
B E A W e b L o g i c C o m m e r c e S e r v e r 3 . 1
D o c u m e n t E d i t i o n 1 . 2

A u g u s t 2 0 0 1

BEA WebLogic

 Commerce Server
Order Processing Package

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, WebLogic Enterprise,
WebLogic Commerce Server, and WebLogic Personalization Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

Order Processing Package

Document Edition Date Software Version

1.2 August 2001 WebLogic Commerce Server 3.1

Contents

About This Document
What You Need to Know ... xii

e-docs Web Site .. xii

How to Print the Document... xiii

Related Information... xiii

Contact Us! .. xiv

Documentation Conventions ... xiv

1. Overview of the Order Processing Package
What Is the Order Processing Package? .. 1-2

High-level Architecture ... 1-4

Development Roles ... 1-6

Next Steps.. 1-6

2. The Order Processing Database Schema
The Entity-Relation Diagram .. 2-2

The WLCS_CUSTOMER Database Table ... 2-4

The WLCS_SHIPPING_ADDRESS Database Table....................................... 2-6

The WLCS_CREDIT_CARD Database Table ... 2-8

The WLCS_TRANSACTION Database Table... 2-11

The WLCS_TRANSACTION_ENTRY Database Table 2-14

The WLCS_SAVED_ITEM_LIST Database Table 2-15

The WLCS_ORDER Database Table ... 2-16

The WLCS_ORDER_LINE Database Table .. 2-19

The WLCS_SHIPPING_METHOD Database Table...................................... 2-21

The WLCS_SECURITY Database Table ... 2-23

The SQL Files and Defined Constraints.. 2-24
Order Processing Package iii

3. Shopping Cart Management Services
JavaServer Pages (JSPs) .. 3-2

shoppingcart.jsp Template.. 3-2

Sample Browser View... 3-3

Location in the WebLogic Commerce Server Directory Structure..... 3-5

Tag Library Imports .. 3-5

Java Package Imports .. 3-6

Location in Default Webflow.. 3-6

Included JSP Templates .. 3-7

Events .. 3-7

Dynamic Data Display .. 3-8

Form Field Specification ... 3-12

Input Processors... 3-14

DeleteProductItemFromShoppingCartIP ... 3-14

EmptyShoppingCartIP.. 3-15

InitShoppingCartIP... 3-15

UpdateShoppingCartQuantitiesIP .. 3-16

UpdateSkuIP... 3-17

Pipeline Components ... 3-18

DeleteProductItemFromSavedListPC .. 3-18

MoveProductItemToSavedListPC.. 3-19

MoveProductItemToShoppingCartPC ... 3-20

RefreshSavedListPC... 3-21

4. Shipping Services
JavaServer Pages (JSPs) .. 4-2

shipping.jsp Template... 4-2

Sample Browser View... 4-2

Location in the WebLogic Commerce Server Directory Structure..... 4-4

Tag Library Imports .. 4-4

Java Package Imports .. 4-5

Location in Default Webflow.. 4-5

Included JSP Templates .. 4-6

Events .. 4-6

Dynamic Data Display .. 4-6
iv Order Processing Package

Form Field Specification... 4-8

selectaddress.jsp Template ... 4-10

Sample Browser View .. 4-10

Location in the WebLogic Commerce Server Directory Structure... 4-12

Tag Library Imports .. 4-12

Java Package Imports.. 4-13

Location in Default Webflow ... 4-13

Included JSP Templates .. 4-13

Events.. 4-14

Dynamic Data Display .. 4-15

Form Field Specification... 4-18

addaddress.jsp Template .. 4-19

Sample Browser View .. 4-19

Location in the WebLogic Commerce Server Directory Structure... 4-20

Tag Library Imports .. 4-21

Java Package Imports.. 4-21

Location in Default Webflow ... 4-21

Included JSP Templates .. 4-22

Events.. 4-22

Dynamic Data Display .. 4-23

Form Field Specification... 4-23

Input Processors... 4-25

InitShippingMethodListIP.. 4-25

UpdateShippingAddressIP ... 4-26

ValidateAddressIP.. 4-27

ValidateShippingInfoIP.. 4-28

Pipeline Components... 4-29

AddShippingAddressPC... 4-29

CalculateShippingPC ... 4-30

DeleteShippingAddressPC ... 4-31

5. Taxation Services
JavaServer Pages (JSPs) .. 5-2

selecttaxaddress.jsp Template .. 5-2

Sample Browser View .. 5-2
Order Processing Package v

Location in the WebLogic Commerce Server Directory Structure..... 5-4

Tag Library Imports .. 5-4

Java Package Imports .. 5-5

Location in Default Webflow.. 5-5

Included JSP Templates .. 5-5

Events .. 5-6

Dynamic Data Display .. 5-6

Form Field Specification ... 5-8

Input Processors... 5-10

DecideShippingAddressPageIP.. 5-10

UpdateShippingAddressIP ... 5-11

Pipeline Components ... 5-12

TaxCalculateLineLevelPC ... 5-12

TaxCalculateAndCommitLineLevelPC ... 5-13

TaxVerifyShippingAddressPC... 5-13

Integration with TAXWARE... 5-15

Important TAXWARE Considerations .. 5-15

TAXWARE Installation ... 5-16

Installation Directory Structure ... 5-16

Testing the TAXWARE Installation ... 5-19

Changing the TAXWARE Directory Structure 5-20

TAXWARE Configuration and Deployment ... 5-20

Addresses and Taxation .. 5-21

TAXWARE-specific Properties .. 5-23

Run-Time Configuration ... 5-26

Tax Codes and the Product Catalog .. 5-29

Updating TAXWARE Tax Data ... 5-29

TAXWARE Checklist... 5-29

Removing Tax Calculations ... 5-30

Modifying the Pipeline Properties File ... 5-30

Modifying the Webflow Properties File.. 5-31

What if I Don’t Want to Use TAXWARE to Calculate My Taxes? 5-34

6. Payment Services
JavaServer Pages (JSPs) .. 6-2
vi Order Processing Package

payment.jsp Template .. 6-2

Sample Browser View .. 6-2

Location in the WebLogic Commerce Server Directory Structure..... 6-4

Tag Library Imports .. 6-4

Java Package Imports.. 6-5

Location in Default Webflow ... 6-5

Included JSP Templates .. 6-5

Events.. 6-6

Dynamic Data Display .. 6-6

Form Field Specification... 6-7

paymentnewcc.jsp Template .. 6-8

Sample Browser View .. 6-8

Location in the WebLogic Commerce Server Directory Structure..... 6-9

Tag Library Imports .. 6-10

Java Package Imports.. 6-10

Location in Default Webflow ... 6-10

Included JSP Templates .. 6-11

Events.. 6-11

Dynamic Data Display .. 6-11

Form Field Specification... 6-11

paymenteditcc.jsp Template... 6-14

Sample Browser View .. 6-14

Location in the WebLogic Commerce Server Directory Structure... 6-15

Tag Library Imports .. 6-15

Java Package Imports.. 6-16

Location in Default Webflow ... 6-16

Included JSP Templates .. 6-17

Events.. 6-17

Dynamic Data Display .. 6-17

Form Field Specification... 6-19

Input Processors... 6-22

PaymentAuthorizationIP .. 6-22

UpdatePaymentInfoIP .. 6-23

Pipeline Components... 6-24

PaymentAuthorizationHostPC ... 6-24
Order Processing Package vii

PaymentAuthorizationTerminalPC .. 6-26

Integration with CyberCash ... 6-28

Configuration Activities for Using CyberCash .. 6-29

Payment Models .. 6-31

How Do I Switch Between the Two Payment Models?.................... 6-33

What if I Don’t Want to Use CyberCash for Credit Card Processing? 6-35

Credit Card Security Service ... 6-40

Encryption/Decryption Implementation... 6-41

Customizable Security Settings.. 6-41

Methods for Supplying the Private Key Encryption Password 6-44

Specifying the Password in weblogiccommerce.properties (Default)
6-44

Specifying the Password at Server Startup Using the Console 6-46

Specifying the Password After Server Startup Using a Secure Web Form
6-46

Important Notes About Supplying Your Password........................... 6-48

What if I Want to Change My Password?... 6-48

7. Order Summary and Confirmation Services
JavaServer Pages (JSPs) .. 7-2

checkout.jsp Template.. 7-2

Sample Browser View... 7-2

Location in the WebLogic Commerce Server Directory Structure..... 7-4

Tag Library Imports .. 7-4

Java Package Imports .. 7-5

Location in Default Webflow.. 7-5

Included JSP Templates .. 7-6

Events .. 7-6

Dynamic Data Display .. 7-7

Form Field Specification ... 7-13

confirmorder.jsp Template ... 7-14

Sample Browser View... 7-14

Location in the WebLogic Commerce Server Directory Structure... 7-16

Tag Library Imports .. 7-16

Java Package Imports .. 7-16
viii Order Processing Package

Location in Default Webflow ... 7-17

Included JSP Templates .. 7-17

Events.. 7-17

Dynamic Data Display .. 7-17

Form Field Specification... 7-23

Input Processors... 7-24

Pipeline Components... 7-24

CommitOrderPC... 7-24

ResetCheckoutPC... 7-25

8. Using the Order and Payment Management Pages
Starting the WebLogic Commerce Server Administration Tools 8-2

Using the Order Management Search Page... 8-4

Searching for an Order by Customer ID .. 8-4

Searching for an Order by Order Identifier Number.................................. 8-6

Searching for an Order by Date Range .. 8-8

Using the Payment Management Search Page .. 8-12

Searching for a Payment by Customer ID.. 8-13

Searching for a Payment by Status... 8-14

Authorizing, Capturing, and Settling Payments....................................... 8-16

Authorizing the Transaction.. 8-16

Capturing the Transaction ... 8-18

Settling the Transaction .. 8-18

Index
Order Processing Package ix

x Order Processing Package

About This Document

This document explains how to use the services available within the BEA WebLogic
Commerce Server Order Processing package.

This document includes the following topics:

n Chapter 1, “Overview of the Order Processing Package,” which describes the
high-level architecture of the package and provides introductory information
about its services.

n Chapter 2, “The Order Processing Database Schema,” which describes the
database tables used for order processing activities.

n Chapter 3, “Shopping Cart Management Services,” which describes the JSP
templates, input processors, and Pipelines associated with the shopping cart Web
pages.

n Chapter 4, “Shipping Services,” which describes the JSP templates, input
processors, and Pipelines associated with the shipping Web pages.

n Chapter 5, “Taxation Services,” which describes the JSP templates, input
processors, and Pipelines associated with the tax Web pages.

n Chapter 6, “Payment Services,” which describes the JSP templates, input
processors, and Pipelines associated with the payment Web pages.

n Chapter 7, “Order Summary and Confirmation Services,” which describes the
JSP templates, input processors, and Pipelines associated with the order
summary and confirmation Web pages.
Order Processing Package xi

What You Need to Know

This document is intended for the following audiences:

n The commerce engineer/JSP content developer, who uses JSP templates and tag
libraries to implement interactive Web pages to meet business requirements. This
user also maintains simple configuration files.

n The business analyst, who defines the company’s business protocols (processes
and rules) for a business-to-consumer Web site. This user may set pricing
policies and discounts, and may plan promotional advertising.

n The site administrator, who uses Commerce and Personalization Server
administration screens to configure the site’s rules, portals, property sets, user
profiles, content delivery, and product catalog.

n The Java/EJB programmer, who creates custom code to insert in the JSP files.
This user may also handle complex configuration files.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://e-docs.beasys.com.
xii Order Processing Package

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Commerce Server
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document
(or a portion of it) in book format. To access the PDFs, open the WebLogic Commerce
Server documentation Home page, click the PDF files button and select the document
you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Related Information

The following BEA WebLogic Commerce Server documents contain information that
is relevant to using the Order Processing package and understanding how to customize
or extend the provided services.

n BEA WebLogic Commerce Server Webflow and Pipeline Management

n BEA WebLogic Commerce Server Registration and User Processing Package

n BEA WebLogic Commerce Server Product Catalog Management
Order Processing Package xiii

Contact Us!

Your feedback on the BEA WebLogic Commerce Server documentation is important
to us. Send us e-mail at docsupport@beasys.com if you have questions or comments.
Your comments will be reviewed directly by the BEA professionals who create and
update the WebLogic Commerce Server documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Commerce Server 3.1 release.

If you have any questions about this version of BEA WebLogic Commerce Server, or
if you have problems installing and running BEA WebLogic Commerce Server,
contact BEA Customer Support through BEA WebSupport at www.beasys.com. You
can also contact Customer Support by using the contact information provided on the
Customer Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.
xiv Order Processing Package

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

Convention Item
Order Processing Package xv

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
xvi Order Processing Package

CHAPTER
1 Overview of the Order
Processing Package

The process customers go through when making a purchase from your Web site is one
of the most common but complex aspects of an e-business. To help you get to market
faster than your competitors, the BEA WebLogic Commerce Server product provides
you with an Order Processing package. This package contains default implementations
for the most common e-business order-related services (such as shopping cart
management, taxation, payment, and so on). Designed to be used out-of-the-box, the
Order Processing package allows your site designers to customize the order process
without the need for advanced programming skills. Additionally, it is easily extensible
for those with advanced technical knowledge. This topic provides you with some
background information about the Order Processing package, and introduces you to
the types of services that are available.

This topic includes the following sections:

n What Is the Order Processing Package?

n High-level Architecture

n Development Roles

n Next Steps
Order Processing Package 1-1

1 Overview of the Order Processing Package
What Is the Order Processing Package?

The Order Processing package is a collection of services used to facilitate the online
ordering process. There are services for shipping, payment, and so on. Together, the
services in the Order Processing package handle all of the tasks necessary to process
your customers’ orders, from the acceptance of items in their shopping cart to final
order confirmation.

As shown in Figure 1-1, each service in the package consists of one or more
JavaServer Pages (JSPs) templates and the business logic associated with them. Some
of these templates may collect information from your customers, while others will
simply display dynamic data your customer previously supplied. Some JSPs may do
both. The logic is implemented as a combination of input processors and Pipeline
components, each of which can be customized to suit your needs. You can also create
your own input processors and Pipeline components to incorporate into the Order
Processing package.

Figure 1-1 Structure of the Order Processing Package
1-2 Order Processing Package

What Is the Order Processing Package?
Because all the business logic is managed by a Pipeline and accessed within a Pipeline
session, the state of your customer’s ordering experience can be maintained. For
detailed information about Pipelines (including Pipeline components and Pipeline
sessions), see BEA WebLogic Commerce Server WebFlow and Pipeline Management.

In addition to the services available for order processing, the BEA WebLogic
Commerce Server also contains services for browsing the product catalog and
registration/user processing. For information on services related to the product catalog,
see BEA WebLogic Commerce Server Product Catalog Management. For information
on services related to registration and user processing, see BEA WebLogic Commerce
Server Registration and User Processing Package.
Order Processing Package 1-3

1 Overview of the Order Processing Package
High-level Architecture

The Order Processing package is essentially an application that utilizes the
Webflow/Pipeline infrastructure. Before you begin to customize or extend this
application, however, it is important that you have a high-level understanding of how
all the JSP templates in the Order Processing package work together in the default
Webflow. It is also important that you understand how this package works in
conjunction with JSP templates in the Registration and User Processing package.

n For more information about the default Webflow, see BEA WebLogic Commerce
Server Webflow and Pipeline Management.

n For more information about the Registration and User Processing package, see
BEA WebLogic Commerce Server Registration and User Processing Package.

Figure 1-2 shows the ways in which your customer might move through the JSP
templates in the Order Processing package. It also shows where the Registration and
User Processing package comes into play. Only customers who have registered and
have a valid username/password combination can browse the order-related pages (any
page in the /order subdirectory). Additionally, customers who have registered can
modify their user profile, check the status of their current order, or even check their
order and payment history in the customer self-service pages (using pages in the /user
subdirectory).
1-4 Order Processing Package

High-level Architecture
Figure 1-2 Default Webflow for Order Processing

Note: All JSP templates include other templates, making it easy for you to create new
pages with the same look and feel.

paymenteditcc.jsp

Order JSPs
Authenticated Users Only

confirmorder.jsp

checkout.jsp

selecttaxaddress.jsp

selectaddress.jsp

payment.jsp

paymentnewcc.jsp

ordernewaddress.jsp ordereditaddress.jsp

From
login.jsp

or if authenticated
from

 shopping-
cart.jsp

shipping.jsp
Order Processing Package 1-5

1 Overview of the Order Processing Package
Whether you are customizing or extending this architecture, everything you need to
know about the services in the Order Processing package (including the JSP templates,
input processors, and Pipeline components associated with them) is provided in this
document. This includes detailed information about the database schema, for those
advanced programmers who want to take their e-business site to the next level.

Development Roles

This document is intended for the following audiences:

n The commerce engineer/JSP content developer, who uses JSP templates and tag
libraries to implement interactive Web pages to meet business requirements. This
user also maintains simple configuration files.

n The business analyst, who defines the company’s business protocols (processes
and rules) for a business-to-consumer Web site. This user may set pricing
policies and discounts, and may plan promotional advertising.

n The site administrator, who uses Commerce and Personalization Server
administration screens to configure the site’s rules, portals, property sets, user
profiles, content delivery, and product catalog.

n The Java/EJB programmer, who creates custom code to insert in the JSP files.
This user may also handle complex configuration files.

Next Steps

Subsequent chapters of this document describe the Order Processing package in detail,
and provide you with information you need to customize or extend the default
implementations to meet your requirements. These chapters are as follows:

n “The Order Processing Database Schema”

n “Shopping Cart Management Services”
1-6 Order Processing Package

Next Steps
n “Shipping Services”

n “Taxation Services”

n “Payment Services”

n “Order Summary and Confirmation Services”
Order Processing Package 1-7

1 Overview of the Order Processing Package
1-8 Order Processing Package

CHAPTER
2 The Order Processing
Database Schema

This topic describes the database schema for the BEA WebLogic Commerce Server
Order Processing package. Understanding this schema will be helpful to those who
may be customizing or extending the technologies provided in the product.

This topic includes the following sections:

n The Entity-Relation Diagram

n The WLCS_CUSTOMER Database Table

n The WLCS_SHIPPING_ADDRESS Database Table

n The WLCS_TRANSACTION Database Table

n The WLCS_TRANSACTION_ENTRY Database Table

n The WLCS_SAVED_ITEM_LIST Database Table

n The WLCS_ORDER Database Table

n The WLCS_ORDER_LINE Database Table

n The WLCS_SHIPPING_METHOD Database Table

n The WLCS_SECURITY Database Table

n The SQL Files and Defined Constraints
Order Processing Package 2-1

2 The Order Processing Database Schema
The Entity-Relation Diagram

Figure 2-1 shows the Entity-Relation diagram for the BEA WebLogic Commerce
Server order processing database.

Figure 2-1 Entity-Relation Diagram for the Order Processing Database
2-2 Order Processing Package

The Entity-Relation Diagram
Explanations for the columns in each table are provided in the remainder of this topic.
Order Processing Package 2-3

2 The Order Processing Database Schema
The WLCS_CUSTOMER Database Table

Table 2-1 describes the metadata for the Commerce Server WLCS_CUSTOMER
table. This table is used to store information about the customer in the order processing
database.

Table 2-1 WLCS_CUSTOMER Table Metadata

Column Name Cloudscape Type Oracle Type Description and
Recommendations

CUSTOMER_ID VARCHAR(20) VARCHAR2(20) A unique identifier for the
customer. This field is the
table’s primary key and
cannot be NULL. All other
fields in the
WLCS_CUSTOMER table
can be NULL.

CUSTOMER_TYPE VARCHAR(256) VARCHAR2(256) A label for the customer
(such as preferred,
standard, or business).

FIRST_NAME VARCHAR(30) VARCHAR2(30) The customer’s first name.

LAST_NAME VARCHAR(30) VARCHAR2(30) The customer’s last name.

MIDDLE_NAME VARCHAR(30) VARCHAR2(30) The customer’s middle
name.

TITLE VARCHAR(10) VARCHAR2(10) The customer’s preferred
title (Mr., Mrs., Ms.).

SUFFIX VARCHAR(10) VARCHAR2(10) The customer’s preferred
suffix (Jr., Sr.).

EMAIL VARCHAR(80) VARCHAR2(80) The customer’s email
address.

HOME_PHONE VARCHAR(15) VARCHAR2(15) The customer’s home
phone number.
2-4 Order Processing Package

The WLCS_CUSTOMER Database Table
BUSINESS_PHONE VARCHAR(20) VARCHAR2(20) The customer’s business
phone number.

FAX VARCHAR(15) VARCHAR2(15) The customer’s fax
number.

MAILING_GEOCODE VARCHAR(10) VARCHAR2(2) The code used by the
TAXWARE system to
identify taxes for the order
based on jurisdiction.

MAILING_STREET1 VARCHAR(30) VARCHAR2(30) The first line in the
customer’s street address.

MAILING_STREET2 VARCHAR(30) VARCHAR2(30) The second line in the
customer’s street address.

MAILING_CITY VARCHAR(30) VARCHAR2(30) The city in the customer’s
address.

MAILING_STATE VARCHAR(40) VARCHAR2(40) The state in the customer’s
address.

MAILING_COUNTRY VARCHAR(40) VARCHAR2(40) The country in the
customer’s address.

MAILING_POBOX VARCHAR(30) VARCHAR2(30) The post office box in the
customer’s address.

MAILING_COUNTY VARCHAR(30) VARCHAR2(30) The county in the
customer’s address.

MAILING_POSTAL_CODE VARCHAR(10) VARCHAR2(10) The postal (zip) code in the
customer’s address.

MAILING_POSTAL_CODE
_TYPE

VARCHAR(10) VARCHAR2(10) Format or type of postal
code, generally determined
by country (such as zip
code in the United States).

Table 2-1 WLCS_CUSTOMER Table Metadata

Column Name Cloudscape Type Oracle Type Description and
Recommendations
Order Processing Package 2-5

2 The Order Processing Database Schema
The WLCS_SHIPPING_ADDRESS Database
Table

Table 2-2 describes the metadata for the Commerce Server
WLCS_SHIPPING_ADDRESS table. This table is used to store information related to
a customer’s shipping address(es) in the order processing database.

Table 2-2 WLCS_SHIPPING_ADDRESS Table Metadata

Column Name Cloudscape Type Oracle Type Description and
Recommendations

SHIPPING_ADDRESS_ID INTEGER NUMBER(15) A unique identifier for the
shipping address. This field
is the table’s primary key
and cannot be NULL. All
other fields in the
WLCS_SHIPPING_
ADDRESS table can be
NULL.

CUSTOMER_ID VARCHAR(20) VARCHAR2(20) A unique identifier for the
customer.

MAP_KEY VARCHAR(30) VARCHAR2(30) Key that maps multiple
shipping addresses with a
single customer.

SHIPPING_GEOCODE VARCHAR(2) VARCHAR2(2) The code used by the
TAXWARE system to
identify taxes for the order
based on jurisdiction.

SHIPPING_STREET1 VARCHAR(30) VARCHAR2(30) The first line in the
customer’s shipping
address.

SHIPPING_STREET2 VARCHAR(30) VARCHAR2(30) The second line in the
customer’s shipping
address.
2-6 Order Processing Package

The WLCS_SHIPPING_ADDRESS Database Table
SHIPPING_CITY VARCHAR(30) VARCHAR2(30) The city in the customer’s
shipping address.

SHIPPING_STATE VARCHAR(40) VARCHAR2(40) The state in the customer’s
shipping address.

SHIPPING_COUNTRY VARCHAR(40) VARCHAR2(40) The country in the
customer’s shipping
address.

SHIPPING_POBOX VARCHAR(30) VARCHAR2(30) The post office box in the
customer’s shipping
address.

SHIPPING_COUNTY VARCHAR(30) VARCHAR2(30) The county in the
customer’s shipping
address.

SHIPPING_POSTAL_CODE VARCHAR(10) VARCHAR2(10) The postal (zip) code in the
customer’s shipping
address.

SHIPPING_POSTAL_CODE
_TYPE

VARCHAR(10) VARCHAR2(10) Format or type of postal
code, generally determined
by country (such as zip
code in the United States).

Table 2-2 WLCS_SHIPPING_ADDRESS Table Metadata

Column Name Cloudscape Type Oracle Type Description and
Recommendations
Order Processing Package 2-7

2 The Order Processing Database Schema
The WLCS_CREDIT_CARD Database Table

Table 2-3 describes the metadata for the Commerce Server WLCS_CREDIT_CARD
table. This table is used to store information related to a customer’s credit card(s) in
the order processing database.

Table 2-3 WLCS_CREDIT_CARD Table Metadata

Column Name Cloudscape Type Oracle Type Description and
Recommendations

CREDIT_CARD_ID INTEGER NUMBER(15) A unique identifier for the
credit card. This field is the
table’s primary key and
cannot be NULL. All other
fields in the
WLCS_CREDIT_CARD
table can be NULL.

CUSTOMER_ID VARCHAR(20) VARCHAR2(20) A unique identifier for the
customer.

MAP_KEY VARCHAR(20) VARCHAR2(20) Key that maps multiple
credit cards with a single
customer.

CC_NUMBER VARCHAR(200) VARCHAR2(200) The customer’s credit card
number. This is encrypted
if is.encryption.
enable is set to true
in the
weblogiccommerce.
properties file.

CC_TYPE VARCHAR(20) VARCHAR2(20) The customer’s credit card
type (VISA, MasterCard,
and so on).

CC_EXP_DATE DATE DATE The expiration date on the
customer’s credit card.
2-8 Order Processing Package

The WLCS_CREDIT_CARD Database Table
CC_NAME VARCHAR(50) VARCHAR2(50) The credit card holder’s
name.

CC_DISPLAY_NUMBER VARCHAR(20) VARCHAR2(20) The version of the credit
card number that is
displayed (all Xs except
last 4-digits).

CC_COMPANY VARCHAR(50) VARCHAR2(50) The name of the credit card
company.

BILLING_GEOCODE VARCHAR(2) VARCHAR2(2) The code used by the
TAXWARE system to
identify taxes for the order
based on jurisdiction.

BILLING_STREET1 VARCHAR(30) VARCHAR2(30) The first line in the
customer’s billing address.

BILLING_STREET2 VARCHAR(30) VARCHAR2(30) The second line in the
customer’s billing address.

BILLING_CITY VARCHAR(30) VARCHAR2(30) The city in the customer’s
billing address.

BILLING_STATE VARCHAR(40) VARCHAR2(40) The state in the customer’s
billing address.

BILLING_COUNTRY VARCHAR(40) VARCHAR2(40) The country in the
customer’s billing address.

BILLING_POBOX VARCHAR(30) VARCHAR2(30) The post office box in the
customer’s billing address.

BILLING_COUNTY VARCHAR(30) VARCHAR2(30) The county in the
customer’s billing address.

BILLING_POSTAL_CODE VARCHAR(10) VARCHAR2(10) The postal (zip) code in the
customer’s billing address.

Table 2-3 WLCS_CREDIT_CARD Table Metadata

Column Name Cloudscape Type Oracle Type Description and
Recommendations
Order Processing Package 2-9

2 The Order Processing Database Schema
BILLING_POSTAL_CODE
_TYPE

VARCHAR(10) VARCHAR2(10) Format or type of postal
code, generally determined
by country (such as zip
code in the United States).

Table 2-3 WLCS_CREDIT_CARD Table Metadata

Column Name Cloudscape Type Oracle Type Description and
Recommendations
2-10 Order Processing Package

The WLCS_TRANSACTION Database Table
The WLCS_TRANSACTION Database Table

Table 2-4 describes the metadata for the Commerce Server WLCS_TRANSACTION
table. This table is used to store data for every payment transaction in the order
processing database.

Table 2-4 WLCS_TRANSACTION Table Metadata

Column Name Cloudscape Type Oracle Type Description and
Recommendations

TRANSACTION_ID VARCHAR(25) VARCHAR2(25) A unique identifier for the
transaction. This field is the
table’s primary key and
cannot be NULL. All other
fields in the WLCS_
TRANSACTION table can
be NULL.

BATCH_ID VARCHAR(15) VARCHAR2(15) A unique identifier of a
batch submitted for
settlement, as returned by
CyberCash. This field need
not be populated for other
external payment services.

TRAN_DATE DATE DATE The date of the transaction
(date on which the
transaction was first
started).

TRAN_STATUS VARCHAR(20) VARCHAR2(20) The current status of the
transaction (Settled,
Authorized,
MarkedForSettle,
PendingSettle, Retry,
Settled).
Order Processing Package 2-11

2 The Order Processing Database Schema
TRAN_AMOUNT DOUBLE
PRECISION

NUMBER(16,4) The most recent amount
applied to the transaction
(MarkForSettle amounts
can be different from the
authorization amount).

TRAN_CURRENCY VARCHAR(30) VARCHAR2(30) The currency of the
transaction.

CC_NUMBER VARCHAR(200) VARCHAR2(200) The customer’s credit card
number. This is encrypted
if is.encryption.
enable is set to true
in the
weblogiccommerce.
properties file.

CC_TYPE VARCHAR(20) VARCHAR2(20) The customer’s credit card
type (VISA, MasterCard,
and so on).

CC_EXP_DATE DATE DATE The expiration date on the
customer’s credit card.

CC_NAME VARCHAR(50) VARCHAR2(50) The credit card holder’s
name.

CC_DISPLAY_NUMBER VARCHAR(20) VARCHAR2(20) The version of the credit
card number that is
displayed (all Xs except
last 4-digits).

CC_COMPANY VARCHAR(50) VARCHAR2(50) The name of the credit card
company.

GEOCODE VARCHAR(2) VARCHAR2(2) The code used by the
TAXWARE system to
identify taxes for the order
based on jurisdiction.

Table 2-4 WLCS_TRANSACTION Table Metadata

Column Name Cloudscape Type Oracle Type Description and
Recommendations
2-12 Order Processing Package

The WLCS_TRANSACTION Database Table
STREET1 VARCHAR(30) VARCHAR2(30) The first line in the
customer’s street address.

STREET2 VARCHAR(30) VARCHAR2(30) The second line in the
customer’s street address.

CITY VARCHAR(30) VARCHAR2(30) The city in the customer’s
address.

STATE VARCHAR(40) VARCHAR2(40) The state in the customer’s
address.

COUNTRY VARCHAR(40) VARCHAR2(40) The country in the
customer’s address.

POBOX VARCHAR(30) VARCHAR2(30) The post office box in the
customer’s address.

COUNTY VARCHAR(30) VARCHAR2(30) The county in the
customer’s address.

POSTAL_CODE VARCHAR(10) VARCHAR2(10) The postal (zip) code in the
customer’s address.

POSTAL_CODE_TYPE VARCHAR(10) VARCHAR2(10) Format or type of postal
code, generally determined
by country (such as zip
code in the United States).

DESCRIPTION VARCHAR(30) VARCHAR2(30) Any additional data. Can be
NULL.

Table 2-4 WLCS_TRANSACTION Table Metadata

Column Name Cloudscape Type Oracle Type Description and
Recommendations
Order Processing Package 2-13

2 The Order Processing Database Schema
The WLCS_TRANSACTION_ENTRY Database
Table

Table 2-5 describes the metadata for the Commerce Server
WLCS_TRANSACTION_ENTRY table. This table is used to store (log) the different
states a payment transaction has passed through in the order processing database.

Table 2-5 WLCS_TRANSACTION_ENTRY Table Metadata

Column Name Cloudscape Type Oracle Type Description and
Recommendations

TRANSACTION_ENTRY_ID INTEGER NUMBER(25) A unique identifier for the
transaction entry. This field
is the table’s primary key
and cannot be NULL. All
other fields in the
WLCS_TRANSACTION_
ENTRY table can be NULL.

TRAN_ENTRY_SEQUENCE VARCHAR(30) VARCHAR2(30) Represents the running
count per transaction.

TRAN_ENTRY_DATE DATE DATE The date of the log entry.

TRAN_ENTRY_STATUS VARCHAR(20) VARCHAR2(20) The status of the
transaction when this entry
was made.

TRAN_ENTRY_AMOUNT DOUBLE
PRECISION

NUMBER(16,4) The amount of the
transaction when the log
entry was made.

