
BEAWebLogic
SIP Server™

Configuring and
Managing WebLogic SIP
Server

Version 2.2
Revised: May 16, 2006

Copyright
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Interaction, BEA AquaLogic Interaction Analytics, BEA
AquaLogic Interaction Collaboration, BEA AquaLogic Interaction Content Services, BEA AquaLogic Interaction Data
Services, BEA AquaLogic Interaction Integration Services, BEA AquaLogic Interaction Process, BEA AquaLogic
Interaction Publisher, BEA AquaLogic Interaction Studio, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Kodo, BEA Liquid Data for
WebLogic, BEA Manager, BEA MessageQ, BEA SALT, BEA Service Architecture Leveraging Tuxedo, BEA WebLogic
Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA WebLogic Enterprise
Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic
Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA WebLogic Mobility Server,
BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API,
BEA WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Real Time, BEA
WebLogic RFID Compliance Express, BEA WebLogic RFID Edge Server, BEA WebLogic RFID Enterprise Server,
BEA WebLogic Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic WorkGroup Edition, BEA
Workshop for WebLogic Platform, BEA Workshop JSP, BEA Workshop JSP Editor, BEA Workshop Struts, BEA
Workshop Studio, Dev2Dev, Liquid Computing, and Think Liquid are trademarks of BEA Systems, Inc. Accelerated
Knowledge Transfer, AKT, BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA SOA
Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

Configuring and Managing WebLogic SIP Server vii

Contents
1. Overview of the WebLogic SIP Server Architecture

Goals of the WebLogic SIP Server Architecture. 1-1

Load Balancer . 1-2

Engine Tier . 1-3

Data tier . 1-4

Example Hardware Configuration. 1-5

Alternate Configurations . 1-5

2. Overview of WebLogic SIP Server Configuration and
Management

Shared Configuration Tasks for WebLogic SIP Server and WebLogic Server. 2-1

WebLogic SIP Server Configuration Overview . 2-2

Configuration Implementation . 2-4

Diameter Configuration . 2-4

Understanding Staging Modes for the sipserver Application. 2-5

Startup Sequence for a WebLogic SIP Server Domain . 2-6

Methods and Tools for Performing Configuration Tasks . 2-7

Administration Console . 2-7

Upgrade Utility. 2-7

WebLogic Scripting Tool (WLST) . 2-8

Additional Configuration Methods. 2-8

Editing Configuration Files. 2-8

Custom JMX Applications . 2-8

Administration Server Best Practices . 2-9

Adding threads to weblogic.admin.RMI and weblogic.admin.HTTP 2-10

viii Configuring and Managing WebLogic SIP Server

Common Configuration Tasks . 2-11

3. Configuring Data Tier Partitions and Replicas
Overview of Data Tier Configuration . 3-1

datatier.xml Configuration File . 3-2

Configuration Requirements and Restrictions . 3-2

Best Practices for Configuring and Managing Data Tier Servers 3-3

Example Data Tier Configurations and Configuration Files . 3-4

Data Tier with One Partition . 3-4

Data Tier with Two Partitions . 3-5

Data Tier with Two Partitions and Two Replicas. 3-5

Monitoring and Troubleshooting Data Tier Servers . 3-6

4. Configuring Engine Tier Container Properties
Overview of SIP Container Configuration . 4-2

Using the Administration Console to Configure Container Properties. 4-2

Locking and Persisting the Configuration . 4-3

Configuring Container Properties Using WLST (JMX) . 4-4

ConfigManagerRuntimeMBean Usage and Reference . 4-5

Configuration MBeans for the SIP Servlet Container . 4-6

Locating the WebLogic SIP Server MBeans . 4-8

WLST Configuration Examples . 4-9

Invoking WLST . 4-9

WLST Template for Configuring Container Attributes . 4-10

Creating and Deleting MBeans . 4-11

Working with URI Values . 4-12

Reverting to the Original Boot Configuration. 4-13

Configuring NTP for Accurate SIP Timers. 4-13

Configuring and Managing WebLogic SIP Server ix

5. Configuring Diameter Sh Client Nodes and Relay Agents
Overview of Diameter Protocol Configuration . 5-1

Steps for Configuring Diameter Client Nodes and Relay Agents 5-2

Installing the Diameter Domain. 5-3

Creating Network Channels for the Diameter Protocol. 5-5

Configuring Two-Way SSL for Diameter TLS Channels . 5-6

Configuring Diameter Sh Client Nodes. 5-7

Configuring Diameter Relay Agents (Optional) . 5-10

Example Domain Configuration . 5-14

Configuring an HSS Simulator . 5-20

6. Capacity Planning for WebLogic SIP Server Deployments
Introduction to Capacity Planning . 6-1

Determining Performance Goals . 6-2

Basic Hardware Configuration and Throughput Values . 6-4

Throughput Values for WebLogic SIP Server Instances . 6-5

Sample Deployment Scenarios . 6-6

Small Deployment . 6-7

Medium Deployment . 6-8

Large Deployment . 6-9

7. Managing WebLogic SIP Server Network Resources
Overview of Network Configuration. 7-1

Configuring Load Balancer Addresses . 7-2

Multiple Load Balancers and Multihomed Load Balancers. 7-3

Configuring Network Channels for SIP or SIPS . 7-3

Reconfiguring an Existing Channel . 7-3

Creating a New SIP or SIPS Channel. 7-4

x Configuring and Managing WebLogic SIP Server

Configuring SIP Channels for Multi-Homed Machines . 7-5

Configuring TCP and TLS Channels for Diameter Support . 7-5

Configuring Engine Servers to Listen on Any IP Interface (0.0.0.0) 7-6

Configuring Unique Listen Address Attributes for Data Tier Replicas 7-6

8. Production Network Architectures and WebLogic SIP Server
Configuration

Overview . 8-1

Single-NIC Configurations with TCP and UDP Channels . 8-3

Static Port Configuration for Outbound UDP Packets. 8-4

Multihomed Server Configurations Overview . 8-5

Multihomed Servers Listening On All Addresses (IP_ANY). 8-5

Multihomed Servers Listening on Multiple Subnets. 8-6

Understanding the Route Resolver . 8-7

IP Aliasing with Multihomed Hardware . 8-7

Load Balancer Configurations . 8-8

Single Load Balancer Configuration . 8-8

Multiple Load Balancers and Multihomed Load Balancers 8-9

Network Address Translation Options. 8-9

IP Masquerading Alternative to Source NAT . 8-9

9. Example WebLogic SIP Server Network Configuration
Overview . 9-1

Example Network Topology . 9-1

WebLogic SIP Server Configuration . 9-2

Load Balancer Configuration . 9-3

NAT-based configuration . 9-4

maddr-Based Configuration . 9-12

Configuring and Managing WebLogic SIP Server xi

rport-Based Configuration . 9-15

10.Logging SIP Requests and Responses
Overview of SIP Logging . 10-1

Using the Template Logging Servlet . 10-2

Deploying the Template Logging Application . 10-3

Using the Logging Servlet Implementation in Other Applications 10-3

Defining Logging Servlets in sip.xml . 10-4

Configuring the Logging Level and Destination . 10-5

Specifying the Criteria for Logging Messages . 10-7

Using XML Documents to Specify Logging Criteria . 10-7

Using Servlet Parameters to Specify Logging Criteria . 10-8

Specifying Content Types for Unencrypted Logging . 10-10

Managing Logging Performance . 10-11

Enabling Log Rotation and Viewing Log Files. 10-12

trace-pattern.dtd Reference . 10-12

Adding Tracing Functionality to SIP Servlet Code. 10-16

Order of Startup for Listeners and Logging Servlets. 10-17

11.Avoiding and Recovering From Server Failures
Failure Prevention and Recovery Features . 11-1

Overload Protection . 11-2

Redundancy and Failover for Clustered Services . 11-2

Automatic Restart for Failed Server Instances. 11-2

Managed Server Independence Mode . 11-2

Directory and File Backups for Failure Recovery. 11-3

Backing up config.xml . 11-3

Automated config.xml Archiving . 11-3

xii Configuring and Managing WebLogic SIP Server

Automatic Backup of config.xml at Server Startup . 11-4

Backing Up the sipserver Application . 11-4

Backing Up the Diameter Application. 11-4

Backing Up Server Start Scripts . 11-5

Backing Up Logging Servlet Applications . 11-5

Backing Up Security Data . 11-5

Backing Up the WebLogic LDAP Repository . 11-5

Backing Up SerializedSystemIni.dat and Security Certificates 11-6

Backing Up Additional Operating System Configuration Files 11-6

Restarting a Failed Administration Server . 11-7

Restarting an Administration Server on the Same Machine 11-7

Restarting an Administration Server on Another Machine 11-8

Restarting Failed Managed Servers. 11-8

12.Configuring SNMP
Overview of WebLogic SIP Server SNMP. 12-1

Browsing the MIB. 12-2

Configuring SNMP . 12-2

SNMP Port Binding for WebLogic SIP Server. 12-2

Understanding and Responding to SNMP Traps . 12-3

Files for Troubleshooting . 12-3

Trap Descriptions . 12-4

connectionLostToPeer. 12-4

connectionReestablishedToPeer . 12-5

dataTierServerStopped . 12-5

licenseLimitExceeded. 12-5

overloadControlActivated, overloadControlDeactivated 12-8

replicaAddedToPartition . 12-9

Configuring and Managing WebLogic SIP Server xiii

replicaRemovedFromPartition . 12-9

serverStopped . 12-9

sipAppDeployed . 12-10

sipAppUndeployed . 12-11

sipAppFailedToDeploy . 12-11

A. Upgrading Deployed SIP Applications
Overview of SIP Application Upgrades .A-1

Requirements and Restrictions for Upgrading Deployed Applications A-2

Steps for Upgrading a Deployed SIP Application. .A-3

Assign a Version Identifier .A-3

Defining the Version in the Manifest .A-4

Appending the Version to the Archive Name. .A-4

Appending the Version to the context-root (Enterprise Applications)A-4

Deploy the Updated Application Version .A-5

Undeploy the Older Application Version .A-5

Roll Back the Upgrade Process .A-7

Accessing the Application Name and Version Identifier .A-7

B. Upgrading Software and Converged Applications
Overview of System and Application Upgrades . B-1

Requirements for Upgrading a Production System . B-2

Upgrading to a New Version of WebLogic SIP Server. B-3

Configure the Load Balancer . B-4

Configure the New Engine Tier Cluster . B-4

Define the Cluster-to-Load Balancer Mapping . B-5

Duplicate the SIP Servlet Container and Data Tier Configuration B-6

Upgrade Engine Tier Servers and Target Applications to the New Cluster B-7

xiv Configuring and Managing WebLogic SIP Server

Upgrade Data Tier Servers. B-9

Upgrading a Deployed Production Application (Compatible Session Data) B-12

Upgrading a Deployed Production Application (Incompatible Session Data) B-13

Configure the Load Balancer . B-14

Configure the New Engine Tier Cluster. B-15

Define the Cluster-to-Load Balancer Mapping . B-15

Migrate Engine Tier Servers and Target Applications to the New Cluster B-16

C. Applying Patches Using InstallPatch
Overview of the InstallPatch Utility . C-1

Required Environment for the InstallPatch Utility . C-2

Syntax for Invoking the InstallPatch Utility . C-2

Example InstallPatch Commands . C-4

Editing the MANIFEST Classpath in GUI Mode . C-5

Troubleshooting the InstallPatch Utility . C-6

D. Upgrading a WebLogic SIP Server 2.0.x Configuration to
Version 2.2

About the Upgrade Program . D-1

Steps for Upgrading an Existing Configuration . D-2

Required Environment for the UpgradeConfig Utility . D-2

UpgradeConfig Reference. D-2

E. Improving Failover Performance for Physical Network Failures
Overview of Failover Detection . E-1

WlssEchoServer Failure Detection . E-2

WlssEchoServer Requirements and Restrictions . E-2

Starting WlssEchoServer on Data Tier Server Machines . E-3

Enabling and Configuring the Heartbeat Mechanism on Servers E-4

Configuring and Managing WebLogic SIP Server xv

F. Tuning JVM Garbage Collection for Production Deployments
Goals for Tuning Garbage Collection Performance . F-1

Tuning Garbage Collection with JRockit . F-2

Tuning Garbage Collection with Sun JDK . F-2

G. Avoiding JVM Delays Caused by Random Number Generation

xvi Configuring and Managing WebLogic SIP Server

Configuring and Managing WebLogic SIP Server 1-1

C H A P T E R 1

Overview of the WebLogic SIP Server
Architecture

The following sections provide an overview of the WebLogic SIP Server 2.2 architecture:

“Goals of the WebLogic SIP Server Architecture” on page 1-1

“Load Balancer” on page 1-2

“Engine Tier” on page 1-3

“Data tier” on page 1-4

“Example Hardware Configuration” on page 1-5

“Alternate Configurations” on page 1-5

Goals of the WebLogic SIP Server Architecture
WebLogic SIP Server 2.2 is designed to provide a highly scalable, highly available, performant
server for deploying SIP applications. The WebLogic SIP Server 2.2 architecture is simple to
manage and easily adaptable to make use of available hardware. The basic architecture consists
of these components:

Load Balancer

Engine Tier

Data tier

Figure 1-1 shows the components of a basic WebLogic SIP Server installation. The sections that
follow describe each component of the architecture in more detail.

Overv iew o f the WebLog ic S IP Se rve r A rch i tec ture

1-2 Configuring and Managing WebLogic SIP Server

Figure 1-1 WebLogic SIP Server 2.2 Architecture

Load Balancer
Although it is not provided as part of the WebLogic SIP Server product, a load balancer (or
multiple load balancers) is an essential component of any production WebLogic SIP Server
installation. The primary goal of a load balancer is to provide a single public address that
distributes incoming SIP requests to available servers in the WebLogic SIP Server engine tier.
Distribution of requests ensures that WebLogic SIP Server engines are fully utilized.

Most load balancers have configurable policies to ensure that client requests are distributed
according to the capacity and availability of individual machines, or according to any other load
policies required by your installation. Some load balancers provide additional features for
managing SIP network traffic, such as support for routing policies based on source IP address,
port number, or other fields available in SIP message headers. Many load balancer products also
provide additional fault tolerance features for telephony networks, and can be configured to

Engine T ie r

Configuring and Managing WebLogic SIP Server 1-3

consistently route SIP requests for a given call to the same engine server on which the call was
initiated.

In a WebLogic SIP Server installation, the load balancer is also essential for performing
maintenance activities such as upgrading individual servers (WebLogic SIP Server software or
hardware) or upgrading applications without disrupting existing SIP clients. The Administrator
modifies load balancer policies to move client traffic off of one or more servers, and then
performs the required upgrades on the unused server instances. Afterwards, the Administrator
modifies the load balancer policies to allow client traffic to resume on the upgraded servers.

BEA provides detailed information for setting up load balancers with the WebLogic SIP Server
engine tier for basic load distribution. See “Configuring Load Balancer Addresses” on page 7-2
to configure a load balancer used with WebLogic SIP Server and “Upgrading Software and
Converged Applications” on page B-1 to use a load balancer to perform system and application
upgrades.

Engine Tier
The engine tier is a cluster of WebLogic SIP Server instances that hosts the SIP Servlets that
provide features to SIP clients. In many configurations, server instances in the engine tier host
only SIP Servlets. SIP session information is not persisted in the engine tier, but is obtained by
querying the data tier, which also provides replication and failover services for SIP session data.

The primary goal of the engine tier is to provide maximum throughput and low response time to
SIP clients. As the number of calls, or the average duration of calls to your system increases, you
can easily add additional server instances to the engine tier to manage the additional load.

Note that although the engine tier consists of multiple WebLogic SIP Server instances, you
manage the engine tier as a single, logical entity; SIP Servlets are deployed uniformly to all server
instances (by targeting the cluster itself) and the load balancer need not maintain an affinity
between SIP clients and servers in the engine tier.

Notes: WebLogic SIP Server start scripts use default values for many JVM parameters that
affect performance. For example, JVM garbage collection and heap size parameters may
be omitted, or may use values that are acceptable only for evaluation or development
purposes. In a production system, you must rigorously profile your applications with
different heap size and garbage collection settings in order to realize adequate

Overv iew o f the WebLog ic S IP Se rve r A rch i tec ture

1-4 Configuring and Managing WebLogic SIP Server

performance. See “Tuning JVM Garbage Collection for Production Deployments” on
page F-1 for suggestions about maximizing JVM performance in a production domain.

Because the engine tier relies on data tier servers in order to retrieve call state data, BEA
recommends using dual Network Interface Cards (NICs) on engine and data tier
machines to provide redundant network connections.

Data tier
The data tier is a cluster of WebLogic SIP Server instances that provides a high-performance,
highly-available, in-memory database for storing and retrieving the session state data for SIP
Servlets. The goals of the data tier are as follows:

To provide reliable, performant storage for session data required by SIP applications in the
WebLogic SIP Server engine tier.

To enable administrators to easily scale hardware and software resources as necessary to
accommodate the session state for all concurrent calls.

Within the data tier, session data is managed in one or more “partitions” where each partition
manages a fixed portion of the concurrent call state. For example, in a system that uses two
partitions, the first partition manages one half of the concurrent call state (for example, sessions
A through M) while the second partition manages another half of the concurrent call states
(sessions N through Z). With three partitions, each partition manages a third of the call state, and
so on. Additional partitions can be added as necessary to manage a large number of concurrent
calls.

Within each partition, multiple servers can be added to provide redundancy and failover should
other servers in the partition fail. When multiple servers participate in the same partition, the
servers are referred to as “replicas” because each server maintains a duplicate copy of the
partition’s call state. For example, if a two-partition system has two servers in the first partition,
each server manages a replica of call states A through M. If one or more servers in a partition fails
or is disconnected from the network, any available replica can automatically provide call state
data to the engine tier. In WebLogic SIP Server 2.2, the data tier can have a maximum of three
replicas, providing two levels of redundancy.

See “Configuring Data Tier Partitions and Replicas” on page 3-1 for more information about
configuring the data tier for high availability. See “Determining Performance Goals” on page 6-2
for information about planning the hardware resources required in the data tier.

Example Hardware Conf igurat ion

Configuring and Managing WebLogic SIP Server 1-5

Note: Because the engine tier relies on data tier servers in order to retrieve call state data, BEA
recommends using dual Network Interface Cards (NICs) on engine and data tier
machines to provide redundant network connections.

Example Hardware Configuration
WebLogic SIP Server’s flexible architecture enables you to configure engine and data tiers in a
variety of ways to support high throughput and/or provide high availability. See “Capacity
Planning for WebLogic SIP Server Deployments” on page 6-1 for detailed information about
scaling the engine and data tiers to suit the needs of your organization.

Alternate Configurations
Not all WebLogic SIP Server requirements require the performance and reliability provided by
multiple servers in the engine and data tiers. On a development machine, for example, it is
generally more convenient to deploy and test applications on a single server, rather than a cluster
of servers.

WebLogic SIP Server enables you to combine engine and data tier services on a single server
instance when replicating call states is unnecessary. In a combined-tier configuration, the same
WebLogic SIP Server instance provides SIP Servlet container functionality and also manages the
call state for applications hosted on the server. Although the combined-tier configuration is most
commonly used for development and testing purposes, it may also be used in a production
environment if replication is not required for call state data. Figure 1-2 shows an example
deployment of multiple combined-tier servers in a production environment.

Overv iew o f the WebLog ic S IP Se rve r A rch i tec ture

1-6 Configuring and Managing WebLogic SIP Server

Figure 1-2 Single-Server Configurations with SIP-Aware Load Balancer

Because each server in a combined-tier server deployment manages only the call state for the
applications it hosts, the load balancer must be fully “SIP aware.” This means that the load
balancer actively routes multiple requests for the same call to the same WebLogic SIP Server
instance. If requests in the same call are not pinned to the same server, the call state cannot be
retrieved. Also keep in mind that if a WebLogic SIP Server instance fails in the configuration
shown in Figure 1-2, all calls handled by that server are lost.

Configuring and Managing WebLogic SIP Server 2-1

C H A P T E R 2

Overview of WebLogic SIP Server
Configuration and Management

The following sections provide an overview of how to configure and manage WebLogic SIP
Server deployments:

“Shared Configuration Tasks for WebLogic SIP Server and WebLogic Server” on page 2-1

“WebLogic SIP Server Configuration Overview” on page 2-2

“Startup Sequence for a WebLogic SIP Server Domain” on page 2-6

“Methods and Tools for Performing Configuration Tasks” on page 2-7

“Administration Server Best Practices” on page 2-9

“Common Configuration Tasks” on page 2-11

Shared Configuration Tasks for WebLogic SIP Server and
WebLogic Server

WebLogic SIP Server 2.2 is based on the award-winning WebLogic Server 8.1 application server,
and many system-level configuration tasks are the same for both products. This manual addresses
only those system-level configuration tasks that are unique to WebLogic SIP Server 2.2, such as
tasks related to network and security configuration and cluster configuration for the engine and
data tiers.

HTTP server configuration and other basic configuration tasks such as server logging, startup,
and shutdown, are addressed in the WebLogic Server 8.1 Documentation.

http://e-docs.bea.com/wls/docs81/index.html

Overv iew o f WebLog ic S IP Se rve r Conf igura t i on and Management

2-2 Configuring and Managing WebLogic SIP Server

WebLogic SIP Server Configuration Overview
The SIP Servlet container and call state data replication features of WebLogic SIP Server are
implemented in an Enterprise Application (EAR), named sipserver, that is deployed on the
WebLogic Server 8.1 product. The same sipserver application code is deployed to engine and
data tier instances of WebLogic SIP Server. The sipserver.xml and datatier.xml
configuration files included in the sipserver application determines the role of each server
instance.

A server instance initiates data tier services only if the server name is designated as a data tier
server in the datatier.xml configuration file. Servers that are not part of the data tier provide
SIP Servlet container features, and container properties are configured based on entries in the
sipserver.xml configuration file.

The sipserver EAR is deployed in exploded archive format, and is automatically copied to the
top level of the domain directory when you create a domain using the Configuration Wizard (for
example, c:\bea\user_projects\domains\mydomain\sipserver). Figure 2-1, “sipserver
Web Application Contents,” on page 2-3 summarizes the basic structure of the sipserver
application.

Only one copy of the deployment files are required for the engine and data tier servers in the
domain, because the same sipserver.xml and datatier.xml file are used by both clusters.

WARNING: Never modify, redeploy, or undeploy the sipserver implementation application
on a running production server. Always use the SIP Servers node in the
Administration Console or the WLST utility, as described in “Configuring
Engine Tier Container Properties” on page 4-1, to make changes to a
running WebLogic SIP Server deployment.

WebLogic S IP Se rve r Conf igurat i on Overv iew

Configuring and Managing WebLogic SIP Server 2-3

Figure 2-1 sipserver Web Application Contents

Overv iew o f WebLog ic S IP Se rve r Conf igura t i on and Management

2-4 Configuring and Managing WebLogic SIP Server

Configuration Implementation
The config Web Application in sipserver provides the logic for parsing the sipserver.xml
and datatier.xml files and applying configuration changes, as well as the implementation of
the Administration Console extensions for configuring SIP features. Because the
sipserver.xml and datatier.xml configuration files are included within a Web Application,
changing the configuration for a WebLogic SIP Server deployment involves modifying these
files.

Configuration changes to SIP Servlet container properties can be applied dynamically to a
running server by using the Administration Console SIP Servers node or from the command line
using the WLST utility. Configuration for data tier nodes cannot be changed dynamically, so you
must reboot data tier servers in order to change the number of partitions or replicas.

A special MBean included in the SIP Server implementation, ConfigManagerRuntimeMBean,
handles locking and modifying the sipserver.xml configuration file in response to JMX
commands, as well as applying configuration changes to running servers. Therefore, when you
edit a WebLogic SIP Server configuration using the Administration Console or using JMX-based
utilities, ConfigManagerRuntimeMBean manages updates to your configuration files
transparently. See “Configuring Engine Tier Container Properties” on page 4-1. If you want to
modify a configuration file outside of JMX, you must do so while WebLogic SIP Server is shut
down. See Engine Tier Configuration Reference (sipserver.xml) and Data Tier Configuration
Reference (datatier.xml) in the Configuration Reference Manual.

Diameter Configuration
The Diameter protocol implementation and configuration files are deployed as a Web
Application separate from the sipserver EAR. The Diameter Web Application configures a
specific Diameter protocol application to provide Diameter node functionality. WebLogic SIP
Server provides the Diameter protocol applications to support the following node types:

Diameter Sh interface client node

Diameter relay node

HSS simulator node (suitable for testing and development only, not for production
deployment)

The Diameter Web Application is deployed only to servers that need to act as Diameter client
nodes or relay agents, or to servers that want to provide HSS simulation capabilities. The actual
function of the server depends on the configuration defined in the diameter.xml file.

{DOCROOT}/configref/enginetier_dd.html
{DOCROOT}/configref/datatier_dd.html
{DOCROOT}/configref/datatier_dd.html

WebLogic S IP Se rve r Conf igurat i on Overv iew

Configuring and Managing WebLogic SIP Server 2-5

The Diameter Web Application is structured as follows:

WEB-INF/config contains the diameter.xml file that configures Diameter node
functionality. This file uses a configuration schema similar to the one used in
OpenDiameter (see the Diameter Configuration Reference (diameter.xml).)

WEB-INF/lib contains the Diameter application implmentations packaged as a JAR file.

See “Configuring Diameter Sh Client Nodes and Relay Agents” on page 5-1 for instructions to
configure the Diameter Web Application in a WebLogic SIP Server domain. See Using the IMS
Sh Interface (Diameter) in Developing Applications with WebLogic SIP Server for more
information about using the Sh profile API.

Understanding Staging Modes for the sipserver Application
The sipserver application provides both the SIP container implementation and the engine and
data tier configuration for all servers in a WebLogic SIP Server domain. To ensure that all engine
tier and data tier servers are configured in a consistent manner, you must deploy the same version
of the sipserver application to all WebLogic SIP Server instances in the domain.

The deployment staging mode determines how an application’s deployment files are made
available to a Managed Server in the domain. WebLogic SIP Server uses two basic deployment
staging modes for engine and data tier instances: nostage mode and stage mode. With nostage
mode, the sipserver deployment files are not copied to engine and data tier server machines.
Instead, all WebLogic SIP Server machines must be able to access the same sipserver
deployment files from a central location. In a multiple-server, replicated environment, this means
that the sipserver application must be published on a shared filesystem so that all server
instances can access the files at startup time. If one or more servers cannot access they
deployment files, they cannot deploy or configure SIP container services may be unable to
communicate with other WebLogic SIP Server instances. Nostage mode is generally used for
single-server domain deployments, or when the deployment files can be easily accessed over a
shared filesystem (for example, a network share or a multi-homed machine).

With stage mode deployment, the Administration Server first copies the sipserver application
deployment files to data and engine tier servers before deployment. The copied files reside in the
staging directory for each Managed Server instance (the root server directory, by default). Stage
mode is used for most multiple-server domains, and this mode is required if the sipserver
deployment files cannot be easily shared among engine and data tier server machines.

The Configuration Wizard automatically configures servers in a replicated domain to use stage
mode. Single-server (example) domains are to use nostage mode. See Changing a Server Staging

{DOCROOT}/programming/index.html
http://www.opendiameter.org/
{DOCROOT}/configref/diameter_dd.html
http://edocs.bea.com/wls/docs81/deployment/scenarios.html#1012657
{DOCROOT}/programming/diametersh.html
{DOCROOT}/programming/diametersh.html

Overv iew o f WebLog ic S IP Se rve r Conf igura t i on and Management

2-6 Configuring and Managing WebLogic SIP Server

Mode or Staging Directory in the WebLogic Server 8.1 Documentation for information about
how to verify or change a Managed Server’s deployment staging mode.

Startup Sequence for a WebLogic SIP Server Domain
Note: WebLogic SIP Server start scripts use default values for many JVM parameters that

affect performance. For example, JVM garbage collection and heap size parameters may
be omitted, or may use values that are acceptable only for evaluation or development
purposes. In a production system, you must rigorously profile your applications with
different heap size and garbage collection settings in order to realize adequate
performance. See “Tuning JVM Garbage Collection for Production Deployments” on
page F-1 for suggestions about maximizing JVM performance in a production domain.

WARNING: When you configure a domain with multiple engine and data tier servers, you
must accurately synchronize all system clocks to a common time source (to within
one or two milliseconds) in order for the SIP protocol stack to function properly.
See Configuring NTP for Accurate SIP Timers in Configuring and Managing
WebLogic SIP Server for more information.

Because a typical WebLogic SIP Server domain contains numerous engine and data tier servers,
with dependencies between the different server types, you should generally follow this sequence
when starting up a domain:

1. Start the Administration Server for the domain. Start the Administration Server in order
to provide the initial configuration to engine and data tier servers in the domain. The
Administration Server can also be used to monitor the startup/shutdown status of each
Managed Server. You generally start the Administration Server by using either the
startAdminServer.cmd script installed with the Configuration Wizard, or a custom startup
script.

2. Start data tier servers in each partition. The engine tier cannot function until servers in the
data tier are available to manage call state data. Although all replicas in each partition need
not be available to begin processing requests, at least one replica in each configured partition
must be available in order to manage the concurrent call state. All replicas should be started
and available before opening the system to production network traffic.

You generally start each data tier server by using either the startManagedWebLogic.cmd
script installed with the Configuration Wizard, or a custom startup script.
startManagedWebLogic.cmd requires that you specify the name of the server to startup,
as well as the URL of the Administration Server for the domain, as in:

startManagedWebLogic.cmd datanode0-0 t3://adminhost:7001

http://edocs.bea.com/wls/docs81/deployment/scenarios.html#1012657
http://edocs.bea.com/wls/docs81/
http://edocs.bea.com/wls/docs81/
{DOCROOT}/adminguide/enginetier.html#ntp
{DOCROOT}/adminguide/index.html
{DOCROOT}/adminguide/index.html

Methods and Too ls fo r Pe r fo rming Conf igura t ion Tasks

Configuring and Managing WebLogic SIP Server 2-7

3. Start engine tier servers. After the data tier servers have started, you can start servers in the
engine tier and begin processing client requests. As with data tier servers, engine tier servers
are generally started using the startManagedWebLogic.cmd script or a custom startup
script.

Following the above startup sequence ensures that all Managed Servers use the latest SIP Servlet
container and data tier configuration. This sequence also avoids engine tier error messages that
are generated when servers in the data tier are unavailable.

Methods and Tools for Performing Configuration Tasks
WebLogic SIP Server provides several mechanisms for changing the configuration of the SIP
Servlet container:

“Administration Console” on page 2-7

“Upgrade Utility” on page 2-7

“WebLogic Scripting Tool (WLST)” on page 2-8

“Additional Configuration Methods” on page 2-8

Administration Console
WebLogic SIP Server provides an Administration Console extension that allows you to modify
and monitor SIP Servlet container and data tier configuration properties using a graphical user
interface. The Administration Console for WebLogic SIP Server is similar to the console
available in WebLogic Server 8.1. All SIP Server configuration and monitoring is available via
the SIP Server node in the left pane. See “Configuring Engine Tier Container Properties” on
page 4-1 for more information about configuring the SIP Servlet container using the
Administration Console.

Upgrade Utility
The WebLogic SIP Server upgrade utility, wlss.UpgradeConfig, helps you migrate an earlier
WebLogic SIP Server configuration to a new WebLogic SIP Server 2.2 configuration.
wlss.UpgradeConfig operates by taking an existing sipserver.xml configuration file and
recreating the earlier configuration using the latest sipserver.xml schema. For more
information about upgrading a configuration, see “Upgrading a WebLogic SIP Server 2.0.x
Configuration to Version 2.2” on page D-1.

Overv iew o f WebLog ic S IP Se rve r Conf igura t i on and Management

2-8 Configuring and Managing WebLogic SIP Server

WebLogic Scripting Tool (WLST)
The WebLogic Scripting Tool (WLST) enables you to perform interactive or automated (batch)
configuration operations using a command-line interface. WLST is a JMX tool that can view or
manipulate the MBeans available in a running WebLogic SIP Server domain. “Configuring
Engine Tier Container Properties” on page 4-1 provides instructions for modifying SIP Servlet
container properties using WLST.

Additional Configuration Methods
Most WebLogic SIP Server configuration is performed using either the Administration Console
or WLST. The methods described in the following sections may also be used for certain
configuration tasks.

Editing Configuration Files
You may also edit sipserver.xml or datatier.xml by hand, following the respective schemas
described in Engine Tier Configuration Reference (sipserver.xml) and Data Tier Configuration
Reference (datatier.xml) in the Configuration Reference Manual.

If you edit sipserver.xml by hand, you must manually reboot all servers to apply the
configuration changes.

WARNING: Never redeploy or undeploy the sipserver implementation application on a
running server. Always use the SIP Servers node in the Administration Console
or the WLST utility, as described in “Configuring Engine Tier Container
Properties” on page 4-1, to make changes to a running WebLogic SIP
Server deployment.

Data tier properties, such as the number of call state partitions and replicas, can never be changed
while data tier server instances are running. If you edit datatier.xml, the changes are not
applied until the data tier servers are rebooted.

Custom JMX Applications
WebLogic SIP Server properties are represented by JMX-compliant MBeans, and access to these
MBeans and sipserver.xml is managed through the special runtime MBean,
com.bea.wcp.sip.management.runtime.ConfigManagerRuntimeMBean. You can
therefore program JMX application to configure SIP container properties using WebLogic SIP
Server MBeans.

{DOCROOT}/configref/enginetier_dd.html
{DOCROOT}/configref/datatier_dd.html
{DOCROOT}/configref/datatier_dd.html

Admin is t rat i on Se rve r Bes t P ract i ces

Configuring and Managing WebLogic SIP Server 2-9

The general procedure for modifying WebLogic SIP Server MBean properties using JMX is
described in “Configuring Container Properties Using WLST (JMX)” on page 4-4 (WLST itself
is a JMX-based application). For more information about the individual MBeans used to manage
SIP container properties, see the WebLogic SIP Server Javadocs.

Administration Server Best Practices
The Administration Server in a WebLogic SIP Server 2.0.2 installation is required only for
configuring, deploying, and monitoring J2EE services and applications; all SIP container
configuration is performed using the container's sipserver.xml configuration file.

Note: If an Administration Server fails due to a hardware, software, or network problem, only
management, deployment, and monitoring operations are affected. Managed Servers do
not require the Administration Server for continuing operation; J2EE applications
and SIP features running on Managed Server instances continue to function even if
the Administration Server fails.

BEA recommends the following best practices for configuring Administration Server and
Managed Server instances in your WebLogic SIP Server domain:

Run the Administration Server instance on a dedicated machine. The Administration
Server machine should have a memory capacity similar to Managed Server machines,
although a single CPU is generally acceptable for administration purposes.

Increase the threads available in the weblogic.admin.RMI and weblogic.admin.HTTP
execute queues to match the number of managed servers in your system.

Configure all Managed Server instances to use Managed Server Independence. This feature
allows the Managed Servers to restart even if the Administration Server is unreachable due
to a network, hardware, or software failure. See Replicating a Domain's Configuration
Files for Managed Server Independence in the WebLogic Server 8.1 documentation.

Configure the Node Manager utility to automatically restart all Managed Servers in the
WebLogic SIP Server domain. See Configuring, Starting, and Stopping Node Manager in
the WebLogic Server 8.1 documentation.

Should an Administration Server instance or machine fail, remember that only configuration,
deployment, and monitoring features are affected, but Managed Servers continue to operate and
process client requests. Potential losses incurred due to an Administration Server failure include:

Loss of in-progress management and deployment operations.

Loss of ongoing logging functionality.

{DOCROOT}/javadoc/index.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/servers.html#1142751
http://e-docs.bea.com/wls/docs81/ConsoleHelp/servers.html#1142751
http://e-docs.bea.com/wls/docs81/adminguide/confignodemgr.html

Overv iew o f WebLog ic S IP Se rve r Conf igura t i on and Management

2-10 Configuring and Managing WebLogic SIP Server

Loss of SNMP trap generation for WebLogic Server instances (as opposed to WebLogic
SIP Server instances). On Managed Servers, WebLogic SIP Server traps are generated even
in the absence of the Administration Server.

To resume normal management activities, restart the failed Administration Server instance as
soon as possible.

