
BEA WebLogic

B E A W e b L o g i c P e r s o n a l i z a t i o n S e r v e r 2 . 0 . 1
D o c u m e n t E d i t i o n 2 . 0 . 3 S e r v i c e P a c k 3

M a y 2 0 0 1

Personalization Server
Developer’s Guide

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc.
DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE,
OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, WebLogic Enterprise,
WebLogic Commerce Server, and WebLogic Personalization Server are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

WebLogic Personalization Server Developer’s Guide

Document Edition Date Software Version

1.0 January 2000 BEA WebLogic Personalization Server 1.7

1.1 February 2000 BEA WebLogic Personalization Server 1.7.1

2.0 April 2000 BEA WebLogic Personalization Server 2.0

2.0.1 Service Pack 1 July 2000 BEA WebLogic Commerce Servers 2.0.1 Service Pack 1

2.0.3 Service Pack 3 May 2001 BEA WebLogic Commerce Servers 2.0.1 Service Pack 3

BEA WebLogic Personalization Server Developer’s Guide iii

Contents

About This Document
What You Need to Know .. viii
e-docs Web Site... viii
How to Print the Document... ix
Contact Us! .. ix
Documentation Conventions ...x

1. Overview of Personalization Development
Personalization Server Runtime Architecture ... 1-2

Personalization Advisor ... 1-3
Portal Management .. 1-3
Foundation Classes and Utilities .. 1-3
User Management .. 1-3
Content Management ... 1-4
Rules Management... 1-4

Foundation Classes and Utilities ... 1-4
JSP Tags .. 1-5
Integration of External Components ... 1-7
Support for Native Types .. 1-8

2. Creating Personalized Applications with the Personalization
Advisor

What is the Personalization Advisor?.. 2-2
Creating Personalized Applications with JSP Tags... 2-4

Classifying users with the JSP <pz:div> tag .. 2-5
Selecting content with the <pz:contentquery> JSP tag 2-5
Matching content to users with the <pz:contentselector> JSP tag............. 2-6

iv BEA WebLogic Personalization Server Developer’s Guide

Creating Personalized Applications with the Personalization
Advisor Session Bean... 2-7
Specifying a personalization technique URL... 2-9
Classifying users with the Personalization Advisor Session Bean........... 2-10
Selecting content with the Personalization Advisor Session Bean 2-12
Matching content to users with the Personalization Advisor

Session Bean ... 2-14

3. Foundation Classes and Utilities
JSP Service Manager ... 3-2

Configuring the JSP Service Manager ... 3-3
Repository.. 3-4
HTTP Handling ... 3-5
Personalization Request Object ... 3-5

Default Request Property Set ... 3-6
Personalization Session Object ... 3-8

Default Session property set ... 3-8
Utilities .. 3-9

JspHelper .. 3-9
JspBase ... 3-9
P13NJspBase .. 3-10
ContentHelper... 3-10
CommercePropertiesHelper ... 3-10

Utilities in commerce.util package .. 3-11
ExpressionHelper ... 3-11
TypesHelper ... 3-11

4. JSP Tag Reference
Personalization Advisor... 4-2

<pz:div>.. 4-3
<pz:contentquery>.. 4-4
<pz:contentselector> .. 4-5

Content Management... 4-8
<cm:select> .. 4-8
<cm:selectbyid> ... 4-10
<cm:printproperty> .. 4-12

BEA WebLogic Personalization Server Developer’s Guide v

<cm:printdoc> .. 4-14
Portal Management.. 4-15

<pt:portalmanager> .. 4-15
<pt:portletmanager> ... 4-16
<pt:eval> .. 4-18
<pt:get> .. 4-18
<pt:monitorsession>... 4-19
<pt:props> .. 4-19
<pt: getgroupsforportal> .. 4-20

User Management.. 4-20
Profile management tags .. 4-20

<um:getprofile> .. 4-20
<um:getproperty> ... 4-22
<um:getpropertyasstring> ... 4-23
<um:removeproperty> .. 4-24
<um:setproperty>.. 4-24

Group-user management tags... 4-25
<um:addgrouptogroup> .. 4-25
<um:addusertogroup> ... 4-26
<um:changegroupname>... 4-27
<um:creategroup> ... 4-28
<um:createuser>.. 4-29
<um:getchildgroups> .. 4-30
<um:getgroupnamesforuser> .. 4-31
<um:getparentgroupname> ... 4-31
<um:gettoplevelgroups> ... 4-32
<um:getusernames> .. 4-32
<um:getusernamesforgroup> .. 4-33
<um:removegroup>... 4-34
<um:removeuser> ... 4-35

Security tags ... 4-36
<um:login>.. 4-36
<um:setpassword> .. 4-37

vi BEA WebLogic Personalization Server Developer’s Guide

Personalization Utilities... 4-38
<es:condition> .. 4-38
<es:counter> ... 4-38
<es:foreachinarray>.. 4-39
<es:isnull> .. 4-39
<es:notnull>.. 4-40
<es:preparedstatement>.. 4-40
<es:simplereport> ... 4-41
<es:transposearray>.. 4-41
<es:uricontent>... 4-42
<es:date> .. 4-43
<es:usertransaction>... 4-43

WebLogic Utilities .. 4-44
<wl:process> .. 4-44

Index

BEA WebLogic Personalization Server Developer’s Guide vii

About This Document

This document explains how to use the BEA WebLogic Personalization Server to
create personalized applications for use in an e-Commerce site.

This document covers the following topics:

� Overview of Personalization Development: WebLogic Personalization Server
2.0 provides developer components and utilities that enable developers to create
personalized applications. The pieces documented in in this guide include the
Personalization Advisor, Foundation classes and utilities, and JSP tag reference.

� Creating Personalized Applications with the Personalization Advisor:
Personalization Advisor recommends content and performs several important
functions in creating a personalized application, including searching for content,
tying the other core personalization services together, and matching content to
user profiles.

� Foundation Classes and Utilities: The Foundation is a set of miscellaneous
utilites to aid JSP and Java developers in the development of personalized
applications using the WebLogic Personalization Server. Its utilities include JSP
files and Java classes that can be used by JSP developers to gain access to
functions provided by the server and helpers for gaining access to
Personalization Advisor services.

� JSP Tag Reference: The JSP tags included with WebLogic Personalization
Server 2.0 allow developers to create personalized applications without having to
program using Java.

viii BEA WebLogic Personalization Server Developer’s Guide

What You Need to Know

This document is intended for business analysts, Web developers, and Web site
administrators involved in setting up an eCommerce site using BEA WebLogic
Personalization Server. It assumes a familiarity with the WebLogic Personalization
Server platform and related Web technologies as described below. The topics in this
document are organized primarily around development goals and the tasks needed to
accomplish them. Generally, a set of topics also speaks to a particular development
role and requires the basic knowledge with regard to the technology focus of that role:

� Java Server Page (JSP) developer creates JSPs using the tags provided or by
creating custom tags as needed.

� Application assembler, system analyst, or systems integrator writes rules, writes,
schemas, and monitors usage.

� System administrator installs, configures, deploys, and monitors the Web
application server.

� Java developer extends or modifies the Enterprise Java Bean (EJB) components
that make up the Personalization Server engine, if that level of customization is
needed.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://e-docs.beasys.com.

How to Print the Document

BEA WebLogic Personalization Server Developer’s Guide ix

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Personalization Server
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document
(or a portion of it) in book format. To access the PDFs, open the WebLogic
Personalization Server documentation Home page, click the PDF files button and
select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Contact Us!

Your feedback on the BEA WebLogic Personalization Server documentation is
important to us. Send us e-mail at docsupport@beasys.com if you have questions or
comments. Your comments will be reviewed directly by the BEA professionals who
create and update the WebLogic Personalization Server documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Personalization Server 2.0 release.

If you have any questions about this version of BEA WebLogic Personalization Server,
or if you have problems installing and running BEA WebLogic Personalization Server,
contact BEA Customer Support through BEA WebSupport at www.beasys.com. You
can also contact Customer Support by using the contact information provided on the
Customer Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

x BEA WebLogic Personalization Server Developer’s Guide

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.
Example:
void commit ()

monospace
italic
text

Identifies variables in code.
Example:
String expr

Documentation Conventions

BEA WebLogic Personalization Server Developer’s Guide xi

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.
Examples:
LPT1
SIGNON
OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:
� That an argument can be repeated several times in a command line
� That the statement omits additional optional arguments
� That you can enter additional parameters, values, or other information
The ellipsis itself should never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

xii BEA WebLogic Personalization Server Developer’s Guide

BEA WebLogic Personalization Server Developer’s Guide 1-1

CHAPTER

1 Overview of
Personalization
Development

The following topics are included:

Personalization Server Runtime Architecture
Personalization Advisor
Portal Management
Foundation Classes and Utilities
User Management
Content Management
Rules Management

Foundation Classes and Utilities

JSP Tags

Integration of External Components

Support for Native Types

WebLogic Personalization Server provides developers with the ability to create
personalized applications for eCommerce web sites. This developer’s guide provides
information about the Personalization Advisor, Foundation Classes and Utilities, and
JSP Tags.

1 Overview of Personalization Development

1-2 BEA WebLogic Personalization Server Developer’s Guide

Personalization Server Runtime
Architecture

The WebLogic Personalization Server (WLPS) runtime architecture is designed to
support a variety of personalized applications. These applications can be built on the
portal/portlet infrastructure, on the tags and EJBs supplied by the personalization
advisor, and on select tags and EJBs supplied by other personalization server
components.

The following high level architecture picture may be used to visualize the relationships
between the components.

Personalization Server Runtime Architecture

BEA WebLogic Personalization Server Developer’s Guide 1-3

The personalized application is one built by the developer to use the personalization
components. It may consist of a portal instance with JSP portlets, a set of traditional
JSP pages or servlets, and/or code that accesses EJB objects directly.

Personalization Advisor

The personalization advisor component is the primary interface to the most common
operations that personalized applications will use. It provides access through tags or a
single EJB session bean. Specific functionality provided by the personalization advisor
includes classifying users, selecting content based on user properties, and querying
content management directly. The personalization advisor uses the foundation, user
management, rules service, and content management components.

Portal Management

The portal management component provides tags and EJB objects to support creating
a framework of portals and portlets. It is configured using the portal administration
tools and has embedded JSP fragments built by the developer.

Foundation Classes and Utilities

The foundation component provides a set objects and utilities to support
personalization activities. This component provides EJB objects to support HTTP
handling, including object definition for request and session objects, as well as
object-based utilities specifically designed to support portals.

User Management

The user management component supports the runtime access of users, groups, and the
relationships between them. The notion of property sets is embedded within the user
and group property access scheme. This component is set up using the user

1 Overview of Personalization Development

1-4 BEA WebLogic Personalization Server Developer’s Guide

management administration tools and supports access via JSP tags or direct access to
EJB objects. A Unified User Profile may be built by the developer, extending the User
EJB object, to provide custom data source access to user property values.

Content Management

The content management component provides the runtime API by which content is
queried and retrieved. The functionality of this component is accessible via tags. The
content retrieval functionality is provided using either the provided reference
implementation or Documentum content retrieval products.

Rules Management

The rules component is the runtime service that runs the rulesheets that are built in the
rules management administration tool. This component is accessible only via the
functionality of the personalization advisor tags. This component uses the JRules
runtime library to make decisions.

Foundation Classes and Utilities

The Foundation is a set of miscellaneous utilities to aid JSP and Java developers in the
development of personalized applications using the WebLogic Personalization Server.
Its utilities include JSP files and Java classes that can be used by JSP developers to gain
access to functions provided by the server and helpers for gaining access to
Personalization Advisor services.

JSP Tags

BEA WebLogic Personalization Server Developer’s Guide 1-5

JSP Tags

The JSP tags included with WebLogic Personalization Server 2.0 allow developers to
create personalized applications without having to program using Java.

Table 1-1 Java Server Page (JSP) Tags Overview

Library Tag Description

Personalization
Advisor

<pz:div> Turns a user-provided piece of content on
or off based on the results of a classifier
rule.

<pz:contentquery> Provides content based on search
expression query syntax.

<pz:contentselector> Provides content based on results of a
contentselector rule and subsequent content
query.

Content
Management

<cm:select> Selects content based on a search
expression query syntax.

<cm:selectbyid> Retrieves content using the content’s
unique identifier.

<cm:printproperty> Inlines the value of the specified content
metadata property as a string.

<cm:printdoc> Inlines the raw bytes of a document object
in to the JSP out put stream.

Portal Management <pt:portalmanager> Provides the ability to do create, get,
getColumnInfo, update, and remove
actions on a Portal object.

1 Overview of Personalization Development

1-6 BEA WebLogic Personalization Server Developer’s Guide

<pt:portletmanager> Provides the ability to do create, get,
getArranged, update, and remove
actions on a Portlet object.

<pt:eval> Evaluates a conditional attribute of a
portlet. An example of a conditional
attribute is isMinimizeable.

<pt:get> Retrieves a String attribute of a portlet.

<pt:monitorsession> Disallows access to a page if the session is
not valid or if the user has not logged in.

User Management <um:login> Authenticates a user/password
combination.

<um:getprofile> Retrieves the Unified User Profile object.

<um:getproperty> Gets the value for the specified property
from the current user profile in the session.

<um:setproperty> Sets a new value for the specified property
for the current user profile in the session.

<um:removeproperty> Removes the property from the current user
profile in the session.

<um:createuser> Creates a new persisted User object with the
specified user name and password.

Personalization
Utilities

<es:condition> Evaluates a Boolean expression and
executes the body if true.

<es:counter> Creates a for loop construct.

