.xml and redeploy the SIP Servlet.

The externally-defined element in security-role-assignment enables you to
assign principal names and roles to a sip.xml role at any time using the Administration

http://e-docs.bea.com/wls/docs81/security/thin_client.html
http://e-docs.bea.com/wls/docs81/security/thin_client.html#thin_client_07
http://e-docs.bea.com/wls/docs81/security/ejb_client.html
http://e-docs.bea.com/wls/docs81/security/ejb_client.html#ejb_client_DDs_01

Us ing Impl ic i t Ro le Ass ignment

Developing SIP Servlets with WebLogic SIP Server 4-3

Console. When using the externally-defined element, you can add or remove
principals and roles to a sip.xml role without having to redeploy the SIP Servlet.

Two additional XML elements can be used for assigning roles to a sip.xml run-as element:
run-as-principal-name and run-as-role-assignment. These role assignment elements
take precedence over security-role-assignment elements if they are used, as described in
“Assigning run-as Roles” on page 4-7.

Optionally, you can choose to specify no role mapping elements in weblogic.xml to use implicit
role mapping, as described in “Using Implicit Role Assignment” on page 4-3.

The sections that follow describe WebLogic SIP Server role assignment in more detail.

Using Implicit Role Assignment
With implicit role assignment, WebLogic SIP Server assigns a security-role name in
sip.xml to a role of the exact same name, which should be configured in the WebLogic SIP
Server security realm. To use implicit role mapping, you omit the security-role-assignment
element in weblogic.xml, as well as any run-as-principal-name, and
run-as-role-assignment elements use for mapping run-as roles.

When no role mapping elements are available in weblogic.xml, WebLogic SIP Server
implicitly maps sip.xml security-role elements to roles having the same name. Note that
implicit role mapping takes place regardless of whether the role name defined in sip.xml is
actually available in the security realm. WebLogic SIP Server display a warning message anytime
it uses implicit role assignment. For example, if you use the “everyone” role in sip.xml but you
do not explicitly assign the role in weblogic.xml, the server displays the warning:

<Webapp: ServletContext(id=id,name=application,context-path=/context), the

role: everyone defined in web.xml has not been mapped to principals in

security-role-assignment in weblogic.xml. Will use the rolename itself as

the principal-name.>

You can ignore the warning message if the corresponding role has been defined in the WebLogic
SIP Server security realm. The message can be disabled by defining an explicit role mapping in
weblogic.xml.

Use implicit role assignment if you want to hard-code your role mapping at deployment time to
a known principal name.

Secur ing SI P Se rv l et Resources

4-4 Developing SIP Servlets with WebLogic SIP Server

Assigning Roles Using security-role-assignment
The security-role-assignment element in weblogic.xml enables you to assign roles either
at deployment time or at any time using the Administration Console. The sections that follow
describe each approach.

Important Requirement for WebLogic SIP Server 2.1
If you specify a security-role-assignment element in weblogic.xml, WebLogic SIP
Server 2.1 requires that you also define a duplicate security-role element in a web.xml
deployment descriptor. This requirement applies even if you are deploying a pure SIP Servlet,
which would not normally require a web.xml deployment descriptor (generally reserved for
HTTP Web Applications).

Note: If you specify a security-role-assignment in weblogic.xml but there is no
corresponding security-role element in web.xml, WebLogic SIP Server 2.1
generates the error message:

The security-role-assignment references an invalid security-role:
rolename

The server then implicitly maps the security-role defined in sip.xml to a role of the
same name, as described in “Using Implicit Role Assignment” on page 4-3.

For example, Listing 4-1 shows a portion of a sip.xml deployment descriptor that defines a
security constraint with the role, roleadmin. Listing 4-2 shows that a
security-role-assignment element has been defined in weblogic.xml to assign principals
and roles to roleadmin. In WebLogic SIP Server 2.1, this Servlet must be deployed with a
web.xml deployment descriptor that also defines the roleadmin role, as shown in Listing 4-3.

If the web.xml contents were not available, WebLogic SIP Server would use implicit role
assignment and assume that the roleadmin role was defined in the security realm; the principals
and roles assigned in weblogic.xml would be ignored.

Listing 4-1 Declarative Security Constraints in sip.xml

...