Adding threads to weblogic.admin.RMI and
weblogic.admin.HTTP
You must increase the default size of the weblogic.admin.RMI and weblogic.admin.HTTP
execute queues to ensure that an Administration Server can configure and monitor the large
number of Managed Server instances deployed in a typical WebLogic SIP Server system. The
number of threads in each queue should, match the number of deployed Managed Servers in both
the engine and data tier clusters. By default, weblogic.admin.HTTP contains three threads and
weblogic.admin.RMI contains two threads.

weblogic.admin.RMI and weblogic.admin.RMI are internal execute queues and are not
displayed for configuration in the Administration Console. To add threads to the default queues,
you must manually edit the config.xml file for your domain to specify the queue configuration.
Listing 2-1 highlights the configuration entries required for managing 10 servers (10 threads in
each queue). Note that

Listing 2-1 Increasing the Thread Count in Administration Server Execute Queues

<?xml version="1.0" encoding="UTF-8"?>

<Domain ConfigurationVersion="8.1.5.0" Name="my_domain">

 <Cluster MulticastAddress="237.0.0.1" Name="BEA_ENGINE_TIER_CLUST"/>

 <Cluster MulticastAddress="237.0.0.2" Name="BEA_DATA_TIER_CLUST"/>

 <Server ListenAddress="admin_server_address" ListenPort="7001"

 Name="my_admin_server" NativeIOEnabled="true"

 ReliableDeliveryPolicy="RMDefaultPolicy" ServerVersion="8.1.5.0">

 <SSL Enabled="false" HostnameVerificationIgnored="false"

 IdentityAndTrustLocations="KeyStores" Name="my_admin_server"/>

 <ExecuteQueue Name="weblogic.kernel.Default"/>

Common Conf igura t ion Tasks

Configuring and Managing WebLogic SIP Server 2-11

 <ExecuteQueue Name="sip.tracing.domain" QueueLength="1024"

 ThreadCount="1" ThreadsMaximum="1" ThreadsMinimum="1"/>

 <ExecuteQueue Name="weblogic.admin.RMI" ThreadCount="10"/>

 <ExecuteQueue Name="weblogic.admin.HTTP" ThreadCount="10"/>

 </Server>

Common Configuration Tasks
General administration and maintenance of WebLogic SIP Server requires that you manage both
WebLogic Server configuration properties and WebLogic SIP Server container properties. These
common configuration tasks are summarized in Table 2-1.

Table 2-1 Common WebLogic SIP Server Configuration Tasks

Task Description

“Configuring Engine Tier
Container Properties” on
page 4-1

• Configuring SIP Container Properties using the
Administration Console

• Using WLST to perform batch configuration

“Configuring Data Tier
Partitions and Replicas”
on page 3-1

• Assigning WebLogic SIP Server instances to the data tier
partitions

• Replicating call state using multiple data tier instances

“Managing WebLogic
SIP Server Network
Resources” on page 7-1

• Configuring WebLogic Server network channels to
handling SIP and HTTP traffic

• Setting up multi-homed server hardware
• Configuring load balancers for use with WebLogic SIP

Server

Configuring Digest
Authentication in
Configuring Security for
WebLogic SIP Server

• Configuring the LDAP Digest Authentication Provider
• Configuring a trusted host list

“Logging SIP Requests
and Responses” on
page 10-1

• Configuring logging Servlets to record SIP requests and
responses.

• Defining log criteria for filtering logged messages
• Maintaining WebLogic SIP Server log files

{DOCROOT}/security/digestauth.html
{DOCROOT}/security/digestauth.html

Overv iew o f WebLog ic S IP Se rve r Conf igura t i on and Management

2-12 Configuring and Managing WebLogic SIP Server

Configuring and Managing WebLogic SIP Server 3-1

C H A P T E R 3

Configuring Data Tier Partitions and
Replicas

The following sections describe how to configure WebLogic SIP Server instances that make up
the data tier cluster of a deployment:

“Overview of Data Tier Configuration” on page 3-1

“Best Practices for Configuring and Managing Data Tier Servers” on page 3-3

“Example Data Tier Configurations and Configuration Files” on page 3-4

– “Data Tier with One Partition” on page 3-4

– “Data Tier with Two Partitions” on page 3-5

– “Data Tier with Two Partitions and Two Replicas” on page 3-5

“Monitoring and Troubleshooting Data Tier Servers” on page 3-6

Overview of Data Tier Configuration
The WebLogic SIP Server data tier is a cluster of server instances that manages the application
call state for concurrent SIP calls. The data tier may manage a single copy of the call state or
multiple copies as needed to ensure that call state data is not lost if a server machine fails or
network connections are interrupted.

The data tier cluster is arranged in one or more partitions. A partition consists of one or more data
tier server instances that manage the same portion of the concurrent call state data. In a
single-server WebLogic SIP Server installation, or in a two-server installation where one server
resides in the engine tier and one resides in the data tier, all call state data is maintained in a single

Conf igur ing Data T ie r Par t i t i ons and Repl icas

3-2 Configuring and Managing WebLogic SIP Server

partition. Multiple partitions are required when the size of the concurrent call state exceeds the
maximum size that can be managed by a single server instance. When more than one partition is
used, the concurrent call state is split among the partitions, and each partition manages an
separate portion of the data. For example, with a two-partition data tier, one partition manages
the call state for half of the concurrent calls (for example, calls A through M) while the second
partition manages the remaining calls (N through Z).

In most cases, the maximum call state size that can be managed by an individual server
corresponds to the Java Virtual Machine limit of approximately 1.6GB per server. See “Capacity
Planning for WebLogic SIP Server Deployments” on page 6-1 for more information.

Additional servers can be added to the data tier to manage copies of the call state data. When
multiple servers are part of the same partition, each server manages a copy of the same portion of
the call data, referred to as a replica of the call state. If any server in a partition fails or cannot be
contacted due to a network failure, another replica in the partition supplies the call state data to
the engine tier.

datatier.xml Configuration File
The datatier.xml configuration file identifies data tier servers and also defines the partitions
and replicas used to manage the call state. If a server’s name is present in datatier.xml, that
server loads WebLogic SIP Server data tier functionality at boot time. (Server names that do not
appear in datatier.xml act as engine tier nodes and instead provide SIP Servlet container
functionality configured by the sipserver.xml configuration file.)

The sections that follow show examples of the datatier.xml contents for common data tier
configurations. See also Data Tier Configuration Reference (datatier.xml) in the Configuration
Reference Manual for full information about the XML Schema and elements.

Configuration Requirements and Restrictions
All servers that participate in the data tier should be members of the same WebLogic Server
cluster. The cluster configuration enables each server to monitor the status of other servers. Using
a cluster also enables you to easily target the sipserver application to all servers for
deployment.

For high reliability, you can configure up to 3 replicas within a partition.

The data tier configuration cannot be changed dynamically. You must restart servers in the data
tier in order to change data tier membership or reconfigure partitions or replicas. You can view

{DOCROOT}/configref/datatier_dd.html

Best P ract i ces fo r Conf igur ing and Managing Data T ie r Se rve rs

Configuring and Managing WebLogic SIP Server 3-3

the current data tier configuration using the Configuration->Data Tier page of the WebLogic SIP
Server Administration Console, as shown in Figure 3-1.

Figure 3-1 Administration Console Display of Data Tier Configuration (Read-Only)

Best Practices for Configuring and Managing Data Tier
Servers

Adding replicas can increase reliability for the system as a whole, but keep in mind that each
additional server in a partition requires additional network bandwidth to manage the replicated
data. With three replicas in a partition, each transaction that modifies the call state updates data
on three different servers.

To ensure high reliability when using replicas, always ensure that server instances in the same
partition reside on different machines. Hosting two or more replicas on the same machine leaves
all of the hosted replicas vulnerable to a machine or network failure.

Data tier servers can have one of three different statuses:

ONLINE—indicates that the server is available for managing call state transactions.

OFFLINE—indicates that the server is shut down or unavailable.

ONLINE_LOCK_AUTHORITY_ONLY—indicates that the server was rebooted and is currently
being updated (from other replicas) with the current call state data. A recovering server
cannot yet process call state transactions, because it does not maintain a full copy of the
call state managed by the partition.

If you need to take a data tier server instance offline for scheduled maintenance, make sure that
at least one other server in the same partition is active. If you shut down an active server and
all other servers in the partition are offline or recovering, you will lose a portion of the active
call state.

Conf igur ing Data T ie r Par t i t i ons and Repl icas

3-4 Configuring and Managing WebLogic SIP Server

WebLogic SIP Server automatically divides the call state evenly over all configured partitions.

Example Data Tier Configurations and Configuration Files
The sections that follow describe some common WebLogic SIP Server installations that utilize a
separate data tier.

Data Tier with One Partition
A single-partition, single-server data tier represents the simplest data tier configuration.
Listing 3-1 shows a data tier configuration for a single-server deployment.

Listing 3-1 Data Tier Configuration for Small Deployment

<st:data-tier

xmlns:st=”http://bea.com/wcp/sip/management/internal/webapp”>

 <st:partition>

 <st:name>Partition0</st:name>

 <st:server-name>DataNode0-0</st:server-name>

</st:partition>

</st:data-tier>

To add a replica to an existing partition, simply define a second server-name entry in the same
partition. For example, the datatier.xml configuration file shown in Listing 3-2 recreates the
two-replica configuration shown in Figure 6-3, “Small Deployment with High Availability,” on
page 6-8.

Listing 3-2 Data Tier Configuration for Small Deployment with Replication

<st:data-tier

xmlns:st=”http://bea.com/wcp/sip/management/internal/webapp”>

 <st:partition>

 <st:name>Partition0</st:name>

 <st:server-name>DataNode0-0</st:server-name>

Example Data T ie r Conf igu rat i ons and Conf igura t i on F i l es

Configuring and Managing WebLogic SIP Server 3-5

 <st:server-name>DataNode0-1</st:server-name>

</st:partition>

</st:data-tier>

Data Tier with Two Partitions
Multiple partitions can be easily created by defining multiple partition entries in
datatier.xml, as shown in Listing 3-3.

Listing 3-3 Two-Partition Data Tier Configuration

<st:data-tier

xmlns:st=”http://bea.com/wcp/sip/management/internal/webapp”>

<st:partition>

 <st:name>Partition0</st:name>

 <st:server-name>DataNode0-0</st:server-name>

</st:partition>

<st:partition>

 <st:name>Partition1</st:name>

 <st:server-name>DataNode0-1</st:server-name>

</st:partition>

</st:data-tier>

Data Tier with Two Partitions and Two Replicas
Replicas of the call state can be added by defining multiple data tier servers in each partition.
Figure 6-4, “Medium-Sized Deployment,” on page 6-9 shows a system having two partitions
with two servers (replicas) in each partition. Listing 3-4 shows the datatier.xml configuration
file used to define this data tier.

Conf igur ing Data T ie r Par t i t i ons and Repl icas

3-6 Configuring and Managing WebLogic SIP Server

Listing 3-4 Data Tier Configuration for Small Deployment

<st:data-tier

xmlns:st=”http://bea.com/wcp/sip/management/internal/webapp”>

 <st:partition>

 <st:name>Partition0</st:name>

 <st:server-name>DataNode0-0</st:server-name>

<st:server-name>DataNode0-1</st:server-name>

</st:partition>

<st:partition>

 <st:name>Partition1</st:name>

 <st:server-name>DataNode1-0</st:server-name>

<st:server-name>DataNode1-1</st:server-name>

</st:partition>

</st:data-tier>

Monitoring and Troubleshooting Data Tier Servers
A runtime MBean, com.bea.wcp.sip.management.runtime.ReplicaRuntimeMBean,
provides valuable information about the current state and configuration of the data tier. See the
WebLogic SIP Server JavaDocs for a description of the attributes provided in this MBean.

Many of these attributes can be viewed using the SIP Servers Monitoring->Data Tier Information
tab in the Administration Console, as shown in “Data Tier Monitoring in the Administration
Console” on page 3-7.

{DOCROOT}/javadoc/index.html

Moni to r ing and T roub leshoo t ing Data T ie r Se rve rs

Configuring and Managing WebLogic SIP Server 3-7

Figure 3-2 Data Tier Monitoring in the Administration Console

Listing 3-5 shows a simple WLST session that queries the current attributes of a single Managed
Server instance in a data tier partition. Table 3-1, “ReplicaRuntimeMBean Method and Attribute
Summary,” on page 3-9 describes the MBean services in more detail.

Listing 3-5 Displaying ReplicaRuntimeMBean Attributes

connect(‘weblogic’,’weblogic’,’t3://datahost1:7001’)

custom()

cd

('mydomain:Location=dataserver0-0,Name=dataserver0-0,ServerRuntime=dataser

ver0-0,Type=ReplicaRuntime')

ls()

-rw- BytesReceived 0

-rw- BytesSent 0

-rw- CachingDisabled true

-rw- CurrentViewId 0

-rw- DataItemCount 0

-rw- DataItemsToRecover 0

-rw- HighKeyCount 0

-rw- HighTotalBytes 0

Conf igur ing Data T ie r Par t i t i ons and Repl icas

3-8 Configuring and Managing WebLogic SIP Server

-rw- KeyCount 0

-rw- MBeanInfo weblogic.management.tools.In

fo@194d9d5

-rw- Name myserver1

-rw- ObjectName

mydomain:Location=dataserver0-0,

Name=dataserver0-0,ServerRuntime=dataserver0-0,Type=ReplicaRuntime

-rw- Parent mydomain:Location=dataserver0-0,

Name=myserver1,Type=ServerRuntime

-rw- PartitionId 0

-rw- PartitionName partition-0

-rw- Registered false

-rw- ReplicaId 0

-rw- ReplicaServersInCurrentView

java.lang.String[dataserver0-0]

-rw- ReplicasInCurrentView [I@169454d

-rw- State ONLINE

-rw- TimerQueueSize 0

-rw- TotalBytes 0

-rw- Type ReplicaRuntime

-rwx dumpState void :

-rwx preDeregister void :

Moni to r ing and T roub leshoo t ing Data T ie r Se rve rs

Configuring and Managing WebLogic SIP Server 3-9

Table 3-1 ReplicaRuntimeMBean Method and Attribute Summary

Method/Attribute Description

dumpState() Records the entire state of the selected data tier server
instance to the WebLogic SIP Server log file. You may
want to use the dumpState() method to provide
additional diagnostic information to a Technical
Support representative in the event of a problem.

BytesReceived The total number of bytes received by this data tier
server. Bytes are received as servers in the engine tier
provide call state data to be stored.

BytesSent The total number of bytes sent from this data tier server.
Bytes are sent to engine tier servers when requested to
provide the stored call state.

CurrentViewId The current view ID. Each time the layout of the data
tier changes, the view ID is incremented. For example,
as multiple servers in a data tier cluster are started for
the first time, the view ID is incremented when each
server begins participating in the data tier. Similarly,
the view is incremented if a server is removed from the
data tier, either intentionally or due to a failure.

DataItemCount The total number of stored call state keys for which this
server has data. This attribute may be lower than the
KeyCount attribute if the server is currently
recovering data.

DataItemsToRecover The total number of call state keys that must still be
recovered from other replicas in the partition. A data
tier server may recover keys when it has been taken
offline for maintenance and is then restarted to join the
partition.

HighKeyCount The highest total number of call state keys that have
been managed by this server since the server was
started.

HighTotalBytes The highest total number of bytes occupied by call state
data that this server has managed since the server was
started.

Conf igur ing Data T ie r Par t i t i ons and Repl icas

3-10 Configuring and Managing WebLogic SIP Server

KeyCount The number of call data keys that are stored on the
replica.

PartitionId The numerical partition ID (from 0 to 7) of this server’s
partition.

PartitionName The name of this server’s partition.

ReplicaId The numerical replica ID (from 0 to 2) of this server’s
replica.

ReplicaName The name of this server’s replica.

ReplicaServersInCurrentView The names of other WebLogic SIP Server instances that
are participating in the partition.

State The current state of the replica. Data tier servers can
have one of three different statuses:
• ONLINE—indicates that the server is available for

managing call state transactions.
• OFFLINE—indicates that the server is shut down

or unavailable.
• ONLINE_LOCK_AUTHORITY_ONLY—indicates

that the server was rebooted and is currently being
updated (from other replicas) with the current call
state data. A recovering server cannot yet process
call state transactions, because it does not maintain
a full copy of the call state managed by the
partition.

Table 3-1 ReplicaRuntimeMBean Method and Attribute Summary

Method/Attribute Description

Moni to r ing and T roub leshoo t ing Data T ie r Se rve rs

Configuring and Managing WebLogic SIP Server 3-11

TimerQueueSize The current number of timers queued on the data tier
server. This generally corresponds to the KeyCount
value, but may be less if new call states are being added
but their associated timers have not yet been queued.

Note: Engine tier servers periodically check with
data tier instances to determine if timers
associated with a call have expired. In order
for SIP timers to function properly, all engine
tier servers must actively synchronize their
system clocks to a common time source. BEA
recommends using a Network Time Protocol
(NTP) client or daemon on each engine tier
instance and synchronizing to a selected NTP
server.

TotalBytes The total number of bytes consumed by the call state
managed in this server.

Table 3-1 ReplicaRuntimeMBean Method and Attribute Summary

Method/Attribute Description

Conf igur ing Data T ie r Par t i t i ons and Repl icas

3-12 Configuring and Managing WebLogic SIP Server

Configuring and Managing WebLogic SIP Server 4-1

C H A P T E R 4

Configuring Engine Tier Container
Properties

The following sections describe how to configure SIP Container features in the engine tier of a
WebLogic SIP Server deployment:

“Overview of SIP Container Configuration” on page 4-2

“Using the Administration Console to Configure Container Properties” on page 4-2

– “Locking and Persisting the Configuration” on page 4-3

“Configuring Container Properties Using WLST (JMX)” on page 4-4

– “ConfigManagerRuntimeMBean Usage and Reference” on page 4-5

– “Configuration MBeans for the SIP Servlet Container” on page 4-6

– “Locating the WebLogic SIP Server MBeans” on page 4-8

“WLST Configuration Examples” on page 4-9

– “Invoking WLST” on page 4-9

– “WLST Template for Configuring Container Attributes” on page 4-10

– “Creating and Deleting MBeans” on page 4-11

– “Working with URI Values” on page 4-12

“Reverting to the Original Boot Configuration” on page 4-13

“Configuring NTP for Accurate SIP Timers” on page 4-13

Conf igur ing Engine T ie r Conta iner P roper t i es

4-2 Configuring and Managing WebLogic SIP Server

Overview of SIP Container Configuration
As described in “WebLogic SIP Server Configuration Overview” on page 2-2, WebLogic SIP
Server engine and data tier features are implemented using the sipserver J2EE application, and
SIP Container configuration is managed by the config Web Application contained in
sipserver, which contains the sipserver.xml file.

You can configure SIP Container properties either by using a JMX utility such as the
Administration Console or WebLogic Scripting Tool (WLST), or by programming a custom
JMX application. “Using the Administration Console to Configure Container Properties” on
page 4-2 describes how to configure container properties using the Administration Console
graphical user interface.

“Configuring Container Properties Using WLST (JMX)” on page 4-4 describes how to directly
access JMX MBeans to modify the container configuration. All examples use WLST to illustrate
JMX access to the configuration MBeans.

Using the Administration Console to Configure Container
Properties

The Administration Console included with WebLogic SIP Server enables you to configure and
monitor core WebLogic Server functionality as well as the SIP Servlet container functionality
provided with WebLogic SIP Server. To configure or monitor SIP Servlet features using the
Administration Console:

1. Use your browser to access the URL http://address:7001/console where address is the
Administration Server’s listen address and 7001 is the listen port.

2. Expand the SIP Servers node in the left pane.

3. Select the sipserver entry to display configuration and monitoring tabs in the right pane of the
console.

Note: In most cases your configuration will have only a single sipserver container beneath
the SIP Servers node. Additional containers may be available when performing a
production upgrade, as described in “Upgrading Software and Converged
Applications” on page B-1.

The right pane of the console provides two levels of tabbed pages that are used for
configuring and monitoring WebLogic SIP Server. Table 4-1 summarizes the available

Using the Admin is t ra t ion Conso le to Conf igure Conta ine r P roper t i es

Configuring and Managing WebLogic SIP Server 4-3

pages and provides links to additional information about configuring SIP container
properties.

Locking and Persisting the Configuration
In order to modify information on any of the WebLogic SIP Server configuration pages, you must
first obtain a lock on the configuration by clicking the Edit Configuration button. Locking a
configuration prevents other Administrators from modifying the configuration at the same time.
If you click Edit Configuration while another user has obtained a lock, you are unable to make
configuration changes until the lock has been released.

If you obtain a lock on the configuration, you can change SIP Servlet container attribute values
on multiple configuration pages as needed. You then have several options depending on whether
you want to keep or discard the changes you have made. The available options are displayed as
a series of buttons at the bottom of each configuration page:

Save—Saves your current changes to a temporary configuration file,
sipserver.xml.saved, in the config subdirectory of the sipserver application.

Table 4-1 WebLogic SIP Server Configuration and Monitoring Pages

Page Function

Configuration-> General Configure SIP timer values, session timeout duration, and default
WebLogic SIP Server behavior (proxy or user agent).

Proxy Configure proxy routing URIs and proxy policies.

Overload Protection Configure the conditions for enabling and disabling automatic
overload controls.

Message Debug Enable or disable SIP message logging on a development system.

SIP Security Identify trusted hosts for which authentication is not performed.

Data Tier View the current configuration of data tier servers.

Monitoring-> General View runtime information about messages and sessions processed in
engine tier servers.

SIP Applications View runtime session information for deployed SIP applications.

Data Tier
Information

View runtime information about the current status and the work
performed by servers in the data tier.

{DOCROOT}/configref/enginetier_dd.html#timers
{DOCROOT}/configref/enginetier_dd.html#sessionlifetime
{DOCROOT}/configref/enginetier_dd.html#defaultbehavior
{DOCROOT}/configref/enginetier_dd.html#defaultbehavior
{DOCROOT}/configref/enginetier_dd.html#proxy
{DOCROOT}/configref/enginetier_dd.html#overload
{DOCROOT}/configref/enginetier_dd.html#messagedebug
{DOCROOT}/configref/enginetier_dd.html#sipsecurity
{DOCROOT}/adminguide/datatier.html#dataconfig
{DOCROOT}/adminguide/datatier.html#datamon
{DOCROOT}/adminguide/datatier.html#datamon

Conf igur ing Engine T ie r Conta iner P roper t i es

4-4 Configuring and Managing WebLogic SIP Server

Rollback—Discards your current changes, deleting any temporary configuration files that
were written with previous Save operations.

Activate—Persists all current changes to the sipserver.xml file (renaming the temporary
sipserver.xml.saved files to sipserver.xml), and activates the changes.

Note that WebLogic SIP Server automatically saves the original boot configuration in the file
sipserver.xml.booted in the sipserver/config subdirectory. You can use this file to revert
to the booted configuration if necessary to discard all configuration changes made since the server
was started.

Configuring Container Properties Using WLST (JMX)
Notes: The WebLogic Scripting Tool (WLST) is a utility that you can use to observe or modify

JMX MBeans available on a WebLogic Server or WebLogic SIP Server instance. WLST
is not distributed with WebLogic SIP Server, but can be downloaded from BEA’s
dev2dev site at
https://submit-codesamples.projects.dev2dev.bea.com/servlets/Scarab?id=CS26.
Documentation for WLST is included with the product download, and also at
http://e-docs.bea.com/wls/docs90/config_scripting/index.html.

Before using WLST to configure a WebLogic SIP Server domain, you must add to your
classpath all JAR files in the APP-INF/lib directory of the sipserver application. By
default these files are located in DOMAIN_DIR/sipserver/APP-INF/lib where
DOMAIN_DIR is the root of your WebLogic SIP Server domain. The libraries are
automatically added to your classpath using the setAdminClientEnv script, described
in “Invoking WLST” on page 4-9.

The APP-INF/lib classes are required in addition to the WLST JAR files described in
the WLST documentation.

JMX configuration of the SIP Servlet container is managed by the
configManagerRuntimeMBean. ConfigManagerRuntimeMBean manages tasks such as:

Governing access to the active SIP Servlet container configuration

Writing the current container configuration to the sipserver.xml configuration file

Activating the config Web Application to apply changes to the running SIP Servlet
container

Although any JMX application can access the SIP container’s configuration MBeans, all changes
to those MBeans must be coordinated through ConfigManagerRuntimeMBean.

https://submit-codesamples.projects.dev2dev.bea.com/servlets/Scarab?id=CS26
http://e-docs.bea.com/wls/docs90/config_scripting/index.html

Conf igur ing Conta iner P roper t ies Us ing WLST (JMX)

Configuring and Managing WebLogic SIP Server 4-5

ConfigManagerRuntimeMBean Usage and Reference
Table 4-2 describes the methods provided by ConfigManagerRuntimeMBean.

A typical configuration session involves the following tasks (also summarized in Figure 4-1):

1. Access the ConfigManagerRuntimeMBean for the WebLogic SIP Server instance that you
want to configure and call startEdit() to obtain a lock on the active configuration.

2. Modify existing SIP Servlet container configuration MBean attributes (or create or delete
configuration MBeans) to modify the active configuration. See “Configuration MBeans for
the SIP Servlet Container” on page 4-6 for a summary of the configuration MBeans.

3. Call ConfigManagerRuntimeMBean.save() to persist all changes to a temporary
configuration file named sipserver.xml.saved, or

4. Call ConfigManagerRuntimeMBean.activate() to persist changes to the
sipserver.xml.saved file, rename sipserver.xml.saved to sipserver.xml (copying
over the existing file), and apply changes to the running config application.

Table 4-2 ConfigManagerRuntimeMBean Method Summary

Method Description

activate() Writes the current configuration MBean attributes (the
current SIP Servlet container configuration) to the
sipserver.xml configuration file and applies
changes to the running the config application.

save() Writes the current configuration MBean attributes (the
current SIP Servlet container configuration) to the
sipserver.xml configuration file.

startEdit() Locks changes to the active SIP Servlet container
configuration. Other JMX application cannot alter the
configuration until you explicitly call stopEdit(), or
until your edit session is terminated.

If you attempt to call startEdit() when another
user has obtained the lock, you receive an error
message that states the user who owns the lock.

stopEdit() Releases the lock obtained for modifying SIP container
properties and rolls back any pending MBean changes.

Conf igur ing Engine T ie r Conta iner P roper t i es

4-6 Configuring and Managing WebLogic SIP Server

Note: When you boot the Administration Server for a WebLogic SIP Server domain, the
server parses the current container configuration in sipserver.xml and creates a
copy of the initial configuration in a file named sipserver.xml.booted. You can
use this copy to revert to the booted configuration, as described in “Reverting to the
Original Boot Configuration” on page 4-13.

Figure 4-1 Typical ConfigManagerRuntimeMBean Workflow

Configuration MBeans for the SIP Servlet Container
ConfigManagerRuntimeMBean manages access to and persists the configuration MBean
attributes described in Table 4-3. Although you can modify other configuration MBeans, such as

Conf igur ing Conta iner P roper t ies Us ing WLST (JMX)

Configuring and Managing WebLogic SIP Server 4-7

WebLogic Server MBeans that manage resources such as network channels and other server
properties, those MBeans are not managed by ConfigManagerRuntimeMBean.

Table 4-3 SIP Container Configuration MBeans

MBean Type MBean Attributes Description

ClusterToLoadBa
lancerMap

ClusterName,
LoadBalancerSipURI

Manages the mapping of multiple clusters to
internal virtual IP addresses during a
software upgrade. This attribute is not used
during normal operations. See also
cluster-loadbalancer-map in the
Configuration Reference Manual.

OverloadProtect
ion

RegulationPolicy,
ThresholdValue,
ReleaseValue

Manages overload settings for throttling
incoming SIP requests. See also overload in
the Configuration Reference Manual.

Proxy ProxyURIs,
RoutingPolicy

Manages the URIs routing policies for proxy
servers. See also proxy—Setting Up an
Outbound Proxy Server in the Configuration
Reference Manual.

{DOCROOT}/configref/enginetier_dd.html#clusterloadbalancermap
{DOCROOT}/configref/enginetier_dd.html#overload
{DOCROOT}/configref/enginetier_dd.html#proxy
{DOCROOT}/configref/enginetier_dd.html#proxy

Conf igur ing Engine T ie r Conta iner P roper t i es

4-8 Configuring and Managing WebLogic SIP Server

Locating the WebLogic SIP Server MBeans
All SIP Servlet container configuration MBeans, as well as ConfigManagerRuntimeMBean, are
located in the “custom” MBean tree, accessed using the custom() command in WLST. Within
the custom bean tree, individual configuration MBeans can be accessed using the path:

mydomain:DomainConfig=mydomain,Location=myserver,Name=myserver,Type=mbeant

ype

SipSecurity TrustedAuthentication
Hosts

Defines trusted hosts for which
authentication is not performed. See also
sip-security in the Configuration Reference
Manual.

SipServer DefaultBehavior,
EnableLocalDispatch,
MaxApplicationSession
LifeTime,
OverloadProtectionMBe
an, ProxyMBean,
T1TimeoutInterval,
T2TimeoutInterval,
T4TimeoutInterval,
TimerBTimeoutInterval
,
TimerFTimeoutInterval

SipServer also has
several helper
methods:
createProxy(),
destroyProxy(),
createOverloadProtect
ion(),
destroyOverloadProtec
tion(),
createClusterToLoadBa
lancerMap(),
destroyClusterToLoadB
alancerMap()

Configuration MBean that represents the
entire sipserver.xml configuration file.
You can use this MBean to obtain and
manage each of the individual MBeans
described in this table, or to set SIP timer or
SIP Session timeout values. See also
“Creating and Deleting MBeans”
on page 4-11, default-behavior,
enable-local-dispatch,
max-application-session-lifeti
me, t1-timeout-interval,
t2-timeout-interval,
t4-timeout-interval,
timerB-timeout-interval, and
timerF-timeout-interval in the
Configuration Reference Manual.

Table 4-3 SIP Container Configuration MBeans

MBean Type MBean Attributes Description

{DOCROOT}/configref/enginetier_dd.html#sipsecurity
{DOCROOT}/configref/enginetier_dd.html#defaultbehavior
{DOCROOT}/configref/enginetier_dd.html#enablelocaldispatch
{DOCROOT}/configref/enginetier_dd.html#maxapplicationsessionlifetime
{DOCROOT}/configref/enginetier_dd.html#maxapplicationsessionlifetime
{DOCROOT}/configref/enginetier_dd.html#t1
{DOCROOT}/configref/enginetier_dd.html#t2
{DOCROOT}/configref/enginetier_dd.html#t4
{DOCROOT}/configref/enginetier_dd.html#timerb
{DOCROOT}/configref/enginetier_dd.html#timerf

WLST Conf igurat ion Examples

Configuring and Managing WebLogic SIP Server 4-9

where:

mydomain is the name of the WebLogic SIP Server domain

myserver is the name of the WebLogic SIP Server instance

mbeantype corresponds to an MBean type listed in Table 4-3.

Runtime MBeans, such as ConfigManagerRuntime, are accessed using the path:

mydomain:Location=myserver,Name=myserver,Type=mbeantype

For example, to browse the default Proxy MBean for a WebLogic SIP Server domain you would
enter these WLST commands:

custom()

cd(‘mydomain:DomainConfig=mydomain,Location=myserver,Name=myserver,Type=Pr

oxy’)

ls()

Certain configuration settings, such as proxy and overload protection settings, are defined by
default in sipserver.xml. Configuration MBeans are generated for these settings when you
boot the associated server, so you can immediately browse the Proxy and OverloadProtection
MBeans. Other configuration settings are not configured by default and you will need to create
the associated MBeans before they can be accessed. See “Creating and Deleting MBeans” on
page 4-11.

If no entries are present in sipserver.xml, only the SipServer and ConfigManagerRuntime
MBean types are available for browsing.

WLST Configuration Examples
The following sections provide example WLST scripts and commands for configuring SIP
Servlet container properties.

Invoking WLST
To use WLST with WebLogic SIP Server, you must ensure that all WebLogic SIP Server JAR
files are included in your classpath along with the required WLST JAR files. Follow these steps:

1. Set your WebLogic SIP Server client administration environment using a script installed with
your domain:

Conf igur ing Engine T ie r Conta iner P roper t i es

4-10 Configuring and Managing WebLogic SIP Server

cd c:\bea\wlss220\server\bin

.\setAdminClientEnv.cmd

2. Add the required WLST JAR files to your class path:

cd c:\wlst

set CLASSPATH=%CLASSPATH%;c:\wlst\jython.jar;c:\wlst\wlst.jar

3. Start WLST:

java weblogic.WLST

4. Connect to the Administration Server for your WebLogic SIP Server domain:

connect('system','weblogic','t3://myadminserver:7001')

WLST Template for Configuring Container Attributes
Because a typical configuration session involves accessing ConfigManagerRuntimeMBean
twice—once for obtaining a lock on the configuration, and once for persisting the configuration
and/or applying changes—JMX applications that manage container attributes generally have a
similar structure. Listing 4-1 shows a WLST script that contains the common commands needed
to access ConfigManagerRuntimeMBean. The example script modifies the proxy
RoutingPolicy attribute, which is set to supplemental by default in new WebLogic SIP
Server domains. You can use this listing as a basic template, modifying commands to access and
modify the configuration MBeans as necessary.

Listing 4-1 Template WLST Script for Accessing ConfigManagerRuntimeMBean

Connect to the Administration Server

connect('weblogic','weblogic','t3://localhost:7001')

Navigate to ConfigManagerRuntimeMBean and start an edit session.

custom()

cd('mydomain:Location=myserver,Name=sipserver,ServerRuntime=myserver,Type=

ConfigManagerRuntime')

cmo.startEdit()

--MODIFY THIS SECTION AS NECESSARY--

Edit SIP Servlet container configuration MBeans

WLST Conf igurat ion Examples

Configuring and Managing WebLogic SIP Server 4-11

cd('mydomain:DomainConfig=mydomain,Location=myserver,Name=myserver,SipServ

er=myserver,Type=Proxy')

set('RoutingPolicy','domain')

Navigate to ConfigManagerRuntimeMBean and persist the configuration

to sipserver.xml

cd('mydomain:Location=myserver,Name=sipserver,ServerRuntime=myserver,Type=

ConfigManagerRuntime')

cmo.activate()

Creating and Deleting MBeans
The SipServer MBean represents the entire contents of the sipserver.xml configuration file.
In addition to having several attributes for configuring SIP timers and SIP application session
timeouts, SipServer provides helper methods to help you create or delete MBeans representing
proxy settings and overload protection controls.

Listing 4-2 shows an example of how to use the helper commands to create and delete
configuration MBeans that configuration elements in sipserver.xml. See also Listing 4-3,

“SIP Container Configuration MBeans,” on page 4-7 for a listing of other helper
methods in SipServer, or refer to the WebLogic SIP Server JavaDocs.

Listing 4-2 WLST Commands for Creating and Deleting MBeans

connect()

custom()

cd('mydomain:Location=myserver,Name=sipserver,ServerRuntime=myserver,Type=

ConfigManagerRuntime')

cmo.startEdit()

cd('mydomain:DomainConfig=mydomain,Location=myserver,Name=sipserver,Server

Runtime=myserver,Type=SipServer')

cmo.destroyOverloadProtection()

cmo.createProxy()

{DOCROOT}/javadoc/index.html

Conf igur ing Engine T ie r Conta iner P roper t i es

4-12 Configuring and Managing WebLogic SIP Server

cd('mydomain:Location=myserver,Name=sipserver,ServerRuntime=myserver,Type=

ConfigManagerRuntime')

cmo.save()

Working with URI Values
Configuration MBeans such as Proxy require URI objects passed as attribute values. BEA
provides a helper class, com.bea.wcp.sip.util.URIHelper, to help you easily generate URI
objects from an array of Strings. Listing 4-3 modifies the sample shown in Listing 4-2, “WLST
Commands for Creating and Deleting MBeans,” on page 4-11 to add a new URI attribute to the
LoadBalancer MBean. See also the WebLogic SIP Server JavaDocs for a full reference to the
URIHelper class.

Listing 4-3 Invoking Helper Methods for Setting URI Attributes

Import helper method for converting strings to URIs.

from com.bea.wcp.sip.util.URIHelper import stringToSipURIs

connect()

custom()

cd('mydomain:Location=myserver,Name=sipserver,ServerRuntime=myserver,Type=

ConfigManagerRuntime')

cmo.startEdit()

cd('mydomain:DomainConfig=mydomain,Location=myserver,Name=sipserver,Type=S

ipServer')

cmo.createProxy()

cd('mydomain:DomainConfig=mydomain,Location=myserver,Name=sipserver,SipSer

ver=sipserver,Type=Proxy')

stringarg =

jarray.array([java.lang.String("sip://siplb.bea.com:5060")],java.lang.Stri

ng)

uriarg = stringToSipURIs(stringarg)

set('ProxyURIs',uriarg)

{DOCROOT}/javadoc/index.html

Reve r t ing to the Or ig ina l Boo t Conf igurat ion

Configuring and Managing WebLogic SIP Server 4-13

cd('mydomain:Location=myserver,Name=sipserver,ServerRuntime=myserver,Type=

ConfigManagerRuntime')

cmo.save()

Reverting to the Original Boot Configuration
When you boot the Administration Server for a WebLogic SIP Server domain, the server creates
parses the current container configuration in sipserver.xml, and generates a copy of the initial
configuration in a file named sipserver.xml.booted. This backup copy of the initial
configuration is preserved until you next boot the server; modifying the configuration using JMX
does not affect the backup copy.

