
Performance Tuning Guide

W e b L o g i c C o m m e r c e S e r v e r 3 . 2

BEA WebLogic Commerce Server
BEA WebLogic Personalization Server

W e b L o g i c P e r s o n a l i z a t i o n S e r v e r 3 . 2
D o c u m e n t E d i t i o n 3 . 2 . 1

J a n u a r y 2 0 0 1

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

Performance Tuning Guide

Document Edition Date Software Version

3.2 December 2000 WebLogic Commerce Server 3.2

3.2.1 January 2001 WebLogic Commerce Server 3.2

Contents

About This Document
What You Need to Know ..v
e-docs Web Site...v
How to Print the Document... vi
Related Information... vi
Contact Us! .. vi
Documentation Conventions .. vii

Performance Tuning Guide
Precompile JSPs ..2

Specifying a Different Java Compiler...4
Adjust the Intervals for Checking JSP and Servlet Modifications5

About the Page-Check Interval Properties..6
About the Reload-Servlet Interval Property..7
To Adjust the Intervals..7
For More Information ...7

Adjust Database Connections Available at Startup...8
For More Information ...8

Set the Reload Policy for Rules...9
For More Information ...9

Adjust Caching ..10
Adjust and Use the Session and Global Caches...10

For More Information ...11
Enabling the Caches..11
JSP Tags for Accessing HttpSession and the Session

and Global Caches ...12
Performance Tuning Guide iii

An API for Accessing HttpSession and the Session
and Global Caches .. 12

Guidelines for Placing Data in HttpSession, Session Cache,
or Global Cache .. 13

Adjust Caching for Content Management... 14
For More Information... 16

Enable Property Caching... 16
Property Caching in a Clustered Environment..................................... 16
To Enable Property Caching .. 17
For More Information... 18

Enable Group Caching .. 19
Group Caching in a Clustered Environment .. 19
To Set Up the Group Cache Table ... 20
To Enable and Configure the Group Cache ... 20
To Access Data in the Group Cache Table .. 21

Adjust Portal and Portlet Settings While Load Testing...................................... 21
For More Information... 22

Display Metadata, Sort and Query Explicit Metadata .. 23
For More Information... 23

Use LDAP for Authentication Only ... 23
For More Information... 23

Use the DocumentManager EJB... 24
Use the HotSpot Server Virtual Machine ... 24

Deactivate the HotSpot Server VM on Windows.. 25
Activate the Hotspot Server VM on UNIX ... 25
iv Performance Tuning Guide

About This Document

When you first install BEA WebLogic Commerce Server and Personalization Server,
it is configured to support Web-site developers and administrators. For example some
caching mechanisms are disabled so developers can see the results of their
modifications immediately. This document describes how to tune BEA WebLogic
Commerce Server and Personalization Server for a production environment.

What You Need to Know

This document is intended mainly for Web-site administrators who configure
properties for WebLogic Server and WebLogic Commerce Server and Personalization
Server. It assumes a familiarity WebLogic Commerce Server and Personalization
Server configuration files as well as the WebLogic Server platform and J2EE
specifications.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://e-docs.bea.com.
Deployment Guide v

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Commerce Server and
Personalization Server documentation Home page on the e-docs Web site (and also on
the documentation CD). You can open the PDF in Adobe Acrobat Reader and print the
entire document (or a portion of it) in book format. To access the PDFs, open the
WebLogic Commerce Server and Personalization Server documentation Home page,
click the PDF files button and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Related Information

The following BEA documents describe configuring WebLogic Server and WebLogic
Commerce Server and Personalization Server for optimal performance in a production
environment:

� BEA WebLogic Server Performance Tuning Guide

Contact Us!

Your feedback on the BEA WebLogic Commerce Server and Personalization Server
documentation is important to us. Send us e-mail at docsupport@bea.com if you have
questions or comments. Your comments will be reviewed directly by the BEA
professionals who create and update the WebLogic Commerce Server and
Personalization Server documentation.
vi Deployment Guide

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Commerce Server and Personalization Server 3.2 release.

If you have any questions about this version of BEA WebLogic Commerce Server and
Personalization Server, or if you have problems installing and running BEA WebLogic
Commerce Server and Personalization Server, contact BEA Customer Support through
BEA WebSupport at www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.
Deployment Guide vii

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.
Example:
void commit ()

monospace
italic
text

Identifies variables in code.
Example:
String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.
Examples:
LPT1
SIGNON
OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Convention Item
viii Deployment Guide

... Indicates one of the following in a command line:
� That an argument can be repeated several times in a command line
� That the statement omits additional optional arguments
� That you can enter additional parameters, values, or other information
The ellipsis itself should never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
Deployment Guide ix

x Deployment Guide

Performance Tuning Guide
When you first install BEA WebLogic Commerce Server and WebLogic
Personalization Server, it is configured to support Web-site developers and
administrators. For example some caching mechanisms are disabled so developers can
see the results of their modifications immediately.

When you are ready to make your Web site available to customers, refer to the
WebLogic Server Performance Tuning Guide for information about tuning WebLogic
Server.