 <security-constraint>

<resource-collection>

 <resource-name>RegisterRequests</resource-name>

Ass igni ng Ro les Us ing secur i t y- ro le -ass ignment

Developing SIP Servlets with WebLogic SIP Server 4-5

 <servlet-name>registrar</servlet-name>

 </resource-collection>

 <auth-constraint>

 <role-name>roleadmin</role-name>

 </auth-constraint>

 </security-constraint>

 <security-role>

 <role-name>roleadmin</role-name>

 </security-role>

...

Listing 4-2 Example security-role-assignment in weblogic.xml

<weblogic-web-app>

 <security-role-assignment>

<role-name>roleadmin</role-name>

 <principal-name>Tanya</principal-name>

 <principal-name>Fred</principal-name>

 <principal-name>system</principal-name>

 </security-role-assignment>

</weblogic-web-app>

Listing 4-3 Required security-role Element in web.xml

<!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

<web-app>

Secur ing SI P Se rv l et Resources

4-6 Developing SIP Servlets with WebLogic SIP Server

 <security-role>

 <role-name>roleadmin</role-name>

 </security-role>

</web-app>

Assigning Roles at Deployment Time
A basic security-role-assignment element definition in weblogic.xml declares a mapping
between a security-role defined in sip.xml and one or more principals or roles available in
the WebLogic SIP Server security realm. If the security-role is used in combination with the
run-as element in sip.xml, WebLogic SIP Server assigns the first principal or role name
specified in the security-role-assignment to the run-as role.

Listing 4-2, “Example security-role-assignment in weblogic.xml,” on page 4-5 shows an
example security-role-assignment element. This example assigns three users to the
roleadmin role defined in Listing 4-1, “Declarative Security Constraints in sip.xml,” on
page 4-4. To change the role assignment, you must edit the weblogic.xml descriptor and
redeploy the SIP Servlet.

Dynamically Assigning Roles Using the Administration
Console
The externally-defined element can be used in place of the <principal-name> element to
indicate that you want the security roles defined in the role-name element of sip.xml to use
mappings that you assign in the Administration Console. The externally-defined element
gives you the flexibility of not having to specify a specific security role mapping for each security
role at deployment time. Instead, you can use the Administration Console to specify and modify
role assignments at anytime.

Additionally, because you may elect to use this element for some SIP Servlets and not others, it
is not necessary to select the ignore roles and polices from DD option for the security realm.
(You select this option in the On Future Redeploys: field on the General tab of the
Security->Realms->myrealm control panel on the Administration Console.) Therefore, within
the same security realm, deployment descriptors can be used to specify and modify security for
some applications while the Administration Console can be used to specify and modify security
for others.

Note: When specifying security role names, observe the following conventions and
restrictions:

Ass igni ng run-as Ro les

Developing SIP Servlets with WebLogic SIP Server 4-7

The proper syntax for a security role name is as defined for an Nmtoken in the
Extensible Markup Language (XML) recommendation available on the Web at:
http://www.w3.org/TR/REC-xml#NT-Nmtoken.

Do not use blank spaces, commas, hyphens, or any characters in this
comma-separated list: \t, < >, #, |, &, ~, ?, (), { }.

Security role names are case sensitive.

The BEA suggested convention for security role names is that they be singular.

Listing 4-4 shows an example of using the externally-defined element with the roleadmin
role defined in Listing 4-1, “Declarative Security Constraints in sip.xml,” on page 4-4. To assign
existing principals and roles to the roleadmin role, the Administrator would use the WebLogic
SIP Server Administration Console.

See Security Roles in the WebLogic Server 8.1 SP5 documentation for information about adding
and modifying security roles using the Administration Console.

Listing 4-4 Example externally-defined Element in weblogic.xml

<weblogic-web-app>

<security-role-assignment>

 <role-name>webuser</role-name>

 <externally-defined/>

 </security-role-assignment>

</weblogic-web-app>

Assigning run-as Roles
The security-role-assignment described in “Assigning Roles Using
security-role-assignment” on page 4-4 can be also be used to map run-as roles defined in
sip.xml. Note, however, that two additional elements in weblogic.xml take precedence over
the security-role-assignment if they are present: run-as-principal-name and
run-as-role-assignment.

run-as-principal-name specifies an existing principle in the security realm that is used for all
run-as role assignments. When it is defined within the servlet-descriptor element of

http://www.w3.org/TR/REC-xml#NT-Nmtoken
http://e-docs.bea.com/wls/docs81/secwlres/secroles.html

Secur ing SI P Se rv l et Resources

4-8 Developing SIP Servlets with WebLogic SIP Server

weblogic.xml, run-as-principal-name takes precedence over any other role assignment
elements for run-as roles.

run-as-role-assignment specifies an existing role or principal in the security realm that is
used for all run-as role assignments, and is defined within the weblogic-web-app element.