<es:foreachinarray> Iterates over an array.

Table 1-1 Java Server Page (JSP) Tags Overview

Integration of External Components

BEA WebLogic Personalization Server Developer’s Guide 1-7

Integration of External Components

A range of external components either come already integrated into the
Personalization Server, or can be integrated easily by a developer as extensions to the
core components. A specific set of components that are known to be widely useful are
described in the following table. Other custom component integrations are possible
given the JSP and EJB basis for the Personalization Server, but the entire range of
possibilities is not addressed here.

<es:isnull> Checks to see if a value is null. If the value
type is a String, also checks to see if the
String is empty.

<es:notnull> Checks to see if a value is not null. If the
value type is a String, also checks to see
if the String is not empty.

<es:preparedstatement> Creates a JDBC prepared statement.

<es:simplereport> Creates a two-dimensional array out of a
simple query.

<es:transposearray> Transposes a standard [row][column] array
to a [column][row] array.

<es:uricontent> Pulls content from a URL.

<es:date> Gets a date and time formatted string based
on the user’s time zone preference.

<es:usertransaction> Wraps database code within a single
transaction.

WebLogic Utilities <wl:process> Provides a parameter-based flow control
construct.

Table 1-1 Java Server Page (JSP) Tags Overview

1 Overview of Personalization Development

1-8 BEA WebLogic Personalization Server Developer’s Guide

Support for Native Types

WLPS supports the native types shown in the following table.

Table 1-2 Useful External Components for Personalization Server

External Component Out-of-the-box
Support

Methods and Notes

DBMS Integrated and tested with
Cloudscape, Oracle 8.0.5,
and 8.1.5.

Standard WebLogic Server
JDBC connection pools
used.

LDAP authentication Can be set up automatically
using administration tools
and property files.

Uses WebLogic Server
security realms.

LDAP retrieval of user and
group info

Can be set up automatically
using administration tools.

Built into EJB persistence
for User entity bean.

Legacy database of users None. Requires Unified User
Profile extension of User
entity bean.

Content management
engine

Reference implementation
provided.

API/SPI support from
Documentum provided.

Legacy content database None. Requires either extension
of Document entity bean or
custom implementation of
content management SPI.

Rules engine JRules engine provided. API/SPI, with only JRules
supported at this time as a
valid service.

Support for Native Types

BEA WebLogic Personalization Server Developer’s Guide 1-9

Any property can be a multi-value of a specific single native type as well. This is
implemented as a java.util.Collection. Comparators for multi-values are
contains and containsall, although the rules development tool will only allow the
use of contains. The values possible as part of a multi-value may be restricted to a
valid set, using the Property Set management tools.

Table 1-3 Native Types

Supported Type Java Class Notes

Boolean java.lang.Boolean Comparators: ==, !=

Integer java.lang.Number Comparators: ==, !=, <, >,
<=, >=

Float java.lang.Double Comparators: ==, !=, <, >,
<=, >=

Text java.lang.String Comparators: ==, !=, <, >,
<=, >=, like

Datetime java.sql.Timestamp Comparators: ==, !=, <, >,
<=, >=

UserDefined Defined by developer Comparators: N/A
User-defined properties
may be programmatically
set and gotten, but are not
supported in the tools,
rules, or content query
expressions.

1 Overview of Personalization Development

1-10 BEA WebLogic Personalization Server Developer’s Guide

BEA WebLogic Personalization Server Developer’s Guide 2-1

CHAPTER

2 Creating Personalized
Applications with the
Personalization
Advisor

The following topics are included:

What is the Personalization Advisor?

Creating Personalized Applications with JSP Tags
Classifying users with the JSP <pz:div> tag
Selecting content with the <pz:contentquery> JSP tag
Matching content to users with the <pz:contentselector> JSP tag

Creating Personalized Applications with the Personalization Advisor Session Bean
Specifying a personalization technique URL
Classifying users with the Personalization Advisor Session Bean
Selecting content with the Personalization Advisor Session Bean
Matching content to users with the Personalization Advisor Session Bean

Content personalization allows Web developers to tailor applications to users. Based
on data gathered from user profile, Request, and Session objects, Personalization
Advisor coordinates the delivery of personalized content to the end-user.

2 Creating Personalized Applications with the Personalization Advisor

2-2 BEA WebLogic Personalization Server Developer’s Guide

Personalization Advisor recommends content by matching content to user profiles and
producing a personalized application for the user. In essence, Personalization Advisor
ties together all the other services and components in the system to deliver
personalized content.

What is the Personalization Advisor?

The Personalization Advisor delivers content to a personalized application based on a
set of rules and user profile information. The Personalization Advisor, a stateless
session bean that gives personalized advice and recommendations, can retrieve any
type of content in a Document Management system and display it with a JSP page or
use it in a servlet. In the WLPS 2.0 release, it gives advice on user classifications and
recommends content.

The Personalization Advisor provides access to dynamic personalization functionality
through JSP tags and a stateless session bean. It is a key component of the WebLogic
Personalization Server because it ties together the core personalization server services
that include:

� Foundation

� User Profile Management

� Rules Service

� Content Management

The Personalization Advisor component includes a JSP tag library and a
Personalization Advisor EJB stateless session bean that accesses the core
personalization services. The tag library and session bean contain personalization logic
to access these services, sequence personalization actions, and return personalized
content to the application.

This architecture allows the JSP developer to take advantage of the personalization
engine using the Personalization Advisor JSP tags. In addition, a Java developer can
access the underlying Personalization EJB and its features via the public
Personalization Advisor bean interface (see the API documentation for more
information). Think of the Personalization Advisor as sitting on top of the core services
to provide a unified personalization API.

What is the Personalization Advisor?

BEA WebLogic Personalization Server Developer’s Guide 2-3

Personalization Advisor gathers information from the user profile provided by the
User Management component, submits that information to the rules service, runs the
resulting queries against the Document Management System used in the Content
Management component, and returns the content to the JSP developer.

In addition, Personalization Advisor provides information about user classifications.
For example, an application can ask Personalization Advisor if, based on pre-defined
rules, the current user is classified as a Premier Customer or an Aggressive Investor,
and take action accordingly. The advisor accomplishes this classification by gathering
relevant user profile information, submitting it to the Rules Service, and turning on or
off the supplied content based on the results of the rules execution.

For WebLogic Personalization Server 2.0, Personalization Advisor recommends
document content for the following items:

� Documents returned by content selectors using rules-based matching against
user profile information. See “Matching content to users with the
<pz:contentselector> JSP tag” on page 2-6 for more information about
rules-based matching.

� Web content included or excluded as determined by a user’s classification using
rules-based matching against user profile information. See “Classifying users
with the JSP <pz:div> tag” on page 2-5 for more information about classifying
users.

� Documents returned by document attribute searches. See “Selecting content with
the <pz:contentquery> JSP tag” on page 2-5 for more information about
searching for content.

You get advice from Personalization Advisor in one of two ways:

� Using the JSP tags. Developers will probably find it most useful to use the JSP
tags when building typical pages. The tags provide ways to switch on and off
content based on user classification, return content based on a static query, and
match content to users based on rules that execute a content query. The JSP tags
that perform these tasks are: <pz:div>, <pz:contentquery>, and
<pz:contentselector>

� Using the Personalization Advisor session bean. The Personalization Advisor
session bean recommends content to personalized applications by matching
advice requests with registered personalization agents that perform
recommendations. The page or application developer may use the
PersonalizationAdvisor Session bean directly in place of the tags, if desired.

2 Creating Personalized Applications with the Personalization Advisor

2-4 BEA WebLogic Personalization Server Developer’s Guide

Creating Personalized Applications with JSP
Tags

Personalization Advisor provides three JSP tags to help developers create personalized
applications. These tags provide a JSP view to the Personalization Advisor session
bean and allow developers to write pages that retrieve personalized data without
writing Java source code.

Note: You must insert the following JSP directive into your JSP code to use the
Personalization Advisor’s <pz:div> and <pz:contentselector> tags. The
<pz:contentquery> tag does not require you to extend the class.
<%@ page
extends=”com.beasys.commerce.axiom.p13n.jsp.P13NJspBase” %>

� The <pz:div> tag turns user-provided content on or off based on the results of a
classifier rule being executed. If the result of the classifier rule is true, it turns
the content on; if false, it turns the content off.

Note: The system turns on the content by inserting the content residing between
the start and end <pz:div> tags in the JSP code. This content can include
any valid JSP, including HTML tags, other JSP tags, and scriptlets. If the
classifier rule returns false, the system skips the content between the start
and end <pz:div> tags.

� The <pz:contentquery> provides content attribute searching for content in a
content manager. It returns an array of Content objects that a developer can
handle in numerous ways.

Note: See Creating and Managing Content for more information about how
WLPS manages content.

� The <pz:contentselector> recommends content if a user matches the
classification part of a content selector rule. When a user matches, the
personalization engine executes a content query defined in the rule and returns
the content back to the JSP page.

Note: See Creating a content selector rule for information about defining a
content selector rule.

Creating Personalized Applications with JSP Tags

BEA WebLogic Personalization Server Developer’s Guide 2-5

In addition to using JSP tags to create personalized applications, you can work directly
with the advisor bean. See “Creating Personalized Applications with the
Personalization Advisor Session Bean” on page 2-7 for more information about using
the bean.

Classifying users with the JSP <pz:div> tag

The <pz:div> tag turns user-provided content on or off based on the results of a
classifier rule being executed. If the result of the classifier rule is true, it turns the
content on; if false, it turns the content off.

Note: See Creating a classifier rule for information about creating classifier rules.

This example executes the PremierCustomer classifier rule and displays an alert to
premier customers in the HTML page’s output.

<%@ taglib uri="pz.tld" prefix="pz" %>
.
.
.
<pz:div
ruleset="ejb://com.beasys.commerce.axiom.reasoning.rules.Ruleshee
tDefinitionHome/AcmeRules" rule="PremierCustomer">

<p>Please check out our new Premier Customer bonus program…<p>
</pz:div>

You can also use the advisor bean to classify users. See “Classifying users with the
Personalization Advisor Session Bean” on page 2-10 for more information about using
the bean to classify users.

Note: The terms rulesheet and ruleset refer to the same object and are used
interchangeably throughout this documentation.

Selecting content with the <pz:contentquery> JSP tag

The <pz:contentquery> tag provides content attribute searching for content in a
content manager. It returns an array of Content objects that a developer can handle in
numerous ways.

2 Creating Personalized Applications with the Personalization Advisor

2-6 BEA WebLogic Personalization Server Developer’s Guide

Note: See“<pz:contentquery>” on page 4-4 for information about using the
<cm:select> JSP tag. This tag currently provides similar functionality to the
<cm:select> tag.

This example executes a query against the content management system to find all
content where the author attribute is Hemmingway and displays the Document titles
found:

<%@ taglib uri="pz.tld" prefix="pz" %>
.
.
.
<pz:contentquery id="docs"
contenthome="com.beasys.commerce.axiom.document.DocumentManager"
query="author = 'Hemmingway'" />

<es:foreachinarray array="docs" id="aDoc"
type="com.beasys.commerce.axiom.content.Content">

The document title is: <cm:printproperty id="aDoc"
name="Title" encode="html" />

</es:foreachinarray>

Note: See “<cm:printproperty>” on page 4-12 and “<es:foreachinarray>” on page
4-39 for more information about the <cm:printproperty> and
<es:foreachinarray> JSP tags.

You can also use the advisor bean to select content. See “Selecting content with the
Personalization Advisor Session Bean” on page 2-12 for more information about using
the bean to select content.

Matching content to users with the <pz:contentselector>
JSP tag

The <pz:contentselector> recommends content if a user matches the classification
part of a content selector rule. When a user matches based on a rule, the Personalization
Advisor executes the query defined in the rule to retrieve content. See
“<pz:contentselector>” on page 4-5 for more information about the
<pz:contentselector> tag.

Creating Personalized Applications with the Personalization Advisor Session Bean

BEA WebLogic Personalization Server Developer’s Guide 2-7

Note: See Creating a content selector rule for more information about using content
selector rules.

This example asks the Personalization Advisor for content specific to premier
customers and then displays the Document titles as the results:

<%@ taglib uri="pz.tld" prefix="pz" %>
.
.
.
<pz:contentselector id="docs" ruleset="ejb://com.beasys.

commerce.axiom.reasoning.rules.
RulesheetDefinitionHome/AcmeRules"
rule="PremierCustomerSpotlight"
contenthome="com.beasys.commerce.axiom.document.
DocumentManager" />

<es:foreachinarray array="docs" id="aDoc"
type="com.beasys.commerce.axiom.content.Content">

The document title is: <cm:printproperty id="aDoc"
name="Title" encode="html" />

</es:foreachinarray>

You can also use the advisor bean to match content to users. See “Matching content to
users with the Personalization Advisor Session Bean” on page 2-14 for more
information about using the bean to match content to users.

Creating Personalized Applications with the
Personalization Advisor Session Bean

Java developers can work directly against the advisor bean through a set of APIs to
create personalized applications. This process provides an alternative to using the JSP
tags to call into the bean. Refer to the API documentation for more information about
using the session bean to create personalized applications.

The Personalization Advisor’s agent implementation encapsulates all of the logic and
operations required for the request types it handles. It makes recommendations and
returns a type of AdviceResults to the Personalization Advisor. In general, the
process includes the following steps:

2 Creating Personalized Applications with the Personalization Advisor

2-8 BEA WebLogic Personalization Server Developer’s Guide

1. Create an instance of the Personalization Advisor Session bean.

2. Use the Personalization Advisor’s createTemplate factory method to create a
Request object.

This method also determines the best Advice Agent to use for the request by
mapping the AdviceRequestClassName and technique to the best fit Agent.
The technique name uses the technique name parameter in the JSP tags
<pz:bea.rules> and <pz:bea.query>. See “Specifying a personalization
technique URL” on page 2-9 for more information about specifying the request
technique.