TRAN_ENTRY_CURRENCY VARCHAR(30) VARCHAR2(30) The currency of the
transaction.

TRANSACTION_ID VARCHAR(25) VARCHAR2(25) A unique identifier for the
transaction.
2-14 Order Processing Package

The WLCS_SAVED_ITEM_LIST Database Table
The WLCS_SAVED_ITEM_LIST Database
Table

Table 2-6 describes the metadata for the Commerce Server
WLCS_SAVED_ITEM_LIST table. This table is used to store information about the
customer’s saved shopping cart items in the order processing database.

Table 2-6 WLCS_SAVED_ITEM_LIST Table Metadata

Column Name Cloudscape Type Oracle Type Description and
Recommendations

CUSTOMER_ID VARCHAR(20) VARCHAR2(20) A unique identifier for the
customer.

SKU VARCHAR(40) VARCHAR2(40) A unique identifier (the “Stock
Keeping Unit,” or SKU) for a
product item.
Order Processing Package 2-15

2 The Order Processing Database Schema
The WLCS_ORDER Database Table

Table 2-7 describes the metadata for the Commerce Server WLCS_ORDER table.
This table is used to store information about a customer’s specific order in the order
processing database.

Note: The BEA WebLogic Commerce Server product does not populate the
SHIPPING_AMOUNT, SHIPPING_CURRENCY, PRICE_AMOUNT, or
PRICE_CURRENCY columns.

Table 2-7 WLCS_ORDER Table Metadata

Column Name Cloudscape Type Oracle Type Description and
Recommendations

ORDER_ID VARCHAR(20) VARCHAR2(20) A unique identifier for the
order. This field is the
table’s primary key and
cannot be NULL. All other
fields in the WLCS_ORDER
table can be NULL.

CUSTOMER_ID VARCHAR(20) VARCHAR2(20) A unique identifier for the
customer.

TRANSACTION_ID VARCHAR(25) VARCHAR2(25) A unique identifier for the
transaction.

STATUS VARCHAR(20) VARCHAR2(20) The status of the order.

ORDER_DATE DATE DATE The date the order was
placed.

SHIPPING_METHOD VARCHAR(40) VARCHAR2(40) The method by which the
order is to be shipped.

SHIPPING_AMOUNT DOUBLE

PRECISION

NUMBER(16,4) The shipping amount for
the order.

SHIPPING_CURRENCY VARCHAR(10) VARCHAR2(10) The currency associated
with the shipping amount.
2-16 Order Processing Package

The WLCS_ORDER Database Table
PRICE_AMOUNT DOUBLE

PRECISION

NUMBER(16,4) The price of the order.

PRICE_CURRENCY VARCHAR(10) VARCHAR2(10) The currency associated
with the price.

SHIPPING_GEOGODE VARCHAR(2) VARCHAR2(2) The code used by the
TAXWARE system to
identify taxes for the order
based on jurisdiction.

SHIPPING_STREET1 VARCHAR(30) VARCHAR2(30) The first line in the
customer’s shipping
address.

SHIPPING_STREET2 VARCHAR(30) VARCHAR2(30) The second line in the
customer’s shipping
address.

SHIPPING_CITY VARCHAR(30) VARCHAR2(30) The city in the customer’s
shipping address.

SHIPPING_STATE VARCHAR(40) VARCHAR2(40) The state in the customer’s
shipping address.

SHIPPING_COUNTRY VARCHAR(40) VARCHAR2(40) The country in the
customer’s shipping
address.

SHIPPING_POBOX VARCHAR(30) VARCHAR2(30) The post office box in the
customer’s shipping
address.

SHIPPING_COUNTY VARCHAR(40) VARCHAR2(30) The county in the
customer’s shipping
address.

SHIPPING_POSTAL_CODE VARCHAR(10) VARCHAR2(10) The postal (zip) code in the
customer’s shipping
address.

Table 2-7 WLCS_ORDER Table Metadata

Column Name Cloudscape Type Oracle Type Description and
Recommendations
Order Processing Package 2-17

2 The Order Processing Database Schema
SHIPPING_POSTAL_CODE
_TYPE

VARCHAR(10) VARCHAR2(10) Format or type of postal
code, generally determined
by country (such as zip
code in the United States).

SPECIAL_INSTRUCTIONS VARCHAR(256) VARCHAR2(256) Any special shipping
instructions associated with
the order.

SPLITTING_PREFERENCE VARCHAR(256) VARCHAR2(256) The splitting preferences
for the customer’s order.

Table 2-7 WLCS_ORDER Table Metadata

Column Name Cloudscape Type Oracle Type Description and
Recommendations
2-18 Order Processing Package

The WLCS_ORDER_LINE Database Table
The WLCS_ORDER_LINE Database Table

Table 2-8 describes the metadata for the Commerce Server WLCS_ORDER_LINE
table. This table is used to store information about each line of a customer’s shopping
cart in the order processing database.

Table 2-8 WLCS_ORDER_LINE Table Metadata

Column Name Cloudscape Type Oracle Type Description and
Recommendations

ORDER_LINE_ID INTEGER NUMBER(15) A unique identifier for each
line in a customer’s
shopping cart. This field is
the table’s primary key and
cannot be NULL. All other
fields in the
WLCS_ORDERLINE table
can be NULL.

QUANTITY DOUBLE
PRECISION

NUMBER(16,4) The quantity of the item in
the shopping cart.

PRODUCT_ID VARCHAR(40) VARCHAR2(40) An identification number
for the item in the shopping
cart.

TAX_AMOUNT DOUBLE
PRECISION

NUMBER(16,4) The tax amount for the
order.

TAX_CURRENCY VARCHAR(10) VARCHAR2(10) The currency associated
with the tax amount.

SHIPPING_AMOUNT DOUBLE
PRECISION

NUMBER(16,4) The shipping amount for
the order.

SHIPPING_CURRENCY VARCHAR(10) VARCHAR2(10) The currency associated
with the shipping amount.

UNIT_PRICE_AMOUNT DOUBLE
PRECISION

NUMBER(16,4) The unit price amount for
the item.
Order Processing Package 2-19

2 The Order Processing Database Schema
UNIT_PRICE_CURRENCY VARCHAR(10) VARCHAR2(10) The currency associated
with the unit price.

MSRP_AMOUNT DOUBLE
PRECISION

NUMBER(16,4) The MSRP amount for the
item.

MSRP_CURRENCY VARCHAR(10) VARCHAR2(10) The currency associated
with the MSRP amount.

DESCRIPTION VARCHAR(256) VARCHAR2(256) The name of the item that is
part of the order.

ORDER_ID VARCHAR(20) VARCHAR2(20) A unique identifier for the
order.

Table 2-8 WLCS_ORDER_LINE Table Metadata

Column Name Cloudscape Type Oracle Type Description and
Recommendations
2-20 Order Processing Package

The WLCS_SHIPPING_METHOD Database Table
The WLCS_SHIPPING_METHOD Database
Table

Table 2-9 describes the metadata for the Commerce Server
WLCS_SHIPPING_METHOD table. This table is used to store information about the
shiping method in the order processing database.

Table 2-9 WLCS_SHIPPING_METHOD Table Metadata

Column Name Cloudscape Type Oracle Type Description and
Recommendations

PK_IDENTIFIER VARCHAR(20) VARCHAR2(20) A unique identifier for the
shipping method. This field
is the table’s primary key
and cannot be NULL. All
other fields in the
WLCS_SHIPPING_
METHOD table can be
NULL.

CARRIER VARCHAR(40) VARCHAR2(40) The carrier being used to
ship the order (such as
UPS, FedEx, and so on).

METHOD VARCHAR(40) VARCHAR2(40) The method by which the
order is to be shipped (such
as air, 2nd day air, parcel
post, and so on).

AVERAGE_SHIPPING_
TIME

INTEGER NUMBER The average number of
days it will take the order to
arrive.

PRICE_VALUE DOUBLE
PRECISION

NUMBER(16,4) The amount it will cost to
ship the order.
Order Processing Package 2-21

2 The Order Processing Database Schema
PRICE_CURRENCY VARCHAR(10) VARCHAR2(10) The currency associated
with the PRICE_VALUE
column (such as dollars,
pounds, lira, and so on).

WEIGHT_LIMIT DOUBLE
PRECISION

NUMBER(16,4) The weight limit for the
shipment.

RESTRICTIONS VARCHAR(256) VARCHAR2(256) Any restrictions associated
with the shipment.

DESCRIPTION VARCHAR(256) VARCHAR2(256) A description of the
shipping method (such as
FedEx Overnight or
Standard).

PO_BOX_ALLOWED INTEGER NUMBER Specifies whether or not the
shipment can be left at a
post office box.

SIGNATURE_REQUIRED INTEGER NUMBER Specifies whether or not a
signature is required upon
receipt of the shipment.

SATURDAY_DELIVERY INTEGER NUMBER Specifies whether or not the
shipment can be delivered
on Saturday.

INTERNATIONAL_
DELIVERY

INTEGER NUMBER Specifies whether or not
international delivery is an
option.

SIZE_LIMIT DOUBLE
PRECISION

NUMBER(16,4) The size limit for the
shipment.

PACKAGING_TYPE VARCHAR(50) VARCHAR2(50) The packaging type for the
shipment.

Table 2-9 WLCS_SHIPPING_METHOD Table Metadata

Column Name Cloudscape Type Oracle Type Description and
Recommendations
2-22 Order Processing Package

The WLCS_SECURITY Database Table
The WLCS_SECURITY Database Table

Table 2-10 describes the metadata for the Commerce Server WLCS_SECURITY
table. This table is used to persist public and private keys for encryption and
decryption purposes in the order processing database. This table is meant for internal use
by the BEA WebLogic Commerce Server product.

Table 2-10 WLCS_SECURITY Table Metadata

Column Name Cloudscape Type Oracle Type Description and
Recommendations

ID INTEGER NUMBER(2) A unique identifier for the
key pair. This field is the
table’s primary key and
cannot be NULL.

PUBLIC_KEY VARCHAR(2000) VARCHAR2(2000) The public key to be used
for encryption/decryption
of credit cards.

PRIVATE_KEY VARCHAR(2000) VARCHAR2(2000) The private key to be used
for encryption/decryption
of credit cards.
Order Processing Package 2-23

2 The Order Processing Database Schema
The SQL Files and Defined Constraints

The BEA WebLogic Commerce Server product provides two SQL files to create the
Cloudscape and Oracle versions of the order processing database. The SQL files are
in the WL_COMMERCE_HOME\db\<database-vendor>\wlcs\ directories.
WL_COMMERCE_HOME is the directory in which you installed the WebLogic Commerce
Server software, and the <database-vendor> directory is either cloudscape or
oracle. The files are:

n create-order-cloudscape.sql

n create-order-oracle.sql

You can run the create-* procedure for the desired database vendor type by invoking
one of the following procedures in the WL_COMMERCE_HOME\db\directory:

n create-all-cloudscape.bat (Windows) or
create-all-cloudscape.sh (UNIX)

n create-all-oracle.bat (Windows) or
create-all-oracle.sh (UNIX)

Note: You can also create just the WebLogic Commerce Server or WebLogic
Personalization Server specific databases. Simply substitute wlcs or wlps for
all in the procedures shown above.

In each create-order-* SQL file, the database tables described earlier in this chapter
are created. In addition, the SQL files define constraints. Table 2-11 shows the table
name and describes the constraint(s) defined for it.

Note: The sample SQL statements shown in the table are from the
create-order-oracle.sql file. The syntax is different for Cloudscape.
Except where noted, the effect of each constraint is the same.
2-24 Order Processing Package

The SQL Files and Defined Constraints
Table 2-11 Constraints Defined on Order Database Tables

Table Name Constraints as Defined in create-order-oracle.sql

WLCS_SHIPPING_ADDRESS If a customer is deleted from the database, the CUSTOMER_FK
constraint causes all their associated shipping addresses to be deleted.

The constraint for the schema in Oracle is:
CONSTRAINT CUSTOMER_FK REFERENCES
WLCS_CUSTOMER(CUSTOMER_ID) ON DELETE CASCADE

WLCS_CREDIT_CARD If a customer is deleted from the database, the
CUSTOMER_CREDIT_CARD_FK constraint causes all their
associated credit cards to be deleted.

The constraint for the schema in Oracle is:
CONSTRAINT CUSTOMER_CREDIT_CARD_FK REFERENCES
WLCS_CUSTOMER(CUSTOMER_ID) ON DELETE CASCADE

WLCS_TRANSACTION_ENTRY If a transaction is deleted from the database, the
WLCS_TRANSACTION_FK constraint causes all the associated
transaction entries be deleted.

The constraint for the schema in Oracle is:
CONSTRAINT WLCS_TRANSACTION_FK REFERENCES
WLCS_TRANSACTION(TRANSACTION_ID) ON DELETE
CASCADE

WLCS_ORDER_LINE If an order is deleted from the database, the WLCS_ORDER_FK
constraint causes all the associated order line items to be deleted.

The constraint for the schema in Oracle is:
CONSTRAINT ORDER_FK REFERENCES
WLCS_ORDER(ORDER_ID) ON DELETE CASCADE
Order Processing Package 2-25

2 The Order Processing Database Schema
2-26 Order Processing Package

CHAPTER
3 Shopping Cart
Management Services

As in a physical store, a shopping cart is the mechanism used to store items that a
customer decides to purchase from your e-business. Implicitly, the cart also stores
various types of information related to these items: a unique identifier, a quantity, a
price, discounts, taxes, and so on. Customers need to be able to manage their shopping
cart by adding and removing items. This topic provides you with information about the
Shopping Cart Management Services, which allow your customers to perform these
activities.

This topic includes the following sections:

n JavaServer Pages (JSPs)

l shoppingcart.jsp Template

n Input Processors

l DeleteProductItemFromShoppingCartIP

l EmptyShoppingCartIP

l InitShoppingCartIP

l UpdateShoppingCartQuantitiesIP

l UpdateSkuIP

n Pipeline Components

l DeleteProductItemFromSavedListPC

l MoveProductItemToSavedListPC

l MoveProductItemToShoppingCartPC

l RefreshSavedListPC
Order Processing Package 3-1

3 Shopping Cart Management Services
JavaServer Pages (JSPs)

The Order Processing package contains one JavaServer Page (JSP) that allows your
customers to manage their shopping cart. You can choose to utilize this page in its
current form, or adapt it to meet your specific needs. This section describes this page
in detail.

shoppingcart.jsp Template

The shoppingcart.jsp template (shown in Figure 3-1 and Figure 3-2) displays the
items currently in a customer’s shopping cart. For each item the customer added to
their cart (that is still actively part of the current purchase), the shoppingcart.jsp
template displays the quantity, the item name, the list price, the actual price, a savings
amount, and a subtotal. Following this information, a total price for the order is
displayed.

The item quantity is shown in an editable field, allowing customers to change the
quantity of the item simply by typing a new quantity and clicking the Update button.
For your customers’ convenience, the item name is hyperlinked back to its description
in the product catalog. For each item in the shopping cart, there is also a Delete button
and a Buy Later button. Clicking the Delete button removes the item from the
shopping cart, while clicking the Buy Later button causes the item to be moved from
the Shopping Cart to the Saved Items list. For each item shown in the Saved Items list,
the hyperlinked item name and a brief description are displayed. Additionally, the
Delete and Add to Cart buttons in this section allow your customers to remove the item
altogether or to move it back to their active Shopping Cart.

Notes: To be able to use the features of the Saved Items list, a customer must have
first logged in.

If there are no items in a customer’s shopping cart, the Empty Cart, Update,
and Check Out buttons will not be available.

If the customer is satisfied with the contents of their shopping cart, the customer can
click the Check Out button to begin the checkout process.
3-2 Order Processing Package

JavaServer Pages (JSPs)
Note: If the customer is not logged into your e-commerce site, they will be prompted
to do so before continuing to the next part of the checkout process.

If your customer wants to start over, the customer can click the Empty Cart button to
empty the entire contents of the shopping cart (both active and saved). If your customer
wants to continue shopping, the customer can click the Continue Shopping button to
return to the product catalog.

Sample Browser View

Figure 3-1 and Figure 3-2 show annotated versions of the shoppingcart.jsp
template; the first shows the page for a customer who has not logged in, the second
shows the page for a customer who has logged in. The dashed lines and numbers in the
diagram are not part of the template; they are referenced in the explanation that follows
the screen shot.

Figure 3-1 Annotated shoppingcart.jsp Template - Customer Not Logged In
Order Processing Package 3-3

3 Shopping Cart Management Services
Figure 3-2 Annotated shoppingcart.jsp Template - Customer Logged In

The numbers in the following list refer to the numbered regions in the figures:

1. The page header (top banner) is created from an import of the header2.jsp
template. This is standard across many of the JSP templates provided by WebLogic
Commerce Server. The import call is:

<%@ include file="/commerce/includes/header2.jsp" %>

2. This region is the main content area for the page, which contains both
dynamically generated data and static content. The dynamic content on
shoppingcart.jsp is generated using WebLogic Server and Pipeline JSP tags
that obtain and display the contents of both the active shopping cart and Saved
Item list. For the shoppingcart.jsp template, the form posts include Delete,
Buy Later, and Add to Cart (all per item), and Empty Cart, Check Out, Update,
and Continue Shopping.
3-4 Order Processing Package

JavaServer Pages (JSPs)
3. The shoppingcart.jsp template’s content in region 3 contains the included
footer2.jsp template. The include call in shoppingcart.jsp is:

<%@ include file="/commerce/includes/footer2.jsp" %>

footer2.jsp consists of the horizontal footer at the bottom of the page, plus
the right-side vertical column that describes (for the benefit of you and your
development team) the name of the current template and links to its About
information. In the footer2.jsp file, the right-side vertical column is an
include file:

<%@ include file="/commerce/includes/rightside.jsp" %>

Location in the WebLogic Commerce Server Directory Structure

You can find the shoppingcart.jsp template file at the following location, where
WL_COMMERCE_HOME is the directory in which you installed WebLogic Commerce
Server:

%WL_COMMERCE_HOME%\server\webapps\wlcs\commerce\shoppingcart.jsp
(Windows)
$WL_COMMERCE_HOME/server/webapps/wlcs/commerce/shoppingcart.jsp
(UNIX)

Tag Library Imports

The shoppingcart.jsp template uses WebLogic Server and Pipeline JSP tags.
Therefore, the template includes the following JSP tag libraries:

<%@ taglib uri=”weblogic.tld” prefix=”wl” %>
<%@ taglib uri=”pipeline.tld” prefix=”pipeline” %>

Note: For more information on the WebLogic Server JSP tags, see “JSP Tag
Reference” in the BEA WebLogic Personalization Server documentation. For
more information about the Pipeline JSP tags, see BEA WebLogic Commerce
Server Webflow and Pipeline Management.

These files reside in the following directory for the WebLogic Commerce Server Web
application:

%WL_COMMERCE_HOME%\server\webapps\wlcs\WEB-INF (Windows)
$WL_COMMERCE_HOME/server/webapps/wlcs/WEB-INF (UNIX)
Order Processing Package 3-5

3 Shopping Cart Management Services
Java Package Imports

The shoppingcart.jsp template uses Java classes in the following packages and
therefore includes these import statements:

<%@ page import=”java.util.*” %>
<%@ page import=”java.text.*” %>
<%@ page import=”com.beasys.commerce.foundation.pipeline.*” %>
<%@ page import=”com.beasys.commerce.axiom.units.*” %>
<%@ page import=”com.beasys.commerce.ebusiness.shoppingcart.*” %>
<%@ page import=”com.beasys.commerce.webflow.*” %>

Location in Default Webflow

Customers can arrive at shoppingcart.jsp template from any product catalog page
by clicking the View Cart button. If the customer is satisfied with the contents of their
shopping cart as shown on this page, the customer can initiate the checkout process by
clicking the Check Out button. If this is the case, the next page is the shipping
information page (shipping.jsp).

Note: If the customer has not yet logged into the site and clicks the Check Out button,
the customer will be prompted to login at the login.jsp template (prior to
loading the shipping.jsp template). For more information about the
login.jsp template, see BEA WebLogic Commerce Server Registration and
User Processing Package.

If customers click a link to an individual product item to review detailed information
about that product item, the next page is the appropriate product catalog page. If they
click on the Update Totals, Empty Cart, Delete, or Save for Later buttons, they are
returned to the shopping cart page (shoppingcart.jsp) after the appropriate input
processor or Pipeline has been executed to record the modification.

Note: For more information about the default Webflow, see “Overview of the Order
Processing Package” on page 1-1.
3-6 Order Processing Package

JavaServer Pages (JSPs)
Included JSP Templates

The following JSP templates are included in the shoppingcart.jsp template:

n header2.jsp, which creates the top banner.

n footer2.jsp, which creates a horizontal footer at the bottom of the page, and
also includes the rightside.jsp template. rightside.jsp describes (for the
benefit of you and your development team) the name of the current template and
links to its About information.

Events

Every time a customer clicks a button to manage the contents of their shopping cart, it
is considered an event. Each event triggers a particular response in the default
Webflow that allows the customer to continue. While this response can be to load
another JSP, it is usually the case that an input processor and/or Pipeline is invoked
first. Table 3-1 provides information about these events and the business logic they
invoke.

Table 3-1 shoppingcart.jsp Events

Event Webflow Response(s)

-- InitShoppingCartIP

-- RefreshSavedList

button(checkout) InitShippingMethodListIP

button(deleteItemFromShoppingCart) DeleteProductItemFromShoppingCartIP

button(deleteItemFromSavedList) UpdateSkuIP
DeleteProductItemFromSavedList

button(emptyShoppingCart) EmptyShoppingCartIP

button(moveItemToSavedList) UpdateSkuIP

MoveProductItemToSavedList

button(moveItemToShoppingCart) UpdateSkuIP
MoveProductItemToShoppingCart

button(updateShoppingCartQuantities) UpdateShoppingCartQuantitiesIP
Order Processing Package 3-7

3 Shopping Cart Management Services
Table 3-2 briefly describes each of the Pipelines from Table 3-1, as they are defined in
the pipeline.properties file. For more information about individual Pipeline
components, see “Pipeline Components” on page 3-18.

Notes: Although the InitShoppingCartIP and RefreshSavedList Pipeline are
associated with the shoppingcart.jsp template, they are not triggered by
events on the page. Rather, both are executed before the shoppingcart.jsp
is viewed. The InitShoppingCartIP input processor creates an empty
shopping cart in preparation for the customer’s shopping experience, while the
RefreshSavedList Pipeline retrieves a customer’s list of previously saved
shopping cart items.

For information about the AddProductItemToShoppingCartPC, a Pipeline
component invoked in a Pipeline prior to display of the shoppingcart.jsp
template, see “The Product Catalog JSP Templates and Tag Library” in the
BEA WebLogic Commerce Server Product Catalog Management
documentation.

Dynamic Data Display

One purpose of the shoppingcart.jsp template is to display the data specific to a
customer’s shopping experience for their review. This is accomplished on
shoppingcart.jsp using a combination of WebLogic Server and Pipeline JSP tags
and accessor methods/attributes.

Table 3-2 Shopping Cart Pipelines

Pipeline Description

RefreshSavedList Contains RefreshSavedListPC and is not transactional.

DeleteProductItemFromSavedList Contains DeleteProductItemFromSavedListPC and is
transactional.

MoveProductItemToSavedList Contains MoveProductItemToSavedListPC and is
transactional.

MoveProductItemToShoppingCart Contains MoveProductItemToShoppingCartPC and is
transactional.
3-8 Order Processing Package

JavaServer Pages (JSPs)
First, the getPipelineProperty JSP tag retrieves the SHOPPING_CART and
SAVED_SHOPPING_CART attributes from the Pipeline session. Table 3-3 provides more
detailed information on these attributes.

Listing 3-1 illustrates how these attributes are retrieved from the Pipeline session using
the getPipelineProperty JSP tag.

Listing 3-1 Retrieving Shopping Cart Attributes

<pipeline:getPipelineProperty
 propertyName=”<%=PipelineSessionConstants.SHOPPING_CART%>”
 returnName=”shoppingCart”
 returnType=”com.beasys.commerce.ebusiness.shoppingcart.ShoppingCart”/>

<pipeline:getPipelineProperty
 propertyName=”<%=PipelineSessionConstants.SAVED_SHOPPING_CART%>
 returnName=”savedShoppingCart”
 returnType=”com.beasys.commerce.ebusiness.shoppingcart.ShoppingCart”/>

Note: For more information on the getPipelineProperty JSP tag, see BEA
WebLogic Commerce Server Webflow and Pipeline Management.

The data stored within the Pipeline session attributes is accessed by using accessor
methods/attributes within Java scriptlets. Table 3-4 provides more detailed
information about these methods for ShoppingCart (also savedShoppingCart),
while Table 3-5 provides this information for ShoppingCartLine.

Table 3-3 shoppingcart.jsp Pipeline Session Attributes

Attribute Type Description

PipelineSessionConstants
.SAVED_SHOPPING_CART

com.beasys.commerce.ebusiness
.shoppingcart.ShoppingCart

The saved shopping cart
(source of the saved items).

PipelineSessionConstants
.SHOPPING_CART

com.beasys.commerce.ebusiness
.shoppingcart.ShoppingCart

The currently active
shopping cart.
Order Processing Package 3-9

3 Shopping Cart Management Services
Because the getShoppingCartLineCollection() method allows you to retrieve a
collection of the individual lines within a shopping cart, there are also accessor
methods/attributes you can use to break apart the information contained within each
line. Table 3-5 provides information about these methods/attributes.

Table 3-4 ShoppingCart Accessor Methods/Attributes

Method/Attribute Description

getShoppingCartLineCollection() A collection of the individual lines in the shopping cart (that is,
ShoppingCartLine).

getTotal(int totalType) The total amount specified by the totalType parameter. Valid
parameters include:

ShoppingCartConstants.LINE_UNIT_PRICE_TIMES_Q
UANTITY
ShoppingCartConstants.LINE_SHIPPING
ShoppingCartConstants.LINE_TAX

Note: The getTotal() method also allows you to
combine different total types. For more
information, see the Javadoc.

Table 3-5 ShoppingCartLine Accessor Methods/Attributes

Method/Attribute Description

getQuantity() The quantity of the item.

getProductItem() The product item in the shopping cart line.

getUnitPrice() The current price for the item at the time it was added to
the shopping cart. May be different from MSRP.
3-10 Order Processing Package

JavaServer Pages (JSPs)
Listing 3-2 illustrates how these accessor methods/attributes are used within Java
scriptlets.

Note: The ProductItem object is described in the BEA WebLogic Commerce
Server Product Catalog Management document.

Listing 3-2 Using Accessor Methods within shoppingcart.jsp Java Scriptlets

<wl:repeat set=”<%shoppingCart.getShoppingCartLineCollection().iterator()%>”
id=”shoppingCartLine” type=”ShoppingCartLine” count=”100000”>

<tr>

 <td>
 <%=shoppingCartLine.getProductItem().getName()%>
 </td>

 <td align=”right”>
 <input type=”text” name=”NewQuantity_<%=shoppingCartLine.getProductItem().
 getKey().getIdentifier()%>”
 value=”<%=quantityFormat.format(shoppingCartLine.getQuantity())%>”
 size=”9”>
 </td>

 <td align=”right”>
 <%=shoppingCartLine.getProductItem().getMsrp().getCurrency()%>
 <%=priceFormat.format(shoppingCartLine.getProductItem().getMsrp().

getLineTotal(int
totalType)

The total amount specified by the totalType parameter.
Valid parameters include:

ShoppingCartConstants.LINE_UNIT_PRICE_T
IMES_QUANTITY
ShoppingCartConstants.LINE_SHIPPING
ShoppingCartConstants.LINE_TAX

Note: The getLineTotal() method also allows
you to combine different total types. For
more information, see the Javadoc.

Table 3-5 ShoppingCartLine Accessor Methods/Attributes

Method/Attribute Description
Order Processing Package 3-11

3 Shopping Cart Management Services
 getValue())%>
 </td>

 <td align=”center”>
 <input type=”submit” value=”Delete” onclick=”submitForm(‘shoppingCartForm’,
 ’button(deleteItemFromShoppingCart)’,’<%=shoppingCartLine.getProductItem()
 .getKey().getIdentifier()%>’)”>
 </td>

</tr>

</wl:repeat>

Note: For more information on the WebLogic Server JSP tags, see “JSP Tag
Reference” in the BEA WebLogic Personalization Server documentation.

Form Field Specification

Another purpose of the shoppingcart.jsp template is to allow customers to make
changes to their shopping cart using various HTML form fields. These form fields are
also used to pass needed information to the Webflow.

The form fields used in the shoppingcart.jsp template, and a description for each
of them, are listed in Table 3-6.

Table 3-6 shoppingcart.jsp Form Fields

Parameter Name Type Description

“event” Hidden Indicates which event has been
triggered. It is used by the
Webflow to determine what
happens next.

“origin” Hidden The name of the current page
(shoppingcart.jsp), used by
the Webflow.

HttpRequestConstants.
CATALOG_ITEM_SKU

Hidden SKU of the item that the event is to
operate on.
3-12 Order Processing Package

JavaServer Pages (JSPs)
Note: Parameters that are literals in the JSP code are shown in quotes, while
non-literals will require scriptlet syntax (such as
<%= HttpRequestConstants.CATALOG_ITEM_SKU %>) for use in the JSP.

NewQuantity_<SKU>

where <SKU> is replaced with the
SKU of the item on the shopping cart
line.

Textbox The new quantity for the item in
the shopping cart. It is the only
form field on this page that requires
input from the customer.

Table 3-6 shoppingcart.jsp Form Fields

Parameter Name Type Description
Order Processing Package 3-13

3 Shopping Cart Management Services
Input Processors

This section provides a brief description of each input processor associated with the
Shopping Cart Management Services JSP template(s).

Note: For information about the InitShippingMethodListIP input processor, see
the input processors listed in “Shipping Services” on page 4-1.

DeleteProductItemFromShoppingCartIP

Class Name com.beasys.commerce.ebusiness.shoppingcart.webflow.

DeleteProductItemFromShoppingCartIP

Description Removes the item from the shopping cart.

Required
HTTPServletRequest
Parameters

HttpRequestConstants.CATALOG_ITEM_SKU

Required Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART

Removed Pipeline
Session Attributes

None

Validation None

Exceptions ProcessingException, thrown if the required request parameters or required
Pipeline session attributes are not available.
3-14 Order Processing Package

Input Processors
EmptyShoppingCartIP

r

InitShoppingCartIP

Class Name com.beasys.commerce.ebusiness.shoppingcart.webflow.

EmptyShoppingCartIP

Description Creates a new shopping cart and stores it in the Pipeline session. The old shopping
cart is discarded.

Required
HTTPServletRequest
Parameters

None

Required Pipeline
Session Attributes

None

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART

Removed Pipeline
Session Attributes

None

Validation None

Exceptions None

Class Name com.beasys.commerce.ebusiness.shoppingcart.webflow.

InitShoppingCartIP

Description Initializes the active shopping cart prior to loading the shoppingcart.jsp
template. If the shopping cart already exists, this input processor does nothing.

Required
HTTPServletRequest
Parameters

None
Order Processing Package 3-15

3 Shopping Cart Management Services
UpdateShoppingCartQuantitiesIP

Required Pipeline
Session Attributes

None

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART

Removed Pipeline
Session Attributes

None

Validation None

Exceptions None

Class Name com.beasys.commerce.ebusiness.shoppingcart.webflow.

UpdateShoppingCartQuantitiesIP

Description Validates the quantity fields for each line and sets those quantities in the shopping
cart. If the quantity is zero, it will delete the item from the shopping cart.

Required
HTTPServletRequest
Parameters

NewQuantity_<SKU>

where <SKU> is replaced with the SKU of the item on the shopping cart line.

Required Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART

Removed Pipeline
Session Attributes

None

Validation Verifies that the quantity fields only contain positive integers.

Exceptions ProcessingException, thrown if the required request parameters or required
Pipeline session attributes are not available.
3-16 Order Processing Package

Input Processors
UpdateSkuIP

Class Name com.beasys.commerce.ebusiness.shoppingcart.webflow.

UpdateSkuIP

Description Reads the SKU from the HTTP request and places it into the Pipeline session.

