
BEA WebLogic

B E A W e b L o g i c C o m m e r c e S e r v e r 3 . 5 . 1
D o c u m e n t E d i t i o n 3 . 5 . 1

S e p t e m b e r 2 0 0 1

Commerce Server
Guide to Building a Product Catalog

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server with Portal Framework, BEA WebLogic Process
Integrator, BEA WebLogic Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server, E-Business
Control Center, and BEA Campaign Manager for WebLogic are trademarks of BEA Systems, Inc.

Guide to Building a Product Catalog

Document Edition Date Software Version

3.5.1 September 2001 BEA WebLogic Commerce Server 3.5

Guide to Building a Product Catalog iii

Contents

What You Need to Know ... xii

e-docs Web Site ... xiii

How to Print the Document... xiii

Related Information... xiv

Contact Us! .. xiv

Documentation Conventions ...xv

1. Introduction to the Product Catalog
What Does the Product Catalog Provide? ... 1-3

Catalog Hierarchy.. 1-6

Product Catalog Development Roles... 1-8

How the Product Catalog Features and Other Commerce Features Are Linked.....
1-9

Next Step ... 1-10

2. The Product Catalog Database Schema
The Entity-Relation Diagram .. 2-2

The Catalog Schema Is Based on Dublin Core Standard 2-4

The Catalog Schema Metadata Tables .. 2-5

The WLCS_CATEGORY Database Table .. 2-5

The WLCS_PRODUCT Database Table ... 2-9

The WLCS_PRODUCT_CATEGORY Database Table 2-13

The WLCS_PRODUCT_KEYWORD Database Table........................... 2-13

The WLCS_SCHEMA Database Table ... 2-14

The WLCS_CAT_PROP_* Database Tables for Custom Attributes 2-15

The WLCS_CAT_ENTITY_ID Database Table 2-16

The WLCS_CAT_PROP_BOOLEAN Database Table........................... 2-16

iv Guide to Building a Product Catalog

The WLCS_CAT_PROP_DATETIME Database Table.......................... 2-17

The WLCS_CAT_PROP_FLOAT Database Table 2-17

The WLCS_CAT_PROP_ID Database Table.. 2-17

The WLCS_CAT_PROP_INTEGER Database Table............................. 2-18

The WLCS_CAT_PROP_TEXT Database Table.................................... 2-19

The WLCS_CAT_PROP_USER_DEFINED Database Table................. 2-19

The WLCS_PROP_MD_* Database Tables ... 2-20

The WLCS_PROP_MD Database Table.. 2-20

The WLCS_PROP_MD_BOOLEAN Database Table 2-21

The WLCS_PROP_MD_DATETIME Database Table 2-22

The WLCS_PROP_MD_FLOAT Database Table................................... 2-22

The WLCS_PROP_MD_INTEGER Database Table 2-23

The WLCS_PROP_MD_TEXT Database Table 2-23

The WLCS_PROP_MD_USER_DEFINED Database Table 2-24

The SQL Scripts Used to Create the Database .. 2-25

Cloudscape ... 2-25

Oracle ... 2-26

SQL Server ... 2-28

Defined Constraints ... 2-29

3. Using the Product Catalog Database Loader
The Input File for DBLoader... 3-2

The dbloader.properties File.. 3-4

Running the DBLoader Program... 3-7

To Run the Program ... 3-8

DBLoader Log Files .. 3-9

DBLoader Validations ... 3-9

Important Database Considerations... 3-10

Using Database-Specific Data Loaders ... 3-11

Using Third-Party Data Loaders.. 3-13

4. Catalog Administration Tasks
Starting the Server ... 4-2

Starting the Administration Tools ... 4-2

Changing the Administrator Password .. 4-6

Guide to Building a Product Catalog v

Loading Data into the Product Catalog ... 4-9

Adding Categories to the Catalog.. 4-9

Adding Items to the Catalog.. 4-15

Controlling the Visibility of Items in the Catalog ... 4-19

Assigning Items to Categories... 4-20

What if I Have a Large Amount of Data? .. 4-20

Using the Administration Tools to Assign Items to Categories 4-21

Editing the Attributes for Categories and Items .. 4-24

Editing Category Attributes ... 4-24

Editing Product Item Attributes ... 4-27

Editing the Availability of an Item .. 4-30

Determining How Categories and Items are Displayed to the Web Site User 4-31

Deleting Items or Removing Items from One or More Categories 4-32

Caching Considerations.. 4-33

Deleting an Item from the Catalog ... 4-33

Removing an Item from One or More Categories.................................... 4-36

Removing Categories .. 4-38

Moving Items from One Category to Another Category................................. 4-40

Defining Custom Attributes for Items... 4-40

Improving Catalog Performance by Optimizing the Catalog Cache............... 4-42

Cache-Related Values in weblogiccommerce.properties......................... 4-43

Considering Hardware Costs Versus the Cost of Dissatisfied Web Site Users
4-45

What’s in Each Cache Initially?... 4-45

The Catalog Cache Administration Screen .. 4-46

Using the wlcs-catalog.properties File .. 4-48

Location.. 4-49

Some Property Values You Might Modify .. 4-49

Editing the Catalog Schema Definition.. 4-51

5. The Product Catalog JSP Templates
Introduction ... 5-3

JSP Templates Overview... 5-3

On Which JavaServer Page Will My Users Start?..................................... 5-4

Web Applications.. 5-4

vi Guide to Building a Product Catalog

XML Deployment Descriptor Files... 5-5

commercewf Property Set and DestinationDeterminer....................... 5-5

Sequence Review and the Browser View... 5-8

JavaServer Pages (JSPs) .. 5-12

main.jsp Template .. 5-14

Sample Browser View... 5-14

Location in the WebLogic Commerce Server Directory Structure... 5-17

Tag Library Imports .. 5-17

Java Package Imports .. 5-18

Location in the Default Webflow.. 5-18

Included JSP Templates .. 5-18

Events .. 5-19

Dynamic Data Display .. 5-20

Form Field Specification ... 5-25

browse.jsp Template... 5-25

Sample Browser View... 5-28

Location in the WebLogic Commerce Server Directory Structure... 5-31

Tag Library Imports .. 5-31

Java Package Imports .. 5-31

Location in the Default Webflow.. 5-32

Included JSP Templates .. 5-32

Events .. 5-45

Dynamic Data Display .. 5-46

Form Field Specification ... 5-48

details.jsp Template .. 5-49

Sample Browser View... 5-49

Location in the WebLogic Commerce Server Directory Structure... 5-51

Tag Library Imports .. 5-51

Java Package Imports .. 5-52

Location in the Default Webflow.. 5-52

Included JSP Templates .. 5-52

Events .. 5-53

Dynamic Data Display .. 5-54

Form Field Specification ... 5-56

search.jsp .. 5-56

Guide to Building a Product Catalog vii

Sample Browser View .. 5-56

Location in the WebLogic Commerce Server Directory Structure... 5-59

Tag Library Imports .. 5-59

Java Package Imports.. 5-59

Location in the Default Webflow.. 5-60

Included JSP Templates .. 5-60

Events.. 5-60

Dynamic Data Display .. 5-62

Form Field Specification... 5-65

searchresults.jsp.. 5-66

Sample Browser View .. 5-66

Location in the WebLogic Commerce Server Directory Structure... 5-68

Tag Library Imports .. 5-68

Java Package Imports.. 5-69

Location in the Default Webflow.. 5-69

Included JSP Templates .. 5-69

Events.. 5-70

Dynamic Data Display .. 5-71

Form Field Specification... 5-75

Query-Based Search Syntax .. 5-75

Using Comparison Operators to Construct Queries 5-77

Searchable Catalog Attributes .. 5-78

Controlling the Number of Search Results .. 5-79

Input Processors... 5-81

CatalogIP.. 5-81

GetProductItemIP... 5-82

GetCategoryIP .. 5-83

KeywordSearchIP... 5-84

ExpressionSearchIP.. 5-85

MoveAttributeIP... 5-86

RemoveAttributeIP... 5-87

Pipeline Components... 5-88

CatalogPC... 5-88

GetCategoryPC... 5-89

GetProductItemPC ... 5-90

viii Guide to Building a Product Catalog

GetParentPC ... 5-91

GetAncestorsPC ... 5-92

GetProductItemsPC .. 5-93

GetSubcategoriesPC ... 5-94

MoveAttributePC ... 5-95

RemoveAttributePC ... 5-96

SearchPC .. 5-97

6. Product Catalog JSP Tag Library Reference
Introduction ... 6-2

The Catalog JSP Tag Library: cat.tld .. 6-3

<catalog:getProperty> .. 6-4

Example 1.. 6-5

Example 2.. 6-6

<catalog:iterateViewIterator> .. 6-7

Example 1.. 6-8

Example 2.. 6-8

<catalog:iterateThroughView> .. 6-8

Example 1.. 6-9

Example 2.. 6-10

The E-Business JSP Tag Library: eb.tld.. 6-10

<eb:smnav> .. 6-10

Example... 6-11

7. Using the API to Extend the Product Catalog
Overview of the Product Catalog API ... 7-2

Catalog Architecture and Services... 7-3

Catalog Architecture... 7-3

Catalog Manager .. 7-5

Product Item Manager .. 7-8

Category Manager .. 7-9

Custom Data Manager .. 7-12

Catalog Query Manager ... 7-14

The Catalog Cache... 7-14

Writing Your Own Catalog Service .. 7-17

Guide to Building a Product Catalog ix

Create New Services .. 7-18

Sample Source Code ... 7-19

Changes to ejb-jar.xml ... 7-32

Changes to weblogic-ejb-jar.xml ... 7-35

8. Product Catalog Internationalization Support
Support for Multiple Languages.. 8-2

Language and Country Codes .. 8-2

About the CatalogRequest Object .. 8-3

Persisting Language Information to the Catalog Database 8-4

Product Items and Categories ... 8-4

Image Support ... 8-5

Limiting Search Results by Language ... 8-5

Using the Catalog Architecture to Maintain Internationalized Product Catalogs ...
8-7

Method 1: Filtering Product Catalog Content .. 8-7

Method 2: Parsing Language-Specific Data... 8-8

Two Languages ... 8-9

Multiple Languages... 8-9

Method 3: Multiple Product Catalog Instances.. 8-10

Method 4: Language-Based Service Routing... 8-12

Index

x Guide to Building a Product Catalog

Guide to Building a Product Catalog xi

About This Document

This document explains how to use BEA WebLogic Commerce Server™ to build and
customize a Web-based product catalog.

The WebLogic Commerce Server Product Catalog provides commonly used items and
attributes that are found on e-commerce Web sites. JavaServer Page (JSP) templates
are provided as a starting point, and you can easily customize the presentation of each
page to match your business branding requirements and design preferences. The
documented Product Catalog schema identifies the structure and relationships of the
database tables. Behind the scenes, pre-built Enterprise Java Beans (EJBs) and other
WebLogic Commerce Server features provide the computing infrastructure and
scalability that enables your site to support many concurrent users. Property files and
administration screens allow you to manage the Product Catalog’s behavior and
content.

This document includes the following topics:

n Chapter 1, “Introduction to the Product Catalog,” sets the stage by summarizing
the features provided by the WebLogic Commerce Server and the job-based
roles of the people who will build and customize the catalog.

n Chapter 2, “The Product Catalog Database Schema,” explains the structure of the
Product Catalog. This understanding is essential to moving your existing data
into the catalog database, or adding new data to the catalog.

n Chapter 3, “Using the Product Catalog Database Loader,” describes a bulk
loader program that you can use to insert, update, to delete large numbers of
category and items records in the Product Catalog database.

n Chapter 4, “Catalog Administration Tasks,” describes the administration screens
to find, add, edit, or remove categories and items in the Product Catalog. In
addition, the chapter explains how to tune the catalog for optimal performance
by adjusting in-memory cache settings for categories and items.

xii Guide to Building a Product Catalog

n Chapter 6, “Product Catalog JSP Tag Library Reference,” describes the JSP
templates provided by WebLogic Commerce Server. You can use the templates
as a starting point for your e-commerce Web pages. You can then customize the
pages to match your corporate branding requirements, design preferences,
navigation options, and the content of your catalog.

n Chapter 7, “Using the API to Extend the Product Catalog,” describes the various
options available for extending, customizing, or writing third-party integrations
for the WebLogic Commerce Server Product Catalog.

n Chapter 8, “Product Catalog Internationalization Support,” describes how your
Product Catalog can be localized for users in other countries, and provides
instructions about how you might accomplish tasks related to
internationalization.

What You Need to Know

This document is intended primarily for Web content developers, JSP developers,
Java developers, and administrators who will work together to deliver an e-commerce
Product Catalog. While those roles describe the types of tasks involved in building the
site, it is recognized that people in your organization often have job assignments that
span multiple roles.

n Web content developers use the JavaServer Page templates and add customized
HTML tags to match your corporate branding requirements, design preferences,
navigation options, and the content of your catalog.

n JSP developers and or Java programmers handle any customization of the
JavaServer Pages and might use the JSP tags provided by WebLogic Commerce
Server (or custom tags) to extend the functionality provided on the pages. Java
programmers might also modify or add scriplets on the pages. Business analysts
bring their market research to the design table and help the developers
understand the required product items, categories, and pricing.

n System or Web administrators maintain the data in the catalog, either adding,
editing, or removing categories and items from the catalog. Administrators also
optimize the performance of the catalog by adjusting settings for the in-memory
cache of categories and items in the catalog.

e-docs Web Site

Guide to Building a Product Catalog xiii

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://e-docs.bea.com. The WebLogic Commerce
Server and WebLogic Personalization Server 3.5 documentation starts at
http://e-docs.bea.com/wlcs/docs35/index.htm.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Personalization Server
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document
(or a portion of it) in book format. To access the PDFs, open the WebLogic Commerce
Server documentation Home page, click the PDF files button, and select the document
you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

xiv Guide to Building a Product Catalog

Related Information

For more information about the Java 2 Enterprise Edition (J2EE) APIs, see the Sun
Microsystems, Inc. Web site at http://java.sun.com/j2ee/.

Contact Us!

Your feedback on the BEA WebLogic Commerce Server documentation is important
to us. Send us e-mail at docsupport@beasys.com if you have questions or comments.
Your comments will be reviewed directly by the BEA professionals who create and
update the WebLogic Commerce Server documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Commerce Server 3.5 release.

If you have any questions about this version of BEA WebLogic Commerce Server, or
if you have problems installing and running BEA WebLogic Commerce Server,
contact BEA Customer Support through BEA WebSUPPORT at www.beasys.com.
You can also contact Customer Support by using the contact information provided on
the Customer Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

Documentation Conventions

Guide to Building a Product Catalog xv

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Example:

public interface Item extends ConfigurableEntity
{
public ItemValue getItemByValue() throws
RemoteException;
public void setItemByValue(ItemValue value) throws
RemoteException;
//...
}

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

xvi Guide to Building a Product Catalog

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

Guide to Building a Product Catalog 1-1

CHAPTER

1 Introduction to the
Product Catalog

Internet-savvy consumers today have high expectations about their online shopping
experience. They love the convenience of finding just about any product item for sale
on the Web. They expect that an e-commerce Web site’s pages will load quickly in
their browser, and do not care if there happen to be a thousand other concurrent users
accessing the site’s servers. They want to be able to pay for the items securely with
their credit card, and have the items delivered directly to their home or business.

In the Web application development industry, we are all familiar with the model for an
e-commerce Web site. One goal is to attract consumers who might have purchased
items in a retail store, and instead get them to buy the items online, on your Web site.
The companies that want to exploit the Web more effectively include:

n Already established companies with a solid market presence that pre-dates the
Internet revolution. These companies are extending their marketing and sales
reach by enabling existing and new customers to buy items on their e-commerce
Web sites. They are moving from “bricks and mortar” to “bricks and clicks.”

n New online-only companies that have established their store front on the
Internet.

Both types of companies are attempting to succeed in a highly competitive
environment. Some already have the trained programming staff with the expertise in
the J2EE APIs to create from scratch the Enterprise JavaBeans (EJBs) and JavaServer
Pages (JSPs) that will support the Web site’s computing model. Many firms, however,
need to get a jump on their competition as they work to go live with their e-commerce
Web site as soon as possible. They cannot afford to wait six months or a year to
develop the standardized database resources, EJB programming expertise, and JSP
templates that together will provide the commonly expected Web site functions shown
in Figure 1-1.

1 Introduction to the Product Catalog

1-2 Guide to Building a Product Catalog

Figure 1-1 Simple View of E-Commerce Web Site Functions

Of course, writing the code to create, build, deploy, and maintain all the processing
shown in Figure 1-1 would require a lot of time and effort. In addition to the front-end
presentation layer that you see in the previous diagram, high-volume Web sites also
require an underlying software infrastructure that makes it possible to support peak
usage of their commerce site by eager consumers.

So how can a company get a jump on the competition and implement a scalable
e-commerce Web site? The answer is: by using the pre-built features that come with
BEA WebLogic Commerce Server!

What Does the Product Catalog Provide?

Guide to Building a Product Catalog 1-3

What Does the Product Catalog Provide?

The WebLogic Commerce Server Product Catalog provides the following features:

n A well-designed database schema and build scripts that define the commonly
used product items and attributes found on Web-based catalog sites. The
metadata for the Product Catalog is based on the Dublin Core Open Standard. In
the current release, schemas are provided for Oracle and Cloudscape databases.

The schema establishes a CATEGORY_ID field as the unique, primary key of the
category metadata, which uses the WLCS_CATEGORY database table. The schema
also establishes the SKU field (an acronym for “Stock Keeping Unit”) as the
unique, primary key of the product item metadata, which uses the
WLCS_PRODUCT database table.

The schema is described in Chapter 2, “The Product Catalog Database Schema,”
of this document.

n A bulk loader program called DBLoader that takes a data input file and
populates the Product Catalog database. With DBLoader, you can add large
volumes of product item and category records in a single command. Adding the
records is done by specifying the -insert option on the DBLoader command
line, and is probably the option you will use most often. However, you can also
use the -update or -delete option with DBLoader.

The DBLoader program and third-party data loader utilities are described in
Chapter 3, “Using the Product Catalog Database Loader,” of this document.

n Browser-based administration screens that you can use to manage the Product
Catalog’s content and behavior. The screens allow you to find, add, edit, or
remove product categories or items. Figure 1-2 shows a portion of a sample
administration screen, where the administrator is editing the values for an
existing item.

1 Introduction to the Product Catalog

1-4 Guide to Building a Product Catalog

Figure 1-2 Sample Administration Screen

In addition to finding, adding, editing, and deleting product items and categories,
you can also use the administration screens to tune the performance of your
product catalog. You can adjust the in-memory cache of items and categories, a
feature that can significantly improve the satisfaction level of customers
shopping on your Web site.

Web site administrators should read Chapter 4, “Catalog Administration Tasks,”
in this document.

n JavaServer Page (JSP) templates that you can use as a starting point for your
e-commerce Web development, and easily customize. You can change the
presentation of each page to match your corporate branding requirements, design
preferences, navigation options, and the content of your catalog. The JSP

What Does the Product Catalog Provide?

Guide to Building a Product Catalog 1-5

templates use a combination of HTML code, Java scriplets, and JSP tags to
provide the presentation layer of your Web-based product catalog.

For example, Figure 1-3 shows the running output of a sample browse.JSP file
provided by WebLogic Commerce Server.

Figure 1-3 Running Output of a Sample JSP Template

For details about the JSPs used with the Product Catalog, see Chapter 6,
“Product Catalog JSP Tag Library Reference,” in this document. For related
details about the JSPs used with order processing (shopping cart, shipping, tax,
checkout, and so on), see Managing Purchases and Processing Orders. For
related details about the JSPs used to register users, see Registering Customers
and Managing Customer Services in the online documentation.

1 Introduction to the Product Catalog

1-6 Guide to Building a Product Catalog

n Behind the scenes, an Application Programming Interface (API) of pre-built
Enterprise Java Beans (EJBs) and other WebLogic Commerce Server features
that provide the computing infrastructure and scalability that enables your site to
support many concurrent users.

Chapter 7, “Using the API to Extend the Product Catalog,” describes the various
options available for extending, customizing, or writing third-party integrations
for the WebLogic Commerce Server Product Catalog. The API is also described
in the WebLogic Commerce Server online Javadoc for the
com.beasys.commerce.ebusiness.catalog.* packages.

n Flexible internationalization support that allows you to choose among many
architectural options when developing multilingual product catalogs. These
features will help you internationalize your system and render a localized
version of each category or item on a Web page, including text descriptions,
images, item cost, type of currency, and so on.

Chapter 8, “Product Catalog Internationalization Support,” describes how you
can internationalize your product catalogs in more detail.

Catalog Hierarchy

Categories in the Product Catalog exist in a hierarchy, as illustrated in Figure 1-4.

The example shown in the figure deviates from the sample data that is seen when you
run the WebLogic Commerce Server templates. However, the following example
illustrates a point about how items can reside in more than one category.

Catalog Hierarchy

Guide to Building a Product Catalog 1-7

Figure 1-4 Sample Product Catalog Hierarchy

Note that any given category needs to be aware of the following:

n Items in this category.

n The parent category. If the category is already a top-level category in the
hierarchy, then the parent category is the catalog’s root category.

n Sibling categories that exist at the same level as the current category.