3. Set the required and optional inputs for the Request object.

4. Call the advise method.

The Personalization Advisor calls the best agent to make the recommendation.
The agent determines the recommendations and the Personalization Advisor then
passes the AdviceResults object back to the application.

5. The personalized application extracts the recommendation from the
AdviceResults object and uses it in the application.

When a personalized application requests advice from the Personalization Advisor, the
Personalization Advisor bean delegates the request to a registered personalization
agent that can handle the request. The Personalization Advisor's job is to determine
which registered personalization agent is best suited for making recommendations for
the request, based on the advice request type and the personalization technique.

The Personalization Advisor uses the advice request type and a personalization
technique identifier to determine which registered personalization agent to delegate the
advice request to. The agent then makes the recommendations and returns the advice
results back to the Personalization Advisor. This design encapsulates all of the advice
logic into the agent and allows agents to be specialized.

Creating Personalized Applications with the Personalization Advisor Session Bean

BEA WebLogic Personalization Server Developer’s Guide 2-9

Specifying a personalization technique URL

To execute a recommendation request, the Personalization Advisor requires that you
specify a personalization technique URL. Pass in a personalization technique identifier
that specifies the personalization namespace, vendor, and technique. The
personalization technique identifier follows the JDBC driver specification:

namespace:vendor.technique

� The namespace represents the personalization namespace. The Personalization
Advisor only accepts the pz namespace in WLPS 2.0.

� The vender is the name of the vendor supplying the personalization technique.
For the 2.0 release, bea is the vendor name.

� The technique is the name given to the Personalization Advisor to determine
which Personalization Agent can best perform the recommendation request.

Note: For the 2.0 release, the Personalization Advisor accepts the following
personalization technique names:

� rules

� query

2 Creating Personalized Applications with the Personalization Advisor

2-10 BEA WebLogic Personalization Server Developer’s Guide

The table shows the logic the Personalization Advisor uses to determine how to map a
recommendation request to a Personalization Agent. Note that some combinations are
not valid. For example, you cannot send a <pz:bea.rules> technique request with a
ContentQueryAdviceRequest.

.

Classifying users with the Personalization Advisor
Session Bean

For classification requirements beyond what the JSP tags provide, or to use
classification in a servlet, developers can use the Personalization Advisor EJB directly.
The following sequence describes the process of asking the Personalization Advisor
for a classification (refer to the Javadoc for API details):

Note: All classes used here reside in the com.beasys.commerce.axiom.p13n.*
packages.

Personalization
Technique

Advice Request Type Inferred Personalization
Agent

pz:bea.rules ClassificationAdviceRequest ClassificationAgent
Uses rules-based matching with
an inference engine that
classifies a user.

pz:bea.rules ContentSelectorAdviceRequest ContentSelectorAgent
� Uses rules-based matching

with an inference engine to
classify a user

� Determines if the user
matches the classification

� Selects content based on a
content query.

pz:bea.query ContentQueryAdviceRequest ContentQueryAgent
Performs a content attribute
search with a content
management system.

Creating Personalized Applications with the Personalization Advisor Session Bean

BEA WebLogic Personalization Server Developer’s Guide 2-11

1. Create an instance of the Personalization Advisor Session bean.

2. Call the Personalization Advisor’s createTemplate method to get the correct
AdviceRequest object. In this case, it should return a
ClassificationAdviceRequest.

3. Set the required objects on the ClassificationAdviceRequest. These include
the:

� Session object (retrieved from
P13NJspBase.createP13NSession(HttpServletSession))

� User object (retrieved from
P13NJspBase.createP13NProfile(HttpServletSession))

� Request object (retrieved from
P13NJspBase.createP13NRequest(HttpServletSession))

� java.sql.Timestamp object representing now

� rulesheet name (see What are Rulesheets? for more information)

� rule name (see Creating and Managing Rules for more information)

� optional Successor object (for example, the user's group).

4. Call the advise method on the Personalization Advisor.

5. The Personalization Advisor returns a subclass of AdviceResults. In this case,
it should return a ClassificationAdviceResults object. If the classification
object exists in the results, the classification is true. If the object is null, the
classification is not true.

A basic example of using the bean for classification might look like the following:

Note: This code is just a model and is not complete. The complete example
resides in the following files:
<WLPS_installation_directory>/server/public_html/portals
/repository/portlets/advisor_ejb_example.jsp
<WLPS_installation_directory>/src/examples/
p13nadvisor/ClassificationExample.java

try
{

ClassificationAdviceRequest request = null;
AdviceRequest arequest = anAdvisor.createRequestTemplate

("com.beasys.commerce.axiom.p13n.agents.ClassificationAdviceRequest”,
"pz:bea.rules");

2 Creating Personalized Applications with the Personalization Advisor

2-12 BEA WebLogic Personalization Server Developer’s Guide

request = (ClassificationAdviceRequest)arequest;
HttpServletRequest someRequest = (HttpServletRequest)

pageContext.getRequest();
P13NJspBase page = (P13NJspBase)pageContext.getPage();
ConfigurableEntity user = page.createP13NProfile(httpRequest);
request.setUser(user);

request.setHttpRequest(page.createP13NRequest(httpRequest));
request.setHttpSession(page.createP13NSession(httpRequest));
request.setNow(new Timestamp(System.currentTimeMillis()));
request.setRuleSheet(rulesheet);
request.setRule(rule);

AdviceResults result = anAdvisor.advise(request);
Classification classification = ((ClassificationAdviceResults)result).

getClassification();
return classification != null;
}

catch(Exception e)
{

e.printStackTrace();
}

Note: You can also use the JSP <pz:div> tag to classify users. See “Classifying
users with the JSP <pz:div> tag” on page 2-5 for more information about using
the tag to classify users.

Selecting content with the Personalization Advisor
Session Bean

For content selection requirements beyond what the JSP tags provide, or to use
classification in a servlet, developers can use the Personalization Advisor EJB directly.
The following sequence describes the process of asking the Personalization Advisor
for content (refer to the Javadoc for API details):

1. Create an instance of the Personalization Advisor Session bean.

2. Call the Personalization Advisor’s createTemplate method to get the correct
AdviceRequest object. In this case, it should return a
ContentQueryAdviceRequest.

3. Set the parameters on the ContentQueryAdviceRequest, including:

Creating Personalized Applications with the Personalization Advisor Session Bean

BEA WebLogic Personalization Server Developer’s Guide 2-13

� contentHome (required): the JNDI name to find a content home

� query (required): the query to run against the system

� sortBy (optional)

� max (optional)

4. Call the advise method on the Personalization Advisor.

5. The Personalization Advisor returns a subclass of AdviceResults. In this case,
it should return a ContentQueryAdviceResults object, from which you can
retreive an array of Content objects.

A basic example of using the bean for a content query might look like the following:

try
{

AdviceRequest arequest = anAdvisor.createRequestTemplate(
"com.beasys.commerce.axiom.p13n.agents.ContentQueryAdviceRequest",
"pz:bea.query");

request = (ContentQueryAdviceRequest)arequest;
request.setQuery(query);
request.setMax(max);
request.setSortBy(sortby);
request.setContentHome(home);

AdviceResults result = anAdvisor.advise(request);
Collection docs = ((ContentQueryAdviceResults)result).getContent();
if (docs==null)
{

return new Content [0];
}
return (Content[])docs.toArray(new Content[docs.size()]);

}
catch(Exception e)
{

e.printStackTrace();
}

Note: You can also use the JSP <pz:contentquery> tag to select content. See
“Selecting content with the <pz:contentquery> JSP tag” on page 2-5 for more
information about using the tag to select content.

2 Creating Personalized Applications with the Personalization Advisor

2-14 BEA WebLogic Personalization Server Developer’s Guide

Matching content to users with the Personalization
Advisor Session Bean

For content matching requirements beyond what the JSP tags provide, or to use
classification in a servlet, developers can use the Personalization Advisor EJB directly.
The following sequence describes the process of asking the Personalization Advisor
for content (refer to the Javadoc for API details):

Note: All classes used here reside in the com.beasys.commerce.axiom.p13n.*
packages.

1. Create an instance of the Personalization Advisor Session bean.

2. Call the Personalization Advisor’s createTemplate method to get the correct
AdviceRequest object. In this case, it should return a
ContentSelectorAdviceRequest.

3. Set the required objects on the ClassificationAdviceRequest. These include
the:

� Session object (retrieved from
P13NJspBase.createP13NSession(HttpServletSession))

� User object (retrieved from
P13NJspBase.createP13NProfile(HttpServletSession))

� Request object (retrieved from
P13NJspBase.createP13NRequest(HttpServletSession))

� java.sql.Timestamp object representing now

� rulesheet name (see What are Rulesheets? for more information)

� rule name (see Creating and Managing Rules for more information)

� optional Successor object (e.g., the user's group).

� contentHome (required): the JNDI name to find a content home

� query (required): the query to run against the system

� sortBy (optional)

� max (optional)

4. Call the advise method on the Personalization Advisor.

Creating Personalized Applications with the Personalization Advisor Session Bean

BEA WebLogic Personalization Server Developer’s Guide 2-15

5. The Personalization Advisor returns a subclass of AdviceResults. In this case,
it should return a ContentQueryAdviceResults object, from which you can
retreive an array of Content objects.

A basic example of using the bean for content selection might look like the following
(note that this code is just a model and not complete):

Note: This code is just a model and is not complete. The complete example resides
in the following files:
The complete example resides in the following files:
<WLPS_installation_directory>/server/public_html/portals/
repository/portlets/advisor_ejb_example.jsp
<WLPS_installation_directory>/src/examples/p13nadvisor/Cont

entSelectorExample.java

try
{

AdviceRequest arequest = anAdvisor.createRequestTemplate
("com.beasys.commerce.axiom.p13n.agents.ContentSelectorAdviceRequest",
"pz:bea.rules");

request = (ContentSelectorAdviceRequest)arequest;
HttpServletRequest someRequest =

(HttpServletRequest)pageContext.getRequest();
P13NJspBase page = (P13NJspBase)pageContext.getPage();
ConfigurableEntity user = page.createP13NProfile(someRequest);

request.setUser(user);
request.setHttpRequest(page.createP13NRequest(someRequest));
request.setHttpSession(page.createP13NSession(someRequest));
request.setNow(new Timestamp(System.currentTimeMillis()));
request.setRuleSheet(rulesheet);
request.setRule(selector);
request.setMax(max);
request.setSortBy(sortby);
request.setContentHome(home);
request.setQuery(query);

AdviceResults result = anAdvisor.advise(request);
Collection docs = ((ContentQueryAdviceResults)result).getContent();

}
catch(Exception e)
{

e.printStackTrace();
}

2 Creating Personalized Applications with the Personalization Advisor

2-16 BEA WebLogic Personalization Server Developer’s Guide

Note: You can also use the JSP <pz:contentselector> tag to match content to
users. See “Matching content to users with the <pz:contentselector> JSP tag”
on page 2-6 for more information about using the tag to match content to users.

BEA WebLogic Personalization Server Developer’s Guide 3-1

CHAPTER

3 Foundation Classes
and Utilities

The following topics are included:

JSP Service Manager
Configuring the JSP Service Manager

Repository

HTTP Handling

Personalization Request Object
Default Request Property Set

Personalization Session Object
Default Session property set

Utilities
JspHelper
JspBase
P13NJspBase
ContentHelper
CommercePropertiesHelper

Utilities in commerce.util package
ExpressionHelper
TypesHelper

3 Foundation Classes and Utilities

3-2 BEA WebLogic Personalization Server Developer’s Guide

The Foundation is a set of miscellaneous utilities to aid JSP and Java developers in the
development of personalized applications using the WebLogic Personalization Server.
Its utilities include JSP files and Java classes that can be used by JSP developers to gain
access to functions provided by the server and helpers for gaining access to
Personalization Advisor services.

JSP Service Manager

The JSP Service Manager provides several benefits to JSP developers of non-portal
pages. The JSP Service Manager servlet, much like the Portal Service Manager,
primarily acts as a traffic cop for the JSP code, including verifying and updating
relevant HTTP session information, providing access to useful methods, and providing
security services for requests.

Note: Use of the JSP Service Manager in a personalized application is optional, but
highly recommended.

The JSP Service Manager works in conjunction with the P13nJspBase class,
initializing session data accessed via the P13nJspBase class methods. JSP pages will
typically extend P13nJspBase.

The three main benefits of the JSP Service Manager include:

1. providing a common set of useful methods to JSP files so you do not have to
replicate code from one page to another. For example, the Service Manager
monitors sessions and handles time-outs.

2. validating the destination of requested JSP files. This security mechanism
provides error handling for invalid page probing.

3. using a common file repository for JSP and/or image files. The Service Manager
uses the repository specified in the weblogic.properties file.

Note: For example usage of the JSP Service Manager and the Base class methods,
see the mpbb servlet and buybeans/home.jsp.

JSP Service Manager

BEA WebLogic Personalization Server Developer’s Guide 3-3

Configuring the JSP Service Manager

Register an instance of this servlet in the weblogic.properties file for each Service
Manager you deploy. The following is a sample JSP Service Manager servlet
registration for a servlet named myServlet.

weblogic.httpd.register.myServlet=com.beasys.commerce.axiom.
jsp.JspServiceManager

weblogic.httpd.initArgs.myServlet=\
homepage=/mydir/home.jsp,\
defaultdest=/mydir/home.jsp,\
workingdir=/mydir/,\
repositorydir=/repository/,\
timeout=-1,\
sessioncomparator=com.beasys.commerce.axiom.jsp.