See “weblogic.xml Deployment Descriptor Reference” on page 4-9 for more information about
individual weblogic.xml descriptor elements. See also “Role Assignment Precedence for SIP
Servlet Roles” on page 4-8 for a summary of the role mapping precedence for declarative and
programmatic security as well as run-as role mapping.

Role Assignment Precedence for SIP Servlet Roles
WebLogic SIP Server provides several ways to map sip.xml roles to actual roles in the SIP
Container during deployment. For declarative and programmatic security defined in sip.xml,
the order of precedence for role assignment is:

1. If weblogic.xml assigns a sip.xml role in a security-role-assignment element, the
security-role-assignment is used.

Note: WebLogic SIP Server 2.1 also requires a role definition in web.xml in order to use a
security-role-assignment. See “Important Requirement for WebLogic SIP
Server 2.1” on page 4-4.

2. If no security-role-assignment is available (or if the required web.xml role
assignment is missing), implicit role assignment is used.

For run-as role assignment, the order of precedence for role assignment is:

1. If weblogic.xml assigns a sip.xml run-as role in a run-as-principal-name element
defined within servlet-descriptor, the run-as-principal-name assignment is used.

Note: WebLogic SIP Server 2.1 also requires a role definition in web.xml in order to assign
roles with run-as-principal-name. See “Important Requirement for WebLogic
SIP Server 2.1” on page 4-4.

2. If weblogic.xml assigns a sip.xml run-as role in a run-as-role-assignment
element, the run-as-role-assignment element is used.

Note: WebLogic SIP Server 2.1 also requires a role definition in web.xml in order to assign
roles with run-as-role-assignment. See “Important Requirement for WebLogic
SIP Server 2.1” on page 4-4.

3. If weblogic.xml assigns a sip.xml run-as role in a security-role-assignment
element, the security-role-assignment is used.

Debugging Secur i t y Fea tur es

Developing SIP Servlets with WebLogic SIP Server 4-9

Note: WebLogic SIP Server 2.1 also requires a role definition in web.xml in order to use a
security-role-assignment. See “Important Requirement for WebLogic SIP
Server 2.1” on page 4-4.

4. If no security-role-assignment is available (or if the required web.xml role
assignment is missing), implicit role assignment is used.

Debugging Security Features
If you want to debug security features in SIP Servlets that you develop, specify the
-Dweblogic.Debug=wlss.Security startup option when you start WebLogic SIP Server.
Using this debug option causes WebLogic SIP Server to display additional security-related
messages in the standard output.

weblogic.xml Deployment Descriptor Reference
The weblogic.xml DTD contains detailed information about each of the role mapping elements
discussed in this section. See http://www.bea.com/servers/wls810/dtd/weblogic810-web-jar.dtd
for the complete DTD. See also weblogic.xml Deployment Descriptor Elements in the WebLogic
Server 8.1 SP5 documentation.

Secur ing SI P Se rv l et Resources

4-10 Developing SIP Servlets with WebLogic SIP Server

Developing SIP Servlets with WebLogic SIP Server 5-1

C H A P T E R 5

Developing SIP Servlets Using Eclipse

The following sections describe how to use Eclipse to develop SIP Servlets for use with
WebLogic SIP Server:

“Overview” on page 5-1

“Setting Up the Development Environment” on page 5-2

“Building and Deploying the Project” on page 5-6

“Debugging SIP Servlets” on page 5-6

Overview
This document provides detailed instructions for using the Eclipse IDE as a tool for developing
and deploying SIP Servlets with WebLogic SIP Server 2.1. The full development environment
requires the following components, which you must obtain and install before proceeding:

WebLogic SIP Server 2.1

JDK 1.4.2

Ant (installed with WebLogic SIP Server 2.1)

Eclipse version 3.1

CVS client and server (required only for version control)

Deve lop ing S IP Se rv le ts Usi ng Ec l ipse

5-2 Developing SIP Servlets with WebLogic SIP Server

SIP Servlet Organization
Building a SIP Servlet produces a Web Archive (WAR file or directory) as an end product. A
basic SIP Servlet WAR file contains the subdirectories and contents described in Figure 5-1.