Required
HTTPServletRequest

Parameters

HttpRequestConstants.CATALOG_ITEM_SKU

Required Pipeline
Session Attributes

None

Updated Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_ITEM_SKU

Removed Pipeline
Session Attributes

None

Validation None

Exceptions ProcessingException, thrown if the required request parameters are not
available.
Order Processing Package 3-17

3 Shopping Cart Management Services
Pipeline Components

This section provides a brief description of each Pipeline component associated with
the Shopping Cart Management Services JSP template(s).

Notes: For information about the AddProductItemToShoppingCartPC, invoked
prior to display of the shoppingcart.jsp template, see “The Product
Catalog JSP Templates and Tag Library” in the BEA WebLogic Commerce
Server Product Catalog Management documentation.

Some Pipeline components extend other, base Pipeline components. For more
information on the base classes, see the Javadoc.

DeleteProductItemFromSavedListPC

Class Name com.beasys.commerce.ebusiness.shoppingcart.pipeline.
DeleteProductItemFromSavedListPC

Description Removes the item from the saved list and updates the
WLCS_SAVED_ITEM_LIST table in the database.

Required Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_ITEM_SKU

PipelineSessionConstants.SAVED_SHOPPING_CART

PipelineSessionConstants.USER_NAME

Updated Pipeline
Session Attributes

PipelineSessionConstants.SAVED_SHOPPING_CART

Removed Pipeline
Session Attributes

None

Type Session bean

JNDI Name com.beasys.commerce.ebusiness.shoppingcart.pipeline.
DeleteProductItemFromSavedListPC
3-18 Order Processing Package

Pipeline Components
MoveProductItemToSavedListPC

Exceptions PipelineFatalException, thrown if the required Pipeline session
attributes are not available.

Class Name com.beasys.commerce.ebusiness.shoppingcart.pipeline.
MoveProductItemToSavedListPC

Description Removes the item from the shopping cart, adds it to the saved list, and then updates
the WLCS_SAVED_ITEM_LIST table in the database.

Required Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_ITEM_SKU

PipelineSessionConstants.SAVED_SHOPPING_CART

PipelineSessionConstants.SHOPPING_CART

PipelineSessionConstants.USER_NAME

Updated Pipeline
Session Attributes

PipelineSessionConstants.SAVED_SHOPPING_CART

PipelineSessionConstants.SHOPPING_CART

Removed Pipeline
Session Attributes

None

Type Session bean

JNDI Name com.beasys.commerce.ebusiness.shoppingcart.pipeline.
MoveProductItemToSavedListPC

Exceptions PipelineFatalException, thrown if the required Pipeline session attributes
are not available.
Order Processing Package 3-19

3 Shopping Cart Management Services
MoveProductItemToShoppingCartPC

Class Name com.beasys.commerce.ebusiness.shoppingcart.pipeline.
MoveProductItemToShoppingCartPC

Description Removes the item from the saved list, adds it to the shopping cart with a quantity of
1, and then updates the WLCS_SAVED_ITEM_LIST table in the database.

Required Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_ITEM_SKU

PipelineSessionConstants.SAVED_SHOPPING_CART

PipelineSessionConstants.SHOPPING_CART

PipelineSessionConstants.USER_NAME

Updated Pipeline
Session Attributes

PipelineSessionConstants.SAVED_SHOPPING_CART

PipelineSessionConstants.SHOPPING_CART

Removed Pipeline
Session Attributes

None

Type Session bean

JNDI Name com.beasys.commerce.ebusiness.shoppingcart.

pipeline.MoveProductItemToShoppingCartPC

Exceptions PipelineFatalException, thrown if the required Pipeline session attributes
are not available.
3-20 Order Processing Package

Pipeline Components
RefreshSavedListPC

Class Name com.beasys.commerce.ebusiness.shoppingcart.pipeline.
RefreshSavedListPC

Description Queries the WLCS_SAVED_ITEM_LIST table and refreshes the saved shopping
cart in the Pipeline session. The saved list is only refreshed if the saved shopping
cart does not exist in the Pipeline session.

Required Pipeline
Session Attributes

PipelineSessionConstants.USER_NAME

Updated Pipeline
Session Attributes

PipelineSessionConstants.SAVED_SHOPPING_CART

Removed Pipeline
Session Attributes

None

Type Session bean

JNDI Name com.beasys.commerce.ebusiness.shoppingcart.pipeline.
RefreshSavedListPC

Exceptions PipelineFatalException, thrown if the required Pipeline session attributes
are not available.
Order Processing Package 3-21

3 Shopping Cart Management Services
3-22 Order Processing Package

CHAPTER
4 Shipping Services

The Order Processing package’s Shipping Services record the shipping information
related to a customer’s order and calculate shipping costs. This topic describes the
Shipping Services in detail, and provides information about how you can customize
them to meet your specific needs.

This topic includes the following sections:

n JavaServer Pages (JSPs)

l shipping.jsp Template

l selectaddress.jsp Template

l addaddress.jsp Template

n Input Processors

l InitShippingMethodListIP

l UpdateShippingAddressIP

l ValidateAddressIP

l ValidateShippingInfoIP

n Pipeline Components

l AddShippingAddressPC

l CalculateShippingPC

l DeleteShippingAddressPC
Order Processing Package 4-1

4 Shipping Services
JavaServer Pages (JSPs)

The Order Processing package’s Shipping Services consist of three JavaServer Pages
(JSPs) that you can use as is, or customize to your own liking. This section describes
each of these pages in detail.

shipping.jsp Template

The shipping.jsp template (shown in Figure 4-1) allows the customer to select and
input shipping details for the order. Shipping details include the shipping method
(such as standard, second day air, and so on), shipping preference (all at once or as
items become available) and any special shipping instructions the customer may want
to specify.

If the customer is satisfied with the shipping details for the order, the customer can
click the Continue button to continue to the next part of the checkout process. If the
customer had forgotten something or wanted to do something else to their order, the
customer can click the Back button instead.

Sample Browser View

Figure 4-1 shows an annotated version of the shipping.jsp template. The dashed
lines and numbers in the diagram are not part of the template; they are referenced in
the explanation that follows the screen shot.
4-2 Order Processing Package

JavaServer Pages (JSPs)
Figure 4-1 Annotated shipping.jsp Template

The numbers in the following list refer to the numbered regions in the figure:

1. The header (top banner) for inner pages is created from an import of the
innerheader.jsp template. This is standard across many of the second-level JSP
templates provided by WebLogic Commerce Server. The import call is:

<%@ include file="/commerce/includes/innerheader.jsp" %>

2. This region displays dynamic data related to the possible shipping methods. This
is accomplished using a combination of WebLogic Server and Pipeline JSP tags
that obtain and display each shipping method. Along with the other shipping
details described in regions 3 and 4, the form then posts the customer’s selected
shipping method.
Order Processing Package 4-3

4 Shipping Services
3. This region, called the splitting preference, does not contain dynamic data. There
are only two preferences: wait until the entire order is ready before shipping or
ship the items as they become available. Along with the other shipping details
described in regions 2 and 4, the form then posts the customer’s selected splitting
preference.

4. This region of the shipping.jsp template contains a simple input box, allowing
the customer to enter any special instructions with regard to shipping. Again, no
dynamic data is displayed in this region. Along with the other shipping details
described in regions 2 and 3, the form then posts any special instructions the
customer specifies.

5. The shipping.jsp template’s content in region 5 of Figure 4-1 contains the
included innerfooter.jsp template. The include call in shipping.jsp is:

<%@ include file="/commerce/includes/innerfooter.jsp" %>

innerfooter.jsp consists of the horizontal footer at the bottom of the page,
plus the right-side vertical column that describes (for the benefit of you and your
development team) the name of the current template and links to its About
information. In the innerfooter.jsp file, the right-side vertical column is an
include file:

<%@ include file="/commerce/includes/innerrightside.jsp" %>

Location in the WebLogic Commerce Server Directory Structure

You can find the shipping.jsp template file at the following location, where
WL_COMMERCE_HOME is the directory in which you installed WebLogic Commerce
Server:

%WL_COMMERCE_HOME%\server\webapps\wlcs\commerce\order\

shipping.jsp (Windows)
$WL_COMMERCE_HOME/server/webapps/wlcs/commerce/order/

shipping.jsp (UNIX)

Tag Library Imports

The shipping.jsp template uses WebLogic Server and Pipeline JSP tags. Therefore,
the template includes the following JSP tag libraries:

<%@ taglib uri=”weblogic.tld” prefix=”wl” %>
<%@ taglib uri=”pipeline.tld” prefix=”pipeline%>
4-4 Order Processing Package

JavaServer Pages (JSPs)
Note: For more information on the WebLogic Server JSP tags, see “JSP Tag
Reference” in the BEA WebLogic Personalization Server documentation. For
more information about the Pipeline JSP tags, see BEA WebLogic Commerce
Server Webflow and Pipeline Management.

These files reside in the following directory for the WebLogic Commerce Server Web
application:

%WL_COMMERCE_HOME%\server\webapps\wlcs\WEB-INF (Windows)
$WL_COMMERCE_HOME/server/webapps/wlcs/WEB-INF (UNIX)

Java Package Imports

The shipping.jsp template uses Java classes in the following packages and therefore
includes these import statements:

<%@ page import=”java.util.*” %>
<%@ page import=”java.text.*” %>
<%@ page import=”com.beasys.commerce.foundation.pipeline.*” %>
<%@ page import=”com.beasys.commerce.axiom.units.*” %>
<%@ page import=”com.beasys.commerce.ebusiness.shipping.*” %>
<%@ page import=”com.beasys.commerce.webflow.*” %>

Location in Default Webflow

The shipping.jsp template follows the page where the customer manages their
shopping cart (shoppingcart.jsp), or any product catalog page where the customer
clicks the View Cart button. The next page allows the customer to select a shipping
address (selectaddress.jsp).

Notes: If the customer has not yet logged into the site and clicks the Check Out button
on the shopping cart page, the customer will be prompted to login at the
login.jsp template prior to loading the shipping.jsp. For more
information about the login.jsp template, see BEA WebLogic Commerce
Server Registration and User Processing Package.

For more information about the default Webflow, see “Overview of the Order
Processing Package” on page 1-1.
Order Processing Package 4-5

4 Shipping Services
Included JSP Templates

The following JSP templates are included in the shipping.jsp template:

n innerheader.jsp, which creates the top banner.

n innerfooter.jsp, which creates a horizontal footer at the bottom of the page,
and also includes the innerrightside.jsp template. innerrightside.jsp
describes (for the benefit of you and your development team) the name of the
current template and links to its About information.

Events

The shipping.jsp template presents a customer with two buttons, each of which is
considered an event. Each event triggers a particular response in the default Webflow
that allows customers to continue. While this response can be to load another JSP, it is
usually the case that an input processor or Pipeline is invoked first. Table 4-1 provides
information about these events and the business logic they invoke.

Dynamic Data Display

One purpose of the shipping.jsp template is to display information about the
possible shipping methods for the order. This is accomplished on shipping.jsp
using a combination of WebLogic Server JSP tags, Pipeline JSP tags and accessor
methods/attributes.

First, the getPipelineProperty JSP tag retrieves the SHIPPING_METHOD_LIST
attribute from the Pipeline session. Table 4-2 provides more detailed information
about this attribute.

Table 4-1 shipping.jsp Events

Event Webflow Response(s)

button(back) No business logic required. Loads shoppingcart.jsp.

button(continue) ValidateShippingInfoIP
4-6 Order Processing Package

JavaServer Pages (JSPs)
Listing 4-1 illustrates how this attribute is retrieved from the Pipeline session.

Listing 4-1 Retrieving the Shipping Method Attribute

<pipeline:getPipelineProperty
 propertyName=”<%PipelineSessionConstants.SHIPPING_METHOD_LIST%>”
 returnName=”shippingMethodList”
 returnType=”java.util.List”/>

Note: For more information on the getPipelineProperty JSP tag, see BEA
WebLogic Commerce Server Webflow and Pipeline Management.

The data stored within this Pipeline session attribute is then accessed by using accessor
methods/attributes within Java scriptlets. Table 4-3 provides more detailed
information about these methods for ShippingMethodValue.

Listing 4-2 illustrates how these accessor methods/attributes are used within Java
scriptlets.

Table 4-2 shipping.jsp Dynamic Data Specification

Attribute Type Description

PipelineSessionConstants
.SHIPPING_METHOD_LIST

List of
com.beasys.commerce.ebusiness
.shipping.ShippingMethodValue

The list of available shipping
methods.

Table 4-3 ShippingMethodValue Accessor Methods/Attributes

Method/Attribute Description

description A description of the shipping method.

identifier Key in the database for the shipping method.
Order Processing Package 4-7

4 Shipping Services
Listing 4-2 Using Accessor Methods within shipping.jsp Java Scriptlets

<table>

<tr>
 <td colspan=2>
 Select Shipping Method
 </td>
</tr>

<wl:repeat set=”<%=shippingMethodList%>” id=”shippingMethodValue”
type=”ShippingMethodValue” count=”100”

<tr>
 <td>
 <input type=”radio” name=”<%HttpRequestConstants.SHIPPING_METHOD%>”
 value=”<%=shippingMethodValue.identifier%>”>
 </td>
 <td>
 <%=shippingMethodValue.description%>
 </td>
</tr>

</wl:repeat>

</table>

Note: For more information on the WebLogic Server JSP tags, see “JSP Tag
Reference” in the BEA WebLogic Personalization Server documentation.

Form Field Specification

Other purposes of the shipping.jsp template are to collect information from the
customer and to pass hidden information to the Webflow. The form fields used in the
shipping.jsp template, and a description for each of these form fields, are listed in
Table 4-4.
4-8 Order Processing Package

JavaServer Pages (JSPs)
Note: Parameters that are literals in the JSP code are shown in quotes, while
non-literals will require JSP scriptlet syntax (such as
<%= HttpRequestConstants.SPLITTING_PREFERENCE %>) for use in the
JSP.

Table 4-4 shipping.jsp Form Fields

Parameter Name Type Description

“event” Hidden Indicates whether an event has
been triggered. It is used by the
Webflow to determine what
happens next.

“origin” Hidden The name of the current page
(shipping.jsp), used by the
Webflow.

HttpRequestConstants.SHIPPING_METHOD Radio
button

Identifies the shipping method
the customer selects.

HttpRequestConstants.SPECIAL_INSTRUCTIONS Textbox Any special instructions the
customer specifies.

HttpRequestConstants.SPLITTING_PREFERENCE Radio
button

String representing the splitting
preference the customer selects.
Order Processing Package 4-9

4 Shipping Services
selectaddress.jsp Template

The selectaddress.jsp template (shown in Figure 4-2) displays a list of shipping
addresses that have previously been associated with the customer. If the customer
clicks the Use button associated with a particular address, that address will be used as
the shipping address and the customer will continue to the next part of the checkout
process.

If the customer wants to delete an address that is shown, the customer can click the
Delete button associated with that address. To add a new shipping address, the
customer can click the Add Address button. To go back to the previous page, the
customer can click the Back button instead.

Sample Browser View

Figure 4-2 shows an annotated version of the selectaddress.jsp template. The
dashed lines and numbers in the diagram are not part of the template; they are
referenced in the explanation that follows the screen shot.
4-10 Order Processing Package

JavaServer Pages (JSPs)
Figure 4-2 Annotated selectaddress.jsp Template

The numbers in the following list refer to the numbered regions in the figure:

1. The header (top banner) for inner pages is created from an import of the
innerheader.jsp template. This is standard across many of the second-level JSP
templates provided by WebLogic Commerce Server. The import call is:

<%@ include file="/commerce/includes/innerheader.jsp" %>

2. This region contains dynamically displayed data of the customer’s saved shipping
addresses. This is accomplished using a combination of WebLogic Server and
WebLogic Personalization Server JSP tags that obtain and display the addresses.
Posts to the form can indicate use of a listed address or deletion of a listed
address.

Note: The customer can also initiate entry of a new shipping address from the
selectaddress.jsp template. For more information about the
addaddress.jsp template, see “addaddress.jsp Template” on page 4-19.
Order Processing Package 4-11

4 Shipping Services
3. The selectaddress.jsp template’s content in region 3 contains the included
innerfooter.jsp template. The include call in selectaddress.jsp is:

<%@ include file="/commerce/includes/innerfooter.jsp" %>

innerfooter.jsp consists of the horizontal footer at the bottom of the page,
plus the right-side vertical column that describes (for the benefit of you and your
development team) the name of the current template and links to its About
information. In the innerfooter.jsp file, the right-side vertical column is an
include file:

<%@ include file="/commerce/includes/innerrightside.jsp" %>

Location in the WebLogic Commerce Server Directory Structure

You can find the selectaddress.jsp template file at the following location, where
WL_COMMERCE_HOME is the directory in which you installed WebLogic Commerce
Server:

%WL_COMMERCE_HOME%\server\webapps\wlcs\commerce\order\

selectaddress.jsp (Windows)
$WL_COMMERCE_HOME/server/webapps/wlcs/commerce/order/

selectaddress.jsp (UNIX)

Tag Library Imports

The selectaddress.jsp template uses existing WebLogic Server and the WebLogic
Personalization Server’s User Management and Personalization JSP tags. It also uses
Pipeline JSP tags. Therefore, the template includes the following JSP tag libraries:

<%@ taglib uri=”weblogic.tld” prefix=”wl” %>
<%@ taglib uri=”pipeline.tld” prefix=”pipeline”%>
<%@ taglib uri=”um.tld” prefix=”um” %>
<%@ taglib uri=”es.tld” prefix=”es”%>

Note: For more information on the WebLogic Server JSP tags or the WebLogic
Personalization Server JSP tags, see “JSP Tag Reference” in the BEA
WebLogic Personalization Server documentation. For more information about
the Pipeline JSP tags, see BEA WebLogic Commerce Server Webflow and
Pipeline Management.

These files reside in the following directory for the WebLogic Commerce Server Web
application:
4-12 Order Processing Package

JavaServer Pages (JSPs)
%WL_COMMERCE_HOME%\server\webapps\wlcs\WEB-INF (Windows)
$WL_COMMERCE_HOME/server/webapps/wlcs/WEB-INF (UNIX)

Java Package Imports

The selectaddress.jsp template uses Java classes in the following packages and
therefore includes these import statements:

<%@ page import=”java.util.*” %>
<%@ page import=”java.text.*” %>
<%@ page import=”com.beasys.commerce.foundation.pipeline*” %>
<%@ page import=”com.beasys.commerce.axiom.contact.*” %>
<%@ page import=”com.beasys.commerce.ebusiness.shipping.*” %>
<%@ page import=”com.beasys.commerce.ebusiness.customer.*” %>
<%@ page import=”com.beasys.commerce.webflow.*” %>

Location in Default Webflow

The page prior to the selectaddress.jsp template in the default Webflow is either
the shipping details page (shipping.jsp) or the page where the customer enters a
new shipping address (addaddress.jsp).

If the customer deletes an existing shipping address, the selectaddress.jsp is
reloaded after the appropriate input processor and/or Pipeline has executed. If the
customer is satisfied with selecting an address from the list of choices, they proceed to
the payment information page (payment.jsp).

Note: For more information about the default Webflow, see “Overview of the Order
Processing Package” on page 1-1.

Included JSP Templates

The following JSP templates are included in the selectaddress.jsp template:

n innerheader.jsp, which creates the top banner.

n innerfooter.jsp, which creates a horizontal footer at the bottom of the page,
and also includes the innerrightside.jsp template. innerrightside.jsp
describes (for the benefit of you and your development team) the name of the
current template and links to its About information.
Order Processing Package 4-13

4 Shipping Services
Events

The selectaddress.jsp template presents a customer with several buttons, each of
which is considered an event. These events trigger a particular response in the default
Webflow that allows customers to continue. While this response can be to load another
JSP, it is usually the case that an input processor or Pipeline is invoked first. Table 4-5
provides information about these events and the business logic they invoke.

Table 4-6 briefly describes each of the Pipelines from Table 4-5, as they are defined in
the pipeline.properties file. For more information about individual Pipeline
components, see “Pipeline Components” on page 4-29.

Table 4-5 selectaddress.jsp Events

Event Web Flow Response(s)

button(back) No business logic required. Loads
shipping.jsp.

button(addNewShippingAddress) No business logic required. Loads
addaddress.jsp.

button(deleteShippingAddress) UpdateAddressKeyIP

DeleteShippingAddress

button(useShippingAddress) UpdateShippingAddressIP

TaxVerifyShippingAddress

CalculateShippingCost

TaxCalculateLineLevel

Table 4-6 Select Shipping Address Pipelines

Pipeline Description

TaxVerifyShippingAddress Contains TaxVerifyShippingAddressPC and is not
transactional.

CalculateShippingCost Contains CalculateShippingCostPC and is not
transactional.

TaxCalculateLineLevel Contains TaxCalculateLineLevelPC and is not
transactional.
4-14 Order Processing Package

JavaServer Pages (JSPs)
Dynamic Data Display

One purpose of the selectaddress.jsp template is to display the shipping addresses
a customer previously entered. This is accomplished on selectaddress.jsp using
two of the WebLogic Personalization Server’s User Management JSP tags.

First, the getProfile JSP tag is used to set the customer profile (context) for which
the shipping addresses should be retrieved, as shown in Listing 4-3.

Listing 4-3 Setting the Customer Context

<um:getProfile
 profileKey=”<%=request.getRemoteUser()%>
 profileType=”WLCS_Customer” />

Next, the getProperty JSP tag is used to retrieve a cached copy of the possible
shipping addresses for the customer from the database, as shown in Listing 4-4.

Listing 4-4 Retrieving the ShippingAddressMap for the Customer

<um:getProperty propertyName=”shippingAddressMap”
id=”shippingAddressMap” />

You can now iterate through the shipping addresses contained within the
shippingAddressMap, as shown in Listing 4-5.

DeleteShippingAddress Contains DeleteShippingAddressPC and is not
transactional.

Table 4-6 Select Shipping Address Pipelines

Pipeline Description
Order Processing Package 4-15

4 Shipping Services
Listing 4-5 Iterating Through the Shipping Addresses

<% Iterator iterator=((Map)shippingAddressMap).keySet().iterator();
while(iterator.hasNext())
{
 String addressKey=(String)iterator.next();
 Address shippingAddress=(Address)((Map)shippingAddressMap).get(addressKey);
%>

Note: For more information on the WebLogic Personalization Server’s JSP tags, see
“JSP Tag Reference” in the BEA WebLogic Personalization Server
documentation.

Lastly, the data contained within shippingAddress is accessed by using accessor
methods/attributes within Java scriptlets. Table 4-7 provides more detailed
information about these methods for Address.

Listing 4-6 illustrates how these accessor methods/attributes are used within Java
scriptlets.

Table 4-7 Address Accessor Methods/Attributes

Method/Attribute Description

getStreet1() The first line of the customer’s street address.

getStreet2() The second line of the customer’s street address.

getCity() The city in the customer’s address.

getCounty() The county in the customer’s address.

getState() The state in the customer’s address.

getPostalCode() The zip/postal code in the customer’s address.

getCountry() The country in the customer’s address.
4-16 Order Processing Package

JavaServer Pages (JSPs)
Listing 4-6 Using Accessor Methods within selectaddress.jsp Java Scriptlets

<% Iterator iterator =((Map)shippingAddressMap).keySet().iterator();
while(iterator.hasNext())

{

String addressKey = (String)iterator.next();
Address shippingAddress = (Address)((Map)shippingAddressMap).get(addressKey);

%>

<table width="90%" border="0" cellpadding="6" cellspacing="0">
 <tr>
 <td align="left" valign="top" width="40%" nowrap>
 <p><%=shippingAddress.getStreet1()%>

 <% if(shippingAddress.getStreet2().length() != 0) {%>
 <%=shippingAddress.getStreet2()%>

 <% } %>
 <%=shippingAddress.getCity()%>

 <%=shippingAddress.getState()%> <%=shippingAddress.getPostalCode()%>

 <%= shippingAddress.getCountry() %>
 </td>

 <td align="left" valign="top" width="5%" >
 <div class="commentary">
 <a href="<%=WebflowJSPHelper.createWebflowURL(pageContext,
 "selectaddress.jsp", "button(deleteShippingAddress)","&" +
 HttpRequestConstants.ADDRESS_KEY + "=" + addressKey, true)%>">
 <img src="<%=com.beasys.commerce.webflow.WebflowJSPHelper.createGIFURL
 (request, response,"/commerce/images/btn_delete.gif")%>" border="0">

 </div>
 </td>

 <td align="left" valign="top" width="5%" >
 <div class="commentary">
 <a href="<%=WebflowJSPHelper.createWebflowURL(pageContext,
 "selectaddress.jsp", "button(useShippingAddress)","&" +
 HttpRequestConstants.ADDRESS_KEY + "=" + addressKey, true)%>">
 <img src="<%=com.beasys.commerce.webflow.WebflowJSPHelper.createGIFURL
 (request, response,"/commerce/images/btn_use.gif")%>" border="0">

 </div>
 </td>
 </tr>

 <tr>
 <td colspan="3">
Order Processing Package 4-17

4 Shipping Services
 <hr size="1">
 </td>
 </tr>
</table>

<%

}

%>

Form Field Specification

The selectaddress.jsp template does not make use of any form fields.
4-18 Order Processing Package

JavaServer Pages (JSPs)
addaddress.jsp Template

The addaddress.jsp template (shown in Figure 4-3) collects information about a
new shipping address from the customer. This information includes two lines of a
street address (one required), a city, a state, a zip code, and a country (all required).

When the customer clicks the Save button, the shipping address entered on this page
is added to the list of addresses from which customers can select for this and future
orders (selectaddress.jsp). Otherwise, the customer can click the Back button to
return to the previous page.

Sample Browser View

Figure 4-3 shows an annotated version of the addaddress.jsp template. The dashed
lines and numbers in the diagram are not part of the template; they are referenced in
the explanation that follows the screen shot.

Figure 4-3 Annotated addaddress.jsp Template
Order Processing Package 4-19

4 Shipping Services
The numbers in the following list refer to the numbered regions in the figure:

1. The header (top banner) for inner pages is created from an import of the
innerheader.jsp template. This is standard across many of the second-level JSP
templates provided by WebLogic Commerce Server. The import call is:

<%@ include file="/commerce/includes/innerheader.jsp" %>

2. This region provides the customer with a series of form fields for entering a new
shipping address. Required fields are indicated by an asterisk (*). This region
utilizes the states.jsp and countries.jsp template files. The import calls in
addaddress.jsp are:

<%@ include file="/commerce/includes/states.jsp" %>
<%@ include file="/commerce/includes/countries.jsp" %>

3. The addaddress.jsp template’s content in region 3 contains the included
innerfooter.jsp template. The include call in addaddress.jsp is:

<%@ include file="/commerce/includes/innerfooter.jsp" %>

innerfooter.jsp consists of the horizontal footer at the bottom of the page,
plus the right-side vertical column that describes (for the benefit of you and your
development team) the name of the current template and links to its About
information. In the innerfooter.jsp file, the right-side vertical column is an
include file:

<%@ include file="/commerce/includes/innerrightside.jsp" %>

Location in the WebLogic Commerce Server Directory Structure

You can find the addaddress.jsp template file at the following location, where
WL_COMMERCE_HOME is the directory in which you installed WebLogic Commerce
Server:

%WL_COMMERCE_HOME%\server\webapps\wlcs\commerce\order\

addaddress.jsp (Windows)
$WL_COMMERCE_HOME/server/webapps/wlcs/commerce/order/

addaddress.jsp (UNIX)
4-20 Order Processing Package

JavaServer Pages (JSPs)
Tag Library Imports

The addaddress.jsp template uses Webflow and Pipeline JSP tags. Therefore, the
template includes the following JSP tag libraries:

<%@ taglib uri=”pipeline.tld” prefix=”pipeline”%>
<%@ taglib uri=”webflow.tld” prefix=”webflow” %>

Note: For more information on the Webflow and Pipeline JSP tags, see BEA
WebLogic Commerce Server Webflow and Pipeline Management.

These files reside in the following directory for the WebLogic Commerce Server Web
application:

%WL_COMMERCE_HOME%\server\webapps\wlcs\WEB-INF (Windows)
$WL_COMMERCE_HOME/server/webapps/wlcs/WEB-INF (UNIX)

Java Package Imports

The addaddress.jsp template uses Java classes in the following packages and
therefore includes these import statements:

<%@ page import=”javax.servlet.*” %>
<%@ page import=”java.servlet.http.*” %>
<%@ page import=”com.beasys.commerce.webflow.*” %>
<%@ page import=”com.beasys.commerce.webflow.tags.*” %>
<%@ page import=”com.beasys.commerce.foundation.pipeline*” %>
<%@ page import=”com.beasys.commerce.axiom.contact.*” %>
<%@ page import=”com.beasys.commerce.ebusiness.customer.*” %>

Location in Default Webflow

The addaddress.jsp template follows the page where the customer selects from a
list of possible shipping addresses (selectaddress.jsp). Once the customer saves
the new address, the customer is returned to the selectaddress.jsp template.

Note: For more information about the default Webflow, see “Overview of the Order
Processing Package” on page 1-1.
Order Processing Package 4-21

4 Shipping Services
Included JSP Templates

The following JSP templates are included in the addaddress.jsp template:

n innerheader.jsp, which creates the top banner.

n states.jsp, which contains a list of states that are displayed when the
customer is prompted to enter an address.

n countries.jsp, which contains a list of countries that are displayed when the
customer is prompted to enter an address.

n innerfooter.jsp, which creates a horizontal footer at the bottom of the page,
and also includes the innerrightside.jsp template. innerrightside.jsp
describes (for the benefit of you and your development team) the name of the
current template and links to its About information.

Events

The addaddress.jsp template presents a customer with two buttons, each of which
is considered an event. These events trigger a particular response in the default
Webflow that allows customers to continue. While this response can be to load another
JSP, it is usually the case that an input processor or Pipeline is invoked first. Table 4-8
provides information about these events and the business logic they invoke.

Table 4-9 briefly describes each of the Pipelines from Table 4-8, as they are defined in
the pipeline.properties file. For more information about individual Pipeline
components, see “Pipeline Components” on page 4-29.

Table 4-8 addaddress.jsp Events

Event Webflow Response(s)

button(back) No business logic required. Loads
selectaddress.jsp.

button(addNewShippingAddress) ValidateAddressIP

AddShippingAddress
4-22 Order Processing Package

JavaServer Pages (JSPs)
Dynamic Data Display

No dynamic data is presented on the addaddress.jsp template. However, the
addaddress.jsp template does make use of code similar to that found in the
newaddresstemplate.jsp template. Namely, it uses the same code to indicate when
customers enter incorrect input or fail to provide information for a required field. For
more information about the newaddresstemplate.jsp template, see “About the
Included newaddresstemplate.jsp Template” in the BEA WebLogic Commerce Server
Registration and User Processing Package documentation.

Form Field Specification

The purpose of the addaddress.jsp template is to allow customers to enter a new
shipping address using various HTML form fields. It is also used to pass needed
information to the Webflow.

The form fields used in the addaddress.jsp template, and a description for each of
these form fields are listed in Table 4-10.

Table 4-9 Add Shipping Address Pipelines

Pipeline Description

AddShippingAddress Contains AddShippingAddressPC and is not
transactional.

Table 4-10 addaddress.jsp Form Fields

Parameter Name Type Description

“event” Hidden Indicates which event has been
triggered. It is used by the
Webflow to determine what
happens next.

“origin” Hidden The name of the current page
(addaddress.jsp), used by the
Webflow.

HttpRequestConstants.
CUSTOMER_SHIPPING_ADDRESS1

Textbox The first line of the shipping street
address.
Order Processing Package 4-23

4 Shipping Services
Note: Parameters that are literals in the JSP code are shown in quotes, while
non-literals will require JSP scriptlet syntax (such as
<%= HttpRequestConstants.CUSTOMER_SHIPPING_CITY %>) for use in
the JSP.

HttpRequestConstants.
CUSTOMER_SHIPPING_ADDRESS2

Textbox The second line of the shipping
street address.

HttpRequestConstants.
CUSTOMER_SHIPPING_CITY

Textbox The city in the shipping address.

HttpRequestConstants.
CUSTOMER_SHIPPING_STATE

Textbox The state in the shipping address.