DefaultSessionComparator,\
groupname=everyone,\
allowautologin=true

Parameter Name Required Description

homepage yes The home page JSP returned by
the system in auto-login. (This
page is qualified from
yourDocumentRoot as
defined in the
weblogic.properties
file.)
Example:
homepage=/servlets/myServlet
/home.jsp

groupname no The default group name for this
servlet instance.

defaultdest yes The default destination page
JSP if there is not a valid
session for the user.

3 Foundation Classes and Utilities

3-4 BEA WebLogic Personalization Server Developer’s Guide

Repository

The repository feature allows you to specify a single directory to contain files that
otherwise would have to be replicated several times.

timeout no Time-out for the cookies or
session valued in seconds and
defaulting to -1.
If set to -1, the cookies expire
upon exiting the browser. If
cookies are disabled, the
session invalidates upon
browser exit. To retain user
login information between
browser sessions, set the
time-out to a large positive
number, such as 999999, and
set autologin=true.

workingdir yes The working directory for the
implementation that is the path
to your JSP pages.
Example:
workingdir=/servlets/
myPortal/

allowautologin no Determines whether a client
with valid cookies can
automatically login. The
default is false.

repositorydir yes Location of default files, (gifs,
JSP, etc.)

sessioncomparator yes How to determine if the session
is valid.

HTTP Handling

BEA WebLogic Personalization Server Developer’s Guide 3-5

The administration pages for components take advantage of the repository feature to
store images shared between components. Each HTML reference to an image is
wrapped by the ToolsJspBase.fixupRelativeURL method. This method first looks
in the path-relative directory for the image specified in the argument. If not found
there, the repositorydir specified in the weblogic.properties file (for the
wlpsadmin servlet) is searched for the image.

For portals, the default portal (Acme) implementation has its files contained in a folder
named repository and specifies a repositorydir=/portal/repository. In an
extreme example, a second portal which only differed from Acme in one file, say
portal.jsp, would be created by creating a new directory named extremeExample
and by adding one file (portal.jsp) to it. All files supporting the extremeExample
portal which were not found in its workingdir will be fetched from the repository
directory.

HTTP Handling

Both the <pz:div> and <pz:contentselector> tag implementations send
HttpRequest and Session information to the Personalization Advisor.

The Personalization Advisor includes helper classes that transform an HttpRequest
and Session into Serializable personalization surrogates for their HTTP counterparts.
These surrogates are compatible with the Personalization Rules Service which uses
these objects to execute classifier and content selector rules.

Personalization Request Object

In order to use HttpRequest parameters in requests to the rules service, they must be
wrapped in a Personalization Request object
(com.beasys.commerce.axiom.p13n.http.Request) before they can be set on the
appropriate AdviceRequest (see the API documentation). While the HttpRequest
object can be wrapped by directly calling the Personalization Request constructor, it

3 Foundation Classes and Utilities

3-6 BEA WebLogic Personalization Server Developer’s Guide

is recommend that developers use the createP13NRequest helper method on
P13NJspBase (com.beasys.commerce.axiom.p13n.jsp.P13NJspBase) for this
purpose. See the API documentation for more information.

The tag implementations for the <pz:div> and <pz:contentselector> tags create
the Personalization Request surrogate for the HttpRequest before calling the
Personalization Advisor bean, so JSP developers need not worry about the details of
the Request object. Only developers accessing the PersonalizationAdvisor bean
directly need to wrap the HttpRequest object explicitly.

In order to avoid confusing results on getProperty method calls, developers need to
know the algorithm used in the getProperty method implementation for determining
the value of the property requested . When the Request's getProperty method is
called (for example, by a rules engine), the system uses the following algorithm to find
the property:

1. The getProperty method first looks in the HttpRequest’s attributes for the
property.

2. If not found, getProperty looks for the property in the HttpRequest
parameters.

3. If not found, getProperty looks in the HTTP headers.

4. If not found, getProperty looks in the Request methods (getContentType,
getLocale, etc.).

5. If not found, getProperty uses the scopeName parameter to find a schema
entity for a Request schema group name and, if the schema is found, uses the
default value in the schema.

6. If not found, getProperty uses the default value passed into the method call.

Default Request Property Set

For Rules developers to write rules for classifier rules that contain conditions based on
an HttpRequest, there must be a property set defined for the HttpRequest. By
default, WLPS 2.0 ships with a default request property set for the standard
HttpRequest properties. Developers adding properties to the request programatically,
will need to add those properties to the default property set in order for them to be
available to the rules editor and service.

Personalization Request Object

BEA WebLogic Personalization Server Developer’s Guide 3-7

The default Request properties include:

Request Property Name Associated Request Method

Request Method request.getMethod()

Request URI request.getRequestURI()

Request Protocol request.getProtocol()

Servlet Path request.getServletPath()

Path Info request.getPathInfo()

Path Translated request.getPathTranslated()

Locale request.getLocale()

Query String request.getQueryString()

Content Length request.getContentLength()

Content Type request.getContentType()

Server Name request.getServerName()

Server Port request.getServerPort()

Remote User request.getRemoteUser()

Remote Address request.getRemoteAddr()

Remote Host request.getRemoteHost()

Scheme request.getAuthType()

Authorization Scheme request.getScheme()

Context Path request.getContextPath()

Character Encoding request.getCharacterEncoding()

3 Foundation Classes and Utilities

3-8 BEA WebLogic Personalization Server Developer’s Guide

Personalization Session Object

In order to use HTTP Session parameters in requests to the rules service, they must be
wrapped in a Personalization Session object
(com.beasys.commerce.axiom.p13n.http.Session) before they can be set on the
appropriate AdviceRequest (see the API documentation)). While the HttpSession
object can be wrapped by directly calling the Personalization Session constructor, it
is recommend that developers use the createP13NSession helper method on
P13NJspBase (com.beasys.commerce.axiom.p13n.jsp.P13NJspBase)See the
API documentation for more information.

The tag implementations for the <pz:div> and <pz:contentselector> tags create
the Personalization Session surrogate for the HTTP Session before calling the
Personalization Advisor bean, so JSP developers need not worry about the details of
the HttpSession object. Only developers accessing the PersonalizationAdvisor
bean directly need to wrap the HttpSession object explicitly.

Default Session property set

For Rules developers to write rules that contain conditions based on an HTTP session,
there must be a property set defined for the HTTP session. WLPS 2.0 ships with a
default session property that contains no values set as a placeholder. There are no
default Session property set values. Developers adding properties to the session
programatically will need to add those properties to the default property set in order
for them to be available to the rules editor and service.

The Personalization Session object retrieves the session values from the Service
Manager (see “Configuring the JSP Service Manager” on page 3-3) for the current
thread and clones them so they can be used on a remote machine.

The Personalization Session uses the following algorithm to find a property:

1. It first looks in its own cloned HTTP Session properties.

2. If it does not find the property, it locates the schema for the Personalization
Session for the scopeName method parameter.

Utilities

BEA WebLogic Personalization Server Developer’s Guide 3-9

3. If it still does not find the property, it uses the scopeName parameter to find a
schema entity for the Session schema group name and, if the schema is found,
uses the default value in the schema.

4. If it still does not find the property, it uses the default value passed into the
getProperty method call.

Utilities

You can view more detailed documentation for the utilities listed here in the API
documentation.

JspHelper

JspHelper provides get methods to the JspServiceManager URI, the working
directory, the home page, and the current page. It also provides set and get methods for
session values and JSP destinations.

Note: Some of these methods assume that the JspServiceManager model is being
used.

JspBase

JspBase acts as a base class for all JSP pages that use a JspServiceManager. A wide
variety of important methods are provided:

� Get methods for the TrafficURI, working directory, repository directory, default
destination, RequestURI, default successor, home page, and current page.

� Methods to create URLs, and fixup (fully qualified) URLs

� Methods to override the destination tag

� Methods to set and get logged-in status

3 Foundation Classes and Utilities

3-10 BEA WebLogic Personalization Server Developer’s Guide

� Methods to get, set, and remove session values

� A method to convert HTML special characters to HTML entities

� Methods to set the user and successor

P13NJspBase

P13NJspBase provides convenience methods to developers writing JSP pages
(including but not limited to portals and portlets) that included personalized content. It
provides methods for wrapping HTTP Request and Session objects into their
personalization surrogates, and a method for retrieving the current Profile (User,
Group, etc.) for an application.

Note that the Personalization <pz:div> and <pz:contentselector> tags require
that the pages they are included in be subclasses of P13NJspBase.

ContentHelper

ContentHelper simplifies the life of the developer using the Content Management
component. Methods are provided to get an array of content given a search object, to
get the length of a piece of content. Constants for the default Content and Document
homes are also provided.

CommercePropertiesHelper

CommercePropertiesHelper allows easy access to the commerce.properties file's
properties. Methods are provided to return the values of a given keys as various data
types. Also provided is a method to return all keys that start with a given string as a
string array. For example, use the method to find all of the keys that start with
personalization.portal.

Utilities in commerce.util package

BEA WebLogic Personalization Server Developer’s Guide 3-11

Utilities in commerce.util package

ExpressionHelper

ExpressionHelper handles dealing with Expression, Criteria, and Logical
objects. It contains methods for parsing query strings into Expressions, joining
Expressions into Logicals, normalizing Expressions, changing Expressions,
Logicals, and Criteria into Strings, and turning Expressions into String trees
for debugging purposes.

TypesHelper

TypesHelper provides a set of constants corresponding to the types and operators
used in the configurable entity properties. Methods are provided to get string
representations of the type names, to determine a type from a java.sql.Type, and to
get the list of comparison operators for a certain type.

3 Foundation Classes and Utilities

3-12 BEA WebLogic Personalization Server Developer’s Guide

BEA WebLogic Personalization Server Developer’s Guide 4-1

CHAPTER

4 JSP Tag Reference

The following topics are included:

Personalization Advisor
<pz:div>
<pz:contentquery>
<pz:contentselector>

Content Management
<cm:select>
<cm:selectbyid>
<cm:printproperty>
<cm:printdoc>

Portal Management
<pt:portalmanager>
<pt:portletmanager>
<pt:eval>
<pt:get>
<pt:monitorsession>
<pt:props>
<pt: getgroupsforportal>

User Management
Profile management tags

<um:getprofile>
<um:getproperty>
<um:getpropertyasstring>
<um:removeproperty>
<um:setproperty>

Group-user management tags
<um:addgrouptogroup>
<um:addusertogroup>

4 JSP Tag Reference

4-2 BEA WebLogic Personalization Server Developer’s Guide

<um:changegroupname>
<um:creategroup>
<um:createuser>
<um:getchildgroups>
<um:getgroupnamesforuser>
<um:getparentgroupname>
<um:gettoplevelgroups>
<um:getusernames>
<um:getusernamesforgroup>
<um:removegroup>
<um:removeuser>

Security tags
<um:login>
<um:setpassword>

Personalization Utilities
<es:condition>
<es:counter>
<es:foreachinarray>
<es:isnull>
<es:notnull>
<es:preparedstatement>
<es:simplereport>
<es:transposearray>
<es:uricontent>
<es:date>
<es:usertransaction>

WebLogic Utilities
<wl:process>

The JSP tags included with WebLogic Personalization Server 2.0 allow developers to
create personalized applications without having to program using Java.

Personalization Advisor

To import the Personalization Advisor JSP tags, use the following code:
<%@ taglib uri="pz.tld" prefix="pz" %>

Personalization Advisor

BEA WebLogic Personalization Server Developer’s Guide 4-3

<pz:div>

The <pz:div> tag allows a user-provided piece of content to be turned on or off as a
result of a classifier rule being executed by a rules agent. If the result is true, the
content is turned on; if false it is turned off. This tag has a begin tag, a body, and an
end tag. If it evaluates true, the tag returns the Classification object determined
by the rules engine.

Example:

<%@ taglib uri="pz.tld" prefix="pz" %>
.
.
.
<pz:div ruleset="jdbc://com.beasys.commerce.axiom.reasoning.rules.
RuleSheetDefinitionHome/AcmeRules" rule="PremierCustomer">

<p>Please check out our new Premier Customer bonus program…<p>
</pz:div>

Tag Attribute Required Description

ruleset yes The URI for the rule set that contains the
Classifier rule.
For release 2.0, support exists only for the EJB
protocol for locating a ruleset.
Example:

ruleset=
“ejb://RuleSetDefinitionHome/Acme
Portal/rulesets/ruleset1.xml”

rule yes The rule is the name of the classifier rule in the
ruleset that the rules agent uses to classify the
user.

id no The variable name that will be placed in the
classification object.

4 JSP Tag Reference

4-4 BEA WebLogic Personalization Server Developer’s Guide

<pz:contentquery>

The <pz:contentquery> tag performs a content attribute search for content in a
content manager. The tag only has a begin tag and does not have a body or end tag. It
returns an array of Content objects as determined by the Personalization Advisor.

Personalization content tags required for JSP developers to access the Content object
returned might include:

� an object array iterator tag. This tag provides a way to iterate over the Content
objects in the array. Use the <es:foreachinarray> tag (see
“<es:foreachinarray>” for more information) to iterate over an array of Objects.

� content access tags. Content tags access metadata attributes in the content and
retrieve content and put it into the HTTP response output stream. (See “Content
Management” for more information.)