Figure 5-1 SIP Servlet WAR Contents

Setting Up the Development Environment
Follow these steps to set up the development environment for a new SIP Servlet project:

1. Create a new WebLogic SIP Server Domain.

2. Create a new Eclipse project.

3. Create an Ant build file.

The sections that follow describe each step in detail.

Se t t ing Up the Deve lopment Env i ronment

Developing SIP Servlets with WebLogic SIP Server 5-3

Creating a WebLogic SIP Server Domain
In order to deploy and test your SIP Servlet, you need access to a WebLogic SIP Server domain
that you can reconfigure and restart as necessary. Follow the instructions in Creating a New
WebLogic SIP Server Domain to create a new domain using the Configuration Wizard. When
generating a new domain:

Select Development Mode as the startup mode for the new domain.

Select Sun SDK 1.4.2 as the SDK for the new domain.

Configure the Default Eclipse JVM
The latest versions of Eclipse use the version 1.5 JRE by default. Follow these steps to configure
Eclipse to use the version 1.4.2 JRE installed with WebLogic SIP Server:

1. Start Eclipse.

2. Select Window->Preferences

3. Expand the Java category in the left pane, and select Installed JREs.

4. Click Add... to add the new JRE.

5. Enter a name to use for the new JRE in the JRE name field.

6. Click the Browse... button next to the JRE home directory field. Then navigate to the
BEA_HOME/jdk142_08 directory and click OK.

7. Click OK to add the new JRE.

8. Select the check box next to the new JRE to make it the default.

9. Click OK to dismiss the preferences dialog.

Creating a New Eclipse Project
Follow these steps to create a new Eclipse project for your SIP Servlet development, adding the
WebLogic SIP Server libraries required for building and deploying the application:

1. Start Eclipse.

2. Select File->New->Project...

3. Select Java Project and click Next.

{DOCROOT}/install/postins.html#configwiz
{DOCROOT}/install/postins.html#configwiz

Deve lop ing S IP Se rv le ts Usi ng Ec l ipse

5-4 Developing SIP Servlets with WebLogic SIP Server

4. Enter a name for your project in the Project Name field.

5. In the Location field, select Create project in workspace if you have not yet begun writing
the SIP Servlet code. If you already have source code available in another location, Select
Create project at external location and specify the directory. Click Next.

6. Click the Libraries tab and follow these steps to add required JARs to your project:

a. Click Add External JARs...

b. Use the JAR selection dialog to add the
BEA_HOME/wlss21/server/lib/weblogic.jar file to your project.

c. Click Add External JARs... once again.

d. Use the JAR selection dialog to add the
BEA_HOME/wlss21/telco/auxlib/sipservlet.jar file to your project.

e. (Optional.) If your application needs to access WebLogic SIP Server MBeans using JMX,
also use the JAR selection dialog to add
BEA_HOME/wlss21/telco/lib/wcp_sip_core.jar to your project.

7. Add any additional JAR files that you may require for your project.

8. Click Finish to create the new project. Eclipse displays your new project name in the
Package Explorer.

9. Right-click on the name of your project and use the New->Folder command to recreate the
directory structure shown in Figure 5-1, “SIP Servlet WAR Contents,” on page 5-2.

Creating an Ant Build File
Follow these steps to create an Ant build file that you can use for building and deploying your
project:

1. Right-click on the name of your project in Eclipse, and select New->File

2. Enter the name build.xml and click Finish. Eclipse opens the empty file in a new window.

3. Copy the sample text from Listing 5-1, substituting your domain name and application
name for myDomain and myApplication.

Se t t ing Up the Deve lopment Env i ronment

Developing SIP Servlets with WebLogic SIP Server 5-5

Listing 5-1 Ant Build File Contents

<?xml version="1.0" encoding="ISO-8859-1"?>

<project default="all">

 <property environment="env"/>

 <property name="beahome" value="${env.BEA_HOME}"/>

 <target name="all" depends="compile,install"/>

 <target name="compile">

 <mkdir dir="WEB-INF/classes"/>

 <javac destdir="WEB-INF/classes" srcdir="src" debug="true"