Also note that an individual item can reside in more than one category. For example,
a hardcopy book about the works of paleoanthropologist Dr. Richard Leaky in Kenya
might reside in a Books → Bibliographies category and also in a subcategory of Books
→ Science → Paleoanthropology.

If you delete the instance of an item in one category, it continues to reside in any other
categories in which it might exist. Also, if you delete all the categories that an item
belongs to, the item is moved to a separate, “uncategorized items” category in the
catalog. Sometimes these uncategorized items are referred to as “orphaned items.”

Unlike items, categories cannot reside outside of their hierarchical path. In other
words, a category that resides in one path of the hierarchy cannot also reside in another
path of the hierarchy.

1 Introduction to the Product Catalog

1-8 Guide to Building a Product Catalog

Product Catalog Development Roles

Given the goal of building a Web-based product catalog, what are the roles of the
people on the development team? The product catalog development would most likely
be done by a team of people in your organization who collaborate to deliver an
e-commerce Web solution. While the roles that are summarized in the following list
describe the types of tasks involved in building the site, it is recognized that people
often have job assignments that span multiple roles.

n Web content developers use the JavaServer Page (JSP) templates and add
customized HTML tags to match your corporate branding requirements, design
preferences, navigation options, and the content of your catalog.

n JSP developers and Java programmers handle any customization of the
JavaServer Pages and might use the JSP tags provided by WebLogic Commerce
Server (or custom tags) to extend the functionality provided on the pages. Java
programmers might also modify or add scriplets on the pages. Business analysts
bring their market research to the design table and help the developers
understand the required product items, categories, and pricing. The business
analysts usually are not involved in the page design or customization steps that
others on the team manage.

n System or Web administrators maintain the data in the catalog, either adding,
editing, or removing categories and items from the catalog. Administrators also
optimize the performance of the catalog by adjusting settings for the in-memory
cache of categories and items in the catalog.

How the Product Catalog Features and Other Commerce Features Are Linked

Guide to Building a Product Catalog 1-9

How the Product Catalog Features and Other
Commerce Features Are Linked

The WebLogic Commerce Server Product Catalog is only a portion of the features
provided in this release. Related features, of course, are implemented by the order
processing and user registration packages. When a user of your Web site decides to
click the Add to Cart button (or equivalent) on one of the catalog pages, by default the
user is directed to the shopping cart portion of the order processing package.

Once the user clicks Add to Cart, a series of JavaServer Pages under the control of
background processing are employed to step the user through the process of entering
the information required to complete the order.

You can modify the actual sequence of pages, or Webflow, by editing a configuration
file called webflow.properties. A default Webflow file is provided by the
WebLogic Commerce Server. The advantage here is that the flow of the Web site (that
is, what page to go to next) is not hardwired into each page, but is managed by an
external flow manager. Rather than having to edit HTML and JSP files to change the
page sequence, the administrator simply modifies webflow.properties. Also, you
do not have to restart the WebLogic Server instance in which your WebLogic
Commerce Server applications is running, allowing for dynamic site management.

Underlying all this processing for both catalog management and order management is
another important feature called the WebLogic Commerce Server Pipeline. The
Pipeline is a mechanism for binding together a sequence of services into a single
named service. While the JavaServer Pages and tags manage the presentation layer of
the catalog and order fulfillment site, the Pipeline manages the processing of the
business data. A Pipeline configuration file, pipeline.properties, contains
properties that describe the execution of a series of business methods.

By modifying the pipeline.properties file, it is easy to change a business process
(such as checking an order status) by adding or removing steps in the Pipeline
configuration, without any programming.

Figure 1-5 shows the link between the Product Catalog processing and the order
processing package. The diagram illustrates conceptually the Webflow (arrows) and
the Pipeline that is processing the business data. For instance, it is the Pipeline that
passes the data about the item(s) the consumer has selected for purchase to the Order
Fulfillment services that will process the order.

1 Introduction to the Product Catalog

1-10 Guide to Building a Product Catalog

Figure 1-5 Link Between Catalog and Order Fulfillment

For details about configuring the site’s Webflow and Pipelines, see Managing
Presentation and Business Logic: Using Webflow and Pipeline. For details
about the order processing, see Managing Purchases and Processing Orders.
For details about user registration, see Registering Customers and Managing
Customer Services.

Next Step

We suggest you read Chapter 2, “The Product Catalog Database Schema,” which
explains the structure of the Product Catalog’s tables in the WebLogic Commerce
Server database. Understanding the Product Catalog schema is essential to moving
your existing data into the database, or adding new data to the catalog.

Guide to Building a Product Catalog 2-1

CHAPTER

2 The Product Catalog
Database Schema

This topic documents the database schema for the WebLogic Commerce Server
Product Catalog. This topic includes the following sections:

n The Entity-Relation Diagram

n The Catalog Schema Is Based on Dublin Core Standard

n The WLCS_CATEGORY Database Table

n The WLCS_PRODUCT Database Table

n The WLCS_PRODUCT_CATEGORY Database Table

n The WLCS_PRODUCT_KEYWORD Database Table

n The WLCS_SCHEMA Database Table

n The WLCS_CAT_PROP_* Database Tables for Custom Attributes

n The WLCS_PROP_MD_* Database Tables

n The SQL Scripts Used to Create the Database

n Defined Constraints

2 The Product Catalog Database Schema

2-2 Guide to Building a Product Catalog

The Entity-Relation Diagram

Figure 2-1 shows the logical Entity-Relation diagram for the WebLogic Commerce
Server core product catalog tables in the Commerce database. See the subsequent
sections in this chapter for information about the data type syntax.

Figure 2-1 Entity-Relation Diagram for the Core Product Catalog Tables

Figure 2-2 shows the database tables that are used to store different types of custom
attributes for product items. These custom attributes are optionally defined by a Web
site administrator and are implemented as Property Sets. For more on defining custom
attributes, see the section “Defining Custom Attributes for Items” on page 4-40.

The Entity-Relation Diagram

Guide to Building a Product Catalog 2-3

Figure 2-2 Custom Attribute Tables for Catalog

2 The Product Catalog Database Schema

2-4 Guide to Building a Product Catalog

The Catalog Schema Is Based on Dublin Core
Standard

The metadata for items in WebLogic Commerce Server product catalog are based on
the Dublin Core Metadata Open Standard. This standard offers a number of advantages
for a Web-based catalog:

n Simplicity

The Dublin Core is intended to be usable by non-catalogers as well as resource
description specialists. Most of the elements have commonly understood
semantics that is roughly the complexity of a library catalog card.

n Semantic interoperability

In an Internet environment, disparate description models interfere with the
ability to search across discipline boundaries. Promoting a commonly understood
set of descriptors that helps to unify other data content standards increases the
possibility of semantic interoperability across disciplines.

n International consensus

Recognition of the international scope of resource discovery on the Web is
critical to the development of effective discovery infrastructure. The Dublin
Core benefits from active participation and promotion in some 20 countries in
North America, Europe, Australia, and Asia.

n Extensibility

The Dublin Core provides an economical alternative to more elaborate
description models such as the full MARC cataloging of the library world.
Additionally, Dublin Core includes sufficient flexibility and extensibility to
encode the structure and more elaborate semantics inherent in richer description
standards

n Metadata modularity on the Web

The diversity of metadata needs on the Web requires an infrastructure that
supports the coexistence of complementary, independently maintained metadata
packages. The World Wide Web Consortium (W3C) has begun implementing an
architecture for metadata for the Web. The Resource Description Framework, or

The Catalog Schema Metadata Tables

Guide to Building a Product Catalog 2-5

RDF, is designed to support the many different metadata needs of vendors and
information providers. Representatives of the Dublin Core effort are actively
involved in the development of this architecture, bringing the digital library
perspective to bear on this important component of the Web infrastructure.

For more information about the Dublin Core Metadata Open Standard, please see
http://purl.org/dc.

The Catalog Schema Metadata Tables

This section covers the following database tables:

The WLCS_CATEGORY Database Table

The WLCS_PRODUCT Database Table

The WLCS_PRODUCT_CATEGORY Database Table

The WLCS_PRODUCT_KEYWORD Database Table

The WLCS_SCHEMA Database Table

The WLCS_CATEGORY Database Table

Table 8-1 describes the metadata for the WebLogic Commerce Server
WLCS_CATEGORY table. This table is used to store categories in the Commerce
database. The descriptions shown in the table reflect the “recommended best practice”
for the use of that field by the Dublin Core standard.

The Primary Key is CATEGORY_ID.

2 The Product Catalog Database Schema

2-6 Guide to Building a Product Catalog

Table 2-1 WLCS_CATEGORY Table Metadata

Column Name Data Type Description and Recommendations

CATEGORY_ID VARCHAR(20) A unique identifier for a category; the primary
key for this table. This field cannot be NULL.
All other fields in the WLCS_CATEGORY table
can be NULL.

NAME VARCHAR(50) The name of the category in the product catalog.

SOURCE VARCHAR(30) A reference to a category from which the
present category is derived.

LANG VARCHAR(30) A language of the intellectual content of the
category. The recommended best practice for
the values of the language element is defined by
RFC 1766, which includes a two-letter
Language Code (taken from the ISO 639
standard), such as: en for English; fr for
French, or de for German. The language code
can, optionally, be followed by a two-letter
Country Code (taken from the ISO 3166
standard [ISO3166]). For example, en-uk for
English used in the United Kingdom.

RELATION VARCHAR(30) A reference to a related category.

COVERAGE VARCHAR(30) The extent or scope of the content of the
category.

RIGHTS VARCHAR(30) Information about rights held in and over the
category.

CREATOR VARCHAR(50) An entity primarily responsible for making the
content of the category.

PUBLISHER VARCHAR(50) An entity responsible for making the category
available.

CONTRIBUTOR VARCHAR(50) An entity responsible for making contributions
to the content of the category.

The Catalog Schema Metadata Tables

Guide to Building a Product Catalog 2-7

CREATION_DATE DATE A date associated with an event in the life cycle
of the category. Recommended best practice for
encoding the date value is defined in a profile of
ISO 8601 and follows the YYYY-MM-DD
format.

MODIFIED_DATE DATE A date associated with an event in the life cycle
of the category, such as an update or insert by
the DBLoader program that is provided with
WebLogic Commerce Server. The
recommended best practice for encoding the
date value is defined in a profile of ISO 8601
and follows the YYYY-MM-DD format.

SMALL_IMG_TYPE NUMBER(3) A type field of your own design that relates to
the graphic. For example, you can implement
your own numbering scheme, such as:

0 = display a low resolution graphic for users
with low bandwidth.

1 = display a high resolution graphic for users
with high bandwidth.

SMALL_IMG_LANG VARCHAR(30) The language of the thumbnail image for the
category. For related information, see the
description of the LANG column.

SMALL_IMG_NAME VARCHAR(50) The name of the thumbnail image for the
category.

SMALL_IMG_URL VARCHAR(254) The URL of the thumbnail image for the
category.

SMALL_IMG_ALT_TEXT VARCHAR(254) The alternate text to display when the user has
their cursor over the thumbnail image for the
category, or if they have disabled the display of
graphics in their browser settings.

Table 2-1 WLCS_CATEGORY Table Metadata (Continued)

Column Name Data Type Description and Recommendations

2 The Product Catalog Database Schema

2-8 Guide to Building a Product Catalog

LARGE_IMG_TYPE NUMBER(3) A type field of your own design that relates to
the graphic. For example, you can implement
your own numbering scheme, such as:

0 = display a low resolution graphic for users
with low bandwidth.

1 = display a high resolution graphic for users
with high bandwidth.

LARGE_IMG_LANG VARCHAR(30) The language of the full-size image for the
category. For related information, see the
description of the LANG column.

LARGE_IMG_NAME VARCHAR(50) The name of the full-size image for the
category.

LARGE_IMG_URL VARCHAR(254) The URL of the full-size image for the category.

LARGE_IMG_ALT_TEXT VARCHAR(254) The alternate text to display when the user has
their cursor over the full-size image for the
category, or if they have disabled the display of
graphics in their browser settings.

DISPLAY_JSP_URL VARCHAR(254) AThe URL to the JSP used to display the
category. For example:

/commerce/catalog/includes/
category.jsp

SHORT_DESC VARCHAR(50) A short description of the content of the
category.

LONG_DESC VARCHAR(254) A long description of the content of the
category.

PARENT_ID VARCHAR(20) The value of the CATEGORY_ID of the parent
category in the hierarchy of categories that
comprise your product catalog. If this is a
top-level user-defined category, the
PARENT_ID will be com.beasys.ROOT.

Table 2-1 WLCS_CATEGORY Table Metadata (Continued)

Column Name Data Type Description and Recommendations

The Catalog Schema Metadata Tables

Guide to Building a Product Catalog 2-9

See the section “The SQL Scripts Used to Create the Database” on page 2-25 for
information about the constraint defined for this table.

The WLCS_PRODUCT Database Table

Table 8-2 describes the metadata for the WebLogic Commerce Server
WLCS_PRODUCT table. This table is used to store item records in the Commerce
database. The descriptions shown in the table reflect the “recommended best practice”
for the use of that field by the Dublin Core standard.

The Primary Key is SKU.

Table 2-2 WLCS_PRODUCT Table Metadata

Column Name Data Type Description and Recommendations

SKU VARCHAR(40) A unique identifier (the “Stock Keeping Unit,”
or SKU) for a product item. This field is the
table’s primary key and cannot be NULL. All
other fields in the WLCS_PRODUCT table can be
NULL.

IN_STOCK VARCHAR(1) Provide 1 if in stock, or 0 if out of stock.

VISIBLE VARCHAR(1) Indicates whether the item should be displayed
to the user. Enter 1 if visible or 0 if not visible.
If not specified in the database, the default is 1.
See the section “Controlling the Visibility of
Items in the Catalog” on page 4-19 for
important information about this field.

TAX_CODE VARCHAR(10) The code used by the TAXWARE system to
identify the specific tax category to which this
item belongs.

SHIPPING_CODE VARCHAR(10) The code used by the shipping company for this
item.

NAME VARCHAR(100) A name given to the product item.

SOURCE VARCHAR(30) A reference to another product item from which
the present item is derived.

2 The Product Catalog Database Schema

2-10 Guide to Building a Product Catalog

LANG VARCHAR(30) A language of the intellectual content of the
category. The recommended best practice for
the values of the language element is defined by
RFC 1766, which includes a two-letter
Language Code (taken from the ISO 639
standard), such as: en for English; fr for
French, or de for German. The language code
can, optionally, be followed by a two-letter
Country Code (taken from the ISO 3166
standard [ISO3166]). For example, en-uk for
English used in the United Kingdom.

RELATION VARCHAR(30) A reference to a related product item.

COVERAGE VARCHAR(30) The extent or scope of the content of the product
item.

RIGHTS VARCHAR(30) Information about rights held in and over the
item.

FORMAT VARCHAR(30) The physical or digital manifestation of the
item.

TYPE VARCHAR(30) The nature or genre of the content of the item.

MSRP_CURRENCY VARCHAR(30) The currency type of the manufacturer’s
recommended price.

MSRP_AMOUNT NUMBER(16,4) The manufacturer’s recommended price.

PRICE_CURRENCY VARCHAR(30) The currency type of our catalog price for this
item.

PRICE_AMOUNT NUMBER(16,4) Our current price for this item in the catalog.

ESTIMATE_SHIP_TIME VARCHAR(100) Inventory: number of days/weeks before the
item can be shipped.

SPECIAL_NOTES VARCHAR(100) Inventory related message to display with the
item.

CREATOR VARCHAR(50) An entity primarily responsible for making the
content of the product item.

Table 2-2 WLCS_PRODUCT Table Metadata (Continued)

Column Name Data Type Description and Recommendations

The Catalog Schema Metadata Tables

Guide to Building a Product Catalog 2-11

PUBLISHER VARCHAR(50) An entity responsible for making the product
item available.

CONTRIBUTOR VARCHAR(50) An entity responsible for making contributions
to the content of the product item.

CREATION_DATE DATE A date associated with an event in the life cycle
of the product item. Recommended best
practice for encoding the date value is defined
in a profile of ISO 8601 and follows the
YYYY-MM-DD format.

MODIFIED_DATE DATE A date associated with an event in the life cycle
of the item, such as an update or insert by the
DBLoader program that is provided with
WebLogic Commerce Server. The
recommended best practice for encoding the
date value is defined in a profile of ISO 8601
and follows the YYYY-MM-DD format.

SMALL_IMG_TYPE NUMBER(3) A type field of your own design that relates to
the graphic. For example, you can implement
your own numbering scheme, such as:

0 = display a low resolution graphic for users
with low bandwidth.

1 = display a high resolution graphic for users
with high bandwidth.

SMALL_IMG_LANG VARCHAR(30) The language of the thumbnail image for the
item. For related information, see the
description of the LANG column.

SMALL_IMG_NAME VARCHAR(50) The name of the thumbnail image for the item.

SMALL_IMG_URL VARCHAR(254) The URL of the thumbnail image for the
category.

SMALL_IMG_ALT_TEXT VARCHAR(254) The alternate text to display when the user has
their cursor over the thumbnail image for the
item, or if they have disabled the display of
graphics in their browser settings.

Table 2-2 WLCS_PRODUCT Table Metadata (Continued)

Column Name Data Type Description and Recommendations

2 The Product Catalog Database Schema

2-12 Guide to Building a Product Catalog

See the section “The SQL Scripts Used to Create the Database” on page 2-25 for
information about the constraint defined for this table.

LARGE_IMG_TYPE NUMBER(3) A type field of your own design that relates to
the graphic. For example, you can implement
your own numbering scheme, such as:

0 = display a low resolution graphic for users
with low bandwidth.

1 = display a high resolution graphic for users
with high bandwidth.

LARGE_IMG_LANG VARCHAR(30) The language of the full-size image for the item.
For related information, see the description of
the LANG column.

LARGE_IMG_NAME VARCHAR(50) The name of the full-size image for the item.

LARGE_IMG_URL VARCHAR(254) The URL of the full-size image for the item.

LARGE_IMG_ALT_TEXT VARCHAR(254) The alternate text to display when the user has
their cursor over the full-size image of the item,
or if they have disabled the display of graphics
in their browser settings.

SUM_DISPLAY_JSP_URL VARCHAR(254) The URL to the JSP used to display the item in
summary form. For example:

/commerce/catalog/includes/
itemsummary.jsp

DET_DISPLAY_JSP_URL VARCHAR(254) The URL to the JSP used to display the item in
detailed form. For example:

/commerce/catalog/includes/
itemdetails.jsp

SHORT_DESC VARCHAR(254) A short description of the content of the product
item.

LONG_DESC VARCHAR(2000) A long description of the content of the product
item.

Table 2-2 WLCS_PRODUCT Table Metadata (Continued)

Column Name Data Type Description and Recommendations

The Catalog Schema Metadata Tables

Guide to Building a Product Catalog 2-13

The WLCS_PRODUCT_CATEGORY Database Table

Table 8-3 describes the metadata for the WebLogic Commerce Server
WLCS_PRODUCT_CATEGORY table in the Commerce database. This table is used
to join categories and items.

The Primary Keys are SKU and CATEGORY_ID.

See the section “The SQL Scripts Used to Create the Database” on page 2-25 for
information about the constraint defined for this table.

The WLCS_PRODUCT_KEYWORD Database Table

Table 8-4 describes the metadata for the WebLogic Commerce Server
WLCS_PRODUCT_KEYWORD table in the Commerce database. This table stores
the keywords that you associate with each product item. The keywords enable rapid
retrieval of item records via the search functions on the Web site’s pages or
Administration pages.

The Primary Keys are KEYWORD and SKU.

Table 2-3 WLCS_PRODUCT_CATEGORY Table Metadata

Column Name Data Type Description and Recommendations

SKU VARCHAR(40) A unique identifier (the “Stock Keeping Unit,”
or SKU) for an item. NOT NULL.

CATEGORY_ID VARCHAR(20) A unique identifier for a category. NOT NULL.

2 The Product Catalog Database Schema

2-14 Guide to Building a Product Catalog

See the section “The SQL Scripts Used to Create the Database” on page 2-25 for
information about the two constraints defined for this table.

The WLCS_SCHEMA Database Table

Table 2-5 describes the WLCS_SCHEMA table. This table stores property set
definitions.

The Primary Keys are SCHEMA_GROUP_NAME and SCOPE_NAME.

Table 2-4 WLCS_PRODUCT_KEYWORD Table Metadata

Column Name Data Type Description and Recommendations

KEYWORD VARCHAR(30) Contains a keyword that you associate with the
product item assigned to the unique SKU. NOT
NULL. Recommendation: for a given item,
select a value from a controlled vocabulary or
formal classification scheme implemented in
your company.

SKU VARCHAR(40) A unique identifier (the “Stock Keeping Unit,”
or SKU) for an item. NOT NULL.

Table 2-5 WLCS_SCHEMA Table Metadata

Column Name Data Type Description and Recommendations

SCHEMA_GROUP_NAME VARCHAR(100) The type of object this schema is used for.