HttpRequestConstants.
CUSTOMER_SHIPPING_ZIPCODE

Textbox The zip/postal code in the shipping
address.

HttpRequestConstants.
CUSTOMER_SHIPPING_COUNTRY

Textbox The country in the shipping
address.

Table 4-10 addaddress.jsp Form Fields

Parameter Name Type Description
4-24 Order Processing Package

Input Processors
Input Processors

This section provides a brief description of each input processor associated with the
Shipping Services JSP template(s).

InitShippingMethodListIP

Class Name com.beasys.commerce.ebusiness.shipping.webflow.

InitShippingMethodListIP

Description Obtains a list of all shipping methods from the database and populates the
Pipeline session with a list of ShippingMethodValue objects. This list is
cached, so this input processor does not continuously access the database.
Accessing the list multiple times within one session has no additional effect.

Required
HTTPServletRequest
Parameters

None

Required Pipeline
Session Attributes

None

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHIPPING_METHOD_LIST

Removed Pipeline
Session Attributes

None

Validation None

Exceptions ProcessingException, thrown if the input processor cannot read the
shipping method information from the database.
Order Processing Package 4-25

4 Shipping Services
UpdateShippingAddressIP

Class Name com.beasys.commerce.ebusiness.shipping.webflow.

UpdateShippingAddressIP

Description Updates the shipping address attribute in the Pipeline session based on the
address the customer selects.

Required
HTTPServletRequest
Parameters

HTTPRequestConstants.ADDRESS_KEY

Required Pipeline
Session Attributes

None

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHIPPING_ADDRESS

Removed Pipeline
Session Attributes

None

Validation None

Exceptions None
4-26 Order Processing Package

Input Processors
ValidateAddressIP

Class Name com.beasys.commerce.ebusiness.shipping.webflow.

ValidateAddressIP

Description Validates the address and places it in the Pipeline session.

Required
HTTPServletRequest
Parameters

HttpRequestConstants.CUSTOMER_SHIPPING_ADDRESS1

HttpRequestConstants.CUSTOMER_SHIPPING_ADDRESS2

HttpRequestConstants.CUSTOMER_SHIPPING_CITY

HttpRequestConstants.CUSTOMER_SHIPPING_STATE

HttpRequestConstants.CUSTOMER_SHIPPING_ZIPCODE

HttpRequestConstants.CUSTOMER_SHIPPING_COUNTRY

Required Pipeline
Session Attributes

None

Updated Pipeline
Session Attributes

PipelineSessionConstants.ADDRESS

Removed Pipeline
Session Attributes

None

Validation Verifies that the required fields contain values.

Exceptions ProcessingException, thrown if the required request parameters or
required Pipeline session attributes are not available.
Order Processing Package 4-27

4 Shipping Services
ValidateShippingInfoIP

Class Name com.beasys.commerce.ebusiness.shipping.webflow.

ValidateShippingInfoIP

Description Places the shipping method, splitting preference, and special instructions into the
Pipeline session.

Required
HTTPServletRequest
Parameters

HttpRequestConstants.SHIPPING_METHOD

HttpRequestConstants.SPLITTING_PREFERENCE

HttpRequestConstants.SPECIAL_INSTRUCTIONS

Required Pipeline
Session Attributes

None

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHIPPING_METHOD

PipelineSessionConstants.SPLITTING_PREFERENCE

PipelineSessionConstants.SPECIAL_INSTRUCTIONS

Removed Pipeline
Session Attributes

None

Validation Verifies that the required fields contain values.

Exceptions ProcessingException, thrown if the required request parameters or
required Pipeline session attributes are not available.
4-28 Order Processing Package

Pipeline Components
Pipeline Components

This section provides a brief description of each Pipeline component associated with
the Shipping Services JSP template(s).

Notes: For information about the TaxVerifyShippingAddressPC and
TaxCalculateLineLevelPC Pipeline components, see “Taxation Services”
on page 5-1.

Some Pipeline components extend other, base Pipeline components. For more
information on the base classes, see the Javadoc.

AddShippingAddressPC

Class Name com.beasys.commerce.ebusiness.shipping.pipeline.
AddShippingAddressPC

Description Adds the address to the list of customer shipping addresses stored for the
customer.

Required Pipeline
Session Attributes

PipelineSessionConstants.ADDRESS

PipelineSessionConstants.ADDRESS_KEY

Updated Pipeline
Session Attributes

None

Removed Pipeline
Session Attributes

None

Type Java object

JNDI Name None

Exceptions PipelineFatalException, thrown when the Pipeline component
cannot update the address information in the database.
Order Processing Package 4-29

4 Shipping Services
CalculateShippingPC

Class Name com.beasys.commerce.ebusiness.shipping.pipeline.
CalculateShippingPC

Description Calculates the per-line cost of shipping for each line in the shopping cart. The
implementation only uses a simple per-shipping method cost calculation. When
integrating with a shipping provider, this Pipeline component should be rewritten
to perform more specific cost calculations.

Required Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART

Removed Pipeline
Session Attributes

None

Type Java object

JNDI Name None

Exceptions PipelineFatalException, thrown if the required request parameters or
required Pipeline session attributes are not available.
4-30 Order Processing Package

Pipeline Components
DeleteShippingAddressPC

Class Name com.beasys.commerce.ebusiness.shipping.pipeline.
DeleteShippingAddressPC

Description Uses the address key in the Pipeline session to locate the correct customer
shipping address, then removes it from the list.

Required Pipeline
Session Attributes

PipelineSessionConstants.ADDRESS_KEY

Updated Pipeline
Session Attributes

None

Removed Pipeline
Session Attributes

None

Type Java object

JNDI Name None

Exceptions PipelineFatalException, thrown when the Pipeline component cannot
update the shipping address information in the database.
Order Processing Package 4-31

4 Shipping Services
4-32 Order Processing Package

CHAPTER
5 Taxation Services

The Taxation Services provided in the Order Processing package are used to calculate
the taxes associated with your customer’s order. They enable you to determine the
accurate tax rates imposed on the sale or use of each item at the state, country, city, and
district levels by interfacing with TAXWARE International, Inc. products. This topic
describes the Taxation Service in detail.

This topic includes the following sections:

n JavaServer Pages (JSPs)

l selecttaxaddress.jsp Template

n Input Processors

l DecideShippingAddressPageIP

l UpdateShippingAddressIP

n Pipeline Components

l TaxCalculateLineLevelPC

l TaxCalculateAndCommitLineLevelPC

l TaxVerifyShippingAddressPC

n Integration with TAXWARE

l Important TAXWARE Considerations

l TAXWARE Installation

l TAXWARE Configuration and Deployment

l Removing Tax Calculations

l What if I Don’t Want to Use TAXWARE to Calculate My Taxes?
Order Processing Package 5-1

5 Taxation Services
JavaServer Pages (JSPs)

The Order Processing package’s Taxation Services consist of one JavaServer Page
(JSP) that you can use as is, or customize to meet your business requirements. This
section describes this page in detail.

selecttaxaddress.jsp Template

In cases where a customer provides a shipping address that does not resolve to a unique
GeoCode (a TAXWARE code used to determine taxes based on jurisdiction), the
selecttaxaddress.jsp template (shown in Figure 5-1) allows the customer to select
from a list of more specific shipping addresses.

Sample Browser View

Figure 5-1 shows an annotated version of the selecttaxaddress.jsp template. The
dashed lines and numbers in the diagram are not part of the template; they are
referenced in the explanation that follows the screen shot.
5-2 Order Processing Package

JavaServer Pages (JSPs)
Figure 5-1 Annotated selecttaxaddress.jsp Template

The numbers in the following list refer to the numbered regions in the figure:

1. The page header (top banner) is created from an import of the innerheader.jsp
template. This is standard across many of the JSP templates provided by WebLogic
Commerce Server. The import call is:
Order Processing Package 5-3

5 Taxation Services
<%@ include file="/commerce/includes/innerheader.jsp" %>

2. Region 2 uses a combination of WebLogic Server and Pipeline JSP tags to obtain
and display a list of more detailed addresses, from which the customer can select.

3. The selecttaxaddress.jsp template’s content in region 3 contains the
included innerfooter.jsp template. The include call in
selecttaxaddress.jsp is:

<%@ include file="/commerce/includes/innerfooter.jsp" %>

innerfooter.jsp consists of the horizontal footer at the bottom of the page,
plus the right-side vertical column that describes (for the benefit of you and your
development team) the name of the current template and links to its About
information. In the innerfooter.jsp file, the right-side vertical column is an
include file:

<%@ include file="/commerce/includes/rightside.jsp" %>

Location in the WebLogic Commerce Server Directory Structure

You can find the selecttaxaddress.jsp template file at the following location,
where WL_COMMERCE_HOME is the directory in which you installed WebLogic
Commerce Server:

%WL_COMMERCE_HOME%\server\webapps\wlcs\commerce\order\

selecttaxaddress.jsp (Windows)
$WL_COMMERCE_HOME/server/webapps/wlcs/commerce/order/

selecttaxaddress.jsp (UNIX)

Tag Library Imports

The selecttaxaddress.jsp template uses existing WebLogic Server and Pipeline
JSP tags. Therefore, the template includes the following JSP tag libraries:

<%@ taglib uri=”weblogic.tld” prefix=”wl” %>
<%@ taglib uri=”pipeline.tld” prefix=”pipeline” %>

Note: For more information on the WebLogic Server JSP tags, see “JSP Tag
Reference” in the BEA WebLogic Personalization Server documentation. For
more information about the Pipeline JSP tags, see BEA WebLogic Commerce
Server Webflow and Pipeline Management.
5-4 Order Processing Package

JavaServer Pages (JSPs)
These files reside in the following directory for the WebLogic Commerce Server Web
application:

%WL_COMMERCE_HOME%\server\webapps\wlcs\WEB-INF (Windows)
$WL_COMMERCE_HOME/server/webapps/wlcs/WEB-INF (UNIX)

Java Package Imports

The selecttaxaddress.jsp template uses Java classes in the following packages
and therefore includes these import statements:

<%@ page import=”java.util.*” %>
<%@ page import=”java.text.*” %>
<%@ page import=”com.beasys.commerce.foundation.pipeline.*” %>
<%@ page import=”com.beasys.commerce.axiom.contact.*” %>
<%@ page import=”com.beasys.commerce.ebusiness.shipping.*” %>
<%@ page import=”com.beasys.commerce.webflow.*” %>

Location in Default Webflow

Note: The selecttaxaddress.jsp template is only displayed if the customer
provides a shipping address that is not specific enough. Otherwise, it is
bypassed.

The page prior to the selecttaxaddress.jsp template in the default Webflow is the
page where the customer selects a shipping address (selectaddress.jsp). After the
customer has selected an address from the list of choices presented on
selecttaxaddress.jsp, they proceed to the payment information page
(payment.jsp).

Note: For more information about the default Webflow, see “Overview of the Order
Processing Package” on page 1-1.

Included JSP Templates

The following JSP templates are included in the selecttaxaddress.jsp template:

n innerheader.jsp, which creates the top banner.

n innerfooter.jsp, which creates a horizontal footer at the bottom of the page,
and also includes the rightside.jsp template. rightside.jsp describes (for
Order Processing Package 5-5

5 Taxation Services
the benefit of you and your development team) the name of the current template
and links to its About information.

Events

The selecttaxaddress.jsp template presents a customer with two buttons, each of
which is considered an event. These events trigger a particular response in the default
Webflow that allows customers to continue. While this response can be to load another
JSP, it is usually the case that an input processor or Pipeline is invoked first. Table 5-1
provides information about these events and the business logic they invoke.

Dynamic Data Display

The only purpose of the selecttaxaddress.jsp template is to display variations on
a shipping address that the customer has already entered. This is accomplished on
selecttaxaddress.jsp using a combination of WebLogic Server and Pipeline JSP
tags, and accessor methods/attributes.

First, the getPipelineProperty JSP tag retrieves the
VERIZIP_SHIPPING_ADDRESSES attribute from the Pipeline session. Table 5-2
shows more detailed information about this attribute.

Listing 5-1 illustrates how this attribute is retrieved from the Pipeline session.

Table 5-1 selecttaxaddress.jsp Events

Event Webflow Response(s)

button(use) UpdateTaxShippingAddressIP

Table 5-2 selecttaxaddress.jsp Pipeline Session Attributes

Attribute Type Description

PipelineSessionConstants.

VERIZIP_SHIPPING_ADDRESSES

List of
com.beasys.commerce.axiom
.contact.Address

List of the possibilities for the
more detailed shipping
address.
5-6 Order Processing Package

JavaServer Pages (JSPs)
Listing 5-1 Retrieving the Address Selection Attribute

<pipeline:getPipelineProperty
 propertyName=”<%=PipelineSessionConstants.VERAZIP_SHIPPING_ADDRESSES%>”
 returnName=”addressesObject” returnType=”java.lang.Object”/>

Note: For more information on the getPipelineProperty JSP tag, see BEA
WebLogic Commerce Server Webflow and Pipeline Management.

The data stored within this attribute is then accessed by using accessor
methods/attributes within Java scriptlets. Table 5-3 provides more detailed
information on these methods/attributes for Address.

Since there are multiple addresses, you must also use the WebLogic Server JSP tag to
iterate through each of the addresses, as shown in Listing 5-2.

Table 5-3 Address Accessor Methods/Attributes

Method/Attribute Description

getStreet1() The first line of the street in the shipping address.

getStreet2() The second line of the street in the shipping address.

getCity() The city in the shipping address.

getCounty() The county in the shipping address.

getState() The state in the shipping address.

getPostalCode() The zip/postal code in the shipping address.

getCountry() The country in the shipping address.
Order Processing Package 5-7

5 Taxation Services
Listing 5-2 Using <wl> Tags and Accessor Methods in selecttaxaddress.jsp

<wl:repeat set=”<%=addressesObject%>” id=”address” type=”Address”
count=”100”>

<table>
 <tr>
 <td>County</td>
 <td><%=address.getCounty()%>

 <%=address.getCity()%>

 <%=address.getState()%>

 <%=address.getPostalCode()%>

 <%=address.getCountry()%>
 </td>
 </tr>
</table>

</wl:repeat>

Note: For more information on the WebLogic Server JSP tags, see “JSP Tag
Reference” in the BEA WebLogic Personalization Server documentation.

Form Field Specification

Besides allowing a customer to select a more detailed shipping address, the
selecttaxaddress.jsp template also passes hidden information to the Webflow.
The form fields used in the selecttaxaddress.jsp template, and a description for
each of these form fields are listed in Table 5-4.

Table 5-4 selectataxddress.jsp Form Fields

Parameter Name Type Description

“event” Hidden Indicates which event has been
triggered. It is used by the
Webflow to determine what
happens next.

“origin” Hidden The name of the current page
(selecttaxaddress.jsp),
used by the Webflow.
5-8 Order Processing Package

JavaServer Pages (JSPs)
Note: Parameters that are literals in the JSP code are shown in quotes, while
non-literals will require JSP scriptlet syntax (such as
<%= PipelineSessionConstants.TAX_SHIPPING_ADDRESS %>) for use in
the JSP.

PipelineSessionConstants.
TAX_SHIPPING_ADDRESS

Hidden Identifies the more specific address
selected by the customer.

Table 5-4 selectataxddress.jsp Form Fields

Parameter Name Type Description
Order Processing Package 5-9

5 Taxation Services
Input Processors

This section provides a brief description of each input processor associated with the
Taxation Services JSP template(s).

DecideShippingAddressPageIP

Class Name com.beasys.commerce.ebusiness.tax.webflow.

DecideShippingAddressPageIP

Description Makes the decision about whether to display selecttaxaddress.jsp based
on the number of address variations returned from the TAXWARE VERAZIP
service. If a single address is found, this input processor updates the shipping
address, returns successfully, and allows the Webflow to proceed to
payment.jsp. Otherwise, this input processor redirects the Webflow to
selecttaxaddress.jsp.

Required
HTTPServletRequest
Parameters

None

Required Pipeline
Session Attributes

PipelineSessionConstants.SHIPPING_ADDRESS

PipelineSessionConstants.VERIZIP_SHIPPING_ADDRESSES

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHIPPING_ADDRESS (in the case of a
single address)

Removed Pipeline
Session Attributes

None

Validation None

Exceptions MultipleAddressFoundException, thrown if the VERAZIP service
returns more than one address.
5-10 Order Processing Package

Input Processors
UpdateShippingAddressIP

Class Name com.beasys.commerce.ebusiness.shipping.webflow.

UpdateShippingAddressIP

Description Updates the shipping address attribute in the Pipeline session based on the tax
address the customer selects.

Required
HTTPServletRequest
Parameters

HTTPRequestConstants.TAX_SHIPPING_ADDRESS

Required Pipeline
Session Attributes

PipelineSessionConstants.SHIPPING_ADDRESS

PipelineSessionConstants.VERIZIP_SHIPPING_ADDRESSES

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHIPPING_ADDRESS

Removed Pipeline
Session Attributes

None

Validation None

Exceptions None
Order Processing Package 5-11

5 Taxation Services
Pipeline Components

This section provides a brief description of each Pipeline component associated with
the Taxation Services JSP template(s).

Note: Some Pipeline components extend other, base Pipeline components. For more
information on the base classes, see the Javadoc.

TaxCalculateLineLevelPC

Class Name com.beasys.commerce.ebusiness.tax.pipeline.
TaxCalculateLineLevelPC

Description Calculates the tax and provides line-level information about the taxability of an item.
This Pipeline component is used to display the tax information to the customer.

Required Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART

PipelineSessionConstants.SHIPPING_ADDRESS

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART

Removed Pipeline
Session Attributes

None

Type Java class

JNDI Name None

Exceptions None
5-12 Order Processing Package

Pipeline Components
TaxCalculateAndCommitLineLevelPC

TaxVerifyShippingAddressPC

Class Name com.beasys.commerce.ebusiness.tax.pipeline.

TaxCalculateAndCommitLineLevelPC

Description Calculates the tax and provides line-level information about the taxability of an item.
The results are logged to the TAXWARE audit file so that correct payment can be
made to taxing jurisdictions, or to generate tax reports.

Required Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART

PipelineSessionConstants.SHIPPING_ADDRESS

Updated Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART

Removed Pipeline
Session Attributes

None

Type Java class

JNDI Name None

Exceptions None

Class Name com.beasys.commerce.ebusiness.tax.pipeline.

TaxVerifyShippingAddressPC

Description Ensures that the shipping address is descriptive enough to properly calculate taxation
for an order based on jurisdiction.

Required Pipeline
Session Attributes

PipelineSessionConstants.SHIPPING_ADDRESS

Updated Pipeline
Session Attributes

PipelineSessionConstants.VERAZIP_SHIPPING_ADDRESSES
Order Processing Package 5-13

5 Taxation Services
Removed Pipeline
Session Attributes

None

Type Java class

JNDI Name None

Exceptions TaxSystemException, thrown if processing could not occur due to system level
problems (for example, some data files are missing or there is an installation problem
in TAXWARE).

TaxUserException, thrown if processing could not occur due to invalid user input.
5-14 Order Processing Package

Integration with TAXWARE
Integration with TAXWARE

To ensure that the Taxation Services properly determine taxes for the items in your
product catalog, the BEA WebLogic Commerce Server product integrates with
TAXWARE International Inc.’s commercial tax products. Specifically:

n The SALES/USE Tax System is a TAXWARE product that calculates the sales,
use, and customer’s use tax based on jurisdictions in the United States and
Canada. Monthly updates of tax rates ensure the SALES/USE Tax System is
kept up-to-date.

n The VERAZIP System is a TAXWARE product that verifies addresses for tax
purposes. Such verification ensures that the address is detailed enough for the
SALES/USE Tax System to determine the correct tax.

n The Universal Tax Link (UTL) System is a TAXWARE product that can be used
as a common application program interface for different modules of the tax
system (that is, SALES/USE, VERAZIP, and so on).

Note: For more information about TAXWARE International, Inc. and TAXWARE
products, visit the company’s Web site at http://www.taxware.com.

Important TAXWARE Considerations

The following are important factors regarding the BEA WebLogic Commerce Server
product’s integration with TAXWARE that should be considered prior to launching
your e-business Web site:

n What WebLogic Commerce Server Provides: The BEA WebLogic Commerce
Server product ships with evaluation tax data from January 2000 to demonstrate
the Taxation Service functionality. It does not include the TAXWARE utilities
required to upload new tax data, nor does it include the tools that allow you to
run audit reports. Therefore, you will need to obtain and install these
components by contacting TAXWARE International, Inc. prior to using the
Taxation Service in a production environment.

n About Tax Data Updates: Due to changes in tax laws, TAXWARE data does
become obsolete with time. To calculate correct taxes for your customers’
Order Processing Package 5-15

5 Taxation Services
orders, you will need to obtain current tax data from TAXWARE International,
Inc. This update process is required approximately 15 times per year, and
TAXWARE makes new tax data available approximately one month in advance.
For more information about tax data updates, visit TAXWARE International,
Inc.’s Support and Updates Web site at
http://www.taxware.com/zsupport/support.htm.

n Domestic vs. International Taxes: The TAXWARE products included in the
BEA WebLogic Commerce Server product handle tax calculations for the United
States and Canada only.

n Tax Calculation Policies: Tax computation is a complex subject. Your
development team should not make decisions about the company's tax policies;
rather, you should consult with an attorney in your Legal Department for
policies regarding the use of tax software in your Web-based applications.

TAXWARE Installation

TAXWARE International's SALES/USE, VERAZIP, and Universal Tax Link (UTL)
systems are shipped within the BEA Weblogic Commerce Server product to provide
out-of-the-box TAXWARE functionality. The Commerce Server’s installation
program will install these TAXWARE products along with the Commerce Server, and
will also uninstall them upon uninstallation of the Commerce Server.

The versions of the TAXWARE products installed with the BEA WebLogic
Commerce Server product are as follows:

n SALES/USE Tax System, release 3.2.0

n VERAZIP System, release 3.2.0

n Universal Tax Link, release 2.1

Installation Directory Structure

The TAXWARE product files installed with the BEA WebLogic Commerce Server
product are organized into particular directories based on the system platform. This
section describes the directory structures for both the Windows and UNIX installations
of the TAXWARE products.
5-16 Order Processing Package

Integration with TAXWARE
Windows

All TAXWARE audit files, Java classes, DLLs, and preloaded data files needed for
Win32 installation reside in subdirectories beneath
WL_COMMERCE_HOME\eval\win32\Taxware, where WL_COMMERCE_HOME is the
directory in which you installed WebLogic Commerce Server.

Table 5-5 lists the subdirectories where you would find these TAXWARE files.

Additionally, the WL_COMMERCE_HOME\eval\win32\Taxware directory (where
WL_COMMERCE_HOME is where you installed the WebLogic Commerce Server) contains
the following two ini files:

n avptax.ini, which describes the input, output, audit and temporary directory
path environment variables used by the TAXWARE SALES/USE System.

n avpzip.ini, which describes the input, output, audit, and temporary directory
path environment variables used by the TAXWARE VERAZIP System.

Table 5-5 Location of TAXWARE Files

Subdirectory Description

\audit Contains audit files for all tax transactions.

\bin Contains DLLs for SALES/USE, VERIZIP, and UTL, including
avptax.dll, avpzip.dll, taxcommon.dll, and
taxcommon0.dll.

\classes Contains Java classes for UTL, including taxmain.class and
taxcommon.class.

\data Contains preloaded data files for SALES/USE and VERAZIP
such as INDATA (which includes all run-time, test and
parameter, tax master, product sequential, and update files) and
OUTDATA (which includes all generated data files when tax data
is loaded or updated).

\temp Contains temporary files generated by TAXWARE while
processing a transaction.
Order Processing Package 5-17

5 Taxation Services
Notes: The BEA WebLogic Commerce Server product’s installation program
automatically copies these files from the WL_COMMERCE_HOME directory to the
C:/Winnt directory.

For more information about the ini files, see “Run-Time Configuration” on
page 5-26.

UNIX

All TAXWARE audit files, Java classes, shared objects, and preloaded data files
needed for UNIX installation reside in subdirectories beneath
WL_COMMERCE_HOME\eval\solaris2\Taxware, where WL_COMMERCE_HOME is the
directory in which you installed WebLogic Commerce Server.

Table 5-6 lists the subdirectories where you would find these TAXWARE files.

Table 5-6 Location of TAXWARE Files

Subdirectory Description

\audit Contains audit files for all tax transactions.

\classes Contains UTL Java classes, including taxmain.class and
taxcommon.class.

\data Contains preloaded data files for SALES/USE and VERAZIP
such as INDATA (which includes all run-time, test and
parameter, tax master, product sequential, and update files) and
OUTDATA (which includes all generated data files when tax data
is loaded or updated).

\lib Contains shared objects, including libsalesusetax.so,
libstep.so, libtaxcommon.so, libtaxcommono.so,
and libverazip.so.

\temp Contains temporary files generated by TAXWARE while
processing a transaction.
5-18 Order Processing Package

Integration with TAXWARE
Testing the TAXWARE Installation

You can test the installation of the WebLogic Commerce Server-provided TAXWARE
products on both Windows and UNIX platforms using some predefined test scripts.
Refer to the appropriate section for details.

Windows

To run the test scripts in a Windows environment, follow these steps:

1. From a DOS prompt, set up the home directory for WebLogic Commerce Server
by typing: SET WL_COMMERCE_HOME=<directory_where_you_installed_
WebLogic_Commerce_Server>.

2. Navigate to the WL_COMMERCE_HOME\eval\win32\Taxware\bin directory,
where WL_COMMERCE_HOME is the directory in which you installed WebLogic
Commerce Server.

3. To test the SALES/USE component of TAXWARE, type runsample.bat
commonsu.in.

4. To test the VERAZIP component of TAXWARE, type runsample.bat
vzip.in. The result should be a long line that begins with: 0000010000.

5. Check that output string has the expected completion code.

Note: Refer to the TAXWARE SALES/USE and VERAZIP product documentation
for more details about the output string fields and their values.

UNIX

To test installation of TAXWARE in a UNIX environment, follow these steps:

1. From a command window, set up the home directory for WebLogic Commerce
Server by typing: SET WL_COMMERCE_HOME=<directory_where_you_
installed_WebLogic_Commerce_Server>.

2. Navigate to the WL_COMMERCE_HOME\eval\solaris2\Taxware\bin directory,
where WL_COMMERCE_HOME is the directory in which you installed WebLogic
Commerce Server.

3. To test the SALES/USE component of TAXWARE, type runsample.sh
commonsu.in.
Order Processing Package 5-19

5 Taxation Services
4. To test the VERAZIP component of TAXWARE, type runsample.sh vzip.in.
The result should be a long line that begins with: 00000542No I/O Error.

5. Check that output string has the expected completion code.

Note: Refer to the TAXWARE SALES/USE and VERAZIP product documentation
for more details about the output string fields and their values.

Changing the TAXWARE Directory Structure

TAXWARE products are integrated with the BEA WebLogic Commerce Server
product through the Java Native Interface (JNI). This means that a specially prepared
shared object or DLL must be made available for loading during server startup. The
Commerce Server ships with a working version of TAXWARE, complete with the
correct DLLs and sample data files. If your organization already makes use of
TAXWARE products and has installed these files in a different location, you may want
to point the BEA WebLogic Commerce Server product’s Taxation Services to a
different directory structure. For more information about changing the TAXWARE
directory structure, see “Run-Time Configuration” on page 5-26.

TAXWARE Configuration and Deployment

The correct calculation of taxes requires that a number of important pieces of
information come together. The bulk of the information needed to calculate taxes is
stored in the data structures provided by TAXWARE, and can be loaded using
TAXWARE utilities. Additional tax information (from the product catalog, ship to
address, and so on) is made available to the BEA WebLogic Commerce Server product
via our programmatic interface (API). Finally, the information that cannot be obtained
from the data structures or specified using the API must be configured using property
files.

This section describes all of the configuration and deployment issues that you will need
to take into consideration when using TAXWARE products. The information
described focuses on the configuration properties in the
weblogiccommerce.properties file that enable tax calculations.
5-20 Order Processing Package

Integration with TAXWARE
Addresses and Taxation

In many cases, the proper calculation of taxes requires that you specify a number of
addresses, including the location from which the order is accepted, where the order
originated, where the order shipped from, and where the title is exchanged.

Note: For a detailed explanation of the tax implications associated with these
addresses, you will need to consult with TAXWARE International, Inc. and
the attorneys in your organization’s Legal Department.

The Pipeline components that ship with the BEA WebLogic Commerce Server product
support specifying a single location of these addresses for each instance of the
Commerce Server. This information is specified and read from the tax section of
weblogiccommerce.properties file, located in WL_COMMERCE_HOME, where
WL_COMMERCE_HOME is the directory in which you installed the Commerce Server.

For each of the relevant address fields (street, city, state, and so on), there is a separate
line in the properties file (see Listing 5-3). The minimum information that you are
required to specify is the city, state, zip, and country. If the TAXWARE products
determine that this information is enough to identify a unique tax jurisdiction, then it
is possible to default the county code and GeoCode by commenting out these
properties in the weblogiccommerce.properties file. In some cases, however, it
may be necessary to provide a specific county and GeoCode. This is something that
you will need to confirm when installing the additional TAXWARE components.

Listing 5-3 Specifying Addresses in the weblogiccommerce.properties File

###
ShipFrom Address
--

ShipFrom Address is address from where goods are shipped
Please review Taxware documentation when setting these properties
#

shipfrom.countycode=000
shipfrom.state=MA
shipfrom.city=SALEM
shipfrom.zip=01970
shipfrom.geocode=00
shipfrom.country=USA

##
Order Processing Package 5-21

5 Taxation Services
Order Acceptance Address
#--

OrderAcceptance is the address where orders are accepted
Please review Taxware documentation when setting these properties
#

orderacceptance.countycode=000
orderacceptance.state=MA
orderacceptance.city=SALEM
orderacceptance.zip=01970
orderacceptance.geocode=00
orderacceptance.country=USA

###

Order Origin Address
#---

Order Origin is the address where orders are Originated
Please review Taxware documentation when setting these properties
#

orderorigin.countycode=000
orderorigin.state=MA
orderorigin.city=SALEM
orderorigin.zip=01970
orderorigin.geocode=00
orderorigin.country=USA

The point of title passage may be defaulted to be either the ship from or the ship to
address. The most common case is to use the shipfrom address. Changing this
involves replacing the title passage line by uncommenting one line and replacing it
with the other, as shown in Listing 5-4.

Listing 5-4 Specifying Point of Title Passage in the weblogiccommerce.properties
File

##

Point of title passage

Location at which legal title has transferred to purchaser
5-22 Order Processing Package

Integration with TAXWARE
#titlepassage=shipto
titlepassage=shipfrom

Note: It is possible to modify the tax calculation Pipeline component to obtain the
Address and Taxation properties from a source other than the
weblogiccommerce.properties file. Alternative sources may be input
from the customer or from a pre-existing inventory or product delivery system.
Obtaining the addresses from alternative sources may require prompting the
customer for an address, or obtaining the address from your other systems on
a per-order basis. Regardless of the method used to obtain the addresses, the
addresses must be placed in the Pipeline session, and set in the
TaxParameters object prior to calculating tax.

TAXWARE-specific Properties

Because TAXWARE is an external product, there are some properties specific to
TAXWARE that must also be configured in the weblogiccommerce.properties
file. This section describes each of these properties in detail.

Specifying a Currency

It is important that the ISO currency code be provided to TAXWARE products. In the
shipped WebLogic Commerce Server product, the currency field in the shopping cart
lines have been defaulted or are empty. It is therefore necessary for you to specify a
single currency for use in calculating tax in the weblogiccommerce.properties
file, as shown in Listing 5-5. This currency will be used for all tax calculation amounts,
and enables future localization of tax calculations.

Listing 5-5 Specifying Currency in the weblogiccommerce.properties File

###

Currency for Tax Calculation (Taxware only supports USD)
--

tax.currency = USD
Order Processing Package 5-23

5 Taxation Services
Specifying Your Company’s ID

When you configure TAXWARE, you will also need to provide some indentification
information for your company to calculate taxes. Because it is possible for multiple
corporate entities to share a set of TAXWARE configuration files, your CompanyId
must be specified with each request to TAXWARE. This property is the identifier for
your company as configured in your TAXWARE deployment. The demonstration
configuration uses companyId as the default for this property, so it must be changed
for a production environment.