Tag Attribute Required Description

max no Limits the maximum number of content items
returned. If not present, it returns all of the content
items found.

sortby no A list of document attribute to sort the content by.
The syntax follows the SQL order by clause. The
sort specification is limited to a list of the metadata
attribute names and the keywords ASC and DESC.
Examples:
sortBy=“creationDate”
sortBy=“creationDate ASC, title DESC”

query yes A content query string used to search for content.
Example: query="mimetype contains 'text' &&
author=’Proulx’”

contenthome yes The name of the content home bean. This maps to a
JNDI name for the content home that handles a
specific type of content (e.g., documents) and its
provider (Documentum vs. Interwoven).

Personalization Advisor

BEA WebLogic Personalization Server Developer’s Guide 4-5

Example:

<%@ taglib uri="pz.tld" prefix="pz" %>
.
.
.
<pz:contentquery id="docs"
contenthome="com.beasys.commerce.axiom.document.DocumentManager"
query="author = 'Hemmingway'" />

<es:foreachinarray array="docs" id="aDoc"
type="com.beasys.commerce.axiom.content.Content">

The document title is: <cm:printproperty id="aDoc"
name="Title" encode="html" />

</es:foreachinarray>

<pz:contentselector>

The <pz:contentselector> tag allows arbitrary personalized content to be
recommended based on a content selector rule. A content selector rule determines if
the user matches the classification part of content selector rule. If a match, then a
content query is performed based on the query in the rule.

Note: The terms rulesheet and ruleset refer to the same object and are used
interchangeably throughout this documentation.

The ruleset URI protocol is as follows:

protocol://RuleSetDefinition-home-JNDI-name/RuleSheet-Name

� where protocol is ejb,

� RuleSetDefinition-home-JNDI-name is
com.beasys.commerce.axiom.reasoning.rules.RuleSheetDefinitionHo

me, which is the EJB home name of the RuleSheet definition home, and

� ruleset-primary-key is the unique identifier for the rule set.

id yes The array variable name that contains the content
objects found. If it finds no objects, it returns an
empty array (not null) of Content objects.

4 JSP Tag Reference

4-6 BEA WebLogic Personalization Server Developer’s Guide

Example:

ejb://com.beasys.commerce.axiom.reasoning.rules.RuleSheetDefiniti
onHome/AcmeRules

The <pz:contentselector> tag only has a begin tag and does not have a body or
end tag. It returns an array of Document objects as determined by the Personalization
Advisor.

Tags possibly required for JSP developers to access the Content objects returned
might include:

� an object array iterator tag. This tag provides a way to iterate over the Content
objects in the array. Use the <es:foreachinarray> tag (see
“<es:foreachinarray>” for more information) to iterate over an array of Objects.

� content access tags. Content tags access metadata attributes in the content and
retrieve content and put it into the HTTP response output stream. (See “Content
Management” for more information.)

Tag Attribute Required Description

ruleset yes The URI for the rule set that contains the
ContentSelector rule.
For release 2.0, support exists only for the EJB
protocol for locating a rule set.
Example:

ruleset=
“ejb://RuleSetDefinitionHome/AcmePo
rtal/ruleset/ruleset1.xml”

rule yes The rule is the name of the contentSelector rule in
the rule set to be used by the rules agent to
recommend content based on the rule.

max no Limits the maximum number of content items
returned. If not present, it returns all of the content
items found.

Personalization Advisor

BEA WebLogic Personalization Server Developer’s Guide 4-7

Example:

<%@ taglib uri="pz.tld" prefix="pz" %>
.
.
.
<pz:contentselector id="docs" ruleset="ejb://com.beasys.

commerce.axiom.reasoning.rules.
RulesheetDefinitionHome/AcmeRules"
rule="PremierCustomerSpotlight"
contenthome="com.beasys.commerce.axiom.document.
DocumentManager" />

<es:foreachinarray array="docs" id="aDoc"
type="com.beasys.commerce.axiom.content.Content">

The document title is: <cm:printproperty id="aDoc"
name="Title" encode="html" />

</es:foreachinarray>

sortby no A list of document attribute to sort the content by.
The syntax follows the SQL order by clause. The
sort specification is limited to a list of the metadata
attribute names and the keywords ASC and DESC.
Examples:
sortBy=“creationDate”
sortBy=“creationDate ASC, title DESC”

query no A content query string that can be appended as an
and phrase to the content query in the
contentSelector rule. This allows the JSP developer
to add a runtime query to the content selector rule.
Example: query="mimetype contains like 'text/*'"

contenthome yes The name of the content home bean. This maps to a
JNDI name for the content home that handles a
specific type of content (documents vs. catalog
items) and its provider (Documentum vs.
Interwoven).

id yes The array variable name that contains the content
objects found. If it finds no objects, it returns an
empty array (not null) of Content objects.

4 JSP Tag Reference

4-8 BEA WebLogic Personalization Server Developer’s Guide

Content Management

The Content Management component includes four JSP tags. These tags allow a JSP
developer to include non-personalized content in a HTML-based page. The
cm:select and cm:selectbyid tags support a per-user, HTTP session-based
Content cache for content searches. Note that none of the tags support or use a body.

To import the Content Management JSP tags, use the following code:
<%@ taglib uri="cm.tld" prefix="cm" %>

<cm:select>

This tag uses only the search expression query syntax to select content. It does not
support or use a body. After this tag has returned, the <es:foreachinarray> tag (see
“<es:foreachinarray>” on page 4-39)can be used to iterate over the array of Content
objects. This tag supports generic Content via a ContentManager interface.

Tag Attribute Required Description

contentHome no The JNDI name of the ContentManager EJB Home to
use to find content. The object in JNDI at this name
must implement a create method which returns an
object which implements the ContentManager
interface. If not specified, the system searches the
default content home.

max no Limits the maximum number of content items
returned. If not present, it returns all of the content
items found.

sortBy no A list of document attributes by which to sort the
content. The syntax follows the SQL order by clause.
The sort specification is limited to a list of the metadata
attribute names and the keywords ASC and DESC.
Examples:
sortBy=“creationDate”
sortBy=“creationDate ASC, title DESC”

Content Management

BEA WebLogic Personalization Server Developer’s Guide 4-9

failOnError no This parameter can have one of two values:
false (default value): Handles JSP processing errors
gracefully and returns an empty array if an error
occurs.
true: Throws an exception that causes the JSP page to
stop. You can handle the exception in the code, let the
page proceed to the normal error page, or let the
application server handle it less gracefully.

id yes The JSP script variable name that will contain the array
of Content objects after this tag finishes.

query yes A content query string used to search for content.
Example: query="mimetype contains 'text' &&
author=’Proulx’”

useCache no Determines whether Content is cached. This parameter
can have one of two values:
false (default value): ContentCache is not used. If false
(not specified), cacheId and cacheTimeout
settings are ignored.
true: ContentCache is used. Cached Content is stored
in the user’s HttpSession.

cacheId no The id name used to cache the Content. Internally, the
cache is implemented as a Map; this will become the
key. If not specified, the id parameter of the tag is used.

cacheTimeout no The time, in milliseconds, for which the cached
Content is valid. If more than this amount of time has
passed since the Content was cached, the cached
Content will be cleared, retrieved, and placed back into
the cache.
Use -1 for no-timeout (always use the cached Content.)
Default = -1.

4 JSP Tag Reference

4-10 BEA WebLogic Personalization Server Developer’s Guide

Example:

To find the first five text Content objects at bea.eDocs.CMgr that are marked as news
items for the evening using the ContentCache, and print out the titles in a list:

<cm:select contentHome="bea.eDocs.CMgr" max="5" useCache="true"
cacheTimeout="300000" cacheId="Evening News"
sortBy="creationDate ASC, title ASC" query="

type = ‘News’ && timeOfDay = ‘Evening’ && mimetype like
‘text/*’ " id="newsList"/>

<es:foreachinarray array="newsList" id="newsItem"
type="com.beasys.commerce.axiom.content.Content">

<cm:printproperty id="newsItem" name="Title"
encode="html" />

</es:foreachinarray>

<cm:selectbyid>

The <cm:selectbyid> tag retrieves content using the Content’s unique identifier.
This tag does not have a body.This tag is basically a wrapper around the select tag. It
works against any Content object which has a string-capable primary key.

readOnly no If true, the ContentManager (specified via the
ContentHome parameter) will try to return only
lightweight (non-EJB) objects where possible.
If false (not specified), the default value is used.
Default=
ContentHelper.DEF_CONTENT_READONLY,
which is loaded from the
commerce.content.defaultReadOnly

property in the weblogiccommerce.properties file.

Content Management

BEA WebLogic Personalization Server Developer’s Guide 4-11

Tag Attribute Required Description

contentHome no The JNDI name of the ContentManager EJB Home to
use to find content. The object in JNDI at this name
must implement a create method which returns an
object that implements the ContentManager interface.
If not specified, the system searches the default content
home.

contentId yes The string identifier of the piece of content.

failOnError no This parameter can have one of two values:
false (default value): Handles JSP processing errors
gracefully and returns null if an error occurs.
true: Throws an exception that causes the JSP page to
stop. You can handle the exception in the code, let the
page proceed to the normal error page, or let the
application server handle it less gracefully.

id yes The JSP script variable name that contains the Content
object after this tag finishes. If the Content object with
the specified id does not exist, it contains null.

useCache no Determines whether Content is cached. This parameter
can have one of two values:
false (default value): ContentCache is not used. If false
(not specified), cacheId and cacheTimeout
settings are ignored.
true: ContentCache is used. Cached Content is stored
in the user’s HttpSession.

cacheId no The id name used to cache the Content. Internally, the
cache is implemented as a Map; this will become the
key. If not specified, the id parameter of the tag is used.

cacheTimeout no The time, in milliseconds, for which the cached
Content is valid. If more than this amount of time has
passed since the Content was cached, the cached
Content will be cleared, retrieved, and placed back into
the cache.
Use -1 for no-timeout (always use the cached Content.)
Default = -1.

4 JSP Tag Reference

4-12 BEA WebLogic Personalization Server Developer’s Guide

Example:

To fetch the Document from bea.eDocs.CMgr (using ContentCaching) with id of 1234
and inline its content:

<cm:selectbyid contentHome="bea.eDocs.CMgr" contentId="1234"
id="doc" useCache="true" cacheTimeout="300000" cacheId="1234" />
<cm:printdoc id="doc" />

<cm:printproperty>

The <cm:printproperty> tag inlines the value of the specified content metadata
property as a string. It does not have a body. This tag operates on any
ConfigurableEntity, not just the Content object. However, it does not support
ConfigurableEntity successors.

readOnly no If true, the ContentManager (specified via the
ContentHome parameter) will try to return only
lightweight (non-EJB) objects where possible.
If false (not specified), the default value is used.
Default=
ContentHelper.DEF_CONTENT_READONLY,
which is loaded from the
commerce.content.defaultReadOnly

property in the weblogiccommerce.properties file.

Tag Attribute Required Description

id yes The JSP script variable name which contains the
Content instance from which to get the properties.

name yes The name of the property to print.

scope no The scope name for the property to get. If not
specified, null is passed in, which is what Document
objects expect.

Content Management

BEA WebLogic Personalization Server Developer’s Guide 4-13

Example:

To have a text input field’s default value be the first 75 characters of the subject of a
Content object stored at doc:

<form action=”javascript:void(0)”>
Subject: <input type=”text” size=”75” name=”subject”
value=”<cm:printproperty id=”doc” name=”Subject” maxLength=”75”

encode no Either html, url, or none.
� If html, then the value will be html encoded so that

it appears in HTML as expected (& becomes
&, < becomes <, > becomes >, and ”
becomes ").

� If url, then it is encoded to
x-www-form-urlencoded format via the
java.net.URLEncoder.

� If none or unspecified, no encoding is performed.

default no The value to print if the property is not found or has a
null value. If this is not specified and the property
value is null, nothing is printed.

maxLength no The maximum length of the property’s value to print.
If specified, values longer than this will be truncated.

failOnError no This parameter can have one of two values:
false (default value): Handles JSP processing errors
gracefully and prints nothing if an error occurs.
true: Throws an exception. You can handle the
exception in the code, let the page proceed to the
normal error page, or let the application server handle
it less gracefully.

dateFormat no The java.text.SimpleDateFormat string to use to print
the property, if it is a java.util.Date. If the property is
not a Date, this is ignored. If this is not set, the Date's
default toString method is used.

numFormat no The java.text.DecimalFormat string to use to print the
property, if it is a java.lang.Number. If the property is
not a Number, this is ignored. If this is not set, the
Number's default toString method is used.

4 JSP Tag Reference

4-14 BEA WebLogic Personalization Server Developer’s Guide

encode=”html”/>” >
</form>

<cm:printdoc>

The <cm:printdoc> tag inlines the raw bytes of a Document object into the JSP
output stream. This tag does not support a body and only supports Document objects.
It does not differentiate between text and binary data.

Example:

To get a Document object from an id in the request parameters and inline the
Document’s text:

<cm:selectbyid contentHome=”<%=contentHome%>”
contentId=”<%=contentId%>” id=”doc”/>
<cm:printdoc id=”doc” blockSize=”1000” />

Tag Attribute Required Description

id yes The JSP script variable name which contains the
Content instance from which to get the properties.

blockSize no The size of the blocks of data to read. The default is
8K. Use 0 or less to read the entire block of bytes in one
operation.

start no Specifies the index in the bytes where to start reading.
Defaults to 0.

end no Specifies the index in the bytes where to stop reading.
The default is to read to the end of the bytes.

failOnError no This parameter can have one of two values:
false (default value): Handles JSP processing errors
gracefully and prints nothing if an error occurs.
true: Throws an exception. You can handle the
exception in the code, let the page proceed to the
normal error page, or let the application server handle
it less gracefully.