SCOPE_NAME VARCHAR(100) The application name since it is defining names
for the application.

DESCRIPTION VARCHAR(254) A description of the schema.

SCHEMA_ID NUMBER(15) A system generated number used throughout
the application.

The WLCS_CAT_PROP_* Database Tables for Custom Attributes

Guide to Building a Product Catalog 2-15

The WLCS_CAT_PROP_* Database Tables for
Custom Attributes

This section describes several database tables that are used to store different types of
custom attributes for product items. These custom attributes are optionally defined by
a Web site administrator and are implemented as Property Sets. For more information
about defining custom attributes, see the section “Defining Custom Attributes for
Items” on page 4-40.

n The WLCS_CAT_ENTITY_ID Database Table

n The WLCS_CAT_PROP_ID Database Table

n The WLCS_CAT_PROP_BOOLEAN Database Table

n The WLCS_CAT_PROP_INTEGER Database Table

n The WLCS_CAT_PROP_FLOAT Database Table

n The WLCS_CAT_PROP_TEXT Database Table

n The WLCS_CAT_PROP_DATETIME Database Table

n The WLCS_CAT_PROP_USER_DEFINED Database Table

In this section, the database tables for custom attributes are listed alphabetically, as a
data dictionary.

2 The Product Catalog Database Schema

2-16 Guide to Building a Product Catalog

The WLCS_CAT_ENTITY_ID Database Table

Table 8-5 describes the metadata for the WebLogic Commerce Server
WLCS_CAT_ENTITY_ID table in the Commerce database. This table stores unique
identification numbers for configurable entities.

The Primary Keys are JNDI_HOME_NAME and PK_STRING.

The WLCS_CAT_PROP_BOOLEAN Database Table

Table 8-6 describes the metadata for the WebLogic Commerce Server
WLCS_CAT_PROP_BOOLEAN table in the Commerce database. This table stores Boolean
property values that are associated with configurable entities.

Table 2-6 WLCS_CAT_ENTITY_ID Table Metadata

Column Name Data Type Description and Recommendations

JNDI_HOME_NAME VARCHAR(254) The class name for the configurable entity.
 Either:

com.beasys.ebusiness.cata-
log.ProductCategory

 or

com.beasys.ebusiness.cata-
log.ProductItem

PK_STRING VARCHAR(480) The primary key string for the category or item.

ENTITY_ID NUMBER(15) NOT NULL

Table 2-7 WLCS_CAT_PROP_BOOLEAN Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_ID NUMBER(15) The identifier for each Boolean property.

VALUE NUMBER(3) The value for each Boolean property identifier.

The WLCS_CAT_PROP_* Database Tables for Custom Attributes

Guide to Building a Product Catalog 2-17

The WLCS_CAT_PROP_DATETIME Database Table

Table 8-7 describes the metadata for the WebLogic Commerce Server
WLCS_CAT_PROP_DATETIME table in the Commerce database. This table stores
timestamp property values that are associated with configurable entities.

The WLCS_CAT_PROP_FLOAT Database Table

Table 8-8 describes the metadata for the WebLogic Commerce Server
WLCS_CAT_PROP_FLOAT table in the Commerce database. This table stores integer
property values that are associated with configurable entities.

The WLCS_CAT_PROP_ID Database Table

Table 8-9 describes the metadata for the WebLogic Commerce Server
WLCS_CAT_PROP_ID table in the Commerce database. This table stores unique
identification numbers for scoped property names that are associated with configurable
entities.

Table 2-8 WLCS_CAT_PROP_DATETIME Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_ID NUMBER(15) The identifier for each date and time property.

VALUE DATE The value for each data and time property iden-
tifier.

Table 2-9 WLCS_CAT_PROP_FLOAT Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_ID NUMBER(15) The identifier for each float property.

VALUE NUMBER The value associated with each float property
identifier.

2 The Product Catalog Database Schema

2-18 Guide to Building a Product Catalog

The WLCS_CAT_PROP_INTEGER Database Table

Table 8-10 describes the metadata for the WebLogic Commerce Server
WLCS_CAT_PROP_INTEGER table in the Commerce database. This table stores integer
property values that are associated with configurable entities.

Table 2-10 WLCS_CAT_PROP_ID Table Metadata

Column Name Data Type Description and Recommendations

ENTITY_ID NUMBER(15) A system generated value and foreign key to the
WLCS_ENTITY_ID column.

SCOPE_NAME VARCHAR(100) This column may be null. If this property is de-
fined in a property set, then the SCOPE_NAME
will match the SCHEMA_NAME for that prop-
erty set in the WLCS_SCHEMA table.

PROPERTY_NAME VARCHAR(100) The name of the property.

PROPERTY_TYPE NUMBER(3) This column identifies the type of property we
are dealing with (for example, boolean, integer,
float, text, and so on).

PROPERTY_META_DATA_ID NUMBER(15) The identifier for the Property Meta Data infor-
mation. Again, we use the PROPERTY_TYPE
column to identify which type of Property Meta
Data we are looking at (for example, boolean,
integer, and so on).

SCHEMA_HAS_CHANGED NUMBER(3) A flag informing to identify whether anything in
the WLCS_SCHEMA or
WLCS_PROP_MD_xxx tables has changed. If
so, then certain cleanup activities must be per-
formed prior to using this property next time

PROPERTY_ID NUMBER(15) The property identifier is a unique system gen-
erated number.

The WLCS_CAT_PROP_* Database Tables for Custom Attributes

Guide to Building a Product Catalog 2-19

The WLCS_CAT_PROP_TEXT Database Table

Table 8-11 describes the metadata for the WebLogic Commerce Server
WLCS_CAT_PROP_TEXT table in the Commerce database. This table stores text property
values that are associated with configurable entities.

The WLCS_CAT_PROP_USER_DEFINED Database Table

Table 2-13 describes the metadata for the WebLogic Commerce Server
WLCS_CAT_PROP_USER_DEFINED table in the Commerce database. This table
stores user-defined (object) property values that are associated with configurable
entities.

Table 2-11 WLCS_CAT_PROP_INTEGER Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_ID NUMBER(15) The identifier of the integer property.

VALUE NUMBER(20) The value associated with the integer property.

Table 2-12 WLCS_CAT_PROP_TEXT Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_ID NUMBER(15) The identifier of the text property.

VALUE VARCHAR(254) The value associated with the text property.

Table 2-13 WLCS_CAT_PROP_USER_DEFINED Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_ID NUMBER(15) The identifier of the user-defined property.

VALUE BLOB The value associated with the user-defined
property.

2 The Product Catalog Database Schema

2-20 Guide to Building a Product Catalog

The WLCS_PROP_MD_* Database Tables

n The WLCS_PROP_MD Database Table

n The WLCS_PROP_MD_BOOLEAN Database Table

n The WLCS_PROP_MD_DATETIME Database Table

n The WLCS_PROP_MD_FLOAT Database Table

n The WLCS_PROP_MD_INTEGER Database Table

n The WLCS_PROP_MD_TEXT Database Table

n The WLCS_PROP_MD_USER_DEFINED Database Table

The WLCS_PROP_MD Database Table

Table 2-14 describes the WLCS_PROP_MD table. This table stores information about
defined properties in a property set.

The Primary Keys are SCHEMA_ID and PROPERTY_NAME.

Table 2-14 WLCS_PROP_MD Table Metadata

Column Name Data Type Description and Recommendations

SCHEMA_ID NUMBER(15) A foreign key to the WLCS_SCHEMA table.

PROPERTY_NAME VARCHAR(100) The name of a property.

DESCRIPTION VARCHAR(254) A description of the property.

IS_RESTRICTED NUMBER(3) If set TRUE, the value of the property is
constrained to a set of values. 0 equates to
FALSE and 1 equates to TRUE.

IS_EXPLICIT NUMBER(3) If set TRUE, the property value may be coming
from an external source. 0 equates to FALSE
and 1 equates to TRUE.

The WLCS_PROP_MD_* Database Tables

Guide to Building a Product Catalog 2-21

The WLCS_PROP_MD_BOOLEAN Database Table

Table 2-15 describes the WLCS_PROP_MD_BOOLEAN table. This table stores
property set definitions for the boolean property type.

The Primary Key is PROPERTY_META_DATA_ID.

IS_MULTIVALUED NUMBER(3) Some properties may have more than one value.
0 equates to FALSE and 1 equates to TRUE.

PROPERTY_TYPE NUMBER(3) Defines the property type (boolean, text and so
on).

PROPERTY_META_DATA_ID NUMBER(15) The primary key is a unique, system-generated
value.

Table 2-14 WLCS_PROP_MD Table Metadata (Continued)

Column Name Data Type Description and Recommendations

Table 2-15 WLCS_PROP_MD_BOOLEAN Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_META_DATA_ID NUMBER(15) A unique identifier for this Property metadata
and foreign key to the WLCS_PROP_MD table.

VALUE NUMBER(3) The value associated with the Property
metadata.

IS_DEFAULT NUMBER(3) This flag tells us whether or not the VALUE
column is the default value for this piece of
Property metadata. 0 equates to FALSE and 1
equates to TRUE.

2 The Product Catalog Database Schema

2-22 Guide to Building a Product Catalog

The WLCS_PROP_MD_DATETIME Database Table

Table 2-16 describes the WLCS_PROP_MD_DATETIME table. This table stores
property set definitions for the date and time property type.

The Primary Key is PROPERTY_META_DATA_ID.

The WLCS_PROP_MD_FLOAT Database Table

Table 2-17 describes the WLCS_PROP_MD_FLOAT table. This table stores property
set definitions for the float property type.

The Primary Key is PROPERTY_META_DATA_ID.

Table 2-16 WLCS_PROP_MD_DATETIME Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_META_DATA_ID NUMBER(20) A unique identifier for this Property metadata.

VALUE DATE The value associated with the Property
metadata.

IS_DEFAULT NUMBER(3) This flag tells us whether or not the VALUE
column is the default value for this piece of
Property metadata. 0 equates to FALSE and 1
equates to TRUE.

Table 2-17 WLCS_PROP_MD_FLOAT Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_META_DATA_ID NUMBER(15) A unique identifier for this Property metadata.

VALUE NUMBER The value associated with the Property
metadata.

IS_DEFAULT NUMBER(3) This flag tells us whether or not the VALUE
column is the default value for this piece of
Property metadata. 0 equates to FALSE and 1
equates to TRUE.

The WLCS_PROP_MD_* Database Tables

Guide to Building a Product Catalog 2-23

The WLCS_PROP_MD_INTEGER Database Table

Table 2-18 describes the WLCS_PROP_MD_INTEGER table. This table stores
property set definitions for the Integer property type.

The Primary Key is PROPERTY_META_DATA_ID.

The WLCS_PROP_MD_TEXT Database Table

Table 2-19 describes the WLCS_PROP_MD_TEXT table. This table stores property
set definitions for the text property type.

The Primary Key is PROPERTY_META_DATA_ID.

Table 2-18 WLCS_PROP_MD_INTEGER Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_META_DATA_ID NUMBER(15) A unique identifier for this Property metadata.

VALUE NUMBER(20) The value associated with the Property
metadata.

IS_DEFAULT NUMBER(3) This flag tells us whether or not the VALUE
column is the default value for this piece of
Property metadata. 0 equates to FALSE and 1
equates to TRUE.

Table 2-19 WLCS_PROP_MD_TEXT Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_META_DATA_ID NUMBER(15) A unique identifier for this Property metadata.

VALUE VARCHAR(254) The value associated with the Property
metadata.

IS_DEFAULT NUMBER(3) This flag tells us whether or not the VALUE
column is the default value for this piece of
Property metadata. 0 equates to FALSE and 1
equates to TRUE.

2 The Product Catalog Database Schema

2-24 Guide to Building a Product Catalog

The WLCS_PROP_MD_USER_DEFINED Database Table

Table 2-20 describes the WLCS_PROP_MD_USER_DEFINED table. This table
stores property set definitions for any user defined property type.

The Primary Key is PROPERTY_META_DATA_ID.

Table 2-20 WLCS_PROP_MD_USER_DEFINED Table Metadata

Column Name Data Type Description and Recommendations

PROPERTY_META_DATA_ID NUMBER(15) A unique identifier for this Property metadata.

VALUE BLOB The value associated with the Property
metadata.

IS_DEFAULT NUMBER(3) This flag tells us whether or not the VALUE
column is the default value for this piece of
Property metadata. 0 equates to FALSE and 1
equates to TRUE.

The SQL Scripts Used to Create the Database

Guide to Building a Product Catalog 2-25

The SQL Scripts Used to Create the Database

The database schemas for the WebLogic Personalization Server, WebLogic
Commerce Server and BEA’s Campaign Manager for WebLogic are all created by
executing the create_all script for the target database environment.

Cloudscape

For Cloudscape, execute one of the following:

n WL_COMMERCE_HOME\db\cloudscape\3.5.1\create_all.bat (Windows)

n WL_COMMERCE_HOME/db/cloudscape/3.5.1/create_all.sh (UNIX)

Script Name Description

create_all.bat The execution of this script will create the WLPS, WLCS and
Campaign Manager database schema.

create_all.sh The execution of this script will create the WLPS, WLCS and
Campaign Manager database schema.

create_campaign.sql Creates the Campaign Manager specific database objects (e.g.,
tables, indexes and constraints).

create_common.sql Creates the database objects which are common to WLPS and
WLCS.

create_mail_ad.sql Creates all the database objects used by the mail messaging
component.

create_wlcs.sql Creates all the database objects for WLCS (including Catalog and
Order Management).

create_wlps.sql Creates all the database object for WLPS.

drop_campaign.sql Drops all database objects associated with Campaign Manager.

drop_common.sql Drops the database objects which are common between WLPS
and WLCS.

2 The Product Catalog Database Schema

2-26 Guide to Building a Product Catalog

Oracle

For Oracle, from the command line, move to the following directory:

WL_COMMERCE_HOME/db/oracle/8.1.6

After logging into SQL*Plus, simply execute the create_all.sql script (e.g.,
@create_all).

drop_mail_ad.sql Drops the database objects used by the mail messaging
component.

drop_wlcs.sql Drops the database objects associated with WLCS.

drop_wlps.sql Drops the database objects associated with WLPS.

insert_common.sql Inserts core data into the common tables between WLPS and
WLCS.

insert_wlcs.sql Inserts core data into some of the WLCS tables.

insert_wlcs_sample_catalog.sql Inserts sample data into the product catalog.

insert_wlcs_sample_customer.sql Inserts sample customer information into WLCS tables.

insert_wlcs_sample_data.sql Inserts sample data into various WLCS tables.

insert_wlps.sql Inserts core data into WLPS tables.

insert_wlps_sample_data.sql Inserts sample data into various WLPS tables.

Script Name Description

Script Name Description

create_campaign.sql Creates the Campaign Manager specific database objects (e.g.,
tables, indexes and constraints).

create_common.sql Creates the database objects which are common to WLPS and
WLCS.

The SQL Scripts Used to Create the Database

Guide to Building a Product Catalog 2-27

create_mail_ad.sql Creates all the database objects used by the mail messaging
component.

create_wlcs.sql Creates all the database objects for WLCS (including Catalog and
Order Management).

create_wlps.sql Creates all the database object for WLPS.

drop_campaign.sql Drops all database objects associated with Campaign Manager.

drop_common.sql Drops the database objects which are common between WLPS
and WLCS.

drop_mail_ad.sql Drops the database objects used by the mail messaging
component.

drop_wlcs.sql Drops the database objects associated with WLCS.

drop_wlps.sql Drops the database objects associated with WLPS.

insert_common.sql Inserts core data into the common tables between WLPS and
WLCS.

insert_wlcs.sql Inserts core data into some of the WLCS tables.

insert_wlcs_sample_catalog.sql Inserts sample data into the product catalog.

insert_wlcs_sample_customer.sql Inserts sample customer information into WLCS tables.

insert_wlcs_sample_data.sql Inserts sample data into various WLCS tables.

insert_wlps.sql Inserts core data into WLPS tables.

insert_wlps_sample_data.sql Inserts sample data into various WLPS tables.

install_report.sql This script is used to summarize the database installation.
Information such as the number of tables, indexes, etc., is
displayed.

statistics.sql This script is used in computing statistics on various database
objects (e.g., tables and indexes) in an Oracle environment.

Script Name Description

2 The Product Catalog Database Schema

2-28 Guide to Building a Product Catalog

SQL Server

For SQL Server, you must first edit the create_all.bat file and properly identify
the values for the variables used in identifying the target database environment (for
example, user_id, password and server). Once the variables have been set
properly, execute create_all.bat from the command line.

Script Name Description

create_all.bat The execution of this script will create the WLPS, WLCS and
Campaign Manager database schema.

create_campaign.sql Creates the Campaign Manager specific database objects (e.g.,
tables, indexes and constraints).

create_common.sql Creates the database objects which are common to WLPS and
WLCS.

create_mail_ad.sql Creates all the database objects used by the mail messaging
component.

create_wlcs.sql Creates all the database objects for WLCS (including Catalog and
Order Management).

create_wlps.sql Creates all the database object for WLPS.

drop_campaign.sql Drops all database objects associated with Campaign Manager.

drop_common.sql Drops the database objects which are common between WLPS
and WLCS.

drop_mail_ad.sql Drops the database objects used by the mail messaging
component.

drop_wlcs.sql Drops the database objects associated with WLCS.

drop_wlps.sql Drops the database objects associated with WLPS.

insert_common.sql Inserts core data into the common tables between WLPS and
WLCS.

insert_wlcs.sql Inserts core data into some of the WLCS tables.

insert_wlcs_sample_catalog.sql Inserts sample data into the product catalog.

Defined Constraints

Guide to Building a Product Catalog 2-29

Defined Constraints

In each create-catalog-*.sql file, the database tables described earlier in this
chapter are created. In addition, the SQL files define constraints.Table 2-21 shows the
table name and describes the constraint(s) defined for it.

Note: The sample SQL statements in the attached document table are from the
create-catalog-oracle.sql file. The syntax is different for Cloudscape.
Except where noted, the index and the effect of each constraint is the same.

insert_wlcs_sample_customer.sql Inserts sample customer information into WLCS tables.

insert_wlcs_sample_data.sql Inserts sample data into various WLCS tables.

insert_wlps.sql Inserts core data into WLPS tables.

insert_wlps_sample_data.sql Inserts sample data into various WLPS tables.

readme.txt Documentation outlining the appropriate steps necessary for
proper installation of the WLPS, WLCS and Campaign Manager
database schema.

Script Name Description

2 The Product Catalog Database Schema

2-30 Guide to Building a Product Catalog

Table 2-21 Constraints Defined on Product Catalog Database Tables

Table Name Constraints as Defined in create-catalog-oracle.sql

WLCS_CATEGORY The WLCS_CATEGORY_PARENT_FK constraint enforces the
deletion of subcategories when the current category is deleted.
(Cascading deletes are not supported in Cloudscape, however.) The
constraint for the schema in Oracle is:

ALTER TABLE WLCS_CATEGORY ADD CONSTRAINT
WLCS_CATEGORY_PARENT_FK1 FOREIGN KEY
(PARENT_ID) REFERENCES WLCS_CATEGORY
(CATEGORY_ID) ON DELETE CASCADE;

WLCS_PRODUCT The WLCS_PROD_ITEM_PK constraint sets the SKU as the primary
key, which must be unique and cannot be NULL. The constraint is:

CONSTRAINT WLCS_PROD_ITEM_PK PRIMARY KEY (SKU)

WLCS_PRODUCT_CATEGORY The WLCS_PRODUCT_CATEGORY_PK constraint sets the
CATEGORY_ID and SKU fields as the primary keys in the mapping
table. For example:

CONSTRAINT WLCS_PRODUCT_CATEGORY_PK PRIMARY KEY
(CATEGORY_ID,SKU)

This table is used to join categories with items.

WLCS_PRODUCT_KEYWORD Two constraints are defined for this table.

The first constraint, WLCS_PRODUCT_KEYWORD_PK, sets the
KEYWORD and SKU fields as the primary keys. For example:

CONSTRAINT WLCS_PRODUCT_KEYWORD_PK PRIMARY KEY
(KEYWORD,SKU)

The second constraint, WLCS_PRODUCT_KEYWORD_FK2, sets the
SKU field as a foreign key that references the SKU in the
WLCS_PRODUCT table. For example:

CONSTRAINT WLCS_PRODUCT_KEYWORD_FK2 FOREIGN
KEY (SKU) REFERENCES WLCS_PRODUCT(SKU)

This table stores the keywords that you associate with each product
item. The keywords enable rapid retrieval of item records from the
database (or cache) via the search functions on the Web site’s pages
or Administration pages.

Guide to Building a Product Catalog 3-1

CHAPTER

3 Using the Product
Catalog Database
Loader

WebLogic Commerce Server provides a DBLoader program that you can use to bulk
load data into the product catalog database. While you could use a WebLogic
Commerce Server administration screen to add new item or category data, one record
at a time, this is impractical when you need to load hundreds or thousands of records.
The DBLoader program is also useful if you want to load legacy data from an existing
database into the WebLogic Commerce Server database.