Listing 5-6 Specifying Company ID in the weblogiccommerce.properties File

###

#---
User Defined company identification to access information
for tax calculating and reporting

companyId=CompanyId

Specifying Your Tax Type

Depending on the nature of your business, you will need to select the type of taxes you
want to calculate. The BEA WebLogic Commerce Server product defaults to
calculating sales tax for hard and soft goods. TAXWARE also supports calculation of
taxes for usage, commercial usage, rental, and services. If your organization requires
any of these other models, you will need to modify this property in the
weblogiccommerce.properties file, as shown in Listing 5-7.

Listing 5-7 Specifying TaxType in the weblogiccommerce.properties File

###

TaxType
#--
Type of tax to be calculated

#taxtype=use
#taxtype=rental
#taxtype=consumeruse
5-24 Order Processing Package

Integration with TAXWARE
#taxtype=services
taxtype=sales

Note: The tax calculation Pipeline components that ship with Commerce Server only
allow you to choose one tax type. If your organization requires multiple tax
types, you will need to modify the appropriate Pipeline component(s)
(TaxCalculateLineLevelPC, TaxCalculateAndCommitLineLevelPC,
and TaxVerifyShippingAddressPC) to specify this to the Taxation Service
via the Tax Type parameters.

Specifying Calculation of Jurisdiction

Setting the TaxSelParm property (shown in Listing 5-8) will indicate to the
TAXWARE product whether or not you must fully calculate jurisdiction. If you set
this option to 2, TAXWARE will not determine the jurisdiction. If you do not need to
determine jurisdiction, you may also remove the shipfrom, orderacceptance, and
orderorigin address properties from the weblogiccommerce.properties file, as
they will not be required (see Listing 5-3).

Listing 5-8 Specifying Jurisdiction Calculations in the
weblogiccommerce.properties File

##

TaxSelParm
#--
Taxselparm to decide jurisdiction while calculating
if value is 2 Calculate tax only
if value is 3 Determine jurisdiction and calculate taxes

#taxselparm=2
taxselparm=3

Note: Setting the TaxSelParm property is a business decision that will require input
from your Legal Department and TAXWARE International, Inc.
Order Processing Package 5-25

5 Taxation Services
Run-Time Configuration

TAXWARE products are integrated with the WebLogic Commerce Server product
through the Java Native Interface (JNI). This means that a specially prepared shared
object or DLL must be made available for loading during server startup. Additionally,
there are a number of files containing the address verification data and tax tables that
are accessed at run time. The WebLogic Commerce Server ships with a working
version of TAXWARE, complete with the correct DLLs and sample data files. If you
have installed TAXWARE in a different location, you must change the location from
which these files are loaded. The differences between the default WebLogic
Commerce Server and the sample TAXWARE directory structure are shown in
Table 5-7.

On Windows systems, pointing to the correct file locations is accomplished by making
the following changes:

n In the set-environment.bat file, change the WLCS_CLASSPATH environmental
variable to the directory where the TAXWARE Java Class files reside.

n In the StartCommerce.bat file, change the PATH environment variable in
StartCommerce.bat to the directory where the TAXWARE DLL files reside.

n In the avptax.ini, avpzip.ini, and taxware.ini files, change the location
of the address verification data and tax tables. These files are located in the
winnt directory. For an example, see Listing 5-11.

Note: For these changes to take effect, you need to restart your server.

Table 5-7 Differences in WebLogic Commerce Server and TAXWARE
Directory Structures

Default WebLogic Commerce Server
Structure

Sample TAXWARE Structure

Subdirectories:

\data

\audit

\temp

\bin

Subdirectories:

\indata

\outdata

\audit

\temp

\bin
5-26 Order Processing Package

Integration with TAXWARE
The default WebLogic Commerce Server run-time configuration is shown in
Listing 5-9.

Listing 5-9 WebLogic Commerce Server Run-Time Configuration on Windows
Systems

REM ---- Add WebLogic, CyberCash, and Taxware bin directories to the path ----

SETLOCAL
SET
PATH=%PATH%;%WEBLOGIC_HOME%\bin;%WL_COMMERCE_HOME%\eval\win32\CyberCash\bin;%WL
_COMMERCE_HOME%\eval\win32\Taxware\bin

On UNIX systems, pointing to the correct file locations is accomplished by making the
following changes in the file bin/unix/set-environment.sh:

1. Set the environment variable TAXWARE_HOME to point to the location of your
TAXWARE installation. The default WLCS run-time configuration is shown in
Listing 5-10.

2. Set the TAXWARE-specific environment variables to the correct data directories.
For an example, see Listing 5-11.

3. Check the environment variable WLCS_CLASSPATH to make sure it includes the
directory in which taxcommon.class lives.

4. Verify that the environment variable for your TAXWARE shared libraries (.so
or .sl files) are correct. For example, under Solaris, the default environment
variable LD_LIBRARY_PATH includes $TAXWARE_HOME/lib. It might change to
$TAXWARE_HOME/utl or similar depending on your TAXWARE installation.

Notes: The actual variable name varies depending on the type of UNIX platform.

For theses changes to take effect, you need to restart your server.

Listing 5-10 The WebLogic Commerce Server Run-Time Configuration on
UNIX Systems

#--------- WLCS Taxware Environment variables ----------
TAXWARE_HOME=$WL_COMMERCE_HOME/eval/solaris2/Taxware
Order Processing Package 5-27

5 Taxation Services
#---------- Taxware and CyberCash shared objects
LD_LIBRARY_PATH=$TAXWARE_HOME/lib:$WL_COMMERCE_HOME/eval/solaris2
/CyberCash/lib:$JDK_HOME/jre/lib/sparc
export LD_LIBRARY_PATH

Listing 5-11 TAXWARE Environment Variables on UNIX Systems (Sample
TAXWARE Installation)

#----------Taxware Environment variables -------------

TAXWARE_HOME=$WL_COMMERCE_HOME/eval/solaris2/Taxware
AVPIN=$TAXWARE_HOME/indata
export AVPIN
AVPOUT=$TAXWARE_HOME/outdata
export AVPOUT
AVPTEMP=$TAXWARE_HOME/temp
export AVPTEMP
AVPAUDIT=$TAXWARE_HOME/audit
export AVPAUDIT

STEPIN=$TAXWARE_HOME/indata
export STEPIN
STEPOUT=$TAXWARE_HOME/outdata
export STEPOUT
STEPTEMP=$TAXWARE_HOME/temp
export STEPOUT

ZIPIN=$TAXWARE_HOME/indata
export ZIPIN
ZIPOUT=$TAXWARE_HOME/outdata
export ZIPOUT
ZIPTEMP=$TAXWARE_HOME/temp
export ZIPTEMP

BT_SHARE=N
export BT_SHARE
5-28 Order Processing Package

Integration with TAXWARE
Notes: The use of these directories is described in more detail in the TAXWARE
product documentation.

The most important of these directories is the AVPAUDIT directory. This is
where the audit information used by TAXWARE to generate tax reports is
stored. You will need to establish a process for your production environment
whereby a given server is taken offline while the audit files are copied and
replaced. The details of this process will depend largely on whether or not you
deploy TAXWARE in a cluster.

Tax Codes and the Product Catalog

Another important factor in the calculation of taxes is that the items in your product
catalog must have properly assigned tax codes. Specifically, the tax codes assigned to
items in your product catalog must match the tax codes configured in TAXWARE.
Ensuring this match involves either manually updating the tax codes using the product
catalog administration tool, or creating bulk loading scripts.

Note: To obtain the appropriate tax codes for your product items, refer to the
TAXWARE product documentation.

Updating TAXWARE Tax Data

As previously described, TAXWARE periodically provides updates to the tax data
used in tax calculations. This update process is handled by TAXWARE tools, for
which TAXWARE International, Inc. provides the installation and usage procedures.
However, you will need to establish a process for your production environment to
handle the server being taken offline and the tax data files updated. This procedure
will depend largely on whether or not you deploy TAXWARE in a cluster.

TAXWARE Checklist

Based on the information described in this section, you should be able to configure and
deploy the TAXWARE products. The following checklist will help ensure that you
have followed all the necessary steps for accurate tax calculations.

n Install and license the TAXWARE components that are not included in the BEA
WebLogic Commerce Server product.

n Determine the ShipFrom address.
Order Processing Package 5-29

5 Taxation Services
n Determine the OrderAcceptance address.

n Determine the OrderOrigin address.

n Determine if the TitlePassage should be ShipFrom or ShipTo.

n Record the CompanyId that has been assigned to your organization.

n Determine the TaxType you will be using.

n Update these values in the weblogiccommerce.properties file, located in
WL_COMMERCE_HOME, where WL_COMMERCE_HOME is the directory where you
installed WebLogic Commerce Server.

n Ensure that the TAXWARE directories (see “Run-Time Configuration” on page
5-26) are set properly.

n Establish a process by which tax data is periodically updated.

n Establish a process by which tax audit files are archived.

Removing Tax Calculations

This section describes the process by which you might remove the Order Processing
package’s Taxation Services from your customized Web application. Removing these
tax calculation entails modifying the Pipeline and Webflow properties files to bypass
the Taxation Services currently provided in the Order Pipeline.

Modifying the Pipeline Properties File

To remove the Taxation Services from the Pipeline, follow these steps:

1. Copy the WL_COMMERCE_HOME/pipeline.properties file to
WL_COMMERCE_HOME/pipeline.properties.stock, where
WL_COMMERCE_HOME is the directory in which you installed WebLogic Commerce
Server. This is done in case you want to revert back to the original file content.

2. Open the pipeline.properties file and locate the CommitOrder Pipeline, as
shown in Listing 5-12.
5-30 Order Processing Package

Integration with TAXWARE
Listing 5-12 Default CommitOrder Pipeline

CommitOrder

CommitOrder.componentList=CommitOrderPC, AuthorizePaymentPC,
TaxCalculateAndCommitLineLevelPC
CommitOrder.isTransactional=true

3. Remove the TaxCalculateAndCommitLineLevelPC Pipeline component from
the first line of the CommitOrder Pipeline definition, so the CommitOrder
Pipeline is as shown in Listing 5-13.

Listing 5-13 CommitOrder Pipeline Without Tax Pipeline Component

CommitOrder

CommitOrder.componentList=CommitOrderPC, AuthorizePaymentPC
CommitOrder.isTransactional=true

4. Save the modified file. You do not need to restart the server to view your changes
if you have set the pipeline.hotdeploy.enable property to true in the
weblogiccommerce.properties file.

Modifying the Webflow Properties File

1. Copy the WL_COMMERCE_HOME/webflow.properties file to
WL_COMMERCE_HOME/webflow.properties.stock, where WL_COMMERCE_HOME
is the directory in which you installed WebLogic Commerce Server. This is done
in case you want to revert back to the original file content.

2. Locate and remove (or comment out) all lines in the webflow.properties file
that reference the following Pipeline components:

l TaxVerifyShippingAddressPC

l TaxCalculateLineLevelPC

l TaxCalculateAndCommitLineLevelPC
Order Processing Package 5-31

5 Taxation Services
3. Locate the Select Shipping Address Page section of the webflow.properties
file, as shown in Listing 5-14. Notice that in the default configuration, the
TaxVerifyShippingAddress Pipeline is invoked upon successful execution of
the UpdateShippingAddressIP input processor.

Listing 5-14 Default Shipping Address Page in the webflow.properties File

Select Shipping Address Page
...
...

SelectShippingAddress_UpdateShippingAddress.inputprocessor.
success=TaxVerifyShippingAddress.pipeline

...

4. Replace the TaxVerifyShippingAddress.pipeline with
CalculateShippingCost.pipeline, so the Select Shipping Address Page
section in the webflow.properties file is as shown in Listing 5-15.

Listing 5-15 Shipping Address Page Without Tax Pipeline

Select Shipping Address Page
...
...

SelectShippingAddress_UpdateShippingAddress.inputprocessor.
success=CalculateShippingCost.pipeline

...

5. Locate the success path for the CalculateShippingCost Pipeline in the
webflow.properties file, as shown in Listing 5-16.
5-32 Order Processing Package

Integration with TAXWARE
Listing 5-16 Default Success Path for CalculateShippingCost Pipeline

Decide to prompt selecttaxaddress.jsp on basis of number of
addresses retuned by verazip

...

...

CalculateShippingCost.pipeline.success=TaxCalculateLineLevel.
pipeline

...

6. Replace the TaxCalculateLineLevel Pipeline with
commerce/order/payment.jsp, so the success path for the
CalculateShippingCost Pipeline is as shown in Listing 5-17.

Listing 5-17 Success Path for CalculateShippingCost Pipeline without Tax
Pipeline

Decide to prompt selecttaxaddress.jsp on basis of number of
addresses retuned by verazip

...

...

CalculateShippingCost.pipeline.success=commerce/order/payment.jsp

...

7. Locate and remove (or comment out) all lines in the webflow.properties file
that reference the following:

l The JSP file selecttaxaddress.jsp.

l The input processors DecideShippingAddressPageIP and
UpdateTaxShippingAddressIP.

l The Pipeline components TaxVerifyShippingAddressPC,
TaxCalculateLineLevelPC, and TaxCalculateAndCommitLineLevelPC.
Order Processing Package 5-33

5 Taxation Services
8. Save the modified file. You do not need to restart the server to view your changes
if you have set the webflow.hotdeploy.enable property to true in the
weblogiccommerce.properties file.

What if I Don’t Want to Use TAXWARE to Calculate My
Taxes?

Although the BEA WebLogic Commerce Server product utilizes products from
TAXWARE International, Inc. to calculate taxes, you may choose to use another
provider of tax services. If you do not wish to use TAXWARE, you will need to
remove TAXWARE from the Pipeline (see “Removing Tax Calculations” on page
5-30), write new Pipeline components to handle tax calculations using the new tax
provider, and integrate these Pipeline components into the Webflow/Pipeline
infrastructure.

Note: The existing TAXWARE Pipeline components are delivered as source and
provide an excellent starting point for anyone wanting to use another provider
of tax services. The integration point for tax calcuations is the Tax attribute of
the ShoppingCartLine, for which you can use the set() and get() methods
to set the tax for each line in a customer’s shopping cart. For more
information, see the Javadoc.
5-34 Order Processing Package

CHAPTER
6 Payment Services

The Order Processing package also contains a Payment Service, which specifies how
payment for an order is authorized and settled. Currently the Payment Service allows
credit card payments to be made using the CyberCash, Inc. service. However, the JSP
templates, input processors, and Pipeline components allow different services to be
integrated. This topic describes the Payment Services in detail.

This topic includes the following sections:

n JavaServer Pages (JSPs)

l payment.jsp Template

l paymentnewcc.jsp Template

l paymenteditcc.jsp Template

n Input Processors

l PaymentAuthorizationIP

l UpdatePaymentInfoIP

n Pipeline Components

l PaymentAuthorizationHostPC

l PaymentAuthorizationTerminalPC

n Integration with CyberCash

l Configuration Activities for Using CyberCash

l What if I Don’t Want to Use CyberCash for Credit Card Processing?

n Credit Card Security Service

l Encryption/Decryption Implementation

l Customizable Security Settings

l Methods for Supplying the Private Key Encryption Password
Order Processing Package 6-1

6 Payment Services
JavaServer Pages (JSPs)

A primary goal of the Commerce Server’s Order Processing package is to allow you
to quickly establish a fully-functioning e-commerce site. To this end, the Payment
Service provides you with a JavaServer Page (JSP) template that you can use as is, or
customize to better meet your needs. This section describes this page in detail.

payment.jsp Template

If a customer has already specified payment information in their user profile, the
payment.jsp template (shown in Figure 6-1) provides the customer with a list of
credit cards (by type and last 4 digits) for selection. Customers wanting to use an
existing credit card can simply click its associated Use button to proceed to the next
part of the checkout process.

Note: For more information about user profiles, see “Customer Profile Services” in
the BEA WebLogic Commerce Server Registration and User Processing
Package documentation.

Customers can also choose to update the information associated with this credit card
by clicking the Update This Card button. If your customer wants to use a credit card
they have never used on your e-commerce site before, the customer can click the Add
Card button to add it to the list (using the paymentnewcc.jsp template). If a customer
wants to go back to the previous page, the customer can click the Back button.

Sample Browser View

Figure 6-1 shows an annotated version of the payment.jsp template. The dashed lines
and numbers in the diagram are not part of the template; they are referenced in the
explanation that follows the screen shot.
6-2 Order Processing Package

JavaServer Pages (JSPs)
Figure 6-1 Annotated payment.jsp Template

The numbers in the following list refer to the numbered regions in the figure:

1. The page header (top banner) is created from an import of the innerheader.jsp
template. This is standard across many of the JSP templates provided by WebLogic
Commerce Server. The import call is:

<%@ include file="/commerce/includes/innerheader.jsp" %>

2. If available, region 2 uses a combination of the WebLogic Server and WebLogic
Personalization Server JSP tags to obtain and display the customer’s saved credit
card(s).

3. The payment.jsp template’s content in region 3 contains the included
innerfooter.jsp template. The include call in payment.jsp is:

<%@ include file="/commerce/includes/innerfooter.jsp" %>

innerfooter.jsp consists of the horizontal footer at the bottom of the page,
plus the right-side vertical column that describes (for the benefit of you and your
Order Processing Package 6-3

6 Payment Services
development team) the name of the current template and links to its About
information. In the innerfooter.jsp file, the right-side vertical column is an
include file:

<%@ include file="/commerce/includes/rightside.jsp" %>

Location in the WebLogic Commerce Server Directory Structure

You can find the payment.jsp template file at the following location, where
WL_COMMERCE_HOME is the directory in which you installed WebLogic Commerce
Server:

%WL_COMMERCE_HOME%\server\webapps\wlcs\commerce\order\payment.jsp
(Windows)
$WL_COMMERCE_HOME/server/webapps/wlcs/commerce/order/payment.jsp
(UNIX)

Tag Library Imports

The payment.jsp template uses existing WebLogic Server and the WebLogic
Personalization Server’s User Management JSP tags. Therefore, the template includes
the following JSP tag libraries:

<%@ taglib uri=”weblogic.tld” prefix=”wl” %>
<%@ taglib uri=”um.tld” prefix=”um” %>

Note: For more information on the WebLogic Server JSP tags or the WebLogic
Personalization Server JSP tags, see “JSP Tag Reference” in the BEA
WebLogic Personalization Server documentation.

These files reside in the following directory for the WebLogic Commerce Server Web
application:

%WL_COMMERCE_HOME%\server\webapps\wlcs\WEB-INF (Windows)
$WL_COMMERCE_HOME/server/webapps/wlcs/WEB-INF (UNIX)
6-4 Order Processing Package

JavaServer Pages (JSPs)
Java Package Imports

The payment.jsp template uses Java classes in the following packages and therefore
includes these import statements:

<%@ page import=”java.servlet.*” %>
<%@ page import=”java.servlet.http.*” %>
<%@ page import=”com.beasys.commerce.webflow.*” %>
<%@ page import=”com.beasys.commerce.webflow.tags.*” %>
<%@ page import=”com.beasys.commerce.axiom.contact.*” %>
<%@ page import=”com.beasys.commerce.ebusiness.customer.*” %>

Location in Default Webflow

Customers arrive at payment.jsp from the page where they select their shipping
address (selectaddress.jsp). If they choose to add a new credit card, they will be
directed to the paymentnewcc.jsp template. If the customer chooses to edit one of
the cards that appears in the list, the customer will be directed to the
paymenteditcc.jsp template. After selecting a credit card for payment, customers
move on to the final page in the checkout process, where they can review their order
prior to committing it (checkout.jsp).

Note: For more information about the default Webflow, see “Overview of the Order
Processing Package” on page 1-1.

Included JSP Templates

The following JSP templates are included in the payment.jsp template:

n innerheader.jsp, which creates the top banner.

n innerfooter.jsp, which creates a horizontal footer at the bottom of the page,
and also includes the rightside.jsp template. rightside.jsp describes (for
the benefit of you and your development team) the name of the current template
and links to its About information.
Order Processing Package 6-5

6 Payment Services
Events

The payment.jsp template presents a customer with several buttons, each of which is
considered an event. These events trigger a particular response in the default Webflow
that allows customers to continue. While this response can be to load another JSP, it is
usually the case that an input processor or Pipeline is invoked first. Table 6-1 provides
information about these events and the business logic they invoke.

Dynamic Data Display

The purpose of the payment.jsp template is to display a list of the customer’s
previously saved credit cards. This is accomplished on the payment.jsp template
using a combination of WebLogic Server and WebLogic Personalization Server JSP
tags and accessor methods/attributes.

First, the getProfile JSP tag is used to set the customer profile (context) for which
the credit cards should be retrieved, as shown in Listing 6-1.

Listing 6-1 Setting the Customer Context

<um:getProfile
 profileKey=”<%= request.getRemoteUser() %>
 profileType=”WLCS_Customer” />

Next, the getProperty JSP tag is used to retrieve a cached copy of the possible credit
cards for the customer from the database, as shown in Listing 6-2.

Table 6-1 payment.jsp Events

Event Webflow Response(s)

button(addNewCreditCard) No business logic required. Loads
paymentnewcc.jsp.

button(continue) AuthorizePaymentIP

button(updatePaymentInfo) No business logic required. Loads
paymenteditcc.jsp.
6-6 Order Processing Package

JavaServer Pages (JSPs)
Listing 6-2 Retrieving the CreditCardsMap for the Customer

<um:getProperty propertyName=”creditCardsMap”
id=”creditCardsMapObject” />

You can now iterate through the credit cards contained within the creditCardsMap
(using the WebLogic Server JSP tag) and display each credit card in the collection
(using a Java scriptlet) as shown in Listing 6-3.

Listing 6-3 Iterating Through and Displaying the Credit Cards

<table>
<wl:repeat
 set=”<%=(Map)credtCardsMapObject).keySet().iterator()%>”
 id=”creditCard” type=”String” count=”100000”>

<tr>
 <td><%=creditCard%></td>
</tr>

</wl:repeat>
</table>

Note: For more information on the WebLogic Server JSP tags or the WebLogic
Personalization Server JSP tags, see “JSP Tag Reference” in the BEA
WebLogic Personalization Server documentation.

Form Field Specification

The payment.jsp template does not make use of any form fields.
Order Processing Package 6-7

6 Payment Services
paymentnewcc.jsp Template

The paymentnewcc.jsp template (shown in Figure 6-2) allows customers to enter
information about a new credit card, which will be added to their profile. This
information includes the credit card type (VISA, MasterCard, and so on), the name on
the card, the card number, the card expiration date (month and 4-digit year), and the
billing address (including a street address, city, state, zip/postal code, and country).
The customer must click the Save button for the new credit card to be added to the
customer’s list of credit cards.

Sample Browser View

Figure 6-2 shows an annotated version of the paymentnewcc.jsp template. The
dashed lines and numbers in the diagram are not part of the template; they are
referenced in the explanation that follows the screen shot.

Figure 6-2 Annotated paymentnewcc.jsp Template
6-8 Order Processing Package

JavaServer Pages (JSPs)
The numbers in the following list refer to the numbered regions in the figure:

1. The page header (top banner) is created from an import of the innerheader.jsp
template. This is standard across many of the JSP templates provided by WebLogic
Commerce Server. The import call is:

<%@ include file="/commerce/includes/innerheader.jsp" %>

2. Region 2 provides customers with a series of form fields that allow customers to
add a credit card. This region utilizes the form fields defined in the included
newcctemplate.jsp template file, which itself includes the states.jsp and
countries.jsp template files. The import call in paymentnewcc.jsp is:

 <%@ include file="/commerce/includes/newcctemplate.jsp” %>

3. The paymentnewcc.jsp template’s content in region 3 contains the included
innerfooter.jsp template. The include call in paymentnewcc.jsp is:

<%@ include file="/commerce/includes/innerfooter.jsp" %>

innerfooter.jsp consists of the horizontal footer at the bottom of the page,
plus the right-side vertical column that describes (for the benefit of you and your
development team) the name of the current template and links to its About
information. In the innerfooter.jsp file, the right-side vertical column is an
include file:

<%@ include file="/commerce/includes/rightside.jsp" %>

Location in the WebLogic Commerce Server Directory Structure

You can find the paymentnewcc.jsp template file at the following location, where
WL_COMMERCE_HOME is the directory in which you installed WebLogic Commerce
Server:

%WL_COMMERCE_HOME%\server\webapps\wlcs\commerce\order\

paymentnewcc.jsp (Windows)
$WL_COMMERCE_HOME/server/webapps/wlcs/commerce/order/

paymentnewcc.jsp (UNIX)
Order Processing Package 6-9

6 Payment Services
Tag Library Imports

The paymentnewcc.jsp template uses Pipeline and Webflow JSP tags. Therefore, the
template includes the following JSP tag libraries:

<%@ taglib uri=”webflow.tld” prefix=”webflow” %>
<%@ taglib uri=”pipeline.tld” prefix=”pipeline” %>

Note: For more information on the Webflow and Pipeline JSP tags, see BEA
WebLogic Commerce Server Webflow and Pipeline Management.

These files reside in the following directory for the WebLogic Commerce Server Web
application:

%WL_COMMERCE_HOME%\server\webapps\wlcs\WEB-INF (Windows)
$WL_COMMERCE_HOME/server/webapps/wlcs/WEB-INF (UNIX)

Java Package Imports

The paymentnewcc.jsp template uses Java classes in the following packages and
therefore includes these import statements:

<%@ page import="javax.servlet.*" %>
<%@ page import="javax.servlet.http.*" %>
<%@ page import="com.beasys.commerce.webflow.*" %>
<%@ page import="com.beasys.commerce.webflow.tags.*" %>
<%@ page import="com.beasys.commerce.foundation.pipeline.*" %>
<%@ page import="com.beasys.commerce.axiom.contact.*" %>
<%@ page import="com.beasys.commerce.ebusiness.customer.*" %>

Location in Default Webflow

Customers arrive at the paymentnewcc.jsp template from the page where they are
given the option of selecting a credit card from their profile (payment.jsp). When
customers are finished with this page, customers are returned to the payment.jsp
template so customers can make their selection.

Note: For more information about the default Webflow, see “Overview of the Order
Processing Package” on page 1-1.
6-10 Order Processing Package

JavaServer Pages (JSPs)
Included JSP Templates

The following JSP templates are included in the paymentnewcc.jsp template:

n innerheader.jsp, which creates the top banner.

n innerfooter.jsp, which creates a horizontal footer at the bottom of the page,
and also includes the rightside.jsp template. rightside.jsp describes (for
the benefit of you and your development team) the name of the current template
and links to its About information.

n newcctemplate.jsp, described in “Customer Registration and Login Services”
in the BEA WebLogic Commerce Server Registation and User Processing
Package documentation.

Events

The paymentnewcc.jsp template presents a customer with a single button, which is
considered an event. This event triggers a particular response in the default Webflow
that allows customers to continue. While this response can be to load another JSP, it is
usually the case that an input processor or Pipeline is invoked first. Table 6-2 provides
information about these events and the business logic they invoke.

Dynamic Data Display

No dynamic data is displayed on the paymentnewcc.jsp template.

Form Field Specification

The purpose of the paymentnewcc.jsp template is to provide form fields that allow
the customer to enter new credit card information. It also passes hidden information to
the Webflow. The form fields used in the paymentnewcc.jsp template, and a
description for each of these form fields, are listed in Table 6-3.

Table 6-2 paymentnewcc.jsp Events

Event Webflow Response(s)

button(save) UpdatePaymentInfoIP
Order Processing Package 6-11

6 Payment Services
Table 6-3 paymentnewcc.jsp Form Fields

Parameter Name Type Description

“event” Hidden Indicates which event has been
triggered. It is used by the
Webflow to determine what
happens next.

“origin” Hidden The name of the current page
(paymentnewcc.jsp), used by
the Webflow.

HttpRequestConstants.
CUSTOMER_CREDITCARD_TYPE

Listbox The type of the customer’s credit
card.

HttpRequestConstants.
CUSTOMER_CREDITCARD_HOLDER

Textbox The name on the credit card.

HttpRequestConstants.
CUSTOMER_CREDITCARD_NUMBER

Textbox The number of the customer’s
credit card.

HttpRequestConstants.
CUSTOMER_CREDITCARD_MONTH

Listbox The month of the customer’s credit
card expiration date.

HttpRequestConstants.
CUSTOMER_CREDITCARD_YEAR

Listbox The year of the customer’s credit
card expiration date.

HttpRequestConstants.
CUSTOMER_CREDITCARD_ADDRESS1

Textbox The first line in the customer’s
billing address.

HttpRequestConstants.
CUSTOMER_CREDITCARD_ADDRESS2

Textbox The second line in the customer’s
billing address.

HttpRequestConstants.
CUSTOMER_CREDITCARD_CITY

Textbox The city in the customer’s billing
address.

HttpRequestConstants.
CUSTOMER_CREDITCARD_STATE

Listbox The state in the customer’s billing
address.

HttpRequestConstants.
CUSTOMER_CREDITCARD_ZIPCODE

Textbox The zip/postal code in the
customer’s billing address.

HttpRequestConstants.
CUSTOMER_CREDITCARD_COUNTRY

Listbox The country in the customer’s
billing address.
6-12 Order Processing Package

JavaServer Pages (JSPs)
Note: Parameters that are literals in the JSP code are shown in quotes, while
non-literals will require scriptlet syntax (such as
<%= HttpRequestConstants.CUSTOMER_CREDIT_CARD_COUNTRY %>) for
use in the JSP.
Order Processing Package 6-13

6 Payment Services
paymenteditcc.jsp Template

The paymenteditcc.jsp template (shown in Figure 6-3) allows your customers to
modify information about one of the credit cards shown in the credit card list. Editable
information includes the name on the credit card, the expiration date (month and
4-digit year), and the billing address (including street address, city, state, zip/postal
code, and country). The customer must click the Save button to save the modifications
to their credit card.

Sample Browser View

Figure 6-3 shows an annotated version of the paymenteditcc.jsp template. The
dashed lines and numbers in the diagram are not part of the template; they are
referenced in the explanation that follows the screen shot.

Figure 6-3 Annotated paymenteditcc.jsp Template
6-14 Order Processing Package

JavaServer Pages (JSPs)
The numbers in the following list refer to the numbered regions in the figure:

1. The page header (top banner) is created from an import of the innerheader.jsp
template. This is standard across many of the JSP templates provided by WebLogic
Commerce Server. The import call is:

<%@ include file="/commerce/includes/innerheader.jsp" %>

2. Region 2 provides customers with a series of form fields that allow customers to
edit a credit card. This region utilizes the form fields defined in the included
editcctemplate.jsp template file, which itself includes the states.jsp and
countries.jsp template files. The import call in paymenteditcc.jsp is:

 <%@ include file="/commerce/includes/editcctemplate.jsp” %>

3. The paymenteditcc.jsp template’s content in region 3 contains the included
innerfooter.jsp template. The include call in paymenteditcc.jsp is:

<%@ include file="/commerce/includes/innerfooter.jsp" %>

innerfooter.jsp consists of the horizontal footer at the bottom of the page,
plus the right-side vertical column that describes (for the benefit of you and your
development team) the name of the current template and links to its About
information. In the innerfooter.jsp file, the right-side vertical column is an
include file:

<%@ include file="/commerce/includes/rightside.jsp" %>

Location in the WebLogic Commerce Server Directory Structure

You can find the paymenteditcc.jsp template file at the following location, where
WL_COMMERCE_HOME is the directory in which you installed WebLogic Commerce
Server:

%WL_COMMERCE_HOME%\server\webapps\wlcs\commerce\order\

paymenteditcc.jsp (Windows)
$WL_COMMERCE_HOME/server/webapps/wlcs/commerce/order/

paymenteditcc.jsp (UNIX)

Tag Library Imports

The paymenteditcc.jsp template uses the existing WebLogic Personalization
Server’s User Management JSP tags, and the Pipeline and Webflow JSP tags.
Therefore, the template includes the following JSP tag libraries:
Order Processing Package 6-15

6 Payment Services
<%@ taglib uri=”webflow.tld” prefix=”webflow” %>
<%@ taglib uri=”pipeline.tld” prefix=”pipeline” %>
<%@ taglib uri=”um.tld” prefix=”um” %>

Note: For more information on the Webflow and Pipeline JSP tags, see BEA
WebLogic Commerce Server Webflow and Pipeline Management. For more
information on the WebLogic Personalization Server JSP tags, see “JSP Tag
Reference” in the BEA WebLogic Personalization Server documentation.