If you modify the SIP Servlet container configuration and later decide to roll back the changes,
copy the sipserver.xml.booted file over the current sipserver.xml file. Then reboot the
server to apply the new configuration.

Configuring NTP for Accurate SIP Timers
As engine tier servers add new call state data to the data tier, data tier instances queue and
maintain the complete list of SIP protocol timers and application timers associated with each call.
Engine tier servers periodically poll all partitions of the data tier to determine which timers have
expired, given the current time. (Multiple engine tier polls to the data tier are staggered to avoid
contention on the timer tables.) Engine tier servers then process expired timers using threads
allocated in the sip.timer.Default execute queue.

In order for the SIP protocol stack to function properly, all engine and data tier servers must
accurately synchronize their system clocks to a common time source, to within one or two
milliseconds. Large differences in system clocks cause a number of severe problems such as:

SIP timers firing prematurely on servers with the fast clock settings.

Poor distribution of timer processing in the engine tier. For example, one engine tier server
may processes all expired timers, whereas other engine tier servers process no timers.

BEA recommends using a Network Time Protocol (NTP) client or daemon on each WebLogic
SIP Server instance and synchronizing to a common NTP server.

WARNING: You must accurately synchronize server system clocks to a common time source
(to within one or two milliseconds) in order for the SIP protocol stack to function
properly. Because the initial T1 timer value of 500 milliseconds controls the
retransmission interval for INVITE request and responses, and also sets the initial

Conf igur ing Engine T ie r Conta iner P roper t i es

4-14 Configuring and Managing WebLogic SIP Server

values of other timers, even small differences in system clock settings can cause
improper SIP protocol behavior. For example, an engine tier server with a system
clock 250 milliseconds faster than other servers will process more expired timers
than other engine tier servers, will cause retransmits to begin in half the allotted
time, and may force messages to timeout prematurely.

Configuring and Managing WebLogic SIP Server 5-1

C H A P T E R 5

Configuring Diameter Sh Client Nodes
and Relay Agents

The following sections describe how to configure individual servers to act as Diameter nodes or
relays in a WebLogic SIP Server domain:

“Overview of Diameter Protocol Configuration” on page 5-1

“Steps for Configuring Diameter Client Nodes and Relay Agents” on page 5-2

“Installing the Diameter Domain” on page 5-3

“Creating Network Channels for the Diameter Protocol” on page 5-5

“Configuring Diameter Sh Client Nodes” on page 5-7

“Configuring Diameter Relay Agents (Optional)” on page 5-10

“Example Domain Configuration” on page 5-14

“Configuring an HSS Simulator” on page 5-20

Overview of Diameter Protocol Configuration
A typical WebLogic SIP Server domain deploys support for the Diameter base protocol and IMS
Sh interface provider on all engine tier servers, which each act as Diameter Sh client nodes. SIP
Servlets deployed on the engines can use the profile service API to initiate requests for user
profile data, or to subscribe to and receive notification of profile data changes. The Sh interface
is also used to communicate between multiple IMS Application Servers. Using the Profile
Service API (Diameter Sh Interface) in Programming Applications with WebLogic SIP Server
describes the API in more detail.

{DOCROOT}/programming/diametersh.html
{DOCROOT}/programming/diametersh.html
{DOCROOT}/programming/index.html

Conf igur ing D iameter Sh C l ien t Nodes and Re lay Agents

5-2 Configuring and Managing WebLogic SIP Server

One or more server instances may be also be configured as Diameter relay agents, which route
Diameter messages from the client nodes to a configured Home Subscriber Server (HSS) in the
network, but do not modify the messages. BEA recommends configuring one or more servers to
act as relay agents in a domain. The relays simplify the configuration of Diameter client nodes,
and reduce the number of network connections to the HSS. Using at least two relays ensures that
a route can be established to an HSS even if one relay agent fails.

Note: In order to support multiple HSSs, the 3GPP defines the Dh interface to look up the
correct HSS. WebLogic SIP Server 2.2 does not provide a Dh interface application, and
can be configured only with a single HSS.

Note that relay agent servers do not function as either engine or data tier instances—they should
not host applications, store call state data, maintain SIP timers, or even use SIP protocol network
resources (sip or sips network channels).

WebLogic SIP Server also provides a simple HSS simulator that you can use for testing Sh client
applications. You can configure a WebLogic SIP Server instance to function as an HSS simulator
by deploying the appropriate application.

Steps for Configuring Diameter Client Nodes and Relay
Agents

To configure Diameter support in a WebLogic SIP Server domain, follow these steps:

1. Install the WebLogic SIP Server Diameter Domain. Install the Diameter domain, which
contains a sample configuration and template Web Applications configured for different
Diameter node types.

2. Create Diameter network channels. Create the network channels necessary to support
Diameter over TCP or TLS transports on engine tier servers and relays.

3. Configure the Diameter Sh client nodes (engine tier servers). Configure the Diameter Sh
client application on engine tier servers with the host name, peers, and routes to the relay
agents or HSS.

4. Configure Diameter relay agents (optional). Configure the Diameter relay application on one
or more server instances to act as relay agents to an HSS.

5. Configure an HSS Simulator (optional). Configure a the Diameter relay application on a
WebLogic SIP Server instance to function as an HSS simulator for testing or example
purposes.

#channels
#clients
#relays
#configwiz
#hss

Ins ta l l ing the D iamete r Domain

Configuring and Managing WebLogic SIP Server 5-3

The sections that follow describe each step in detail. See also the “Example Domain
Configuration” on page 5-14.

Installing the Diameter Domain
The Configuration Wizard includes a Diameter domain template that creates a domain having
four WebLogic SIP Server instances:

– An Administration Server

– A Diameter Sh client node

– A Diameter relay node

– An HSS (HSS simulator)

You can use the installed Diameter domain as the basis for creating your own domain. Or, you
can use the customized Diameter Web Applications as templates for configuring existing
WebLogic SIP Server instances to function as HSS client or relay agent nodes. The configuration
instructions in the sections that follow assume that you have access to the Diameter domain
configuration. Follow these steps to install the domain:

1. Change to the WLSS_HOME\common directory, where WLSS220 is the directory in which you
install WebLogic SIP Server 2.2 (for example, c:\bea\wlss220\common).

2. Execute the config.cmd or config.sh script to launch the Configuration Wizard.

3. Select Create a new WebLogic Configuration and click Next.

4. Select the Diameter WebLogic SIP Server domain and click Next.

5. Select Express and click Next.

6. Select the preconfigured server, “myserver” to function as the Administration Server and
click Next.

7. Enter a username and password for the Administrator of the new domain, and click Next.

8. Select the startup mode and JDKs to use with the new domain, and click Next.

9. Click Create to create the new domain using the default domain name and domain location
(BEA_HOME/user_projects/domains/diameter).

10. Click Done.

Conf igur ing D iameter Sh C l ien t Nodes and Re lay Agents

5-4 Configuring and Managing WebLogic SIP Server

Table 5-1 describes the server configuration installed with the Diameter domain.

Table 5-1 Key Configuration Elements of the Diameter Domain

Server Name Network Channel
Configuration

Deployed Applications Notes

myserver n/a n/a The Administration Server uses no SIP or
Diameter network channels and deploys no
sipserver or Diameter application.

hssclient diameterchannel
(UDP/TCP over port
3868)

sipchannel
(UDP/TCP over port
5060)

./diameter_hssclient

./sipserver

The hssclient server shows the sample
configuration of an engine tier server that
functions as a Diameter Sh client node.
The server contains network channels
supporting both SIP and Diameter traffic.
The diameter_hssclient Web
Application configures the server as an Sh
client node, and the sipserver
implementation application provides SIP
container services.

relay diameterchannel
(TCP over port
3869)

./diameter_relay The relay server shows the sample
configuration of a server that functions as
a Diameter Sh relay node. The server
contains a network channel to support
both Diameter traffic. The server does not
contain a channel to support SIP traffic, as
a relay performs no SIP message
processing.

The diameter_relay Web Application
configures the Diameter relay application
to connect the hssclient and hss
servers. The sipserver EAR is not
deployed to the relay as it provides no SIP
container functionality.

hss diameterchannel
(TCP over port
3870)

./diameter_hss The hss server deploys only the HSS
simulator application code, and is
configured with a Diameter network
channel.

Creat ing Network Channe ls fo r the D iamete r P ro toco l

Configuring and Managing WebLogic SIP Server 5-5

Creating Network Channels for the Diameter Protocol
WebLogic SIP Server’s Diameter implementation supports the Diameter protocol over two
different transport protocols: TCP and TLS. To enable incoming Diameter connections on a
server, you must configure a dedicated network channel using the protocol type “diameter” or
“diameters” for TCP and TCP/TLS transport, respectively. The provider may automatically
upgrade Diameter connections to use TLS as is described in the Diameter specification (RFC
3558).

Servers that use a TCP/TLS channel for Diameter (diameters channels) must also enable two-way
SSL.

To configure a TCP or TCP/TLS channel for use with the Diameter provider, follow these steps:

1. Access the Administration Console for the WebLogic SIP Server domain.

2. In the left pane, select the name of the server to configure.

3. In the right pane, select Protocols->Channels to display the configured channels.

4. Click Configure a new Network Channel in the right pane.

5. Fill in the new channel fields as follows:

– Name: Enter an administrative name for this channel, such as “Diameter TCP/TLS
Channel.”

– Protocol: Select either diameter to support the TCP transport, or diameters to support
both TCP and TLS transports.

Note: If a server configures at least one TLS channel, the server operates in TLS mode
and will reject peer connections from nodes that do not support TLS (as indicated
in their capabilities exchange).

– Listen Address: Enter the IP address or DNS name for this channel. On a multi-homed
machine, enter the exact IP address of the interface you want to configure, or a DNS
name that maps to the exact IP address.

– Listen Port: Enter the port number used to communication via this channel. Diameter
nodes conventionally use port 3868 for incoming connections.

6. Click Create to create the new channel.

7. Display the advanced configuration items for the newly-created channel by clicking the Show
link next to Advanced Options.

Conf igur ing D iameter Sh C l ien t Nodes and Re lay Agents

5-6 Configuring and Managing WebLogic SIP Server

8. Change the Idle Connection Timeout value from the default (65 seconds) to a larger value
that will ensure the Diameter connection remains consistently available.

Note: If you do not change the default value, the Diameter connection will be dropped and
recreated every 65 seconds with idle traffic.

9. Click Apply.

The servers installed with the Diameter domain template include network channel configurations
for Diameter over TCP transport. Note that the relays server includes only a diameter channel and
not a sip or sips channel. Relay agents should not host SIP Servlets or other applications, therefore
no SIP transports should be configured on relay server nodes.

Configuring Two-Way SSL for Diameter TLS Channels
Diameter channels that use TLS (diameters channels) require that you also enable two-way SSL,
which is disabled by default. Follow these steps to enable two-way SSL for a server:

1. Configure basic SSL support, if you have not already done so. See Configuring SSL in the
WebLogic Server 8.1 Documentation.

2. Access the Administration Console for the WebLogic SIP Server domain.

3. In the left pane, select the name of the server to configure.

4. Select the Configuration-->Keystores & SSL tab.

5. Click the Show link under Advanced Options.

6. Go to the Server attributes section of the window.

7. Change the Two Way Client Cert Behavior attribute from the default, Client Certs Not
Requested (which defines one-way SSL) to one of the remaining options:

– Client Certs Requested But Not Enforced—Requires a client to present a certificate.
If a certificate is not presented, the SSL connection continues.

– Client Certs Requested And Enforced—Requires a client to present a certificate. If a
certificate is not presented or if the certificate is not trusted, the SSL connection is
terminated.

8. Click Apply.

9. Reboot the server.

http://e-docs.bea.com/wls/docs81/secmanage/ssl.html#configureSSL

Conf igu r ing D iamete r Sh C l i en t Nodes

Configuring and Managing WebLogic SIP Server 5-7

Configuring Diameter Sh Client Nodes
All engine tier servers that act as Diameter client nodes share the same configuration for the
Diameter Sh client application. (Servers that act as Diameter relay agents configure deploy a
different Diameter Web Application.) The Sh client application is deployed as a standalone Web
Application, and is configured using a diameter.xml configuration file. To enable Sh client
support for engine server nodes, you copy the diameter_hssclient Web Application from the
Diameter domain you installed using the configuration wizard, and then modify the configuration
files to suit your environment. Follow these steps:

1. Copy the diameter_hssclient directory contents from the Diameter domain you installed
into your own domain. For example:

cp -r ~/bea/user_projects/domains/diameter/diameter_hssclient
~/bea/user_projects/domains/replicated

2. Open the diameter.xml configuration file with a text editor:

emacs
~/bea/user_projects/domains/replicated/diameter_hssclient/WEB-INF/confi
g/diameter.xml

3. Edit the configuration file to change the following items to match those for your domain:

– The host names of any relay agents configured in the domain, supplied as arguments to
the Sh application and defined as Diameter peer nodes. If no relay agents are used, all
engine tier servers must be added to the list of peers, or dynamic peers must be
enabled.

– One or more routes to access relay agent nodes (or the HSS) in the domain.

The template diameter.xml file contains sample values for these items. Listing 5-1 below
also shows a sample configuration file for an engine tier cluster that accesses an HSS using
two relays, with highlighted comments for certain entries. See Using the IMS Sh Interface
(Diameter) in Programming Applications with WebLogic SIP Server for more information
about elements in the diameter.xml file.

Listing 5-1 diameter.xml Configuration for Sh Client Nodes Using Relay Agents

<?xml version="1.0" encoding="utf-8"?>

<configuration xmlns:xsi= "http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="http://www.bea.com/ns/wlcp/diameter.xsd">

{DOCROOT}/programming/diametersh.html
{DOCROOT}/programming/diametersh.html
{DOCROOT}/programming/index.html

Conf igur ing D iameter Sh C l ien t Nodes and Re lay Agents

5-8 Configuring and Managing WebLogic SIP Server

<!-- Omit the host and realm elements to dynamically assign the hostname

and domain name of individual engine tier servers. -->

<node>

 <applications>

 <application>

 <auth-application-id>16777217</auth-application-id>

 <vendor-id>10415</vendor-id>

<!-- Specify the BEA Sh application ID and Diameter vendor ID. -->

 <class-name>com.bea.wcp.diameter.sh.WlssShApplication</class-name>

<!-- Identify the BEA Sh application provider class name. -->

 <param>

 <name>dest.host</name>

 <value>HSS_hostname</value>

 </param>

<!-- Include a dest.host param definition only if servers will

communicate directly to an HSS (static routing), without using

a relay agent. Omit the dest.host param completely when routing

through relay agents. -->

 <param>

 <name>dest.realm</name>

 <value>relayorhss.com</value>

 </param>

<!-- Specify the realm name of relay agent servers or the HSS,

depending on whether or not the domain uses relay agents. -->

 </application>

 </applications>

 <peers>

Conf igu r ing D iamete r Sh C l i en t Nodes

Configuring and Managing WebLogic SIP Server 5-9

 <peer>

 <host>relay1</host>

 <address>relay1host</address>

<!-- The address element can specify either a DNS name or IP address,

whereas the host element must specify a diameter host identity.

The diameter host identity may or may not match the DNS name. -->

 <port>3821</port>

 </peer>

 <peer>

 <host>relay2</host>

 <address>relay2host</address>

 <port>3821</port>

 </peer>

<!-- Include peer entries for each relay agent server used in the domain.

If no relay agents are used, include a peer entry for the HSS

itself, as well as for all other Sh client nodes (all other engine

tier servers in the domain).

Alternately, use the allow-dynamic-peers functionality in

combination with TLS transport to allow peers to be recognized

automatically. -->

</peers>

<routes>

<default-route>

<action>relay</action>

<server>relay1</server>

</default-route>

<!-- Enter a default route to a selected relay agent. If the domain does

Conf igur ing D iameter Sh C l ien t Nodes and Re lay Agents

5-10 Configuring and Managing WebLogic SIP Server

not use a relay agent, specify a default route to relay messages

directly to the HSS. -->

<route>

<action>relay</action>

<server>relay2</server>

</route>

<!-- Include additional route entries for each relay agent in the

domain. -->

</routes>

</node>

</configuration>

4. Save your changes to the diameter.xml file and exit the text editor.

5. Start the Administration Server for your domain, and deploy the diameter_hssclient
application directory to the engine tier cluster, as in:

java weblogic.Deployer -adminurl t3://localhost:7001 -user weblogic \

-password weblogic -targets BEA_ENGINE_TIER_CLUST -deploy \

-source ~/bea/user_projects/domains/replicated/diameter_hssclient

Configuring Diameter Relay Agents (Optional)
Each server instance that acts as a Diameter relay agent must be configured independently (have
a dedicated diameter.xml configuration file packaged in a copy of the Diameter Web
Application). Relay agents are not required in a Diameter configuration, but BEA recommends
using at least two relay agent servers to limit the number of direct connections to the HSS, and to
provide multiple routes to the HSS in the event of a failure.

Note: In addition to deploying a custom diameter.xml configuration to each relay agent, you
must ensure that relay servers do not also act as WebLogic SIP Server engine tier servers
or data tier servers. This means that the servers should not be configured with “sip” or
“sips” network channels, and should not deploy the sipserver Enterprise Application.

Relay agent nodes route Sh messages between client nodes and the HSS, but they do not modify
the messages except as defined in the Diameter Sh specification. Relays always route responses

Conf igur ing D iamete r Re lay Agents (Opt iona l)

Configuring and Managing WebLogic SIP Server 5-11

from the HSS back the client node that initiated the message, or the message the response is
dropped if that node is unavailable.

For each relay agent node that you want to configure, follow these steps:

1. Copy the diameter_relay directory contents from the Diameter domain you installed into
a new directory in your own domain:

cp -r ~/bea/user_projects/domains/diameter/diameter_relay
~/bea/user_projects/domains/replicated/diameter_relay1

Note that you will need to create and configure a separate “diameter_relay” application
directory for each relay in your system.

2. Open the diameter_relay application’s diameter.xml configuration file with a text editor.
For example:

emacs
~/bea/user_projects/domains/replicated/diameter_relay1/WEB-INF/config/d
iameter.xml

3. Edit the configuration file to change the following items to match those for your domain:

– The host and realm name of the relay agent server.

– The host and port names of all servers acting as Diameter Sh client nodes, defined as
Diameter peer nodes.

– A default route to the HSS configured in the network.

The template diameter.xml file contains sample values for these items. Listing 5-2 below
also shows a sample configuration file for a single relay node in the example two-relay
system described in “Example Domain Configuration” on page 5-14.

Listing 5-2 diameter.xml Configuration for a Diameter Relay Agent Server

<?xml version="1.0" encoding="utf-8"?>

<configuration xmlns:xsi= "http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="http://www.bea.com/ns/wlcp/diameter.xsd">

 <host>relay1</host>

 <realm>bea.com</realm>

<!-- Specify the host and realm name for this relay agent. -->

<node>

Conf igur ing D iameter Sh C l ien t Nodes and Re lay Agents

5-12 Configuring and Managing WebLogic SIP Server

 <applications>

<application>

<auth-application-id>-1</auth-application-id>

<class-name>com.bea.wcp.diameter.relay.RelayApplication</class-name>

<!-- Identify the BEA relay application class name. -->

</application>

</applications>

 <peers>

<!-- Define peer connection information for each Sh client, or use the

allow-dynamic-peers functionality in combination with TLS

transport to allow peers to be recognized automatically. -->

 <peer>

 <host>engine1</host>

 <address>engine1host</address>

 <port>3821</port>

 </peer>

 <peer>

 <host>engine2</host>

 <address>engine2host</address>

 <port>3821</port>

 </peer>

<peer>

 <host>engine3</host>

 <address>engine3host</address>

 <port>3821</port>

 </peer>

<peer>

Conf igur ing D iamete r Re lay Agents (Opt iona l)

Configuring and Managing WebLogic SIP Server 5-13

 <host>relay2</host>

 <address>relay2host</address>

 <port>3821</port>

 </peer>

<peer>

 <host>hss</host>

 <address>hsshost</address>

 <port>3821</port>

 </peer>

<!-- Include peer entries for each engine tier server (each Diameter

client node), additional relay agents, and for the HSS itself. -->

</peers>

<routes>

<default-route>

<action>relay</action>

<server>hss</server>

</default-route>

<!-- Enter a default route for this agent to relay messages

to the HSS. -->

</routes>

</node>

</configuration>

4. Save your changes to the diameter.xml file and exit the text editor.

5. Start the Administration Server for your domain, and deploy the correct “diameter_relay”
application directory to the corresponding WebLogic SIP Server instance. Use either the
Administration Console or the weblogic.Deployer utility, as in:

java weblogic.Deployer -adminurl t3://localhost:7001 -user weblogic \

 -password weblogic -deploy -targets Relay1 \

Conf igur ing D iameter Sh C l ien t Nodes and Re lay Agents

5-14 Configuring and Managing WebLogic SIP Server

 -source ~/bea/user_projects/domains/replicated/diameter_relay1

Example Domain Configuration
This section describes a sample WebLogic SIP Server configuration that provides basic Diameter
Sh protocol capabilities. The layout of the sample domain includes the following:

Three engine tier servers which host SIP applications and also deploy the Diameter Sh
application for accessing user profiles.

Four data tier servers arranged into two partitions with two replicas each.

Two servers that act as Diameter relay agents and forward diameter requests to an HSS.

Figure 5-1 shows the individual servers in the sample configuration.

Figure 5-1 Sample Diameter Domain

The listings that follow show the contents of diameter.xml files used in to configure the sample
domain.

Example Domain Conf igurat ion

Configuring and Managing WebLogic SIP Server 5-15

Listing 5-3 diameter.xml Configuration for Sample Engine Tier Cluster

<?xml version="1.0" encoding="utf-8"?>

<configuration xmlns:xsi= "http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="http://www.bea.com/ns/wlcp/diameter.xsd">

<node>

 <applications>

 <application>

 <auth-application-id>16777217</auth-application-id>

 <vendor-id>10415</vendor-id>

<class-name>com.bea.wcp.diameter.sh.WlssShApplication</class-name>

 <param>

 <name>dest.realm</name>

 <value>relay_wlss.com</value>

 </param>

 </application>

 </applications>

 <peers>

 <peer>

 <host>Relay1</host>

 <address>10.0.1.20</address>

 <port>3821</port>

 </peer>

 <peer>

 <host>Relay2</host>

 <address>10.0.1.21</address>

 <port>3821</port>

 </peer>

Conf igur ing D iameter Sh C l ien t Nodes and Re lay Agents

5-16 Configuring and Managing WebLogic SIP Server

 </peers>

<routes>

<default-route>

<action>relay</action>

<server>Relay1</server>

</default-route>

<route>

<action>relay</action>

<server>Relay2</server>

</route>

</routes>

</node>

</configuration>

Listing 5-4 diameter.xml Configuration for Sample Relay Agent Server 1

<?xml version="1.0" encoding="utf-8"?>

<configuration xmlns:xsi= "http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="http://www.bea.com/ns/wlcp/diameter.xsd">

<node>

 <host>Relay1</host>

 <realm>bea.com</realm>

 <applications>

<application>

<auth-application-id>-1</auth-application-id>

<class-name>com.bea.wcp.diameter.relay.RelayApplication</class-name>

</application>

</applications>

Example Domain Conf igurat ion

Configuring and Managing WebLogic SIP Server 5-17

 <peers>

 <peer>

 <host>Engine1</host>

 <address>10.0.1.1</address>

 <port>3821</port>

 </peer>

 <peer>

 <host>Engine2</host>

 <address>10.0.1.2</address>

 <port>3821</port>

 </peer>

<peer>

 <host>Engine3</host>

 <address>10.0.1.3</address>

 <port>3821</port>

 </peer>

<peer>

 <host>Relay2</host>

 <address>10.0.1.21</address>

 <port>3821</port>

 </peer>

<peer>

 <host>HSS</host>

 <address>10.0.1.30</address>

 <port>3821</port>

 </peer>

</peers>

Conf igur ing D iameter Sh C l ien t Nodes and Re lay Agents

5-18 Configuring and Managing WebLogic SIP Server

<routes>

<default-route>

<action>relay</action>

<server>HSS</server>

</default-route>

</routes>

</node>

</configuration>

Listing 5-5 diameter.xml Configuration for Sample Relay Agent Server 2

<?xml version="1.0" encoding="utf-8"?>

<configuration xmlns:xsi= "http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="http://www.bea.com/ns/wlcp/diameter.xsd">

<node>

 <host>Relay2</host>

 <realm>bea.com</realm>

 <applications>

<application>

<auth-application-id>-1</auth-application-id>

<class-name>com.bea.wcp.diameter.relay.RelayApplication</class-name>

</application>

</applications>

 <peers>

 <peer>

 <host>Engine1</host>

 <address>10.0.1.1</address>

 <port>3821</port>

Example Domain Conf igurat ion

Configuring and Managing WebLogic SIP Server 5-19

 </peer>

 <peer>

 <host>Engine2</host>

 <address>10.0.1.2</address>

 <port>3821</port>

 </peer>

<peer>

 <host>Engine3</host>

 <address>10.0.1.3</address>

 <port>3821</port>

 </peer>

<peer>

 <host>Relay1</host>

 <address>10.0.1.20</address>

 <port>3821</port>

 </peer>

<peer>

 <host>HSS</host>

 <address>10.0.1.30</address>

 <port>3821</port>

 </peer>

</peers>

<routes>

<default-route>

<action>relay</action>

<server>HSS</server>

</default-route>

Conf igur ing D iameter Sh C l ien t Nodes and Re lay Agents

5-20 Configuring and Managing WebLogic SIP Server

</routes>

</node>

</configuration>

Configuring an HSS Simulator
The Diameter domain template installs a diameter_hss Web Application that you can deploy
to a server instance in order to simulate an HSS in your domain. This is provided for testing or
development purposes only, and is not meant as a substitute for a production HSS.

To set up a WebLogic SIP Server instance with the HSS simulator application:

1. Copy the diameter_hss directory contents from the Diameter domain you installed into a
new directory in your own domain:

cp -r ~/bea/user_projects/domains/diameter/diameter_hss
~/bea/user_projects/domains/replicated/

2. Open the diameter_hss application’s diameter.xml configuration file with a text editor.
For example:

emacs
~/bea/user_projects/domains/replicated/diameter_hss/WEB-INF/config/diam
eter.xml

3. Edit the configuration file to change the following items to match those for your domain:

– The host and realm name of the HSS.

– The host and port names of all servers acting as Diameter relay nodes (or as Diameter
Sh client nodes if your system uses no relays), defined as Diameter peer nodes.

– A default route to relay to the HSS server itself.

The template diameter.xml file contains sample values for a domain having a single
relay. Listing 5-6 below shows the contents of this file.

Listing 5-6 diameter.xml Configuration for an HSS Simulator

<?xml version="1.0" encoding="utf-8"?>

<configuration xmlns:xsi= "http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="http://www.bea.com/ns/wlcp/diameter.xsd">

Conf igur ing an HSS S imulato r

Configuring and Managing WebLogic SIP Server 5-21

<node>

 <host>hss</host>

 <realm>hss.com</realm>

 <applications>

 <application>

 <auth-application-id>16777217</auth-application-id>

 <vendor-id>10415</vendor-id>

 <class-name>com.bea.wcp.diameter.sh.HssSimulator</class-name>

 </application>

 </applications>

 <peers>

 <peer>

 <host>relay</host>

 <address>localhost</address>

 <port>3869</port>

 </peer>

 </peers>

 <routes>

 <default-route>

 <action>relay</action>

 <server>relay</server>

 </default-route>

 </routes>

</node>

</configuration>

Conf igur ing D iameter Sh C l ien t Nodes and Re lay Agents

5-22 Configuring and Managing WebLogic SIP Server

Configuring and Managing WebLogic SIP Server 6-1

C H A P T E R 6

Capacity Planning for WebLogic SIP
Server Deployments

The following sections describe how to configure WebLogic SIP Server domains to support the
SIP traffic and features required in your organization:

“Introduction to Capacity Planning” on page 6-1

“Determining Performance Goals” on page 6-2

“Basic Hardware Configuration and Throughput Values” on page 6-4

“Sample Deployment Scenarios” on page 6-6

“Small Deployment” on page 6-7

“Medium Deployment” on page 6-8

“Large Deployment” on page 6-9

Introduction to Capacity Planning
BEA WebLogic SIP Server runs on a wide variety of hardware, and provides a highly scalable
architecture that can be deployed on multiple machines. Capacity planning is the process of
determining the hardware configuration that is required to meet your organization’s performance
and reliability goals. This document provides capacity planning suggestions for WebLogic SIP
Server with a focus on server hardware requirements.

Notes: Capacity planning is not an exact science. Every application is different, particularly
converged HTTP and SIP applications. This document is intended as a general guide for

Capac i t y P lann ing fo r WebLogic S IP Se rve r Dep loyments

6-2 Configuring and Managing WebLogic SIP Server

planning server deployments; it uses conservative estimates for basic hardware
components and deployed applications. You should err on the side of caution when
planning for applications or hardware that differ from the basic recommendations
described in this document.

Any and all recommendations generated by this guide should be verified by actual
benchmarks before placing a system into production.

Your BEA sales or professional services representative may have more detailed capacity
planning information than is available in this document.

WebLogic SIP Server is implemented using a flexible architecture in which you can easily add
servers as needed to increase throughput for SIP traffic, or to provide high reliability for
defending against hardware failures. The primary goal of capacity planning for WebLogic SIP
server is to determine the size and configuration of the WebLogic SIP Server engine tier, which
hosts application logic, and the data tier, which stores the call state for SIP messages. Both tiers
may be extended to improve throughput or to increase the availability of services on your
network.

See “Overview of the WebLogic SIP Server Architecture” on page 1-1 for more information
about the basic architecture of a WebLogic SIP Server deployment.

Determining Performance Goals
Accurate capacity planning begins with a clear understanding of the throughput and reliability
requirements for your deployed applications. The following questions will help drive the capacity
planning process for WebLogic SIP Server:

What is the required call volume? The call volume, expressed in calls per hour, is a
primary numerical input for determining the hardware requirements of a WebLogic SIP
Server deployment.

How many SIP messages do my applications generate? Basic throughput estimates for
WebLogic SIP Server are based on a Back-to-Back User Agent (B2BUA) Servlet
processing and originating 13 SIP messages as shown in the call flow in Figure 6-1. The
number of messages per call, combined with the call volume, determines the total number
of SIP messages that the system must process in a given period of time. This value drives
hardware requirements for both the engine and data tiers.

Dete rmin ing Pe r fo rmance Goa ls

Configuring and Managing WebLogic SIP Server 6-3

Figure 6-1 Call Flow for Capacity Planning B2BUA

If you deploy a B2BUA that generates more SIP messages for each call, each WebLogic
SIP Server instance will support fewer calls per second. If you deploy an application that
generates fewer SIP messages per call, or if your system provides mainly proxy services,
then each server can support additional call volume.

What is the average call duration? This guide uses an estimated average call duration of
6 minutes. When combined with the call volume estimate, the call duration helps you
determine the total number of concurrent calls your deployment must manage at a given

Capac i t y P lann ing fo r WebLogic S IP Se rve r Dep loyments

6-4 Configuring and Managing WebLogic SIP Server

time. Longer call durations require additional RAM and possibly additional server
hardware in the data tier to handle the increase in concurrent call state.

What is the size of the call state? This guide uses a conservative estimate of 30K per call
to manage the call state. If your application stores a larger amount of data for each call,
additional RAM may be required in the data tier for maintaining state information.

What level of redundancy is required for keeping call state available? WebLogic SIP
Server enables you to replicate call state data on multiple machines to provide high
availability in the event of a hardware failure. If a host in the data tier fails, the call state
data associated with the failed server can be immediately retrieved from another SIP Server
instance in the data tier. You can choose to maintain up to 3 backup copies of the call state
data as necessary to provide high availability for your deployment. Each backup copy
requires additional RAM and generally additional host hardware in the data tier to manage
the replicated data between servers.

Note: The deployment scenarios described in this document use estimates for call duration, call
state size, and number of SIP messages per call for a B2BUA application. BEA has
derived these estimates from working with organizations that are deploying WebLogic
SIP Server for production use. The derived numbers are generally conservative and
provide workable hardware estimates for many production environments. However, if
your system or application differs significantly from the estimated numbers, you must
perform additional profiling to determine the exact hardware configuration required.

Note: WebLogic SIP Server start scripts use default values for many JVM parameters that
affect performance. For example, JVM garbage collection and heap size parameters may
be omitted, or may use values that are acceptable only for evaluation or development
purposes. In a production system, you must rigorously profile your applications with
different heap size and garbage collection settings in order to realize adequate
performance. See “Tuning JVM Garbage Collection for Production Deployments” on
page F-1 for suggestions about maximizing JVM performance in a production domain.

Basic Hardware Configuration and Throughput Values
The capacity planning scenarios described in this document use one or more basic machine
configurations consisting of:

Dual Xeon 3.6Ghz Processors

4 GB of RAM

Gigabit Ethernet (dual NICs required for redundant connection to data tier).

Bas ic Hardware Conf igura t i on and Throughput Va lues

Configuring and Managing WebLogic SIP Server 6-5

Each machine should host either a single WebLogic SIP Server engine tier server instance (which
uses both processors) or two WebLogic SIP Server data tier server instances (with one processor
per instance).

Because the engine tier relies on data tier servers in order to retrieve call state data, BEA
recommends using dual Network Interface Cards (NICs) on engine and data tier machines to
provide redundant network connections. Gigabit Ethernet is required for the high throughput
achieved in most production deployments. See “Throughput Values for WebLogic SIP Server
Instances” on page 6-5 for more detailed throughput calculations.

The JVM for each engine tier server should use the minimum amount of heap space required for
your deployed applications. This document assumes roughly 700 megabytes per engine tier
server instance. Data tier servers should use the maximum possible heap space for the Java
Virtual Machine. This document use a conservative value of 1.6 gigabytes per JVM.

If your organization uses substantially different machine specifications, you will need to profile
the hardware to determine the exact throughput capabilities for each machine.

Throughput Values for WebLogic SIP Server Instances
With the processing power provided by the basic hardware configuration described above, each
WebLogic SIP Server instance in the engine tier cluster can process and originate approximately
1,000 SIP messages per second, or 76 calls per second per second (assuming 13 SIP messages per
call for a single B2BUA Servlet as shown in Figure 6-1). This basic throughput value is used to
drive the hardware requirements for the WebLogic SIP Server engine tier.

The size of the WebLogic SIP Server data tier is driven by the expected total number of
simultaneous calls managed by the deployment. Given the total number of concurrent calls and
the average size of the call state, you can determine the maximum amount of RAM required to
store concurrent calls state for your system. This value is multiplied according to the number of
redundant call state replicas you wish to deploy for high availability. The total RAM requirement
is then divided by the maximum heap size per JVM to determine the number of data tier nodes,
and ultimately the number of host machines required in the WebLogic SIP Server data tier.

Figure 6-2, “Using Throughput Values to Determine Engine and Data Tier Requirements,” on
page 6-6 shows the sample calculations used to determine the medium-sized deployment
described in “Medium Deployment” on page 6-8.

Capac i t y P lann ing fo r WebLogic S IP Se rve r Dep loyments

6-6 Configuring and Managing WebLogic SIP Server

Figure 6-2 Using Throughput Values to Determine Engine and Data Tier Requirements

Sample Deployment Scenarios
Given the basic hardware configuration and expected throughput values described in Sample
Deployment Scenarios, you can quickly estimate the total number of clustered WebLogic SIP
Server instances that are required in the engine and data tiers, as well as the total number of hosts
and RAM required in each tier. The following sections describe common deployment sizes used
in production environments:

Small Deployment describes a simple system that supports 500,000 calls per hour.

Medium Deployment describes an average call system that utilizes multiple clustered
servers to support 1 million calls per hour, with data replication to ensure high availability.

Large Deployment describes a high performance, highly-available system that supports 10
million calls per hour with two replicas of the call state.

Smal l Dep loyment

Configuring and Managing WebLogic SIP Server 6-7

Small Deployment
A typical small deployment of WebLogic SIP Server consists of two dual-CPU machines each
running two WebLogic SIP Server instances. A system of this size can process over 500,000 calls
per hour, given the hardware and throughput values described in “Basic Hardware Configuration
and Throughput Values” on page 6-4. The small deployment utilizes only a single partition in the
data tier, but with two replicas to provide failover if one of the engines should fail. A load
balancer distributes client connections and performs failover from one engine tier server to the
other if an engine tier node fails or is brought down for maintenance. This configuration is shown
in Figure 6-3.