debuglevel="lines,vars,source">

 <classpath>

 <pathelement path="${weblogic.jar}"/>

 </classpath>

 </javac>

 </target>

 <target name="install">

 <jar

destfile="${beahome}/user_projects/domains/myDomain/applications/myApplica

tion.war">

 <zipfileset dir="WEB-INF" prefix="WEB-INF"/>

 <zipfileset dir="WEB-INF" includes="*.html"/>

 <zipfileset dir="WEB-INF" includes="*.jsp"/>

 </jar>

 </target>

</project>

4. Close the build.xml file and save your changes.

Deve lop ing S IP Se rv le ts Usi ng Ec l ipse

5-6 Developing SIP Servlets with WebLogic SIP Server

5. Verify that the build.xml file is valid by selecting Window->Show View->Ant and
dragging the build.xml file into the Ant view. Correct any problems before proceeding.

6. Right-click on the project name and select Properties.

7. Select the Builders property in the left column, and click New.

8. Select the Ant Build tool type and click OK to add an Ant builder.

9. In the Buildfile field, click Browse Workspace and select the build.xml file you created.

10. In the Base Directory field, click Browse Workspace and select the top-level directory for
your project.

11. Click the JRE tab and choose Separate JRE in the Runtime JRE field. Use the drop-down
list or the Installed JREs... button to select an installed version 1.4.2 JRE.

12. Click the Environment tab, and Click New. Enter a new name/value pair to define the
BEA_HOME variable. The BEA_HOME variable must point to the home directory of the
WebLogic SIP Server 2.1 directory. For example:

– Name: BEA_HOME

– Value: c:\bea

13. Click OK to add the new Ant builder to the project.

14. De-select Java Builder in the builder list to remove the Java builder from the project.

15. Click OK to finish configuring Builders for the project.

Building and Deploying the Project
The build.xml file that you created compiles your code, packages the WAR, and copies the
WAR file to the /applications subdirectory of your development domain. WebLogic SIP
Server automatically deploys valid applications located in the /applications subdirectory.

Debugging SIP Servlets
In order to debug SIP Servlets, you must enable certain debug options when you start WebLogic
SIP Server. Follow these steps to add the required debug options to the script used to start
WebLogic SIP Server:

1. Use a text editor to open the StartWebLogic.cmd script for your development domain.

Debugging S IP Ser v le ts

Developing SIP Servlets with WebLogic SIP Server 5-7

2. Beneath the line that reads:

set JAVA_OPTIONS=

Enter the following line:

set DEBUG_OPTS=-Xdebug
-Xrunjdwp:transport=dt_socket,address=9000,server=y,suspend=n

3. Save the file and use the script to restart WebLogic SIP Server.

Deve lop ing S IP Se rv le ts Usi ng Ec l ipse

5-8 Developing SIP Servlets with WebLogic SIP Server

Installing WebLogic SIP Server 6-1

C H A P T E R 6

Enabling Access Logging

The following sections describe how to use WebLogic SIP Server access logging features on a
development system:

“Overview” on page 6-1

“Enabling Access Logging” on page 6-2

“Example Access Log Configuration and Output” on page 6-5

Overview
Access logging records all SIP messages (both requests and responses) received by WebLogic
SIP Server. You can use the access log in a development environment to check how external SIP
requests and SIP responses are received. By outputting the distinguishable information of SIP
dialogs such as Call-IDs from the application log, and extracting relevant SIP messages from the
access log, you can also check SIP invocations from HTTP servlets and so forth.

Warning: The access logging functionality logs all SIP requests and responses; do not enable
this feature in a production system. In a production system, you can instead
configure one or more logging Servlets, which enable you to specify additional
criteria for determining which messages to log. See Logging SIP Requests and
Responses in Configuring and Managing WebLogic SIP Server.

When you enable access logging, WebLogic SIP Server records access log records in the
Managed Server log file associated with each engine tier server instance.

{DOCROOT}/adminguide/index.html
{DOCROOT}/adminguide/pdulogging.html
{DOCROOT}/adminguide/pdulogging.html

Enab l ing Access Logg ing

6-2 Installing WebLogic SIP Server

Enabling Access Logging
You enable and configure access logging by adding a message-debug element to the
sipserver.xml configuration file. WebLogic SIP Server provides two different methods of
configuring the information that is logged:

Specify a predefined logging level (terse, basic, or full), or

Identify the exact portions of the SIP message that you want to include in a log record, in a
specified order

The sections that follow describe each method of configuring access logging functionality. See
also the Engine Tier Configuration Reference (sipserver.xml) in Configuring and Managing
WebLogic SIP Server for a full reference to the sipserver.xml file contents.