You can also use a database vendor’s specific loader program such as Oracle
SQL*Loader, or a data loader by a third-party company, to populate the product
catalog database.

The topic includes the following sections:

n The Input File for DBLoader

n The dbloader.properties File

n Running the DBLoader Program

n DBLoader Log Files

n DBLoader Validations

n Important Database Considerations

n Using Database-Specific Data Loaders

3 Using the Product Catalog Database Loader

3-2 Guide to Building a Product Catalog

n Using Third-Party Data Loaders

The Input File for DBLoader

The WebLogic Commerce Server DBLoader program loads data that you provide in a
text file into the product catalog database. Data is loaded one table at a time; create a
separate input file for each table that you want to update.

The input data file is, by default, a comma-separated value (CSV) text file. The input
file has the following structure:

n First row: header containing the table name

n Second row: field names for that table

n Third row: data types for the fields listed on the second row

n Fourth through N row: input data

First Row

The header of the file must identify:

n The number of records to be loaded. DBLoader will use this number as a
reference point only. It will process all the records in the file regardless of this
indicator.

n The name of the table to be loaded with data in the Catalog database.

For example, the header line might contain:

130,WLCS_PRODUCT

Second Row

The second row identifies the table field (column) names into which you are loading
data. You must include the primary key field or fields in the input file. Preface each
primary key field name with an asterisk (*). Apart from primary keys in tables, all
other fields are defaulted as null. Thus, you may omit field names where NULL is an
acceptable value, and specify only those with non-NULL values.

For example, the second line of the input data file might contain:

The Input File for DBLoader

Guide to Building a Product Catalog 3-3

*SKU,NAME,IN_STOCK,EST_SHIP_TIME,SPECIAL_NOTES,CREATION_DATE

Third Row

The third row specifies the data type of each field being loaded. See Chapter 2, “The
Product Catalog Database Schema,” for information about the product catalog schema
and the datatypes used.

For example, the third line of the input data file might contain:

VARCHAR,VARCHAR,CHAR,VARCHAR,VARCHAR,DATE

Notes: On the data type line of the input file, it is not necessary to include the length
of the data type, such as VARCHAR(20) or VARCHAR2(20). Simply use
VARCHAR for strings. Use NUMBER instead of (for example) NUMBER(16,4).
Use DOUBLE instead of DOUBLE PRECISION.

Fourth Through N Rows

All subsequent lines in the input data file contain the data values. The following is an
example of a simple input file:

3,WLCS_PRODUCT

*SKU,NAME,IN_STOCK,EST_SHIP_TIME,SPECIAL_NOTES,CREATION_DATE

VARCHAR,VARCHAR,CHAR,VARCHAR,VARCHAR,DATE

P123,CoolKid,N,Out of stock until further notice,Special order
only,02-Oct-2000

P124,FastKid,Y,One week,No special order,02-Oct-2000

P125,RadSneakers,Y,,regular stock,02-Oct-2000

Note: DATE field values should always be entered in the format DD-MMM-YYYY. It
cannot be an empty string. Its values are either null or a valid date.

Empty input strings from the data file are inserted into database as empty strings. You
must account for each unspecified field in the input record by including the delimiter
character (by default, a comma) in the correct position (matching the position of the
fields you listed in line 2, the field names). For example:

P125,RadSneakers,Y,,regular stock,02-Oct-2000

3 Using the Product Catalog Database Loader

3-4 Guide to Building a Product Catalog

In the previous example a value for the fourth identified field (EST_SHIP_TIME) was
not specified. This condition is fine because this field is not a primary key for the
database record. The field’s value is stored as an empty string.

Note: If your intention is to store a null value in the database for a non-primary-key
field, you should enter NULL in the correct position for the field in that record.
Do not enclose NULL in quotes; enclosing the word ‘NULL’ in quotes will
cause the field to be stored as a string.

The dbloader.properties File

The WebLogic Commerce Server DBLoader program uses a properties file named
dbloader.properties to decide what driver, database, or login to use.

This file resides in the WL_COMMERCE_HOME directory. WL_COMMERCE_HOME is the
directory where you installed WebLogic Commerce Server.

Comment lines are prefixed with the # character. Both comment lines and blank lines
are allowed.

The following table describes the values you can set in this property file.

Property Name Default Value Description

jdbcdriver COM.cloudscape.core.
JDBCDriver

Specify which JDBC driver to use to connect to
your database. Default driver is Cloudscape
JDBC driver that ships with WebLogic.

Supported drivers for DBLoader program:

COM.cloudscape.core.JDBCDriver

oracle.jdbc.driver.OracleDriver

weblogic.jdbc.oci.Driver

weblogic.jdbc20.oci.Driver:

The dbloader.properties File

Guide to Building a Product Catalog 3-5

connection jdbc:cloudscape:Commerce Database name where loaded data should go.
Commerce is the name of the default database
that ships with WebLogic Commerce Server.
Location of this database is specified by the
system property:
cloudscape.system.home.

dblogin None The database username. The default
Cloudscape database does not require a
username to be specified. The login name must
have read/write privileges on the affected
tables.

dbpassword None The database user password. The default
Cloudscape database does not require a user
password to be specified.

delimiter , You can change the recognized delimiter
character that is used to separate values in the
input data file. For example, this might be
necessary if you use commas as punctuation in
an item’s Long Description (LONG_DESC).
Choose another character, such as the
circumflex (^) as a delimiter.

timestamptable WLCS_CATEGORY,
WLCS_PRODUCT

Identifies the product catalog database tables to
which DBLoader will track updates (for these
two tables). The field name is fixed in the
schema provided by WebLogic Commerce
Server. However, if you are using DBLoader for
other tables (not WLCS tables), you can specify
other field names of your own.

Property Name Default Value Description

3 Using the Product Catalog Database Loader

3-6 Guide to Building a Product Catalog

Listing 3-1 shows a sample dbloader.properties file.

Listing 3-1 Sample dbloader.properties File

jdbcdriver=COM.cloudscape.core.JDBCDriver

connection=jdbc:cloudscape:Commerce

timestampfield MODIFIED_DATE Specifies the field in the WLCS_CATEGORY
and WLCS_PRODUCT tables that identifies
the last time this record in the table was
modified. The value of the field specified is
used by DBLoader to learn when the most
recent update was made in each record in the
product catalog tables identified in the
timestamptable property. The field name is
fixed in the schema provided by WebLogic
Commerce Server. However, if you are using
DBLoader for other tables (not WLCS tables),
you can specify other field names of your own

commitTxn 50 Sets how many records are loaded before
committing the updates in the database. If the
value is less than or equal to one, DBLoader
will commit after loading each record.

encoding Not specified in the
dbloader.properties file;
therefore, the default is the Java 2
SDK’s platform default.

Sets the multibyte character encoding type. The
property value supplied can be UCS2 or UTF8.

When writing data into and reading data out of
the product catalog, Java will transparently
convert from the native character encoding used
by your systems and Unicode 2.0. There is
nothing special that you must do.

However, if you need to write/read data to/from
the catalog that is encoded differently than your
system’s native encoding, you will have to
explicitly perform the translation. For more
information, see the section “Important
Database Considerations” on page 3-10.

Property Name Default Value Description

Running the DBLoader Program

Guide to Building a Product Catalog 3-7

dblogin=none

dbpassword=none

delimiter=,

timestamptable=wlcs_category

timestampfield=modified_date

encoding=UTF8

commitTxn=50

Running the DBLoader Program

You use the loaddata script to run the DBLoader program.

Depending on the platform you are using, the script is in one of the following
directories:

n WL_COMMERCE_HOME\bin\win32 (Windows)

n WL_COMMERCE_HOME/bin/unix (UNIX)

The loaddata script performs the following:

n Configures your environment for the duration of execution of this program

n Specifies where to find the data input file

n Launches the DBLoader program

Before you can run the loaddata script, make sure that the set-environment script
specifies the same database as the dbloader.properties file. The
set-environment script resides in the same directory as the loaddata script.

For example, if the dbloader.properties file uses
‘jdbc:cloudscape:Commerce’ connections, then set-environment script should
have SET DATABASE=CLOUDSCAPE.

3 Using the Product Catalog Database Loader

3-8 Guide to Building a Product Catalog

As we mentioned earlier, DBLoader runs independently of WebLogic Commerce
Server. Therefore you do not need to stop the server if you are planning to run the
loader. However, if you are running WebLogic Commerce Server with a Cloudscape
database, the database itself does not allow more than one connections at a time. In that
case, you would need to stop the server.

If you are running WebLogic Commerce Server with Oracle, then the drawback might
be a slower performance for the time the data is being loaded into the database.

Note: You might want to back up the particular tables that you are about to update
before running DBLoader. The DBLoader program does not keep history
records in the database.

To Run the Program

The command to run the program has the following format:

prompt> loaddata { -insert | -update | -delete } input-file.csv

On UNIX systems, the loaddata.sh file needs to have its default protections set to
include execute privilege. A typical way to do this is with the command:

$ chmod +x loaddata.sh

You must select one of the three possible operations: -insert, -update, or
-delete.

For example:

prompt> loaddata -update category.csv

In the previous example, the DBLoader program will update rows in the product
catalog database that match the primary keys specified in the category.csv input
file.

To insert, update, or delete data in several tables, run the loaddata script separately
for each table, providing the corresponding input filename as a parameter. The order
of tables being updated should use the same data integrity rules as all other SQL
statements. For example, insert rows into the parent table with the primary key
constraint before inserting rows into the child table with the foreign key constraint.

DBLoader Log Files

Guide to Building a Product Catalog 3-9

DBLoader Log Files

The WebLogic Commerce Server DBLoader creates two audit trail logs:

n dbloader.log

n dbloader.err

If these files do not already exist, they are created. Otherwise, the existing audit trails
are overwritten by each DBLoader operation. Both files reside in the same directory
where you run the loaddata script.

The dbloader.log file contains the following information:

n The input filename, and the action taken: insert, update, or delete.

n The number of records processed during the load operation.

n The start and end time of the database load processing.

If any errors occurred during the attempted database load operation, the
dbloader.err file captures the following information:

n The input filename, and the action taken: insert, update, or delete.

n The timestamp when the failure or exception occurred on the record.

n The index of the failed data record in the input file.

n The reason for the failure or exception and actual the input record’s values.

DBLoader Validations

The DBLoader program checks the number of fields affected by the load (as specified
in the second line of the input data file) against the number of input fields in each
record. Because the field delimiter is a comma (by default), this character is not
allowed in a string input field. If extra commas are supplied inadvertently, such as
punctuation in a LONG_DESC (Long Description) field, an error will result and is noted
in the dbloader.err file. To avoid this type of error, carefully check the number of

3 Using the Product Catalog Database Loader

3-10 Guide to Building a Product Catalog

commas you are using to separate the input data field values. Or select a different
delimiter character and specify it in the dbloader.properties file. For more
information, see the section “The dbloader.properties File.”

All errors and exceptions are displayed in the console where the DBLoader program is
running. Records with errors in them will be skipped, and the processing continues
until the end of the file. (The program does not roll back a transaction if an error has
occurred.)

Important Database Considerations

This section describes some important database considerations that you should keep in
mind while using the DBLoader program.

n The schema for the product catalog enforces referential integrity between tables
with the use of table constraints; for example, the primary key constraint on
WLCS_PRODUCT and WLCS_CATEGORY, or the foreign key constraint on
WLCS_PRODUCT_CATEGORY. These constraints determine the order in which data
can be inserted, or updated, or deleted from these tables. If you are using an
Oracle database, you might be less concerned about the order of delete operation
because of Oracle’s cascading delete functionality, an option that causes the
deletion of a record from the primary table to automatically delete all related
records in the related child table or tables.

Because Cloudscape does not provide this functionality, run the loaddata script
to delete records from child tables before deleting records from primary tables.

For related information, please see Chapter 2, “The Product Catalog Database
Schema.”

n All Strings in Java are represented as a series of Unicode 2.0 characters.
Unicode 2.0 is a 16-bit character encoding that supports the world’s major
languages. Therefore, when reading text into and writing text out of the JVM, an
encoding scheme must be used to convert the “native” encoding used by the
operating system to or from Unicode 2.0. Data in text files is automatically
converted to Unicode 2.0 when its encoding matches the default file encoding of
the Java Virtual Machine (and that of the operating system).

Using Database-Specific Data Loaders

Guide to Building a Product Catalog 3-11

You can identify the default file encoding by checking the System property
named file.encoding, as follows:

System.out.println(System.getProperty("file.encoding"));

If the file.encoding property differs from the encoding of the text data you
want to process, then you must perform the conversion yourself.

Currently, the Java 2 SDK 1.2.2 can convert several files encoding into Unicode
2.0. For details, please see
http://java.sun.com/products/jdk/1.2/docs/guide/internat/encoding.doc.html.

What this means to your development group:

a. When writing data into and reading data out of the Catalog, Java will
transparently convert from the native character encoding used by your systems
and Unicode 2.0. There is nothing special that you must do.

b. A conversion can be done only if the encoding is one supported by Java. For
details, please see
http://java.sun.com/products/jdk/1.2/docs/guide/internat/encoding.doc.html.

c. If you need to write/read data to/from the catalog that is encoded differently
than your system’s native encoding (for example, if you would like to enter text
into a Catalog item description that resides in a file on a machine that has been
encoded in UTF8), you will have to explicitly do the translation. This capability
is supported by the input process (by allowing you to specify an encoding type
in the DBLoader property file), but you must programmatically use the
appropriate Java API during the output process.

Normally, you enter or extract data using the default encoding used by your
operating system. Therefore, the case shown in item “a” in the previous list is
the usual behavior.

Using Database-Specific Data Loaders

Most database management systems provide a data loader utility. In the case of Oracle,
the data load utility is known as SQL*Loader. This section summarizes the capabilities
of SQL*Loader. For details about SQL*Loader, see the Oracle 8i Utilities Guide. An
online copy is available at http://technet.oracle.com/.

3 Using the Product Catalog Database Loader

3-12 Guide to Building a Product Catalog

The examples used in this section are based on a simple ASCII file containing a few
comma-separated values (SKU, IN_STOCK, VISIBLE, NAME) taken from a sample
WLCS_PRODUCT table, which is described in Chapter 2, “The Product Catalog
Database Schema.”

Note: The example shown in this section does not use all of the columns from
WLCS_PRODUCT. Your actual comma-separate values (CSV) file may
contain more columns than we show here. We are merely attempting to show
you how to conduct the import operation once you have the CSV file ready.

The name we will use for our sample data file is sample.csv. The contents of that file
might look like the following (based on the columns we mentioned earlier – SKU,
IN_STOCK, VISIBLE, NAME).

"0,3,4",0,0,"Growing Herbs from Seed, Cutting, and Root"
"0,2,1",0,0,"The Perfect Storm: A True Story of Men Against the Sea"
"0,2,2",0,0,"The Worst-Case Scenario Survival Handbook"
"0,4,0",0,0,"Acute Asthma: Assessment and Management"
"0,4,1",0,0,"Communications Technology Explained"
"0,4,2",0,0,"Modern Plastics Handbook"

Once you have your data file ready to populate the WLCS_PRODUCT table, you must
create a control file which will be used by SQL*Loader. The control file identifies the
data file to be read in, how the pieces of information are delimited in the file, and, of
course, the actual column locations of the destination table. We will name our control
file sample.ctl.

LOAD DATA
INFILE ‘sample.csv’
APPEND INTO TABLE WLCS_RPODUCT
FIELDS TERMINATED BY "," OPTIONALLY ENCLOSED BY '"'
(SKU, IN_STOCK, VISIBLE, NAME)

At a system prompt, invoke SQL*Loader with a command such as:

sqlldr userid=bea_systems/bea_systems control=sample.ctl log=sample.log

To review the results of your data load, see sample.log.

Using Third-Party Data Loaders

Guide to Building a Product Catalog 3-13

Using Third-Party Data Loaders

There are a variety of data loaders available on the market today to assist in the
extraction and loading of information. Please be sure to research the use of these tools
to ensure success within your environment.

n DataStage by Informix

The Data Movement module of DataStage provides a comprehensive data
extraction, transformation, and loading toolset designed for building Operational
Data Stores (ODS), data marts and enterprise data warehouses. For more
information, please see http://www.informix.com.

n PowerConnect by Informatica

PowerConnect is Informatica’s family of packaged software products that helps
customers easily extract data and metadata from hard-to-access ERP and other
legacy applications. This data is then delivered to PowerCenter, Informatica’s
data integration software hub, which provides robust capabilities for
transforming the data and delivering it to downstream data warehouses, data
marts and analytic applications. For more information, please see
http://www.informatic.com.

n Data Junction

Data Junction is a visual design tool for rapidly integrating and transforming
data between hundreds of applications and structured data formats. For more
information, please see http://www.datajunction.com.

n ETI·EXTRACT by ETI

ETI·EXTRACT moves and integrates data across the value chain and multiple
business processes. The product automates the writing of programs that retrieve
the data needed from any system, transform it and load it into any other system
while capturing a complete history of that process. For more information, please
see http://www.eti.com.

3 Using the Product Catalog Database Loader

3-14 Guide to Building a Product Catalog

Guide to Building a Product Catalog 4-1

CHAPTER

4 Catalog Administration
Tasks

WebLogic Commerce Server provides administrators with command-line scripts,
property files, and JSP-based administration tools accessed from a browser. The
Administration Tools allow you to manage the behavior and content of your product
catalog.

 For catalog administration, the tasks include:

n Starting the Server

n Starting the Administration Tools

n Changing the Administrator Password

n Loading Data into the Product Catalog

n Adding Categories to the Catalog

n Adding Items to the Catalog

n Controlling the Visibility of Items in the Catalog

n Assigning Items to Categories

n Editing the Attributes for Categories and Items

n Editing the Availability of an Item

n Determining How Categories and Items are Displayed to the Web Site User

n Deleting Items or Removing Items from One or More Categories

n Removing Categories

4 Catalog Administration Tasks

4-2 Guide to Building a Product Catalog

n Moving Items from One Category to Another Category

n Defining Custom Attributes for Items

n Improving Catalog Performance by Optimizing the Catalog Cache

n Using the wlcs-catalog.properties File

Note: In this topic, the environment variable WL_COMMERCE_HOME is used to
represent the directory in which you installed the WebLogic Commerce Server
software.

Starting the Server

The WebLogic Commerce Server Administration Tools run as a Web application in
the WebLogic Server environment. The WebLogic Commerce server must be running
before you can use the Administration Tools.

When you start the server for a WebLogic Commerce Server application, you are
passing WebLogic Commerce Server-specific property values (and other required
values, such as the location of the Java 2 SDK) to the WebLogic Server. This
information gives the server instance the context it needs to provide services to the
application.

For administrators, WebLogic Commerce Server provides a StartCommerce.bat
(Windows) or StartCommerce.sh (UNIX) script. Detailed instructions can be found
in the chapter “Starting the Server” in the Deployment Guide.

Starting the Administration Tools

With the WebLogic Commerce server running, as outlined in the previous section, you
can access the main administration screen by opening the following URL in a browser:

http://localhost:7501/tools

Starting the Administration Tools

Guide to Building a Product Catalog 4-3

The above URL assumes that you are running the server on your local machine and
you want to perform administration tasks on the local machine. If the WebLogic
Commerce Server application is running on a remote node, you can specify the remote
node name to invoke its Administration Tools. For example, if the remote node is
named blues, you can use the following URL:

http://blues:7501/tools

Another option on Windows systems is to start the main administration screen by using
the following Start menu path:

Start → BEA WebLogic E-Business Platform → BEA WebLogic Commerce
Server 3.5 → Administration Tools

A third option is to click the Administration link that appears in the top banner of most
JSP templates. Figure 4-1 shows the link in an extract of the main.jsp template.

Figure 4-1 Link to Administration Tools from JSP Template

Before the browser can open the page, you must log into the Administrator account, as
shown in Figure 4-2.

Figure 4-2 Administration Login Screen

WebLogic Commerce Server defines an Administrator account name for you. The
default password is password (lowercase characters). See “Changing the
Administrator Password” on page 4-6 for a related discussion.

4 Catalog Administration Tasks

4-4 Guide to Building a Product Catalog

Following valid login credentials, the main administration screen is displayed, as
shown in Figure 4-3.

Figure 4-3 Administration Tools Home Page

Most of the remaining sections in this chapter describe the Catalog Management tasks.

Starting the Administration Tools

Guide to Building a Product Catalog 4-5

Figure 4-4 identifies the two types of links on the Catalog Management graphic.

Figure 4-4 Links on the Catalog Management Graphic

When you click the icon that looks like a catalog book, the main Catalog
Administration screen is displayed, as shown in Figure 4-5.

Figure 4-5 Main Catalog Management Screen

Table 4-1 summarizes the catalog management functional areas.

Table 4-1 Catalog Management Functional Areas

Catalog Management
Functional Areas

Description

Categories You can add categories, edit the attributes for categories, move items
from one category to another category, and remove categories from the
product catalog.