Note: The exact configuration shown in Figure 6-3 should only be used in cases where limited
hardware is available. Although limited failover is provided via two replicas in the data
tier, the overall throughput of the system is greatly reduced should one of the machines
fail.

Capac i t y P lann ing fo r WebLogic S IP Se rve r Dep loyments

6-8 Configuring and Managing WebLogic SIP Server

Figure 6-3 Small Deployment with High Availability

Medium Deployment
A typical medium deployment, shown in Figure 6-4, is configured to support a call rate of one
million calls per hour. In the engine tier, four WebLogic SIP Server instances (deployed on four
Dual-CPU machines) are required to support the call throughput. In the data tier, two partitions
are required to manage the call state for the maximum number of expected concurrent calls. Two
replicas in each partition provide replication and failover in the event of a data tier host failure.

Large Dep loyment

Configuring and Managing WebLogic SIP Server 6-9

Figure 6-4 Medium-Sized Deployment

Large Deployment
In the sample large-scale deployment, both the engine tier and data tier clusters have been
expanded to support a call rate of 10 million calls per hour, as shown in Figure 6-5, “Large-Scale
Deployment,” on page 6-11.

Capac i t y P lann ing fo r WebLogic S IP Se rve r Dep loyments

6-10 Configuring and Managing WebLogic SIP Server

In the engine tier, 36 nodes are required given the maximum throughput per node value of 1,000
SIP messages per second.

In the data tier, 20 servers are required to manage the call state for the estimated number of
concurrent calls. However, to provide redundancy in the event of a failure, two replicas in each
partition store copies of the partition’s call state, resulting in 40 server nodes in the data tier.

To maximize the reliability for such a large deployment, each group of servers in the data tier
should be located in different physical locations, and/or on separate, dedicated networks.

Large Dep loyment

Configuring and Managing WebLogic SIP Server 6-11

Figure 6-5 Large-Scale Deployment

Capac i t y P lann ing fo r WebLogic S IP Se rve r Dep loyments

6-12 Configuring and Managing WebLogic SIP Server

Configuring and Managing WebLogic SIP Server 7-1

C H A P T E R 7

Managing WebLogic SIP Server Network
Resources

The following sections describe how to configure network resources for use with WebLogic SIP
Server:

“Overview of Network Configuration” on page 7-1

“Configuring Load Balancer Addresses” on page 7-2

“Configuring Network Channels for SIP or SIPS” on page 7-3

“Configuring SIP Channels for Multi-Homed Machines” on page 7-5

“Configuring TCP and TLS Channels for Diameter Support” on page 7-5

“Configuring Engine Servers to Listen on Any IP Interface (0.0.0.0)” on page 7-6

“Configuring Unique Listen Address Attributes for Data Tier Replicas” on page 7-6

Overview of Network Configuration
The default HTTP network configuration for each WebLogic SIP Server instance is determined
from the Listen Address and Listen Port setting for each server. However, WebLogic SIP Server
does not support the SIP protocol over HTTP. The SIP protocol is supported over the UDP and
TCP transport protocols. SIPS is also supported using the TLS transport protocol.

To enable UDP, TCP, or TLS transports, you configure one or more network channels for a
WebLogic SIP Server instance. A network channel is a configurable WebLogic Server resource
that defines the attributes of a specific network connection to the server instance. Basic channel
attributes include:

Managing WebLogic S IP Server Ne two rk Resources

7-2 Configuring and Managing WebLogic SIP Server

The protocols supported by the connection

The listen address (DNS name or IP address) of the connection

The port number used by the connection

(optional) The port number used by outgoing UDP packets

The public listen address (load balancer address) to embed in SIP headers when the
channel is used for an outbound connection.

You can assign multiple channels to a single WebLogic SIP Server instance to support multiple
protocols or to utilize multiple interfaces available with multihomed server hardware. You cannot
assign the same channel to multiple server instances.

When you configure a new network channel for the SIP protocol, WebLogic SIP Server
automatically creates the necessary both the UDP and TCP transport protocols on the configured
port. You cannot create a SIP channel that uses only UDP transport or only TCP transport. When
you configure a network channel for the SIPS protocol, the server uses the TLS transport protocol
for the connection.

As you configure a new SIP Server domain, you will generally create multiple SIP channels for
communication to each engine tier server in your system. Engine tier servers can communicate
to data tier replicas using the configured Listen Address attributes for the replicas. Note, however,
that replicas must use unique Listen Addressees in order to communicate with one another.

Note: If you configure multiple replicas in a data tier cluster, you must configure a unique
Listen Address for each server (a unique DNS name or IP address). If you do not specify
a unique Listen Address, the replica service binds to the default “localhost” address and
multiple replicas cannot locate one another.

Configuring Load Balancer Addresses
If your system uses one or more load balancers to distribute connections to the engine tier, you
must configure SIP network channels to include a load balancer address as the external listen
address. When a SIP channel has an external listen address that differs from the channel’s
primary listen address, WebLogic SIP Server embeds the host and port number of the external
address in SIP headers such as Response. In this way, subsequent communication for the call is
directed to the public load balancer address, rather than the local engine tier server address (which
may not be accessible to external clients).

If a network channel does not have a configured external listen address, the primary listen address
is embedded into SIP headers.

Conf igur ing Network Channe ls fo r S IP o r S IPS

Configuring and Managing WebLogic SIP Server 7-3

Multiple Load Balancers and Multihomed Load Balancers
If your system uses two load balancers, you must define two channels on each engine tier server
(one for each network connection to each load balancer) and assign the external listen address to
the corresponding load balancer. When a particular network interface on the engine tier server is
selected for outbound traffic, the network channel associated with that NIC’s address is examined
to determine the external listen address to embed in SIP headers.

If your system uses a multihomed load balancer having two public addresses, you must also
define a pair of channels to configure both public addresses. If the engine tier server has only one
NIC, you must define a second, logical address on the NIC to configure a dedicated channel for
the second public address. In addition, you must configure your IP routing policies to define
which logical address is associated with each public load balancer address.

Configuring Network Channels for SIP or SIPS
When you create a new domain using the Configuration Wizard, WebLogic SIP Server instances
are configured with a default network channel supporting the SIP protocol over UDP and TCP.
This default channel is configured to use Listen Port 5060, but specifies no Listen Address.
Follow the instructions in Reconfiguring an Existing Channel to change the default channel’s
listen address or listen port settings. See “Creating a New SIP or SIPS Channel” on page 7-4 for
to create a new channel resource to support additional protocols or additional network interfaces.

Reconfiguring an Existing Channel
Note: You cannot change the protocol supported by an existing channel. To reconfigure an

existing listen address/port combination to use a different network protocol, you must
delete the existing channel and create a new channel using the instructions in “Creating
a New SIP or SIPS Channel” on page 7-4.

1. Access the Administration Console for the WebLogic SIP Server domain.

2. In the left pane, select the name of the server to configure.

3. In the right pane, select Protocols->Channels to display the configured channels.

4. To delete an existing channel, click the trash can icon next the channel name.

5. To reconfigure an existing channel:

a. Select the channel’s name from the channel list (for example, the default sipchannel).

Managing WebLogic S IP Server Ne two rk Resources

7-4 Configuring and Managing WebLogic SIP Server

b. Edit the Listen Address or Listen Port fields to correspond to the address of a NIC or
logical address on the associated engine tier machine.

c. Edit the External Listen Address or External Listen Port fields to match the public address
of a load balancer in the system.

d. Edit the advanced channel attributes as necessary (see “Creating a New SIP or SIPS
Channel” on page 7-4 for details.)

e. Click Apply to apply your changes.

Creating a New SIP or SIPS Channel
To create add a new SIP or SIPS channel to the configuration of a WebLogic SIP Server instance:

1. Access the Administration Console for the WebLogic SIP Server domain.

2. In the left pane, select the name of the server to configure.

3. In the right pane, select Protocols->Channels to display the configured channels.

4. Click Configure a new Network Channel in the right pane.

5. Fill in the new channel fields as follows:

– Name: Enter an administrative name for this channel, such as “SIPS-Channel-eth0.”

– Protocol: Select either SIP to support UDP and TCP transport, or SIPS to support TLS
transport. Note that a SIP channel cannot support only UDP or only TCP transport on
the configured port.

– Listen Address: Enter the IP address or DNS name for this channel. On a multi-homed
machine, enter the exact IP address of the interface you want to configure, or a DNS
name that maps to the exact IP address.

– Listen Port: Enter the port number used to communication via this channel. The
combination of Listen Address and Listen Port must be unique across all channels
configured for the server. SIP channels support both UDP and TCP transport on the
configured port.

6. Click Create to create the new channel.

7. Edit the External Listen Address and External Listen Port fields to match the public
address of a load balancer associated with this channel. When the server selects an interface
or logical address to use for outbound network traffic, WebLogic SIP Server examines the
channel that was configured with the same primary Listen Address; if the External Listen

Conf igur ing S IP Channe ls fo r Mu l t i -Homed Mach ines

Configuring and Managing WebLogic SIP Server 7-5

Address of this channel differs, the external address is embedded into SIP message headers
for further call traffic. See “Configuring Load Balancer Addresses” on page 7-2.

8. Optionally click Show to display and edit advanced channel properties, such as connection
timeout values. Keep in mind the following restrictions and suggestions for advanced channel
properties:

– Outbound Enabled—This attribute cannot be unchecked, because all SIP and SIPS
channels can originate network connections.

– HTTP Enabled for This Protocol—This attribute cannot be selected for SIP and SIPS
channels, because WebLogic SIP Server does not support HTTP transport SIP
protocols.

– Maximum Message Size—This attribute specifies the maximum TCP message size
that the server allows on a connection from this channel. WebLogic SIP Server shuts
off any connection where the messages size exceeds the configured value. The default
size of 10,000,000 bytes is large. If you are concerned about preventing Denial Of
Service (DOS) attacks against the server, reduce this attribute to a value that is
compatible with your deployed services.

– Tcp Connect Timeout Millis—This attribute specifies the amount of time WebLogic
SIP Server waits before it declares a destination address (for an outbound connection)
as unreachable. The attribute is applicable only to SIP channels; WebLogic SIP Server
ignores this attribute value for SIPS channels.

9. Click Apply.

Configuring SIP Channels for Multi-Homed Machines
If you are configuring a server that has multiple network interfaces (a “multihomed” server), you
must configure a separate network channel for each IP address used by WebLogic SIP Server.
WebLogic SIP Server uses the listen address and listen port values for each channel when
embedding routing information into SIP message system headers.

Note: If you do not configure a channel for a particular IP address on a multihomed machine,
that IP address cannot be used when populating Via, Contact, and Record-Route headers.

Configuring TCP and TLS Channels for Diameter Support
WebLogic SIP Server’s Diameter implementation supports the Diameter protocol over the TCP
or TLS transport protocols. To enable incoming Diameter connections on a server, you configure
a dedicated network channel using the protocol type “diameter” for TCP transport, or “diameters”

Managing WebLogic S IP Server Ne two rk Resources

7-6 Configuring and Managing WebLogic SIP Server

for both TCP and TLS transport. The Diameter implementation application may automatically
upgrade Diameter connections to use TLS as described in the Diameter specification (RFC 3558).

See “Configuring Diameter Sh Client Nodes and Relay Agents” on page 5-1 for more
information about configuring network channels for Diameter protocol support.

Configuring Engine Servers to Listen on Any IP Interface
(0.0.0.0)

To configure WebLogic SIP Server to listen for UDP traffic on any available IP interface, create
a new SIP channel and specify 0.0.0.0 as the listen address. Note that you must still configure at
least one additional channel with an explicit IP address to use for outgoing SIP messages. (For
multi-homed machines, each interface used for outgoing messages must have a configured
channel.)

Note: If you configure a SIP channel without specifying the channel listen address, but you do
configure a listen address for the server itself, then the SIP channel inherits the server
listen address. In this case the SIP channel does not listen on IP_ANY.

Configuring Unique Listen Address Attributes for Data
Tier Replicas

Each replica in the data tier must bind to a unique Listen Address attribute (a unique DNS name
or IP address) in order to contact one another as peers. Follow these instructions for each replica
to assign a unique Listen Address:

1. Access the Administration Console for the WebLogic SIP Server domain.

2. In the left pane, select the name of the server to configure.

3. Select the Configuration->General tab.

4. Enter a unique DNS name or IP address in the Listen Address field.

5. Click Apply.

Configuring and Managing WebLogic SIP Server 8-1

C H A P T E R 8

Production Network Architectures and
WebLogic SIP Server Configuration

The following sections describe common network architectures used in production deployments,
and explain how WebLogic SIP Server is configured to run in those architectures:

“Overview” on page 8-1

“Single-NIC Configurations with TCP and UDP Channels” on page 8-3

“Multihomed Server Configurations Overview” on page 8-5

“Multihomed Servers Listening On All Addresses (IP_ANY)” on page 8-5

“Multihomed Servers Listening on Multiple Subnets” on page 8-6

– “Understanding the Route Resolver” on page 8-7

– “IP Aliasing with Multihomed Hardware” on page 8-7

“Load Balancer Configurations” on page 8-8

– “Single Load Balancer Configuration” on page 8-8

– “Multiple Load Balancers and Multihomed Load Balancers” on page 8-9

– “Network Address Translation Options” on page 8-9

Overview
Most production installations of WebLogic SIP Server are contain one or more of the following
characteristics:

Product ion Ne twork A rch i tec tures and WebLogic S IP Server Conf igu ra t ion

8-2 Configuring and Managing WebLogic SIP Server

Multiple engine tier servers arranged in a cluster.

Multiple network channels per engine tier server instance, in support of multiple SIP
transport protocols or multiple Network Interface Cards (NICs) on multihomed hardware.

One or more load balancers, or a multihomed load balancer, performing server failover and
possibly Network Address Translation (NAT) for source or destination network packets.

A combination of these network elements can make it difficult to understand how elements
interact with one another, and how a particular combination of elements or configuration options
affects the contents of a SIP message or transport protocol datagram.

The sections that follow attempt to describe common WebLogic SIP Server network
architectures and explain how servers are configured in each architecture. The sections also
explain how information in SIP messages and transport datagrams is affected by each
configuration. Figure 8-1 shows the typical Open Systems Interconnect (OSI) model layers that
can be affected by different network configurations.

Figure 8-1 OSI Layers Affected by WebLogic SIP Server Network Configuration

Layer 3 (Network) and Layer 4 (Transport) contain the source or destination IP address and port
numbers for both outgoing and incoming transport datagrams. Layer 7 (Application) may also be
affected because the SIP protocol specifies that certain SIP headers include addressing
information for contacting the sender of a SIP message.

Sing le-N IC Conf igura t i ons wi th TCP and UDP Channe ls

Configuring and Managing WebLogic SIP Server 8-3

Single-NIC Configurations with TCP and UDP Channels
In a simple network configuration for a server having a single NIC, one or more network channels
may be created to support SIP messages over UDP and TCP, or SIPS over TLS. It is helpful to
understand how this simple configuration affects information in the OSI model, so that you can
understand how more complex configurations involving multihomed hardware and load
balancers affect the same information.

Figure 8-2 Single-NIC Network Channel Configuration

Figure 8-2 shows a single engine tier server instance with a single NIC. The server is configured
with one network channel supporting SIP over UDP and TCP. (SIP channels always support both
UDP and TCP transports; you cannot support only one of the two.) Figure 8-2 also shows two
clients communicating with the server, one over UDP and one over TCP.

For the TCP transport, the outgoing datagram (delivered from WebLogic SIP Server to the UA)
contains the following information:

Layer 3 includes the source IP address specified by the network channel (10.1.1.10 in the
example above).

Layer 4 includes the source port number allocated by the underlying operating system.

Incoming TCP datagrams (delivered from the UA to WebLogic SIP Server) contain the following
information:

Product ion Ne twork A rch i tec tures and WebLogic S IP Server Conf igu ra t ion

8-4 Configuring and Managing WebLogic SIP Server

Layer 3 includes the destination IP address specified by the network channel (10.1.1.10).

Layer 4 contains the destination port number specified by the network channel (5060).

For outgoing UDP datagrams, the OSI layer information contains the same information as with
TCP transport. For incoming UDP datagrams, the OSI layer information is the same as TCP
except in the case of incoming datagram Layer 4 information. For incoming UDP datagrams,
Layer 4 contains either:

The destination port number specified by the network channel (5060), or

The ephemeral port number previously allocated by WebLogic SIP Server.

By default WebLogic SIP Server allocates ports from the ephemeral port number range of the
underlying operating system for outgoing UDP datagrams. WebLogic SIP Server allows external
connections to use an ephemeral point as the destination port number, in addition to the port
number configured in the network channel. In other words, WebLogic SIP Server automatically
listens on all ephemeral ports that the server allocates. You can optionally disable WebLogic SIP
Server’s use of ephemeral port numbers by specifying the following option when starting the
server:

-Dwlss.udp.listen.on.ephemeral=false

You can determine WebLogic SIP Server’s use of a particular ephemeral port by examining the
server log file:

<Nov 30, 2005 12:00:00 AM PDT> <Notice> <WebLogicServer> <BEA-000202>

<Thread “SIP Message Processor (Transport UDP)” listening on port 35993.>

Static Port Configuration for Outbound UDP Packets
WebLogic SIP Server network channels provide a SourcePorts attribute that you can use to
configure one or more static ports that a server uses for originating UDP packets.

WARNING: BEA does not recommend using the SourcePorts attribute in most
configurations because it degrades performance. Configure SourcePorts only in
cases where you must specify the exact ports that WebLogic SIP Server uses to
originate UDP packets.

To configure SourcePorts, use a JMX client such as WLST or directly modify a network
channel configuration in config.xml to include the attribute. SourcePorts defines an array of
port numbers or port number ranges. Do not include spaces in the SourcePorts element - use
only port numbers, hyphens (“-”) to designate ranges of ports, and commas (“,”) to separate
ranges or individual ports. See Listing 8-1 for an example configuration.

Mul t ihomed Serve r Conf igurat i ons Overv i ew

Configuring and Managing WebLogic SIP Server 8-5

Listing 8-1 Static Port Configuration for Outgoing UDP Packets

<NetworkAccessPoint HttpEnabledForThisProtocol="false"

ListenPort="5060" Name="sipchannel" OutboundEnabled="true"

Protocol="sip" SourcePorts="6100-6150,6200-6250,6300"/>

Multihomed Server Configurations Overview
Engine tier servers in a production deployment frequently utilize multihomed server hardware,
having two or more NICs. Multihomed hardware is typically used for one of the following
purposes:

To provide redundant network connections within the same subnet. Having multiple NICs
ensures that one or more network connections are available to communicate with data tier
servers or the Administration Server, even if a single NIC fails.

To support SIP communication across two or more different subnets. For example
WebLogic SIP Server may be configured to proxy SIP requests from UAs in one subnet to
UAs in a second subnet, when the UAs cannot directly communicate across subnets.

The configuration requirements and OSI layer information differ depending on the use of
multihomed hardware in your system. When multiple NICs are used to provide redundant
connections within a subnet, servers are generally configured to listen on all available addresses
(IP_ANY) as described in “Multihomed Servers Listening On All Addresses (IP_ANY)” on
page 8-5.

When using multiple NICs to support different subnets, you must configure multiple network on
the server for each different NIC as described in “Multihomed Servers Listening on Multiple
Subnets” on page 8-6.

Multihomed Servers Listening On All Addresses (IP_ANY)
The simplest multihome configuration enables a WebLogic SIP Server instance to listen on all
available NICs (physical NICs as well as logical NICs), sometimes described as IP_ANY. To
accomplish this, you simply configure a single network channel and specify a channel listen
address of 0.0.0.0.

Note that you must configure the 0.0.0.0 address directly on the server’s network channel. If you
specify no IP address in the channel, the channel inherits the listen address configured for the

Product ion Ne twork A rch i tec tures and WebLogic S IP Server Conf igu ra t ion

8-6 Configuring and Managing WebLogic SIP Server

server instance itself. See “Configuring Engine Servers to Listen on Any IP Interface (0.0.0.0)”
on page 7-6.

Multihomed Servers Listening on Multiple Subnets
Multiple NICs can also be used in engine tier servers to listen on multiple subnets. The most
common configuration uses WebLogic SIP Server to proxy SIP traffic from one subnet to another
where no direct access between subnets is permitted. Figure 8-3 shows this configuration.

Figure 8-3 Multihomed Configuration for Proxying between Subnets

To configure the WebLogic SIP Server instance in Figure 8-3 you must define a separate network
channel for each NIC used on the server machine. Listing 8-2 shows the config.xml entries that
define channels for the sample configuration.

Listing 8-2 Sample Network Channel Configuration for NICs on Multiple Subnets

<NetworkAccessPoint ListenAddress=”10.1.1.10” ListenPort="5060"

Name="sipchannelA" Protocol="sip"/>

Mul t ihomed Serve rs L is ten ing on Mul t ip le Subnets

Configuring and Managing WebLogic SIP Server 8-7

<NetworkAccessPoint ListenAddress=”10.2.1.10” ListenPort="5060"

Name="sipchannelB" Protocol="sip"/>

Understanding the Route Resolver
When WebLogic SIP Server is configured to listen on multiple subsets, a feature called the route
resolver is responsible for the following activities:

Populating OSI Layer 7 information (SIP system headers such as Via, Contact, and so
forth) with the correct address.

Populating OSI Layer 3 information with the correct source IP address.

For example, in the configuration shown in Figure 8-3, WebLogic SIP Server must add the
correct subnet address to SIP system headers and transport datagrams in order for each UA to
continue processing SIP transactions. If the wrong subnet is used, replies cannot be delivered
because neither UA can directly access the other UA’s subnet.

The route resolver works by determining which NIC the operating system will use to send a
datagram to a given destination, and then examining the network channel that is associated with
that NIC. It them uses the address configured in the selected network channel to populate SIP
headers and Layer 3 address information.

For example, in the configuration shown in Figure 8-3, an INVITE message sent from WebLogic
SIP Server to UAC B would have a destination address of 10.2.1.16. The operating system would
transmit this message using NIC B, which is configured for the corresponding subnet. The route
resolver associates NIC B with the configured sipchannelB and embeds the channel’s IP
address (10.2.1.10) in the VIA header of the SIP message. UAC B then uses the VIA header to
direct subsequent messages to the server using the correct IP address. A similar process is used
for UAC A, to ensure that messages are delivered only on the correct subnet.

IP Aliasing with Multihomed Hardware
IP aliasing assigns multiple logical IP addresses to a single NIC, and is configured in the
underlying server operating system. If you configure IP aliasing and all logical IP addresses are
within the same subnet, you can simply configure WebLogic SIP Server to listen on all addresses
as described in “Multihomed Servers Listening On All Addresses (IP_ANY)” on page 8-5.

If you configure IP aliasing to create multiple logical IP addresses on different subnets, you must
configure a separate network channel for each logical IP address. In this configuration, WebLogic
SIP Server treats all logical addresses as separate physical interfaces (NICs) and uses the route
resolver to populate OSI Layer 4 and Layer 7 information based on the configured channel.

Product ion Ne twork A rch i tec tures and WebLogic S IP Server Conf igu ra t ion

8-8 Configuring and Managing WebLogic SIP Server

Load Balancer Configurations
In addition to providing failover capabilities and distributing the client load across multiple
servers, a load balancer is also an important tool for configuring the network information
transmitted between clients and servers. The sections that follow describe common load balancer
configurations used with WebLogic SIP Server.

Single Load Balancer Configuration
The most common load balancer configuration utilizes a single load balancer that gates access to
a cluster of engine tier servers, as shown in Figure 8-4.

Figure 8-4 SIngle Load Balancer Configuration

To configure WebLogic SIP Server for use with a single load balancer as in Figure 8-4, configure
one or more network channels for each server, and configure the public address of each channel
with the Virtual IP address of the load balancer. In this configuration, WebLogic SIP Server
embeds the load balancer IP address in SIP message system headers to ensure that clients can
reach the cluster for subsequent replies. “Managing WebLogic SIP Server Network Resources”
on page 7-1 presents detailed steps for configuring network channels with load balancer
addresses.

Load Ba lancer Conf igurat ions

Configuring and Managing WebLogic SIP Server 8-9

Note: Although some load balancing switches can automatically re-route all SIP messages in a
given call to the same engine tier server, this functionality is not required with WebLogic
SIP Server installations. See “Alternate Configurations” on page 1-5.

Multiple Load Balancers and Multihomed Load Balancers
Multiple load balancers (or a multihomed load balancer) can be configured to provide several
virtual IP addresses for a single WebLogic SIP Server cluster. To configure WebLogic SIP Server
for use with a multihomed load balancer, you create a dedicated network channel for each load
balancer or local server NIC, and set the channel’s public address to the virtual IP address of the
appropriate load balancer. In this configuration, the route resolver associates a configured
channel with the NIC used for originating SIP messages. The public address of the selected
channel is then used for populating SIP system messages. See “Understanding the Route
Resolver” on page 8-7.

Network Address Translation Options
In the most common case, a load balancer is configured using destination NAT to provide a
public IP address that clients use for communicating with one or more internal (private)
WebLogic SIP Server addresses. Load balancers may also be configured using source NAT,
which modifies the Layer 3 address information originating from a private address to match the
virtual IP address of the load balancer itself.

With the default route resolver behavior, a WebLogic SIP Server engine originates UDP packets
having a source IP address that matches the address of a local NIC (the private address). This can
be problematic for applications that try to respond directly to the Layer 3 address embedded in
the transport packet, because the local server address may not be publicly accessible. If your
applications exhibit this problem, BEA recommends that you configure the load balancer to
perform source NAT to change the transport Layer 3 address to a publicly-accessible virtual IP
address.

IP Masquerading Alternative to Source NAT

WARNING: Using the WebLogic SIP Server IP masquerading functionality can lead to
network instability, because it requires duplicate IP addresses on multiple servers.
Production deployments must use a load balancer configured for source NAT,
rather than IP masquerading, to ensure reliable network performance.

If you choose not to enable source NAT on your load balancer, WebLogic SIP Server provides
limited IP masquerading functionality. To use this functionality, configure a logical address on

Product ion Ne twork A rch i tec tures and WebLogic S IP Server Conf igu ra t ion

8-10 Configuring and Managing WebLogic SIP Server

each engine tier server using the public IP address of the load balancer for the cluster. (Duplicate
the same logical IP address on each engine tier server machine). When a local server interface
matches the IP address of a configured load balancer (defined in the public address of a network
channel), WebLogic SIP Server uses that interface to originate SIP UDP messages, and the Layer
3 address contains a public address.

You can disable WebLogic SIP Server’s IP masquerading functionality by using the startup
option:

-Dwlss.udp.lb.masquerade=false

Configuring and Managing WebLogic SIP Server 9-1

C H A P T E R 9

Example WebLogic SIP Server Network
Configuration

The following sections describe a sample network configuration for WebLogic SIP Server using
a non-SIP-aware load balancer:

“Overview” on page 9-1

“Example Network Topology” on page 9-1

“WebLogic SIP Server Configuration” on page 9-2

“Load Balancer Configuration” on page 9-3

Overview
WebLogic SIP Server is compatible with load balancers that are not SIP-aware, meaning that they
do not consider existing SIP dialogues when routing requests to servers. This document
demonstrates load balancer and WebLogic SIP Server configuration, as well as SIP and Network
Address Translation (NAT) interactions in various configurations.

For more information about implementation-dependent issues surrounding NAT see the IETF
document, NAT Behavioral Requirements for Unicast UDP.

Example Network Topology
Figure 9-1 shows the sample network topology described in this section. A WebLogic SIP Server
cluster, consisting of engines WLSS 1 and WLSS 2, is configured on private IP network 10.1/16

http://tools.ietf.org/wg/behave/draft-ietf-behave-nat-udp/

Example WebLogic S IP Server Ne two rk Conf igu ra t i on

9-2 Configuring and Managing WebLogic SIP Server

(an internal 16-bit subnet). The cluster's public IP address is 1.2.3.4, which is the virtual IP
address configured on the load balancer.

The User Agent, UAC A, with IP address 2.3.4.5 never sees the internal IP addresses configured
for the WebLogic SIP Server cluster. Instead, it sends requests to, and receives responses from
1.2.3.4.

The sections that follow discuss configuring the WebLogic SIP Server cluster and load balancer
for this example system.

Figure 9-1 Example Network Topology

WebLogic SIP Server Configuration
The WebLogic SIP Server cluster configuration specifies the public address as 1.2.3.4, and the
public port as 5060 (see “Configuring Load Balancer Addresses” on page 7-2) for each engine.
The default route on both WebLogic SIP Server engines points to the load balancer's 10.1/16
network interface: 10.1.3.4. The WebLogic SIP Server (servers WLSS 1 and WLSS 2) routing
table is shown in Listing 9-1.

Listing 9-1 WebLogic SIP Server Routing Table

$ /sbin/route

Load Ba lance r Conf igurat ion

Configuring and Managing WebLogic SIP Server 9-3

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

10.1.0.0 * 255.255.0.0 U 0 0 0 eth0

default 10.1.3.4 0.0.0.0 UG 0 0

Load Balancer Configuration
The load balancer is configured with a virtual IP address of 1.2.3.4, and two real servers, WLSS
1 and WLSS 2, having addresses 10.1.1.1 and 10.1.1.2, respectively. The load balancer also has
an internal IP address of 10.1.3.4 configured on the 10.1/16 network. The UAC address, 2.3.4.5,
is reachable from the load balancer by static route configuration on the load balancer. The load
balancer routing table is shown in Listing 9-2.

Listing 9-2 Load balancer Routing Table

$ /sbin/route

Kernel IP routing table

Destination Gateway Genmask Flags Metric Ref Use Iface

10.1.0.0 * 255.255.0.0 U 0 0 0 eth1

1.2.0.0 * 255.255.0.0 U 0 0

Because the SIP protocol specification (RFC 3261) dictates the destination IP address and UDP
port numbers that user agents must use when sending requests or responses, the NAT
configuration of the load balancer must be done in a way that does not violate RFC 3261
requirements. Three setup options can be used to accomplish this configuration:

NAT-based configuration

maddr-Based Configuration

rport-Based Configuration

The sections that follow describe each approach.

Example WebLogic S IP Server Ne two rk Conf igu ra t i on

9-4 Configuring and Managing WebLogic SIP Server

NAT-based configuration
The default UDP NAT behavior for load balancers is to perform destination IP address translation
in the public->private network direction, and source IP address translation in the private->public
network direction. This means setting up destination address translation in the UAC->WebLogic
SIP Server (2.3.4.5->1.2.3.4) direction without source address translation, and source address
translation in the WebLogic SIP Server->UAC (10.1/16->2.3.4.5) direction without destination
address translation.

Figure 9-2 illustrates the UDP packet flow for a SUBSCRIBE/200OK transaction.

Figure 9-2 SUBSCRIBE Sequence

Note that the source and destination IP addresses of the UDP packets are shown in blue. In the
UAC->WebLogic SIP Server direction, the load balancer translates the destination IP address but
not the source IP address. In the WebLogic SIP Server->UAC direction, the load balancer
translates the source IP address but not the destination IP address.

The complete message trace (including IP and UDP headers, as well as the SIP payload) for the
sequence from Figure 9-2 is shown in Listing 9-3 below.

 A 2.3.4.5 LB 1.2.3.4 WLSS 1 10.1.1.1
(1) SUBSCRIBE	
----------------------->	
(2.3.4.5->1.2.3.4)	(2) SUBSCRIBE
	----------------------->
	(2.3.4.5->10.1.1.1)
	(3) 200 OK
	<-----------------------
	(10.1.1.1->2.3.4.5)
(4) 200 OK	
<-----------------------	
(1.2.3.4->2.3.4.5)	

Load Ba lance r Conf igurat ion

Configuring and Managing WebLogic SIP Server 9-5

Listing 9-3 Complete SUBSCRIBE Message Trace

No. Time Source Destination Protocol Info

 1 1.425250 2.3.4.5 1.2.3.4 SIP Request:

SUBSCRIBE sip:subscribe@1.2.3.4:5060

Internet Protocol, Src: 2.3.4.5 (2.3.4.5), Dst: 1.2.3.4 (1.2.3.4)

User Datagram Protocol, Src Port: 9999 (9999), Dst Port: sip (5060)

Session Initiation Protocol

 Request-Line: SUBSCRIBE sip:subscribe@1.2.3.4:5060 SIP/2.0

 Message Header

 Via: SIP/2.0/UDP 2.3.4.5:9999;branch=1

 From: sipp <sip:sipp@2.3.4.5>;tag=1

 To: sut <sip:subscribe@1.2.3.4:5060>

 Call-ID: 1-25923@2.3.4.5

 Cseq: 1 SUBSCRIBE

 Contact: sip:sipp@2.3.4.5:9999

 Max-Forwards: 70

 Event: ua-profile

 Expires: 10

 Content-Length: 0

No. Time Source Destination Protocol Info

 2 2.426250 2.3.4.5 10.1.1.1 SIP Request:

SUBSCRIBE sip:subscribe@1.2.3.4:5060

Internet Protocol, Src: 2.3.4.5 (2.3.4.5), Dst: 10.1.1.1 (10.1.1.1)

User Datagram Protocol, Src Port: 9999 (9999), Dst Port: sip (5060)

Example WebLogic S IP Server Ne two rk Conf igu ra t i on

9-6 Configuring and Managing WebLogic SIP Server

Session Initiation Protocol

 Request-Line: SUBSCRIBE sip:subscribe@1.2.3.4:5060 SIP/2.0

 Message Header

 Via: SIP/2.0/UDP 2.3.4.5:9999;branch=1

 From: sipp <sip:sipp@2.3.4.5>;tag=1

 To: sut <sip:subscribe@1.2.3.4:5060>

 Call-ID: 1-25923@2.3.4.5

 Cseq: 1 SUBSCRIBE

 Contact: sip:sipp@2.3.4.5:9999

 Max-Forwards: 70

 Event: ua-profile

 Expires: 10

 Content-Length: 0

No. Time Source Destination Protocol Info

 3 3.430903 10.1.1.1 2.3.4.5 SIP Status: 200 OK

Internet Protocol, Src: 10.1.1.1 (10.1.1.1), Dst: 2.3.4.5 (2.3.4.5)

User Datagram Protocol, Src Port: 42316 (42316), Dst Port: 9999 (9999)

Session Initiation Protocol

 Status-Line: SIP/2.0 200 OK

 Message Header

 To: sut <sip:subscribe@1.2.3.4:5060>;tag=82722c03

 Content-Length: 0

 Contact:

<sip:app-12eomtm5h5f77@1.2.3.4:5060;transport=udp;wlsscid=1ae4479ac6ff71>

 CSeq: 1 SUBSCRIBE

 Call-ID: 1-25923@2.3.4.5

Load Ba lance r Conf igurat ion

Configuring and Managing WebLogic SIP Server 9-7

If WebLogic SIP Server subsequently sends a NOTIFY request to the UAC, the sequence shown
in Figure 9-3 takes place:

Figure 9-3 NOTIFY Sequence

As in the previous sequence, the IP address translation takes place in the WebLogic SIP
Server->UAC direction for the source IP address, and UAC->WebLogic SIP Server direction for
the destination IP address.

Note that this setup does not require the load balancer to maintain session state information or to
be SIP-aware. The complete message trace from Figure 9-3 is shown in Listing 9-4 below.