Then, for information about tuning WebLogic Commerce Server and WebLogic
Personalization Server performance, refer to the following topics in this document:

� Precompile JSPs

� Adjust the Intervals for Checking JSP and Servlet Modifications

� Adjust Database Connections Available at Startup

� Set the Reload Policy for Rules

� Adjust Caching

� Adjust and Use the Session and Global Caches

� Adjust Caching for Content Management

� Enable Property Caching

� Enable Group Caching

� Adjust Portal and Portlet Settings While Load Testing

� Display Metadata, Sort and Query Explicit Metadata

� Use LDAP for Authentication Only

� Use the DocumentManager EJB

� Use the HotSpot Server Virtual Machine
Performance Tuning Guide 1

Precompile JSPs

By default, WebLogic Commerce Server and Personalization Server Web applications
deactivate the JavaServer Page (JSP) precompile option. With this option deactivated,
the server starts quickly but must compile each new or modified JSP when you access
it, causing a significant delay the first time you request a new or modified JSP.

When you activate the precompile option, the server startup process checks for new or
modified JSPs in the Web application and compiles them. Activating the precompile
option can cause a significant delay in server startup if you have modified or added
JSPs but avoids delays when you access a new or modified JSP for the first time.

To activate the precompile option for a Web application that is deployed as an
expanded directory hierarchy, do the following:

1. From the Web application’s WEB-INF directory, open the web.xml file in a text
editor and insert the following element:

<context-param>
<param-name>weblogic.jsp.precompile</param-name>
<param-value>true</param-value>

</context-param>

Note: Some of the web.xml files shipped with the product already have this
element in the file, but the value is set to false; in this case, change the
<param-value> to true.

2. Save the file and restart the server.

To activate the precompile option for a Web application that is deployed as a .war file,
do the following:

1. Make a backup copy of the .war file.

2. Create a temporary directory and copy the.war file to the directory.
2 Performance Tuning Guide

PRECOMPILE JSPS
3. In the temporary directory, unjar the .war file by entering the following
command:

pathname\jar -xf WarFileName

For example:

c:\jdk1.3\bin\jar -xf tools.war

4. Under the temporary directory, open WEB-INF\web.xml in a text editor and
insert the following element:

<context-param>
<param-name>weblogic.jsp.precompile</param-name>
<param-value>true</param-value>

</context-param>

Note: Some of the web.xml files shipped with the product already have this
element in the file, but the value is set to false; in this case, change the
<param-value> to true.

5. Save web.xml.

6. Under the temporary directory, if the WEB-INF directory contains a subdirectory
named _tmp_war, delete the _tmp_war directory. This directory contains
compiled JSPs and you must remove them before you rejar the .war file to
ensure that WebLogic Commerce Server and Personalization Server recompile all
JSPs the next time you start the server.

7. Remove the old .war file from the temporary directory.

8. Create a new .war file for the Web application by entering the following
command:

pathname\jar -cf WarFileName *.*

For example:

c:\jdk1.3\bin\jar -cf tools.war *.*
Performance Tuning Guide 3

9. Move the new .war file back to its original directory.

10. Remove any other files in the original directory that may have been left over
from previous .war extractions. For example, there may be a WEB-INF directory
remaining from the last time you ran the Web application from the .war file.

11. Restart the server.

The server console logs a message for each file it compiles. Ignore any [JSP Enum]

no match messages. These are displayed for files that do not match the .jsp file
extension.

Specifying a Different Java Compiler

The weblogic.properties file specifies a Java compiler for the resources
WebLogic Server contains. You can override this property for your Web application
by adding the following element to the Web application’s web.xml file:

<context-param>
<param-name>weblogic.jsp.compileCommand</param-name>
<param-value>c:/jdk1.3/bin/javac.exe</param-value>

</context-param>

Change the <param-value> to specify the pathname of the Java compiler that you
want to use for the Web application. For information on modifying a Web
application’s web.xml file, refer to “Precompile JSPs” on page 2.

Note: Some of the web.xml files shipped with the product already have this element
in the file. In this case, change the <param-value>.
4 Performance Tuning Guide

ADJUST THE INTERVALS FOR CHECKING JSP AND SERVLET MODIFICATIONS
Adjust the Intervals for Checking JSP and
Servlet Modifications

By default, each time a Web browser requests a JSP, WebLogic Commerce Server
checks for any modifications to the JSP source file. Likewise, each time WebLogic
Commerce Server sends a request to a servlet, it checks for any modifications to the
servlet class files.

For your production Web site, you can decrease the amount of time in which
WebLogic Commerce Server serves JSPs and processes requests to servlets by
increasing the intervals at which the server checks for modifications.

Although WebLogic Commerce Server performs faster with higher values for the
modification-check intervals, the higher values reduce sensitivity to changes in your
source files. For example, you can set the server to check for JSP modifications every
10 minutes. After you change a JSP, it will take up to 10 minutes for the server to see
the modifications.

This topic includes the following sections:

� About the Page-Check Interval Properties

� About the Reload-Servlet Interval Property

� To Adjust the Intervals

� For More Information
Performance Tuning Guide 5

About the Page-Check Interval Properties

Two properties determine the interval at which WebLogic Server checks to see if JSP
files have changed and need recompiling:

� The pageCheckSeconds property in
WL_COMMERCE_HOME\weblogic.properties, which applies only to servlets
that WebLogic deploys in the default servlet context.