Specifying a Predefined Logging Level
The optional level element in message-debug specifies a predefined collection of information
to log for each SIP request and response. The following levels are supported:

terse—Logs only the domain setting, logging Servlet name, logging level, and whether
or not the message is an incoming message.

basic—Logs the terse items plus the SIP message status, reason phrase, the type of
response or request, the SIP method, the From header, and the To header.

full—Logs the basic items plus all SIP message headers plus the timestamp, protocol,
request URI, request type, response type, content type, and raw content.

Listing 6-1 shows a configuration entry that specifies the full logging level.

Listing 6-1 Sample Accessing Logging Level Configuration in sipserver.xml

<message-debug>

 <level>full</level>

</message-debug>

Customizing Log Records
WebLogic SIP Server also enables you to customize the exact content and order of each access
log record. To configure a custom log record, you must omit the level element described in

{DOCROOT}/adminguide/enginetier_dd.html
{DOCROOT}/adminguide/index.html
{DOCROOT}/adminguide/index.html

Enab l ing Access Logging

Installing WebLogic SIP Server 6-3

“Specifying a Predefined Logging Level” on page 6-2 and instead provide a format
element that defines a log record pattern and one or more tokens to log in each record.

Note: If you specify both a level element and a format element in message-debug,
WebLogic SIP Server uses the specified level and ignores the format entry.

Table 6-1 describes the nested elements used in the format element.

Table 6-1 Nested format Elements

Table 6-2 describes the string token values used to specify information in an access log record:

Table 6-2 Available Tokens for Access Log Records

param-name param-value Description

pattern Specifies the pattern used to format an access log entry. The
format is defined by specifying one or more integers, bracketed
by "{" and “}”. Each integer represents a token defined later in
the format definition.

token A string token that identifies a portion of the SIP message to
include in a log record. Table 6-2 provides a list of available
string tokens. You can define multiple token elements as
needed to customize your log records.

Token Description Example or Type

%call_id The Call-ID header. It is blank when forwarding. 43543543

%content The raw content. Byte array

%content_length The content length. String value

%content_type The content type. String value

%cseq The CSeq header. It is blank when forwarding. INVITE 1

%date The date when the message was received.
("yyyy/MM/dd" format)

2004/05/16

%exception The class name of the exception occurred when
calling the AP. Detailed information is recorded to
the run-time log.

NullPointerException

Enab l ing Access Logg ing

6-4 Installing WebLogic SIP Server

%from The From header (all). It is blank when forwarding. sip:foo@bea.com;tag=438943

%from_addr The address portion of the From header. foo@bea.com

%from_port The port number portion of the From header. 7002

%from_tag The tag parameter of the From header. It is blank
when forwarding.

12345

%from_uri The SIP URI part of the From header. It is blank
when forwarding.

sip:foo@bea.com

%headers A List of message headers stored in a 2-element
array. The first element is the name of the header,
while the second is a list of all values for the header.

List of headers

%io Whether the message is incoming or not. TRUE

%method The name of the SIP method. It records the method
name to invoke when forwarding.

INVITE

%msg Summary Call ID String value

%mtype The type of receiving. SIPREQ

%protocol The protocol used. UDP

%reason The response reason. OK

%req_uri The request URI. This token is only available for the
SIP request.

sip:foo@bea.com

%status The response status. 200

%time The time when the message was received.
("HH:mm:ss" format)

18:05:27

%timestampmillis Time stamp in milliseconds. 9295968296

%to The To header (all). It is blank when forwarding. sip:foo@bea.com;tag=438943

%to_addr The address portion of the To header. foo@bea.com

%to_port The port number portion of the To header. 7002

Token Description Example or Type

Example Access Log Conf igura t i on and Output

Installing WebLogic SIP Server 6-5

See “Example Access Log Configuration and Output” on page 6-5 for an example
sipserver.xml file that defines a custom log record using two tokens.

Example Access Log Configuration and Output
Listing 6-2 shows a sample access log configuration in sipserver.xml. Listing 6-3, “Sample
Access Log Output,” on page 6-5 shows sample output from the Managed Server log file.