4 Catalog Administration Tasks

4-6 Guide to Building a Product Catalog

Changing the Administrator Password

The initial account information for the administrator account supplied with WebLogic
Commerce Server is:

Username: administrator
Password: password

To change the password of the administrator account, follow these steps:

1. Open the Administration Tools Home Page, as described in “Starting the
Administration Tools” on page 4-2. The server must be running. One way to access
the Administration Tools Home Page is to enter the URL in your browser:

http://localhost:7501/tools

2. When you are prompted to log in, enter the current password.

3. On the Administration Tools Home Page, click the User Management icon, as
shown in Figure 4-6.

Figure 4-6 User Management Icon on Main Administration Screen

Items You can add items, edit the attributes for items, add custom attributes for
items, and remove items from the product catalog.

Cache You can tune the performance of your catalog by adjusting the size and
time-to-live (TTL) properties for the separate, in-memory caches defined
for categories and items. Balancing the cache to match your peak usage
can significantly improve the satisfaction level of customers using your
e-commerce Web site.

Table 4-1 Catalog Management Functional Areas

Catalog Management
Functional Areas

Description

Changing the Administrator Password

Guide to Building a Product Catalog 4-7

4. On the User Management screen, click the underlined Users link, as shown in
Figure 4-7.

Figure 4-7 Users Link on the User Management Screen

5. On the Users screen, search for the administrator account name, as shown in
Figure 4-8.

Figure 4-8 Searching for the Administrator Account

After you enter administrator in the Username input box, click the Search
button.

6. In the Search Results screen, click the underlined administrator link, as shown
in Figure 4-9.

Figure 4-9 Administrator Link in the User Account Search Results

Warning: Do not click the red X to the right of the account name. Clicking the red
X will delete the account.

4 Catalog Administration Tasks

4-8 Guide to Building a Product Catalog

7. On the Users: administrator screen, click the Edit button, as shown in
Figure 4-10.

Figure 4-10 Edit Button on Users: administrator Screen

8. On the Users: Username screen, enter the new password twice, as shown in
Figure 4-11.

Figure 4-11 Entering the New Password

Warning: Make sure to remember the new password for the administrator
account! That sounds obvious, but there is a potential “Catch-22”
situation. To change the account password again, you must log into the

Loading Data into the Product Catalog

Guide to Building a Product Catalog 4-9

Administration Tools, a step that requires the current administrator
password. If you forget the account’s password, you will have to recreate
the Commerce database.

After entering the new password, click the Save button. Then click the Home button
at the top of the screen to return to the main administration screen.

Loading Data into the Product Catalog

WebLogic Commerce Server provides a DBLoader program that can bulk load data
into the product catalog database. While you could use the WebLogic Commerce
Server Administration Tools to add new items or category data, one record at a time,
this is impractical when you need to load hundreds or thousands of records. The
DBLoader program is also useful when loading legacy data from an existing database
into the WebLogic Commerce Server database.

You can also use a database vendor’s specific loader program such as Oracle SQL
Loader, or a data loader by a third-party company, to populate the product catalog
database.

For details, see Chapter 3, “Using the Product Catalog Database Loader.”

Adding Categories to the Catalog

You can add a new category by using either the DBLoader program, as described in
Chapter 3, “Using the Product Catalog Database Loader,” or by using the
Administration Tools. This section explains how to use the Administration Tools.

The steps are as follows:

1. Make sure the WebLogic Commerce server is running. See the section “Starting the
Server” on page 4-2.

2. Start the Administration Tools. See the section “Starting the Administration
Tools” on page 4-2.

4 Catalog Administration Tasks

4-10 Guide to Building a Product Catalog

3. On the Administration Tools Home Page, click the Catalog Management graphic.

4. On the main Catalog Management screen, click the Create button on the
Categories graphic, as shown in Figure 4-12.

Figure 4-12 Create Button on Categories Graphic

On the Categories screen, you can either add a new category at the current level
in the catalog hierarchy, or you can click an existing category name to create a
subcategory. Figure 4-13 shows the Categories screen.

Figure 4-13 Portion of Categories Screen When the Create Button Is Clicked

As you will recall from the section “Catalog Hierarchy” on page 1-6, the
categories in the product catalog are organized as a hierarchy as shown in
Figure 4-14.

Adding Categories to the Catalog

Guide to Building a Product Catalog 4-11

Figure 4-14 Product Catalog Hierarchy

An individual item can reside in more than one category. However, categories
cannot reside outside of their individual hierarchical paths. In other words, a
category that resides in one path of the hierarchy cannot also reside in another
path of the hierarchy.

5. To add a new category at the current level in the hierarchy, click the red and
white plus sign icon on the Categories screen. If you are on the highest level of
the categories hierarchy, the link text next to the plus-sign icon is: “Add a top
level subcategory”. For example, assume that you want to add a “Wood and
Lumber” category because the electronic store will now offer different types of
specialty hardwoods such as Ash. After you create the Wood and Lumber
category, you will then create an “Ash” subcategory.

6. Figure 4-15 and Figure 4-16 show the top portion and bottom portion of the
Create New Subcategory screen, after you click the plus-sign icon. (The screen is
split into two figures for space reasons only.)

4 Catalog Administration Tasks

4-12 Guide to Building a Product Catalog

Figure 4-15 Top Portion of the Create New Subcategory Screen

Figure 4-16 Bottom Portion of the Create New Subcategory Screen

7. Enter the required fields, which are indicated by the asterisk (*). The required
fields are:

l Category Identifier (also the primary key of the WLCS_CATEGORY table in the
Commerce database). In this example, enter Wood.

l Category Name. In this example, enter Wood and Lumber.

Adding Categories to the Catalog

Guide to Building a Product Catalog 4-13

l Short Description. Enter a short description such as “hardwood, exterior,
moulding, construction grade”.

You have the option of leaving the other fields blank for now because they are
not required fields or primary keys in the WLCS_CATEGORY table. For more
information about the category fields, see the section “The WLCS_CATEGORY
Database Table” on page 2-5.

8. After you enter the field values, click the Create button to create the new
category. (Or click the Back button to cancel the current create category
operation.)

9. When the new category has been created, a confirmation message is displayed on
the refreshed Categories screen. Figure 4-17 shows the confirmation message
after creating the new category.

Figure 4-17 Confirmation Screen After New Category Is Created

10. When you click the Back button near the bottom of the Create Category screen
(not the browser’s Back button), the Category screen is refreshed to include the
new category. Figure 4-18 shows the new Wood and Lumber category under the
catalog’s top-level root.

4 Catalog Administration Tasks

4-14 Guide to Building a Product Catalog

Figure 4-18 Newly Added Category Near Bottom of Category Screen

11. To create subcategories in a existing category, first click the red arrow to the left
of the category name. For example, assume that you want to add a Hardwood
subcategory under the Wood and Lumber category. To do this, click the red
right-arrow next to the Wood and Lumber category. Figure 4-19 shows the
updated screen.

Figure 4-19 Updated Screen While Adding a Subcategory

The icon next to the Wood and Lumber category changes to a red, hollow,
left-facing arrow. To proceed, click the plus-sign icon that appears indented
below the category. In this example, click the plus-sign icon next to the text,
Add a subcategory to Wood and Lumber.

12. Figure 4-20 shows the top portion of the next screen: Create New Subcategory
below Category : ’Wood and Lumber’. On this screen, we have entered data into
the first three fields.

Adding Items to the Catalog

Guide to Building a Product Catalog 4-15

Figure 4-20 Creating a New Subcategory

Click the Create button to create the new subcategory Hardwood under the Wood and
Lumber category.

Repeat the previous steps to create additional categories and subcategories.

Adding Items to the Catalog

You can add one or more product items to an existing category by using either the
DBLoader program, as described in Chapter 3, “Using the Product Catalog Database
Loader,” or by using the Administration Tools. This section explains how to use the
Administration Tools.

After the catalog’s categories and items are stored in the database, you will perform a
separate set of steps to assign items to categories, as described in the section
“Assigning Items to Categories” on page 4-20.

The steps are as follows:

1. Make sure the WebLogic Commerce Server is running. See the section “Starting
the Server” on page 4-2.

2. Start the Administration Tools. See the section “Starting the Administration
Tools” on page 4-2.

3. On the main administration screen, click the Catalog Management graphic.

4 Catalog Administration Tasks

4-16 Guide to Building a Product Catalog

4. On the main Catalog Management screen, click the Create button on the Items
graphic, as shown in Figure 4-21.

Figure 4-21 Create Button on Items Graphic

5. The Create New Item screen is displayed. Figure 4-22 and Figure 4-23 shows the
top portion and bottom portion of the screen.

Figure 4-22 Top Portion of the Create New Item Screen

Adding Items to the Catalog

Guide to Building a Product Catalog 4-17

Figure 4-23 Bottom Portion of Create New Item Screen

6. Edit the product item fields. The required fields, indicated with an asterisk (*)
next to the field name, are:

l SKU, an acronym for Stock Keeping Unit. This is the unique identifier for
the item in the catalog. It is the primary key of the WLCS_PRODUCT table in
the Commerce database.

l Item Name

l Short Description

You have the option of leaving the other fields blank for now because they are
not required fields or primary keys in the WLCS_PRODUCT table. For more
information about the product item fields, see the section “The
WLCS_PRODUCT Database Table” on page 2-9.

Note: See the section “Controlling the Visibility of Items in the Catalog” on page
4-19 for important information about the Visible check box.

4 Catalog Administration Tasks

4-18 Guide to Building a Product Catalog

7. For example, assume that you need to add a new product item, an “Ash-1x3”.
Figure 4-24 shows the top portion of the screen as it appears when information is
being added about this item.

Figure 4-24 Adding a New Product Item

When you add an item, make sure you add a full set of keywords that describe
the item. Doing so will make it easier for the Web site users to find items in the
catalog via keyword-based searches. Adding lots of descriptive keywords will
also make it easier for you to find items in the Administration Tools when you
want to assign them to one or more categories. You can always remove
keywords later if too many keywords are returning spurious results in keyword
searches.

Figure 4-25 shows the portion of the Create a New Item screen where you can
enter keywords. Type the each keyword into the left-side text box, and click the
right arrow to add it to the list. If necessary, highlight an unwanted keyword in
the right-side list and then click the left arrow to remove it from the list.

Controlling the Visibility of Items in the Catalog

Guide to Building a Product Catalog 4-19

Figure 4-25 Entering Keywords on the Create a New Item Screen

Note: By default, all keywords that are entered on this administration screen are
converted to lowercase characters. Because the search engine is case
sensitive, this consistent conversion means that your subsequent searches
for items via keyword searches should use lowercase characters. You can
enter keywords in mixed case or ALL CAPS, but the keywords are stored
in lowercase, by default. This behavior is set in the
wlcs-catalog.properties file. For more information, see the section
“Using the wlcs-catalog.properties File” on page 4-48.

8. After you enter the field values, click the Create button to create the new item.
(Or click the Back button on the screen to cancel the create item operation.)

9. When the new item has been created, a confirmation message is displayed on the
refreshed Item screen: The item was created.

Controlling the Visibility of Items in the
Catalog

The visibility attribute of items in the product catalog is currently only applied to the
results of keyword searches and query-based searches. Thus if users of your deployed
Web site are browsing for an item (by clicking through the catalog’s hierarchy of
categories and subcategories), by default they will see the item even if you left the
Visible check box unchecked.

To make an item invisible to the results of keyword searches of the catalog, in the
current release you must:

n Mark the item as invisible (set or leave the Visible check box unchecked)

n Orphan the item by removing it from all categories

4 Catalog Administration Tasks

4-20 Guide to Building a Product Catalog

An uncategorized item, also known as an orphaned item, is one that has been
removed from all categories, but still resides in the WLCS_PRODUCT table in the
Commerce database.

For searches of the catalog, the default end-user CatalogRequest object has the
showAll attribute set to false; thus invisible items are not displayed. In contrast the
default administrator’s CatalogRequest object has the showAll attribute set to true,
ensuring that administrators can see invisible items when they perform search
operations via the Administration Tools.

Assigning Items to Categories

Assuming that you have already entered categories and items in the Commerce
database, either through a bulk loader program like DBLoader or through the
Administration Tools, you can assign each item to one or more categories. This section
shows how to use a WebLogic Commerce Server Administration Tools to make the
assignments.

What if I Have a Large Amount of Data?

If you have a catalog with hundreds of categories and thousands or tens of thousands
of items, making the assignments via the Administration Tools is obviously not
practical. An alternative is to use the DBLoader. Create a text data input file to
populate the WLCS_PRODUCT_CATEGORY table in the database. As illustrated in
Figure 2-1, the WLCS_PRODUCT_CATEGORY table maps the CATEGORY_ID primary key
from WLCS_CATEGORY table to the SKU primary key for the WLCS_PRODUCT table.

For related information, also see:

n “The WLCS_PRODUCT_CATEGORY Database Table” on page 2-13.

n Chapter 3, “Using the Product Catalog Database Loader.”

Assigning Items to Categories

Guide to Building a Product Catalog 4-21

Using the Administration Tools to Assign Items to
Categories

To assign items to categories in the Administration Tools, follow these steps:

1. Make sure the WebLogic Commerce server is running. See the section “Starting the
Server” on page 4-2.

2. Start the Administration Tools. See the section “Starting the Administration
Tools” on page 4-2.

3. On the main administration screen, click the Catalog Management graphic.

4. On the main Catalog Management screen, click the underlined Categories link.

5. In the Catalog hierarchy display, click the category or subcategory into which
you want to add the item.

Note: To expand a current category and reveal its subcategories (if any), make
sure you click the red arrow to the left of a category name. If you instead
click the current category’s underlined name, you are taken to its Edit
Category screen.

6. When the category or subcategory that you want to add items to is shown in the
hierarchy, click its underlined link. For example, assume that you clicked the red
arrow next to the Wood and Lumber category, then clicked the underlined
Hardwood link. (These sample categories were added to the catalog in the
previous section, “Adding Categories to the Catalog” on page 4-9.)

7. Figure 4-26 shows the top portion of a sample Editing Category: Hardwood
screen. Notice the link near the top of the display: To modify the items
assigned to this category, click here.

Figure 4-26 Sample Editing Category Screen with Modify Link

4 Catalog Administration Tasks

4-22 Guide to Building a Product Catalog

8. Click the link titled, To modify the items assigned to this category,
click here. When you do, a screen is displayed that is similar to the one
shown in Figure 4-27. In this particular screen, there are currently no items
assigned to the Hardwood category.

Figure 4-27 Modify Items Assigned to Category Screen

9. The Items Assigned to Category text box shows the items that are already in this
category. (In this example so far, there are no items in the Hardwood category.)
You can search for the item you want to add or remove via three modes:
keyword, query-based, or orphaned-items (“Uncategorized Items”). The search
results are displayed on the left-side text box. To add an item to the category,
move the item to the right-side text box by clicking on the right arrow.

Warning: You must click the Save button to commit any changes to the category
before performing a new search or leaving this page.

10. For example, assume that you need to assign the Ash-1x3 to the Hardwood
category. (This item was added to the sample data in the catalog in the section
“Adding Items to the Catalog” on page 4-15.) You can search for the keywords

Assigning Items to Categories

Guide to Building a Product Catalog 4-23

related to the item. Figure 4-28 shows a sample Modify Items Assigned to
Category screen where the ash keyword was entered, the search results found the
item, and the results were displayed in the left-side Search Results box.

Figure 4-28 Sample Keyword Search Results on Modify Items Assigned to
Category Screen

11. To add one or more items to the current category, select it or them in the left-side
text box and then click the right-arrow button. The item(s) move(s) to the
right-side text box. If you moved items, remember to click the Save button near
the bottom of the page before you perform another search or leave this page. If no
errors occur after you click the Save button, WebLogic Commerce Server
displays a confirmation message. In this example, the message was: Category
‘Hardwood’ has been updated.

12. To find items, via the query-based search, that you want to add to the category,
you can use an expression such as the following examples:

price > 100 && price <= 300

name like 'A*'

!(price > 100) || (msrpAmount >= 300)

modifiedDate < now

When the search results are displayed in the left-side text box, use the
right-arrow button to move the appropriate items into the right-side Category
Items text box. If you moved items, remember to click the Save button near the
bottom of the page before you perform another search or leave this page. For

4 Catalog Administration Tasks

4-24 Guide to Building a Product Catalog

details about the query-based search syntax, see the section “Query-Based
Search Syntax” on page 5-75.

13. To find a product item that is no longer associated with any categories in the
catalog, but the item is still in the catalog, click the Search button located under
the text “Search for items which are not assigned to any
category”.

14. Again, to add one or more items (that you located via one of the three search
options) to the current category, select them in the left-side text box and then
click the right-arrow button. This step will move the items to the right-wide text
box. If you moved items, remember to click the Save button near the bottom of
the page before you perform another search or leave this page.

Editing the Attributes for Categories and
Items

You can use the catalog Administration Tools to edit the attributes for existing
categories and items.

Editing Category Attributes

To edit the attributes for a category, follow these steps:

1. Make sure the WebLogic Commerce server is running. See the section “Starting the
Server” on page 4-2.

2. Start the Administration Tools. See the section “Starting the Administration
Tools” on page 4-2.

3. On the main administration screen, click the Catalog Management graphic.

4. On the main Catalog Management screen, click the underlined Categories button
on the Categories graphic.

Editing the Attributes for Categories and Items

Guide to Building a Product Catalog 4-25

5. On the main Categories screen, you can find the category you want to modify by
either:

l Entering its category identifier in the search input box. In the sample data
that comes with the catalog tables in the Commerce database, the category
identifier appears in parentheses next to the category name. You can assign
an identifier when you create a new category, but once created, you cannot
edit the identifier. Also, categories are created sequentially. The newest
category is always displayed last in the list that the end user sees on your
site. Figure 4-29 shows a portion of the resulting Categories screen after we
entered the category identifier hardwood in the search field and clicked the
Search button. In the figure, notice how the found category name is shown in
red type.

Figure 4-29 Sample Category Search Result

l Or you can find the category you want to modify by simply browsing
through the hierarchy of categories and subcategories. You can click the
solid, red, right-facing arrows to expand a category and view its
subcategories.

6. When the category you want to modify is displayed, click the name of the
category. For example, Figure 4-30 shows a portion of the resulting screen when
we clicked the Hardwood (Hardwood) category.

4 Catalog Administration Tasks

4-26 Guide to Building a Product Catalog

Figure 4-30 Editing Category: Chargers Sample Screen

7. On this screen, you can add, change, or remove the category’s attributes. See the
screen itself online for the full set of attributes that can be modified. Also see
“The WLCS_CATEGORY Database Table” on page 2-5 for a description of the
fields.

Warning: By design, you cannot modify the category’s unique identifier. If you
had to change a category identifier, you would have to delete the
category itself and then create a new category with a new, unique
identifier. But be careful! As noted on the administration screen,
removing a category removes it and all of its subcategories. In Oracle
databases, this feature is known as a cascading delete operation. This
feature is currently not supported in Cloudscape.

Also, product items that are associated with removed categories may be
orphaned (unless they belong to another category in the hierarchy).
Orphaned items are allowed to remain in the catalog, and can be
reassigned later to one or more categories. The caveat here is that by
deleting a category, you may be inadvertently removing many
subcategories from the catalog. Check the hierarchy carefully before
clicking the red X next to a category name.

8. After you edit the attributes for the category, click the Save button to commit
your changes to the database. Or, to exit the screen without committing your
changes, click the Back button.

Editing the Attributes for Categories and Items

Guide to Building a Product Catalog 4-27

Editing Product Item Attributes

To edit the attributes for a product item, follow these steps:

1. Make sure the WebLogic Commerce Server is running. See the section “Starting
the Server” on page 4-2.

2. Start the Administration Tools. See the section “Starting the Administration
Tools” on page 4-2.

3. On the main administration screen, click the Catalog Management graphic.

4. On the main Catalog Management screen, click the underlined Items button on
the Items graphic.

5. On the Item Search screen, you can find the product item by either entering one
of its keywords, or by entering a query-based search expression, or by searching
for orphaned items. For example, Figure 4-31 shows a portion of the resulting
screen after we entered the keyword hammer. The list of matching items show the
value for each item’s Name field.

Figure 4-31 Sample Keyword Search Results for Product Items

6. Another search option on the Item Search screen is entering an query-based
search expression such as one of the following:

price > 10 && price <= 50

name like ’H*’

!(price > 20) || (msrpAmount >= 30)

4 Catalog Administration Tasks

4-28 Guide to Building a Product Catalog

modifiedDate < now

If more than 10 search results have been returned, you can click the underlined
Next button or Previous button (if any) to read through the list. For details
about the query-based search syntax, see the section “Query-Based Search
Syntax” on page 5-75.

Figure 4-32 shows the results of a search for price > 10 && price <= 50.

Figure 4-32 Sample Query-Based Search to Find a Product Item

7. After you find the item you want to modify, click the underlined item name to
edit its attributes. Figure 4-33 shows the resulting screen when we click the
search result for wrench Set-9-800215.

Figure 4-33 Sample Initial Edit Item Attributes Screen

Editing the Attributes for Categories and Items

Guide to Building a Product Catalog 4-29

8. Click the red and white Edit button. Figure 4-34 shows a portion of a resulting
Edit Item Information screen. (Notice how the price is greater than 10 and less
than or equal to 50, from the prior search that returned this as a matching item.)