The following excerpt from weblogic.properties shows the property in
boldface text with its default value:
weblogic.httpd.register.*.jsp=\
weblogic.servlet.JSPServlet

weblogic.httpd.initArgs.*.jsp=\
pageCheckSeconds=0,\

packagePrefix=jsp,\
compileCommand=d:/bin/jikes.exe,\
workingDir=d:/weblogic/myserver/classfiles,\
verbose=false,\
keepgenerated=true

� The weblogic.jsp.pageCheckSeconds context parameter in a Web
application’s deployment descriptor (web.xml file), which applies only to the
servlets that WebLogic Server deploys in the context of the Web application.
The following excerpt from WL_COMMERCE_HOME\server\Web
apps\web-inf\web.xml shows the weblogic.jsp.pageCheckSeconds
context parameter in boldface text with the default value:

<context-param>
<param-name>weblogic.jsp.pageCheckSeconds</param-name>
<param-value>0</param-value>

</context-param>

Note: Neither page-check interval properties determine the frequency with which
WebLogic Commerce Server checks for updated content that is stored in the
database and in a content management system. Instead, the ttl (time-to-live)
settings for various caches determine the refresh rate for content. For example,
if you set the page-check intervals to once a second, and you set the ttl for
the content cache to 10 minutes, it can take up to 10 minutes for the server to
see the new content, even though it is checking for new JSP source code every
second. For information on setting ttl properties for caches, refer to “Adjust
Caching” on page 10.
6 Performance Tuning Guide

ADJUST THE INTERVALS FOR CHECKING JSP AND SERVLET MODIFICATIONS
About the Reload-Servlet Interval Property

The weblogic.servlet.reloadCheckSecs context parameter in a Web
application’s deployment descriptor (web.xml file) specifies the interval in seconds
that the Web application checks for modified servlet classes.

The following excerpt from WL_COMMERCE_HOME\server\Web
apps\web-inf\web.xml shows the weblogic.servlet.reloadCheckSecs
context parameter in boldface text with the default value:

<context-param>
<param-name>weblogic.servlet.reloadCheckSecs</param-name>
<param-value>600</param-value>

</context-param>

To Adjust the Intervals

To determine the optimal page-check and reload-servlet intervals for your production
Web site, do the following:

1. Establish performance baselines by testing WebLogic Commerce Server
performance with all three intervals set to -1 (which specifies that the server never
checks for modifications).

2. Test the performance with the intervals set to various numbers of seconds. For
example, set the intervals to 600 seconds (10 minutes) and test the performance.
Then set the intervals to 900 seconds and test the performance.

3. Choose intervals that provide the best performance while checking for
modifications to JSP files and servlet classes at a satisfactory rate.

For More Information

For more information about configuring JSP and servlet options for WebLogic Server,
see the following topics on the WebLogic Server documentation Web site:

� “Writing a Web Application”

� “Using WebLogic JSP”
Performance Tuning Guide 7

Adjust Database Connections Available at
Startup

To optimize the database pool performance for your production Web site, open
$WL_COMMERCE_HOME/weblogic.properties and modify the values for the
following weblogic.jdbc.connectionPool.commercePool properties:

� loginDelaySecs. Change to 0

� initialCapacity. Change to maxCapacity

� allowShrinking. Change to false

� testConnsOnReserve. Change to false

For example:

weblogic.jdbc.connectionPool.commercePool=\
url=jdbc:oracle:thin:@server:port:instance,\
driver=oracle.jdbc.driver.OracleDriver,\
loginDelaySecs=0,\
initialCapacity=maxCapacity,\
maxCapacity=20,\
capacityIncrement=1,\
allowShrinking=false,\
shrinkPeriodMins=15,\
testConnsOnReserve=false,\
props=user=user;password=pwd,\
refreshMinutes=5

For More Information

For more information on database connection pools, see “Creating and Using
Connection Pools” on the WebLogic Server documentation Web site and “Setting Up
Connection Pools” under “Creating and Managing Content” in the WebLogic
Personalization Server Developer’s Guide.
8 Performance Tuning Guide

SET THE RELOAD POLICY FOR RULES
Set the Reload Policy for Rules

You can determine the frequency with which WebLogic Personalization Server checks
for changes to rules by doing the following:

1. Open $WL_COMMERCE_HOME/lib/rulesservice.jar.

2. In ejb-jar.xml (which is in rulesservice.jar), modify the value for
rulesetReloadInterval. This value expresses the number of milliseconds that
WebLogic Personalization Server waits before checking for changes to rules. For
example:
<env-entry>
<env-entry-name>rulesetReloadInterval</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>300000</env-entry-value>
</env-entry>

WebLogic Personalization Server performs faster with a higher value for the reload
interval, however, the higher reload value reduces sensitivity to rule changes.