Listing 9-4 Complete NOTIFY Message Trace

No. Time Source Destination Protocol Info

 1 5.430952 10.1.1.1 2.3.4.5 SIP Request:

NOTIFY sip:sipp@2.3.4.5:9999

Internet Protocol, Src: 10.1.1.1 (10.1.1.1), Dst: 2.3.4.5 (2.3.4.5)

User Datagram Protocol, Src Port: 42316 (42316), Dst Port: 9999 (9999)

Session Initiation Protocol

LSS 1 10.1.1.1 LB 1.2.3.4 UAC A 2.3.4.5
(1) NOTIFY	
----------------------->	
(10.1.1.1->2.3.4.5)	(2) NOTIFY
	----------------------->
	(1.2.3.4->2.3.4.5)
	(3) 200 OK
	<-----------------------
	(2.3.4.5->1.2.3.4)
(4) 200 OK	
<-----------------------	
(2.3.4.5->10.1.1.1)	

Example WebLogic S IP Server Ne two rk Conf igu ra t i on

9-8 Configuring and Managing WebLogic SIP Server

 Request-Line: NOTIFY sip:sipp@2.3.4.5:9999 SIP/2.0

 Message Header

 To: sipp <sip:sipp@2.3.4.5>;tag=1

 Content-Length: 0

 Contact:

<sip:app-12eomtm5h5f77@1.2.3.4:5060;transport=udp;wlsscid=1ae4479ac6ff71>

 CSeq: 1 NOTIFY

 Call-ID: 1-25923@2.3.4.5

 Via: SIP/2.0/UDP

1.2.3.4:5060;wlsscid=1ae4479ac6ff71;branch=z9hG4bKc5e4c3b4c22be517133ab749

adeece4e

 From: sut <sip:subscribe@1.2.3.4:5060>;tag=82722c03

 Max-Forwards: 70

No. Time Source Destination Protocol Info

 2 6.430952 1.2.3.4 2.3.4.5 SIP Request:

NOTIFY sip:sipp@2.3.4.5:9999

Internet Protocol, Src: 1.2.3.4 (1.2.3.4), Dst: 2.3.4.5 (2.3.4.5)

User Datagram Protocol, Src Port: 2222 (2222), Dst Port: 9999 (9999)

Session Initiation Protocol

 Request-Line: NOTIFY sip:sipp@2.3.4.5:9999 SIP/2.0

 Message Header

 To: sipp <sip:sipp@2.3.4.5>;tag=1

 Content-Length: 0

 Contact:

<sip:app-12eomtm5h5f77@1.2.3.4:5060;transport=udp;wlsscid=1ae4479ac6ff71>

 CSeq: 1 NOTIFY

 Call-ID: 1-25923@2.3.4.5

Load Ba lance r Conf igurat ion

Configuring and Managing WebLogic SIP Server 9-9

 Via: SIP/2.0/UDP

1.2.3.4:5060;wlsscid=1ae4479ac6ff71;branch=z9hG4bKc5e4c3b4c22be517133ab749

adeece4e

 From: sut <sip:subscribe@1.2.3.4:5060>;tag=82722c03

 Max-Forwards: 70

No. Time Source Destination Protocol Info

 3 7.431367 2.3.4.5 1.2.3.4 SIP Status: 200 OK

Internet Protocol, Src: 2.3.4.5 (2.3.4.5), Dst: 1.2.3.4 (1.2.3.4)

User Datagram Protocol, Src Port: 9999 (9999), Dst Port: sip (5060)

Session Initiation Protocol

 Status-Line: SIP/2.0 200 OK

 Message Header

 Via: SIP/2.0/UDP

1.2.3.4:5060;wlsscid=1ae4479ac6ff71;branch=z9hG4bKc5e4c3b4c22be517133ab749

adeece4e

 From: sut <sip:subscribe@1.2.3.4:5060>;tag=82722c03

 To: sipp <sip:sipp@2.3.4.5>;tag=1;tag=1

 Call-ID: 1-25923@2.3.4.5

 CSeq: 1 NOTIFY

 Contact: <sip:2.3.4.5:9999;transport=UDP>

WARNING: If NAT is performed on both the source (SNAT) and destination IP addresses, the
configuration does not work because the load balancer usually relies on a specific
destination port number value to be sent in responses to requests. That port
number value is dictated by RFC 3261, and must come from the Via header,
which presents a conflict with load balancer's NAT requirements. RFC 3261
requires that responses to SIP requests be sent to the IP address used to send the
request (unless maddr is present in the Via, as described in “maddr-Based

Example WebLogic S IP Server Ne two rk Conf igu ra t i on

9-10 Configuring and Managing WebLogic SIP Server

Configuration” on page 9-12). Consequently, in Figure 9-4 below, Step 3,
WebLogic SIP Server sends a 200 OK response to the load balancer internal IP
address (10.1.3.4) and port 5060. That response is then dropped.

Figure 9-4 Source and Destination NAT

The complete message trace from Figure 9-4 is show in Listing 9-5 below.

Listing 9-5 Complete Failing SUBSCRIBE Message Trace

No. Time Source Destination Protocol Info

 1 1.425250 2.3.4.5 1.2.3.4 SIP Request:

SUBSCRIBE sip:subscribe@1.2.3.4:5060

Internet Protocol, Src: 2.3.4.5 (2.3.4.5), Dst: 1.2.3.4 (1.2.3.4)

User Datagram Protocol, Src Port: 9999 (9999), Dst Port: sip (5060)

Session Initiation Protocol

 Request-Line: SUBSCRIBE sip:subscribe@1.2.3.4:5060 SIP/2.0

 Message Header

 Via: SIP/2.0/UDP 2.3.4.5:9999;branch=1

 A 2.3.4.5 LB 1.2.3.4 WLSS 1 10.1.1.1
(1) SUBSCRIBE	
----------------------->	
(2.3.4.5->1.2.3.4)	(2) SUBSCRIBE
	----------------------->
	(10.1.3.4->10.1.1.1)
	(3) 200 OK
X<-----------------------	
	(10.1.1.1->10.1.3.4)

Load Ba lance r Conf igurat ion

Configuring and Managing WebLogic SIP Server 9-11

 From: sipp <sip:sipp@2.3.4.5>;tag=1

 To: sut <sip:subscribe@1.2.3.4:5060>

 Call-ID: 1-25923@2.3.4.5

 Cseq: 1 SUBSCRIBE

 Contact: sip:sipp@2.3.4.5:9999

 Max-Forwards: 70

 Event: ua-profile

 Expires: 10

 Content-Length: 0

No. Time Source Destination Protocol Info

 2 2.426250 10.1.3.4 10.1.1.1 SIP Request:

SUBSCRIBE sip:subscribe@1.2.3.4:5060

Internet Protocol, Src: 10.1.3.4 (10.1.3.4), Dst: 10.1.1.1 (10.1.1.1)

User Datagram Protocol, Src Port: 2222 (2222), Dst Port: sip (5060)

Session Initiation Protocol

 Request-Line: SUBSCRIBE sip:subscribe@1.2.3.4:5060 SIP/2.0

 Message Header

 Via: SIP/2.0/UDP 2.3.4.5:9999;branch=1

 From: sipp <sip:sipp@2.3.4.5>;tag=1

 To: sut <sip:subscribe@1.2.3.4:5060>

 Call-ID: 1-25923@2.3.4.5

 Cseq: 1 SUBSCRIBE

 Contact: sip:sipp@2.3.4.5:9999

 Max-Forwards: 70

 Event: ua-profile

 Expires: 10

Example WebLogic S IP Server Ne two rk Conf igu ra t i on

9-12 Configuring and Managing WebLogic SIP Server

 Content-Length: 0

No. Time Source Destination Protocol Info

 3 3.430903 10.1.1.1 10.1.3.4 SIP Status: 200 OK

Internet Protocol, Src: 10.1.1.1 (10.1.1.1), Dst: 10.1.3.4 (10.1.3.4)

User Datagram Protocol, Src Port: 42316 (42316), Dst Port: 9999 (9999)

Session Initiation Protocol

maddr-Based Configuration
When the maddr parameter is present in the Via header, the response is sent to the IP address
specified in the maddr rather than to the received IP address (even when SNAT is enabled). In
the example below, the UAC specifies a maddr set to 2.3.4.5 in the Via header. Consequently the
response from the SIP server makes it to the UAC.

Figure 9-5 maddr Sequence

The complete message trace from Figure 9-5 is shown in Listing 9-6 below.

AC A 2.3.4.5 LB 1.2.3.4 WLSS 1 10.1.1.1
(1) SUBSCRIBE	
----------------------->	
(2.3.4.5->1.2.3.4)	(2) SUBSCRIBE
	----------------------->
	(10.1.3.4 ->10.1.1.1)
	(3) 200 OK
	<-----------------------
	(10.1.1.1->2.3.4.5)
(4) 200 OK	
<-----------------------	
(1.2.3.4->2.3.4.5)	

Load Ba lance r Conf igurat ion

Configuring and Managing WebLogic SIP Server 9-13

Listing 9-6 Complete maddr Message Trace

No. Time Source Destination Protocol Info

 1 1.425250 2.3.4.5 1.2.3.4 SIP Request:

SUBSCRIBE sip:subscribe@1.2.3.4:5060

Internet Protocol, Src: 2.3.4.5 (2.3.4.5), Dst: 1.2.3.4 (1.2.3.4)

User Datagram Protocol, Src Port: 9999 (9999), Dst Port: sip (5060)

Session Initiation Protocol

 Request-Line: SUBSCRIBE sip:subscribe@1.2.3.4:5060 SIP/2.0

 Message Header

 Via: SIP/2.0/UDP 2.3.4.5:9999;maddr=2.3.4.5;branch=1

 From: sipp <sip:sipp@2.3.4.5>;tag=1

 To: sut <sip:subscribe@1.2.3.4:5060>

 Call-ID: 1-25923@2.3.4.5

 Cseq: 1 SUBSCRIBE

 Contact: sip:sipp@2.3.4.5:9999

 Max-Forwards: 70

 Event: ua-profile

 Expires: 10

 Content-Length: 0

No. Time Source Destination Protocol Info

 2 2.426250 10.1.3.4 10.1.1.1 SIP Request:

SUBSCRIBE sip:subscribe@1.2.3.4:5060

Internet Protocol, Src: 10.1.3.4 (10.1.3.4), Dst: 10.1.1.1 (10.1.1.1)

User Datagram Protocol, Src Port: 2222 (2222), Dst Port: sip (5060)

Example WebLogic S IP Server Ne two rk Conf igu ra t i on

9-14 Configuring and Managing WebLogic SIP Server

Session Initiation Protocol

 Request-Line: SUBSCRIBE sip:subscribe@1.2.3.4:5060 SIP/2.0

 Message Header

 Via: SIP/2.0/UDP 2.3.4.5:9999;maddr=2.3.4.5;branch=1

 From: sipp <sip:sipp@2.3.4.5>;tag=1

 To: sut <sip:subscribe@1.2.3.4:5060>

 Call-ID: 1-25923@2.3.4.5

 Cseq: 1 SUBSCRIBE

 Contact: sip:sipp@2.3.4.5:9999

 Max-Forwards: 70

 Event: ua-profile

 Expires: 10

 Content-Length: 0

No. Time Source Destination Protocol Info

 3 3.430903 10.1.1.1 2.3.4.5 SIP Status: 200 OK

Internet Protocol, Src: 10.1.1.1 (10.1.1.1), Dst: 2.3.4.5 (2.3.4.5)

User Datagram Protocol, Src Port: 42316 (42316), Dst Port: 9999 (9999)

Session Initiation Protocol

 Status-Line: SIP/2.0 200 OK

 Message Header

 To: sut <sip:subscribe@1.2.3.4:5060>;tag=82722c03

 Content-Length: 0

 Contact:

<sip:app-12eomtm5h5f77@1.2.3.4:5060;transport=udp;wlsscid=1ae4479ac6ff71>

Load Ba lance r Conf igurat ion

Configuring and Managing WebLogic SIP Server 9-15

rport-Based Configuration
RFC 3581 improves SIP and NAT interactions by allowing the client to request that the server
send responses to a UDP port number from the request rather than from the Via. In order for both
SUBSCRIBE and NOTIFY to work correctly, both the UAC as well as WebLogic SIP Server
must support RFC 3581. Figure 9-6 illustrates the SUBSCRIBE flow.

Figure 9-6 rport SUBSCRIBE Sequence

The complete message trace from Figure 9-6 is shown in Listing 9-7 below.

Listing 9-7 Complete Message Trace for rport SUBSCRIBE

No. Time Source Destination Protocol Info

 1 1.425250 2.3.4.5 1.2.3.4 SIP Request:

SUBSCRIBE sip:subscribe@1.2.3.4:5060

Internet Protocol, Src: 2.3.4.5 (2.3.4.5), Dst: 1.2.3.4 (1.2.3.4)

User Datagram Protocol, Src Port: 9999 (9999), Dst Port: sip (5060)

Session Initiation Protocol

C A 2.3.4.5 LB 1.2.3.4 WLSS 1 10.1.1.1
(1) SUBSCRIBE	
----------------------->	
(2.3.4.5->1.2.3.4)	(2) SUBSCRIBE
	----------------------->
	(10.1.4.5->10.1.1.1)
	(3) 200 OK
	<-----------------------
	(10.1.1.1->10.1.4.5)
(4) 200 OK	
<-----------------------	
(1.2.3.4->2.3.4.5)	

Example WebLogic S IP Server Ne two rk Conf igu ra t i on

9-16 Configuring and Managing WebLogic SIP Server

 Request-Line: SUBSCRIBE sip:subscribe@1.2.3.4:5060 SIP/2.0

 Message Header

 Via: SIP/2.0/UDP 2.3.4.5:9999;rport;branch=1

 From: sipp <sip:sipp@2.3.4.5>;tag=1

 To: sut <sip:subscribe@1.2.3.4:5060>

 Call-ID: 1-25923@2.3.4.5

 Cseq: 1 SUBSCRIBE

 Contact: sip:sipp@2.3.4.5:9999

 Max-Forwards: 70

 Event: ua-profile

 Expires: 10

 Content-Length: 0

No. Time Source Destination Protocol Info

 2 2.426250 10.1.3.4 10.1.1.1 SIP Request:

SUBSCRIBE sip:subscribe@1.2.3.4:5060

Internet Protocol, Src: 10.1.3.4 (10.1.3.4), Dst: 10.1.1.1 (10.1.1.1)

User Datagram Protocol, Src Port: 2222 (2222), Dst Port: sip (5060)

Session Initiation Protocol

 Request-Line: SUBSCRIBE sip:subscribe@1.2.3.4:5060 SIP/2.0

 Message Header

 Via: SIP/2.0/UDP 2.3.4.5:9999;rport;branch=1

 From: sipp <sip:sipp@2.3.4.5>;tag=1

 To: sut <sip:subscribe@1.2.3.4:5060>

 Call-ID: 1-25923@2.3.4.5

 Cseq: 1 SUBSCRIBE

 Contact: sip:sipp@2.3.4.5:9999

Load Ba lance r Conf igurat ion

Configuring and Managing WebLogic SIP Server 9-17

 Max-Forwards: 70

 Event: ua-profile

 Expires: 10

 Content-Length: 0

No. Time Source Destination Protocol Info

 3 3.430903 10.1.1.1 10.1.3.4 SIP Status: 200 OK

Internet Protocol, Src: 10.1.1.1 (10.1.1.1), Dst: 10.1.3.4 (10.1.3.4)

User Datagram Protocol, Src Port: 42316 (42316), Dst Port: 2222 (2222)

Session Initiation Protocol

 Status-Line: SIP/2.0 200 OK

 Message Header

 To: sut <sip:subscribe@1.2.3.4:5060>;tag=82722c03

 Content-Length: 0

 Contact:

<sip:app-12eomtm5h5f77@1.2.3.4:5060;transport=udp;wlsscid=1ae4479ac6ff71>

 CSeq: 1 SUBSCRIBE

 Call-ID: 1-25923@2.3.4.5

Figure 9-7 illustrates the NOTIFY flow.

Note that while source address NAT is enabled for both directions (UAS->WebLogic SIP Server
and WebLogic SIP Server->UA), the load balancer can correctly identify the destination address
in Step 3 by relying on receiving responses on the same port number as the one used to send
requests. This implies that the load balancer maintains state.

Example WebLogic S IP Server Ne two rk Conf igu ra t i on

9-18 Configuring and Managing WebLogic SIP Server

Figure 9-7 rport NOTIFY Sequence

The complete message trace from Figure 9-7 is shown in Listing 9-8 below.

Listing 9-8 Complete Message Trace for rport NOTIFY

No. Time Source Destination Protocol Info

 1 5.430952 10.1.1.1 2.3.4.5 SIP Request:

NOTIFY sip:sipp@2.3.4.5:9999

Internet Protocol, Src: 10.1.1.1 (10.1.1.1), Dst: 2.3.4.5 (2.3.4.5)

User Datagram Protocol, Src Port: 42316 (42316), Dst Port: 9999 (9999)

Session Initiation Protocol

 Request-Line: NOTIFY sip:sipp@2.3.4.5:9999 SIP/2.0

 Message Header

 To: sipp <sip:sipp@2.3.4.5>;tag=1

 Content-Length: 0

 Contact:

<sip:app-12eomtm5h5f77@1.2.3.4:5060;transport=udp;wlsscid=1ae4479ac6ff71>

LSS 1 10.1.1.1 LB 1.2.3.4 UAC A 2.3.4.5
(1) NOTIFY	
----------------------->	
(10.1.1.1->2.3.4.5)	(2) NOTIFY
	----------------------->
	(1.2.3.4->2.3.4.5)
	(3) 200 OK
	<-----------------------
	(2.3.4.5->1.2.3.4)
(4) 200 OK	
<-----------------------	
(10.1.4.5->10.1.1.1)	

Load Ba lance r Conf igurat ion

Configuring and Managing WebLogic SIP Server 9-19

 CSeq: 1 NOTIFY

 Call-ID: 1-25923@2.3.4.5

 Via: SIP/2.0/UDP

1.2.3.4:5060;wlsscid=1ae4479ac6ff71;branch=z9hG4bKc5e4c3b4c22be517133ab749

adeece4e;rport

 From: sut <sip:subscribe@1.2.3.4:5060>;tag=82722c03

 Max-Forwards: 70

No. Time Source Destination Protocol Info

 2 6.430952 1.2.3.4 2.3.4.5 SIP Request:

NOTIFY sip:sipp@2.3.4.5:9999

Internet Protocol, Src: 1.2.3.4 (1.2.3.4), Dst: 2.3.4.5 (2.3.4.5)

User Datagram Protocol, Src Port: 2222 (2222), Dst Port: 9999 (9999)

Session Initiation Protocol

 Request-Line: NOTIFY sip:sipp@2.3.4.5:9999 SIP/2.0

 Message Header

 To: sipp <sip:sipp@2.3.4.5>;tag=1

 Content-Length: 0

 Contact:

<sip:app-12eomtm5h5f77@1.2.3.4:5060;transport=udp;wlsscid=1ae4479ac6ff71>

 CSeq: 1 NOTIFY

 Call-ID: 1-25923@2.3.4.5

 Via: SIP/2.0/UDP

1.2.3.4:5060;wlsscid=1ae4479ac6ff71;branch=z9hG4bKc5e4c3b4c22be517133ab749

adeece4e;rport

 From: sut <sip:subscribe@1.2.3.4:5060>;tag=82722c03

 Max-Forwards: 70

Example WebLogic S IP Server Ne two rk Conf igu ra t i on

9-20 Configuring and Managing WebLogic SIP Server

No. Time Source Destination Protocol Info

 3 7.431367 2.3.4.5 1.2.3.4 SIP Status: 200 OK

Internet Protocol, Src: 2.3.4.5 (2.3.4.5), Dst: 1.2.3.4 (1.2.3.4)

User Datagram Protocol, Src Port: 9999 (9999), Dst Port: (2222)

Session Initiation Protocol

 Status-Line: SIP/2.0 200 OK

 Message Header

 Via: SIP/2.0/UDP

1.2.3.4:5060;wlsscid=1ae4479ac6ff71;branch=z9hG4bKc5e4c3b4c22be517133ab749

adeece4e;rport

 From: sut <sip:subscribe@1.2.3.4:5060>;tag=82722c03

 To: sipp <sip:sipp@2.3.4.5>;tag=1;tag=1

 Call-ID: 1-25923@2.3.4.5

 CSeq: 1 NOTIFY

 Contact: <sip:2.3.4.5:9999;transport=UDP

Configuring and Managing WebLogic SIP Server 10-1

C H A P T E R 10

Logging SIP Requests and Responses

The following sections describe how to configure and manage logging for SIP requests and
responses:

“Overview of SIP Logging” on page 10-1

“Using the Template Logging Servlet” on page 10-2

“Defining Logging Servlets in sip.xml” on page 10-4

“Configuring the Logging Level and Destination” on page 10-5

“Specifying the Criteria for Logging Messages” on page 10-7

“Specifying Content Types for Unencrypted Logging” on page 10-10

“Managing Logging Performance” on page 10-11

“Enabling Log Rotation and Viewing Log Files” on page 10-12

“trace-pattern.dtd Reference” on page 10-12

“Adding Tracing Functionality to SIP Servlet Code” on page 10-16

“Order of Startup for Listeners and Logging Servlets” on page 10-17

Overview of SIP Logging
WebLogic SIP Server enables you to perform Protocol Data Unit (PDU) logging for the SIP
requests and responses it processes. Logged SIP messages are placed either in the domain-wide

Logging S IP Requests and Responses

10-2 Configuring and Managing WebLogic SIP Server

log file for WebLogic SIP Server, or in the log files for individual Managed Server instances.
Because SIP messages share the same log files as WebLogic SIP Server instances, you can use
advanced server logging features such as log rotation, domain log filtering, and maximum log
size configuration when managing logged SIP messages.

Administrators configure SIP PDU logging by defining one or more SIP Servlets using the
com.bea.wcp.sip.engine.tracing.listener.TraceMessageListenerImpl class that is
available in the template sipserver-tracing.war application. Logging criteria are then
configured either as parameters to the defined servlet, or in separate XML files packaged with the
application.

As SIP requests are processed or SIP responses generated, the logging Servlet compares the
message with the filtering patterns defined in a standalone XML configuration file or Servlet
parameter. SIP requests and responses that match the specified pattern are written to the log file
along with the name of the logging servlet, the configured logging level, and other details. To
avoid unnecessary pattern matching, the Servlet marks new SIP Sessions when an initial pattern
is matched and then logs subsequent requests and responses for that session automatically.

WebLogic SIP Server includes a template Web Application, sipserver-tracing.war, that
defines several SIP logging Servlets. You can use the Servlets that are predefined in this
application, or you can copy the Servlet implementation class into your own applications and
define logging Servlets as needed. See “Using the Template Logging Servlet” on page 10-2.
Logging criteria are defined either directly in sip.xml as parameters to a logging Servlet, or in
external XML configuration files. See “Specifying the Criteria for Logging Messages” on
page 10-7.

Note: Engineers can implement PDU logging functionality in their Servlets either by creating
a delegate with the TraceMessageListenerFactory in the Servlet’s init() method,
or by using the tracing class in deployed Java applications. Using the delegate enables
you to perform custom logging or manipulate incoming SIP messages using the default
trace message listener implementation. See “Adding Tracing Functionality to SIP Servlet
Code” on page 10-16 for an example of using the factory in a Servlet’s init() method.

Using the Template Logging Servlet
The template logging application, sipserver-tracing.war, contains a logging Servlet
implementation that you can customize to perform logging in a WebLogic SIP Server domain.
You can either use sipserver-tracing.war as a standalone application that you configure and
deploy along with other applications on your system, or you can incorporate the Servlet
implementation class from sipserver-tracing.war directly into other applications to provide
tracing functionality. The following sections describe each approach.

Using the Template Logg ing Serv le t

Configuring and Managing WebLogic SIP Server 10-3

Deploying the Template Logging Application
Notes: The default SIP Logging Application is not deployed to new domains by default. Follow

the instructions below to deploy the application.

If you want to create and deploy logging Servlets in your own applications (instead of
using the template Web Application described below), you must package the
sipserver-tracing.jar library from the template in your Web Application. The
library is not deployed by default with the sipserver implementation application.

The default SIP Logging Servlets are included in a Web Application,
WL_HOME/telco/lib/sipserver-tracing.war. To deploy this application:

1. Create a new directory from which to deploy the logging application. For example:

cd c:\bea\user_projects\domains\mydomain

mkdir sipserver-tracing

2. Change to the newly-created application directory:

cd sipserver-tracing

3. Extract the logging application into the new application directory:

jar xvf c:\bea\wlss220\telco\lib\sipserver-tracing.war

4. The logging Servlets are activated by deploying the sipserver-tracing application.
Deploy the new application using either the Administration Console or the
weblogic.Deployer utility. For example:

java weblogic.Deployer -adminurl t3://localhost:7001 -user weblogic
-password weblogic -deploy -nostage -source
c:\bea\user_projects\domains\mydomain\sipserver-tracing

5. Deploying the unmodified application enables the template logging Servlets with default
pattern matching configuration. See “Defining Logging Servlets in sip.xml” on page 10-4 and
“Specifying the Criteria for Logging Messages” on page 10-7 for information about
customizing the template application to perform logging for your system.

Using the Logging Servlet Implementation in Other
Applications
Follow these steps to add logging capabilities to an existing application:

1. Create a temporary directory into which you will extract the template logging application:

Logging S IP Requests and Responses

10-4 Configuring and Managing WebLogic SIP Server

mkdir c:\tracing-tmp

2. Change to the newly-created application directory:

cd c:\tracing-tmp

3. Extract the template logging application into the new application directory:

jar xvf c:\bea\wlss220\telco\lib\sipserver-tracing.war

4. Copy the sipserver-tracing.jar library from the temporary directory into the
WEB-INF/lib directory of your own application. For example:

cp WEB-INF\lib\sipserver-tracing.jar
c:\bea\user_projects\mydomain\myapplication\WEB-INF\lib

5. See “Defining Logging Servlets in sip.xml” on page 10-4 to define a new logging Servlet in
your existing application. Then read “Specifying the Criteria for Logging Messages” on
page 10-7 to customizing the logging performed by the Servlet.

Defining Logging Servlets in sip.xml
Logging Servlets for SIP messages are created by defining Servlets having the implementation
class com.bea.wcp.sip.engine.tracing.listener.TraceMessageListenerImpl. The
sipserver-tracing template application defines two logging servlets in its sip.xml
deployment descriptor, msgTraceLogger and invTraceLogger. The definition for
msgTraceLogger is shown in Listing 10-1.

Listing 10-1 Template Logging Servlets

<servlet>

 <servlet-name>msgTraceLogger</servlet-name>

<servlet-class>com.bea.wcp.sip.engine.tracing.listener.TraceMessageLis

tenerImpl</servlet-class>

 <init-param>

 <param-name>domain</param-name>

 <param-value>true</param-value>

 </init-param>

 <init-param>

Conf igur ing the Logg ing Leve l and Dest inat ion

Configuring and Managing WebLogic SIP Server 10-5

 <param-name>level</param-name>

 <param-value>full</param-value>

 </init-param>

 <load-on-startup/>

 </servlet>

You can either maintain all of your logging Servlets within the template application, or you can
add logging Servlets to your own SIP applications by defining Servlets that use the
com.bea.wcp.sip.engine.tracing.listener.TraceMessageListenerImpl
implementation class. See “Using the Template Logging Servlet” on page 10-2.

Configuring the Logging Level and Destination
Logging attributes such as the level of logging detail and the destination log file for SIP messages
are passed as initialization parameters to the logging Servlet. Table 10-1 lists the parameters and
parameter values that you can specify as init-param entries. Listing 10-1, “Template Logging

Logging S IP Requests and Responses

10-6 Configuring and Managing WebLogic SIP Server

Servlets,” on page 10-4 shows the sample init-param entries for a Servlet that logs full SIP
message information to the domain log file.

Table 10-1 Logging Level and Destination Parameters

param-name Entry Possible param-value
Entries

Description

domain true, false The domain parameter determines if
whether or not matching SIP messages are
logged to the domain log file. If set to true,
SIP Messages are logged to the domain log
file as well as the local server log file. The
default location of the domain log file is in a
file named wl-domain.log in the domain
directory.

If set to false, WebLogic SIP Server logs SIP
messages only to the Managed Server’s local
log file.

level terse, basic, full The level parameter determines the
amount of information logged for each
matching SIP message:
• terse—Logs only domain setting,

logging Servlet name, logging level,
and whether or not the message is an
incoming message.

• basic—Logs the terse items plus the
SIP message status, reason phrase, the
type of response or request, the SIP
method, the From header, and the To
header.

• full—Logs the basic items plus all
SIP message headers plus the timestamp,
protocol, request URI, request type,
response type, content type, and raw
content.

Spec i f y ing the Cr i te r ia fo r Logg ing Messages

Configuring and Managing WebLogic SIP Server 10-7

Specifying the Criteria for Logging Messages
The criteria for selecting SIP messages to log can be defined either in XML files that are packaged
with the logging Servlet’s application, or as initialization parameters in the Servlet’s sip.xml
deployment descriptor. The sections that follow describe each method.

Using XML Documents to Specify Logging Criteria
If you do not specify logging criteria as an initialization parameter to the logging Servlet, the
Servlet looks for logging criteria in a pair of XML descriptor files in the top level of the logging
application. These descriptor files, named request-pattern.xml and
response-pattern.xml, define patterns that WebLogic SIP Server uses for selecting SIP
requests and responses to place in the log file.

Note: By default WebLogic SIP Server logs both requests and responses. If you do not want to
log responses, you must define a response-pattern.xml file with empty matching
criteria.

A typical pattern definition defines a condition for matching a particular value in a SIP message
header. For example, the sample response-pattern.xml used by the msgTraceLogger Servlet
matches all MESSAGE requests. The contents of this descriptor are shown in

Listing 10-2 Sample response-pattern.xml for msgTraceLogger Servlet

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE pattern

 PUBLIC "Registration//Organization//Type Label//Definition Language"

 "trace-pattern.dtd">

<pattern>

 <equal>

 <var>response.method</var>

 <value>MESSAGE</value>

 </equal>

</pattern>

Logging S IP Requests and Responses

10-8 Configuring and Managing WebLogic SIP Server

Additional operators and conditions for matching SIP messages are described in
“trace-pattern.dtd Reference” on page 10-12. Most conditions, such as the equal condition
shown in Listing 10-2, require a variable (var element) that identifies the portion of the SIP
message to evaluate. Table 10-2 lists some common variables and sample values. For additional
variable names and examples, see Chapter 11: Mapping Requests to Servlets in the SIP Servlet
API 1.0 specification; WebLogic SIP Server enables mapping of both request and response
variables to logging Servlets.

Both request-pattern.xml and response-pattern.xml use the same Document Type
Definition (DTD). See “trace-pattern.dtd Reference” on page 10-12 for more information.

Using Servlet Parameters to Specify Logging Criteria
Pattern-matching criteria can also be specified as initialization parameters to the logging Servlet,
rather than as separate XML documents. The parameter names used to specify matching criteria
are request-pattern-string and response-pattern-string. They are defined along with
the logging level and destination as described in “Configuring the Logging Level and
Destination” on page 10-5.

The value of each pattern-matching parameter must consist of a valid XML document that
adheres to the DTD for standalone pattern definition documents (see “Using XML Documents to
Specify Logging Criteria” on page 10-7). Because the XML documents that define the patterns
and values must not be parsed as part of the sip.xml descriptor, you must enclose the contents
within the CDATA tag. Listing 10-3 shows the full sip.xml entry for the sample logging Servlet,
invTraceLogger. The final two init-param elements specify that the Servlet log only INVITE
request methods and OPTIONS response methods.

Table 10-2 Pattern-matching Variables and Sample Values

Variable Sample Values

request.method,
response.method

MESSAGE, INVITE, ACK, BYE, CANCEL

request.uri.user,
response.uri.user

guest, admin, joe

request.to.host,
response.to.host

server.mydomain.com

Spec i f y ing the Cr i te r ia fo r Logg ing Messages

Configuring and Managing WebLogic SIP Server 10-9

Listing 10-3 Logging Criteria Specified as init-param Elements

<servlet>

 <servlet-name>invTraceLogger</servlet-name>

<servlet-class>com.bea.wcp.sip.engine.tracing.listener.TraceMessageL

istenerImpl</servlet-class>

 <init-param>

 <param-name>domain</param-name>

 <param-value>true</param-value>

 </init-param>

 <init-param>

 <param-name>level</param-name>

 <param-value>full</param-value>

 </init-param>

 <init-param>

 <param-name>request-pattern-string</param-name>

 <param-value>

 <![CDATA[

 <?xml version="1.0" encoding="UTF-8"?>

 <!DOCTYPE pattern

 PUBLIC "Registration//Organization//Type Label//Definition

Language"

 "trace-pattern.dtd">

 <pattern>

 <equal>

 <var>request.method</var>

 <value>INVITE</value>

 </equal>

Logging S IP Requests and Responses

10-10 Configuring and Managing WebLogic SIP Server

 </pattern>

]]>

 </param-value>

 </init-param>

 <init-param>

 <param-name>response-pattern-string</param-name>

 <param-value>

 <![CDATA[

 <?xml version="1.0" encoding="UTF-8"?>

 <!DOCTYPE pattern

 PUBLIC "Registration//Organization//Type Label//Definition

Language"

 "trace-pattern.dtd">

 <pattern>

 <equal>

 <var>response.method</var>

 <value>OPTIONS</value>

 </equal>

 </pattern>

]]>

 </param-value>

 </init-param>

 <load-on-startup/>

 </servlet>

Specifying Content Types for Unencrypted Logging
By default WebLogic SIP Server uses String format (UTF-8 encoding) to log the content of SIP
messages having a text or application/sdp Content-Type value. For all other Content-Type

Managing Logging Per fo rmance

Configuring and Managing WebLogic SIP Server 10-11

values, WebLogic SIP Server attempts to log the message content using the character set
specified in the charset parameter of the message, if one is specified. If no charset parameter
is specified, or if the charset value is invalid or unsupported, WebLogic SIP Server uses
Base-64 encoding to encrypt the message content before logging the message.

If you want to avoid encrypting the content of messages under these circumstances, specify a list
of String-representable Content-Type values using the string-rep element in sipserver.xml.
The string-rep element can contain one or more content-type elements to match. If a logged
message matches one of the configured content-type elements, WebLogic SIP Server logs the
content in String format using UTF-8 encoding, regardless of whether or not a charset
parameter is included.

Note: You do not need to specify text/* or application/sdp content types as these are logged in
String format by default.

Listing 10-4 shows a sample message-debug configuration that logs String content for three
additional Content-Type values, in addition to text/* and application/sdp content.

Listing 10-4 Logging String Content for Additional Content Types

 <message-debug>

 <level>full</level>

 <string-rep>

 <content-type>application/msml+xml</content-type>

 <content-type>application/media_control+xml</content-type>

 <content-type>application/media_control</content-type>

 </string-rep>

 </message-debug>

Managing Logging Performance
The SIP message logging implementation uses the threads in two execute queues,
sip.tracing.local and sip.tracing.domain, to write log messages to the server and
domain log files, respectively. By default each queue is configured with only a single thread. If
the volume of log messages exceeds the capacity of either of these queues, log messages are

Logging S IP Requests and Responses

10-12 Configuring and Managing WebLogic SIP Server

dropped and a notification of drop messages is written to the file. Normal logging continues when
the volume of logged messages can be handled by the available threads.

If the number of dropped message notifications is unacceptable, follow these instructions to
increase the number of threads available in the queue:

1. Access the Administration Console for the WebLogic SIP Server domain.

2. Expand the Servers node in the left pane of the Administration Console.

3. Right-click the name of the server that contains the execute queue you want to configure, and
select View Execute Queues. (If you want to configure the queue used for writing to the
domain log file, right-click any available server.)

4. In the right pane of the console, click either sip.tracing.local or sip.tracing.domain
to configure the queue.

5. Edit the Thread Count value to change the number of threads allocated to the pool, or change
any other Execute Queue properties to improve performance as needed.

6. Click Apply to apply your changes.

7. Reboot the WebLogic SIP Server instance to realize the change.

Enabling Log Rotation and Viewing Log Files
The WebLogic SIP Server logging infrastructure enables you to automatically write to a new log
file when the existing log file reaches a specified size. You can also view log contents using the
Administration Console or configure additional server-level events that are written to the log. See
Server Log in the WebLogic Server 8.1 documentation for more information about basic log
management.

trace-pattern.dtd Reference
trace-pattern.dtd defines the required contents of the request-pattern.xml and
response-pattern.xml, documents, as well as the values for the request-pattern-string
and response-pattern-string Servlet init-param variables.

Listing 10-5 trace-pattern.dtd

<!--

http://e-docs.bea.com/wls/docs81/ConsoleHelp/logging.html
http://e-docs.bea.com/wls/docs81/index.html

t race-pat te rn .d td Re fe rence

Configuring and Managing WebLogic SIP Server 10-13

The different types of conditions supported.

-->

<!ENTITY % condition "and | or | not |

 equal | contains | exists | subdomain-of">

<!--

A pattern is a condition: a predicate over the set of SIP requests.

-->

<!ELEMENT pattern (%condition;)>

<!--

An "and" condition is true if and only if all its constituent conditions

are true.

-->

<!ELEMENT and (%condition;)+>

<!--

An "or" condition is true if at least one of its constituent conditions

is true.

-->

<!ELEMENT or (%condition;)+>

<!--

Logging S IP Requests and Responses

10-14 Configuring and Managing WebLogic SIP Server

Negates the value of the contained condition.

-->

<!ELEMENT not (%condition;)>

<!--

True if the value of the variable equals the specified literal value.

-->

<!ELEMENT equal (var, value)>

<!--

True if the value of the variable contains the specified literal value.

-->

<!ELEMENT contains (var, value)>

<!--

True if the specified variable exists.

-->

<!ELEMENT exists (var)>

<!--

-->

<!ELEMENT subdomain-of (var, value)>

t race-pat te rn .d td Re fe rence

Configuring and Managing WebLogic SIP Server 10-15

<!--

Specifies a variable. Example:

 <var>request.uri.user</var>

-->

<!ELEMENT var (#PCDATA)>

<!--

Specifies a literal string value that is used to specify rules.