Figure 4-34 Sample Edit Item Information Screen

9. On this screen, you can add, change, or remove the item’s attributes. For
example, you can change the item’s price, short and long descriptions, its basic
inventory setting, and its visibility in the catalog. See an Edit Item Information
screen online for the full set of attributes that can be modified. See the section
“The WLCS_PRODUCT Database Table” on page 2-9 for details about the
item’s fields. Also see the section “Controlling the Visibility of Items in the
Catalog” on page 4-19 for important related information.

10. Before you save any changes on the Edit Item Information screen, set the item’s
inventory status on the Item Inventory screen. For information about this setting,
see the next section, “Editing the Availability of an Item.”

11. After you edit the attributes for the item, click the Save button to commit your
changes to the database. Or, to exit the screen without committing your changes,
click the Back button. If no errors occur when you save your changes, WebLogic
Commerce Server displays the message “The item was updated
successfully”.

4 Catalog Administration Tasks

4-30 Guide to Building a Product Catalog

Editing the Availability of an Item

In the current release, WebLogic Commerce Server provides an inventory setting in its
Administration Tools. The Edit Item Information screen includes a link to the
inventory function. (Please see the previous section, “Editing Product Item
Attributes,” for information about how to find an item and get to the Edit Item
Information screen.)

Figure 4-34 in the previous section showed the top portion of an Edit Item Information
screen, which included the link, “For inventory information, click here.”
Figure 4-35 shows the Item Inventory screen that is displayed when you click this link.

Figure 4-35 Sample Item Inventory Screen

On this screen, you can click the Yes or No option to indicate whether the specific
product item is in stock. Enter a text string (which can be displayed to a user of your
Web site on the item details screen) to indicate the shipping time. You can also enter
additional comments about the item’s inventory.

Note: In the current release, WebLogic Commerce Server does not implement an
automated inventory-count calculation.

If you made any changes on the Item Inventory screen, click the Save button.
Otherwise, click the Back button.

Determining How Categories and Items are Displayed to the Web Site User

Guide to Building a Product Catalog 4-31

Determining How Categories and Items are
Displayed to the Web Site User

You can control the format and content of category and item data that is displayed to
the Web site’s users by setting the Display URLs field for each category or item. The
WebLogic Commerce Server catalog includes the URL of three JSPs for items and
categories:

n Display JSP for a category

n Summary display JSP for an item

n Detail display JSP for an item

This approach allows, for example, the colors and layout of individual items to be
controlled on as fine a grained level as necessary. Categories can be assigned different
JSPs to define a "look and feel" for the category. Items can be given different layout
logic that is appropriate to the item.

By simply editing the name of the display JSPs in the Catalog Management
Administration Tools, you can introduce promotional text, seasonal greetings, or
special offers in the catalog. The default values that appear in the Display JSP URL
field on the create/edit category or item screen are read from the
wlcs-catalog.properties file in WL_COMMERCE_HOME/classes. For example:

Default JSP for Categories
catalog.category.jsp.default =/commerce/catalog/includes/category.jsp

Default JSPs for Product Items
catalog.item.jsp.default.summary =/commerce/catalog/includes/itemsummary.jsp
catalog.item.jsp.default.details =/commerce/catalog/includes/itemdetails.jsp

The URL values defined in the wlcs-catalog.properties file are relative to the
WLCS Web application directory. However, you can prepend any URL or URI string
that you need. Although you could use fully qualified local URLs, that could introduce
portability problems if you need to move the application to another server.

4 Catalog Administration Tasks

4-32 Guide to Building a Product Catalog

You can change these Display JSP defaults in wlcs-catalog.properties. You also
can overwrite the defaults URLs on the Administration screen by providing a pointer
to another JSP template of your own design. And you can modify the format and
content of the default or customized included JSP files. The values for the Display JSP
URLs are stored in the following fields in the Commerce database:

n DISPLAY_JSP_URL in the WLCS_CATEGORY table

n DET_DISPLAY_JSP_URL and SUM_DISPLAY_JSP_URL fields in the
WLCS_PRODUCT table

In the catalog’s master JSP files (the JSPs that contain the <jsp:include...> tags),
a related design decision is made by the Web designer or programmer about the type
of summary or detail pages to be presented. For example, the details.jsp template
is coded to return the summary JSP for items:

<%-- Get the summary JSP from the current product item --%>
<catalog:getProperty object="<%= item %>"
 propertyName="Jsp"
 getterArgument="<%= new Integer(ProductItem.DETAILED_DISPLAY_JSP_INDEX) %>"
 id="detailJsp"
 returnType="com.beasys.commerce.ebusiness.catalog.JspInfo"/>

<%-- Included the detail JSP --%>
<jsp:include page="<%= detailJsp.getUrl() %>" flush="true"/>
</catalog:iterateThroughView>
 .
 .
 .

Deleting Items or Removing Items from One
or More Categories

As described earlier in this chapter, you can assign an item to one or more categories.
If necessary, you could use the Administration Tools to:

n Delete the item entirely from the catalog.

n Remove the item from one category while keeping its assignment to another
category.

Deleting Items or Removing Items from One or More Categories

Guide to Building a Product Catalog 4-33

n Remove the item, one category at a time, from all categories, creating an
“orphaned item” (also called an “uncategorized item” that still resides in the
database).

Caching Considerations

Whenever possible, you should perform any Catalog Management operations
during non-peak Web site usage. When you delete an item or remove an item
from a category, WebLogic Commerce Server will automatically remove the
item record from the ProductItemCache or CategoryCache. This step ensures
that subsequent Web site users get a valid view of the available, categorized
items.

However, if you use an SQL tool to directly delete an item from the database
(WLCS_PRODUCT database table), or remove an association between an item
and a category (WLCS_PRODUCT_CATEGORY mapping database table), you
should flush the caches for items and categories. Flushing these in-memory
caches is an administration function. For more information about caching, see
the section “Improving Catalog Performance by Optimizing the Catalog
Cache” on page 4-42.

Deleting an Item from the Catalog

To permanently delete an item from the catalog database via the Administration Tools,
start by finding the item via one of the provided search options:

n Keyword-based search

n Query-based search

n Uncategorized items search

The steps to delete an item are as follows:

1. Make sure the WebLogic Commerce Server is running. See the section “Starting
the Server” on page 4-2.

2. Start the Administration Tools. See the section “Starting the Administration
Tools” on page 4-2.

4 Catalog Administration Tasks

4-34 Guide to Building a Product Catalog

3. On the main administration screen, click the Catalog Management graphic.

4. On the main Catalog Management screen, click the underlined Items link.

5. On the Item Search screen, perform one of the following steps:

a. In the Keyword input box, enter a keyword that you know is associated with the
item you need to delete, and then click its Search button. For example,
Figure 4-36 shows the Search results on the refreshed Item Search screen after
searching for the keyword cabinet.

Figure 4-36 Sample Search for an Item Using Cabinet Keyword

In the Search Results list, when the item that you need to delete is displayed,
click the red X icon to the right of the item name.

Warning: When you click the red X icon, the delete operation is immediate and
permanent; a confirmation screen is not displayed.

b. Or in the Query input box, enter an query-based search, such as one of the
following examples to find the item you need to delete; then click its Search
button.

price > 100 && price <= 150

name like ’cabinet*’

modifiedDate < now

Note: The query expression name like is case sensitive. For example,
figure shows the results of a query search that used the expression: name
like ‘cabinet*’. Had the search string been name like ‘Cabinet*’ the
search would have yielded no string matches given the sample data provided

Deleting Items or Removing Items from One or More Categories

Guide to Building a Product Catalog 4-35

by the product. For more information about the query syntax, see the section
“Query-Based Search Syntax” on page 5-75.

Figure 4-37 Sample Query-Based Search Results Screen

In the Search Results list, when the item that you need to delete is displayed,
click the red X icon to the right of the item name.

Warning: When you click the red X icon, the delete operation is immediate and
permanent; a confirmation screen is not displayed.

c. Or click the Search button next to the text: Search for items which are
not assigned to any category. Figure 4-38 shows the search results when
you click this option. The layout of the text and results has been modified in the
figure to fit into this document.

Figure 4-38 Sample Search Results for Uncategorized Items

In the Search Results list, when the item that you need to delete is displayed,
click the red X to the right of the item name.

4 Catalog Administration Tasks

4-36 Guide to Building a Product Catalog

Warning: When you click the red X icon, the delete operation is immediate and
permanent; a confirmation screen is not displayed.

Removing an Item from One or More Categories

The process to remove an item from one or more categories is similar to the process of
assigning items to categories, which is explained in the section “Using the
Administration Tools to Assign Items to Categories” on page 4-21.

For a given item, you can remove it (unassign it), one category at a time. If you remove
the item from all categories, it remains in the Commerce database and is flagged as an
uncategorized item, also known as an orphaned item.

Removing an item from one or more categories is different than deleting the item
entirely from the database. If you need to delete an item entirely, see the section
“Deleting an Item from the Catalog” on page 4-33.

The steps to remove an item from a category are covered in the following procedure.
Due to their similarity, the sample screens that would duplicate the ones shown in the
section “Using the Administration Tools to Assign Items to Categories” on page 4-21
are not repeated here.

Note: To remove an item from a particular category, you must know in advance the
name of the category to which the item is currently assigned. As the
administrator, if you do not have this information, run the catalog’s Web
application and browse through the hierarchy of categories to find the item. If
necessary, check with the development team to confirm that you are about to
remove the item from the correct category (because the item can be associated
with more than one category).

1. Make sure the WebLogic Commerce Server is running. See the section “Starting
the Server” on page 4-2.

2. Start the Administration Tools. See the section “Starting the Administration
Tools” on page 4-2.

3. On the main administration screen, click the Catalog Management graphic.

4. On the main Catalog Management screen, click the underlined Categories link.

Deleting Items or Removing Items from One or More Categories

Guide to Building a Product Catalog 4-37

5. In the Catalog hierarchy display, click the category or subcategory from which
you want to remove the item.

Note: To expand a current category and reveal its subcategories (if any), click the
red arrow to the left of a category name. If you instead click the current
category’s underlined name, you are taken to its Edit Category screen.

6. When the category or subcategory name is shown in the hierarchy, click its
underlined link.

7. On the Editing Category: <category name> screen, click the following link: To
modify the items assigned to this category, click here.

8. Figure 4-39 shows a sample screen. In this example, assume that we need to
remove one of the pneumatic hammer items from the following category:

Root → Hardware → Storage and Cabinets → Cabinets

Figure 4-39 Removing an Item from a Category

On the screen, the second item in the Items Assigned to Category text box has
been highlighted, and the cursor is hovering over the left arrow.

4 Catalog Administration Tasks

4-38 Guide to Building a Product Catalog

9. Click the left arrow to remove the item from the category.

10. Click the Save button near the bottom of the screen to make the change. Or click
the Back button near the bottom of the screen (before clicking the Save button) to
cancel any updates you made on the screen.

If you need to remove an item from more than one category, you must do so one
category at a time. After removing the item from the first category, repeat steps 4
through 9 to remove the item from the next category.

Removing Categories

To remove a category, find the category or subcategory via the Administration Tools
and click the red X icon to the right of the target category or subcategory name. When
you click the red X icon, you are prompted for a confirmation before the deletion starts.

Warning: Removing a category removes it and all of its subcategories (if any). In
Oracle databases, this feature is known as a cascading delete operation.
Cascading deletes are not supported currently in Cloudscape.

Also, product items that are associated with removed categories may be
orphaned (unless they belong to another category in the hierarchy).
Orphaned items are allowed to remain in the catalog, and can be
reassigned later to one or more categories. The caveat here is that by
deleting a category, you may be inadvertently removing many
subcategories from the catalog. Check the hierarchy carefully before
clicking the red X next to a category name

To remove a category from the catalog’s hierarchy, follow these steps:

1. Make sure the WebLogic Commerce Server is running. See the section “Starting
the Server” on page 4-2.

2. Start the Administration Tools. See the section “Starting the Administration
Tools” on page 4-2.

3. On the main administration screen, click the Catalog Management graphic.

4. On the main Catalog Management screen, click the underlined Categories button
on the Categories graphic.

Removing Categories

Guide to Building a Product Catalog 4-39

5. On the main Categories screen, you can find the category you want to modify by
either:

l Entering its category identifier in the search input box. In the sample data
that comes with the catalog tables in the Commerce database, the category
identifier is a letter of the alphabet followed by the category name.

l Or by browsing through the hierarchy of categories and subcategories. Click
the solid, red, right-facing arrows to expand a category and view its
subcategories.

Figure 4-40 shows a portion of the resulting Categories screen after searching for
the category identifier hardwood. Notice how the found category name is shown
in red type.

Figure 4-40 Sample Category Search Result

6. When the category you want to remove is displayed, click the red X icon to the
right of the category name. Be aware that:

l Deleting a category removes it and all of its subcategories (if any). In Oracle
databases, this feature is known as a cascading delete operation. This
operation is not currently supported in Cloudscape.

l Product items that are associated with deleted categories may be orphaned
unless they belong to another category. Orphaned items will remain in the

4 Catalog Administration Tasks

4-40 Guide to Building a Product Catalog

catalog, and can be reassigned later to one or more categories. Remember
that by deleting a category, you may inadvertently remove many
subcategories from the catalog. Check the hierarchy carefully before clicking
the red X next to a category name.

Moving Items from One Category to Another
Category

To move an item from one category to another category:

n Assign the item to the other category, as described in the section “Using the
Administration Tools to Assign Items to Categories” on page 4-21.

n Remove the item from an existing category, as described in the section
“Removing an Item from One or More Categories” on page 4-36.

Defining Custom Attributes for Items

You can define a property set that establishes custom attributes for an item. For a given
item, a custom attribute that you define can be used in addition to the default attribute
that was set by WebLogic Commerce Server in the Product Catalog database tables.

Warning: The default Product Catalog attributes that are provided by WebLogic
Commerce Server (based on Dublin Core) are retrieved in a single SQL
statement (from a single database table) and are cached. However, custom
attributes typically require a single SQL statement (which involves
multiple database tables) and are not cached. For optimal performance,
BEA recommends that the use of custom attributes be minimized and that
the catalog developer maps new custom attributes onto the default Dublin
Core attributes. For related information about the category and item
caches, see the section “Improving Catalog Performance by Optimizing
the Catalog Cache” on page 4-42.

Defining Custom Attributes for Items

Guide to Building a Product Catalog 4-41

WebLogic Commerce Server uses the existing product architecture for defining
property sets and assigning values to custom attributes. Both items and categories
implement the ConfigurableEntity interface, allowing property sets to be used to
define custom attributes for items and categories. At run time, these properties can be
accessed or modified using the standard getProperty or setProperty interfaces of
ConfigurableEntity.

The property set editor was introduced with an earlier release of WebLogic
Personalization Server. Now the property set editor extends support to a new class of
Property Set for the WebLogic Commerce Server catalog, and the product provides
administrative tools that allow the custom attributes of categories and items to be
edited. These tools are based on the familiar user interface for editing the custom
attributes of groups and user (respectively).

You therefore have a number of options for customizing the WebLogic Commerce
Server Product Catalog:

n Property Set Definition

Defining Property Sets for custom attributes is a run-time operation that you can
perform without having to restart the server. Domain-specific catalog attributes
that cannot be mapped onto the metadata provided in the WebLogic Commerce
Server schema (which is based on the Dublin Core standard) can be added to a
Property Set for the catalog.

n Service Provider Interfaces

The functional areas of the WebLogic Commerce Server Product Catalog can be
unplugged (either individually or as a whole) to customize the behavior or data
sources of the catalog. The customizable services are:

l Product Item Manager – Responsible for managing the explicit attributes for
an item.

l Category Manager – Responsible for managing the mapping of items into
categories.

l Custom Data Manager – Responsible for managing the custom attributes for
an item.

l Catalog Query Manager – Responsible for executing keyword and attribute
queries and returning collections of items.

These steps are described in Chapter 7, “Using the API to Extend the Product
Catalog.”

4 Catalog Administration Tasks

4-42 Guide to Building a Product Catalog

n Entity Property Manager Customization

Custom attribute management has been delegated from the Custom Data
Manager to the Entity Property Manager. A new implementation of the Entity
Property Manager could be plugged for custom data management.

Improving Catalog Performance by
Optimizing the Catalog Cache

WebLogic Commerce Server provides tools that allow you to tune the response-time
efficiency of your product catalog by adjusting the size and behavior of in-memory
cache settings. Two separate caches have been implemented:

n CategoryCache

n ProductItemCache

There is only one instance of each cache per server. In a WebLogic Server clustered
environment, the cache is specific to each server. Thus if you make adjustments to a
CategoryCache or ProductItemCache on a particular server in the cluster, and you want
that adjustment to take effect on other servers in the cluster, you must invoke the
Administration Tools on each server machine and make the updates separately.

Values for each cache are defined in the weblogiccommerce.properties file and on
a catalog administration screen. As the site administrator, your primary tasks related to
the setup and maintenance of the caches are as follows:

n Enable or disable each cache. Keeping the cache enabled is highly
recommended. Each cache is enabled by default.

n Set the size of each cache. That is, the maximum number of category and item
records in each cache.

n Set the time-to-live (TTL) for each cache.

n Increase or decrease the size of each cache.

n Flush the cache.

Improving Catalog Performance by Optimizing the Catalog Cache

Guide to Building a Product Catalog 4-43

n View percentage statistics about the hit or miss rate of each cache.

n Reset the statistics.

By experimenting with the size and time-to-live (TTL) values for each cache, you can
achieve optimal performance of the catalog. Most importantly, you can significantly
improve the satisfaction level of customers who are shopping on your Web site. The
goal of the cache is to avoid, as much as possible, excessive accesses to the Commerce
database as the application software performs catalog data lookup requests.

Cache-Related Values in weblogiccommerce.properties

The WL_COMMERCE_HOME\weblogiccommerce.properties file includes the
following values related to the category and item caches:

Cache entries

ProductItemCache.ttl=21600000
ProductItemCache.capacity=10000
ProductItemCache.enabled=true

CategoryCache.ttl=86400000
CategoryCache.capacity=1000
CategoryCache.enabled=true

Table 4-2 describes the values defined for each cache property:

Table 4-2 Cache Property Values in weblogiccommerce.properties

Property Value Default Value Description

ProductItemCache.ttl 2160000 milliseconds (360
minutes, or 6 hours)

Sets the time-to-live (TTL) value that
gets assigned to each item record that is
added to the ProductItemCache. When
the value has expired, the item is
removed from the cache. Then as new
item records are accessed by users
(items retrieved from the database), a
copy of each record is added to the
server-wide item cache.

4 Catalog Administration Tasks

4-44 Guide to Building a Product Catalog

Use the caching statistics to understand whether the values that you select initially are
too low or too high.

ProductItemCache.capacity 10000 items Sets the maximum number of product
items that can be loaded into the
ProductItemCache.

ProductItemCache.enabled true Can be set to true or false. BEA
recommends that you always leave the
cache enabled; if your catalog has
highly volatile product item data, use a
lower TTL value to ensure that the data
is refreshed at appropriate intervals.

CategoryCache.ttl 86400000 milliseconds (1440
minutes, or 24 hours)

Sets the time-to-live (TTL) value that is
assigned to each category record in the
CategoryCache. When the value has
expired, the category record is removed
from the cache. Then as new category
records are accessed by users
(categories retrieved from the
database), a copy of each record is
added to the server-wide category
cache.

CategoryCache.capacity 1000 categories Sets the maximum number of category
records that can be loaded into the
CategoryCache.

CategoryCache.enabled true Can be set to true or false. BEA
recommends that you always leave this
cache enabled; if your catalog has
highly volatile category data, use a
lower TTL value to ensure that the data
is refreshed at appropriate intervals.

Table 4-2 Cache Property Values in weblogiccommerce.properties (Continued)

Property Value Default Value Description

Improving Catalog Performance by Optimizing the Catalog Cache

Guide to Building a Product Catalog 4-45

Note: Remember that in a WebLogic Server clustered environment, the cache is
specific to each server. Thus if you make adjustments to a CategoryCache or
ProductItemCache on a particular server in the cluster, and you want that
adjustment to take effect on other servers in the cluster, you must perform the
administration tasks on each server machine and make the updates separately.

Considering Hardware Costs Versus the Cost of
Dissatisfied Web Site Users

BEA recommends that you provide sufficient hardware memory resources so that you
can cache your entire product catalog. As you consider the options for implementing a
caching strategy to support your e-commerce Web site’s product catalog, ask the
following question. In the long-term, what is more expensive:

n The costs associated with increasing RAM capacity on your Web servers,

n Or the cost of losing potential Web shoppers who grew impatient with the
performance of your catalog’s pages?

BEA suggests that, almost certainly, losing customers due to poor site performance
will be far more costly than purchasing the necessary RAM hardware to support your
site.

What’s in Each Cache Initially?

When the server starts, it reads the property values for the CategoryCache and
ProductItemCache from the weblogiccommerce.properties file. But those values
simply set the behavior and potential size of the separate caches. Each cache is initially
empty.