These files reside in the following directory for the WebLogic Commerce Server Web
application:

%WL_COMMERCE_HOME%\server\webapps\wlcs\WEB-INF (Windows)
$WL_COMMERCE_HOME/server/webapps/wlcs/WEB-INF (UNIX)

Java Package Imports

The paymenteditcc.jsp template uses Java classes in the following packages and
therefore includes these import statements:

<%@ page import="javax.servlet.*" %>
<%@ page import="javax.servlet.http.*" %>
<%@ page import="com.beasys.commerce.webflow.*" %>
<%@ page import="com.beasys.commerce.webflow.tags.*" %>
<%@ page import="com.beasys.commerce.foundation.pipeline.*" %>
<%@ page import="com.beasys.commerce.axiom.contact.*" %>
<%@ page import="com.beasys.commerce.ebusiness.customer.*" %>

Location in Default Webflow

Customers arrive at paymenteditcc.jsp template from the page where they are
given the option of selecting a credit card from their profile (payment.jsp). When
customers are finished with this page, they are returned to the payment.jsp template
so they can make their selection.

Note: For more information about the default Webflow, see “Overview of the Order
Processing Package” on page 1-1.
6-16 Order Processing Package

JavaServer Pages (JSPs)
Included JSP Templates

The following JSP templates are included in the paymenteditcc.jsp template:

n innerheader.jsp, which creates the top banner.

n innerfooter.jsp, which creates a horizontal footer at the bottom of the page,
and also includes the rightside.jsp template. rightside.jsp describes (for
the benefit of you and your development team) the name of the current template
and links to its About information.

n editcctemplate.jsp, described in “Customer Profile Services” in the BEA
WebLogic Commerce Server Registation and User Processing Package
documentation.

Events

The paymenteditcc.jsp template presents a customer with a single button, which is
considered an event. This event triggers a particular response in the default Webflow
that allows customers to continue. While this response can be to load another JSP, it is
usually the case that an input processor or Pipeline is invoked first. Table 6-4 provides
information about these events and the business logic they invoke.

Dynamic Data Display

One purpose of the paymenteditcc.jsp template is to prepare the credit card
information a customer had previously entered, so the editcctemplate.jsp
template can display this information in the payment information form fields. This is
accomplished on the paymenteditcc.jsp template using a combination the
WebLogic Personalization Server’s User Management JSP tags and accessor
methods/attributes.

First, the getProfile JSP tag is used to set the customer profile (context) for which
the customer information should be retrieved, as shown in Listing 6-4.

Table 6-4 paymenteditcc.jsp Events

Event Webflow Response(s)

button(save) UpdatePaymentInfoIP
Order Processing Package 6-17

6 Payment Services
Listing 6-4 Setting the Customer Context

<um:getProfile profileKey="<%=request.getRemoteUser()%>"
 profileType="WLCS_Customer" />

Note: For more information on the WebLogic Personalization Server’s User
Management JSP tags, see “JSP Tag Reference” in the BEA WebLogic
Personalization Server documentation.

Next, the getProperty JSP tag is used to obtain the customer’s list of credit cards
(and related billing information), which is then initialized with data from the customer
object, as shown in Listing 6-5.

Listing 6-5 Obtaining the Customer’s Credit Cards and Billing Information

<um:getProperty propertyName="creditCardsMap"
 id="creditCardsMapObject" />

<%

Map creditCardsMap = (Map) creditCardsMapObject;
String creditCardKey =
 request.getParameter(HttpRequestConstants.CREDITCARD_KEY);
CreditCard defaultCreditCard = null;
defaultCreditCard = (CreditCard)
creditCardsMap.get(creditCardKey);
Address billingAddress = (Address)
defaultCreditCard.getBillingAddress();

%>

The data stored within the defaultCreditCard and billingAddress objects can
now be accessed by calling accessor methods/attributes within Java scriptlets.
Table 6-5 provides more detailed information about the methods/attributes for the
default credit card, while Table 6-6 provides more information about the accessor
methods/attributes on billingAddress.
6-18 Order Processing Package

JavaServer Pages (JSPs)
Form Field Specification

Another purpose of the paymenteditcc.jsp template is to provide the form fields for
the customer’s modifications and to pass hidden information to the Webflow. The
form fields used in the paymenteditcc.jsp, and a description for each of these form
fields, are listed in Table 6-7.

Table 6-5 defaultCreditCard Accessor Methods/Attributes

Method/Attribute Description

getType() The credit card type (VISA, MasterCard, AMEX, and so on).

getName() The credit card holder’s name.

getDisplayNumber() The credit card number for display (12 Xs and last 4 digits).

getNumber() The credit card number.

getExpirationDate() The credit card’s expiration date.

Table 6-6 billingAddress Accessor Methods/Attributes

Method/Attribute Description

getStreet1() The first line in the customer’s billing street address.

getStreet2() The second line in the customer’s billing street address.

getCity() The city in the customer’s billing address.

getCounty() The county in the customer’s billing address.

getState() The state in the customer’s billing address.

getPostalCode() The zip/postal code in the customer’s billing address.

getCountry() The country in the customer’s billing address.
Order Processing Package 6-19

6 Payment Services
Table 6-7 paymenteditcc.jsp Form Fields

Parameter Name Type Description

“event” Hidden Indicates which event has been
triggered. It is used by the
Webflow to determine what
happens next.

“origin” Hidden The name of the current page
(paymenteditcc.jsp), used by
the Webflow.

HttpRequestConstants.
CUSTOMER_CREDITCARD_TYPE

Listbox The type of the customer’s credit
card.

HttpRequestConstants.
CUSTOMER_CREDITCARD_HOLDER

Textbox The name on the credit card.

HttpRequestConstants.
CUSTOMER_CREDITCARD_NUMBER

Textbox The number of the customer’s
credit card.

HttpRequestConstants.
CUSTOMER_CREDITCARD_MONTH

Listbox The month of the customer’s credit
card expiration date.

HttpRequestConstants.
CUSTOMER_CREDITCARD_YEAR

Listbox The year of the customer’s credit
card expiration date.

HttpRequestConstants.
CUSTOMER_CREDITCARD_ADDRESS1

Textbox The first line in the customer’s
billing address.

HttpRequestConstants.
CUSTOMER_CREDITCARD_ADDRESS2

Textbox The second line in the customer’s
billing address.

HttpRequestConstants.
CUSTOMER_CREDITCARD_CITY

Textbox The city in the customer’s billing
address.

HttpRequestConstants.
CUSTOMER_CREDITCARD_STATE

Listbox The state in the customer’s billing
address.

HttpRequestConstants.
CUSTOMER_CREDITCARD_ZIPCODE

Textbox The zip/postal code in the
customer’s billing address.

HttpRequestConstants.
CUSTOMER_CREDITCARD_COUNTRY

Listbox The country in the customer’s
billing address.
6-20 Order Processing Package

JavaServer Pages (JSPs)
Note: Parameters that are literals in the JSP code are shown in quotes, while
non-literals will require scriptlet syntax (such as
<%= HttpRequestConstants.CUSTOMER_CREDIT_CARD_COUNTRY %>) for
use in the JSP.
Order Processing Package 6-21

6 Payment Services
Input Processors

This section provides a brief description of each input processor associated with the
Payment Services JSP template(s).

PaymentAuthorizationIP

Class Name com.beasys.commerce.ebusiness.payment.webflow.
PaymentAuthorizationIP

Description Retrieves the shopping cart from the Pipeline session, the
CreditCardMapKey from the request, and determines the total price of the
order associated with the shopping cart. Adds the amount and credit card
associated with the key to the Pipeline session.

Required
HTTPServletRequest

Parameters

HttpRequestConstants.CREDITCARD_KEY

Required Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART

Updated Pipeline
Session Attributes

PipelineSessionConstants.PAYMENT_CREDIT_CARD

PipelineSessionConstants.PAYMENT_AUTHORIZATION_AMOUNT

Removed Pipeline
Session Attributes

None

Validation Verifies that the credit card key is valid and that it references an existing credit
card.

Exceptions ProcessingException, thrown for invalid types of CREDITCARD_KEY,
PAYMENT_CREDIT_CARD, or SHOPPING_CART. Also thrown if these
attributes are not available.
6-22 Order Processing Package

Input Processors
UpdatePaymentInfoIP

Class Name com.beasys.commerce.ebusiness.customer.webflow.

UpdatePaymentInfoIP

Description Processes the customer’s input from paymentnewcc.jsp and
paymenteditcc.jsp. Retrieves the customer name from the Pipeline
session, creates a new CustomerValue object, and sets it in the
Pipeline session.

Required
HTTPServletRequest

Parameters

HttpRequestConstants.CUSTOMER_CREDITCARD_TYPE

HttpRequestConstants.CUSTOMER_CREDITCARD_HOLDER

HttpRequestConstants.CUSTOMER_CREDITCARD_NUMBER

HttpRequestConstants.CUSTOMER_CREDITCARD_MONTH

HttpRequestConstants.CUSTOMER_CREDITCARD_YEAR

HttpRequestConstants.CUSTOMER_CREDITCARD_ADDRESS1

HttpRequestConstants.CUSTOMER_CREDITCARD_ADDRESS2

HttpRequestConstants.CUSTOMER_CREDITCARD_CITY

HttpRequestConstants.CUSTOMER_CREDITCARD_STATE

HttpRequestConstants.CUSTOMER_CREDITCARD_ZIPCODE

HttpRequestConstants.CUSTOMER_CREDITCARD_COUNTRY

Required Pipeline
Session Attributes

PipelineSessionConstants.USER_NAME

Updated Pipeline
Session Attributes

PipelineSessionConstants.CUSTOMER

Removed Pipeline
Session Attributes

None

Validation Verifies that the required fields contain values.

Exceptions InvalidInputException, thrown if invalid credit card information
is obtained from the HttpServletRequest.
Order Processing Package 6-23

6 Payment Services
Pipeline Components

This section provides a brief description of each Pipeline component associated with
the Payment Services JSP templates(s).

Note: Some Pipeline components extend other, base Pipeline components. For more
information on the base classes, see the Javadoc.

PaymentAuthorizationHostPC

Class Name com.beasys.commerce.ebusiness.payment.pipeline.
PaymentAuthorizationHostPC

Description Authorizes a given credit card for a specified amount. Used for host-based
payment models, shown in the weblogiccommerce.properties file as:

HOST_AUTH_CAPTURE

HOST_AUTH_CAPTURE_AVS

HOST_POST_AUTH_CAPTURE

HOST_POST_AUTH_CAPTURE_AVS

Required Pipeline
Session Attributes

PipelineSessionConstants.PAYMENT_CREDIT_CARD

PipelineSessionConstants.PAYMENT_AUTHORIZATION_AMOUNT

PipelineSessionConstants.ORDER_HANDLE (Request scope)

Updated Pipeline
Session Attributes

None

Removed Pipeline
Session Attributes

None

Type Java object

JNDI Name None
6-24 Order Processing Package

Pipeline Components
Exceptions AuthorizationFailureException, thrown when the credit card being
used for authorization is invalid (that is, the number or other associated
information is incorrect).

AuthorizationRejectedException, thrown when the credit card used
for authorization is valid but cannot be authorized (overdrawn, expired, and so
on).

PipelineNonFatalException, thrown when the external payment service
is unavailable. The transaction is recorded for retry.

PipelineFatalException, thrown when there is a configuration error, a
general service error, or a system-level exception from a back-end component.
Order Processing Package 6-25

6 Payment Services
PaymentAuthorizationTerminalPC

Class Name com.beasys.commerce.ebusiness.payment.pipeline.
PaymentAuthorizationTerminalPC

Description Authorizes a given credit card for a specified amount. Used for terminal-based
payment models, shown in the weblogiccommerce.properties file as:

AUTO_MARK_AUTO_SETTLE

AUTO_MARK_AUTO_SETTLE_AVS

AUTO_MARK_MANUAL_SETTLE

AUTO_MARK_MANUAL_SETTLE_AVS

MANUAL_MARK_AUTO_SETTLE

MANUAL_MARK_AUTO_SETTLE_AVS

MANUAL_MARK_MANUAL_SETTLE

MANUAL_MARK_MANUAL_SETTLE_AVS

Required Pipeline
Session Attributes

PipelineSessionConstants.PAYMENT_CREDIT_CARD

PipelineSessionConstants.PAYMENT_AUTHORIZATION_AMOUNT

PipelineSessionConstants.ORDER_HANDLE (Request scope)

Updated Pipeline
Session Attributes

None

Removed Pipeline
Session Attributes

None

Type Java object

JNDI Name None
6-26 Order Processing Package

Pipeline Components
Exceptions AuthorizationFailureException, thrown when the credit card being
used for authorization is invalid (that is, the number or other associated
information is incorrect).

AuthorizationRejectedException, thrown when the credit card used
for authorization is valid but cannot be authorized (overdrawn, expired, and so
on).

PipelineNonFatalException, thrown when the external payment service
is unavailable. The transaction is recorded for retry.

PipelineFatalException, thrown when there is a configuration error, a
general service error, or a system-level exception from a back-end component.
Order Processing Package 6-27

6 Payment Services
Integration with CyberCash

Part of the functionality provided by the Payment Services is their ability to interact
with CyberCash, a service which allows you to accept credit cards from customers
over the Internet. However, to run CyberCash with the Order Processing package’s
Payment Services, you will need to perform a number of configuration activities so
that CyberCash, your financial institution (credit card provider), and the Payment
Services can work together as shown in Figure 6-4.

Figure 6-4 CyberCash Interactions Diagram

Note: For more information about CyberCash, Inc. and their payment solutions, see
http://www.cybercash.com.
6-28 Order Processing Package

Integration with CyberCash
Configuration Activities for Using CyberCash

The following is a list of the configuration activities you must perform in order to use
CyberCash with the Order Processing package’s Payment Services:

1. Obtain an account from a financial institution that provides credit card processing
services. At this time, you will receive a payment model.

Note: For more information about the possible payment models, see “Payment
Models” on page 6-31.

2. Using the account information from your financial institution, register and apply
for a merchant bank account with CyberCash at http://amps.cybercash.com/.
Once you install the Merchant Connection Kit (MCK) from CyberCash on your
machine, you can create a merchant account. As part of this process, you will
also create a configuration file.

3. In the weblogiccommerce.properties file (located in the WL_COMMERCE_HOME
directory, where WL_COMMERCE_HOME is the directory in which you installed
WebLogic Commerce Server), use the CyberCashConfigFile property to
specify the location of the CyberCash configuration file on your system, as
shown in Listing 6-6.

Note: Be sure to carefully read the instructions in the
weblogiccommerce.properties file under the Payment Services heading
prior to making any changes.

Listing 6-6 Setting the CyberCashConfigFile Property

###
Properties required for the payment component
###

#
This property defers payment authorization to the administration tools.
If set to true, all payment service authorization calls are disabled
and payment transactions are persisted in a RETRY state. Payments must
then be reauthorized through the payment administration tool.
#
commerce.payment.defer.authorization=true
Order Processing Package 6-29

6 Payment Services
#
CyberCash configuration files contain CyberCash-specific data, such as a
merchant-id and merchant hash secret. The specific properties in the
configuration files depend upon the payment model assigned to a merchant by
his/her financial institution. The two files declared below are example files
and are provided for demonstration purposes ONLY. MERCHANGS MUST ACQUIRE A
CYBERCASH CONFIGURATION FILE FROM CYBERCASH. These will be furnished by
CyberCash as part of the merchant agreement. Once a merchang has a CyberCash
configuration file, the property below must be replaced with the location of
the configuration file.
#
Example: CyberCashConfigFile=c:/merchang/config/file/location/merchant_conf

This file may be used for testing terminal based payment models.
CyberCashConfigFile=@BEA_WEBLOGIC_COMMERCE_SERVER_HOME@/eval/common/CyberCash/
conf/merchant_conf-terminal

This file may be used for testing host based payment models.
CyberCashConfigFile=@BEA_WEBLOGIC_COMMERCE_SERVER_HOME@/eval/common/CyberCash/
conf/merchant_conf-host

Note: Single front slashes (or double back slashes) are required in this location
specification.

4. If you want to perform real-time authorization, you must set the
commerce.payment.defer.authorization property in the
weblogiccommerce.properties file to false. Otherwise, set it to true for
offline authorization using the payment management administration tool.

Note: For instructions on how to use the payment management administration tool,
see Chapter 8, “Using the Order and Payment Management Pages.”

5. In the weblogiccommerce.properties file, use the PaymentModel property to
specify the payment model you received from your financial institution, as shown
in Listing 6-7.

Listing 6-7 Setting the PaymentModel Property

#
Properties below represent the different payment models provided # by CyberCash.
#

6-30 Order Processing Package

Integration with CyberCash
Terminal based models
PaymentModel=AUTO_MARK_AUTO_SETTLE
PaymentModel=AUTO_MARK_AUTO_SETTLE_AVS
PaymentModel=AUTO_MARK_MANUAL_SETTLE
PaymentModel=AUTO_MARK_MANUAL_SETTLE_AVS
PaymentModel=MANUAL_MARK_AUTO_SETTLE
PaymentModel=MANUAL_MARK_AUTO_SETTLE_AVS
PaymentModel=MANUAL_MARK_MANUAL_SETTLE
PaymentModel=MANUAL_MARK_MANUAL_SETTLE_AVS

Host based models
#PaymentModel=HOST_AUTHCAPTURE
#PaymentModel=HOST_AUTHCAPTURE_AVS
#PaymentModel=HOST_AUTH_POSTAUTH
#PaymentModel=HOST_AUTH_POSTAUTH_AVS

6. Be sure to save your changes to the weblogiccommerce.properties file, and
restart the server.

Note: Detailed documentation for CyberCash, Inc. products can be found online at
http://www.cybercash.com/cashregister/docs/.

Payment Models

There are two types of payment models: terminal-based and host-based. The difference
between these payment models is where the transaction batch is stored. For a
host-based model, the transaction batch is stored on the host network rather than on the
local system at the merchant’s site. Settlement typically occurs sometime at the end of
the day, and the merchant is not required to do anything to initiate the settlement
process.

For a terminal-based model, the transaction batch is stored as data files on the local
system at the merchant’s site. Merchants must initiate the settlement process at the end
of each day in order for the funds to be transfered to the merchant’s bank account.

Table 6-8 describes each of the terminal-based payment models that may be assigned
by your financial institution. Table 6-9 describes each of the host-based payment
models that may be assigned.
Order Processing Package 6-31

6 Payment Services
Note: Each of the terminal-based payment models may be suffixed by _AVS. This
suffix indicates that merchants are also required to send an address. The BEA
WebLogic Commerce Server product always sends this address for
verification purposes.

Table 6-8 Terminal-based Payment Models

Payment Model Description

AUTO_MARK_AUTO_SETTLE This payment model is used for soft goods.
Settlement occurs as soon as authorization is
complete, because it is assumed that soft goods
are shipped at the time of purchase.

AUTO_MARK_MANUAL_SETTLE This payment model is used in cases where
goods have been shipped at authorization but
the merchant requests that funds should be
transferred at a later date.

MANUAL_MARK_AUTO_SETTLE This payment model allows merchants to
indicate that the goods have been shipped, at
which point settlement is done automatically.

MANUAL_MARK_MANUAL_SETTLE This is the most flexible payment model in that
it allows merchants to specify when goods are
shipped and when funds should be transferred.
The mark process allows the merchant to
specify that the goods have been shipped. The
settlement process allows the merchant to
indicate that funds may be transferred.
6-32 Order Processing Package

Integration with CyberCash
Note: Each of the host-based payment models may be suffixed by _AVS. This suffix
indicates that merchants are also required to send an address. The BEA
WebLogic Commerce Server product always sends this address for
verification purposes.

How Do I Switch Between the Two Payment Models?

If you decide to use the terminal-based payment model, your Web application must use
the PaymentAuthorizationTerminalPC Pipeline component. If you decide to use
the host-based payment model, your Web application must use the
PaymentAuthorizationHostPC Pipeline component instead.

To change the Pipeline component to reflect the payment model, follow these steps:

1. Start a simple text editor like Notepad.

Table 6-9 Host-based Payment Models

Payment Model Description

HOST_AUTH_CAPTURE This payment model is used for services, sale of
digital goods, or physical goods shipped within
24 hours of when the order is placed. In this
case, the merchant only needs to get an
authorization for the purchase amount. The
capture of the authorization into the batch and
the settlement of the transaction are done for the
merchant by the processor at the time of
authorization.

HOST_POST_AUTH_CAPTURE When the merchant fulfills orders more than
one day after receiving them, the merchant must
authorize and capture transactions separately. In
this payment model, authorization is performed
at the time the consumer wants to make the
purchase. Capture is performed when the
merchant ships the order. The processor handles
settlement of the batched transactions at certain
times of the day.
Order Processing Package 6-33

6 Payment Services
2. Open the weblogiccommerce.properties file, which can be found in
WL_COMMERCE_HOME, where WL_COMMERCE_HOME is the top-level directory where
you installed WebLogic Commerce Server.

3. Set the Payment Model property (refer to Listing 6-7 for more details), and save
the weblogiccommerce.properties file.

4. Open the default Pipeline properties file, which can be found in
WL_COMMERCE_HOME/pipeline.properties, where WL_COMMERCE_HOME is the
top-level directory where you installed WebLogic Commerce Server.

5. In the AuthorizePaymentPC Pipeline component definition (set to use the
PaymentAuthorizationTerminalPC Pipeline component by default), change
the className, jndiName, and isEJBSessionBean properties to reflect those
associated with the other Pipeline component.

Note: For more information about the properties associated with the
PaymentAuthorizationTerminalPC and PaymentAuthorizationHostPC
Pipeline components, see “Pipeline Components” on page 6-24.

6. Save the modified file. You do not need to restart the server to view your changes
if you have set the pipeline.hotdeploy.enable property to true in the
weblogiccommerce.properties file.
6-34 Order Processing Package

Integration with CyberCash
What if I Don’t Want to Use CyberCash for Credit Card
Processing?

The BEA WebLogic Commerce Server product provides you with a CyberCash-based
implementation of a Payment Service. However, you may want to use a service
provider other than CyberCash. Use of a different provider requires that you
implement a payment authorization Pipeline component that is specific to the provider
of your choice.

Note: It is expected that a Java/EJB programmer (or someone with similar technical
knowledge and abilities) will develop new Pipeline components.

To implement a new Pipeline component for a Payment Service provider other than
CyberCash, perform the following steps:

1. Create a new Pipeline component that extends CommercePipelineComponent, as
shown in Listing 6-8.

Listing 6-8 Creating a New Pipeline Component

// java imports
import java.rmi.RemoteException;
import java.sql.Date;
import java.sql.Connection;

// javax imports
import javax.ejb.*;

// com.beasys imports
import com.beasys.commerce.ebusiness.payment.*;
import com.beasys.commerce.ebusiness.order.*;
import com.beasys.commerce.ebusiness.security.*;
import com.beasys.commerce.axiom.contact.*;
import com.beasys.commerce.axiom.units.*;
import com.beasys.commerce.axiom.util.helper.*;
import com.beasys.commerce.webflow.*;
import com.beasys.commerce.foundation.*;
import com.beasys.commerce.foundation.exception.*;
import com.beasys.commerce.foundation.pipeline.*;
import com.beasys.commerce.util.*;

/**
Order Processing Package 6-35

6 Payment Services
* This <code>PipelineComponent</code> authorizes a credit card
* for a purchase of a given amount using a payment service other
* than CyberCash. This class is a concrete extension of the
* <code>CommercePipelineComponent</code> abstract base class.
*
* PipelineSession input attributes:
* PipelineSessionConstants.PAYMENT_CREDIT_CARD
* PipelineSessionConstants.PAYMENT_AUTHORIZATION_AMOUNT
* PipelineSessionConstants.ORDER_HANDLE
*/

public class MyPaymentAuthorizationPC extends
 CommercePipelineComponent

{

2. Implement the process() method (as declared in the PipelineComponent
interface) in the new Pipeline component, as shown in Listing 6-9.

Listing 6-9 Implementing the process() Method

/**
* Authorize a credit card for a purchase amount.
*
* @param pipelineSession The current PipelineSession
* @throws PipelineFatalException on fatal error
* @throws PipelineNonFatalException on non-fatal error
* @throws RemoteException on remote error
*/

public PipelineSession process(PipelineSession pipelineSession)
 throws PipelineFatalException, PipelineNonFatalException, RemoteException {

//
// Get the order, credit card, and authorization amount from
// the PipelineSession.
//

CreditCard card = (CreditCard)pipelineSession.
 getAttribute(PipelineSessionConstants.PAYMENT_CREDIT_CARD);

Price amount = (Price)pipelineSession.getAttribute
 (PipelineSessionConstants.PAYMENT_AUTHORIZATION_AMOUNT);
6-36 Order Processing Package

Integration with CyberCash
Handle orderHandle = (Handle)pipelineSession.getAttribute
 (PipelineSessionConstants.ORDER_HANDLE, PipelineConstants.REQUEST_SCOPE);

Order order = (Order)(orderHandle.getEJBObject());

//Create a Transaction ID
//This can be done with any persistent number generator.
//Every transaction ID must be unique.
//Look at //http://edocs.beasys.com/wlcs/docs32/javadoc/wlps/com/beasys/
//commerce/util/Sequencer.html for information on the Sequencer interface.

com.beasys.commerce.util.Sequencer mySequencer =
 com.beasys.commerce.util.SequencerFactory.createSequencer
 ("PaymentTransactionIDSequence");
mySequencer.setCacheSize(10); //optional

Connection myConnection = getConnection();
long myTransactionID = 0;

try {

 myTransactionID = mySequencer.getNext(myConnection);
} catch(java.sql.SQLException sqlException) {

 //Add the appropriate exception handling logic.

}

//
// Decrypt the credit card using the Decryptor service.
//

String creditCardNumber = null;
try {

 DecryptorHome home = (DecryptorHome)JNDIHelper.getHome(
 "com.beasys.commerce.ebusiness.security.Decryptor");
 Decryptor decryptor = home.create();
 creditCardNumber = decryptor.decrypt(card.getNumber());

} catch (Exception e) {

 // Add the appropriate exception handling logic.
 // This will depend on your payment service requirements.

}

//
// Invoke the credit card service authorization method using
Order Processing Package 6-37

6 Payment Services
// the order, credit card, and authorization amount.
//
// Throw an appropriate exception for authorization error
// condition(s).
//

Logger.getInstance().info("In MyPaymentAuthorizationPC:calling
 payment service.");

< Insert credit card service authorization code here >

//
// Immediately nullify the decrypted number.
//

creditCardNumber = null;

//
// If the authorization was successful, create a
// PaymentTransaction entity EJB for the transaction.
// Use the transaction ID returned by the credit card
// service as the primary key.

PaymentTransaction paymentTransaction = null;
try {
 PaymentTransactionHome home = (PaymentTransactionHome)JNDIHelper.
 getHome("com.beasys.commerce.ebusiness.payment.PaymentTransaction");
 PaymentTransactionPk pk = new
 PaymentTransactionPk(Long.toString(myTransactionID));
 paymentTransaction = home.create(pk);
} catch (Exception e){

 // Add the appropriate exception handling logic.
 // This will depend on your payment service requirements.

}

//
// Set the PaymentTransaction date, credit card, and amount.
//

paymentTransaction.setTransactionDate(new Date(System.
currentTimeMillis()));
paymentTransaction.setCreditCard(card);
paymentTransaction.setTransactionAmount(amount);

//
// Add a TransactionEntry to the PaymentTransaction and
// mark the PaymentTransaction with the appropriate status.
6-38 Order Processing Package

Integration with CyberCash
// In this example, we assume that the payment transaction
// was successfully authorized.
//

TransactionEntry entry = TransactionEntryHome.create();
entry.setIdentifier(Long.toString(myTransactionID));
entry.setEntryDate(new Date(System.currentTimeMillis()));
entry.setTransactionAmount(amount);

try {

 paymentTransaction.authorize();

} catch (IllegalWorkflowTransitionException e){

 // Add the appropriate exception handling logic.
 // This will depend on your payment service requirements.

}

paymentTransaction.addTransactionEntry(entry);

//
// Add a reference to the PaymentTransaction to the order.
//

order.setPaymentTransaction(paymentTransaction);
return pipelineSession;

 }
}

As shown in Listing 6-9, the credit card, authorization amount, and order is first
extracted from the supplied PipelineSession. Next, the Decryptor security
service is used to decrypt the encrypted credit card number. After obtaining all
the information necessary to authorize a payment, you must next call your
Payment Service provider authorization routine using any of the collected data
necessary. Finally, after completing the authorization, a payment transaction is
recorded using the PaymentTransaction entity EJB. The
PaymentTransaction entity EJB records the date, amount, credit card, and
status (in this case, authorized) associated with the payment. It also keeps an
audit trail of payment transaction modifications via a collection of
TransactionEntry objects. Each TransactionEntry object stores a date,
identifier, and amount.
Order Processing Package 6-39

6 Payment Services
3. Compile the new Pipeline component. Make sure to include any Payment
Service provider classes that the new Pipeline component uses in your classpath.

4. Configure the pipeline.properties file to use your new Pipeline component.
To do this, locate the following line in the pipeline.properties file:

AuthorizePaymentPC.className=com.beasys.commerce.ebusiness.
payment.pipeline.PaymentAuthorizationTerminalPC

Then, modify the AuthorizePaymentPC Pipeline component definition to use
your new Pipeline component as follows:

AuthorizePaymentPC.className=MyPaymentAuthorizationPC

5. Restart the WebLogic Commerce Server. Make sure to include the new Pipeline
component as well as any Payment Service provider classes used by the Pipeline
component in your classpath.

You should now be able to authorize payments using the new Payment Service
PipelineComponent.

Note: If you replace the existing Payment Authorization Pipeline component, you
must administer payments using tools supplied by your Payment Service
provider and NOT the administrative Payment Management pages. The
administrative Payment Management pages should only be used for
CyberCash-based payment administration. For more information about the
administrative Payment Management pages, see Chapter 8, “Using the Order
and Payment Management Pages.”

Credit Card Security Service

All credit card information your customers provide is considered sensitive and is
encrypted for security purposes. This information is decrypted only when absolutely
necessary during specific payment processing activities (authorization). On the order
confirmation JSP template (confirmorder.jsp), for example, only the last 4 digits
of a customer’s credit card are displayed.
6-40 Order Processing Package

Credit Card Security Service
Encryption/Decryption Implementation

The BEA WebLogic Commerce Server product’s encryption mechanism is based upon
RSA’s public key infrastructure. A public key is used to encrypt a customer’s credit
card information, while a private key is used to decrypt it when required.

The public key is stored in the database for use by the EncryptCreditCardPC
Pipeline component, while the private key is itself encrypted using a password you
supply, and stored in the database.

When invoked from the Webflow, the EncryptCreditCardPC Pipeline component
reads the customer-provided credit card information from the Pipeline session,
encrypts it using the public key, and then places it back into the Pipeline session. This
encrypted data is subsequently written to the database. Decryption is accomplished
using a back-end component and the private key. Again, decryption is initiated only in
stages of the ordering process where this data is absolutely necessary.

For more technical information about the Credit Card Security Service, please contact
your BEA representative.

Customizable Security Settings

Although the BEA WebLogic Commerce Server product specifies default settings for
the Credit Card Security Service, you can customize them. The security settings reside
in the weblogiccommerce.properties file (located in the WL_COMMERCE_HOME
directory, where WL_COMMERCE_HOME is the directory in which you installed
WebLogic Commerce Server). These security settings are shown in Listing 6-10.