-->

<!ELEMENT value (#PCDATA)>

<!--

Specifies whether the "equal" test is case sensitive or not.

-->

<!ATTLIST equal ignore-case (true|false) "false">

<!--

Specifies whether the "contains" test is case sensitive or not.

-->

<!ATTLIST contains ignore-case (true|false) "false">

<!--

Logging S IP Requests and Responses

10-16 Configuring and Managing WebLogic SIP Server

The ID mechanism is to allow tools to easily make tool-specific

references to the elements of the deployment descriptor. This allows

tools that produce additional deployment information (i.e information

beyond the standard deployment descriptor information) to store the

non-standard information in a separate file, and easily refer from

these tools-specific files to the information in the standard sip-app

deployment descriptor.

-->

<!ATTLIST pattern id ID #IMPLIED>

<!ATTLIST and id ID #IMPLIED>

<!ATTLIST or id ID #IMPLIED>

<!ATTLIST not id ID #IMPLIED>

<!ATTLIST equal id ID #IMPLIED>

<!ATTLIST contains id ID #IMPLIED>

<!ATTLIST exists id ID #IMPLIED>

<!ATTLIST subdomain-of id ID #IMPLIED>

<!ATTLIST var id ID #IMPLIED>

<!ATTLIST value id ID #IMPLIED>

Adding Tracing Functionality to SIP Servlet Code
Tracing functionality can be added to your own Servlets or to Java code by using the
TraceMessageListenerFactory. TraceMessageListenerFactory enables clients to reuse
the default trace message listener implementation behaviors by creating an instance and then
delegating to it. The factory implementation instance can be found in the servlet context for SIP
Servlets by looking up the value of the
TraceMessageListenerFactory.TRACE_MESSAGE_LISTENER_FACTORY attribute.

Note: Instances created by the factory are not registered with WebLogic SIP Server to receive
callbacks upon SIP message arrival and departure.

Order o f S tar tup fo r L is teners and Logg ing Se rv le ts

Configuring and Managing WebLogic SIP Server 10-17

To implement tracing in a Servlet, you use the factory class to create a delegate in the Servlet’s
init() method as shown in Listing 10-6.

Listing 10-6 Using the TraceMessageListenerFactory

public final class TraceMessageListenerImpl extends SipServlet implements
MessageListener {

 private MessageListener delegate;

 public void init() throws ServletException {

 ServletContext sc = (ServletContext) getServletContext();

 TraceMessageListenerFactory factory = (TraceMessageListenerFactory)
sc.getAttribute(TraceMessageListenerFactory.TRACE_MESSAGE_LISTENER_FACTORY);

 delegate = factory.createTraceMessageListener(getServletConfig());

 }

 public final void onRequest(SipServletRequest req, boolean incoming) {

 delegate.onRequest(req,incoming);

 }

 public final void onResponse(SipServletResponse resp, boolean incoming) {

 delegate.onResponse(resp,incoming);

 }

}

Order of Startup for Listeners and Logging Servlets
If you deploy both listeners and logging servlets, the listener classes are loaded first, followed by
the Servlets. Logging Servlets are deployed in order according to the load order specified in their
Web Application deployment descriptor.

Logging S IP Requests and Responses

10-18 Configuring and Managing WebLogic SIP Server

Configuring and Managing WebLogic SIP Server 11-1

C H A P T E R 11

Avoiding and Recovering From Server
Failures

A variety of events can lead to the failure of a server instance. Often one failure condition leads
to another. Loss of power, hardware malfunction, operating system crashes, network partitions,
or unexpected application behavior may each contribute to the failure of a server instance.

WebLogic SIP Server uses a highly clustered architecture as the basis for minimizing the impact
of failure events. However, even in a clustered environment it is important to prepare for a sound
recovery process in the event that an engine tier server, data tier server, or Diameter relay node
were to suddenly fail.

The following sections provide information and procedures for recovering failed server
instances:

“Failure Prevention and Recovery Features” on page 11-1

“Directory and File Backups for Failure Recovery” on page 11-3

“Restarting a Failed Administration Server” on page 11-7

“Restarting Failed Managed Servers” on page 11-8

Failure Prevention and Recovery Features
WebLogic SIP Server provides several features that facilitate recovery from and protection
against server failure.

Avo id ing and Recover ing F rom Serve r Fa i lu res

11-2 Configuring and Managing WebLogic SIP Server

Overload Protection
WebLogic SIP Server detects increases in system load that could affect the performance and
stability of deployed SIP Servlets, and automatically throttles message processing at predefined
load thresholds.

Using overload protection helps you avoid failures that could result from unanticipated levels of
application traffic or resource utilization.

WebLogic SIP Server attempts to avoid failure when certain conditions occur:

The rate at which SIP sessions are created reaches a configured value, or

The size of the SIP timer and SIP request-processing execute queues reaches a configured
length.

See overload in the Configuration Reference for more information.

Redundancy and Failover for Clustered Services
You can increase the reliability and availability of your applications by using multiple engine tier
servers in a dedicated cluster, as well as multiple data tier servers (replicas) in a dedicated data
tier cluster. Because engine tier clusters maintain no stateful information about applications, the
failure of an engine tier server does not result in any data loss or dropped calls. Multiple replicas
in a data tier partition store redundant copies of call state information, and automatically failover
to one another should a replica fail.

See “Overview of the WebLogic SIP Server Architecture” on page 1-1 for more information.

Automatic Restart for Failed Server Instances
Using Node Manager, server self-health monitoring enables you to automatically reboot servers
that have failed. This improves the overall reliability of a domain, and requires no direct
intervention from an administrator.

For more information, see Configuring, Starting, and Stopping Node Manager in the WebLogic
Server 8.1 documentation.

Managed Server Independence Mode
Managed Servers maintain a local copy of the domain configuration. When a Managed Server
starts, it contacts its Administration Server to retrieve any changes to the domain configuration
that were made since the Managed Server was last shut down. If a Managed Server cannot

{DOCROOT}/configref/enginetier_dd.html#overload
http://e-docs.bea.com/wls/docs81/adminguide/confignodemgr.html
{DOCROOT}/configref/index.html

Di rec to r y and F i l e Backups fo r Fa i lu re Recove ry

Configuring and Managing WebLogic SIP Server 11-3

connect to the Administration Server during startup, it can use its locally-cached configuration
information—this is the configuration that was current at the time of the Managed Server’s most
recent shutdown. A Managed Server that starts up without contacting its Administration Server
to check for configuration updates is running in Managed Server Independence (MSI) mode. By
default, MSI mode is enabled. See Replicating a Domain's Configuration Files for Managed
Server Independence in the WebLogic Server 8.1 documentation.

Directory and File Backups for Failure Recovery
Recovery from the failure of a server instance requires access to the domain’s configuration and
security data. This section describes file backups that WebLogic SIP Server performs
automatically, as well as manual backup procedures that an administrator should perform
periodically.

Backing up config.xml
By default, an Administration Server stores a domain’s configuration data in a file called
domain_name/config.xml, where domain_name is the root directory of the domain.

Back up config.xml to a secure location in case a failure of the Administration Server renders
the original copy unavailable. BEA recommends storing each new version of a config.xml file
to a source control repository. If an Administration Server fails, you can copy the most recent
backup version to a different machine and restart the Administration Server on that machine.

Automated config.xml Archiving
By default, the Administration Server archives up to 5 previous versions of config.xml in the
domain-name/configArchive directory.

When you save a change to a domain’s configuration, the Administration Server saves the
previous configuration in domain-name\configArchive\config.xml#n. Each time the
Administration Server saves a file in the configArchive directory, it increments the value of the
#n suffix, up to a configurable number of copies—5 by default. Thereafter, each time you change
the domain configuration:

The archived files are rotated so that the newest file has a suffix with the highest number,

The previous archived files are renamed with a lower number, and

The oldest file is deleted.

To configure how the number of config.xml file versions that the server maintains:

http://e-docs.bea.com/wls/docs81/ConsoleHelp/servers.html#1142751
http://e-docs.bea.com/wls/docs81/ConsoleHelp/servers.html#1142751

Avo id ing and Recover ing F rom Serve r Fa i lu res

11-4 Configuring and Managing WebLogic SIP Server

1. In the left pane of the Administration Console, click on the name of the domain.

2. In the right pane, click the Configuration->General tab.

3. In the Advanced Options bar, click Show.

4. In the Archive Configuration Count box, enter the number of versions to save.

5. Click Apply.

Automatic Backup of config.xml at Server Startup
In addition to the files in domain-name\configArchive, the Administration Server creates two
other files that back up the domain’s configuration at key points during the startup process:

domain-name\config-file.xml.original—The configuration file just before the
Administration Server parses it and adds subsystem data.

 domain-name\config-file.xml.booted—The configuration file just after the
Administration Server successfully boots. If the config.xml becomes corrupted, you can
boot the Administration Server with this file.

Backing Up the sipserver Application
As with the config.xml file, the sipserver implementation application contains configuration
information used by all engine and data tier servers deployed within a domain. The sipserver
application also generally includes the diameter application for engine tier servers that act as
Diameter client nodes.

By default the sipserver application is stored in domain_name/sipserver. Backup the entire
application directory, which includes the sipserver.xml, datatier.xml, and diameter.xml
configuration files, as well as any additional patches you may have installed.

Backing Up the Diameter Application
If you configure one or more WebLogic SIP Server instances to function as Diameter relay agent
nodes, the Diameter Web Application is generally deployed as a standalone application (outside
of the sipserver implementation application). Backup each Diameter application used to
configure a relay agent node. This generally involves a separate Diameter application directory
for each relay.

Di rec to r y and F i l e Backups fo r Fa i lu re Recove ry

Configuring and Managing WebLogic SIP Server 11-5

Backing Up Server Start Scripts
In a WebLogic SIP Server deployment, the start scripts used to boot engine and data tier servers
are generally customized to include domain-specific configuration information such as:

JVM Garbage Collection parameters required to achieve throughput targets for SIP
message processing (see “Tuning JVM Garbage Collection for Production Deployments”
on page F-1). Different parameters (and therefore, different start scripts) are generally used
to boot engine and data tier servers.

Configuration parameters and startup information for the WebLogic SIP Server heartbeat
mechanism (see “Improving Failover Performance for Physical Network Failures” on
page E-1). If you use the heartbeat mechanism, engine tier server start scripts should
include startup options to enable and configure the heartbeat mechanism. Data tier server
start scripts should include startup options to enable heartbeats and start the
WlssEchoServer process.

Backup each distinct start script used to boot engine tier, data tier, or diameter relay servers in
your domain.

Backing Up Logging Servlet Applications
If you use WebLogic SIP Server logging Servlets (see “Logging SIP Requests and Responses”
on page 10-1) to perform regular logging or auditing of SIP messages, backup the complete
application source files so that you can easily redeploy the applications should the staging server
fail or the original deployment directory becomes corrupted.

Backing Up Security Data
The WebLogic Security service stores its configuration data config.xml file, and also in an
LDAP repository and other files.

Backing Up the WebLogic LDAP Repository
The default Authentication, Authorization, Role Mapper, and Credential Mapper providers that
are installed with WebLogic SIP Server store their data in an LDAP server. Each WebLogic SIP
Server contains an embedded LDAP server. The Administration Server contains the master
LDAP server, which is replicated on all Managed Servers. If any of your security realms use these
installed providers, you should maintain an up-to-date backup of the following directory tree:

domain_name\adminServer\ldap

Avo id ing and Recover ing F rom Serve r Fa i lu res

11-6 Configuring and Managing WebLogic SIP Server

where domain_name is the domain’s root directory and adminServer is the directory in which
the Administration Server stores runtime and security data.

Each WebLogic SIP Server has an LDAP directory, but you only need to back up the LDAP data
on the Administration Server—the master LDAP server replicates the LDAP data from each
Managed Server when updates to security data are made. WebLogic security providers cannot
modify security data while the domain’s Administration Server is unavailable. The LDAP
repositories on Managed Servers are replicas and cannot be modified.

The ldap/ldapfiles subdirectory contains the data files for the LDAP server. The files in this
directory contain user, group, group membership, policies, and role information. Other
subdirectories under the ldap directory contain LDAP server message logs and data about
replicated LDAP servers.

Do not update the configuration of a security provider while a backup of LDAP data is in
progress. If a change is made—for instance, if an administrator adds a user—while you are
backing up the ldap directory tree, the backups in the ldapfiles subdirectory could become
inconsistent. If this does occur, consistent, but potentially out-of-date, LDAP backups are
available.

Once a day, a server suspends write operations and creates its own backup of the LDAP data. It
archives this backup in a ZIP file below the ldap\backup directory and then resumes write
operations. This backup is guaranteed to be consistent, but it might not contain the latest security
data.

For information about configuring the LDAP backup, see Configuring Backups for the
Embedded LDAP Server in the WebLogic Server 8.1 Documentation.

Backing Up SerializedSystemIni.dat and Security Certificates
All servers create a file named SerializedSystemIni.dat and place it in the server’s root
directory. This file contains encrypted security data that must be present to boot the server. You
must back up this file.

If you configured a server to use SSL, also back up the security certificates and keys. The location
of these files is user-configurable.

Backing Up Additional Operating System Configuration Files
Certain files maintained at the operating system level are also critical in helping you recover from
system failures. Consider backing up the following information as necessary for your system:

http://e-docs.bea.com/wls/docs81/ConsoleHelp/security_7x.html#backups_for_the_embedded_LDAP_server
http://e-docs.bea.com/wls/docs81/ConsoleHelp/security_7x.html#backups_for_the_embedded_LDAP_server

Restar t ing a Fa i l ed Admin is t ra t ion Se rve r

Configuring and Managing WebLogic SIP Server 11-7

Load Balancer configuration scripts. For example, any automated scripts used to configure
load balancer pools and virtual IP addresses for the engine tier cluster, as well as NAT
configuration settings.

NTP client configuration scripts used to synchronize the system clocks of engine and data
tier servers.

Host configuration files for each WebLogic SIP Server machine (host names, virtual and
real IP addresses for multihomed machines, IP routing table information).

Restarting a Failed Administration Server
If no Managed Servers in the domain are running when you restart a failed Administration Server,
no special steps are required. Start the Administration Server as you normally would.

If the Administration Server shuts down while Managed Servers continue to run, you do not need
to restart the Managed Servers that are already running in order to recover management of the
domain. The procedure for recovering management of an active domain depends upon whether
you can restart the Administration Server on the same machine it was running on when the
domain was started.

Restarting an Administration Server on the Same Machine
If you restart the WebLogic Administration Server while Managed Servers continue to run, by
default the Administration Server can discover the presence of the running Managed Servers.

Note: Make sure that the startup command or startup script does not include
-Dweblogic.management.discover=false, which disables an Administration Server
from discovering its running Managed Servers.

The root directory for the domain contains a file, running-managed-servers.xml, which
contains a list of the Managed Servers in the domain and describes whether they are running or
not. When the Administration Server restarts, it checks this file to determine which Managed
Servers were under its control before it stopped running.

When a Managed Server is gracefully or forcefully shut down, its status in
running-managed-servers.xml is updated to “not-running”. When an Administration Server
restarts, it does not try to discover Managed Servers with the “not-running” status. A Managed
Server that stops running because of a system crash, or that was stopped by killing the JVM or
the command prompt (shell) in which it was running, will still have the status “running’ in
running-managed-servers.xml. The Administration Server will attempt to discover them,
and will throw an exception when it determines that the Managed Server is no longer running.

Avo id ing and Recover ing F rom Serve r Fa i lu res

11-8 Configuring and Managing WebLogic SIP Server

Restarting the Administration Server does not cause Managed Servers to update the configuration
of static attributes. Static attributes are those that a server refers to only during its startup process.
Servers instances must be restarted to take account of changes to static configuration attributes.
Discovery of the Managed Servers only enables the Administration Server to monitor the
Managed Servers or make runtime changes in attributes that can be configured while a server is
running (dynamic attributes).

Restarting an Administration Server on Another Machine
If a machine crash prevents you from restarting the Administration Server on the same machine,
you can recover management of the running Managed Servers as follows:

1. Install the WebLogic SIP Server software on the new administration machine (if this has not
already been done).

2. Make your application files available to the new Administration Server by copying them
from backups or by using a shared disk. Your application files should be available in the
same relative location on the new file system as on the file system of the original
Administration Server.

3. Make your configuration and security data available to the new administration machine by
copying them from backups or by using a shared disk. For more information, refer to
“Backing Up Security Data” on page 11-5.

4. Restart the Administration Server on the new machine.

Make sure that the startup command or startup script does not include
-Dweblogic.management.discover=false, which disables an Administration Server
from discovering its running Managed Servers.

When the Administration Server starts, it communicates with the Managed Servers and informs
them that the Administration Server is now running on a different IP address.

Restarting Failed Managed Servers
If the Administration Server is reachable by Managed Server that failed, you can:

Restart it manually or automatically using Node Manager—You must configure Node
Manager and the Managed Server to support this behavior. For details, see Configuring,
Starting, and Stopping Node Manager in the WebLogic Server 8.1 documentation.

Start it manually with a command or script.

http://e-docs.bea.com/wls/docs81/adminguide/confignodemgr.html
http://e-docs.bea.com/wls/docs81/adminguide/confignodemgr.html

Restar t ing Fa i l ed Managed Serve rs

Configuring and Managing WebLogic SIP Server 11-9

If a Managed Server cannot connect to the Administration Server during startup, it can retrieve
its configuration by reading locally-cached configuration data. A Managed Server that starts in
this way is running in Managed Server Independence (MSI) mode. For a description of MSI
mode, and the files that a Managed Server must access to start up in MSI mode, see Replicating
a Domain's Configuration Files for Managed Server Independence in the WebLogic Server 8.1
documentation.

To start up a Managed Server in MSI mode:

1. Ensure that the following files are available in the Managed Server’s root directory:

– msi-config.xml.

– SerializedSystemIni.dat
– boot.properties

If these files are not in the Managed Server’s root directory:

a. Copy the config.xml and SerializedSystemIni.dat file from the Administration
Server’s root directory (or from a backup) to the Managed Server’s root directory.

b. Rename the configuration file to msi-config.xml. When you start the server, it will use
the copied configuration files.

Note: Alternatively, use the -Dweblogic.RootDirectory=path startup option to specify
a root directory that already contains these files.

2. Start the Managed Server at the command line or using a script.

The Managed Server will run in MSI mode until it is contacted by its Administration
Server. For information about restarting the Administration Server in this scenario, see
“Restarting a Failed Administration Server” on page 11-7.

http://e-docs.bea.com/wls/docs81/ConsoleHelp/servers.html#1142751
http://e-docs.bea.com/wls/docs81/ConsoleHelp/servers.html#1142751

Avo id ing and Recover ing F rom Serve r Fa i lu res

11-10 Configuring and Managing WebLogic SIP Server

Configuring and Managing WebLogic SIP Server 12-1

C H A P T E R 12

Configuring SNMP

The following sections describe how to configure and manage SNMP services with WebLogic
SIP Server 2.2:

“Overview of WebLogic SIP Server SNMP” on page 12-1

“Browsing the MIB” on page 12-2

“Configuring SNMP” on page 12-2

“SNMP Port Binding for WebLogic SIP Server” on page 12-2

“Understanding and Responding to SNMP Traps” on page 12-3

Overview of WebLogic SIP Server SNMP
WebLogic SIP Server includes a dedicated SNMP MIB to monitor activity on engine tier and data
tier server instances. The WebLogic SIP Server MIB is available on both Managed Servers and
the Administration Server of a domain. However, WebLogic SIP Server engine and data tier traps
are generated only by the Managed Server instances that make up each tier. If your
Administration Server does not deploy the sipserver implementation EAR, it will generate
only WebLogic Server 8.1 SNMP traps (for example, when a server in a cluster fails).
Administrators should monitor both WebLogic Server 8.1 and WebLogic SIP Server traps to
evaluate the behavior of the entire domain.

Note: WebLogic SIP Server MIB objects are read-only. You cannot modify a WebLogic SIP
Server configuration using SNMP.

Conf igur ing SNMP

12-2 Configuring and Managing WebLogic SIP Server

Browsing the MIB
You can use either of the following methods to browse the contents of the WebLogic SIP Server
MIB:

Use a MIB browser. WebLogic SIP Server does not provide a MIB browser, but most
vendors of SNMP utilities do. The MIB is located in a file named
WLSS_HOME/telco/lib/BEA-WLSS-MIB.asn1.

Use a Web browser to view the WebLogic SIP Server SNMP MIB Reference on the BEA
e-docs Web site.

Because the MIB Reference uses Javascript and DHTML to provide browsing capabilities
that are similar to a MIB browser, you must use one of the following Web browsers:

– Firefox

– Internet Explorer, version 5 or higher

– Mozilla

– Netscape Navigator, version 6 or higher

– Opera 7 or higher

Configuring SNMP
To enable SNMP monitoring for the entire WebLogic SIP Server domain, follow these steps:

1. Login to the Administration Console for the WebLogic SIP Server domain.

2. In the left pane, select the Services->SNMP node.

3. Select the Enabled check box to enable SNMP.

Note: WebLogic SIP Server instances ignore the SNMP port number specified on this page.
See “SNMP Port Binding for WebLogic SIP Server” on page 12-2.

4. Click Apply to apply your changes.

SNMP Port Binding for WebLogic SIP Server
If you run multiple Managed Server instances on the same machine, each server instance would
normally attempt to bind to the same configured SNMP port (for example, port 161). WebLogic
SIP Server instances automatically manage SNMP port conflicts by automatically attempting to

{DOCROOT}/snmp/index.html

Unders tand ing and Responding to SNMP Traps

Configuring and Managing WebLogic SIP Server 12-3

bind to port 1610, and incrementing the port number as needed if the current port is unavailable.
This helps to avoid a SNMP startup failure when multiple WebLogic SIP Server instances are
deployed on the same server hardware.

You can also manually override the starting port number that WebLogic SIP Server attempts to
bind to by supplying the -DWLSS.SNMPPort=port_number startup argument.

WARNING: If you specify the -DWLSS.SNMPPort option, ensure that the starting port number
and subsequent numbers are unused on your system. The default starting port of
1610 was selected because no services are commonly bound to the 1610 port
range.

Understanding and Responding to SNMP Traps
The following sections describe the WebLogic SIP Server SNMP traps in more detail. Recovery
procedures for responding to individual traps are also included where applicable.

Files for Troubleshooting
The following WebLogic SIP Server log and configuration files are frequently helpful for
troubleshooting problems, and may be required by your technical support contact:

$DOMAIN_DIR/config.xml

$DOMAIN_DIR/sipserver/config/sipserver.xml

$DOMAIN_DIR/*.log (domain log file)

$DOMAIN_DIR/servername/*.log (server and access logs)

sip.xml (in the /WEB-INF subdirectory of the application)

web.xml (in the /WEB-INF subdirectory of the application)

General information that can help the technical support team includes:

The specific versions of:

– WebLogic SIP Server

– Java SDK

– Operating System

Thread dumps for hung WebLogic SIP Server processes

Network analyzer logs

Conf igur ing SNMP

12-4 Configuring and Managing WebLogic SIP Server

Trap Descriptions
Table 12-1 lists the WebLogic SIP Server SNMP traps and indicates whether the trap is generated
by servers in the engine tier or data tier. Each trap is described in the sections that follow.

connectionLostToPeer

Description
This trap is generated by an engine tier server instance when it loses its connection to a replica in
the data tier. It may indicate a network connection problem between the engine and data tiers, or
may be generated with additional traps if a data tier server fails.

Table 12-1 WebLogic SIP Server SNMP Traps

Server Node in which Trap is
Generated

Trap Name

Engine Tier Servers “licenseLimitExceeded” on page 12-5

“overloadControlActivated, overloadControlDeactivated”
on page 12-8

“sipAppDeployed” on page 12-10

“sipAppUndeployed” on page 12-11

“sipAppFailedToDeploy” on page 12-11

Engine and Data Tier Servers, if
servers are members of a cluster

“serverStopped” on page 12-9

Data Tier Servers “connectionLostToPeer” on page 12-4

“connectionReestablishedToPeer” on page 12-5

“dataTierServerStopped” on page 12-5

“replicaAddedToPartition” on page 12-9

“replicaRemovedFromPartition” on page 12-9

Unders tand ing and Responding to SNMP Traps

Configuring and Managing WebLogic SIP Server 12-5

Recovery Procedure
If this trap occurs in isolation from other traps indicating a server failure, it generally indicates a
network failure. Verify or repair the network connection between the affected engine tier server
and the data tier server.

If the trap is accompanied by additional traps indicating a data tier server failure (for example,
dataTierServerStopped), follow the recovery procedures for the associated traps.

connectionReestablishedToPeer

Description
This trap is generated by an engine tier server instance when it successfully reconnects to a data
tier server after a prior failure (after a connectionLostToPeer trap was generated). Repeated
instances of this trap may indicate an intermittent network failure between the engine and data
tiers.

Recovery Procedure
See “connectionLostToPeer” on page 12-4.

dataTierServerStopped

Description
WebLogic SIP Server data tier nodes generate this alarm when an unrecoverable error occurs in
a WebLogic Server instance that is part of the data tier. Note that this trap may be generated by
the server that is shutting down, by another replica in the same partition, or in some cases by both
servers (network outages can sometimes trigger both servers to generate the same trap).

Recovery Procedure
See the Recovery Procedure for “serverStopped” on page 12-9.

licenseLimitExceeded

Description
WebLogic SIP Server engine tier nodes generate this trap when it detects a license violation. This
trap can occur if server usage or access exceeds the limitations specified in the license file, or if
the file is accidentally modified. Never modify, move, or delete the license file during normal
operations.

Conf igur ing SNMP

12-6 Configuring and Managing WebLogic SIP Server

License violations may cause one or more of the following behaviors if the license file has been
modified or corrupted:

If the license signature in the license file was changed, WebLogic SIP Server may detect
the anomaly and shut down. Furthermore, WebLogic SIP Server will not start up if the
license signature is modified or corrupted.

If the IP address in the license file is incorrect, WebLogic SIP Server will not start up.

If the license expiration is reached WebLogic SIP Server will not start up. If the server is
already running, it will shut down automatically after the expiration is reached.

Note: Permanent licenses have no expiration. If you purchased a permanent license but your
license expires, your server may be using an evaluation license instead of your purchased
license.

If usage reaches the maximum values set in the license file (max-sessions, max-registers or
max-users) WebLogic SIP Server continues to run but rejects requests that exceed the defined
limits. The following behaviors may be observed when usage limits are reached:

1. If the number of sessions has reached max-sessions and there is a request to create a new
session:

– WebLogic SIP Server generates a licenseLimitExceeded exception and rejects the
request.

– The application must handle the exception and notify the source of the request.

– If the application passes the exception to the SIP container as is, WebLogic SIP Server
returns a “503 Out Of Licensed Resources” response.

2. If there is an attempt to register a user beyond the maximum number specified in max-users:

– The user management component generates an IllegalLicenseException.

– The application must handle the exception and notify the source of the request.

– If the application passes the exception to the SIP container as is, WebLogic SIP Server
returns a “503 Out Of Licensed Resources” response.

– Removing an existing user enables a new user to be registered.

3. If the number of connected terminals has reached max-registers:

– The registrar servlet returns “503 Service Unavailable” to the new REGISTER request.

– Registered terminals can still be refreshing or removed (UNREGISTERed).

Unders tand ing and Responding to SNMP Traps

Configuring and Managing WebLogic SIP Server 12-7

– UNREGISTERing a terminal enables a new REGISTER to succeed.

The license file is an XML document located at $BEA_HOME/license.bea. The following
sample shows a portion of an evaluation license:

<license-group format="1.0" product="WebLogic SIP Server" release="2.2">

 <license

 component="SIP Servlet Engine"

 expiration="never"

 ip="any"

 licensee="BEA Evaluation Customer"

 msgspersec="100"

 serial="616351266349-1813874379535"

 type="SDK"

 signature="MC0CFQDeWBkXTSZ5bO1qy0D/AfukgzqhDwIURsL8bkpTwlypiTSBq+d1b

dyzbRM="

 />

 </license-group>

</license-group>

Recovery Procedure

1. Check the license file to insure that it has not been accidentally removed, changed or
corrupted.

2. Check the expiration date in the license, and confirm that an EVAL license was not
accidentally installed over the permanent license.

3. Notify Tier 4 Support of the condition, and send them a copy of the license file.

Additional License FAQs
Question: What IP should be used for licensing purposes?

Question: Each box has multiple IP addresses. Which IP should be assigned to the license?

Answer: Use the IP address that is returned with get local host command.

Conf igur ing SNMP

12-8 Configuring and Managing WebLogic SIP Server

Question: I've upgraded my hardware system or need to move WebLogic SIP Server to a new
machine. How do I modify the license file to use a new IP address?

Answer: Contact BEA Support with the updated IP address. BEA will generate a new license for
you. You can then replace the license file with the updated file immediately without stopping
WebLogic SIP Server.

overloadControlActivated, overloadControlDeactivated

Description
Weblogic SIP Server engine tier nodes use a configurable throttling mechanism that helps you
control the number of new SIP requests that are processed. After a configured overload condition
is observed, WebLogic SIP Server destroys new SIP requests by responding with “503 Service
Unavailable” to the caller. The server continues to destroy new requests until the overload
condition is resolved according to a configured threshold control value. This alarm is generated
when the throttling mechanism is activated. The throttling behavior should eventually return the
server to a non-overloaded state, and further action may be unnecessary. See Overload in the
Configuration Reference Manual.

Recovery Procedure
 1. Check other servers to see if they are nearly overloaded.

 2. Check to see if the load balancer is correctly balancing load across the application servers,
or if it is overloading one or more servers. If additional servers are nearly overloaded, Notify Tier
4 support immediately.

 3. If the issue is limited to one server, notify Tier 4 support within one hour.

Additional Overload FAQs
Question: How can I monitor load using the Administration Server? How can I tell when I'm near
a threshold?

Answer: If you set the queue length as an incoming call overload control, you can monitor the
length of the queue using the Administration Console. If you specify a session rate control, you
cannot monitor the session rate using the Administration Console. (The Administration Console
only displays the current number of SIP sessions, not the rate of new sessions generated.)

{DOCROOT}/configref/enginetier_dd.html#overload
{DOCROOT}/configref/index.html

Unders tand ing and Responding to SNMP Traps

Configuring and Managing WebLogic SIP Server 12-9

replicaAddedToPartition

Description
WebLogic SIP Server data tier nodes generate this alarm when a server instance is added to a
partition in the data tier.

Recovery Procedure
This trap is generated during normal startup procedures when data tier servers are booted.

replicaRemovedFromPartition

Description
WebLogic SIP Server data tier nodes generate this alarm when a server is removed from the data
tier, either as a result of a normal shutdown operation or because of a failure. There must be at
least one replica remaining in a partition to generate this trap; if a partition has only a single
replica and that replica fails, the trap cannot be generated. In addition, because engine tier nodes
determine when a replica has failed, an engine tier node must be running in order for this trap to
be generated.

Recovery Procedure
If this trap is generated as a result of a server instance failure, additional traps will be generated
to indicate the exception. See the recovery procedures for traps generated in addition to
replicaRemovedFromPartition.

serverStopped

Description
This trap indicates that the WebLogic Server instance is now down. This trap applies to both
engine tier and data tier server instances, but only when the servers are members of a named
WebLogic Server cluster. If this trap is received spontaneously and not as a result of a controlled
shutdown, follow the steps below.

Recovery Procedure

1. Use the following command to identify the hung process:

ps –ef | grep java

Conf igur ing SNMP

12-10 Configuring and Managing WebLogic SIP Server

There should be only one PID for each WebLogic Server instance running on the machine.

2. After identifying the affected PID, use the following command to kill the process:

kill -3 [pid]

3. This command generates the actual thread dump. If the process is not immediately killed,
repeat the command several times, spaced 5-10 seconds apart, to help diagnose potential
deadlock problems, until the process is killed.

4. Attempt to restart WebLogic SIP Server immediately. See Restarting Failed Server Instances
in the WebLogic Server 8.1 documentation.

5. Make a backup copy of all SIP logs on the affected server to aid in troubleshooting. The
location of the logs varies based on the server configuration.

6. Copy each log to assist Tier 4 support with troubleshooting the problem.

Note: WebLogic SIP Server logs are truncated according to your system configuration.
Make backup logs immediately to avoid losing critical troubleshooting information.

7. Notify Tier 4 support and include the log files with the trouble ticket.

8. Monitor the server closely over next 24 hours. If the source of the problem cannot be
identified in the log files, there may be a hardware or network issue that will reappear over
time.

Additional Shutdown FAQs
Question: If the server shuts down, are all SNMP traps for the server lost?

Answer: The Administration Console generates SNMP messages for managed WebLogic Server
instances only until the ServerShutDown message is received. Afterwards, no additional
messages are generated.

sipAppDeployed

Description
WebLogic SIP Server engine tier nodes generate this alarm when a SIP Servlet is deployed to the
container.

Recovery Procedure
This trap is generated during normal deployment operations and does not indicate an exception.

Unders tand ing and Responding to SNMP Traps

Configuring and Managing WebLogic SIP Server 12-11

sipAppUndeployed

Description
WebLogic SIP Server engine tier nodes generate this alarm when a SIP application shuts down,
or if a SIP application is undeployed. This generally occurs when WebLogic SIP Server is
shutdown while active requests still exist.

Recovery Procedure
During normal shutdown procedures this alarm should be filtered out and should not reach
operations. If the alarm occurs during the course of normal operations, it indicates that someone
has shutdown the application or server unexpectedly, or there is a problem with the application.
Notify Tier 4 support immediately.

sipAppFailedToDeploy

Description
WebLogic SIP Server engine tier nodes generate this trap when an application deploys
successfully as a Web Application but fails to deploy as a SIP application.

Recovery Procedure
The typical failure is caused by an invalid sip.xml configuration file and should occur only
during software installation or upgrade procedures. When it occurs, undeploy the application,
validate the sip.xml file, and retry the deployment.

Note: This alarm should never occur during normal operations. If it does, contact Tier 4 support
immediately.

Conf igur ing SNMP

12-12 Configuring and Managing WebLogic SIP Server

Configuring and Managing WebLogic SIP Server A-1

A P P E N D I X A

Upgrading Deployed SIP Applications

Note: The upgrade procedures described in this section apply only to SIP protocol applications.
Converged applications that use both SIP and HTTP protocols cannot be upgraded in this
manner. See “Upgrading Software and Converged Applications” on page B-1 instead.

The following sections describe how to upgrade deployed SIP applications to a newer version of
the same application without losing active calls:

“Overview of SIP Application Upgrades” on page A-1

“Requirements and Restrictions for Upgrading Deployed Applications” on page A-2

“Steps for Upgrading a Deployed SIP Application” on page A-3

“Assign a Version Identifier” on page A-3

“Deploy the Updated Application Version” on page A-5

“Undeploy the Older Application Version” on page A-5

“Roll Back the Upgrade Process” on page A-7

“Accessing the Application Name and Version Identifier” on page A-7

Overview of SIP Application Upgrades
With WebLogic SIP Server 2.2, you can upgrade a deployed SIP application to a newer version
without losing existing calls being processed by the application. This type of application upgrade
is accomplished by deploying the newer application version alongside the older version.

Upgrading Dep loyed S IP Appl i cat i ons

A-2 Configuring and Managing WebLogic SIP Server

WebLogic SIP Server automatically manages the SIP Servlet mapping so that new requests are
directed to the new version. Subsequent messages for older, established dialogs are directed to
the older application version until the calls complete. After all of the older dialogs have
completed and the earlier version of the application is no longer processing calls, you can safely
undeploy it.

WebLogic SIP Server’s upgrade feature ensures that no calls are dropped while during the
upgrade of a production application. The upgrade process also enables you to revert or rollback
the process of upgrading an application. If, for example, you determine that there is a problem
with the newer version of the deployed application, you can simply undeploy the newer version.
WebLogic SIP Server then automatically directs all new requests to the older application version.

Requirements and Restrictions for Upgrading Deployed
Applications

To use the application upgrade functionality of WebLogic SIP Server:

You must assign version information to your updated application in order to distinguish it
from the older application version. Note that only the newer version of a deployed
application requires version information; if the currently-deployed application contains no
version designation, WebLogic SIP Server automatically treats this application as the
“older” version. See “Assign a Version Identifier” on page A-3.

Both the deployed application and the updated application must provide only SIP protocol
functionality. You cannot upgrade converged HTTP/SIP applications using these
procedures. See “Upgrading Software and Converged Applications” on page B-1 instead.

A maximum of two different versions of the same application can be deployed at one time.

If your application hard-codes the use of an application name (for example, in composed
applications where multiple SIP Servlets process a given call), you must replace the
application name with calls to a helper method that obtains the base application name.
WebLogic SIP Server provides SipApplicationRuntimeMBean methods for obtaining the
base application name and version identifier, as well as determining whether the current
application version is active or retiring. See Accessing the Application Name and Version
Identifier.