If you shut down and restart your production servers when you make changes to your
site, you can boost performance by setting the reload policy in ejb-jar.xml (which
is in rulesservice.jar) to reloadNever. For example:

<env-entry>
<env-entry-name>rulesetReloadPolicy</env-entry-name>
<env-entry-type>java.lang.String</env-entry-type>
<env-entry-value>reloadNever</env-entry-value>
</env-entry>

If you set the reload policy to reloadNever, WebLogic Personalization Server does
not recognize changes to rules until you restart the server.

For More Information

For more information about rules, see “Creating and Managing Rules” in the
WebLogic Personalization Server User’s Guide.
Performance Tuning Guide 9

Adjust Caching

To adjust caching for a production Web site, complete the following tasks:

� Adjust and Use the Session and Global Caches

� Adjust Caching for Content Management

� Enable Property Caching

Adjust and Use the Session and Global Caches

In a clustered environment, you can improve scalability and performance by
minimizing the use of HttpSession objects. (HttpSession is part of the JDK
session-tracking mechanism, which servlets use to maintain state about a series of
requests from the same user.)

To minimize using HttpSession, each server in the WebLogic Commerce Server and
WebLogic Personalization Server cluster provides the following caches:

� session cache, which stores data in memory about each session. The function
of the session cache is the same as HttpSession, however, unlike
HttpSession, it is not replicated across the cluster.

� global cache, which stores data in memory that multiple sessions can use. For
example, sessions for anonymous users can access data from the global cache.
Like the session cache, it is not replicated across the cluster.

This topic includes the following sections:

� Enabling the Caches

� JSP Tags for Accessing HttpSession and the Session and Global Caches

� An API for Accessing HttpSession and the Session and Global Caches

� Guidelines for Placing Data in HttpSession, Session Cache, or Global Cache
10 Performance Tuning Guide

ADJUST CACHING
For More Information

For more information about how WebLogic Commerce Server and WebLogic
Personalization Server process HTTP requests, refer to “Foundation Classes and
Utilities” in the WebLogic Personalization Server Developer’s Guide. For more
information about HttpSession, see
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpSession.html.
For more information about WebLogic Server clusters, see Using WebLogic Server
Clusters.

Enabling the Caches

To enable the session and global caches, add the following properties to
$WL_COMMERCE_HOME/weblogiccommerce.properties:

_sessionCache.ttl=900000
_sessionCache.capacity=10000
_sessionCache.enabled=true

_globalCache.ttl=600000
_globalCache.capacity=1000
_globalCache.enabled=true

The ttl (time-to-live) property determines the number of milliseconds that the server
maintains the cache. The capacity property determines the maximum number of
objects in the cache. (Both session and global are in-memory caches.) The enabled
property determines whether the cache is activated. A false value deactivates the
cache and obviates the ttl and capacity properties; true activates it.

You can increase or decrease values for ttl and capacity based on the amount of
available memory and the level of performance you desire.

Note: Each server in a cluster maintains its own set of caches, each of which must be
configured separately by modifying the server’s
weblogiccommerce.properties file. Because the session and global caches
are not replicated across servers in the cluster, if a server fails, the data in its
caches is inaccessible. For guidelines about which types of data to place in the
session and global caches, see “Guidelines for Placing Data in HttpSession,
Session Cache, or Global Cache” on page 13.
Performance Tuning Guide 11

JSP Tags for Accessing HttpSession and the Session and Global Caches

Use the following JSP tags from the FlowManager tag library to place, retrieve, and
remove data from HttpSession as well as the session and global caches:

� <fm:getCachedAttribute>

� <fm:setCachedAttribute>

� <fm:removeCachedAttribute>

� <fm:getSessionAttribute>

� <fm:setSessionAttribute>

� <fm:removeSessionAttribute>

For information about these tags, refer to “JSP Tag Library Reference” in the
WebLogic Personalization Server Developer’s Guide.

An API for Accessing HttpSession and the Session and Global Caches

Use the following methods of the
com.beasys.commerce.foundation.flow.helper.FlowManagerHelper API to
place, retrieve, and remove data from HttpSession and the session and global caches:

� getCachedValue

� setCachedValue

� removeCachedValue

� getGlobalCachedValue

� setGlobalCachedValue

� removeGlobalCachedValue

� getSessionAttribute

� setSessionAttribute

� removeSessionAttribute
12 Performance Tuning Guide

ADJUST CACHING
For information about these methods, refer to the documentation for
com.beasys.commerce.foundation.flow.helper.FlowManagerHelper in the
WebLogic Personalization Server Javadoc.

Guidelines for Placing Data in HttpSession, Session Cache, or Global Cache

In general, place only the following in HttpSession:

� Items that are required for replication across the cluster.

� Any keys that are required to look up information. When you enable session
replication for WebLogic Server, HttpSession is replicated on all machines in a
cluster. Placing information in HttpSession while session replication is enabled
provides a backup for data lookups. For example, you place query parameters
for a search in HttpSession and the search results in the session cache. While
returning the search results the server fails. Another server can recreate the
search by referring to the parameters that are stored in the HttpSession replica.

Place any information that multiple users require (either within the same application
or across multiple applications) in the global cache.