As users start accessing the site’s pages and requests for category or product item data
are received, the WebLogic Commerce Server software first checks to see if the
requested category or item record is in the cache. If the record resides in cache, it is
returned to the requesting user and displayed. If the record does not reside in cache, the
record is retrieved from the Commerce database, put in cache, returned to the
requesting user and displayed.

4 Catalog Administration Tasks

4-46 Guide to Building a Product Catalog

If you are interested in the architectural view of how the catalog service managers use
cache, see the section “Catalog Architecture and Services” on page 7-3.

The Catalog Cache Administration Screen

To start the catalog cache administration screen, follow these steps:

1. Make sure the WebLogic Commerce Server is running. See the section “Starting
the Server” on page 4-2.

2. Start the Administration Tools. See the section “Starting the Administration
Tools” on page 4-2.

Note: As previously mentioned, in a WebLogic Server clustered environment the
cache is specific to each server. Thus if you make adjustments to a
CategoryCache or ProductItemCache on a particular server in the cluster,
and you want that adjustment to take effect on other servers in the cluster,
you must perform the administration tasks on each server and make the
updates separately.

From your browser, you can administer another server in the cluster by
specifying the other server’s name in the URL (assuming that the WebLogic
server software is already running on the remote machine). For example, if
the machine Blues is a remote server in the cluster, you can use the
following URL from a browser sessions on your local machine to invoke the
main administration screen for the remote server:

http://blues:7501/tools

3. On the main administration screen, click the Catalog Management graphic.

4. On the main Catalog Management screen, click either the Configure button or the
underlined Cache link on the Cache graphic, as shown in Figure 4-41.

Figure 4-41 Configure Button on Cache Graphic

5. Figure 4-42 shows the resulting initial Cache Statistics and Configuration screen.

Improving Catalog Performance by Optimizing the Catalog Cache

Guide to Building a Product Catalog 4-47

Figure 4-42 Initial Cache Statistics and Configuration Screen

6. On the Cache Statistics and Configuration screen, you can:

l Enable or disable each cache. The general recommendation is that you leave
both caches enabled.

l Click the underlined ProductItemCache link to view a separate screen that
only shows item cache statistics. By going to the cache-specific screen, you
can flush just that cache.

l Click the underlined CategoryCache link to view a separate screen that only
shows category cache statistics. By going to the cache-specific screen, you
can flush just that cache.

l Change the value for the ProductItemCache or CategoryCache capacity. This
is the maximum number of items or categories allowed in each cache.

l Change the value for the ProductItemCache or CategoryCache time-to-live
(TTL), shown in minutes. This is the maximum time that an item will not be
reread from the database.

l View statistics about the following:

The number of product items or categories currently in the cache (Items
column).

The number of requests for product items or categories (Requests column).

The number of times a requested product item or category was found in the
cache (Hits).

The number of times a requested product item or category was not found in
the cache (Misses).

4 Catalog Administration Tasks

4-48 Guide to Building a Product Catalog

The hit percentage; that is, the total requests divided by the number of hits
(Rate% column).

Note: The Administration Tools always bypass the cache. Thus any access you
perform to category and item data in the Administration Tools will not be
seen in the statistics.

7. The buttons on the screen perform the following functions:

l To return to the main catalog administration screen, click the Back button. If
you do not click the Save button before clicking the Back button, any
changes you made are not performed.

l To save any changes you make, click the Save button.

l To reset the statistics to zero, click the Reset All button.

l To flush the contents of both caches, click the Flush All button.

A basic approach to working with the statistics is as follows:

1. Reset the caching statistics in the administration screen.

2. Let the Web site run for awhile.

3. Examine the statistics and look at the Hit Rate (the % of times the requested
record was found in the cache, instead of having to get the record from the
database).

4. Adjust the caching values in the administration screen.

Repeat this process until the Hit Rate is high.

Using the wlcs-catalog.properties File

In the WebLogic Commerce Server’s default Product Catalog configuration, the
wlcs-catalog.properties file serves two purposes. The first part of the file
defines values for internationalization string constants and constant configuration
parameters, while the second part of the file defines the names of the tables, columns,
and the SQL statements used by the JDBC catalog implementation to perform
persistence activities.

Using the wlcs-catalog.properties File

Guide to Building a Product Catalog 4-49

Note: To learn more about string constants and constant configuration parameters,
see “Some Property Values You Might Modify” on page 4-49. To learn how
to modify the names of tables, columns, and so on, see “Editing the Catalog
Schema Definition” on page 4-51.

In most cases, you will not have to modify the content of the
wlcs-catalog.properties file. However, some of the properties are relevant to
developers who need to extend the catalog to suit specific business requirements, or to
internationalize the catalog for non-English readers.

Location

The default wlcs-catalog.properties file is located in
WL_COMMERCE_HOME\classes, where WL_COMMERCE_HOME is the directory in which
you installed the WebLogic Commerce Server software.

Some Property Values You Might Modify

The wlcs-catalog.properties file contains over 1000 lines of name/value
properties. Table 4-3 lists a subset of the properties to introduce you to the type of
information contained within the file. After reading this summary, you should be able
to decide if your catalog’s environment would benefit by adjusting the values in
wlcs-catalog.properties.

Table 4-3 Summary of Values in the wlcs-catalog.properties File

Property Value and Description

catalog.jsp.date.format MM/dd/yyyy hh:mm:ss z

Sets the default format of DATE or TIMESTAMP
fields in the database.

4 Catalog Administration Tasks

4-50 Guide to Building a Product Catalog

catalog.jsp.default.iterator.size 10

Sets the default size of the ViewIterators created
by Pipeline Components. You should set this
parameter to a large enough value so that a typical set
of items will not require an excessive number of trips
to the database.

catalog.searchresults.size -1

Sets the maximum search results returned by the
catalog. -1 means unlimited search results size. You
can dynamically change the search results by using
the get/set MaxSearchResults methods on
the CatalogQuery object.

catalog.jsp.keyword.convert lower

Used by the Administration pages to determine
whether keywords should be case converted.
Possible values are:

n lower

n upper

n none

catalog.category.jsp.default /commerce/catalog/includes/category.
jsp

Sets the default JSP file used to display a category.

catalog.item.jsp.default.summary /commerce/catalog/includes/itemsumma
ry.jsp

Sets the default JSP file used to display an item’s
summary page.

catalog.item.jsp.default.details /commerce/catalog/includes/itemdetai
ls.jsp

Sets the default JSP file used to display an item’s
details page.

Table 4-3 Summary of Values in the wlcs-catalog.properties File

Property Value and Description

Using the wlcs-catalog.properties File

Guide to Building a Product Catalog 4-51

Editing the Catalog Schema Definition

In addition to modifying some name/value pairs in the wlcs-catalog.properties
file, you may also want to customize the names of the tables and/or columns used by
the BEA WebLogic Commerce Server Product Catalog system.

catalog.custom.data.catalog.manager com.beasys.commerce.ebusiness.catalo
g.CatalogManager

 The JNDI name of the CatalogManager used to
access Custom properties.

Messages:

The wlcs-catalog.properties file includes numerous properties for catalog-related messages. A few
examples:

user.message.error.format.date.log =The date format is invalid. Please enter a
valid date.

user.message.error.duplicate.user =A category with the specified identifier
already exists. Category identifiers must be unique within the catalog.

user.message.search.invalid.expression.user =The search expression you have
entered is invalid. Please try again.

If desired, you can change the value on the right side of the equal sign. For example, internationalization (I18N)
developers can translate the values to a non-English language.

Types of messages:

n General user messages

n Category messages

n Item messages

n Search messages

n Tag messages

n Error messages

See the wlcs-catalog.properties files for the full set of messages.

Table 4-3 Summary of Values in the wlcs-catalog.properties File

Property Value and Description

4 Catalog Administration Tasks

4-52 Guide to Building a Product Catalog

The schema and persistence definition section of the wlcs-catalog.properties
file are referenced by the Tier 2 JDBC catalog Service Providers.

Warning: The configuration parameters listed in this section are subject to change.
Take extreme care when editing the persistence parameters.

The name of the persistence definition (or schema) file used by the Tier 2 Service
Providers is loaded from the deployment environment of the stateless session beans.
Therefore, it is possible to deploy multiple instances of the catalog services that are
bound to different schema files. This allows multiple instances of the WebLogic
Commerce Server Product Catalog to be deployed, bound to distinct tables or columns.

Note: For more information about multiple Product Catalog instances, see “Method
3: Multiple Product Catalog Instances” on page 8-10.

By editing the schema file you can modify the names of tables and columns. The SQL
scripts should also be modified to reflect the new names. An example from the default
schema file is presented in Listing 4-1.

Listing 4-1 Default Schema File

###
###
CATALOG TABLE NAMES
###
###

CATALOG_TABLE_CATEGORY=WLCS_CATEGORY
CATALOG_TABLE_PROD_ITEM=WLCS_PRODUCT
CATALOG_TABLE_PROD_KEYWORD=WLCS_PRODUCT_KEYWORD

By editing the right-hand side of the equal sign, you can modify the names of the tables
used by the WebLogic Commerce Server Product Catalog Tier 2 persistence
mechanism.

Using the wlcs-catalog.properties File

Guide to Building a Product Catalog 4-53

Notes: It is not currently possible to add or remove attributes by editing the schema
file. New attributes (schema additions) are best handled by writing a new
CustomDataManager stateless session bean that reads and writes the values
of the new properties, or by using the provided CustomDataManager, which
will store the values in the WLCS_CAT_ set of tables.

Please refer to the comments within the wlcs-catalog.properties file for
additional details.

4 Catalog Administration Tasks

4-54 Guide to Building a Product Catalog

Guide to Building a Product Catalog 5-1

CHAPTER

5 The Product Catalog
JSP Templates

The BEA WebLogic Commerce Server provides JavaServer Page (JSP) templates and
JSP tags that implement commonly used Web-based Product Catalog features. The
Product Catalog JSP templates allow your customers to search for product items or
browse through categories to locate items; the JSP tags are used to implement this
functionality.

When you click the Add to Cart button on the JSPs that provide item details, the default
Webflow for the WebLogic Commerce Server Web application passes data about the
selected product items to the order management JSPs. For information about the JSPs
that comprise the Order Processing package, see the BEA WebLogic Commerce Server
Guide to Managing Purchases and Processing Orders.

This topic includes the following sections:

n Introduction

n JSP Templates Overview

l On Which JavaServer Page Will My Users Start?

l Sequence Review and the Browser View

n JavaServer Pages (JSPs)

l main.jsp Template

l browse.jsp Template

l details.jsp Template

l search.jsp

l searchresults.jsp

5 The Product Catalog JSP Templates

5-2 Guide to Building a Product Catalog

n Input Processors

l CatalogIP

l GetProductItemIP

l GetCategoryIP

l KeywordSearchIP

l ExpressionSearchIP

l MoveAttributeIP

l RemoveAttributeIP

n Pipeline Components

l CatalogPC

l GetCategoryPC

l GetProductItemPC

l GetParentPC

l GetAncestorsPC

l GetProductItemsPC

l GetSubcategoriesPC

l MoveAttributePC

l RemoveAttributePC

l SearchPC

Note: In this topic, the environment variable WL_COMMERCE_HOME is used to
represent the directory in which you installed the WebLogic Commerce Server
software.

Introduction

Guide to Building a Product Catalog 5-3

Introduction

The JSP templates and JSP tags included in the BEA WebLogic Commerce Server
allow you to easily customize the presentation of the Product Catalog. The names of
the JSPs for categories and product items are stored in the database as attributes of the
categories and items. (See Chapter 2, “The Product Catalog Database Schema,” for
information about the DISPLAY_JSP_URL column in the WLCS_CATEGORY database
table, and the SUM_DISPLAY_JSP_URL column [a pointer to the item’s summary page]
and the DET_DISPLAY_JSP_URL column [a pointer to the item’s detail page] in the
WLCS_PROD_ITEM database table.)

The WebLogic Commerce Server Product Catalog integrates with the Webflow
engine, which automatically selects the appropriate JSP for displaying a particular
category or product item. The Webflow is set by entries in the webflow.properties
file, as explained in the BEA WebLogic Commerce Server Business Logic: Using
Webflow and Pipeline documentation.

JSP tag libraries allow you to easily retrieve the attributes of items and categories in
the Product Catalog. You can then format these attributes using HTML tags. Any
HTML editor can be used to create custom layouts. You can also include custom Java
code within the JSPs to display categories and items. For more information about the
Product Catalog JSP Tag Library, see “The Catalog JSP Tag Library: cat.tld” on page
6-3.

JSP Templates Overview

The BEA WebLogic Commerce Server provides a number of JSP templates that span
the start-to-finish experience for a Web site user who is shopping on your site. There
are several sequence paths through the system; the following list outlines one possible
path.

1. If the customer has previously registered and logged in, display a home page that
welcomes the customer, and include links to the customer’s Order History and
Payment History. Otherwise, just display a generic home page.

2. Search for or browse product items in the catalog.

5 The Product Catalog JSP Templates

5-4 Guide to Building a Product Catalog

3. Add one or more items to a shopping cart.

4. Enter or update the customer’s profile information, such as their default shipping
address, default credit card billing address, and credit card number (encrypted).

5. Checkout.

6. Review an order.

7. View a confirmation of an order.

8. Optionally check the status of an order.

On Which JavaServer Page Will My Users Start?

Before you can understand which JavaServer Page your users will open first, it is
important to understand how your catalog and order fulfillment system will eventually
be deployed. This section introduces that topic, and you can follow along by opening
the referenced files in the installed WebLogic Commerce Server directories.

Web Applications

The JSP templates and all the supporting Java packages are configured to run as a Web
application on the WebLogic Server. In the commerce directory structure, the config
directory contains the following path for each Web application:

/config/wlcsDomain/applications/wlcsApp/defaultWebApp

The wlcsDomain parameter is the domain name for the WebLogic server.

The wlcsApp parameter is the name of your J2EE application.

The webApp parameter is the context name given to the Web application, and is
included in the initial part of any URL request to the Web application. It can be either
a directory or a Web Archive (.war) file that contains the Web application archive.

The Web application named tools includes all the administration tool JSPs, Java
packages, and related files. The Web application named wlcs includes all the catalog
and order fulfillment JSPs, Java packages, and related files.

JSP Templates Overview

Guide to Building a Product Catalog 5-5

XML Deployment Descriptor Files

All other configuration information for the Web applications is described in each one’s
XML deployment descriptor files. The WebLogic Commerce Server Web
application’s web.xml deployment descriptor file resides in the following directory:

%WL_COMMERCE_HOME%\config\wlcsDomain\applications\wlcsApp\wlcs\

WEB-INF\web.xml (Windows)
$WL_COMMERCE_HOME/config/wlcsDomain/applications/wlcsApp/wlcs/

WEB-INF/web.xml (UNIX)

Included in the web.xml file for the WebLogic Commerce Server Web application is
a setting for the initial page, or welcome page of the application, as shown in
Listing 5-1.

Listing 5-1 Setting for Welcome Page in the web.xml File

<!-- Welcome file for the WLCS -->
 <welcome-file-list>
 <!-- This is the entry point to a WLCS site.
 Change this appropriately -->
 <welcome-file>/index.jsp</welcome-file>
 </welcome-file-list>

For the WebLogic Commerce Server Web application, the index.jsp file resides in
the root directory for the application, or in:

%WL_COMMERCE_HOME%\config\wlcsDomain\applications\wlcsApp\wlcs\

index.jsp (Windows)
$WL_COMMERCE_HOME/config/wlcsDomain/applications/wlcsApp/wlcs/

index.jsp (UNIX)

commercewf Property Set and DestinationDeterminer

If you open index.jsp with a text editor, you will see that it has a single line of JSP
code, as follows:

<%

 response.sendRedirect("/wlcs/application/commercewf");

5 The Product Catalog JSP Templates

5-6 Guide to Building a Product Catalog

%>

The WebLogic Commerce Server Web application uses an application initialization
property set named commercewf. This property set specifies a
DestinationDeterminer property that has the following value:

com.beasys.commerce.webflow.DestinationDeterminer

To see the commercewf property set definition yourself, start by opening the
Administration Tools home page at:

http://localhost:7501/tools

On this page, select the Property Set Management link. On the Property Sets page,
under the Application Initialization Property Sets heading, select the commercewf
property set’s link. The Property Set page for commercewf is displayed, as shown in
Figure 5-1.

Figure 5-1 Property Set Page for commercewf

The com.beasys.commerce.webflow.DestinationDeterminer reads values
from the webflow.properties file. This file sets the order in which the JSPs, input
processors, and Pipelines are executed, based on the activity initiated by a user of the
Web site. The JSPs control the presentation of the information, while the input
processors and Pipelines manage the business logic.

JSP Templates Overview

Guide to Building a Product Catalog 5-7

Notes: The webflow.properties file resides in WL_COMMERCE_HOME.

For more information about the webflow.properties file, see the BEA
WebLogic Commerce Server Business Logic: Using Webflow and Pipeline
documentation.

One of the steps in the webflow.properties file involves obtaining the parameters
for the catalog’s top-level categories. This is accomplished by the GetTopCategories
input processor, which if successful, initiates execution of the GetTopCategories
Pipeline. If both of these mechanisms have executed successfully, the main.jsp
template is sent to the browser, as shown in Listing 5-2.

5 The Product Catalog JSP Templates

5-8 Guide to Building a Product Catalog

Listing 5-2 Webflow Processing Leading to the Display main.jsp

GetTopCategories input processor definition

GetTopCategories.inputprocessor=com.beasys.commerce.ebusiness.
catalog.webflow.GetCategoryIP

GetTopCategories.inputprocessor.exception(ProcessingException)=
commerce/main.jsp

GetTopCategories.inputprocessor.success=GetTopCategories.pipeline
 .
 .
 .
GetTopCategories pipeline definition

GetTopCategories.pipeline.exception(PipelineFatalException)=
commerce/main.jsp

GetTopCategories.pipeline.success=commerce/main.jsp

Thus, when the initial page is opened in a browser and the URL references the context
name for the WebLogic Commerce Server Web application (wlcs), the first JSP that
is displayed (already populated with values from the Pipeline) is the main.jsp
template.

Note: Although the begin state is only set the first time the page is accessed, the
process of obtaining the Product Catalog’s top categories is initiated by the
Webflow each time a customer attempts to access the home page, as shown in
the following webflow.properties statement:

*.jsp.link(home)=GetTopCategories.inputprocessor

Sequence Review and the Browser View

Let’s review how these files and parameters are working in sequence to open the initial
page of the catalog/order site in a customer’s browser:

JSP Templates Overview

Guide to Building a Product Catalog 5-9

1. The server is started by running the StartCommerce.bat (Windows) or
StartCommerce.sh (UNIX) procedure from a system prompt. This procedure
resides in WL_COMMERCE_HOME, the top-level directory where you installed
WebLogic Commerce Server. The procedure sets up the run-time environment for
WebLogic Commerce Server and starts the WebLogic Server.

2. As the WebLogic Server starts, it finds the properties defined in the
weblogiccommerce.properties file that resides in WL_COMMERCE_HOME. The
config.xml file (in WL_COMMERCE_HOME\config\wlcsDomain) deploys the
wlcs Web application on the WebLogic Server and specifies the root directory of
the application by using the following element:

<WebAppComponent
Name="wlcs"
Targets="wlcsServer"
URI="wlcs"
ServletReloadCheckSecs="300"
/>

Consequently, the Web application server knows that the wlcs context name is
included in the initial part of any URL request of the Web application.

3. You can see this in action by opening http://localhost:7501/wlcs/ in a
browser. (Prerequisite: start the server on your machine as described in step 1.)

4. When the page loads, notice how the server switches the URL in your browser’s
Address/Location bar to:

http://localhost:7501/wlcs/index.jsp

This is because the web.xml file for the wlcs Web application specified
index.jsp as the initial page in the <welcome-file> XML tag.

5. The index.jsp page simply references the /application/commercewf/
application initialization property set.

6. The commercewf property set defines a DestinationDeterminer property. The
default value is com.beasys.commere.webflow.DestinationDeterminer.

7. The Webflow DestinationDeterminer Java class reads values from the
webflow.properties file.

8. The webflow.properties file includes a few initial steps (carried out by the
GetTopCategories input processor and corresponding Pipeline) to get category
data. Then, on successful completion, the Webflow calls for display of the
main.jsp template, as shown below:

5 The Product Catalog JSP Templates

5-10 Guide to Building a Product Catalog

GetTopCategories.pipeline.success=commerce/main.jsp

Note: For more information about the main.jsp template, see “main.jsp Template”
on page 5-14.

Figure 5-2 shows a portion of the Web application’s home page. When you enter
http://localhost:7501/wlcs/index.jsp as the URL, index.jsp redirects to
the main.jsp template in /wlcs/application/commercewf.

Note: application/commercewf is a property set name, not a part of the directory
structure.

Figure 5-2 Home Page Display for the WLCS Application

When you take any action on the page, the convention for the URI is to combine the
/wlcs/ context name for the Web application, the /application/commercewf/
property set name, and the result of the operation with the Webflow and Pipeline
processing. For example, if you click the Tool Sets category in the Store Catalog, the
URI changes to:

JSP Templates Overview

Guide to Building a Product Catalog 5-11

http://localhost:7501/wlcs/application/commercewf?origin=main.jsp
&event=link(browse)&wlcs_catalog_sourceKey=wlcs_categories&wlcs_
catalog_destinationKey=wlcs_siblings&wlcs_catalog_category_id=
D.Tool Sets

Figure 5-3 shows a portion of this URI on the resulting page, which displays the
browse.jsp template.