When applications take part in a composed application (using application composition
techniques), WebLogic SIP Server always uses the latest version of an application when
only the base name is supplied.

Steps fo r Upgrad ing a Dep loyed S IP App l i cat ion

Configuring and Managing WebLogic SIP Server A-3

Steps for Upgrading a Deployed SIP Application
Follow these steps to upgrade a deployed SIP application to a newer version:

1. Assign a Version Identifier—Package the updated version of the application with a version
identifier.

2. Deploy the Updated Application Version—Deploy the updated version of the application
alongside the previous version to initiate the upgrade process.

3. Undeploy the Older Application Version—After the older application has finished processing
all SIP messages for its established calls, you can safely undeploy that version. This leaves
the newly-deployed application version responsible for processing all current and future calls.

Each procedure is described in the sections that follow. You can also Roll Back the Upgrade
Process if you discover a problem with the newly-deployed application. Applications that are
composed of multiple SIP Servlets may also need to use the SipApplicationRuntimeMBean for
Accessing the Application Name and Version Identifier.

Assign a Version Identifier
WebLogic SIP Server uses a version identifier—a string value—appended to the application
name to distinguish between multiple versions of a given application. The version string can be
a maximum of 215 characters long, and must consist of valid characters as identified in
Table A-1.

For deployable SIP Servlet WAR files, you must define the version identifier in the
MANIFEST.MF file of the application, and you must append the version identifier to the WAR

Table A-1 Valid and Invalid Characters

Valid ASCII Characters Invalid Version Constructs

a-z ..

A-Z .

0-9

period (“.”), underscore
(“_”), or hyphen (“-”) in
combination with other
characters

Upgrading Dep loyed S IP Appl i cat i ons

A-4 Configuring and Managing WebLogic SIP Server

filename. EAR deployments must additionally append the version identifier to the application
name in the context-root specified in application.xml.

Defining the Version in the Manifest
Both WAR and EAR deployments must specify a version identifier in the MANIFEST.MF file.
Listing A-1 shows an application with the version identifier “v2”:

Listing A-1 Version Identifier in Manifest

Manifest-Version: 1.0

Created-By: 1.4.1_05-b01 (Sun Microsystems Inc.)

Weblogic-Application-Version: v2

WebLogic SIP Server strips the version string specified in the manifest from the application’s
deployment name, so that it can recognize when multiple versions of the same application are
deployed.

If you deploy an application without a version identifier, and later deploy with a version
identifier, WebLogic SIP Server recognizes the deployments as separate versions of the same
application.

Appending the Version to the Archive Name
In the name of the SIP application WAR or EAR file, you must append the same version identifier
that you defined in the manifest. Continuing with the example shown in Listing A-1, if the
application is named mySIPApplication, you would package the deployment as
mySIPApplicationv2.war (or mySIPApplicationv2.ear for an Enterprise Application).

Appending the Version to the context-root (Enterprise
Applications)
If you are deploying an EAR file, the context-root element in the application.xml
deployment descriptor must match the full application name and version string used in the archive
name. For example:

<context-root>mySIPApplicationv2</context-root>

Deplo y the Updated Appl i cat ion Vers ion

Configuring and Managing WebLogic SIP Server A-5

This context root requirement exists because you cannot deploy two different applications having
the same context root. If your Enterprise Application must obtain a simple application name
(without a version string) programmatically, you can use SipApplicationRuntimeMBean to
retrieve the application name without the appended version string. See “Accessing the
Application Name and Version Identifier” on page A-7.

Deploy the Updated Application Version
To begin the upgrade process, simply deploy the updated application archive using either the
Administration Console or weblogic.Deployer utility. WebLogic SIP Server examines the
version identifier in the manifest file, and strips the string value from the end of the deployment
name to determine if another version of the application is currently deployed. If two versions are
deployed, the server automatically begins routing new requests to the most recently-deployed
application. The server allows the other deployed application to complete in-flight calls, directs
no new calls to it. This process is referred to as “retiring” the older application, because
eventually the older application version will process no SIP messages.

Note that WebLogic SIP Server does not compare the actual version strings of two deployed
applications to determine which is the higher version. New calls are always routed to the most
recently-deployed version of an application.

WebLogic SIP Server also distinguishes between a deployment that has no version identifier (no
version string in the manifest) and a subsequent version that does specify a version identifier. This
enables you to easily upgrade applications that were packaged before you began including
version information as described in “Assign a Version Identifier” on page A-3.

Undeploy the Older Application Version
After deploying a new version of an existing application, the original deployment process
messages only for in-flight calls (calls that were initiated with the original deployment). After
those in-flight calls complete, the original deployment no longer processes any SIP messages. In
most production environments, you will want to ensure that the original deployment is no longer
processing messages before you undeploy the application.

To determine whether a deployed application is processing messages, you can obtain the active
session count from the application’s SipApplicationRuntimeMBean instance. Listing A-2
shows the sample WLST commands for viewing the active session count for the findme sample
application on the default single-server domain.

Upgrading Dep loyed S IP Appl i cat i ons

A-6 Configuring and Managing WebLogic SIP Server

Based on the active session count value, you can undeploy the application safely (without losing
any in-flight calls) or abruptly (losing the active session counts displayed at the time of
undeployment).

Use either the Administration Console or weblogic.Deployer utility to undeploy the correct
deployment name.

Listing A-2 Sample WLST Session for Examining Session Count

connect()

custom()

cd
('examples:Location=myserver,Name=myserver_myserver_findme_findme,ServerRuntim
e=myserver,Type=SipApplicationRuntime')

ls()

-rw- ActiveAppSessionCount 0

-rw- ActiveSipSessionCount 0

-rw- AppSessionCount 0

-rw- CachingDisabled true

-rw- MBeanInfo weblogic.management.tools.In

fo@5ae636

-rw- Name myserver_myserver_findme_fin

dme

-rw- ObjectName examples:Location=myserver,N

ame=myserver_myserver_findme_findme,ServerRuntime=myserver,Type=SipApplication
Ru

ntime

-rw- Parent examples:Location=myserver,N

ame=myserver,Type=ServerRuntime

-rw- Registered false

-rw- SipSessionCount 0

Rol l Back the Upgrade Process

Configuring and Managing WebLogic SIP Server A-7

-rw- Type SipApplicationRuntime

-rwx preDeregister void :

Roll Back the Upgrade Process
If you deploy a new version of an application and discover a problem with it, simply undeploying
that version reverts the update process. WebLogic SIP Server automatically routes all requests to
the earlier version of the application.

Note: Reverting the upgrade process results in losing all calls that were initiated using the new
version of the application.

Accessing the Application Name and Version Identifier
If you intend to use WebLogic SIP Server’s production upgrade feature, applications that are
composed of multiple SIP Servlets should not hard-code the application name. This is because
the deployment name and context-root of the application must change from version to version
in order to support side-by-side deployment. Instead of hard-coding the application name, your
application can dynamically access the base application name (without version identifier), the
deployment name, or just the version identifier by using helper methods in
SipApplicationRuntimeMBean. Table A-2 describes the methods as they would apply to an
application deployed as “myApplicationv2.war” with the version identifier “v2” defined in the
manifest.

Table A-2 SipApplicationRuntimeMBean Methods for Returning Name and Version Information

Method Signature Description

getApplicationVersion() Returns only the version string assigned to the application (for example,
“v2”.

Upgrading Dep loyed S IP Appl i cat i ons

A-8 Configuring and Managing WebLogic SIP Server

getActiveVersionState() Returns an int value that describes the state of the selected application
version:
• 0 indicates that this version of the application is INACTIVE. This

means that the application is either still in the process of being
deployed and has not yet been activated, or that WebLogic SIP Server
is currently retiring the application.

• 2 indicates that this version of the application is ACTIVE. The
application is currently processing all new requests for the application.

getApplicationName() Returns the base application name without the version identifier (for
example, “myApplication”).

Table A-2 SipApplicationRuntimeMBean Methods for Returning Name and Version Information

Method Signature Description

Configuring and Managing WebLogic SIP Server B-1

A P P E N D I X B

Upgrading Software and Converged
Applications

Notes: The sections that follow provide only general instructions for upgrading WebLogic SIP
Server software and converged applications. Your service pack or new software may
contain additional instructions and tools to help you upgrade the software.

If you want to upgrade a SIP protocol application, rather than a converged HTTP/SIP
protocol application, these instructions are not required. See “Upgrading Deployed SIP
Applications” on page A-1 instead.

The following sections describe how to upgrade production WebLogic SIP Server installations
to a new release of the software, and how to upgrade converged applications on a production
server installation:

“Overview of System and Application Upgrades” on page B-1

“Requirements for Upgrading a Production System” on page B-2

“Upgrading to a New Version of WebLogic SIP Server” on page B-3

“Upgrading a Deployed Production Application (Compatible Session Data)” on page B-12

“Upgrading a Deployed Production Application (Incompatible Session Data)” on
page B-13

Overview of System and Application Upgrades
Because a typical production WebLogic SIP Server installation uses multiple server instances in
both the engine and data tiers, upgrading the WebLogic SIP Server software, or a SIP Servlet

Upgrading So f tware and Converged App l i ca t i ons

B-2 Configuring and Managing WebLogic SIP Server

deployed to the engine tier, requires that you follow very specific practices. These practices
ensure that:

Existing clients of deployed SIP Servlets are not interrupted or lost during the upgrade
procedure.

The upgrade procedure can be “rolled back” to a previous state if any problems occur.

The sections that follow describe how to use a configured load balancer to perform a “live”
upgrade of the WebLogic SIP Server software, or a deployed SIP application on a production
installation. The procedure for either type of upgrade is similar, but each procedure is described
in a separate section for clarity.

When upgrading the WebLogic SIP Server software (for example, in response to a Service Pack),
or upgrading a SIP Servlet where the Servlet’s session data is incompatible with the older version,
a new engine tier cluster is created to host newly-upgraded engine tier instances or new versions
of SIP Servlets. One-by-one, servers in the engine tier are shut-down, upgraded, and then
restarted in the new target cluster. While servers are being upgraded, WebLogic SIP Server
automatically forwards requests from one engine tier cluster to the other as necessary to ensure
that data tier requests are always initiated by a compatible engine tier server. After all servers
have been upgraded, the older cluster is removed and no longer used. After upgrading the engine
tier cluster, servers in the data tier may also be upgraded, one-by-one. See “Upgrading a
Deployed Production Application (Compatible Session Data)” on page B-12 for more
information.

Requirements for Upgrading a Production System
To upgrade a production WebLogic SIP Server installation you require:

Nostage-mode deployments for existing converged applications. (Nostage-mode
deployment enables you to upgrade a deployed SIP Servlet without performing a
redeployment operation, as described in “Upgrading a Deployed Production Application
(Compatible Session Data)” on page B-12.)

Cluster-targeted deployments for all converged applications. All deployed SIP Servlets
must be targeted to the engine tier cluster, rather than to individual Managed Server
instances within the cluster. Cluster-level targeting is required in order to perform an
upgrade of the WebLogic SIP Server software without disrupting existing clients.

A compatible load balancer product and administrator privileges for reconfiguring the load
balancer virtual IP addresses and pools.

Upgrading to a New Vers i on o f WebLogic S IP Server

Configuring and Managing WebLogic SIP Server B-3

Adequate disk space on the Administration Server machine and on each Managed Server
machine for installing a copy of the new WebLogic SIP Server software (for server
software upgrades only).

Privileges for modifying configuration files on the WebLogic SIP Server Administration
Server machine.

Privileges for shutting down and starting up individual Managed Server instances.

Three or more replicas in each partition of the data tier, in order to upgrade the WebLogic
SIP Server software to a new version. With fewer than three replicas in each partition, it is
not possible to safely upgrade a production data tier deployment as no backup replica
would be available during the upgrade procedure.

WARNING: Before modifying any production installation, thoroughly test your proposed
changes in a controlled, “stage” environment to ensure software compatibility and
verify expected behavior.

Upgrading to a New Version of WebLogic SIP Server
Follow these steps to upgrade a production installation of WebLogic SIP Server to a newer
version of the WebLogic SIP Server software. These instructions upgrade both the SIP Servlet
container implementation and the data tier replication and failover implementation included in
the sipserver Enterprise Application (EAR).

The steps for performing a software upgrade are divided into several high-level procedures:

1. Configure the Load Balancer—Define a new, internal Virtual IP address for the new engine
tier cluster you will configure.

2. Configure the New Engine Tier Cluster—Create and configure a new, empty engine tier
cluster that will host upgraded engine tier servers and your converged applications.

3. Define the Cluster-to-Load Balancer Mapping—Modify the SIP Servlet container
configuration to indicate the virtual IP address of each engine tier cluster.

4. Duplicate the SIP Servlet Container and Data Tier Configuration—Copy the active
sipserver.xml configuration file into the new sipserver application to duplicate your
production container configuration.

5. Upgrade Engine Tier Servers and Target Applications to the New Cluster—Shut down
individual engine tier server instances, restarting them in the new engine tier cluster.

Upgrading So f tware and Converged App l i ca t i ons

B-4 Configuring and Managing WebLogic SIP Server

6. Upgrade Data Tier Servers—Shut down individual data tier servers, restarting them with the
new data tier software implementation.

Each procedure is described in the sections that follow.

Configure the Load Balancer
Begin the software upgrade procedure by defining a new internal virtual IP address for the new
engine tier cluster you will create in “Configure the New Engine Tier Cluster” on page B-4. The
individual server IP addresses (the pool definition) for the new virtual IP address should be
identical to the pool definition of your currently-active engine tier cluster. Figure B-1 shows a
sample configuration for a cluster having three engine tier server instances; both virtual IP
addresses define the same servers.

Figure B-1 Virtual IP Address Configuration for Parallel Clusters

See your load balancer documentation for more information about defining virtual IP addresses.

In the next section, you will configure the WebLogic SIP Server domain to identify the virtual IP
addresses that map to each engine tier cluster. WebLogic SIP Server uses this mapping during the
upgrade procedure to automatically forward requests to the appropriate “version” of the cluster.
This ensures that data tier requests always originate from a compatible version of the WebLogic
SIP Server engine tier.

Configure the New Engine Tier Cluster
Follow these steps to create a new Engine Tier cluster to host upgraded containers, and to
configure both clusters in preparation for a software upgrade:

Upgrading to a New Vers i on o f WebLogic S IP Server

Configuring and Managing WebLogic SIP Server B-5

1. On the Administration Server machine, install the new WebLogic SIP Server software into a
new BEA home directory. The steps that follow refer to c:\beanew as the BEA home
directory in which the new software was installed. c:\bea refers to the software
implementation that is being upgraded.

2. On the Administration Server machine, copy the new sipserver application directory into a
new directory from which it will be deployed. For example:

cp -r c:\beanew\wlss220\samples\domains\telco\sipserver c:\deployments

3. Log in to the Administration Console for the active WebLogic SIP Server domain.

4. In the Administration Console, create a new, empty engine tier cluster for hosting the
upgraded engine tier servers:

a. In the left pane, select the Clusters node.

b. Select Configure a New Cluster...

c. Enter a name for the new cluster. For example, “NewEngineCluster.”

d. Click Create to create the cluster.

5. Proceed to “Define the Cluster-to-Load Balancer Mapping” on page B-5.

Note: During the upgrade process you need to target the new sipserver Enterprise
Application, as well as your own converged applications, to the newly-created cluster.
However, you cannot target applications to an empty cluster. For this reason, targeting
applications to the new cluster occurs only after you have added the first engine tier
server to the new cluster in “Upgrade Engine Tier Servers and Target Applications to the
New Cluster” on page B-7.

Define the Cluster-to-Load Balancer Mapping
In this procedure, you manually edit the active sipserver.xml configuration file to define the
cluster-loadbalancer-map element. This XML element defines the internal, virtual IP
address that is assigned to the older and newer engine tier clusters.

To define the cluster-to-load balancer mapping:

1. Move to the directory containing the sipserver.xml configuration file for your production
domain. For example:

cd c:\bea\user_projects\domains\mydomain\sipserver\config

2. Open the sipserver.xml file with a text editor:

Upgrading So f tware and Converged App l i ca t i ons

B-6 Configuring and Managing WebLogic SIP Server

notepad sipserver.xml

3. Add a cluster-loadbalancer-map element definition to the end of the configuration file,
before the final </sip-server> line. The full definition must include a mapping for both the
older and the newer engine tier cluster. A mapping consists of the internal virtual IP address
of the cluster configured on the load balancer, as well as the cluster name defined in the
WebLogic SIP Server domain. Listing B-1 shows an entry for the sample clusters described
earlier.

Listing B-1 Sample cluster-loadbalancer-map Definition

 <cluster-loadbalancer-map>

 <cluster-name>EngineCluster</cluster-name>

 <sip-uri>sip:172.17.0.1:5060</sip-uri>

 </cluster-loadbalancer-map>

 <cluster-loadbalancer-map>

 <cluster-name>NewEngineCluster</cluster-name>

 <sip-uri>sip:172.17.0.2:5060</sip-uri>

 </cluster-loadbalancer-map>

</sip-server>

4. Save your changes to sipserver.xml and exit your text editor.

Duplicate the SIP Servlet Container and Data Tier
Configuration
Before upgrading individual engine tier servers, you must ensure that the SIP Servlet container
configuration and data tier configuration in the new engine tier cluster matches your current
production configuration. To duplicate the container configuration, copy your production
sipserver.xml and datatier.xml configuration files on top of the files in the new sipserver
application. For example:

cp c:\bea\user_projects\domains\mydomain\sipserver\config\sipserver.xml

c:\deployments\sipserver\config

cp c:\bea\user_projects\domains\mydomain\sipserver\config\datatier.xml

c:\deployments\sipserver\config

Upgrading to a New Vers i on o f WebLogic S IP Server

Configuring and Managing WebLogic SIP Server B-7

The sipserver.xml file in both the old and the new sipserver application should now be
identical; only the implementation classes for each application are different. As engine tier
servers are restarted in the new engine tier cluster in the next procedure, they will have the same
SIP container configuration but will use the new container implementation.

Upgrade Engine Tier Servers and Target Applications to the
New Cluster
To upgrade individual engine tier servers, you gracefully shut each server down, change its
cluster membership, and then restart it. Follow these steps:

1. Access the Administration Console for your production domain.

2. Select the first running engine tier server that you want to upgrade:

a. Expand the Servers tab in the left pane.

b. Select the name of the server you want to upgrade.

3. Select the Control->Start/Stop tab in the right pane.

4. Select Graceful shutdown of this server...

5. Select Yes to perform the shutdown.

The server remains active while clients are still accessing the server, but no new
connection requests are accepted. After all existing client connections have ended or timed
out, the server shuts down. Other server instances in the engine tier process client requests
during the shutdown procedure.

6. Select the Servers tab in the left pane and verify that the Managed Server has shut down.

7. Change the stopped server’s cluster membership so that it is a member of the new engine tier
cluster:

a. Expand the Clusters tab in the left pane.

b. Select the name of the active engine tier cluster.

c. Select the Configuration->Servers tab in the right pane.

d. Select the name of the stopped server in the Chosen column, and use the arrow to move it
to the Available column.

e. Click Apply.

Upgrading So f tware and Converged App l i ca t i ons

B-8 Configuring and Managing WebLogic SIP Server

f. Next, expand the Clusters tab and select the newly-created engine tier cluster
(“NewEngineCluster”).

g. Select the Configuration->Servers tab in the right pane.

h. Select the name of the stopped server in the Available column, and use the arrow to move
it to the Chosen column.

i. Click Apply.

8. After adding the first engine tier server to the new cluster, you can now target the sipserver
Enterprise Application and your own converged applications to the new cluster.

Note: Perform this step only once, after adding the first engine tier server to the new cluster:

a. In the left pane, select the Deployments->Applications node.

b. Select Deploy a new Application...

c. Using the links in the Location field, select the new sipserver application directory on
the Administration Server machine (for example, c:\deployments\sipserver).

d. Click Target Application.

e. Select the name of the new engine tier cluster (“NewEngineCluster”). Also ensure that All
servers in the Cluster is selected.

f. Click Continue.

g. Select the option, I will make the application accessible from the following location.

h. Click Deploy.

i. Repeat this step to deploy all of your converged applications to the new cluster. Both the
new and old engine tier clusters should be configured similarly, except that the new cluster
hosts the new sipserver application while the existing cluster hosts the older
sipserver application.

9. Restart the stopped managed server to bring it up in the new engine tier cluster:

a. Access the machine on which the stopped engine tier server runs (for example, use a
remote desktop on Windows, or secure shell (SSH) on Linux).

b. Use the available Managed Server start script (startManagedWebLogic.cmd or
startManagedWebLogic.sh) to boot the Managed Server. For example:

startManagedWebLogic.cmd engine-server1 t3://adminhost:7001

Upgrading to a New Vers i on o f WebLogic S IP Server

Configuring and Managing WebLogic SIP Server B-9

10. In the Administration Console, select the Servers node and verify that the Managed Server
has started.

11. Repeat these steps to upgrade the remaining engine tier servers.

At this point, all running Managed Servers are using the new SIP Container implementation (the
new sipserver application deployment) and are hosting your production SIP Servlets with the
same SIP Servlet container settings as your old configuration. Data tier servers can now be
upgraded using the instructions in “Upgrade Data Tier Servers” on page B-9.

Upgrade Data Tier Servers
WARNING: Your data tier must have three active replicas (three server instances) in each

partition in order to upgrade the servers in a production environment. With only
two replicas in each partition, a failure of the active replica during the upgrade
process will result in the irrecoverable loss of call state data. With only one replica
in each partition, the upgrade cannot be initiated without losing call state data.

The procedure for upgrading server instances in the data tier is similar to the procedure for
upgrading servers in the engine tier, except that:

No applications are targeted to the newly-created data tier cluster.

No cluster-to-load balancer map is necessary for the parallel data tier cluster.

Apart from these differences, the process for upgrading a data tier cluster involves creating a new
cluster for hosting upgraded server instances, targeting the new sipserver application to the
new cluster, and restarting individual server instances in the new cluster. While upgrading
individual data tier servers, care must be taken to ensure that each partition always contains an
two active replicas in each partition to protect against hardware or software failures during the
upgrade.

To upgrade data tier servers to a new WebLogic SIP Server implementation:

1. First perform all previous procedures to upgrade the engine tier servers in your domain. See
“Upgrading to a New Version of WebLogic SIP Server” on page B-3.

2. Log in to the Administration Console for the active WebLogic SIP Server domain.

3. In the Administration Console, create a new, empty data tier cluster for hosting the upgraded
data tier servers:

a. In the left pane, select the Clusters node.

Upgrading So f tware and Converged App l i ca t i ons

B-10 Configuring and Managing WebLogic SIP Server

b. Select Configure a New Cluster...

c. Enter a name for the new cluster. For example, “NewDataCluster.”

d. Click Create to create the cluster.

4. Select a running data tier server that you want to upgrade:

a. Expand the Servers tab in the left pane.

b. Select the name of the server you want to upgrade.

WARNING: Do not shut down a data tier server instance in a partition unless two additional
servers in the same partition are available, and both are in the ONLINE state. See
“Monitoring and Troubleshooting Data Tier Servers” on page 3-6
for information about determining the state of data tier servers.

5. Select the Control->Start/Stop tab in the right pane.

6. Select Graceful shutdown of this server...

7. Select Yes to perform the shutdown.

The server remains active while engine tier instances are still accessing the server, but no
new connection requests are accepted. After all existing connections have ended, the server
shuts down. Other replicas in the same data tier partition process engine tier requests for
call state data during the shutdown procedure.

8. Select the Servers tab in the left pane and verify that the Managed Server has shut down.

9. Change the stopped server’s cluster membership so that it is a member of the new data tier
cluster:

a. Expand the Clusters tab in the left pane.

b. Select the name of the active data tier cluster.

c. Select the Configuration->Servers tab in the right pane.

d. Select the name of the stopped server in the Chosen column, and use the arrow to move it
to the Available column.

e. Click Apply.

f. Next, expand the Clusters tab and select the newly-created data tier cluster
(“NewDataCluster”).

Upgrading to a New Vers i on o f WebLogic S IP Server

Configuring and Managing WebLogic SIP Server B-11

g. Select the Configuration->Servers tab in the right pane.

h. Select the name of the stopped server in the Available column, and use the arrow to move
it to the Chosen column.

i. Click Apply.

10. After adding the first data tier server to the new cluster, target the new sipserver Enterprise
Application to the cluster:

Note: Perform this step only once, after adding the first data tier server to the new cluster:

a. In the left pane, select the Deployments->Applications node.

b. Select Deploy a new Application...

c. Using the links in the Location field, select the new sipserver application directory on
the Administration Server machine (for example, c:\deployments\sipserver).

d. Click Target Application.

e. Select the name of the new data tier cluster (“NewDataCluster”). Also ensure that All
servers in the Cluster is selected.

f. Click Continue.

g. Select the option, I will make the application accessible from the following location.

h. Click Deploy.

11. Restart the stopped managed server to bring it up in the new data tier cluster:

a. Access the machine on which the stopped data tier server runs (for example, use a remote
desktop on Windows, or secure shell (SSH) on Linux).

b. Use the available Managed Server start script (startManagedWebLogic.cmd or
startManagedWebLogic.sh) to boot the Managed Server. For example:

startManagedWebLogic.cmd data-server1 t3://adminhost:7001

12. In the Administration Console, select the Servers node and verify that the Managed Server
has started.

13. Repeat these steps to upgrade the remaining data tier servers.

14. After all data tier servers have been upgraded, delete the original data tier cluster:

a. Select the Clusters node in the left pane.

Upgrading So f tware and Converged App l i ca t i ons

B-12 Configuring and Managing WebLogic SIP Server

b. Select the trash can icon next to the name of the older cluster in the cluster table.

c. Select Yes to delete the cluster definition.

15. Finally, delete the original engine tier cluster:

a. Select the Clusters node in the left pane.

b. Select the trash can icon next to the name of the older cluster in the cluster table.

c. Select Yes to delete the cluster definition.

At this point, all running Managed Servers are using the new WebLogic SIP Server data tier
implementation (the new sipserver application deployment) and serving call state data to
upgraded servers in the Engine Tier.

Upgrading a Deployed Production Application
(Compatible Session Data)

This section describes how to upgrade a deployed SIP Servlet to a new version of the same SIP
Servlet in a production environment. The instructions that follow assume that the session data
used by the new Servlet version is compatible with the older Servlet version. If the session data
is incompatible, see “Upgrading a Deployed Production Application (Incompatible Session
Data)” on page B-13 instead.

WARNING: In order to upgrade a SIP Servlet using the procedure below, the session state
information stored by the new version of the Servlet must be compatible with the
older version of the Servlet. If the older and newer Servlets use incompatible
session information, you must follow the instructions in “Upgrading a Deployed
Production Application (Incompatible Session Data)” on page B-13 instead.

To upgrade an individual SIP Servlet to a new version:

1. On the Administration Server machine, make a backup copy of the source files used to deploy
the older SIP Servlet version. You may need the older files if you decide to revert to the
previously-deployed application. For example:

cd c:\deployments

mkdir myServlet_backup

cp -r myServlet* myServlet_backup

2. Replace the current deployment source files with the updated version of the deployment files.
For example, if the file list for the new version of the Servlet is the same as the old:

Upgrading a Deployed Produc t ion App l i cat i on (Incompat ib l e Sess ion Data)

Configuring and Managing WebLogic SIP Server B-13

cp -r myNewServlet* myServlet

If files have been deleted from the old servlet version, delete the original deployment files
before copying over the new files:

rm -r myServlet*

cp -r myNewServlet* myServlet

At this point, the source files for the already-deployed SIP Servlet should represent the
upgraded Servlet implementation. The currently-active SIP Servlet deployed to the engine
tier uses the older version of the implementation.

3. To deploy the new source files and make the upgraded Servlet implementation active, use the
Administration Console to gracefully shutdown a single Managed Server instance in the
engine tier, and then restart the same server.

4. After the server has started and joined the cluster, repeat the previous step for an additional
server in the engine tier. Repeat this process until each server in the engine tier has been
restarted.

For nostage-mode deployments, the final two steps have the effect of deploying the SIP Servlet
using the updated source files.

WARNING: It is important that the updated application files are deployed by gracefully
shutting down and then restarting individual servers, rather than by simply
redeploying the running application. Redeploying an application immediately
unloads the application’s implementation classes and replaces them with the
newer classes. This makes the application unavailable during redeployment and
may result in dropped client connections; never redeploy a running application
in a production system.

Upgrading a Deployed Production Application
(Incompatible Session Data)

This section describes how to upgrade a deployed SIP Servlet to a new version when the session
data used by the new Servlet is compatible with the older version. The upgrade procedure is
similar to the procedure described in “Upgrading to a New Version of WebLogic SIP Server” on
page B-3, except that the SIP Servlet container (sipserver application) is not upgraded.

The steps for performing this type of upgrade are divided into these high-level procedures:

1. Configure the Load Balancer—Define a new, internal Virtual IP address for the new engine
tier cluster you will configure.

Upgrading So f tware and Converged App l i ca t i ons

B-14 Configuring and Managing WebLogic SIP Server

2. Configure the New Engine Tier Cluster—Create and configure a new, empty engine tier
cluster that will host the new version of the SIP Servlet.

3. Define the Cluster-to-Load Balancer Mapping—Modify the SIP Servlet container
configuration to indicate the virtual IP address of each engine tier cluster.

4. Migrate Engine Tier Servers and Target Applications to the New Cluster—Shut down
individual engine tier server instances, restarting them in the new engine tier cluster.

Each procedure is described in the sections that follow.

Configure the Load Balancer
Begin the software upgrade procedure by defining a new internal virtual IP address for the new
engine tier cluster you will create in “Configure the New Engine Tier Cluster” on page B-4. The
individual server IP addresses (the pool definition) for the new virtual IP address should be
identical to the pool definition of your currently-active engine tier cluster. Figure B-1 shows a
sample configuration for a cluster having three engine tier server instances; both virtual IP
addresses define the same servers.

Figure B-2 Virtual IP Address Configuration for Parallel Clusters

See your load balancer documentation for more information about defining virtual IP addresses.

In the next section, you will configure the WebLogic SIP Server domain to identify the virtual IP
addresses that map to each engine tier cluster. WebLogic SIP Server uses this mapping during the
upgrade procedure to automatically forward requests to the appropriate “version” of the cluster.
This ensures that data tier requests always originate from a compatible version of the WebLogic
SIP Server engine tier.

Upgrading a Deployed Produc t ion App l i cat i on (Incompat ib l e Sess ion Data)

Configuring and Managing WebLogic SIP Server B-15

Configure the New Engine Tier Cluster
Follow these steps to create a new Engine Tier cluster to host upgraded containers, and to
configure both clusters in preparation for a software upgrade:

1. On the Administration Server machine, install the new WebLogic SIP Server software into a
new BEA home directory. The steps that follow refer to c:\beanew as the BEA home
directory in which the new software was installed. c:\bea refers to the software
implementation that is being upgraded.

2. On the Administration Server machine, copy the new sipserver application directory into a
new directory from which it will be deployed. For example:

cp -r c:\beanew\wlss220\samples\domains\telco\sipserver c:\deployments

3. Log in to the Administration Console for the active WebLogic SIP Server domain.

4. In the Administration Console, create a new, empty engine tier cluster for hosting the
upgraded engine tier servers:

a. In the left pane, select the Clusters node.

b. Select Configure a New Cluster...

c. Enter a name for the new cluster. For example, “NewEngineCluster.”

d. Click Create to create the cluster.

5. Proceed to “Define the Cluster-to-Load Balancer Mapping” on page B-5.

Note: During the upgrade process you need to target your new converged applications to the
newly-created cluster. However, you cannot target applications to an empty cluster. For
this reason, targeting applications to the new cluster occurs only after you have added the
first engine tier server to the new cluster in “Migrate Engine Tier Servers and Target
Applications to the New Cluster” on page B-16.

Define the Cluster-to-Load Balancer Mapping
In this procedure, you manually edit the active sipserver.xml configuration file to define the
cluster-loadbalancer-map element. This XML element defines the internal, virtual IP
address that is assigned to the older and newer engine tier clusters.

To define the cluster-to-load balancer mapping:

Upgrading So f tware and Converged App l i ca t i ons

B-16 Configuring and Managing WebLogic SIP Server

1. Move to the directory containing the sipserver.xml configuration file for your production
domain. For example:

cd c:\bea\user_projects\domains\mydomain\sipserver\config

2. Open the sipserver.xml file with a text editor:

notepad sipserver.xml

3. Add a cluster-loadbalancer-map element definition to the end of the configuration file,
before the final </sip-server> line. The full definition must include a mapping for both the
older and the newer engine tier cluster. A mapping consists of the internal virtual IP address
of the cluster configured on the load balancer, as well as the cluster name defined in the
WebLogic SIP Server domain. Listing B-1 an entry for the sample clusters described earlier.

Listing B-2 Sample cluster-loadbalancer-map Definition

 <cluster-loadbalancer-map>

 <cluster-name>EngineCluster</cluster-name>

 <sip-uri>sip:172.17.0.1:5060</sip-uri>

 </cluster-loadbalancer-map>

 <cluster-loadbalancer-map>

 <cluster-name>NewEngineCluster</cluster-name>

 <sip-uri>sip:172.17.0.2:5060</sip-uri>

 </cluster-loadbalancer-map>

</sip-server>

4. Save your changes to sipserver.xml and exit your text editor.

Migrate Engine Tier Servers and Target Applications to the
New Cluster
To deploy the new version of the SIP Servlet, you gracefully shut each server down, change its
cluster membership, and then restart it in the new cluster. Because you target the newer versions
of your converged applications to the new cluster, restarting server instances in the new cluster
deploys the latest application versions. Follow these steps:

1. Access the Administration Console for your production domain.

Upgrading a Deployed Produc t ion App l i cat i on (Incompat ib l e Sess ion Data)

Configuring and Managing WebLogic SIP Server B-17

2. Select a running engine tier server that you want to upgrade:

a. Expand the Servers tab in the left pane.

b. Select the name of the server you want to upgrade.

3. Select the Control->Start/Stop tab in the right pane.

4. Select Graceful shutdown of this server...

5. Select Yes to perform the shutdown.

The server remains active while clients are still accessing the server, but no new
connection requests are accepted. After all existing client connections have ended or timed
out, the server shuts down.

Other server instances in the engine tier process client requests using the older version of
the SIP Servlet, and the WebLogic SIP Servlet implementation automatically forwards
requests to the appropriate cluster (using the cluster-to-load balancer map) so that each
engine tier accesses the correct version of the application’s session data.

6. Select the Servers tab in the left pane and verify that the Managed Server has shut down.

7. Change the stopped server’s cluster membership so that it is a member of the new engine tier
cluster:

a. Expand the Clusters tab in the left pane.

b. Select the name of the active engine tier cluster.

c. Select the Configuration->Servers tab in the right pane.

d. Select the name of the stopped server in the Chosen column, and use the arrow to move it
to the Available column.

e. Click Apply.

f. Next, expand the Clusters tab and select the newly-created engine tier cluster
(“NewEngineCluster”).

g. Select the Configuration->Servers tab in the right pane.

h. Select the name of the stopped server in the Available column, and use the arrow to move
it to the Chosen column.

i. Click Apply.

Upgrading So f tware and Converged App l i ca t i ons

B-18 Configuring and Managing WebLogic SIP Server

8. After adding the first engine tier server to the new cluster, you can now target the new
converged applications to the new cluster.

Note: Perform this step only once, after adding the first engine tier server to the new cluster:

a. In the left pane, select the Deployments->Applications node.

b. Select Deploy a new Application...

c. Using the links in the Location field, select the new version of an application on the
Administration Server machine.

d. Click Target Application.

e. Select the name of the new engine tier cluster (“NewEngineCluster”). Also ensure that All
servers in the Cluster is selected.

f. Click Continue.

g. Select the option, I will make the application accessible from the following location.

h. Click Deploy.

i. Repeat this step to deploy all of your newer converged applications to the new cluster.
Both the new and old engine tier clusters should be configured similarly, except that the
new cluster hosts the newer applications while the existing cluster hosts the older
applications.

9. Restart the stopped managed server to bring it up in the new engine tier cluster:

a. Access the machine on which the stopped engine tier server runs (for example, use a
remote desktop on Windows, or secure shell (SSH) on Linux).

b. Use the available Managed Server start script (startManagedWebLogic.cmd or
startManagedWebLogic.sh) to boot the Managed Server. For example:

startManagedWebLogic.cmd engine-server1 t3://adminhost:7001

10. In the Administration Console, select the Servers node and verify that the Managed Server
has started.

11. Repeat these steps to upgrade the remaining engine tier servers.

12. After all engine tier servers have been upgraded, delete the original engine tier cluster:

a. Select the Clusters node in the left pane.

b. Select the trash can icon next to the name of the older cluster in the cluster table.