Place all other session-related information in the session cache.
Performance Tuning Guide 13

Adjust Caching for Content Management

To optimize content-management performance for your production Web site,
configure WebLogic Personalization Server as follows:

� For the cm:select, cm:selectById, pz:contentQuery, and
pz:contentSelector JSP tags, use the useCache attribute whenever possible.
Doing so avoids a call to DocumentManager and, in the case of
pz:ContentSelector, to the RuleService.

For information on using the useCache attribute, refer to “JSP Tag Library
Reference” in the WebLogic Personalization Server Developer’s Guide.

To clear cached content when user and/or document attributes change, use the
remove method of com.beasys.commerce.content.ContentCache. For more
information, see the Javadoc for
com.beasys.commerce.content.ContentCache.

For an example of a JSP file that uses the remove method, see
WL_COMMERCE_HOME/server/public_html/examples/content/cache-cont
rol.jsp

� For the cm:select, cm:selectById, pz:contentQuery, and
pz:contentSelector JSP tags, set the cacheScope attribute to application
whenever possible. For example:
<cm:select id="myDocs" query="riskFactor = 'Low'"
useCache="true" cacheId="myDocs"
cacheScope="application"
max="10" cacheTimeout="300000" />

The application cache type is global instead of per-user and should speed up
queries by avoiding a call to the DocumentManager EJB.

Note: For pz:contentSelector, set the cacheScope attribute to application
only when you want to select shared content. For example, in exampleportal,
the Acme Promotion portlet uses an application-scoped cache to select content
for non-authenticated users. Because it uses the application scope, all
non-authenticated users see the same content. For authenticated users, Acme
Promotion provides personalized content by switching to a session-scoped
cache.
14 Performance Tuning Guide

ADJUST CACHING
� Whenever you can predict the next document that users will view based on the
document that they are currently viewing, load the next document into the cache
before users request it. This “forward caching” will greatly improve the speed at
which WebLogic Personalization Server responds to user requests (assuming that
your prediction is correct; forward caching a document that no one requests will
only degrade performance and scalability).

The following JSP fragment is an example of forward caching a document:
<%-- Get the first set of content --%>

<cm:select id="myDocs" query="riskFactor = 'Low'"
useCache="true" cacheId="myDocs"
cacheScope="application"
max="10" cacheTimeout="300000" />

<%-- Generate a query from each content's relatedDocId --%>

<% String query = null; %>
<es:forEachInArray array="<%=myDocs%>" id="myDoc"
type="com.beasys.commerce.axiom.content.Content">

<% String relId = (String)myDoc.getProperty("relatedDocId",
null); %>
<es:notNull item="<%=relId%>">

<%
if (query != null)
query += " || ";
else
query = "";
query += "identifier = '" +
ExpressionHelper.toStringLiteral(relId) + "'";

%>

</es:notNull>
</es:forEachInArray>

<%-- Load the related content into the cache via cm:select
--%>

<es:notNull item="<%=query%>">

<cm:select query="<%=query%>" id="foo" useCache="true"
cacheId="relatedDocs"
cacheScope="session" max="10" cacheTimeout="300000" />

</es:notNull>
Performance Tuning Guide 15

For More Information

For more information about content management, see “Creating and Managing
Content” in the WebLogic Personalization Server Developer’s Guide.

For more information about JSP tags for content management, see “JSP Tag Library
Reference” in the WebLogic Personalization Server Developer’s Guide.

Enable Property Caching

The WebLogic Server Configurable Entity and Entity Property Manager provide
several in-memory caches that you can enable for WebLogic Commerce Server and
WebLogic Personalization Server. The caches decrease the amount of time needed to
access user, group, and other properties, but introduce the possibility of stale data.

This topic discusses the following sections:

� Property Caching in a Clustered Environment

� To Enable Property Caching

Property Caching in a Clustered Environment

With property caching enabled in a clustered environment, each server in a cluster
maintains its own cache; the cache is not replicated on other servers. In this
environment, when properties that are stored in the defaultPropertyCache,
entityPropertyCache, directPropertyManager, or ldapPropertyCache
change on one server, they may not change on another server in a timely fashion.

In most cases, immediate or quick access to properties on another server is not
necessary: user sessions are pinned to a single server, and even with caching enabled,
users immediately see changes they make to their own settings on the server.

However, if a server fails and loses the data in its caches, modifications to properties
may be lost, depending on the longevity of the property cache. In addition, if an
administrator changes a user's properties, the user may not see the changes during her
session if she and the administrator are pinned to different servers in the cluster.
16 Performance Tuning Guide

ADJUST CACHING
You can mitigate these situations by specifying a small ttl (time-to-live) setting when
you enable the caches. The small ttl setting provides performance gains by caching
data, but the short-lived caches increase the rate at which property changes are
replicated across servers.

If you require multiple servers in a cluster to have immediate access to modified
properties, disable property caching by adding the entries described in “To Enable
Property Caching” and specifying false for the
unifiedProfileTypeCache.enabled value.

To Enable Property Caching

To enable property caching, add the following entries to
WL_COMMERCE_HOME\weblogiccommerce.properties, adjusting the values based
on the number of properties in your property sets and the frequency with which you
want the data updated:

Note: These entries enable in-memory caching. Caches that grow exceedingly large
may degrade performance.