Listing 6-10 Security Settings in weblogiccommerce.properties

###
Properties required for the Security Service
###

Security services are turned on by setting this property to true.
Commenting out the property or setting it to false will disable
security.

is.encryption.enabled=true
Order Processing Package 6-41

6 Payment Services
The name of the security table and column names for the public
and private keys can be specified using the properties below.

security.table.name=WLCS_SECURITY
security.backup.table=WLCS_SECURITY_BACKUP
public.key.column.name=PUBLIC_KEY
private.key.column.name=PRIVATE_KEY

The key bit size desired
Key bit length and length of data that can be encrypted are related
as follows:

KEY BIT LENGTH(bits) DATA LENGTH (bytes)
512 53
1024 117
2048 (MAX LENGTH)245

key.bit.size=1024

WARNING! Remember that setting this property will start up the
server without prompting for a password. The password will be read
from this property which makes the encryption vulnerable to an
inside attack.

private.key.password=WLCS

First, the is.encryption.enabled property enables encryption mechanisms. Please
note that a value of false (or no value at all) will disable encryption mechanisms.
BEA has assigned this property a default value of true.

Next is a series of properties that allow you to specify the names of the security tables
(primary and backup) and the columns in which the public and private keys will be
stored. BEA has assigned default values to these properties, but you can modify them
based on your database.

Following the properties related to the database, the key.bit.size property allows
you to specify the encryption key length. BEA has assigned this property a default
value of 1024, but you can adjust this value. Table 6-10 illustrates the possible key bit
values.
6-42 Order Processing Package

Credit Card Security Service
Lastly, the private.key.password property allows you to specify, in the
weblogiccommerce.properties file, the password used to encrypt the private key.
Please note that BEA does not recommend use of this property. Rather, the private key
should be supplied by an administrator during server startup. For more information
about supplying the private key, see “Methods for Supplying the Private Key
Encryption Password” on page 6-44.

Note: If not used, the private.key.password property should be commented out
with a # symbol. BEA has assigned this property a default value of WLCS, but
this is for demonstration purposes only.

Table 6-10 Key Bit Values

Length (Bits) Data Length (Bytes)

512 53

1024 117

2048 245
Order Processing Package 6-43

6 Payment Services
Methods for Supplying the Private Key Encryption
Password

As previously mentioned, the private key used to encrypt customer credit cards is itself
encrypted with a password before being stored in the database. There are three
methods by which you can supply this password:

n Specify the password in the weblogiccommerce.properties file, which will
be read by a startup class (not recommended).

n Specify the password at server startup using the console (recommended).

n Specify the password after server startup using a secure Web form
(recommended).

Specifying the Password in weblogiccommerce.properties (Default)

The first method for specifying the private key encryption password is to specify the
password as a value for a property in the weblogiccommerce.properties file.

Note: BEA does not recommend this method because by providing the password in
a simple text file, you leave yourself vulnerable to security attacks. Anyone
who gains access to this file can read the password you use to encrypt the
private key, and thus gain access to it.

To use this method, follow these steps:

1. In the weblogiccommerce.properties file (located in the WL_COMMERCE_HOME
directory, where WL_COMMERCE_HOME is the directory in which you installed
WebLogic Commerce Server), use the private.key.password property to
specify the password.

2. In the weblogic.properties file (located in the WL_COMMERCE_HOME directory,
where WL_COMMERCE_HOME is the directory in which you installed WebLogic
Commerce Server), ensure that the
weblogic.system.startupClass.KeyBootstrap class is enabled (that is, not
commented out), as shown in the last line of Listing 6-11.
6-44 Order Processing Package

Credit Card Security Service
Listing 6-11 Encryption Section of weblogic.properties file

##
ENCRYPTION SERVICES

#
Specify a method for supplying the password for decrypting
private keys. This may be one of two mechanisms:
#
(1) Servlet-based password entry
(2) Property specification by way of a startup class
#
NOTE: Make sure that the property is.encryption.enabled
in weblogiccommerce.properties is commented out or set to false
if neither the servlet nor the startup class is being used.
#

#
Startup class password entry
#
Reads a private key encryption password from the
weblogiccommerce.properties file if the private.key.password
property has a non-empty value. If keys are already present in the
database and the password used to generate them differs from the
one specified by this property, the user must enter the password
on the console.
#
OR
#
Prompts the user to enter a password on the console at server
startup. If there are no public and private keys in the database
the user is prompted to specify that new keys be created. If new
key generation is not desired, encryption should be turned off
by way of the is.encryption.enabled property in the
weblogiccommerce.properties file. If the user knows that keys are
already generated, he/she should stop the server and check the
security database tables and properties in the
weblogiccommerce.properties file.

weblogic.system.startupClass.KeyBootstrap=com.beasys.commerce.
ebusiness.security.KeyBootstrap
Order Processing Package 6-45

6 Payment Services
Specifying the Password at Server Startup Using the Console

The second method for specifying the private key encryption password is for an
administrator to specify the password at server startup using the server console.

To use this method, follow these steps:

1. In the weblogiccommerce.properties file (located in the WL_COMMERCE_HOME
directory, where WL_COMMERCE_HOME is the directory in which you installed
WebLogic Commerce Server), comment out the private.key.password
property line with a # symbol.

2. In the weblogic.properties file (located in the WL_COMMERCE_HOME directory,
where WL_COMMERCE_HOME is the directory in which you installed WebLogic
Commerce Server), ensure that the
weblogic.system.startupClass.KeyBootstrap class is enabled (that is, not
commented out), as shown in the last line of Listing 6-11.

Specifying the Password After Server Startup Using a Secure Web Form

The third method for specifying the private key encryption password allows an
administrator to enter the password on a secure Web form, so the password is stored in
memory on your system instead of in a text file.

To use this method, follow these steps:

1. In the weblogic.properties file (located in the WL_COMMERCE_HOME directory,
where WL_COMMERCE_HOME is the directory in which you installed WebLogic
Commerce Server), disable the
weblogic.system.startupClass.KeyBootstrap class by commenting out
this line with a # symbol (see the last line of Listing 6-11).

2. Point your Web browser to
<hostname>:port/tools/security/security_getPassword.html, to load
the secure Web form shown in Figure 6-5.
6-46 Order Processing Package

Credit Card Security Service
Figure 6-5 security_getPassword.html

3. Specify the private key encryption password in the form field and click the
Submit button.

On submission, this page will invoke the EncryptionServlet and
KeyGeneratorServlet registered in the web.xml file (located in the
WL_COMMERCE_HOME/server/webapps/admin/Web-inf directory, where
WL_COMMERCE_HOME is the directory in which you installed WebLogic
Commerce Server).
Order Processing Package 6-47

6 Payment Services
Important Notes About Supplying Your Password

You must supply the password for all nodes in a cluster. Should one node in the cluster
fail, other machines that know the private key encryption password can be used for
failover.

The first time you enter the password, you will be asked to confirm whether or not you
want to generate new keys. If this is indeed the first time you are entering the password,
you do want to generate new keys. However, be sure to select a password that is
memorable. All credit cards accepted by your site will be encrypted using this
password, and cannot be decrypted if you forget your password.

If you are asked to confirm whether or not you want to generate new keys and you are
using the same password, then the keys cannot be found in the database. If no data was
encrypted using the old keys, you can regenerate the keys. However, if data has already
been encrypted using the old keys, this data will be lost because it cannot be read using
the new keys. If you have data encrypted with the old keys, you should stop the server,
check the database, and verify the properties in the weblogiccommerce.properties
file to ensure that the system is set up properly.

During server startup, any orders placed before the password is entered will be
persisted with a payment transaction in the RETRY state. After supplying the
password, administrators should use the payment management administration tool to
reauthorize the transaction. For more information about using the payment
management administration tool, see Chapter 8, “Using the Order and Payment
Management Pages.”

What if I Want to Change My Password?

Because all the credit cards that have been encrypted use the private key encryption
password, it is not recommended that you change this password. However, there may
be the rare occasion (for example, if the password has been compromised) when you
need to change the password. Changing the password means changing the public and
private key pair. Therefore, you must follow this process when changing the password:

n Use the old password (and thus the old key pair) to decrypt old credit card
numbers. The credit card numbers will now be in plain text. Store the credit card
numbers in a data structure that preserves the original organization.

n Create a new key pair using a new password.
6-48 Order Processing Package

Credit Card Security Service
n Using the new key pair, re-encrypt the plain text credit card numbers from the
data structure.

Note: Changing the password is especially difficult if you have a lot of encrypted
data. Again, this process is not recommended and should not be done unless
absolutely required.
Order Processing Package 6-49

6 Payment Services
6-50 Order Processing Package

CHAPTER
7 Order Summary and
Confirmation Services

Prior to submitting their order, your customers will want to review an order summary
that includes information about the items they have decided to purchase, as well as
other information (shipping, payment, and tax) related to their order. Following order
submission, it is customary to provide your customers with a confirmation page, which
customers can save and later use to check on the status of their order. The Order
Summary and Confirmation Services allow you to do just that, and this topic describes
how.

This topic includes the following sections:

n JavaServer Pages (JSPs)

l checkout.jsp Template

l confirmorder.jsp Template

n Input Processors

n Pipeline Components

l CommitOrderPC

l ResetCheckoutPC
Order Processing Package 7-1

7 Order Summary and Confirmation Services
JavaServer Pages (JSPs)

This section describes the JavaServer Pages (JSPs) used to implement the Order
Summary and Confirmation Services. You can use them on your own e-commerce site,
or customize them to meet your requirements.

checkout.jsp Template

The checkout.jsp template (shown in Figure 7-1) provides a customer with a final
look at all the details of their order, before the customer commits or cancels the order.
Information displayed includes the shipping address, shipping details, a list of the
items ordered (including the item name, short description, quantity, price, and
subtotal), shipping and handling costs, tax costs, and total cost.

Customers must click the Complete Purchase button to commit their order. Customers
wishing to return to the previous page can click the Back button instead.

Sample Browser View

Figure 7-1 shows an annotated version of the checkout.jsp template. The dashed
lines and numbers in the diagram are not part of the template; they are referenced in
the explanation that follows the screen shot.
7-2 Order Processing Package

JavaServer Pages (JSPs)
Figure 7-1 Annotated checkout.jsp Template

The numbers in the following list refer to the numbered regions in the figure:

1. The page header (top banner) is created from an import of the header2.jsp
template. This is standard across many of the JSP templates provided by WebLogic
Commerce Server. The import call is:

<%@ include file="/commerce/includes/header2.jsp" %>

2. Region 2 uses a combination of the WebLogic Personalization Server and
Pipeline JSP tags to obtain and display the shipping address, splitting
preferences, and shipping method. This provides the customer with a final look at
this shipping information as it was entered on previous JSP templates.
Order Processing Package 7-3

7 Order Summary and Confirmation Services
3. Region 3 uses a combination of the WebLogic Personalization Server and
Pipeline JSP tags to obtain and display the customer’s current shopping cart. This
provides the customer with a final look at the contents of their shopping cart
(including item name, description, quantity, price, and subtotal), and the shipping,
tax, and total amounts for the entire order.

4. The checkout.jsp template’s content in region 4 contains the included
footer2.jsp template. The include call in checkout.jsp is:

<%@ include file="/commerce/includes/footer2.jsp" %>

footer2.jsp consists of the horizontal footer at the bottom of the page, plus
the right-side vertical column that describes (for the benefit of you and your
development team) the name of the current template and links to its About
information. In the footer2.jsp file, the right-side vertical column is an
include file:

<%@ include file="/commerce/includes/rightside.jsp" %>

Location in the WebLogic Commerce Server Directory Structure

You can find the checkout.jsp template file at the following location, where
WL_COMMERCE_HOME is the directory in which you installed WebLogic Commerce
Server:

%WL_COMMERCE_HOME%\server\webapps\wlcs\commerce\order\

checkout.jsp (Windows)
$WL_COMMERCE_HOME/server/webapps/wlcs/commerce/order/

checkout.jsp (UNIX)

Tag Library Imports

The checkout.jsp template uses existing WebLogic Server JSP tags, and the
WebLogic Personalization Server’s User Management and Personalization JSP tags.
It also uses Pipeline JSP tags. Therefore, the template includes the following JSP tag
libraries:

<%@ taglib uri=”weblogic.tld” prefix=”wl” %>
<%@ taglib uri=”pipeline.tld” prefix=”pipeline” %>
<%@ taglib uri=”um.tld” prefix=”um” %>
<%@ taglib uri=”es.tld” prefix=”es” %>
7-4 Order Processing Package

JavaServer Pages (JSPs)
Note: For more information on the WebLogic Server JSP tags or the WebLogic
Personalization Server JSP tags, see “JSP Tag Reference” in the BEA
WebLogic Personalization Server documentation. For more information about
the Pipeline JSP tags, see BEA WebLogic Commerce Server Webflow and
Pipeline Management.

These files reside in the following directory for the WebLogic Commerce Server Web
application:

%WL_COMMERCE_HOME%\server\webapps\wlcs\WEB-INF (Windows)
$WL_COMMERCE_HOME/server/webapps/wlcs/WEB-INF (UNIX)

Java Package Imports

The checkout.jsp template uses Java classes in the following packages and therefore
includes these import statements:

<%@ page import=”java.util.*” %>
<%@ page import=”java.text.*” %>
<%@ page import=”com.beasys.commerce.webflow.*” %>
<%@ page import=”com.beasys.commerce.axiom.units.*” %>
<%@ page import=”com.beasys.commerce.axiom.contact.*” %>
<%@ page import=”com.beasys.commerce.ebusiness.shoppingcart.*” %>
<%@ page import=”com.beasys.commerce.foundation.pipeline.*” %>

Location in Default Webflow

Customers arrive at the checkout.jsp template from the payment information page
(payment.jsp). If customers choose to commit their order, they will continue to the
order confirmation page (confirmorder.jsp). If customers choose to cancel, they
will be sent back to the payment page (payment.jsp).

Note: For more information about the default Webflow, see “Overview of the Order
Processing Package” on page 1-1.
Order Processing Package 7-5

7 Order Summary and Confirmation Services
Included JSP Templates

The following JSP templates are included in the checkout.jsp template:

n header2.jsp, which creates the top banner.

n footer2.jsp, which creates a horizontal footer at the bottom of the page, and
also includes the rightside.jsp template. rightside.jsp describes (for the
benefit of you and your development team) the name of the current template and
links to its About information.

Events

The checkout.jsp template presents a customer with two buttons, each of which is
considered an event. These events trigger a particular response in the default Webflow
that allows customers to continue. While this response can be to load another JSP, it is
usually the case that an input processor or Pipeline is invoked first. Table 7-1 provides
information about these events and the business logic they invoke.

Table 7-2 briefly describes each of the Pipelines from Table 7-1, as they are defined in
the pipeline.properties file. For more information about individual Pipeline
components, see “Pipeline Components” on page 7-24.

Table 7-1 checkout.jsp Events

Event Webflow Response(s)

button(back) No business logic required. Loads payment.jsp.

button(purchase) CommitOrder

Table 7-2 Checkout Review Pipelines

Pipeline Description

CommitOrder Contains CommitOrderPC, AuthorizePaymentPC,
CalculateTaxLineLevelCommitPC, ResetCheckoutPC,
and is transactional.
7-6 Order Processing Package

JavaServer Pages (JSPs)
Dynamic Data Display

The purpose of the checkout.jsp template is to display the data specific to a
customer’s shopping experience for their final review. This is accomplished on the
checkout.jsp template using a combination of Pipeline and WebLogic
Personalization Server JSP tags and accessor methods/attributes.

First, the getProfile JSP tag is used to set the customer profile (context) for which
the customer information should be retrieved, as shown in Listing 7-1.

Listing 7-1 Setting the Customer Context

<um:getProfile
 profileKey=”<%=request.getRemoteUser()%>
 profileType=”WLCS_Customer” />

Note: For more information on the WebLogic Personalization Server JSP tags, see
“JSP Tag Reference” in the BEA WebLogic Personalization Server
documentation.

Next, the getPipelineProperty JSP tag retrieves the SHIPPING_ADDRESS and
SHOPPING_CART attributes from the Pipeline session. Table 7-3 provides more
detailed information on these attributes.

Table 7-3 checkout.jsp Pipeline Session Attributes

Attributes Type Description

PipelineSessionConstants.
SHIPPING_ADDRESS

com.beasys.commerce.axiom
.contact.Address

The address the order is
being shipped to.

PipelineSessionConstants.
SHIPPING_METHOD

com.beasys.commerce.ebusiness
.shipping.shippingMethodValue

Identifies the shipping
method the customer
selected.

PipelineSessionConstants.
SHOPPING_CART

com.beasys.commerce.ebusiness
.shoppingcart.ShoppingCart

The shopping cart that was
ordered.

PipelineSessionConstants.
SPLITTING_PREFERENCE

java.lang.String The splitting preference the
customer selected.
Order Processing Package 7-7

7 Order Summary and Confirmation Services
Listing 7-2 illustrates how some of these attributes are retrieved from the Pipeline
session.

Listing 7-2 Retrieving Check Out Attributes

<pipeline:getPipelineProperty
 propertyName=”<%=PipelineSessionConstants.SHOPPING_CART%>”
 returnName=”shoppingCart”
 returnType=”com.beasys.commerce.ebusiness.shoppingcart.ShoppingCart”/>

<pipeline:getPipelineProperty
 propertyName=”<%=PipelineSessionConstants.SHIPPING_ADDRESS%>”
 returnName=”shippingAddress”
 returnType=”com.beasys.commerce.axiom.contact.Address”/>

Note: For more information on the getPipelineProperty JSP tag, see BEA
WebLogic Commerce Server Webflow and Pipeline Management.

For the data stored in the customer profile and retrieved using the getProfile JSP
tag, use the getPropertyAsString JSP tag to display the customer information, as
shown in Listing 7-3.

Listing 7-3 Displaying Data Stored in the Customer’s Profile

<table>
 <tr>
 <td>
 <um:getPropertyAsString propertyName=”firstName” />
 <um:getPropertyAsString propertyName=”lastName” />
 </td>
 </tr>
</table>

PipelineSessionConstants.
SPECIAL_INSTRUCTIONS

java.lang.String Any special instructions the
customer specifies.

Table 7-3 checkout.jsp Pipeline Session Attributes

Attributes Type Description
7-8 Order Processing Package

JavaServer Pages (JSPs)
Note: For more information on the WebLogic Personalization Server JSP tags, see
“JSP Tag Reference” in the BEA WebLogic Personalization Server
documentation.

The data stored within the Pipeline session attributes (retrieved using the
getPipelineProperty JSP tag) is displayed by using accessor methods/attributes
within Java scriptlets. Table 7-4 provides more detailed information on these
methods/attributes for Address, ShoppingCart, and ShoppingCartLine.

Table 7-4 Address Accessor Methods/Attributes

Method/Attribute Description

getStreet1() The first line in the customer’s street
address.

getStreet2() The second line in the customer’s street
address.

getCity() The city in the customer’s address.

getCounty() The county in the customer’s address.

getState() The state in the customer’s address.

getPostalCode() The zip/postal code in the customer’s
address.

getCountry() The country in the customer’s address.

Table 7-5 ShoppingCart Accessor Methods/Attributes

Method/Attribute Description

getShoppingCartLineCollection() The individual lines in the shopping cart (i.e.
ShoppingCartLine).
Order Processing Package 7-9

7 Order Summary and Confirmation Services
Because the getShoppingCartLineCollection() method allows you to retrieve a
collection of the individual lines within a shopping cart, there are also accessor
methods/attributes you can use to break apart the information contained within each
line. Table 7-6 provides information about these methods/attributes.

getTotal(int totalType) The total amount specified by the totalType parameter.
Valid parameters include:

ShoppingCartConstants.LINE_UNIT_PRICE_TIM
ES_QUANTITY
ShoppingCartConstants.LINE_SHIPPING
ShoppingCartConstants.LINE_TAX

Note: The getTotal() method also allows you to
combine different total types. For more
information, see the Javadoc.

Table 7-5 ShoppingCart Accessor Methods/Attributes

Method/Attribute Description

Table 7-6 ShoppingCartLine Accessor Methods/Attributes

Method/Attribute Description

getQuantity() The quantity of the item.

getProductItem() The product item in the shopping cart line.

getUnitPrice() The current price for the item at the time it was added to the
shopping cart. May be different from MSRP.

getLineTotal(int totalType) The total amount specified by the totalType parameter.
Valid parameters include:

ShoppingCartConstants.LINE_UNIT_PRICE_TIMES
_QUANTITY
ShoppingCartConstants.LINE_SHIPPING
ShoppingCartConstants.LINE_TAX

Note: The getLineTotal() method also allows you
to combine different total types. For more
information, see the Javadoc.
7-10 Order Processing Package

JavaServer Pages (JSPs)
Listing 7-4 illustrates how these accessor methods/attributes are used within Java
scriptlets.

Listing 7-4 Using Accessor Methods/Attributes within checkout.jsp Java
Scriptlets

<wl:repeat set="<%=shoppingCart.getShoppingCartLineCollection().iterator()%>"
 id="shoppingCartLine" type="ShoppingCartLine" count="100000">

<tr>
 <td nowrap valign="top">
 <div class="tabletext">
 <%=shoppingCartLine.getProductItem().getKey().getIdentifier()%>
 </div>
 </td>

 <td valign="top">
 <div class="tabletext">
 <%=shoppingCartLine.getProductItem().getName()%>
 </div>
 </td>

 <td align="center" valign="top">
 <div class="tabletext">
 <%=WebflowJSPHelper.quantityFormat(shoppingCartLine.getQuantity() %>
 </div>
 </td>

 <td align="right" nowrap valign="top">
 <div class="tabletext">
 <%=shoppingCartLine.getUnitPrice().getCurrency()%>
 <%=WebflowJSPHelper.priceFormat(shoppingCartLine.getUnitPrice().
 getValue())%>
 </div>
 </td>

 <td align="right" nowrap valign="top">
 <% Money lineTotal=shoppingCartLine.getLineTotal
 (ShoppingCartConstants.LINE_UNIT_PRICE_TIMES_QUANTITY); %>
 <div class="tabletext">
 <%=lineTotal.getCurrency()%>
 <%=WebflowJSPHelper.priceFormat(lineTotal.getValue())%>
 </div>
 </td>

</tr><tr>

 <td colspan="5"><hr size="1"></td>
Order Processing Package 7-11

7 Order Summary and Confirmation Services
</tr>
</wl:repeat>

<tr>
 <td colspan="4" align="right">
 <div class="tabletext">Shipping & handling</div>
 </td>

 <td align="right" nowrap>
 <% Money shipping=shoppingCart.getTotal(ShoppingCartConstants.LINE_SHIPPING);
 %>

 <div class="tabletext">
 <%=shipping.getCurrency()%>
 <%=WebflowJSPHelper.priceFormat(shipping.getValue())%>
 </div>
 </td>

</tr><tr>

 <td colspan="4" align="right">
 <div class="tabletext">Total tax</div>
 </td>

 <td align="right" nowrap>
 <% Money tax=shoppingCart.getTotal(ShoppingCartConstants.LINE_TAX); %>
 <div class="tabletext">
 <%=tax.getCurrency()%>
 <%=WebflowJSPHelper.priceFormat(tax.getValue())%>
 </div>
 </td>

</tr><tr>

 <td colspan="4" align="right">
 <div class="tabletext">Total due</div>
 </td>

 <td align="right" bgcolor="#99BBAA" nowrap>
 <% Money total=shoppingCart.getTotal(ShoppingCartConstants.
 LINE_UNIT_PRICE_TIMES_QUANTITY + ShoppingCartConstants.LINE_SHIPPING +
 ShoppingCartConstants.LINE_TAX); %>
 <div class="tabletext">
 <%=total.getCurrency()%>
 <%=WebflowJSPHelper.priceFormat(total.getValue())%>
 </div>
 </td>

</tr>
7-12 Order Processing Package

JavaServer Pages (JSPs)
Form Field Specification

The checkout.jsp template does not make use of any form fields.
Order Processing Package 7-13

7 Order Summary and Confirmation Services
confirmorder.jsp Template

The confirmorder.jsp template (shown in Figure 7-2) displays the information
about the customer’s order after they have committed it. This information is the same
as that shown in the checkout.jsp template, but also includes an order confirmation
number customers can use to access information about the order in the future. The
confirmorder.jsp template also provides the customer with a Continue Shopping
button that will bring the customer back to the product catalog.

Sample Browser View

Figure 7-2 shows an annotated version of the confirmorder.jsp template. The
dashed lines and numbers in the diagram are not part of the template; they are
referenced in the explanation that follows the screen shot.

Figure 7-2 Annotated confirmorder.jsp Template
7-14 Order Processing Package

JavaServer Pages (JSPs)
The numbers in the following list refer to the numbered regions in the figure:

1. The page header (top banner) is created from an import of the header2.jsp
template. This is standard across many of the JSP templates provided by WebLogic
Commerce Server. The import call is:

<%@ include file="/commerce/includes/header2.jsp" %>

2. Region 2 contains the dynamically generated order confirmation number, which
customers can use on subsequent visits to check the status of their order. It is
displayed using Pipeline JSP tags and accessor methods/attributes.

3. Region 3 uses a combination of WebLogic Personalization Server and Pipeline
JSP tags to obtain and display the shipping address, splitting preferences, and
shipping method. Together with the information in Region #2 and Region #4, this
provides the customer with a record of the shipping information as it was entered
on previous JSP templates.

4. Region 4 uses a combination of WebLogic Personalization Server and Pipeline
JSP tags to obtain and display the customer’s shopping cart. Together with the
information in Region 2 and Region 3, this provides the customer with a record
of their shopping cart (including item name, description, quantity, price, and
subtotal), and the shipping, tax, and total amounts for the order.

5. The confirmorder.jsp template’s content in region 5 contains the included
footer2.jsp template. The include call in checkout.jsp is:

<%@ include file="/commerce/includes/footer2.jsp" %>

footer2.jsp consists of the horizontal footer at the bottom of the page, plus
the right-side vertical column that describes (for the benefit of you and your
development team) the name of the current template and links to its About
information. In the footer2.jsp file, the right-side vertical column is an
include file:

<%@ include file="/commerce/includes/rightside.jsp" %>
Order Processing Package 7-15

7 Order Summary and Confirmation Services
Location in the WebLogic Commerce Server Directory Structure

You can find the confirmorder.jsp template file at the following location, where
WL_COMMERCE_HOME is the directory in which you installed WebLogic Commerce
Server:

%WL_COMMERCE_HOME%\server\webapps\wlcs\commerce\order\

confirmorder.jsp (Windows)
$WL_COMMERCE_HOME/server/webapps/wlcs/commerce/order/

confirmorder.jsp (UNIX)

Tag Library Imports

The confirmorder.jsp template uses existing WebLogic Server and the WebLogic
Personalization Server’s User Management and Personalization JSP tags. It also uses
Pipeline JSP tags. Therefore, the template includes the following JSP tag libraries:

<%@ taglib uri=”weblogic.tld” prefix=”wl” %>
<%@ taglib uri=”pipeline.tld” prefix=”pipeline” %>
<%@ taglib uri=”um.tld” prefix=”um” %>
<%@ taglib uri=”es.tld” prefix=”es” %>

Note: For more information on the WebLogic Server JSP tags or the WebLogic
Personalization Server JSP tags, see “JSP Tag Reference” in the BEA
WebLogic Personalization Server documentation. For more information about
the Pipeline JSP tags, see BEA WebLogic Commerce Server Webflow and
Pipeline Management.

These files reside in the following directory for the WebLogic Commerce Server Web
application:

%WL_COMMERCE_HOME%\server\webapps\wlcs\WEB-INF (Windows)
$WL_COMMERCE_HOME/server/webapps/wlcs/WEB-INF (UNIX)

Java Package Imports

The confirmorder.jsp template uses Java classes in the following packages and
therefore includes these import statements:

<%@ page import=”java.util.*” %>
<%@ page import=”java.text.*” %>
<%@ page import=”com.beasys.commerce.webflow.PipelineSessionConstants” %>
<%@ page import=”com.beasys.commerce.axiom.units.*” %>
7-16 Order Processing Package

JavaServer Pages (JSPs)
<%@ page import=”com.beasys.commerce.axiom.contact.*” %>
<%@ page import=”com.beasys.commerce.ebusiness.order.*” %>
<%@ page import=”com.beasys.commerce.ebusiness.shipping.*” %>
<%@ page import=”com.beasys.commerce.foundation.pipeline.*” %>
<%@ page import=”com.beasys.commerce.webflow.*” %>
<%@ page import=”com.beasys.commerce.ebusiness.catalog.*” %>

Location in Default Webflow

Customers arrive at confirmorder.jsp template from the final checkout page
(checkout.jsp). The default Webflow does not define a subsequent JSP template.

Note: For more information about the default Webflow, see “Overview of the Order
Processing Package” on page 1-1.

Included JSP Templates

The following JSP templates are included in the confirmorder.jsp template:

n header2.jsp, which creates the top banner.

n footer2.jsp, which creates a horizontal footer at the bottom of the page, and
also includes the rightside.jsp template. rightside.jsp describes (for the
benefit of you and your development team) the name of the current template and
links to its About information.

Events

There are no events associated with the confirmorder.jsp template.

Dynamic Data Display

The purpose of the confirmorder.jsp template is to display the data specific to a
customer’s shopping experience along with a unique order confirmation number. This
is accomplished on the confirmorder.jsp template using a combination of Pipeline
and WebLogic Personalization Server JSP tags and accessor methods/attributes.

First, the getProfile JSP tag is used to set the customer profile (context) for which
the customer information should be retrieved, as shown in Listing 7-5.
Order Processing Package 7-17

7 Order Summary and Confirmation Services
Listing 7-5 Setting the Customer Context

<um:getProfile
 profileKey=”<%=request.getRemoteUser()%>
 profileType=”WLCS_Customer” />

Note: For more information on the WebLogic Personalization Server JSP tags, see
“JSP Tag Reference” in the BEA WebLogic Personalization Server
documentation.

Next, the getPipelineProperty JSP tag retrieves the ORDER_VALUE and
SHIPPING_METHOD attributes from the Pipeline session. Table 7-7 provides more
detailed information about these attributes.

Listing 7-6 illustrates how these attributes are retrieved from the Pipeline session.

Listing 7-6 Retrieving Order Confirmation Attributes

<pipeline:getPipelineProperty
 propertyName=”<%=PipelineSessionConstants.ORDER_VALUE%>”
 returnName=”orderValue”
 returnType=”OrderValue”
 attributeScope=”<%=PipelineConstants.REQUEST_SCOPE%>” />

<pipeline:getPipelineProperty
 propertyName=”<%=PipelineSessionConstants.SHIPPING_METHOD%>”
 returnName=”shippingMethodValue”
 returnType=”com.beasys.commerce.ebusiness.shipping.ShippingMethodValue”/>

Table 7-7 confirmorder.jsp Pipeline Session Attributes

Attribute Type Description

PipelineSessionConstants.
ORDER_VALUE

List of com.beasys.commerce
.ebusiness.order.OrderValue

List of the orders
available for the
customer.

PipelineSessionConstants.
SHIPPING_METHOD

com.beasys.commerce.ebusiness
.shipping.ShippingMethodValue

The method being used
to ship the order.
7-18 Order Processing Package

JavaServer Pages (JSPs)
Note: For more information on the getPipelineProperty JSP tag, see the BEA
WebLogic Commerce Server Webflow and Pipeline Management.

For the data stored in the customer profile and retrieved using the getProfile JSP
tag, use the getPropertyAsString JSP tag to display the customer information, as
shown in Listing 7-7.

Listing 7-7 Displaying Data Stored in the Customer’s Profile

<table>
 <tr>
 <td>
 <um:getPropertyAsString propertyName=”firstName” />
 <um:getPropertyAsString propertyName=”lastName” />
 </td>
 </tr>
</table>

Note: For more information on the WebLogic Personalization Server JSP tags, see
“JSP Tag Reference” in the BEA WebLogic Personalization Server
documentation.

The data stored within the Pipeline session attributes (retrieved using the
getPipelineProperty JSP tag) is displayed by using accessor methods/attributes
within Java scriptlets. Table 7-8 through Table 7-11 provide more detailed information
on these methods/attributes for Address, ShippingMethodValue, OrderValue, and
Orderline.

Table 7-8 Address Accessor Methods/Attributes

Method/Attribute Description

getStreet1() The first line in the customer’s street address.

getStreet2() The second line in the customer’s street address.

getCity() The city in the customer’s address.

getCounty() The county in the customer’s address.

getState() The state in the customer’s address.
Order Processing Package 7-19

7 Order Summary and Confirmation Services
getPostalCode() The zip/postal code in the customer’s address.

getCountry() The country in the customer’s address.