Listing 6-2 Sample Access Log Configuration in sipserver.xml

<message-debug>

 <format>

 <pattern>{0} {1}</pattern>

 <token>%headers</token>

 <token>%content</token>

 </format>

</message-debug>

Listing 6-3 Sample Access Log Output

####<Aug 10, 2005 7:12:08 PM PDT> <Info> <WLSS.Trace> <jiri.bea.com>

<myserver> <ExecuteThread: '11' for queue: 'sip.transport.Default'> <<WLS

Kernel>> <> <BEA- 331802> <SIP Tracer: logger Message: To: sut

<sip:invite@10.32.5.230:5060> <mailto:sip:invite@10.32.5.230:5060>

Content-Length: 136

Contact: sip:sipp@10.32.5.230:5061

%to_tag The tag parameter of the To header. It is blank when
forwarding.

12345

%to_uri The SIP URI part of the To header. It is blank when
forwarding.

sip:foo@bea.com

Token Description Example or Type

Enab l ing Access Logg ing

6-6 Installing WebLogic SIP Server

CSeq: 1 INVITE

Call-ID: 59.3170.10.32.5.230@sipp.call.id

From: sipp <sip:sipp@10.32.5.230:5061> <mailto:sip:sipp@10.32.5.230:5061>

;tag=59

Via: SIP/2.0/UDP 10.32.5.230:5061

Content-Type: application/sdp

Subject: Performance Test

Max-Forwards: 70

 v=0

o=user1 53655765 2353687637 IN IP4 127.0.0.1

s=-

c=IN IP4 127.0.0.1

t=0 0

m=audio 10000 RTP/AVP 0

a=rtpmap:0 PCMU/8000

>

####<Aug 10, 2005 7:12:08 PM PDT> <Info> <WLSS.Trace> <jiri.bea.com>

<myserver> <ExecuteThread: '11' for queue: 'sip.transport.Default'> <<WLS

Kernel>> <> <BEA- 331802> <SIP Tracer: logger Message: To: sut

<sip:invite@10.32.5.230:5060> <mailto:sip:invite@10.32.5.230:5060>

Content-Length: 0

CSeq: 1 INVITE

Call-ID: 59.3170.10.32.5.230@sipp.call.id

Via: SIP/2.0/UDP 10.32.5.230:5061

From: sipp <sip:sipp@10.32.5.230:5061> <mailto:sip:sipp@10.32.5.230:5061>

;tag=59

Server: BEA WebLogic SIP Server 2.1.0.0

 >

	Overview of SIP Servlets
	What is a SIP Servlet?
	Differences from HTTP Servlets
	Multiple Responses
	Receiving Responses
	Proxy Functions
	Message Body
	ServletRequest
	ServletResponse
	SipServletMessage

	Roles of a Servlet Container
	Application Management
	SIP Messaging
	Utility Functions

	Requirements and Best Practices for WebLogic SIP Server Applications
	Overview of Developing and Porting Applications for WebLogic SIP Server 2.1
	Avoid Thread Creation
	Servlets Must Be Non-Blocking
	Store all Application Data in the Session
	All Session Data Must Be Serializable
	Use setAttribute() to Persist All Changes to Session State
	send() Calls Are Buffered
	Mark SIP Servlets as Distributable
	Observe Best Practices for J2EE Applications

	Composing SIP Applications
	Overview of SIP Application Composition
	Application Composition Model
	Managing Proxied Requests

	Sample Composer Application
	Troubleshooting Application Composition

	Securing SIP Servlet Resources
	Overview of SIP Servlet Security
	WebLogic SIP Server Role Mapping Features
	Using Implicit Role Assignment
	Assigning Roles Using security-role-assignment
	Important Requirement for WebLogic SIP Server 2.1
	Assigning Roles at Deployment Time
	Dynamically Assigning Roles Using the Administration Console

	Assigning run-as Roles
	Role Assignment Precedence for SIP Servlet Roles
	Debugging Security Features
	weblogic.xml Deployment Descriptor Reference

	Developing SIP Servlets Using Eclipse
	Overview
	SIP Servlet Organization

	Setting Up the Development Environment
	Creating a WebLogic SIP Server Domain
	Configure the Default Eclipse JVM
	Creating a New Eclipse Project
	Creating an Ant Build File

	Building and Deploying the Project
	Debugging SIP Servlets

	Enabling Access Logging
	Overview
	Enabling Access Logging
	Specifying a Predefined Logging Level
	Customizing Log Records

	Example Access Log Configuration and Output

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