� To create a cache of unified profile types that lives for 1 hour and contains 100
entries, add:
unifiedProfileTypeCache.ttl=3600000
unifiedProfileTypeCache.capacity=100
unifiedProfileTypeCache.enabled=true

� To create a cache of default schema properties that lives for 10 minutes and
contains 500 entries, add:
defaultPropertyCache.ttl=600000
defaultPropertyCache.capacity=500
defaultPropertyCache.enabled=true

� To create a cache of entity properties that lives for 10 minutes and contains 500
entries, add:
entityPropertyCache.ttl=600000
entityPropertyCache.capacity=500
entityPropertyCache.enabled=true
Performance Tuning Guide 17

� To create a cache of LDAP entity properties that lives for 10 minutes and
contains 500 entries, add:
ldapEntityPropertyCache.ttl=600000
ldapEntityPropertyCache.capacity=500
ldapEntityPropertyCache.enabled=true

� To create a cache of entity IDs that lives for 1 hour and contains 500 entries,
add:
entityIdCache.ttl=3600000
entityIdCache.capacity=500
entityIdCache.enabled=true

� To create a cache of explicit properties that lives for 10 minutes and contains
100 entries, add:
directPropertyManager.ttl=600000
directPropertyManager.capacity=100
directPropertyManager.enabled=true

� To create a cache of ConfigurableEntity methods that lives for 1 hour and
contains 100 entries, add:
ConfigurableEntityMethodCache.ttl=3600000
ConfigurableEntityMethodCache.capacity=100
ConfigurableEntityMethodCache.enabled=true

For More Information

For more information about property sets, see “Creating and Managing Property Sets”
in the WebLogic Personalization Server User’s Guide.

For more information about JSP tags for managing property sets, see “JSP Tag Library
Reference” in the WebLogic Personalization Server Developer’s Guide.
18 Performance Tuning Guide

ADJUST CACHING
Enable Group Caching

In systems with a deep group hierarchies, you can improve performance using group
caching, which precalculates group membership information and stores the calculation
results in a new database table, WLCS_USER_GROUP_CACHE. Any queries that are
submitted while group caching is recalculating data return the old, previously
committed data.

With group caching, you exchange faster performance for the risk of stale or
inconsistent data. To balance performance with data consistency, you can configure
the interval at which the caching mechanism recalculates and updates the table.

This topic contains the following sections:

� Group Caching in a Clustered Environment

� To Set Up the Group Cache Table

� To Enable and Configure the Group Cache

� To Access Data in the Group Cache Table

Group Caching in a Clustered Environment

To improve performance of group caching in a cluster, you can establish one cache as
the master. The server with the master cache periodically updates its
WLCS_USER_GROUP_CACHE table. All other servers in the cluster read this
master table; they do not update the table or maintain their own copy. For information
on setting up a master cache, refer to “To Enable and Configure the Group Cache” on
page 20.
Performance Tuning Guide 19

To Set Up the Group Cache Table

To set up the table for group caching, issue the following SQL commands:

CREATE TABLE WLCS_USER_GROUP_CACHE (USER_NAME VARCHAR2(100) NOT NULL,

GROUP_NAME VARCHAR2(100) NOT NULL);

ALTER TABLE WLCS_USER_GROUP_CACHE

ADD CONSTRAINT WLCS_USER_GROUP_CACHE_INDEX PRIMARY KEY (USER_NAME,

GROUP_NAME);

To Enable and Configure the Group Cache

To enable the group cache, add all of the following lines to
$WL_COMMERCE_HOME/weblogic.properties:

� weblogic.system.startupClass.GroupCache=com.beasys.commerce.axio

m.contact.security.GroupCache

� weblogic.system.startupArgs.GroupCache=updateDb=true

In a clustered environment, to create a master cache, specify
weblogic.system.startupArgs.GroupCache=updateDb=true for one server and
weblogic.system.startupArgs.GroupCache=updateDb=false for all other
servers in the cluster.

To configure the number of seconds that the server waits before calculating and
updating the table, change the value for the following WebLogic Server property:
weblogic.security.realm.cache.group.ttl.positive

Note: You do not need to specify the size of the group cache.The depth of the group
hierarchies determines the size of the group cache table.
20 Performance Tuning Guide

ADJUST PORTAL AND PORTLET SETTINGS WHILE LOAD TESTING
To Access Data in the Group Cache Table

To access data in the group cache table, use any of the following:

� The new UserManager method of getCachedGroupNamesForUser

� The static method of the GroupCache object

For more information about these methods, refer to the WebLogic Personalization
Server Javadoc.

Adjust Portal and Portlet Settings While
Load Testing

If you are testing the performance of the portal framework, do the following:

� Enable session and global caches as described in “Adjust and Use the Session
and Global Caches” on page 10. (You do not need to add JSP tags or API
methods that access the caches when testing the portal framework; the
framework includes them by default.)