Portal Management

BEA WebLogic Personalization Server Developer’s Guide 4-15

Portal Management

To import the Portal Management JSP tags, use the following code:
<%@ taglib uri="lib/esportal.jar" prefix="pt" %>

<pt:portalmanager>

The <pt:portalmanager> tag is used to perform create, get, getColumnInfo,
update, and remove actions on com.beasys.portal.Portal objects. This tag is an
empty tag.

Tag Attribute Required Description

id when action equals
get or
getColumnInfo

The name to which resultant information is
assigned for subsequent use in the JSP page.

action no The action to perform. Allowed values include:
� create: Creates a new portal.
� get:(default value) Retrieves an object of

type com.beasys.portal.Portal.
� getColumnInfo: Retrieves a

com.beasys.portal.PortalColumnInformatio
n[].

� update: Updates the provided target
com.beasys.portal.Portal.

� remove: Removes the provided target
com.beasys.portal.Portal.

portalName no The name of the portal to retrieve, or whose
column information is to be retrieved. The
default value is the value returned by
PortalJspBase.getSessionValue(Po
rtalJsp.Base.PORTAL_NAME).

4 JSP Tag Reference

4-16 BEA WebLogic Personalization Server Developer’s Guide

Example:

<pt:portalmanager id="portal" action="get"
portalName="BEAPortal"/>

<pt:portletmanager>

The <pt:portletmanager> tag is used to perform create, get, getArranged,
update, and remove actions on com.beasys.portal.Portlet objects. This tag is an
empty tag.

target when action equals
create, update, or
remove

The com.beasys.portal.Portal to be created,
updated, or removed.

Tag Attribute Required Description

id when action equals
get or getArranged

The name to which resultant information is
assigned for subsequent use in the JSP page.

action no The action to perform. Allowed values include:
� create: Creates a new portlet.
� get: Retrieves an object of type

com.beasys.portal.Portlet.
� getArranged: Retrieves a

com.beasys.portal.Portlet[][] that
prescribes the row-column layout of
portlets for the provided portal-user-group
combination.

� update (default value): Updates the
provided target com.beasys.portal.Portlet.

� remove: Removes the provided target
com.beasys.portal.Portlet.

portalName no The name of the portal corresponding to the
target portlet or to the portlet(s) to be retrieved.
The default value is the value returned by
PortalJspBase.getSessionValue(Po
rtalJsp.Base.PORTAL_NAME).

Portal Management

BEA WebLogic Personalization Server Developer’s Guide 4-17

Example:

<pt:portletmanager id="arrangedPortlets" action="getArranged"
userName="myUser" portalName="myPortal"/>

This is how <pt:portletmanager> is used in portalcontent.jsp:

<pt:portletmanager action="getArranged" id ="allPortlets"
userId="<%=portalUserUID.longValue()%>"
groupId="<%=portalGroupUID.longValue()%>"
portalName="<%=portalName%>"/>

portletName no The name of the portlet corresponding to the
target portlet or to the portlet(s) to be retrieved.
The default value is the value returned by
PortalJspBase.getSessionValue(Po
rtalJsp.Base. PORTLET_NAME).

groupId no The name of the group corresponding to the
target portlet or to the portlet(s) to be retrieved.
The default value is GROUP_ID.

userId no The name of the user corresponding to the target
portlet or to the portlet(s) to be retrieved. The
default value is USER_ID.

target when action equals
create, update, or
remove

The com.beasys.portal.Portlet to be created,
updated, or removed.

scope no The scope to be applied to the provided action.
Allowed values include:
� global (default value): Specifies that portlet

creation, removal, retrieval, or update
should apply across all portals, groups, and
users.

� portal: Specifies that portlet creation,
removal, retrieval, or update applies to the
provided portal.

� group: Specifies that portlet creation,
removal, retrieval, or update applies to the
provided portal-group combination.

� user: Specifies that portlet creation,
removal, retrieval, or update applies to the
provided portal-group-user combination.

4 JSP Tag Reference

4-18 BEA WebLogic Personalization Server Developer’s Guide

<pt:eval>

The <pt:eval> tag is used to evaluate a conditional attribute of a portlet, for example,
isMinimizeable. The tag expects a com.beasys.portal.Portlet to be accessible
in the session with the key PortalTagConstants.PORTLET. If the conditional
attribute evaluates to true, the body of the <pt:eval> tag is processed. Otherwise, it
is not.

Example:

<pt:eval tag="isMinimizeable">
<% titleBar.include(minimizeButton); %>

</pt:eval>

<pt:get>

The <pt:get> tag retrieves a String attribute of a portlet. This tag expects a
com.beasys.portal.Portlet to be accessible in the session with the key
PortalTagConstants.PORTLET.

Example:

<tr>
<td>

<pt:get tag="title"/>
</td>

</tr>

Tag Attribute Required Description

tag yes The name of the portlet attribute to evaluate.

Tag Attribute Required Description

tag yes The name of the portlet attribute to retrieve.

Portal Management

BEA WebLogic Personalization Server Developer’s Guide 4-19

<pt:monitorsession>

The <pt:monitorsession> tag can be added to the beginning of any JSP page to
disallow access to the page if the session is not valid or if the user is not logged in.

Example:

<pt:monitorsession loginRequired="true" />

<pt:props>

The <pt:props> tag is used to get a property from the Portal Properties bean. The Portal
Properties bean's deployment descriptor contains default values used by the Portal
Administration Tool.

Example:
<pt:props id="headerURL" propertyName="default.portal.headerURL" />

Tag Attribute Required Description

goToPage no The error page that you want displayed if the page is
not accessible. The default value is portalerror.jsp.

loginRequired no Indicates whether the user is required to be logged in to
access the JSP page including the tag. The default
value is FALSE.

Tag Attribute Required Description

id yes A java.lang.String variable name for the
property value.

portalName yes The name of the property to get in the Portal
Property Bean.

4 JSP Tag Reference

4-20 BEA WebLogic Personalization Server Developer’s Guide

<pt: getgroupsforportal>

The <pt:getgroupsforportal> tag retrieves the names of the groups associated
with a Portal. The results are put into the variable declared in the id parameter of the
tag, which is a String array.

User Management

To import the User Management JSP tags, use the following code:
<%@ taglib uri="lib/um_tags.jar" prefix="um" %>

Profile management tags

<um:getprofile>

The <um:getprofile> tag retrieves the profile corresponding to the provided profile
key and profile type. The tag has no enclosed body. The retrieved profile can be treated
simply as a com.beasys.commerce.foundation.ConfigurableEntity, or as the
particular implementation of ConfigurableEntity that it is. Along with the profile
key and profile, an explicit successor key and successor type can be specified, as
specified by the profileType attribute. This successor will then be used, along with
the retrieved profile, in subsequent invocations of the <um:getproperty> tag to
ensure property inheritance from the successor. If no successor is retrieved, standard
ConfigurableEntity successor search patterns will apply to retrieved properties.

Tag Attribute Required Description

id yes A resulting string array containing the names
of the groups associated with the given
Portal.

portalName yes The name of the Portal to be checked for
associated groups.

User Management

BEA WebLogic Personalization Server Developer’s Guide 4-21

Tag Attribute Required Description

profileKey yes A unique identifier that can be used to retrieve the
profile which is sought.
Example: “<%=username%>”

profileType no The profile type to be retrieved. If specified, this
profile type must correspond to a profile type
registered via the Unified Profile Type tool in the
User Management suite of administration tools,
and its bean must conform to the rules of Unified
User Profile creation.
By default, the tag retrieves a profile of type
com.beasys.commerce.axiom.contact.
User, unless otherwise specified.
Example: “AcmeUser”

successorKey no A unique identifier that can be used to retrieve the
profile successor.
Example: “<%=defaultGroup%>”

successorType no The profile successor type to be retrieved. If
specified, this profile type must correspond to a
profile type registered via the Unified Profile
Type tool in the User Management suite of
administration tools, and its bean must conform to
the rules of Unified User Profile creation.
By default, the tag retrieves a profile of type
com.beasys.commerce.axiom.contact.
Group, unless otherwise specified.
Example: “AcmeGroup”

scope no – defaults to
session

The HTTP scope of the retreived profile. Pass
Request or Session as the values.

groupOnly no – defaults to
false

Specifies to retrieve a
com.beasys.commerce.axiom.contact.
Group, rather than
com.beasys.commerce.axiom.contact.
User, for the default profile type. No successor
will be retrieved when this value is true.

4 JSP Tag Reference

4-22 BEA WebLogic Personalization Server Developer’s Guide

Example 1:

This example shows a profile of type AcmeUser being retrieved with no successor
specified, and an explicitly-supplied session scope.

<um:getprofile profileKey="bob" profileType="AcmeUser"
profileId="myProfile" scope="session"/>

Example 2:

This example shows a default profile type
(com.beasys.commerce.axiom.contact.User) being retrieved with a default
successor type (com.beasys.commerce.axiom.contact.Group), and an
explicitly-supplied request scope.

<um:getprofile profileKey="bob" successorKey="engineering"
scope="request"/>

Example 3:

This example shows a profile type of AcmeUser being retrieved with a successor type
of AcmeGroup, and an implicitly-supplied session scope.

<um:getprofile profileKey="bob" profileType="AcmeUser"
successorKey="engineering" successorType="AcmeGroup"
profileId="myProfile"/>

<um:getproperty>

The <um:getproperty> tag retrieves the property value for a specified property
set-property name pair. The tag has no enclosed body. The value returned is an
Object. In typical cases, this tag is used after the <um:getprofile> tag is invoked to
retrieve a profile for session use. The property to be retrieved is retrieved from the
session profile. If the <um:getprofile> tag has not been used upon invoking the
<um:getproperty> tag, the specified property value is retrieved from the Anonymous
User Profile. See the User Management documentation for more information.

profileId no A variable name from which the retrieved profile
is available for the duration of the JSP’s page
scope.

successorId no A variable name from which the retrieved
successor is available for the duration of the JSP’s
page scope.

User Management

BEA WebLogic Personalization Server Developer’s Guide 4-23

Example 1:

<um:getproperty id="myTitlebarBGColor" propertySet="exampleportal"
propertyName="titlebar_bgcolor"/>
My titlebar bg color is <%=myTitlebarBGColor%>.

Example 2:

My titlebar bg color is <um:getproperty propertySet="exampleportal"
propertyName="titlebar_bgcolor"/>.

<um:getpropertyasstring>

The <um:getpropertyasstring> tag works exactly as the <um:getproperty> tag,
but ensures that the retrieved property value is a String. The following example
shows a multi-valued property which returns a Collection, but presents a list of
favorite colors.

Tag Attribute Required Description

propertySet no – the property is
retrieved from the
profile’s default
(unscoped) properties if
no property set is
provided.

The Property Set from which the
property’s value is to be retrieved.
Example: “Demo Portal”

propertyName yes The name of the property to be retrieved.
Example: “background_color”.

useCache no – defaults to false. Prescribes whether to first search the local
cache of property values for the property,
and whether to cache the value locally
once retrieved remotely. This attribute can
be set to true to significantly enhance
performance.

id no If the id attribute is supplied, the value of
the retrieved property will be available in
the variable name to which id is assigned.
Otherwise, the value of the property is
inlined.

4 JSP Tag Reference

4-24 BEA WebLogic Personalization Server Developer’s Guide

Example:

<um:getpropertyasstring id=”myFaveColors”
propertySet=”exampleportal” propertyName=”fave_colors”/>
My favorite colors are <%=myFaveColors%>.

<um:removeproperty>

The <um:removeproperty> tag removes the specified property from the current
session profile or from the Anonymous User Profile. The tag has no enclosed body.
Subsequent calls to <um:getproperty> for a removed property would result in the
default value for the property as prescribed by the property set, or from the Session’s
successor.

Example:

<um:removeproperty propertySet="<%=thePropertySet%>"
propertyName="<%=thePropertyName%>"/>

<um:setproperty>

The <um:setproperty> tag updates a property value for either the current session
profile, or for the Anonymous User Profile. The tag has no enclosed body.

Tag Attribute Required Description

propertySet no The Property Set from which the property's value is to
be retrieved.
Example: "Demo Portal"

Note: The property is removed from the profile's
default (unscoped) properties if no property
set is provided.

propertyName yes The name of the property to be removed.
Example: "background_color".

User Management

BEA WebLogic Personalization Server Developer’s Guide 4-25

Example:

<% String myName = request.getParameter("name"); %>
<um:setproperty propertySet="exampleportal" propertyName="name"
value="<%=myName%>"/>

Group-user management tags

<um:addgrouptogroup>

The <um:addgrouptogroup> tag adds the group corresponding to the provided
childGroupName to the group corresponding to the provided parentGroupName.
Since a group can only have one parent, any previous database records which reflect
the group belonging to another parent will be destroyed. Both the parent group and the
child group must previously exist for proper tag behavior. The tag has no enclosed
body.

Tag Attribute Required Description

propertySet no The Property Set in which the property’s
value is to be set.
Example: “Demo Portal”

Note: The property is set for the profile’s
default (unscoped) properties if no
property set is provided.

propertyName yes The name of the property to be set.
Example: “background_color”.

useCache no – defaults to
false

Prescribes whether to set the value for the
property in the local cache after setting the
property for the current profile.

value yes The new property value. This attribute must
be a previously-declared variable, as shown
in the example.

4 JSP Tag Reference

4-26 BEA WebLogic Personalization Server Developer’s Guide

Note: This tag should only be invoked when the
weblogic.security.realmClass property in the weblogic.properties
file is com.beasys.commerce.axiom.contact.security.RDBMSRealm.