Upgrading a Deployed Produc t ion App l i cat i on (Incompat ib l e Sess ion Data)

Configuring and Managing WebLogic SIP Server B-19

c. Select Yes to delete the cluster definition.

At this point, all running Managed Servers are using the new version of the SIP Servlet.

Upgrading So f tware and Converged App l i ca t i ons

B-20 Configuring and Managing WebLogic SIP Server

Configuring and Managing WebLogic SIP Server C-1

A P P E N D I X C

Applying Patches Using InstallPatch

The following sections provide instructions for applying patches to WebLogic SIP Server
instances:

“Overview of the InstallPatch Utility” on page C-1

“Required Environment for the InstallPatch Utility” on page C-2

“Syntax for Invoking the InstallPatch Utility” on page C-2

“Example InstallPatch Commands” on page C-4

“Editing the MANIFEST Classpath in GUI Mode” on page C-5

“Troubleshooting the InstallPatch Utility” on page C-6

Overview of the InstallPatch Utility
The WebLogic SIP Server container functionality is implemented using an Enterprise
Application (EAR) named sipserver. To patch the sipserver implementation EAR, you add
the patch JAR file to the domain directory and then use the InstallPatch utility to add the JAR
the application.

InstallPatch automates the process of editing the sipserver MANIFEST class path, which
defines the list of JAR files used by the application and their relative order. You can use
InstallPatch to perform common patching operations such as:

Installing a new patch (JAR file)

Appl y ing Patches Us ing Insta l lPa tch

C-2 Configuring and Managing WebLogic SIP Server

Removing a previously-applied patch

Changing the order in which patches are loaded

Although it is possible to manually edit the MANIFEST class path in the sipserver application,
BEA recommends using InstallPatch to avoid errors.

Required Environment for the InstallPatch Utility
To set up your environment for the InstallPatch utility:

1. Install the WebLogic SIP Server software 2.2. See Installing WebLogic SIP Server Using
Graphical-Mode Installation in Installing WebLogic SIP Server.

2. Open a new shell or command prompt window.

Note: Do not run the setAdminClientEnv script and InstallPatch utility from a shell
that you previously used to start WebLogic SIP Server.

3. Move to the top level of the domain directory that you want to patch:

cd BEA_HOME\user_projects\domains\mydomain

In the above command, BEA_HOME refers to the top-level BEA installation directory (for
example, c:\bea).

4. Set the client environment using the command

WLSS_HOME\server\bin\setAdminClientEnv.cmd

where WLSS_HOME is the directory in which you installed WebLogic SIP Server (for
example, c:\bea\wlss220).

Syntax for Invoking the InstallPatch Utility
The InstallPatch utility can run in either command-line or GUI mode. By default the utility runs
in command-line mode. The syntax for using the utility in command-line mode is:

java com.bea.wcp.sip.tools.InstallPatch

[-mode (gui | cmdline)]

-action (prepend | append | set | view)

-patch filename.jar [-patch filename2.jar ...]

[-help] [-verbose]

Note: All patch files must be located in the DOMAIN_DIR\sipserver\APP-INF\container
directory, where DOMAIN_DIR is the top-level directory of the domain you are patching.

{DOCROOT}/install/guimode.html
{DOCROOT}/install/guimode.html
{DOCROOT}/install/index.html

Syntax fo r Invok ing the Ins ta l lPatch Ut i l i t y

Configuring and Managing WebLogic SIP Server C-3

Note: If you are patching a replicated domain that uses “stage” mode deployment, you must
manually delete the contents of the staging directory for each server
(DOMAIN_DIR/servername/stage by default) to force redeployment of the sipserver
application. Or, you must manually copy the newly-installed patch file(s) to the
DOMAIN_DIR/servername/stage/sipserver/APP-INF/container directory of
each Managed Server target.

When running the utility in GUI mode, all other options are ignored. To run the utility in GUI
mode, use the command:

java com.bea.wcp.sip.tools.InstallPatch -mode gui

Table C-1 describes the arguments for the com.bea.wcp.sip.tools.InstallPatch utility.

Table C-1 InstallPatch Arguments

Argument Definition

-mode (gui | cmdline) Specifies whether to run the utility in GUI mode or in
command-line mode. Command-line mode is used by default. If
you run the utility in GUI mode, all other arguments are ignored.

-action (prepend | append |
set | view)

Specifies a single action to perform on the CLASSPATH in
command-line mode:
• prepend—Adds one or more JAR files to the beginning of

the existing CLASSPATH. The JAR files must be specified
in subsequent -patch arguments.

• append—Adds one or more JAR files to the end of the
existing CLASSPATH. The JAR files must be specified in
subsequent -patch arguments.

• set—Re-writes the entire CLASSPATH using the JAR
files specified in subsequent -patch arguments. If you use
the set action, note that you must specify the default
implementation JAR files (./wlss_sp.jar and
./wlss.jar) as well as any patch files you want to add.
See “Example InstallPatch Commands” on page C-4 for
more information.

• view—Displays the current CLASSPATH.

Appl y ing Patches Us ing Insta l lPa tch

C-4 Configuring and Managing WebLogic SIP Server

Example InstallPatch Commands
The following examples assume an initial MANIFEST classpath of:

./wlss_sp.jar ./wlss.jar

To add a new patch JAR file to the beginning of the classpath:

java com.bea.wcp.sip.tools.InstallPatch -action prepend -patch

CR567890_wlss220.jar

This yields the classpath:

./CR567890_wlss220.jar ./wlss_sp.jar ./wlss.jar

To add multiple patch JAR files to the end of the classpath:

java com.bea.wcp.sip.tools.InstallPatch -action append -patch

CR567891_wlss220.jar -patch CR567892_wlss220.jar

This yields the classpath:

./CR567890_wlss220.jar ./wlss_sp.jar ./wlss.jar ./CR567891_wlss220.jar

./CR567892_wlss220.jar

To remove one or more patches, re-write the CLASSPATH using the set action, as in:

-patch filename.jar Specifies the filename of a patch file to apply. You can apply
multiple patches by specifying multiple -patch arguments.
Multiple patches are applied in the order in which you specify
them on the command line.

Note: All patch files must be located in the
DOMAIN_DIR\sipserver\APP-INF\container
directory, where DOMAIN_DIR is the top-level
directory of the domain you are patching.

-mode gui Starts the utility in GUI mode. You cannot use the -action or
-patch arguments when running in GUI mode.

-help Displays usage information.

-verbose Displays verbose output for command-line mode.

Table C-1 InstallPatch Arguments

Argument Definition

Edi t ing the MANIFEST Classpath in GU I Mode

Configuring and Managing WebLogic SIP Server C-5

java com.bea.wcp.sip.tools.InstallPatch -action set -patch

CR567890_wlss220.jar -patch wlss_sp.jar -patch wlss.jar -patch

CR567891_wlss220.jar

This yields the classpath:

./CR567890_wlss220.jar ./wlss_sp.jar ./wlss.jar ./CR567891_wlss220.jar

To view the current classpath, use the -action view option with the utility:

java com.bea.wcp.sip.tools.InstallPatch -action view

The current Manifest Class-Path is: ./CR567890_wlss220.jar ./wlss_sp.jar

./wlss.jar ./CR567891_wlss220.jar

Editing the MANIFEST Classpath in GUI Mode
Running the InstallPatch utility in GUI mode enables you to reorder or delete existing patch
files from the MANIFEST classpath. You invoke the utility in GUI mode using the command:

java com.bea.wcp.sip.tools.InstallPatch -mode gui

This yields a simple text editing window that shows the current classpath setting, as shown in
Figure C-1.

Figure C-1 InstallPatch GUI Mode

Appl y ing Patches Us ing Insta l lPa tch

C-6 Configuring and Managing WebLogic SIP Server

To rearrange the order of JARs in the classpath, simply copy and paste the filenames in the
desired order, keeping a space between multiple filenames. Click Set Classpath to persist the
changes or Quit to exit without making changes.

Note: You can use GUI mode to add new patch JAR files to the existing classpath only if you
first manually copy those files to the APP-INF\container subdirectory of the
sipserver application.

Troubleshooting the InstallPatch Utility
If you patched WebLogic SIP Server but the patch does not seem to take effect, you may have
un-patched JAR files listed earlier in your CLASSPATH. This can happen if you run the
setAdminClientEnv script and InstallPatch utility in a shell that you previously used to start
WebLogic SIP Server. To avoid this problem, always run setAdminClientEnv and
InstallPatch in a dedicated shell that was not used to start servers.

If you cannot apply a patch, verify that the patch JAR file exists in the APP-INF\container
subdirectory of the sipserver application. You must manually copy patch JAR files to this
directory before running InstallPatch.

Note: If you are patching a replicated domain that uses “stage” mode deployment, you must
manually delete the contents of the staging directory for each server
(DOMAIN_DIR/servername/stage by default) to force redeployment of staged
applications. Or, you must manually copy the newly-installed patch file(s) to the
DOMAIN_DIR/servername/stage/sipserver/APP-INF/container directory of
each Managed Server target.

Always verify the ordering of applied patches by using the -action command, or by running the
utility in GUI mode. See “Syntax for Invoking the InstallPatch Utility” on
page C-2.

Configuring and Managing WebLogic SIP Server D-1

A P P E N D I X D

Upgrading a WebLogic SIP Server 2.0.x
Configuration to Version 2.2

The following sections provide instructions for upgrading WebLogic SIP Server from a previous
release:

“About the Upgrade Program” on page D-1

“Steps for Upgrading an Existing Configuration” on page D-2

“Required Environment for the UpgradeConfig Utility” on page D-2

“UpgradeConfig Reference” on page D-2

About the Upgrade Program
The WebLogic SIP Server upgrade program, com.bea.wcp.sip.util.UpgradeConfig, takes
a sipserver.xml configuration file from a version 2.0.x WebLogic SIP Server release and
recreates the configuration in WebLogic SIP Server 2.2 using the latest schemas. For example,
connector entries from an earlier sipserver.xml file are converted into network channels in
the WebLogic SIP Server 2.2 config.xml file.

In order to use the upgrade program, you must install WebLogic SIP Server 2.2 and create a new
WebLogic SIP Server 2.2 domain. The newly domain configuration is then updated to match the
earlier configuration using the com.bea.wcp.sip.util.UpgradeConfig program.

Upgrading a WebLog ic S IP Server 2 .0 . x Conf igura t ion to Vers i on 2 .2

D-2 Configuring and Managing WebLogic SIP Server

Steps for Upgrading an Existing Configuration
To upgrade a previous WebLogic SIP Server configuration to a new WebLogic SIP Server 2.2
configuration:

1. Install the WebLogic SIP Server software 2.2. See Installing WebLogic SIP Server Using
Graphical-Mode Installation in Installing WebLogic SIP Server.

2. Use the Configuration Wizard to create a new Basic WebLogic SIP Server Domain on the
Administration Server machine. See Using the Configuration Wizard in Installing WebLogic
SIP Server.

3. Start the Administration Server for the WebLogic SIP Server 2.2 domain.

4. Set the environment required for using the UpgradeConfig utility. See “Required
Environment for the UpgradeConfig Utility” on page D-2.

5. Use the com.bea.wcp.sip.util.UpgradeConfig utility to recreate your earlier WebLogic
SIP Server configuration on the new WebLogic SIP Server 2.2 domain. See “UpgradeConfig
Reference” on page D-2.

Required Environment for the UpgradeConfig Utility
To set up your environment for the UpgradeConfig utility:

1. Install the WebLogic SIP Server software 2.2. See Installing WebLogic SIP Server Using
Graphical-Mode Installation in Installing WebLogic SIP Server.

2. Move to the top level of the WebLogic SIP Server 2.2 domain directory that you created:

cd BEA_HOME\user_projects\domains\mydomain

In the above command, BEA_HOME refers to the top-level BEA installation directory (for
example, c:\bea).

3. Set the client environment using the command:

setAdminClientEnv.cmd

UpgradeConfig Reference
The UpgradeConfig program uses the syntax:

java com.bea.wcp.sip.util.UpgradeConfig -username adminuser -password

adminpassword -adminurl url -sipserverconfigfile sipserver_old.xml

{DOCROOT}/install/guimode.html
{DOCROOT}/install/guimode.html
{DOCROOT}/install/index.html
{DOCROOT}/install/postins.html
{DOCROOT}/install/index.html
{DOCROOT}/install/index.html
{DOCROOT}/install/guimode.html
{DOCROOT}/install/guimode.html
{DOCROOT}/install/index.html

UpgradeConf ig Refe rence

Configuring and Managing WebLogic SIP Server D-3

where:

adminuser is the username of the WebLogic SIP Server 2.2 administrator

adminpassword is the password of the WebLogic SIP Server 2.2 administrator

url is the URL of the WebLogic SIP Server 2.2 Administration Server

sipserver_old.xml is the full path to the sipserver.xml file from the earlier
WebLogic SIP Server installation

For example:

java com.bea.wcp.sip.util.UpgradeConfig -username weblogic -password

weblogic -adminurl t3://localhost:7001 -sipserverconfigfile

c:\bea\user_projects\domains\wlss202_domain\sipserver.xml

The upgrade utility modifies the sipserver.xml and config.xml files in the WebLogic SIP
Server 2.2 domain as necessary to match the earlier configuration.

Notes: The version 2.2 Administration Server must be running in order to upgrade the
configuration.

UpgradeConfig can only update a WebLogic SIP Server 2.2 configuration from a single
version 2.0.x sipserver.xml file. You cannot perform multiple upgrades against the
same version 2.2 Administration Server using different sipserver.xml files.

Upgrading a WebLog ic S IP Server 2 .0 . x Conf igura t ion to Vers i on 2 .2

D-4 Configuring and Managing WebLogic SIP Server

Configuring and Managing WebLogic SIP Server E-1

A P P E N D I X E

Improving Failover Performance for
Physical Network Failures

The following sections describe how to configure use the WebLogic SIP Server “echo server”
process to improve data tier failover performance when a server becomes physically disconnected
from the network:

“Overview of Failover Detection” on page E-1

“WlssEchoServer Requirements and Restrictions” on page E-2

“Starting WlssEchoServer on Data Tier Server Machines” on page E-3

“Enabling and Configuring the Heartbeat Mechanism on Servers” on page E-4

Overview of Failover Detection
In a production system, engine tier servers continually access data tier replicas in order to retrieve
and write call state data. The WebLogic SIP Server architecture depends on engine tier nodes to
detect when a data tier server has failed or become disconnected. When an engine cannot access
or write call state data because a replica is unavailable, the engine connects to another replica in
the same partition and reports the offline server. The replica updates the current view of the data
tier to account for the offline server, and other engines are then notified of the updated view as
they access and retrieve call state data.

By default, an engine tier server uses its RMI connection to the replica to determine if the replica
has failed or become disconnected. The algorithms used to determine a failure of an RMI
connection are reliable, but they ultimately they depend on the TCP protocol’s retransmission
timers to diagnose a disconnection (for example, if the network cable to the replica is removed).

Improv ing Fa i l ove r Pe r fo rmance fo r Phys ica l Ne two rk Fa i lu res

E-2 Configuring and Managing WebLogic SIP Server

Because the TCP retransmission timer generally lasts a full minute or longer, WebLogic SIP
Server provides an alternate method of detecting failures that can diagnose a disconnected replica
in a matter of a few seconds.

WlssEchoServer Failure Detection
WlssEchoServer is a separate process that you can run on the same server hardware as a data
tier replica. The purpose of WlssEchoServer is to provide a simple UDP echo service to engine
tier nodes to be used for determining when a data tier server goes offline, for example in the event
that the network cable is disconnected. The algorithm for detecting failures with
WlssEchoServer is as follows:

1. For all normal traffic, engine tier servers communicate with data tier replicas using TCP. TCP
is used as the basic transport between the engine tier and data tier regardless of whether or not
WlssEchoServer is used.

2. Engine tier servers send a periodic heartbeat message to each configured WlssEchoServer
over UDP. During normal operation, WlssEchoServer responds to the heartbeats so that the
connection between the engine node and replica is verified.

3. Should there be a complete failure of the data tier stack, or the network cable is disconnected,
the heartbeat messages are not returned to the engine node. In this case, the engine node can
mark the replica as being offline without having to wait for the normal TCP connection
timeout.

4. After identifying the offline server, the engine node reports the failure to an available data tier
replica, and the data tier view is updated as described in the previous section.

Also, should a data tier server notice that its local WlssEchoServer process has died, it
automatically shuts down. This behavior ensures even quicker failover because avoids the time
it takes engine nodes to notice and report the failure as described in “Overview of Failover
Detection” on page E-1.

You can configure the heartbeat mechanism on engine tier servers to increase the performance of
failover detection as necessary. You can also configure the listen port and log file that
WlssEchoServer uses on data tier servers.

WlssEchoServer Requirements and Restrictions
Note: Using WlssEchoServer is not required in all WebLogic SIP Server installations. Enable

the echo server only when your system requires detection of a network or replica failure
faster than the configured TCP timeout interval.

Star t ing WlssEchoServe r on Data T ie r Serve r Mach ines

Configuring and Managing WebLogic SIP Server E-3

Observe the following requirements and restrictions when using WlssEchoServer to detect
replica failures:

If you use the heartbeat mechanism to detect failures, you must ensure that the
WlssEchoServer process is always running on each replica server machine. If the
WlssEchoServer process fails or is stopped, the replica will be treated as being “offline”
even if the server process is unaffected.

Note that WlssEchoServer listens on all IP addresses available on the server machine.

WlssEchoServer requires a dedicated port number to listen for heartbeat messages.

Starting WlssEchoServer on Data Tier Server Machines
WlssEchoServer is a Java program that you can start directly from a shell or command prompt.
The basic syntax for starting WlssEchoServer is:

java -classpath WLSS_HOME/telco/lib/wlss.jar options

com.bea.wcp.util.WlssEchoServer

Where WLSS_HOME is the path to the WebLogic SIP Server installation and options may include
one of the options described in Table E-1.

BEA recommends that you include the command to start WlssEchoServer in the same script you
use to start each WebLogic SIP Server data tier instance. If you use the
startManagedWebLogic.sh script to start an engine or data tier server instance, add a command
to start WlssEchoServer before the final command used to start the server. For example, change
the lines:

"$JAVA_HOME/bin/java" ${JAVA_VM} ${MEM_ARGS} ${JAVA_OPTIONS} \

Table E-1 WlssEchoServer Options

Option Description

-Dwlss.ha.echoserver.port Specifies the port number used to listen for heartbeat
messages. Ensure that the port number you specify is not used
by any other process on the server machine. By default
WlssEchoServer uses port 6734.

-Dwlss.ha.echoserver.logfile Specifies the log file location and name. By default, log
messages are written to ./echo_servertime.log where
time is the time expressed in milliseconds.

Improv ing Fa i l ove r Pe r fo rmance fo r Phys ica l Ne two rk Fa i lu res

E-4 Configuring and Managing WebLogic SIP Server

 -Dweblogic.Name=${SERVER_NAME} \

 -Dweblogic.management.username=${WLS_USER} \

 -Dweblogic.management.password=${WLS_PW} \

 -Dweblogic.management.server=${ADMIN_URL} \

 -Djava.security.policy="${WL_HOME}/server/lib/weblogic.policy" \

 weblogic.Server

to read:

"$JAVA_HOME/bin/java" -classpath WLSS_HOME/telco/lib/wlss.jar \

 -Dwlss.ha.echoserver.port=6734 com.bea.wcp.util.WlssEchoServer &

"$JAVA_HOME/bin/java" ${JAVA_VM} ${MEM_ARGS} ${JAVA_OPTIONS} \

 -Dweblogic.Name=${SERVER_NAME} \

 -Dweblogic.management.username=${WLS_USER} \

 -Dweblogic.management.password=${WLS_PW} \

 -Dweblogic.management.server=${ADMIN_URL} \

 -Djava.security.policy="${WL_HOME}/server/lib/weblogic.policy" \

 weblogic.Server

Enabling and Configuring the Heartbeat Mechanism on
Servers

To enable the WlssEchoServer heartbeat mechanism, you must include the
-Dreplica.host.monitor.enabled JVM argument in the command you use to start all engine
and data tier servers. BEA recommends adding this option directly to the script used to start
Managed Servers in your system. For example, in the startManagedWebLogic.sh script,
change the line:

JAVA_OPTIONS="-Dweblogic.attribute=value -Djava.attribute=value"

to read:

JAVA_OPTIONS="-Dreplica.host.monitor.enabled"

Enab l ing and Conf igu r ing the Hear tbeat Mechanism on Servers

Configuring and Managing WebLogic SIP Server E-5

Several additional JVM options configure the functioning of the heartbeat mechanism. Table E-2
describes the options used to configure failure detection.

Table E-2 WlssEchoServer Options

Option Description

-Dreplica.host.monitor.enabled This system property is required on both engine and data
tier servers to enable the heartbeat mechanism.

-Dwlss.ha.heartbeat.interval Specifies the number of milliseconds between heartbeat
messages. By default heartbeats are sent every 1,000
milliseconds.

-Dwlss.ha.heartbeat.count Specifies the number of consecutive, missed heartbeats
that are permitted before a replica is determined to be
offline. By default, a replica is marked offline if the
WlssEchoServer process on the server fails to respond
to 3 heartbeat messages.

-Dwlss.ha.heartbeat.SoTimeout Specifies the UDP socket timeout value.

Improv ing Fa i l ove r Pe r fo rmance fo r Phys ica l Ne two rk Fa i lu res

E-6 Configuring and Managing WebLogic SIP Server

Configuring and Managing WebLogic SIP Server F-1

A P P E N D I X F

Tuning JVM Garbage Collection for
Production Deployments

The following sections describe how to tune Java Virtual Machine (JVM) garbage collection
performance for engine tier servers:

“Goals for Tuning Garbage Collection Performance” on page F-1

“Tuning Garbage Collection with JRockit” on page F-2

“Tuning Garbage Collection with Sun JDK” on page F-2

Goals for Tuning Garbage Collection Performance
Production installations of WebLogic SIP Server generally require extremely small response
times (under 50 milliseconds) for clients at all times, even under peak server loads. A key factor
in maintaining brief response times is the proper selection and tuning of the JVM’s Garbage
Collection (GC) algorithm for WebLogic SIP Server instances in the engine tier.

Whereas certain tuning strategies are designed to yield the lowest average garbage collection
times or to minimize the frequency of full GCs, those strategies can sometimes result in one or
more very long periods of garbage collection (often several seconds long) that are offset by
shorter GC intervals. With a production SIP Server installation, all long GC intervals must be
avoided in order to maintain response time goals.

The sections that follow describe GC tuning strategies for JRockit and Sun’s JVM that generally
result in best response time performance.

Tun ing JVM Garbage Co l l ec t i on fo r P roduct ion Dep loyments

F-2 Configuring and Managing WebLogic SIP Server

Tuning Garbage Collection with JRockit
When using BEA’s JRockit JVM, the best response time performance is generally obtained by
using the single-spaced, concurrent garbage collector with a very small (1%) compaction rate.
These settings can be obtained with the following startup options:

-Xgc:singlecon specifies the use of the single-spaced, concurrent garbage collector

-XXcompactratio:1 specifies that only one percent of the heap is compacted after each
garbage collection.

It is important to use the low compaction ratio setting along with the single-spaced GC algorithm
to obtain the best response time performance. Note, however, that using the indicated compaction
ratio may be problematic if you deploy applications that periodically allocate drastically different
sizes of memory in the heap (for example a 10K allocation followed by byte-sized increments).

WARNING: If you deploy applications that allocate varying sizes of memory, using a small
compaction ratio may lead to Out Of Memory errors or forced compaction, both
of which must be avoided in a production system. You must thoroughly analyze
deployed applications in a stage environment to determine which JVM settings
are acceptable for your system.

JRockit provides several monitoring tools that you can use to analyze the JVM heap at any given
moment, including:

JRockit Runtime Analyzer—provides a view into the runtime behavior of garbage
collection and pause times.

JRockit Stack Dumps—reveals applications’ thread activity to help you troubleshoot
and/or improve performance.

Use these and other tools in a controlled environment to determine the effects of JVM settings
before you use the settings in a production deployment. See the BEA WebLogic JRockit 1.4.2
SDK Documentation for more information about JRockit and JRockit profiling tools.

Tuning Garbage Collection with Sun JDK
When using Sun’s JDK, the goal in tuning garbage collection performance is to reduce the time
required to perform a full garbage collection cycle. You should not attempt to tune the JVM to
minimize the frequency of full garbage collections, because this generally results in an eventual
forced garbage collection cycle that may take up to several full seconds to complete.

http://e-docs.bea.com/wljrockit/docs142/tuning/basic.html
http://e-docs.bea.com/wljrockit/docs142/userguide/apstkdmp.html
http://e-docs.bea.com/wljrockit/docs142/index.html
http://e-docs.bea.com/wljrockit/docs142/index.html

Tun ing Garbage Co l l ec t i on w i th Sun JDK

Configuring and Managing WebLogic SIP Server F-3

The simplest and most reliable way to achieve short garbage collection times over the lifetime of
a production server is to use a fixed heap size with the default collector and the parallel young
generation collector, restricting the new generation size to at most one third of the overall heap.
The following example JVM settings highlights the key garbage collection options used in this
strategy:

-XX:+UseTLAB -XX:+UseParNewGC -Xms768m -Xmx768m -XX:NewSize=256m
-XX:MaxTenuringThreshold=0 -XX:SurvivorRatio=128

The above options have the following effect:

-XX:+UseTLAB—Uses thread-local object allocation blocks. This improves concurrency by
reducing contention on the shared heap lock.

-XX:+UseParNewGC—Uses a parallel version of the young generation copying collector
alongside the default collector. This minimizes pauses by using all available CPUs in
parallel. The collector is compatible with both the default collector and the Concurrent
Mark and Sweep (CMS) collector.

-Xms768m, -Xmx768m—Fixes the heap size to increase the predictability of garbage
collection. -Xmx768m limits the heap size so that even Full GCs do not trigger SIP
retransmissions. -Xms sets the starting size to match to prevent pauses caused by heap
expansion.

-XX:NewSize=256m—Defines the minimum young generation size. BEA recommends
testing your production applications starting with a young generation size of 1/3 the total
heap size. Using a larger young generation size causes fewer minor collections to occur but
may compromise response time goals by cause longer-running full collections.

You can fine-tune the frequency of minor collections by gradually reducing the size of the
heap allocated to the young generation to a point below which the observed response time
becomes unacceptable.

-XX:MaxTenuringThreshold=0—Makes the full NewSize available to every NewGC
cycle, and reduces the pause time by not evaluating tenured objects. Technically, this
setting promotes all live objects to the older generation, rather than copying them.

-XX:SurvivorRatio=128—Specifies a high survivor ratio, which goes along with the
zero tenuring threshold to ensure that little space is reserved for absent survivors.

Tun ing JVM Garbage Co l l ec t i on fo r P roduct ion Dep loyments

F-4 Configuring and Managing WebLogic SIP Server

Configuring and Managing WebLogic SIP Server G-1

A P P E N D I X G

Avoiding JVM Delays Caused by
Random Number Generation

The library used for random number generation in Sun’s JVM relies on /dev/random by default
for UNIX platforms. This can potentially block the WebLogic SIP Server process because on
some operating systems /dev/random waits for a certain amount of “noise” to be generated on
the host machine before returning a result. Although /dev/random is more secure, BEA
recommends using /dev/urandom if the default JVM configuration delays WebLogic SIP Server
startup.

To determine if your operating system exhibits this behavior, try displaying a portion of the file
from a shell prompt:

head -n 1 /dev/random

If the command returns immediately, you can use /dev/random as the default generator for
SUN’s JVM. If the command does not return immediately, use these steps to configure the JVM
to use /dev/urandom:

1. Open the $JAVA_HOME/jre/lib/security/java.security file in a text editor.

2. Change the line:

securerandom.source=/dev/random

to read:

securerandom.source=/dev/urandom

3. Save your change and exit the text editor.

Avo id ing JVM De lays Caused by Random Number Generat ion

G-2 Configuring and Managing WebLogic SIP Server

	Overview of the WebLogic SIP Server Architecture
	Goals of the WebLogic SIP Server Architecture
	Load Balancer
	Engine Tier
	Data tier
	Example Hardware Configuration
	Alternate Configurations

	Overview of WebLogic SIP Server Configuration and Management
	Shared Configuration Tasks for WebLogic SIP Server and WebLogic Server
	WebLogic SIP Server Configuration Overview
	Configuration Implementation
	Diameter Configuration
	Understanding Staging Modes for the sipserver Application

	Startup Sequence for a WebLogic SIP Server Domain
	Methods and Tools for Performing Configuration Tasks
	Administration Console
	Upgrade Utility
	WebLogic Scripting Tool (WLST)
	Additional Configuration Methods
	Editing Configuration Files
	Custom JMX Applications

	Administration Server Best Practices
	Adding threads to weblogic.admin.RMI and weblogic.admin.HTTP

	Common Configuration Tasks

	Configuring Data Tier Partitions and Replicas
	Overview of Data Tier Configuration
	datatier.xml Configuration File
	Configuration Requirements and Restrictions

	Best Practices for Configuring and Managing Data Tier Servers
	Example Data Tier Configurations and Configuration Files
	Data Tier with One Partition
	Data Tier with Two Partitions
	Data Tier with Two Partitions and Two Replicas

	Monitoring and Troubleshooting Data Tier Servers

	Configuring Engine Tier Container Properties
	Overview of SIP Container Configuration
	Using the Administration Console to Configure Container Properties
	Locking and Persisting the Configuration

	Configuring Container Properties Using WLST (JMX)
	ConfigManagerRuntimeMBean Usage and Reference
	Configuration MBeans for the SIP Servlet Container
	Locating the WebLogic SIP Server MBeans

	WLST Configuration Examples
	Invoking WLST
	WLST Template for Configuring Container Attributes
	Creating and Deleting MBeans
	Working with URI Values

	Reverting to the Original Boot Configuration
	Configuring NTP for Accurate SIP Timers

	Configuring Diameter Sh Client Nodes and Relay Agents
	Overview of Diameter Protocol Configuration
	Steps for Configuring Diameter Client Nodes and Relay Agents
	Installing the Diameter Domain
	Creating Network Channels for the Diameter Protocol
	Configuring Two-Way SSL for Diameter TLS Channels

	Configuring Diameter Sh Client Nodes
	Configuring Diameter Relay Agents (Optional)
	Example Domain Configuration
	Configuring an HSS Simulator

	Capacity Planning for WebLogic SIP Server Deployments
	Introduction to Capacity Planning
	Determining Performance Goals
	Basic Hardware Configuration and Throughput Values
	Throughput Values for WebLogic SIP Server Instances

	Sample Deployment Scenarios
	Small Deployment
	Medium Deployment
	Large Deployment

	Managing WebLogic SIP Server Network Resources
	Overview of Network Configuration
	Configuring Load Balancer Addresses
	Multiple Load Balancers and Multihomed Load Balancers

	Configuring Network Channels for SIP or SIPS
	Reconfiguring an Existing Channel
	Creating a New SIP or SIPS Channel

	Configuring SIP Channels for Multi-Homed Machines
	Configuring TCP and TLS Channels for Diameter Support
	Configuring Engine Servers to Listen on Any IP Interface (0.0.0.0)
	Configuring Unique Listen Address Attributes for Data Tier Replicas

	Production Network Architectures and WebLogic SIP Server Configuration
	Overview
	Single-NIC Configurations with TCP and UDP Channels
	Static Port Configuration for Outbound UDP Packets

	Multihomed Server Configurations Overview
	Multihomed Servers Listening On All Addresses (IP_ANY)
	Multihomed Servers Listening on Multiple Subnets
	Understanding the Route Resolver
	IP Aliasing with Multihomed Hardware

	Load Balancer Configurations
	Single Load Balancer Configuration
	Multiple Load Balancers and Multihomed Load Balancers
	Network Address Translation Options
	IP Masquerading Alternative to Source NAT

	Example WebLogic SIP Server Network Configuration
	Overview
	Example Network Topology
	WebLogic SIP Server Configuration
	Load Balancer Configuration
	NAT-based configuration
	maddr-Based Configuration
	rport-Based Configuration

	Logging SIP Requests and Responses
	Overview of SIP Logging
	Using the Template Logging Servlet
	Deploying the Template Logging Application
	Using the Logging Servlet Implementation in Other Applications

	Defining Logging Servlets in sip.xml
	Configuring the Logging Level and Destination
	Specifying the Criteria for Logging Messages
	Using XML Documents to Specify Logging Criteria
	Using Servlet Parameters to Specify Logging Criteria

	Specifying Content Types for Unencrypted Logging
	Managing Logging Performance
	Enabling Log Rotation and Viewing Log Files
	trace-pattern.dtd Reference
	Adding Tracing Functionality to SIP Servlet Code
	Order of Startup for Listeners and Logging Servlets

	Avoiding and Recovering From Server Failures
	Failure Prevention and Recovery Features
	Overload Protection
	Redundancy and Failover for Clustered Services
	Automatic Restart for Failed Server Instances
	Managed Server Independence Mode

	Directory and File Backups for Failure Recovery
	Backing up config.xml
	Automated config.xml Archiving
	Automatic Backup of config.xml at Server Startup

	Backing Up the sipserver Application
	Backing Up the Diameter Application
	Backing Up Server Start Scripts
	Backing Up Logging Servlet Applications
	Backing Up Security Data
	Backing Up the WebLogic LDAP Repository
	Backing Up SerializedSystemIni.dat and Security Certificates

	Backing Up Additional Operating System Configuration Files

	Restarting a Failed Administration Server
	Restarting an Administration Server on the Same Machine
	Restarting an Administration Server on Another Machine

	Restarting Failed Managed Servers

	Configuring SNMP
	Overview of WebLogic SIP Server SNMP
	Browsing the MIB
	Configuring SNMP
	SNMP Port Binding for WebLogic SIP Server
	Understanding and Responding to SNMP Traps
	Files for Troubleshooting
	Trap Descriptions
	connectionLostToPeer
	connectionReestablishedToPeer
	dataTierServerStopped
	licenseLimitExceeded
	overloadControlActivated, overloadControlDeactivated
	replicaAddedToPartition
	replicaRemovedFromPartition
	serverStopped
	sipAppDeployed
	sipAppUndeployed
	sipAppFailedToDeploy

	Upgrading Deployed SIP Applications
	Overview of SIP Application Upgrades
	Requirements and Restrictions for Upgrading Deployed Applications
	Steps for Upgrading a Deployed SIP Application
	Assign a Version Identifier
	Defining the Version in the Manifest
	Appending the Version to the Archive Name
	Appending the Version to the context-root (Enterprise Applications)

	Deploy the Updated Application Version
	Undeploy the Older Application Version
	Roll Back the Upgrade Process
	Accessing the Application Name and Version Identifier

	Upgrading Software and Converged Applications
	Overview of System and Application Upgrades
	Requirements for Upgrading a Production System
	Upgrading to a New Version of WebLogic SIP Server
	Configure the Load Balancer
	Configure the New Engine Tier Cluster
	Define the Cluster-to-Load Balancer Mapping
	Duplicate the SIP Servlet Container and Data Tier Configuration
	Upgrade Engine Tier Servers and Target Applications to the New Cluster
	Upgrade Data Tier Servers

	Upgrading a Deployed Production Application (Compatible Session Data)
	Upgrading a Deployed Production Application (Incompatible Session Data)
	Configure the Load Balancer
	Configure the New Engine Tier Cluster
	Define the Cluster-to-Load Balancer Mapping
	Migrate Engine Tier Servers and Target Applications to the New Cluster

	Applying Patches Using InstallPatch
	Overview of the InstallPatch Utility
	Required Environment for the InstallPatch Utility
	Syntax for Invoking the InstallPatch Utility
	Example InstallPatch Commands
	Editing the MANIFEST Classpath in GUI Mode
	Troubleshooting the InstallPatch Utility

	Upgrading a WebLogic SIP Server 2.0.x Configuration to Version 2.2
	About the Upgrade Program
	Steps for Upgrading an Existing Configuration
	Required Environment for the UpgradeConfig Utility
	UpgradeConfig Reference

	Improving Failover Performance for Physical Network Failures
	Overview of Failover Detection
	WlssEchoServer Failure Detection

	WlssEchoServer Requirements and Restrictions
	Starting WlssEchoServer on Data Tier Server Machines
	Enabling and Configuring the Heartbeat Mechanism on Servers

	Tuning JVM Garbage Collection for Production Deployments
	Goals for Tuning Garbage Collection Performance
	Tuning Garbage Collection with JRockit
	Tuning Garbage Collection with Sun JDK

	Avoiding JVM Delays Caused by Random Number Generation

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