� Because slow portlets can severely slow a portal’s performance, remove all of
the portlets from the portal except for Dictionary, Search, and Quote. These
portlets do not invoke external activities such as database connections.
Performance Tuning Guide 21

� Modify the framework’s Application Initialization Property Set as follows:

� For refreshWorkingDir, increase the default number of seconds to prevent
WebLogic Personalization Sever from refreshing the working directory every
5 minutes (300 seconds) during a long load test.

The working directory is the root of the portal pages and WebLogic
Personalization Server pages hierarchy. You define the working directory in a
JSP, and you can change it as needed without restarting the server. The
refreshWorkingDir property determines how frequently the server checks
to see if you have changed the working directory.

The Application Initialization Property Set for the exampleportal defines the
refreshWorkingDir property. If you base your portal on the exampleportal,
it too will define the refreshWorkingDir property.

� For ttl, increase the default number of milliseconds to prevent WebLogic
Personalization Sever from reloading properties every five minutes (300000
milliseconds) during a long load test.

For More Information

For more information about managing portals, see “Creating and Managing Portals” in
the WebLogic Personalization Server User’s Guide.

For more information about developing portlets, see “Developing Portlets” in the
WebLogic Personalization Server Developer’s Guide.
22 Performance Tuning Guide

DISPLAY METADATA, SORT AND QUERY EXPLICIT METADATA
Display Metadata, Sort and Query Explicit
Metadata

If you used the BulkLoader to load document metadata into the reference
implementation document database, you can improve document management
performance when retrieving documents by doing the following:

� Display a document’s metadata instead of the full document.

� Sort on explicit (system-defined) metadata attributes instead of implicit
(user-defined) metadata attributes.

� Query on explicit metadata attributes instead of implicit metadata attributes.

For More Information

For more information about content management, see “Creating and Managing
Content” in the WebLogic Personalization Server Developer’s Guide.

Use LDAP for Authentication Only

For improved performance, use LDAP for authentication only; do not use it to retrieve
user and group properties. Instead of retrieving properties from LDAP servers,
configure your system to use properties stored in the RDBMS by minimizing the
number of properties registered for retrieval from LDAP in the user management tools.

For More Information

For more information about changing LDAP settings, see “Using Other Realms” under
“Creating and Managing Users” in the WebLogic Personalization Server User’s
Guide.
Performance Tuning Guide 23

Use the DocumentManager EJB

Always use a DocumentManager EJB instead of Document EJB. Document EJBs are
deprecated.

Use the HotSpot Server Virtual Machine

HotSpot enhances JDK 1.3 performance by using a just-in-time compiler (JIT) and
other features. It provides two implementations: a client Virtual Machine (VM) and a
server VM. WebLogic Commerce Server and Personalization Server do not support
the client VM. Instead, they support the server VM, which is specially tuned to
maximize peak operating speed and is intended for long-running server applications.

By default, WebLogic Commerce Server and Personalization Server activate the
HotSpot server VM by including the -server parameter in the JVM startup script,
StartCommerce. Before starting the server on Windows, you must download the
server VM from www.javasoft.com and install it per the instructions on the Javasoft
Web site.

Because HotSpot uses a JIT, you cannot access thread dumps while it is active. If you
require thread dumps while developing and debugging your application, deactivate
HotSpot by doing one of the following:

� Deactivate the HotSpot Server VM on Windows

� Activate the Hotspot Server VM on UNIX
24 Performance Tuning Guide

USE THE HOTSPOT SERVER VIRTUAL MACHINE
Deactivate the HotSpot Server VM on Windows

1. Shut down WebLogic Commerce Server and Personalization Server and WebLogic
Server.

2. Open the following file in a text editor, where %WL_COMMERCE_HOME% is the
directory in which you installed WebLogic Commerce Server and Personalization
Server:
%WL_COMMERCE_HOME%\StartCommerce.bat

3. Remove the -server parameter from the command that starts the JVM. For
example:
%JDK_HOME%\bin\java -ms64m -mx128m
-classpath %JAVA_CLASSPATH%
-Dweblogic.class.path=%WEBLOGIC_CLASSPATH%
-Dweblogic.system.name=%SYSTEM_NAME%
-Dweblogic.system.home=%SYSTEM_HOME%
-Dweblogic.home=%WEBLOGIC_HOME% -Djava.security.manager
-Djava.security.policy=%WEBLOGIC_HOME%\weblogic.policy
-Dcommerce.properties=%WL_COMMERCE_HOME%\weblogiccommerce.prope
rties
-Dweblogic.properties=%WL_COMMERCE_HOME%\weblogic.properties
-Dpipeline.properties=%WL_COMMERCE_HOME%\pipeline.properties
-Dwebflow.properties=%WL_COMMERCE_HOME%\webflow.properties
weblogic.Server

4. Save StartCommerce.bat and run it from a shell.

For information on starting WebLogic Commerce Server and Personalization
Server without using StartCommerce.bat, refer to “Starting the JVM” under
“Starting the Server” in the Deployment Guide.