Example:

<um:addgrouptogroup childGroupName=“<%=childGroupName%>”
parentGroupName=”<%=parentGroupName%>” resultId=”result”/>

<um:addusertogroup>

The <um:addusertogroup> tag adds the user corresponding to the provided
userName to the group corresponding to the provided parentGroupName. Both the
specified user and the specified group must previously exist for proper tag behavior.
The tag has no enclosed body.

Note: This tag should only be invoked when the
weblogic.security.realmClass property in the weblogic.properties
file is com.beasys.commerce.axiom.contact.security.RDBMSRealm.

Tag Attribute Required Description

childGroupName yes The name of the child group.
Example: “<%=childGroupName%>”

parentGroupName yes The name of the parent group.
Example: “<%=parentGroupName%>”

resultId yes The possible results of the add group to group
operation. Possible values include:
� success: UserManagerTagConstants.

ADD_GROUP_OK

� error encountered:
UserManagerTagConstants.
ADD_GROUP_FAILED

User Management

BEA WebLogic Personalization Server Developer’s Guide 4-27

Example:

<um:addusertogroup userName=“<%=userName%>”
groupName=”<%=groupName%>” resultId=”result”/>

<um:changegroupname>

The <um:changegroupname> tag changes the a name of the group corresponding to
the specified oldGroupName to the specified newGroupName. The tag has no enclosed
body.

Note: This tag should only be invoked when the
weblogic.security.realmClass property in the weblogic.properties
file is com.beasys.commerce.axiom.contact.security.RDBMSRealm.

Tag Attribute Required Description

userName yes The name of the user to be added to the group.
Example: “<%=username%>”

groupName yes The name of the group to which the user is being
added.
Example: “<%=groupName%>”

resultId yes The possible results of the add user to group operation.
Possible values include:
� success:

UserManagerTagConstants.ADD_USER_O
K

� error encountered:
UserManagerTagConstants.
ADD_USER_FAILED

Tag Attribute Required Description

oldGroupName yes The old group name.
Example: “<%=oldGroupName%>”

4 JSP Tag Reference

4-28 BEA WebLogic Personalization Server Developer’s Guide

Example:

<um:changeGroupname oldGroupName=“<%=oldGroupName%>”
newGroupName=”<%=changeGroupName%>” resultId=”result”/>

<um:creategroup>

The <um:creategroup> tag creates a new
com.beasys.commerce.axiom.contact.Group object. The tag has no enclosed
body.

Note: This tag should only be invoked when the
weblogic.security.realmClass property in the weblogic.properties
file is com.beasys.commerce.axiom.contact.security.RDBMSRealm.

newGroupName yes The new group name.
Example: “<%=newGroupName%>”

resultId yes The name of an Integer variable to which the result of
the change group name operation is assigned.
 Possible values include:
� success:

UserManagerTagConstants.GROUP_CHAN
GE_OK

� error encountered:
UserManagerTagConstants.
GROUP_CHANGE_FAILED

Tag Attribute Required Description

groupName yes The name of the new group.
Example: “<%=groupName%>”

id no A variable name to which the created Group object is
available for the duration of the page’s scope.

User Management

BEA WebLogic Personalization Server Developer’s Guide 4-29

Example:

<um:creategroup groupName=”<%=groupName%>” resultId=”result”/>

<um:createuser>

The <um:createuser> tag creates a new
com.beasys.commerce.axiom.contact.User object. The tag has no enclosed body.
Although classified as a Group-User management tag, this tag can be used in conjunction with
run time activities, in that it will persist any properties associated with a current Anonymous
User Profile if specified.

Note: This tag should only be invoked when the
weblogic.security.realmClass property in the weblogic.properties
file is com.beasys.commerce.axiom.contact.security.RDBMSRealm.

resultId yes The possible results of the create user operation.
Possible Values:
UserManagerTagConstants.
CREATE_GROUP_OK: Success
UserManagerTagConstants.
CREATE_GROUP_FAILED: Error encountered
UserManagerTagConstants.
GROUP_EXISTS: A user with the specified username
already exists

Tag Attribute Required Description

userName yes The name of the new user.
Example: “<%=username%>”

password no The password for the new user.
Example: “<%=password%>”

saveAnonymous no – defaults
to false

Whether to persist current anonymous user profile
attributes in the newly-created user’s profile.
Example: “false”

id no A variable name to which the created User object is
available for the duration of the page’s scope.

4 JSP Tag Reference

4-30 BEA WebLogic Personalization Server Developer’s Guide

Example:

<um:createuser userName="<%=username%>" password="<%=password"%>
resultId="result"/>

<um:getchildgroups>

The <um:getchildgroups> tag retrieves an array of
com.beasys.commerce.axiom.contact.Group objects that are children of the
Group corresponding to the provided groupName. The information is taken from the
personalization database tables, and reflects the group hierarchy information as set up
from the Group administration and Realm Configuration administration tools. The tag
has no enclosed body.

Example:

<um:getchildgroups groupName=”<%=groupName%>” id=”childGroups”/>

resultId yes The possible results of the create user operation.
Possible Values:
UserManagerTagConstants.CREATE_USER_
OK: Success
UserManagerTagConstants.CREATE_USER_
FAILED: Error encountered
UserManagerTagConstants.USER_EXISTS:
A user with the specified username already exists

Tag Attribute Required Description

groupName yes The name of the group whose children are sought.
Example: “<%=groupName%>”

id yes A variable name to which the child Group objects are
available for the duration of the page’s scope.
Example: “childGroups”

User Management

BEA WebLogic Personalization Server Developer’s Guide 4-31

<um:getgroupnamesforuser>

The <um:getgroupnamesforuser> tag retrieves a String array that contains the
group names matching the provided search expression and corresponding to groups to
which the provided user belongs. The tag has no enclosed body.

Example:

<um:getgroupnamesforuser userName=”<%=username%>” id=”myGroups”/>

<um:getparentgroupname>

The <um:getparentgroupname> tag retrieves the name of the parent of the
com.beasys.commerce.axiom.contact.Group object associated with the
provided groupName. The information is taken from the personalization database
tables, and reflects the group hierarchy information as set up from the Group
administration and Realm Configuration administration tools. The tag has no enclosed
body.

Example:

Tag Attribute Required Description

userName yes The name of the user whose matching groups are
sought.
Example: “<%=username%>”

id yes A variable name to which the resultant group names
are assigned.
Example: “myGroups”

Tag Attribute Required Description

groupName yes The name of the group whose parent group name is
sought.
Example: “<%=groupName%>”

id yes A variable name to which the to which the name of the
parent is available for the duration of the page’s scope.
Example: “parentGroupName”

4 JSP Tag Reference

4-32 BEA WebLogic Personalization Server Developer’s Guide

<um:getparentgroupname groupName=”<%=groupName%>”
id=”parentGroupName”/>

<um:gettoplevelgroups>

The <um:gettoplevelgroups> tag retrieves and array of
com.beasys.commerce.axiom.contact.Group objects, each of which has no
parent group. The information is taken from the personalization database tables, and
reflects the group hierarchy information as set up from the Group administration and
Realm Configuration administration tools. The tag has no enclosed body.

Example:

<um:gettoplevelgroups id=”topLevelGroups”/>

<um:getusernames>

The <um:getusernames> tag retrieves a String array that contains the usernames
matching the provided search expression. The search expression supports only the
asterisk (*) wildcard character, and is case insensitive. As many asterisks as desired
may be used in the search expression. The tag has no enclosed body.

Note: This tag should only be invoked when the
weblogic.security.realmClass property in the weblogic.properties
file is com.beasys.commerce.axiom.contact.security.RDBMSRealm.

Tag Attribute Required Description

id yes A variable name to which the top-level Group objects
are available for the duration of the page’s scope.
Example: “topLevelGroups”

Tag Attribute Required Description

searchExp no –
defaults to
‘*’

The search expression to apply to the user name
search.
Example: “t*”

User Management

BEA WebLogic Personalization Server Developer’s Guide 4-33

Example:

<um:getusernames userLimit=”500” searchExp=”t*” id=”myUsers”/>
<%System.out.println(“I found “ + myUsers.length + “ users.”);%>

<um:getusernamesforgroup>

The <um:getusernamesforgroup> tag retrieves a String array that contains the
usernames matching the provided search expression and correspond to members of the
provided group. The search expression supports only the asterisk (*) wildcard
character, and is case insensitive. As many asterisks as desired may be used in the
search expression. The tag has no enclosed body.

Note: This tag should only be invoked when the
weblogic.security.realmClass property in the weblogic.properties
file is com.beasys.commerce.axiom.contact.security.RDBMSRealm.

userLimit no –
defaults to
100

The maximum number of users to be returned from the
search. (String which has a particular
Integer.valueOf)
Example: “500”

id yes A variable name to which the resultant user names are
assigned.
Example: “myUsers”

resultId yes The possible results of the get user names operation.
Possible Values:
UserManagerTagConstants.USER_SEARCH_
OK: success
UserManagerTagConstants.USER_SEARCH_
FAILED: general error
UserManagerTagConstants.USER_LIMIT_
EXCEEDED: matching user count exceeds limit

4 JSP Tag Reference

4-34 BEA WebLogic Personalization Server Developer’s Guide

Example:

<um:getusernamesforgroup groupName=”engineering” userLimit=”500”
searchExp=”t*” id=”myUsers”/>
<%System.out.println(“I found “ + myUsers.length + “ users in my
group.”);%>

<um:removegroup>

The <um:removegroup> tag removes the
com.beasys.commerce.axiom.contact.Group object corresponding to the
provided groupName. The tag has no enclosed body.

Tag Attribute Required Description

searchExp no –
defaults to
*

The search expression to apply to the user name
search.
Example: “t*”

groupName yes The name of the group whose matching members are
sought.
Example: “engineering”

userLimit no –
defaults to
100

The maximum number of users to be returned from the
search. (String which has a particular
Integer.valueOf)
Example: “500”

id yes A variable name to which the resultant user names are
assigned.
Example: “myUsers”

resultId yes The possible results of the get user names for group
operation.
Possible Values:
UserManagerTagConstants.USER_SEARCH_
OK: success
UserManagerTagConstants.USER_SEARCH_
FAILED: general error
UserManagerTagConstants.USER_LIMIT_
EXCEEDED: matching user count exceeds limit

User Management

BEA WebLogic Personalization Server Developer’s Guide 4-35

Note: This tag should only be invoked when the
weblogic.security.realmClass property in the weblogic.properties
file is com.beasys.commerce.axiom.contact.security.RDBMSRealm.

Example:

<um:removegroup groupName=”<%=groupNamename%>” resultId=”result”/>

<um:removeuser>

The <um:removeuser> tag removes the
com.beasys.commerce.axiom.contact.User object corresponding to the
provided userName. The tag has no enclosed body.

Note: This tag should only be invoked when the
weblogic.security.realmClass property in the weblogic.properties
file is com.beasys.commerce.axiom.contact.security.RDBMSRealm.

Tag Attribute Required Description

groupName yes The name of the user to be removed.
Example: “<%=groupName%>”

resultId yes The possible results of the remove group operation.
Possible values include:
� success: UserManagerTagConstants.

REMOVE_GROUP_OK
� error encountered: UserManagerTagConstants.

REMOVE_GROUP_FAILED

Tag Attribute Required Description

userName yes The name of the user to be removed.
Example: “<%=username%>”

4 JSP Tag Reference

4-36 BEA WebLogic Personalization Server Developer’s Guide

Example:

<um:removeuser userName=”<%=username%>” resultId=”result”/>

Security tags

<um:login>

The <um:login> tag provides weak authentication (username, password) against the
current security realm, and sets the authenticated user as the current WebLogic user.
The tag has no enclosed body.

Note: The login tag requires a username parameter and a password parameter to be
present in the HTTP request.

resultId yes The possible results of the remove user operation.
Possible values include:
� success: UserManagerTagConstants.

REMOVE_USER_OK
� error encountered:

UserManagerTagConstants.REMOVE_USER_F
AILED

User Management

BEA WebLogic Personalization Server Developer’s Guide 4-37

<um:setpassword>

The <um:setpassword> tag updates the password for the user corresponding to the
provided username.

Note: This tag should only be invoked when the
weblogic.security.realmClass property in the weblogic.properties
file is com.beasys.commerce.axiom.contact.security.RDBMSRealm.

Tag Attribute Required Description

 resultId yes The possible results of the login operation.
UserManagerTagConstants.LOGIN_FAILED -
username/password combo invalid
UserManagerTagConstants.LOGIN_ERROR - an error
occurred when performing authentication.
Possible values:
� UserManagerTagConstants.LOGIN_OK:

Success
� UserManagerTagConstants.LOGIN_FAILED:

Authentication failed because of invalid
username/password combination

� UserManagerTagConstants.LOGIN_ERROR:
General error when performing authentication.

Tag Attribute Required Description

userName yes The name of the user whose password is to be changed.

password no The new user password.

resultId no The possible results of the set password operation.

� Success: User Management tag contstants.
SET_PASSWORD_OK

� Failure: User Management tag contstants.
SET_PASSWORD_FAILED

4 JSP Tag Reference

4-38 BEA WebLogic Personalization Server Developer’s Guide

Personalization Utilities

The <es:jsptaglib> contains generic tags you can use to create JSP pages. Use the
following code to import the utility tag library:
<%@ taglib uri="lib/esjsp.jar" prefix="es" %>

<es:condition>

The <es:condition> tag is used to evaluate a Boolean expression. The tag can either
be an empty tag or a tag whose body is executed if the condition evaluates to true.

Example:

<es:condition id="isYes" test="a.equals(b)"/>

<es:counter>

The <es:counter> is used to create a for loop.