Table 7-9 ShippingMethodValue Accessor Methods/Attributes

Method/Attribute Description

description A description of the shipping method.

identifier Key in the database for the shipping method.

Table 7-8 Address Accessor Methods/Attributes

Method/Attribute Description

Table 7-10 OrderValue Accessor Methods/Attributes

Method/Attribute Description

createdDate The date the customer’s order was created.

identifier Key in the database for the order.

getTotal(int totalType) The total amount specified by the totalType parameter. Valid
parameters include:

OrderConstants.LINE_UNIT_PRICE_TIMES_QUANTITY
OrderConstants.LINE_SHIPPING
OrderConstants.LINE_TAX

Note: The getTotal() method also allows you to combine
different total types. For more information, see the
Javadoc.

orderLines A collection of the lines in the shopping cart that make up the
customer’s order.
7-20 Order Processing Package

JavaServer Pages (JSPs)
Because the orderLines attribute allows you to retrieve the individual lines within an
order, it also has accessor methods/attributes you can use to display the information
contained within each line. These methods/attributes are listed in Table 7-11.

Listing 7-8 illustrates how these accessor methods/attributes are used within Java
scriptlets.

Listing 7-8 Using Accessor Methods Within confirmorder.jsp Java Scriptlets

<!--Iterate through order to get all order lines -->
<wl:repeat set="<%=orderValue.orderLines.iterator()%>" id="orderLine"
 type="OrderLine" count="100000">

<tr>

 <td valign="top" align="left">
 <div class="tabletext">
 <%=orderLine.getProductIdentifier()%>
 </div>
 </td>

 <td valign="top" align="left">
 <div class="tabletext">
 <%=orderLine.getDescription()%>
 </div>
 </td>

 <td align="center" valign="top">
 <div class="tabletext">
 <%=WebflowJSPHelper.quantityFormat(orderLine.getQuantity())%>
 </div>
 </td>

Table 7-11 OrderLine Accessor Methods/Attributes

Method/Attribute Description

getProductIdentifier() The name (identifier) for the shopping cart
item.

getDescription() A description of the shopping cart item.

getQuantity() The quantity of the shopping cart item.

getUnitPrice() The unit price for the shopping cart item.
Order Processing Package 7-21

7 Order Summary and Confirmation Services
 <td align="right" valign="top" nowrap>
 <div class="tabletext">
 <%=orderLine.getUnitPrice().getCurrency()%>
 <%= WebflowJSPHelper.priceFormat(orderLine.getUnitPrice().getValue())%>
 </div>
 </td>

 <td align="right" valign="top" nowrap>
 <% Money lineTotal=orderLine.getLineTotal(OrderConstants.
 LINE_UNIT_PRICE_TIMES_QUANTITY); %>
 <div class="tabletext">
 <%=lineTotal.getCurrency()%>
 <%=WebflowJSPHelper.priceFormat(lineTotal.getValue())%>
 </div>
 </td>

</tr>
</wl:repeat>

<tr>

 <td colspan="2" rowspan="3" valign="middle" align="center" bgcolor="#99BBAA">
 <div class="commentary">Print this page for your records.</div>
 </td>

 <td colspan="2" align="right">
 <div class="tabletext">Shipping

 <%= shippingMethodDescription %>
 </div>
 </td>

 <td align="right" nowrap valign="top">
 <% Money shipping=orderValue.getTotal(OrderConstants.LINE_SHIPPING);%>
 <div class="tabletext">
 <%=shipping.getCurrency()%>
 <%=WebflowJSPHelper.priceFormat(shipping.getValue())%>
 </div>
 </td>

</tr><tr>

 <td align="right" colspan="2">
 <div class="tabletext">Total Tax</div>
 </td>

 <td align="right" nowrap>
 <% Money tax=orderValue.getTotal(OrderConstants.LINE_TAX); %>
 <div class="tabletext">
 <%=tax.getCurrency()%>
 <%=WebflowJSPHelper.priceFormat(tax.getValue())%>
7-22 Order Processing Package

JavaServer Pages (JSPs)
 </div>
 </td>

</tr><tr>

 <td align="right" colspan="2">
 <div class="tabletext">Total Due</div>
 </td>

 <td align="right" nowrap>
 <% Money total=orderValue.getTotal(OrderConstants.LINE_UNIT_PRICE_TIMES_
 QUANTITY + OrderConstants.LINE_SHIPPING + OrderConstants.LINE_TAX); %>
 <div class="tabletext">
 <%=total.getCurrency()%>
 <%=WebflowJSPHelper.priceFormat(total.getValue())%>
 </div>
 </td>

</tr>
</table>

For a code example of the ShoppingCart and ShoppingCartLine accessor
methods/attributes, see “Shopping Cart Management Services” on page 3-1.

Form Field Specification

The confirmorder.jsp template does not make use of any form fields.
Order Processing Package 7-23

7 Order Summary and Confirmation Services
Input Processors

No input processors are used in the Order Summary and Confirmation Services JSP
template(s).

Pipeline Components

This section provides a brief description of each Pipeline component associated with
the Order Summary and Confirmation Services JSP template(s).

Note: Some Pipeline components extend other, base Pipeline components. For more
information on the base classes, see the Javadoc.

CommitOrderPC

Class Name com.beasys.commerce.ebusiness.order.pipeline.CommitOrderPC

Description Reads all the information about a customer’s order from the Pipeline session and
creates an Order entity bean. This is commited to the database in the WLCS_ORDER
and WLCS_ORDER_LINE tables. The OrderValue object for the order is then
stored in the Pipeline session.

Required Pipeline
Session Attributes

PipelineSessionConstants.USER_NAME

PipelineSessionConstants.SHOPPING_CART

PipelineSessionConstants.SPLITTING_PREFERENCE

PipelineSessionConstants.SPECIAL_INSTRUCTIONS

PipelineSessionConstants.ORDER_CONFIRMATION_NUMBER

Updated Pipeline
Session Attributes

PipelineSessionConstants.ORDER_HANDLE (Request scope)

PipelineSessionConstants.ORDER_VALUE (Request scope)

PipelineSessionConstants.ORDER_SHIPPING_METHOD (Request scope)
7-24 Order Processing Package

Pipeline Components
ResetCheckoutPC

Removed Pipeline
Session Attributes

PipelineSessionConstants.SHIPPING_METHOD

Type Java object

JNDI Name None

Exceptions PipelineFatalException, thrown when the required Pipeline session attributes
are not available or if the shopping cart is empty.

Class Name com.beasys.commerce.ebusiness.order.pipeline.
ResetCheckoutPC

Description Removes all Pipeline session attributes relating to the customer’s checkout process.

Required Pipeline
Session Attributes

None

Updated Pipeline
Session Attributes

None

Removed Pipeline
Session Attributes

PipelineSessionConstants.SHOPPING_CART

PipelineSessionConstants.SHIPPING_ADDRESS

PipelineSessionConstants.SPLITTING_PREFERENCE

PipelineSessionConstants.SHIPPING_METHOD

PipelineSessionConstants.SPECIAL_INSTRUCTIONS

PipelineSessionConstants.PAYMENT_AUTHORIZATION_AMOUNT

PipelineSessionConstants.VERAZIP_SHIPPING_ADDRESS

PipelineSessionConstants.PAYMENT_CREDIT_CARD

Type Java object

JNDI Name None

Exceptions None
Order Processing Package 7-25

7 Order Summary and Confirmation Services
7-26 Order Processing Package

CHAPTER
8 Using the Order and
Payment Management
Pages

Customers who make purchases from your e-commerce site often want access to
information about their current and past orders. If these customers cannot find what
they are looking for using the customer self-service pages or simply prefer the human
contact received by calling your e-business, an administrator of your site can locate
this information for your customers using the Order Management pages. Additionally,
the Payment Management pages allow a site administrator to review and modify the
status of payment transactions that have been initiated on the WebLogic Commerce
Server.

The Order and Payment Management pages ship as part of the Administration Tools
Web Application. As such, they are not a part of the site that requires modification.
This topic describes how an administrator can use the Order and Payment Management
pages.

This topic includes the following sections:

n Starting the WebLogic Commerce Server Administration Tools

n Using the Order Management Search Page

l Searching for an Order by Customer ID

l Searching for an Order by Order Identifier Number

l Searching for an Order by Date Range

n Using the Payment Management Search Page
Order Processing Package 8-1

8 Using the Order and Payment Management Pages
l Searching for a Payment by Customer ID

l Searching for a Payment by Status

l Authorizing, Capturing, and Settling Payments

Starting the WebLogic Commerce Server
Administration Tools

Before you can use the Order and Payment Management pages, you need to start the
server and load the WebLogic Commerce Server Administration Tools page in your
Web browser.

To start the server on a Windows system, you can either:

n Run StartCommerce.bat from the command line in the WL_COMMERCE_HOME
directory, where WL_COMMERCE_HOME is the directory where you installed the
WebLogic Commerce Server.

n From the Start menu, select Programs → WebLogic Commerce Server 3.1 →
Start WebLogic Commerce Server.

To start the server on a UNIX system, run StartCommerce.sh from the command line
in the WL_COMMERCE_HOME directory, where WL_COMMERCE_HOME is the directory
where you installed the WebLogic Commerce Server.

The Administration Tools page (shown in Figure 8-1) is an entry page into all of the
available WebLogic Commerce Server Administration Tools. To load this page, use
one of the following methods:

n Specify the URL for the page (http://localhost:7501/tools/application/admin) in
your Web browser.

n From the Start menu on a Windows system, select Programs → WebLogic
Commerce Server 3.1 → Administration Tool.

n If you need to perform an administrative task on another node in the cluster, also
specify the machine such as http://elvis:7501/tools/application/admin.
8-2 Order Processing Package

Starting the WebLogic Commerce Server Administration Tools
Figure 8-1 WebLogic Commerce Server Administration Tools Page

To look up customers’ orders, click the icon shown on the Order Management section
title bar to load the Order Management Search Page; to look up a customer’s payment
transactions, click the icon shown on the Payment Management section title bar to load
the Payment Management Search Page.
Order Processing Package 8-3

8 Using the Order and Payment Management Pages
Using the Order Management Search Page

The Order Management search page (shown in Figure 8-2) appears when you click the
icon on the Order Management section title bar. This section explains the three
different searches that are available to an administrator for order management.

Figure 8-2 The Order Management Search Page

Searching for an Order by Customer ID

After a customer places an order on your e-commerce site, they may call to learn more
about their order. One of the ways in which an administrator of the site can search is
by using the customer’s login ID. Simply enter the customer’s ID into the appropriate
form field and click the Search button. A text message appears at the top of the page,
indicating how many orders were found for the search. The actual results appear below
the search fields in an Order List, as shown in Figure 8-3.
8-4 Order Processing Package

Using the Order Management Search Page
Figure 8-3 Sample Results for Order Search by Customer ID

The Order List shows the Order Identifier number, the date the customer placed the
order, and the price of the order. To see details for a particular order (including the
product items ordered, shipping information, tax, and so on), click the hyperlinked
Order Identifier number to load the Order Status page (shown in Figure 8-4). To return
to the main Administration Tools page instead, click the Back button.
Order Processing Package 8-5

8 Using the Order and Payment Management Pages
Figure 8-4 Sample Order Status Page

Click the Back button at the bottom of the Order Status page to return to the Order
Management search/results page.

Searching for an Order by Order Identifier Number

Another way in which an administrator of the site can search for a customer’s order is
by using the customer’s Order Identifier number. This number is specified on the
customer’s order confirmation page after they submit an order to your system. Simply
enter the customer’s Order Identifier number into the appropriate form field and click
the Search button. A text message appears at the top of the page, indicating how many
orders were found for the search. The actual results appear below the search fields in
an Order List, as shown in Figure 8-5.
8-6 Order Processing Package

Using the Order Management Search Page
Figure 8-5 Sample Results for Order Search by Order Identifier Number

The Order List shows the Order Identifier number, the date the customer placed the
order, and the price of the order. To see details for a particular order (including the
product items ordered, shipping information, tax, and so on), click the hyperlinked
Order Identifier number to load the Order Status page (shown in Figure 8-6). To return
to the main Administration Tools page instead, click the Back button
Order Processing Package 8-7

8 Using the Order and Payment Management Pages
Figure 8-6 Sample Order Status Page

Click the Back button at the bottom of the Order Status page to return to the Order
Management search/results page.

Searching for an Order by Date Range

Another way in which an administrator of the site can search for a customer’s order is
by using a date range. Date ranges must be specified using the Calendar Date Selection
Tool, shown in Figure 8-7.
8-8 Order Processing Package

Using the Order Management Search Page
Figure 8-7 The Calendar Date Selection Tool

After clicking the Save button, the date, hour, minute and time zone you select with the
Calendar Date Selection Tool appears in the From and To form fields, and you can now
just click the Search button.

Note: The results for searches by date range are inclusive. That is, if you search for
orders placed between July 22, 2000 and August 24, 2000, results will include
orders placed on July 22 and orders placed on August 24.

A text message appears at the top of the page, indicating how many orders were found
for the search. The actual results appear below the search fields in an Order List, as
shown in Figure 8-8.
Order Processing Package 8-9

8 Using the Order and Payment Management Pages
Figure 8-8 Sample Results for Order Search by Date Range

The Order List shows the Order Identifier number, the date the customer placed the
order, and the price of the order. To see details for a particular order (including the
product items ordered, shipping information, tax, and so on), click the hyperlinked
Order Identifier number to load the Order Status page (shown in Figure 8-9). To return
to the main Administration Tools page instead, click the Back button.
8-10 Order Processing Package

Using the Order Management Search Page
Figure 8-9 Sample Order Status Page

Click the Back button at the bottom of the Order Status page to return to the Order
Management search/results page.
Order Processing Package 8-11

8 Using the Order and Payment Management Pages
Using the Payment Management Search
Page

The Payment Management search page (shown in Figure 8-10) appears when you click
the icon on the Payment Management section title bar. This section explains the three
different searches and transaction modification activities that are available to an
administrator for payment management.

Figure 8-10 The Payment Management Search Page
8-12 Order Processing Package

Using the Payment Management Search Page
Searching for a Payment by Customer ID

After a customer places an order on your e-commerce site, they may call to find out
the status of their payment. One of the ways in which an administrator of the site can
search is by using the customer’s login ID. Simply enter the customer’s ID into the
appropriate form field and click the Search button. A text message appears at the top
of the page, indicating how many payments were found for the search. The actual
results will appear below the search fields in the Payment Transaction History, as
shown in Figure 8-3.

Figure 8-11 Sample Results for Payment Search by Customer ID
Order Processing Package 8-13

8 Using the Order and Payment Management Pages
For a detailed explanation of the Payment Transaction History fields and further
payment management activities, refer to “Authorizing, Capturing, and Settling
Payments” on page 8-16 .

To perform another search, type your query in the form field. To return to the main
Administration Tools page instead, click the Back button.

Searching for a Payment by Status

Another way that an administrator of the site can search is by using a payment status
(Authorized, MarkedForSettle, PendingSettle, Settled, Rejected, and Retry). Simply
select the status from the Status pull-down menu and click the Search button. A text
message appears at the top of the page, indicating how many payments were found for
the status. The actual results will appear below the search fields in the Payment
Transaction History, as shown in Figure 8-12.
8-14 Order Processing Package

Using the Payment Management Search Page
Figure 8-12 Sample Results for Payment Search by Status

For a detailed explanation of the Payment Transaction History fields and further
payment management activities, refer to “Authorizing, Capturing, and Settling
Payments” on page 8-16 .

To perform another search, type your query in the form field. To return to the main
Administration Tools page instead, click the Back button.
Order Processing Package 8-15

8 Using the Order and Payment Management Pages
Authorizing, Capturing, and Settling Payments

The Payment Transaction History section (which appears in the lower portion of the
Payment Management search page after a search is performed) shows information
about each payment transaction, including the date, the transaction ID, the payment
amount, the payment status, and a masked version of the credit card that was used to
complete the transaction.

Table 8-1 provides a description for each of the possible payment status values.

In order for a merchant to obtain the funds associated with a payment transaction, the
transaction must be authorized, captured, and settled. Depending on the status of the
transaction, a text field and associated button may appear at the end of the line in the
Payment Transaction History section, making it possible to manually change the state
of the transaction.

Authorizing the Transaction

If the status of the order is set to Retry, an Authorize button will appear at the end of
the line (as shown in Figure 8-13).

Table 8-1 Payment Status Values

Status Description

Authorized The transaction has been successfully authorized, and is awaiting
capture and settlement.

MarkedForSettle The transaction has been batched for settlement (captured).

PendingSettle The transaction settlement process has been initiated.

Settled The transaction has been settled.

Rejected Authorization for the transaction was rejected.

Retry The transaction has been recorded, but authorization was either
unsuccessful or has been deferred.
8-16 Order Processing Package

Using the Payment Management Search Page
Figure 8-13 Payment Transaction History With Authorize Button

Pressing this button will cause the BEA WebLogic Commerce Server product to
connect to the CyberCash (payment) server, and to reserve credit from the customer’s
account on behalf of the merchant. A transaction is placed in the Retry state if you
have configured the server to defer authorization of payments, or if the Payment
Service was unavailable due to a system failure. In such cases, the business will not
fulfill the order until the status on the associated payment transaction has been set to
Authorized.

Note: For more information about configuring the server to defer authorization of
payments, see “Configuration Activities for Using CyberCash” on page 6-29.
Order Processing Package 8-17

8 Using the Order and Payment Management Pages
Authorization will change the state of the transaction in different ways, depending on
the payment model in use. In a soft goods scenario (AUTO_MARK_AUTO_SETTLE
or HOST_AUTH_CAPTURE), the transaction will transition directly to the
PendingSettle state and remain there until it is settled.

Note: For more information about the different payment models, see “Payment
Models” on page 6-31.

Capturing the Transaction

If the payment model is one of the MANUAL_MARK_* or
HOST_AUTH_POST_AUTH models and has been authorized, it is now necessary to
capture that transaction. To capture the transaction, specify the amount that is to be
captured in the text field, and click the Capture button. Capturing the funds associated
with an order generally takes place after the order has been fulfilled. In some cases,
the amount of the transaction may be less than the total original amount that was
authorized. This is true in cases where the order was partially shipped.

Settling the Transaction

If a transaction has been captured and if the BEA WebLogic Commerce Server
product has been configured for a *_MANUAL_SETTLE payment model, the
transaction will be assigned the MarkedForSettle state. To settle the transaction,
specify the amount that is to be settled in the text field, and click the Settle button. The
amount may only be less than or equal to the capture amount.

Note: The BEA WebLogic Commerce Server will not set transactions to a Rejected
status. This state is provided so that it may be set by third-party order
management systems in the event that a payment transaction is considered
unrecoverable. Additionally, the current implementation of the Administration
Tools does not allow you to query the state of a Rejected transaction or move
it to the Settled state.
8-18 Order Processing Package

Index

A
accessor method(s)

attributes of 3-9
ShoppingCart 3-10
ShoppingCartLine 3-10

addaddress.jsp 4-19
Administration Tools page

loading 8-2
sample page 8-3

attributes
accessor method 3-9

authorizing transactions 8-16

B
browsing the product catalog 1-3
business logic 1-2, 3-7

C
Calendar Date Selection Tool

about 8-8
capturing transactions 8-18
checkout process 3-2
checkout.jsp 7-2
confirmorder.jsp 7-14
create-* procedure 2-24
credit card

customizing security settings 6-41
encryption/decryption 6-41
private key encyption password 6-44

processing using CyberCash 6-28
security 6-40

Customer ID
searching for a payment by 8-13
searching for an order by 8-1, 8-4

customer support contact information xiv
CyberCash

about 6-28
configuring 6-29
integration with 6-28

D
database schema 1-6, 2-1
database table

WLCS_CREDIT_CARD 2-8
WLCS_CUSTOMER 2-4
WLCS_ORDER 2-16
WLCS_ORDER_LINE 2-19
WLCS_SAVED_ITEM_LIST 2-15
WLCS_SECURITY 2-23
WLCS_SHIPPING_ADDRESS 2-6
WLCS_SHIPPING_METHOD 2-21
WLCS_TRANSACTION 2-11
WLCS_TRANSACTION_ENTRY 2-14

date
range

searching for an order by 8-1, 8-8
default Webflow 1-4
documentation, where to find it xii
dynamic data display
Order Processing Package I-1

checkout.jsp 7-7
confirmorder.jsp 7-17
payment.jsp 6-6
paymenteditcc.jsp 6-17
selectaddress.jsp 4-15
selecttaxaddress.jsp 5-6
shipping.jsp 4-6
shoppingcart.jsp 3-8

E
Entity-Relation diagram 2-2
event(s)

addaddress.jsp 4-22
checkout.jsp 7-6
payment.jsp 6-6
paymenteditcc.jsp 6-17
paymentnewcc.jsp 6-11
selecttaxaddress.jsp 5-6
shipping.jsp 4-6
shoppingcart.jsp 3-7

G
getShoppingCartLineCollection() 7-10

H
high-level architecture 1-4

I
input processors

DecideShippingAddressPageIP 5-10
DeleteProductItemFromShoppingCartIP

3-14
EmptyShoppingCartIP 3-15
InitShippingMethodListIP 4-25
InitShoppingCartIP 3-15
PaymentAuthorizationIP 6-22
UpdatePaymentInfoIP 6-23
UpdateShippingAddressIP 4-26, 5-11

UpdateShoppingCartQuantitiesIP 3-16
UpdateSkuIP 3-17
ValidateAddressIP 4-27
ValidateShippingInfoIP 4-28

J
Java scriptlets 3-9
JavaServer Page (JSP) templates

addaddress.jsp 4-19
checkout.jsp 7-2
confirmorder.jsp 7-14
Order Processing package 1-2
payment.jsp 6-2
paymenteditcc.jsp 6-14
paymentnewcc.jsp 6-8
selecttaxaddress.jsp 5-2
shoppingcart.jsp 3-2

JSP tags
getPipelineProperty 3-9, 5-6
getProfile 4-15, 6-6, 6-17
getProperty 4-15, 6-6, 6-18

O
Order Identifier number

searching for an order by 8-1, 8-6
Order List

about 8-5
Order Management page

loading Administration Tools page 8-2
search page 8-4

order processing database 2-2
Cloudscape and Oracle versions 2-24

Order Processing package
about 1-2
structure of 1-2

Order Status page 8-5
order(s)

search
by Customer ID 8-1, 8-4
I-2 Order Processing Package

by date range 8-1, 8-8
by Order Identifier number 8-1, 8-6

P
payment models

host-based 6-31
switching between two 6-33
terminal-based 6-31

Payment Transaction History
about 8-13

payment(s)
search

by Customer ID 8-13
by status 8-14

status 8-16
payment.jsp 6-2
paymenteditcc.jsp 6-14
paymentnewcc.jsp 6-8
Pipeline components

AddShippingAddressPC 4-29
CalculateShippingPC 4-30
CommitOrderPC 7-24
DeleteProductItemFromSavedListPC 3-

18
DeleteShippingAddressPC 4-31
MoveProductItemToSavedListPC 3-19
MoveProductItemToShippingCartPC 3-

20
PaymentAuthorizationHostPC 6-24
PaymentAuthorizationTerminalPC 6-26
RefreshSavedListPC 3-21
ResetOrderCheckoutPC 7-25
TaxCalculateAndCommitLineLevelPC

5-13
TaxCalculateLineLevelPC 5-12
TaxVerifyShippingAddressPC 5-13

printing product documentation xiii

R
registration and user processing 1-3
related information xiii
retrieving Pipeline session attributes

shopping cart 3-9

S
scriptlets, Java 3-9
search

order
by Customer ID 8-1, 8-4
by date range 8-1, 8-8
by Order Identifier number 8-1, 8-6

payment
by Customer ID 8-13
by status 8-14

security
credit card 6-40

selectaddress.jsp 4-10
selecttaxaddress.jsp 5-2
services, order-related 1-1
settling transactions 8-18
Shipping Services

about 4-1
addaddress.jsp template 4-19
selectaddress.jsp template 4-10
shipping.jsp template 4-2

shipping.jsp 4-2
shopping cart

managing 3-1
Shopping Cart Management Services 3-1
shoppingcart.jsp 3-2
SQL files 2-24
StartCommerce.bat 8-2
StartCommerce.sh 8-2
starting the WebLogic Commerce Server

Administration Tools 8-1, 8-2
status

of payments
searching by 8-14
Order Processing Package I-3

values for 8-16
support

technical xiv

T
Taxation Services

removing 5-30
TAXWARE

checklist 5-29
configuration and deployment 5-20
considerations 5-15
installing on UNIX 5-18
installing on Windows 5-17
integrating with 5-15
run-time configuration 5-26
SALES/USE Tax System 5-15
specific properties 5-23
tax codes and product catalog 5-29
to calculate taxes 5-15
Universal Tax Link (UTL) System 5-15
VERAZIP System 5-15

transactions
authorizing 8-16
capturing 8-18
settling 8-18

W
Webflow

modifying properties file 5-31
property file 6-34

Webflow/Pipeline infrastructure 1-4
WebLogic Commerce Server

Administration Tools
starting 8-1, 8-2

WLCS_CREDIT_CARD 2-8
WLCS_CUSTOMER 2-4
WLCS_ORDER 2-16
WLCS_ORDER_LINE 2-19
WLCS_SAVED_ITEM_LIST 2-15

WLCS_SECURITY 2-23
WLCS_SHIPPING_ADDRESS 2-6
WLCS_SHIPPING_METHOD 2-21
WLCS_TRANSACTION 2-11
WLCS_TRANSACTION_ENTRY 2-14
I-4 Order Processing Package

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Overview of the Order Processing Package
	What Is the Order Processing Package?
	High-level Architecture
	Development Roles
	Next Steps

	2 The Order Processing Database Schema
	The Entity-Relation Diagram
	The WLCS_CUSTOMER Database Table
	The WLCS_SHIPPING_ADDRESS Database Table
	The WLCS_CREDIT_CARD Database Table
	The WLCS_TRANSACTION Database Table
	The WLCS_TRANSACTION_ENTRY Database Table
	The WLCS_SAVED_ITEM_LIST Database Table
	The WLCS_ORDER Database Table
	The WLCS_ORDER_LINE Database Table
	The WLCS_SHIPPING_METHOD Database Table
	The WLCS_SECURITY Database Table
	The SQL Files and Defined Constraints

	3 Shopping Cart Management Services
	JavaServer Pages (JSPs)
	shoppingcart.jsp Template
	Sample Browser View
	Location in the WebLogic Commerce Server Directory Structure
	Tag Library Imports
	Java Package Imports
	Location in Default Webflow
	Included JSP Templates
	Events
	Dynamic Data Display
	Form Field Specification

	Input Processors
	DeleteProductItemFromShoppingCartIP
	EmptyShoppingCartIP
	InitShoppingCartIP
	UpdateShoppingCartQuantitiesIP
	UpdateSkuIP

	Pipeline Components
	DeleteProductItemFromSavedListPC
	MoveProductItemToSavedListPC
	MoveProductItemToShoppingCartPC
	RefreshSavedListPC

	4 Shipping Services
	JavaServer Pages (JSPs)
	shipping.jsp Template
	Sample Browser View
	Location in the WebLogic Commerce Server Directory Structure
	Tag Library Imports
	Java Package Imports
	Location in Default Webflow
	Included JSP Templates
	Events
	Dynamic Data Display
	Form Field Specification

	selectaddress.jsp Template
	Sample Browser View
	Location in the WebLogic Commerce Server Directory Structure
	Tag Library Imports
	Java Package Imports
	Location in Default Webflow
	Included JSP Templates
	Events
	Dynamic Data Display
	Form Field Specification

	addaddress.jsp Template
	Sample Browser View
	Location in the WebLogic Commerce Server Directory Structure
	Tag Library Imports
	Java Package Imports
	Location in Default Webflow
	Included JSP Templates
	Events
	Dynamic Data Display
	Form Field Specification

	Input Processors
	InitShippingMethodListIP
	UpdateShippingAddressIP
	ValidateAddressIP
	ValidateShippingInfoIP

	Pipeline Components
	AddShippingAddressPC
	CalculateShippingPC
	DeleteShippingAddressPC

	5 Taxation Services
	JavaServer Pages (JSPs)
	selecttaxaddress.jsp Template
	Sample Browser View
	Location in the WebLogic Commerce Server Directory Structure
	Tag Library Imports
	Java Package Imports
	Location in Default Webflow
	Included JSP Templates
	Events
	Dynamic Data Display
	Form Field Specification

	Input Processors
	DecideShippingAddressPageIP
	UpdateShippingAddressIP

	Pipeline Components
	TaxCalculateLineLevelPC
	TaxCalculateAndCommitLineLevelPC
	TaxVerifyShippingAddressPC

	Integration with TAXWARE
	Important TAXWARE Considerations
	TAXWARE Installation
	Installation Directory Structure
	Testing the TAXWARE Installation
	Changing the TAXWARE Directory Structure

	TAXWARE Configuration and Deployment
	Addresses and Taxation
	TAXWARE-specific Properties
	Run-Time Configuration
	Tax Codes and the Product Catalog
	Updating TAXWARE Tax Data
	TAXWARE Checklist

	Removing Tax Calculations
	Modifying the Pipeline Properties File
	Modifying the Webflow Properties File

	What if I Don’t Want to Use TAXWARE to Calculate My Taxes?

	6 Payment Services
	JavaServer Pages (JSPs)
	payment.jsp Template
	Sample Browser View
	Location in the WebLogic Commerce Server Directory Structure
	Tag Library Imports
	Java Package Imports
	Location in Default Webflow
	Included JSP Templates
	Events
	Dynamic Data Display
	Form Field Specification

	paymentnewcc.jsp Template
	Sample Browser View
	Location in the WebLogic Commerce Server Directory Structure
	Tag Library Imports
	Java Package Imports
	Location in Default Webflow
	Included JSP Templates
	Events
	Dynamic Data Display
	Form Field Specification

	paymenteditcc.jsp Template
	Sample Browser View
	Location in the WebLogic Commerce Server Directory Structure
	Tag Library Imports
	Java Package Imports
	Location in Default Webflow
	Included JSP Templates
	Events
	Dynamic Data Display
	Form Field Specification

	Input Processors
	PaymentAuthorizationIP
	UpdatePaymentInfoIP

	Pipeline Components
	PaymentAuthorizationHostPC
	PaymentAuthorizationTerminalPC

	Integration with CyberCash
	Configuration Activities for Using CyberCash
	Payment Models
	How Do I Switch Between the Two Payment Models?

	What if I Don’t Want to Use CyberCash for Credit Card Processing?

	Credit Card Security Service
	Encryption/Decryption Implementation
	Customizable Security Settings
	Methods for Supplying the Private Key Encryption Password
	Specifying the Password in weblogiccommerce.properties (Default)
	Specifying the Password at Server Startup Using the Console
	Specifying the Password After Server Startup Using a Secure Web Form
	Important Notes About Supplying Your Password
	What if I Want to Change My Password?

	7 Order Summary and Confirmation Services
	JavaServer Pages (JSPs)
	checkout.jsp Template
	Sample Browser View
	Location in the WebLogic Commerce Server Directory Structure
	Tag Library Imports
	Java Package Imports
	Location in Default Webflow
	Included JSP Templates
	Events
	Dynamic Data Display
	Form Field Specification

	confirmorder.jsp Template
	Sample Browser View
	Location in the WebLogic Commerce Server Directory Structure
	Tag Library Imports
	Java Package Imports
	Location in Default Webflow
	Included JSP Templates
	Events
	Dynamic Data Display
	Form Field Specification

	Input Processors
	Pipeline Components
	CommitOrderPC
	ResetCheckoutPC

	8 Using the Order and Payment Management Pages
	Starting the WebLogic Commerce Server Administration Tools
	Using the Order Management Search Page
	Searching for an Order by Customer ID
	Searching for an Order by Order Identifier Number
	Searching for an Order by Date Range

	Using the Payment Management Search Page
	Searching for a Payment by Customer ID
	Searching for a Payment by Status
	Authorizing, Capturing, and Settling Payments
	Authorizing the Transaction
	Capturing the Transaction
	Settling the Transaction

	Index