Activate the Hotspot Server VM on UNIX

1. Shut down WebLogic Commerce Server and Personalization Server and WebLogic
Server.

2. Open the following file in a text editor, where $WL_COMMERCE_HOME is the
directory in which you installed WebLogic Commerce Server and Personalization
Server:
$WL_COMMERCE_HOME/StartCommerce.sh
Performance Tuning Guide 25

3. Replace the -server option with -classic for the command that starts the
JVM. For example:
%JDK_HOME%\bin\java -ms64m -mx128m
-classic
-classpath %JAVA_CLASSPATH%
-Dweblogic.class.path=%WEBLOGIC_CLASSPATH%
-Dweblogic.system.name=%SYSTEM_NAME%
-Dweblogic.system.home=%SYSTEM_HOME%
-Dweblogic.home=%WEBLOGIC_HOME% -Djava.security.manager
-Djava.security.policy=%WEBLOGIC_HOME%\weblogic.policy
-Dcommerce.properties=%WL_COMMERCE_HOME%\weblogiccommerce.prope
rties
-Dweblogic.properties=%WL_COMMERCE_HOME%\weblogic.properties
-Dpipeline.properties=%WL_COMMERCE_HOME%\pipeline.properties
-Dwebflow.properties=%WL_COMMERCE_HOME%\webflow.properties
weblogic.Server

The -classic option deactivates the HotSpot client VM and the server VM.

4. Save StartCommerce.sh and run it from a shell.

For information on starting WebLogic Commerce Server and Personalization
Server without using StartCommerce.bat, refer to “Starting the JVM” under
“Starting the Server” in the Deployment Guide.
26 Performance Tuning Guide

	Performance Tuning Guide
	Precompile JSPs
	1. From the Web application’s WEB-INF directory, open the web.xml file in a text editor and inser...
	2. Save the file and restart the server.
	1. Make a backup copy of the .war file.
	2. Create a temporary directory and copy the.war file to the directory.
	3. In the temporary directory, unjar the .war file by entering the following command:
	4. Under the temporary directory, open WEB-INF\web.xml in a text editor and insert the following ...
	5. Save web.xml.
	6. Under the temporary directory, if the WEB-INF directory contains a subdirectory named _tmp_war...
	7. Remove the old .war file from the temporary directory.
	8. Create a new .war file for the Web application by entering the following command:
	9. Move the new .war file back to its original directory.
	10. Remove any other files in the original directory that may have been left over from previous
	11. Restart the server.
	Specifying a Different Java Compiler

	Adjust the Intervals for Checking JSP and Servlet Modifications
	About the Page-Check Interval Properties
	About the Reload-Servlet Interval Property
	To Adjust the Intervals
	1. Establish performance baselines by testing WebLogic Commerce Server performance with all three...
	2. Test the performance with the intervals set to various numbers of seconds. For example, set th...
	3. Choose intervals that provide the best performance while checking for modifications to JSP fil...

	For More Information

	Adjust Database Connections Available at Startup
	For More Information

	Set the Reload Policy for Rules
	1. Open $WL_COMMERCE_HOME/lib/rulesservice.jar.
	2. In ejb-jar.xml (which is in rulesservice.jar), modify the value for rulesetReloadInterval. Thi...
	For More Information

	Adjust Caching
	Adjust and Use the Session and Global Caches
	For More Information
	Enabling the Caches
	JSP Tags for Accessing HttpSession and the Session and Global Caches
	An API for Accessing HttpSession and the Session and Global Caches
	Guidelines for Placing Data in HttpSession, Session Cache, or Global Cache

	Adjust Caching for Content Management
	For More Information

	Enable Property Caching
	Property Caching in a Clustered Environment
	To Enable Property Caching
	For More Information

	Enable Group Caching
	Group Caching in a Clustered Environment
	To Set Up the Group Cache Table
	CREATE TABLE WLCS_USER_GROUP_CACHE (USER_NAME VARCHAR2(100) NOT NULL,
	GROUP_NAME VARCHAR2(100) NOT NULL);
	ALTER TABLE WLCS_USER_GROUP_CACHE
	ADD CONSTRAINT WLCS_USER_GROUP_CACHE_INDEX PRIMARY KEY (USER_NAME,
	GROUP_NAME);

	To Enable and Configure the Group Cache
	To Access Data in the Group Cache Table

	Adjust Portal and Portlet Settings While Load Testing
	For More Information

	Display Metadata, Sort and Query Explicit Metadata
	For More Information

	Use LDAP for Authentication Only
	For More Information

	Use the DocumentManager EJB
	Use the HotSpot Server Virtual Machine
	Deactivate the HotSpot Server VM on Windows
	1. Shut down WebLogic Commerce Server and Personalization Server and WebLogic Server.
	2. Open the following file in a text editor, where %WL_COMMERCE_HOME% is the directory in which y...
	3. Remove the -server parameter from the command that starts the JVM. For example: %JDK_HOME%\bin...
	4. Save StartCommerce.bat and run it from a shell.

	Activate the Hotspot Server VM on UNIX
	1. Shut down WebLogic Commerce Server and Personalization Server and WebLogic Server.
	2. Open the following file in a text editor, where $WL_COMMERCE_HOME is the directory in which yo...
	3. Replace the -server option with -classic for the command that starts the JVM. For example: %JD...
	4. Save StartCommerce.sh and run it from a shell.