Tag Attribute Required Description

test no The expression to test.

id When the tag is
empty.

The variable name to assign. The default value is
id.

Tag Attribute Required Description

type no The type of the counter. This can either be an int or a
long. Default is int.

id yes A unique name for the variable.

minCount yes The start position for the loop.

Personalization Utilities

BEA WebLogic Personalization Server Developer’s Guide 4-39

Example:

<es:counter id="iterator" minCount="0" maxCount="10">
<% System.out.println(iterator);%>

</es:counter>

<es:foreachinarray>

The <es:foreachinarray> tag is used to iterate over an array.

Example:

<es:foreachinarray id="item" array="items" type="String"
counterId="i">

<% System.out.println("items[" + i + "]: " + item);%>
</es:foreachinarray>

<es:isnull>

The <es:isnull> tag is used to check if a value is null. In the case of a String, the
<es:isnull> tag is used to check if the String is null or empty.

maxCount yes The end position for the loop.

Tag Attribute Required Description

id yes The variable for each value in the array.

type yes The type of each value in the array.

array yes The array to iterate over.

counterId no The position in the array.

Tag Attribute Required Description

id yes The variable to evaluate.

4 JSP Tag Reference

4-40 BEA WebLogic Personalization Server Developer’s Guide

Example:

<es:isnull id="value">
Error: the value is null.

</es:isnull>

<es:notnull>

The <es:notnull> tag is used to check if a value is not null. In the case of a String,
the <es:notnull> tag is used to check if the String is not null or empty.

Example:

<es:notnull id="value">
The value is not null.

</es:notnull>

<es:preparedstatement>

The <es:preparedstatement> tag is used to create a JDBC prepared statement.

Example:

<es:preparedstatement id="ps" sql="select last_name from user where
id=?" pool="jdbcPool">
<%

Tag Attribute Required Description

id yes The variable to evaluate.

Tag Attribute Required Description

id yes The variable in which the PreparedStatement is
returned.

sql yes The SQL with <es:preparedstatement> tags.

pool yes The JDBC connection pool from which to get a
connection.

Personalization Utilities

BEA WebLogic Personalization Server Developer’s Guide 4-41

ps.setInt(1, 1234);
ResultSet rs = ps.execute();
if (rs.next())
{

System.out.println(rs.getString(1));
}

%>
</es:preparedstatement>

<es:simplereport>

The <es:simplereport> tag is used to create two-dimensional array out of a simple
query.

Example:

<es:simplereport id="report" resultSet="resultSet">
<%

for (int i=0; ireport[i].length; j++)
{

...
}

}
%>
</es:simplereport>

<es:transposearray>

The <es:transposearray> tag is used to transpose a standard [row][column] array
to a [column][row] array.

Tag Attribute Required Description

id yes The variable that holds the [] array.

resultSet yes The result set that turns two-dimensional.

4 JSP Tag Reference

4-42 BEA WebLogic Personalization Server Developer’s Guide

Example:

<es:transposearray id="byColumnRow" array="byRowColumn"
type="String">

...
</es:transposearray>

<es:uricontent>

The <es:uricontent> tag is used to pull content from a URL. It is best used for
grabbing text-heavy pages.

Example:

<es:uricontent id="uriContent"
uri="http://www.beasys.com/index.html">
<%

out.print(uriContent);
%>
</es:uricontent>

Tag Attribute Required Description

id yes The variable that holds the [c][r] array.

type yes The type of variable in the [r][c] array, such as String.

array yes The variable that holds the [r][c] array.

Tag Attribute Required Description

id yes The variable that holds the downloaded content of the
URI.

uri yes The fully-qualified URI from which to get the content.

Personalization Utilities

BEA WebLogic Personalization Server Developer’s Guide 4-43

<es:date>

The <es:date> tag is used to get a date- and time-formatted String based on the user's
time zone preference.

Example:

<es:date formatStr="MMMM dd yyyy" timeZoneId="MST" />

<es:usertransaction>

The <es:usertransaction> tag is used to wrap database-intensive code within one
efficient transaction.

Note: Do not nest these calls. The system does not support nested transactions.

Example:

<es:usertransaction>
<% //database inserts %>

</es:usertransaction>

Tag Attribute Required Description

timeZoneId no Defaults to the time zone on the server.

formatStr no A date and time format string that adheres to the
java.text.SimpleDateFormat. The default value is
MM/dd/yyyy HH:mmss:z.

Tag Attribute Required Description

timeout no The user transaction timeout in seconds. The default
value is 600.

4 JSP Tag Reference

4-44 BEA WebLogic Personalization Server Developer’s Guide

WebLogic Utilities

The <wl:jsptaglib> tag library contains custom JSP extension tags which are
supplied as a part of the WebLogic server platform. To import the WebLogic Utilities
JSP tags, use the following code:
<%@ taglib uri="lib/wljsp.jar" prefix="wl" %>

<wl:process>

The <wl:process> tag is used for query parameter-based flow control. By using a
combination of the four attributes, you can selectively execute the statements between
the <wl:process> and </wl:process> tags.

Statements between the <wl:process> tags will be executed according to the matrix:

Example:

<wl:process name="lastBookRead" value="A Man in Full">
<!-- This section of code will be executed

Tag Attribute Required Description

name no The name of a query parameter.

notname no The name of a query parameter.

value no The value of a query parameter.

notvalue no The value of a query parameter.

value notvalue (none)

name named parameter is
equal to the value

named parameter
does not equal the
value

named parameter is
empty

notname named parameter is
not empty

WebLogic Utilities

BEA WebLogic Personalization Server Developer’s Guide 4-45

if lastBookRead exists and the value of lastBookRead is
"A Man in Full" -->

</wl:process>

4 JSP Tag Reference

4-46 BEA WebLogic Personalization Server Developer’s Guide

BEA WebLogic Personalization Server Developer’s Guide I-1

Index

A
application, creating 2-7
architecture of server 1-2

C
classifying user

with JSP tag 2-5
with Personalization Advisor Session

Bean 2-10
<cm:printdoc> 4-14
<cm:printproperty> 4-12
<cm:select> 4-8
<cm:selectbyid> 4-10
commerce.util package 3-11
CommercePropertiesHelper utility 3-10
component, external 1-7
configuring JSP Service Manager 3-3
contact information ix
content management

JSP tags 4-8
overview 1-4

content, matching
with JSP tag 2-6
with Personalization Advisor Session

Bean 2-14
content, selecting

with JSP tag 2-5
with Personalization Advisor Session

Bean 2-12
ContentHelper utility 3-10

customer support ix

D
documentation, where to find it viii

E
<es:condition> 4-38
<es:counter> 4-38
<es:date> 4-43
<es:foreachinarray> 4-39
<es:isnull> 4-39
<es:notnull> 4-40
<es:preparedstatement> 4-40
<es:simplereport> 4-41
<es:transposearray> 4-41
<es:uricontent> 4-42
<es:usertransaction> 4-43
executing recommendation request 2-9
ExpressionHelper utility 3-11
external component 1-7

F
foundation class 1-4
foundation utility 1-4

G
group-user management 4-25

I-2 BEA WebLogic Personalization Server Developer’s Guide

H
HTTP handling 3-5

J
JSP Service Manager

configuring 3-3
introduction 3-2

JSP tag
classifying users 2-5
content management 4-8
creating personalized application 2-4
group-user management 4-25
matching content 2-6
overview 1-5
Personalization Advisor, intro 2-3
Personalization Advisor, reference 4-2
portal management 4-15
profile management 4-20
security 4-36
selecting content 2-5
user management 4-20

JspBase utility 3-9
JspHelper utility 3-9

M
matching content

with JSP tag 2-6
with Personalization Advisor Session

Bean 2-14

N
native types 1-8

O
object

Request 3-5
Session 3-8

P
P13NJspBase utility 3-10
package, commerce.util 3-11
Personalization Advisor

description 2-2
JSP tags, intro 2-3
JSP tags, reference 4-2
overview 1-3
session bean 2-3

Personalization Advisor Session Bean 2-7
classifying users 2-10
matching content 2-14
selecting content 2-12

Personalization Request object 3-5
Personalization Server 1-2
Personalization Session object 3-8
personalization technique, specifying URL

2-9
personalization utility 4-38
personalized application

creating 2-7
JSP tags 2-4
<pz:contentquery> 2-4
<pz:contentselector> 2-4
<pz:div> 2-4

portal management
JSP tags 4-15
overview 1-3

printing product documentation ix
profile management 4-20
property

Request 3-6
Session 3-8

<pt:eval> 4-18
<pt:get> 4-18
<pt:getgroupsforportal> 4-20
<pt:monitorsession> 4-19
<pt:portalmanager> 4-15
<pt:portletmanager> 4-16
<pt:props> 4-19

BEA WebLogic Personalization Server Developer’s Guide I-3

<pz:contentquery>
introduction 2-4
reference 4-4
selecting content 2-5

<pz:contentselector>
introduction 2-4
matching content 2-6
reference 4-5

<pz:div>
classifying user 2-5
introduction 2-4
reference 4-3

R
recommendation request, executing 2-9
Repository 3-4
Request

object 3-5
property 3-6

rules management 1-4
runtime architecture 1-2

S
security 4-36
selecting content

with JSP tag 2-5
with Personalization Advisor Session

Bean 2-12
server architecture 1-2
Session

object 3-8
property 3-8

session bean, Personalization Advisor
classifying user 2-10
creating personalized application 2-7
introduction 2-3
matching content 2-14
selecting content 2-12

specifying personalization technique URL

2-9
support

for native types 1-8
technical ix

T
TypesHelper utility 3-11

U
<um:addgrouptogroup> 4-25
<um:addusertogroup> 4-26
<um:changegroupname> 4-27
<um:creategroup> 4-28
<um:createuser> 4-29
<um:getchildgroups> 4-30
<um:getgroupnamesforuser> 4-31
<um:getparentgroupname> 4-31
<um:getprofile> 4-20
<um:getproperty> 4-22
<um:getpropertyasstring> 4-23
<um:gettoplevelgroups> 4-32
<um:getusernames> 4-32
<um:getusernamesforgroup> 4-33
<um:login> 4-36
<um:removegroup> 4-34
<um:removeproperty> 4-24
<um:removeuser> 4-35
<um:setpassword> 4-37
<um:setproperty> 4-24
user management

JSP tags 4-20
overview 1-3

user, classifying
with JSP tag 2-5
with Personalization Advisor Session

Bean 2-10
utility

CommercePropertiesHelper 3-10
ContentHelper 3-10

I-4 BEA WebLogic Personalization Server Developer’s Guide

ExpressionHelper 3-11
JspBase 3-9
JspHelper 3-9
overview 1-4
P13NJspBase 3-10
personalization 4-38
TypesHelper 3-11
WebLogic 4-44

W
WebLogic Personalization Server 1-2
WebLogic utility 4-44
<wl:process> 4-44

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Contact Us!
	Documentation Conventions

	1 Overview of Personalization Development
	Personalization Server Runtime Architecture
	Personalization Advisor
	Portal Management
	Foundation Classes and Utilities
	User Management
	Content Management
	Rules Management

	Foundation Classes and Utilities
	JSP Tags
	Integration of External Components
	Support for Native Types

	2 Creating Personalized Applications with the Personalization Advisor
	What is the Personalization Advisor?
	Creating Personalized Applications with JSP Tags
	Classifying users with the JSP <pz:div> tag
	Selecting content with the <pz:contentquery> JSP tag
	Matching content to users with the <pz:contentselector> JSP tag

	Creating Personalized Applications with the Personalization Advisor Session Bean
	Specifying a personalization technique URL
	Classifying users with the Personalization Advisor Session Bean
	Selecting content with the Personalization Advisor Session Bean
	Matching content to users with the Personalization Advisor Session Bean

	3 Foundation Classes and Utilities
	JSP Service Manager
	Configuring the JSP Service Manager

	Repository
	HTTP Handling
	Personalization Request Object
	Default Request Property Set

	Personalization Session Object
	Default Session property set

	Utilities
	JspHelper
	JspBase
	P13NJspBase
	ContentHelper
	CommercePropertiesHelper

	Utilities in commerce.util package
	ExpressionHelper
	TypesHelper

	4 JSP Tag Reference
	Personalization Advisor
	<pz:div>
	<pz:contentquery>
	<pz:contentselector>

	Content Management
	<cm:select>
	<cm:selectbyid>
	<cm:printproperty>
	<cm:printdoc>

	Portal Management
	<pt:portalmanager>
	<pt:portletmanager>
	<pt:eval>
	<pt:get>
	<pt:monitorsession>
	<pt:props>
	<pt: getgroupsforportal>

	User Management
	Profile management tags
	<um:getprofile>
	<um:getproperty>
	<um:getpropertyasstring>
	<um:removeproperty>
	<um:setproperty>

	Group-user management tags
	<um:addgrouptogroup>
	<um:addusertogroup>
	<um:changegroupname>
	<um:creategroup>
	<um:createuser>
	<um:getchildgroups>
	<um:getgroupnamesforuser>
	<um:getparentgroupname>
	<um:gettoplevelgroups>
	<um:getusernames>
	<um:getusernamesforgroup>
	<um:removegroup>
	<um:removeuser>

	Security tags
	<um:login>
	<um:setpassword>

	Personalization Utilities
	<es:condition>
	<es:counter>
	<es:foreachinarray>
	<es:isnull>
	<es:notnull>
	<es:preparedstatement>
	<es:simplereport>
	<es:transposearray>
	<es:uricontent>
	<es:date>
	<es:usertransaction>

	WebLogic Utilities
	<wl:process>

	Index