Figure 5-3 Resulting URI from main.jsp to browse.jsp in the Tool Sets Category

In this way, the flow of presentation-level JavaServer Pages and the processing of the
business logic by input processors and Pipelines are all operating in the context of the
running WebLogic Commerce Server Web application. The JSPs are not simply linked
from one JSP file to another JSP file.

5 The Product Catalog JSP Templates

5-12 Guide to Building a Product Catalog

JavaServer Pages (JSPs)

The WebLogic Commerce Server Web application contains a number of JavaServer
Pages (JSPs) that let your customers display a catalog’s categories and product items.
You can use these pages in their current form, or adapt them to meet your specific
needs. This section describes each page in detail.

Note: For a description of the complete set of JSPs used in the WebLogic Commerce
Server Web application and a listing of their locations in the directory
structure, see the Summary of JSP Templates documentation.

Figure 5-4 illustrates the JSP templates that participate in the Product Catalog portion
of the Webflow.

JavaServer Pages (JSPs)

Guide to Building a Product Catalog 5-13

Figure 5-4 Flow of Catalog JSP Templates

5 The Product Catalog JSP Templates

5-14 Guide to Building a Product Catalog

main.jsp Template

The main.jsp template is the default home page for the Product Catalog. As noted in
“On Which JavaServer Page Will My Users Start?” on page 5-4, the WebLogic
Commerce Server Web application’s home page is actually index.jsp. However,
index.jsp refers processing to an application/commercewf/ property set, which
defines a Java class that reads values from the application’s webflow.properties
file. The webflow.properties file contains steps that involve looking up the
catalog’s top-level categories (from in-memory cache or, if necessary, from the
Commerce database). If these categories can be successfully located, the main.jsp
template will be loaded to display them.

Sample Browser View

Figure 5-5 shows a version of the main.jsp template.

JavaServer Pages (JSPs)

Guide to Building a Product Catalog 5-15

Figure 5-5 The main.jsp Template Before User Login

The numbers in the following list refer to the numbered regions in the figure:

1. The admin banner is created from an import of the admin.inc template. The
banner provides links to the current template’s About information, the JSP template
index, and the Administration Tools page. The import call is:

<%@ include file="/commerce/includes/admin.inc" %>

You should remove the admin.inc template from the production pages before
you move them to your live server.

2. The page header is created from an import of the header.inc template. This is
standard across most of the JSP templates provided by WebLogic Commerce
Server. The import call is:

<%@ include file="/commerce/includes/header.inc" %>

5 The Product Catalog JSP Templates

5-16 Guide to Building a Product Catalog

The header.inc file creates the top banner and reserves space for the left-side
column. The contents of the column are determined by other processing. In this
example, only the leftside.inc resides in the left column (see item 4 in this
list).

3. The content in region 3 on the main.jsp template is generated by a series of
Pipeline JSP tags that obtain the top category (in this case, the root category for
the entire catalog) and use it to obtain all of its subcategories. Then, the Pipeline
JSP tags display each category name in a hyperlinked list.

4. The content in region 4 depends on whether the user is logged in. (In Figure 5-5,
the user had not logged in.) For that reason, only the leftside.inc template is
shown. The leftside.inc template is always included into the main.jsp
template. The include statement is:

 <%@ include file="/commerce/includes/leftside.inc" %>

However, if the user is logged in, the user is considered a registered customer,
welcomed with a greeting, and presented with links to view his profile, order
history, and payment history. In addition, the user can choose to Logout of their
account. Figure 5-6 shows only the left-side column when a user is logged in.

Figure 5-6 Left-Column of main.jsp When the User Is Logged In

5. The main.jsp template’s content in region 4 contains the included footer.inc
template. The include statement is:

JavaServer Pages (JSPs)

Guide to Building a Product Catalog 5-17

<%@ include file="/commerce/includes/footer.inc" %>

The footer.inc file consists of the horizontal footer at the bottom of the page.

Location in the WebLogic Commerce Server Directory Structure

You can find the main.jsp file at the following location, where WL_COMMERCE_HOME
is the directory in which you installed WebLogic Commerce Server:

%WL_COMMERCE_HOME%\config\wlcsDomain\applications\wlcsApp\wlcs\

commerce\main.jsp (Windows)
$WL_COMMERCE_HOME/config/wlcsDomain/applications/wlcsApps/wlcs/

commerce/main.jsp (UNIX)

Tag Library Imports

The main.jsp template uses Pipeline, Catalog, and the WebLogic Personalization
Server’s User Management JSP tags. Therefore, the template includes the following
JSP tag libraries:

<%@ taglib uri="pipeline.tld" prefix="pipeline" %>
<%@ taglib uri="cat.tld" prefix="catalog" %>
<%@ taglib uri="um.tld" prefix="um" %>

Note: For more information on the Pipeline JSP tags, see BEA WebLogic Commerce
Server Business Logic: Using Webflow and Pipeline. For more information
about the Catalog JSP tags, see “The Catalog JSP Tag Library: cat.tld” on page
6-3. For more information on the WebLogic Personalization Server’s User
Management JSP tags, see “JSP Tag Reference” in the BEA WebLogic
Personalization Server documentation.

These files reside in the following directory for the WebLogic Commerce Server Web
application:

%WL_COMMERCE_HOME%\config\wlcsDomain\applications\wlcsApp\

WEB-INF (Windows)
$WL_COMMERCE_HOME/config/wlcsDomain/applications/wlcsApp/

WEB-INF (UNIX)

5 The Product Catalog JSP Templates

5-18 Guide to Building a Product Catalog

Java Package Imports

The main.jsp template uses Java classes in the following packages and therefore
includes these import statements:

<%@ page import="com.beasys.commerce.webflow.*" %>
<%@ page import="com.beasys.commerce.foundation.pipeline.*" %>
<%@ page import="com.beasys.commerce.ebusiness.catalog.*" %>
<%@ page import="com.beasys.commerce.webflow.tags.WebFlowTagConstants" %>
<%@ page import="com.beasys.commerce.axiom.contact.*" %>
<%@ page import="com.beasys.commerce.ebusiness.customer.*" %>
<%@ page import="com.beasys.commerce.content.ContentHelper"%>

Location in the Default Webflow

The main.jsp template is the first page you or your customers will see upon starting
the WebLogic Commerce Server Web application. From this page, customers can
browse the store catalog by clicking on a link to a particular category (which loads the
browse.jsp template). Customers can also enter keywords and click the Find button
to perform a Quick Look-up of a particular product item (which loads the
searchresults.jsp template). If the customer is logged into the site, the customer
can also choose to log out (which loads a different version of the main.jsp template),
view their order history (which loads the orderhistory.jsp template), or view their
payment history (which loads the paymenthistory.jsp template).

Note: For more information about the default Webflow, see Figure 5-4.

Included JSP Templates

The following JSP templates are included into the main.jsp template:

n header.inc, which creates the top banner, and also includes the leftside.inc
template; the leftside.inc template reserves column space for generated
content that is displayed in the main.jsp template.

n leftside.inc, which provides a keyword-based search tool for finding product
items via keywords that have already been assigned.

n footer.inc, which creates a horizontal footer at the bottom of the page.

JavaServer Pages (JSPs)

Guide to Building a Product Catalog 5-19

Events

Every time a customer clicks a link or a button on the main.jsp template, it is
considered an event. Each event triggers a particular response in the default Webflow
that allows the customer to continue. While this response can be to load another JSP,
it is usually the case that an input processor and/or Pipeline is invoked first. Table 5-1
provides information about these events and the Webflow responses they invoke.
Descriptions are provided only for Pipelines.

For more information about individual Pipeline components, see “Pipeline
Components” on page 5-88.

Table 5-1 main.jsp Events

Event Webflow Response(s) Description

link(logout) LogoutCustomerIP

link(viewOrderHistory) RefreshOrderHistory Contains
RefreshOrderHistoryPC and
is not transactional.

link(viewPaymentHistory) RefreshPaymentHistory Contains
RefreshPaymentHistory and
is not transactional.

link(browse) BrowseCategory (IP)
MoveSiblingResults (IP)

GetBrowseDetails Contains GetCategoryPC,
GetParentPC,
GetSubcategoriesPC,
MoveAttributePC,
GetCategoryPC,
GetAncestorsPC,
GetSubcategoriesPC,
GetProductItemsPC and is not
transactional.

5 The Product Catalog JSP Templates

5-20 Guide to Building a Product Catalog

Dynamic Data Display

One purpose of the main.jsp template is to decide which version of the left column
to display (the one with just the Quick Look-up or the one with links to
customer-specific data). This is accomplished on the main.jsp template using a
combination of Pipeline JSP tags and the WebLogic Personalization Server’s User
Management JSP tags.

First, the getPipelineProperty Pipeline JSP tag obtains the USER_NAME attribute
from the Pipeline session. Table 5-2 provides more detailed information on this
attribute, which resides in the leftside.inc file.

Listing 5-3 illustrates how this attribute is obtained from the Pipeline session using the
getPipelineProperty Pipeline JSP tag in the header.inc file.

Listing 5-3 Obtaining the USER_NAME Attribute

<%-- Get the username --%>
<pipeline:getPipelineProperty propertyName="<%=
PipelineSessionConstants.USER_NAME %>"
returnName="userName" returnType="String" />

Note: For more information on the Pipeline JSP tags, see BEA WebLogic Commerce
Server Business Logic: Using Webflow and Pipeline.

Next, the main.jsp template checks to see if there is a value assigned to the username.
If so, the getProfile User Management JSP tag is used to set the customer profile
(context) for which the customer information should be retrieved, and the left column
is displayed with links to customer-specific data. Otherwise, just the Quick Look-up is
shown. This functionality is shown in Listing 5-4, taken from the leftside.inc file.

Table 5-2 main.jsp Pipeline Session Attributes

Attribute Type Description

PipelineSessionConstants.
USER_NAME

java.lang.String The customer’s username, if available.

JavaServer Pages (JSPs)

Guide to Building a Product Catalog 5-21

Listing 5-4 Displaying the Left Column of main.jsp

<%-- Get the username. The customer ’s profile should have already
been loaded --%>
<%-- obtained from the um:getProfile tag in the header.inc --%>

<pipeline:getPipelineProperty propertyName="<%=
PipelineSessionConstants.USER_NAME %>" returnName="userName"
returnType="String" />

<% if (userName != null && userName.length() != 0) { %>

<p>Welcome

<um:getPropertyAsString propertyName="firstName" />
<um:getPropertyAsString propertyName="lastName" /></p>

<p> <a href="<%=
WebflowJSPHelper.createWebflowURL(pageContext,

pageContext.getAttribute("AboutFileName") + ".jsp",
"link(viewCustomerProfile)", true) %>">View Profile</p>

<p> <a href="<%=
WebflowJSPHelper.createWebflowURL(pageContext, "main.jsp",
"link(logout)", true) %>">Logout</p>

<div class="mid" align="center">
<img src="<%=WebflowJSPHelper.createGIFURL(request,
response, "/commerce/images/left_rule.gif")%>" width="120"
height="14" align="absmiddle"></div>

<p>View History</p>

<p> <a href="<%=
WebflowJSPHelper.createWebflowURL(pageContext, "main.jsp",
"link(viewOrderHistory)", true)%>">Orders</p>

<p> <a href="<%=
WebflowJSPHelper.createWebflowURL(pageContext, "main.jsp",
"link(viewPaymentHistory)", true) %>">Payments</p>

<div class="mid" align="center"><img
src="<%=WebflowJSPHelper.createGIFURL(request, response,
"/commerce/images/left_rule.gif")%>" width="120" height="14"
align="absmiddle"></div>

<% } %>

<%-- End of log-in conditional links. --%>

5 The Product Catalog JSP Templates

5-22 Guide to Building a Product Catalog

<%-- Only display Quick Look-up links for pages where FullNav is
set to "true" --%>

<% if (pageContext.getAttribute("FullNav").equals("true")) { %>

<%-- Add the Quick Look-up section --%>

<p>Quick Look-up:</p>

<p> Enter keywords</p>

<%-- The optional CATALOG_VIEW_SIZE parameter allows you to specify
the number of items per "view" of results --%>

<input type=hidden name="<%=
HttpRequestConstants.CATALOG_VIEW_SIZE %>" value="10">

<p>

<input type="text" name="<%=
HttpRequestConstants.CATALOG_SEARCH_STRING %>" size="9"
maxlength="50">

<input type="image" value="Find" border="0"
src="<%=com.beasys.commerce.webflow.WebflowJSPHelper.createGIFURL
(request, response, "/commerce/images/btn_find.gif")%>"></p>

<div class="mid" align="center">
<img src="<%=WebflowJSPHelper.createGIFURL(request, response,
"/commerce/images/left_rule.gif")%>" width="120" height="14"
align="absmiddle"></div>

<% } %>

<%-- End of FullNav conditional content --%>

Note: For more information on the WebLogic Personalization Server’s User
Management JSP tags, see “JSP Tag Reference” in the BEA WebLogic
Personalization Server documentation.

However, the primary purpose of the main.jsp template is to dynamically display
Product Catalog data by category. This is accomplished using a combination of
Pipeline and Catalog JSP tags.

JavaServer Pages (JSPs)

Guide to Building a Product Catalog 5-23

First, the getPipelineProperty Pipeline JSP tag obtains the CATALOG_CATEGORY
and CATALOG_CATEGORIES attributes from the Pipeline session. Table 5-3 provides
more detailed information on these attributes.

Listing 5-5 illustrates how these attributes are obtained from the Pipeline session using
the getPipelineProperty Pipeline JSP tag.

Listing 5-5 Obtaining the CATALOG_CATEGORY and
CATALOG_CATEGORIES Attributes

<%-- Get the top category from the PipelineSession. --%>

<pipeline:getPipelineProperty
propertyName="<%= PipelineSessionConstants.CATALOG_CATEGORY %>"
returnName="topCategory"
returnType="com.beasys.commerce.ebusiness.catalog.Category"
attributeScope="<%= PipelineConstants.REQUEST_SCOPE %>"/>

<%-- Get the subcategories of the top category from the
PipelineSession. --%>

<pipeline:getPipelineProperty
propertyName="<%= PipelineSessionConstants.CATALOG_CATEGORIES %>"
returnName="subcategories"
returnType="com.beasys.commerce.ebusiness.catalog.ViewIterator"
attributeScope="<%= PipelineConstants.REQUEST_SCOPE %>"/>

Note: For more information on the Pipeline JSP tags, see BEA WebLogic Commerce
Server Business Logic: Using Webflow and Pipeline.

Table 5-3 main.jsp Pipeline Session Attributes

Attribute Type Description

PipelineSessionConstants
.CATALOG_CATEGORY

com.beasys.commerce.ebusiness
.catalog.Category

Contains the root category
for the Product Catalog.

PipelineSessionConstants
.CATALOG_CATEGORIES

com.beasys.commerce.ebusiness
.catalog.ViewIterator

Contains the top-level
categories for the Product
Catalog.

5 The Product Catalog JSP Templates

5-24 Guide to Building a Product Catalog

Next, a string containing common browse parameters for the page is created, as shown
in Listing 5-6. These parameters are used to establish context for the page (that is, a
knowledge of previous activity) and provide the Pipelines with appropriate
information during their subsequent executions.

Listing 5-6 Creating a String with Common Browse Parameters

<p class="head1">Store Catalog</p>
 <ul type="square">

<%-- Declare a String containing common browse parameters --%>

<%! static final String commonParameters = "&" +
HttpRequestConstants.CATALOG_SOURCE_KEY + "=" +
PipelineSessionConstants.CATALOG_CATEGORIES + "&" +
HttpRequestConstants.CATALOG_DESTINATION_KEY +
"=wlcs_siblings&"; %>

Lastly, the iterateViewIterator Catalog JSP tag is used to iterate through all the
categories (one at a time). The context for the page is captured by appending values to
the previously established browse parameters, and the getProperty Catalog JSP tag
is used to list the name of each category on the main.jsp template.

Listing 5-7 Displaying the Contents of the Product Catalog

<catalog:iterateViewIterator
iterator="<%=subcategories%>"
id="currentCategory"
returnType="com.beasys.commerce.ebusiness.catalog.Category">

<% String browseParameters = commonParameters +
HttpRequestConstants.CATALOG_CATEGORY_ID + "=" +
currentCategory.getKey().getIdentifier(); %>

<a href="<%=WebflowJSPHelper.createWebflowURL(pageContext,
"main.jsp", "link(browse)", browseParameters, true) %>">

<catalog:getProperty object="<%=currentCategory%>"
propertyName="Name"/>

JavaServer Pages (JSPs)

Guide to Building a Product Catalog 5-25

</catalog:iterateViewIterator>

Note: For more information about the Catalog JSP tags, see “The Catalog JSP Tag
Library: cat.tld” on page 6-3.

Form Field Specification

No form fields are used in the main.jsp template.

browse.jsp Template

In the hierarchical Product Catalog, the browse.jsp template can take on two
different forms, both of which are used by customers to browse for product items.
These forms are as follows:

n The Product Catalog reads a unique category.jsp template from the database
for the current category being browsed, and includes it into the browse.jsp
template. The category.jsp presents the current level of available categories
as hyperlinks. Additionally, a hyperlinked list of sibling categories is made
available above the main category. An ancestor category navigation bar (such as
Home → Power Tools) is also displayed at the top of the page. Figure 5-7 shows
a screen shot of this browse.jsp template form.

5 The Product Catalog JSP Templates

5-26 Guide to Building a Product Catalog

Figure 5-7 browse.jsp Template – Power Tools Subcategories

n Once a customer reaches the end of the catalog hierarchy (that is, when a
category contains product items instead of more subcategories), the catalog reads
the appropriate number of itemsummary.jsp templates from the database and
includes them into the category.jsp template. In this form of the browse.jsp
template, the itemsummary.jsp templates replace the hyperlinked list of
categories. The list of categories (above the category) still contains the current
category (highlighted), and the ancestor category navigation bar is also shown at
the top of the page. Figure 5-8 illustrates this nesting of JSP templates within the
browse.jsp template.

JavaServer Pages (JSPs)

Guide to Building a Product Catalog 5-27

Figure 5-8 Hierarchical Relationship of browse.jsp and Other JSPs

Figure 5-9 shows a screen shot of this browse.jsp template form, with one included
itemsummary.jsp.

5 The Product Catalog JSP Templates

5-28 Guide to Building a Product Catalog

Figure 5-9 browse.jsp Template – Power Tools → Drills Category with Item
Summary Display

Note: Each item in the catalog can be assigned a different item summary JSP,
allowing you to customize the layout for each type of item. This assignment
can be made on the catalog’s administration screen. For more information, see
the section “Determining How Categories and Items are Displayed to the Web
Site User” on page 4-31.

Sample Browser View

Figure 5-10 shows a version of a browse.jsp template.

JavaServer Pages (JSPs)

Guide to Building a Product Catalog 5-29

Figure 5-10 The browse.jsp Template

The numbers in the following list refer to the numbered regions in the figure:

1. The admin banner is created from an import of the admin.inc template. The
banner provides links to the current template’s About information, the JSP template
index, and the Administration Tools page. The import call is:

5 The Product Catalog JSP Templates

5-30 Guide to Building a Product Catalog

<%@ include file="/commerce/includes/admin.inc" %>

You should remove the admin.inc template from the production pages before
you move them to your live server.

2. The page header is created from an import of the header.inc template. This is
standard across most of the JSP templates provided by WebLogic Commerce
Server. The import call is:

<%@ include file="/commerce/includes/header.inc" %>

The header.inc file creates the top banner and reserves space for the left-side
column. The contents of the column are determined by other processing.

3. Region 3 of the browse.jsp template contains the leftside.inc template that
is included. This template provides a keyword-search feature. The include
statement is:

 <%@ include file="/commerce/includes/leftside.inc" %>

4. Region 4 of the browse.jsp template includes navigation.jsp, which builds a
hierarchical browse list for the catalog’s categories from the top-level Home
category down to the current category. The call to include this JSP is:

<jsp:include page="/commerce/catalog/includes/navigation.jsp"
flush="true"/>

5. Region 5 of the browse.jsp template contains the results of processing that
checks for sibling categories and displays them with hyperlinks to those
categories. In this example, the Pack category does not have any sibling
categories.

6. Region 6 of the browse.jsp template shows the generated results of processing
with the Webflow and Pipeline mechanisms that found the values for this
category (presented in the included \wlcs\commerce\catalog\includes\
category.jsp template). The category.jsp template, in turn, obtains the
values that return the item summary data (displayed by the
wlcs\commerce\catalog\includes\itemsummary.jsp templates) for each
product item in this category.

7. Region 7 of the browse.jsp template contains the included footer.inc
template. The include statement is:

<%@ include file="/commerce/includes/footer.inc" %>

The footer.inc file consists of the horizontal footer at the bottom of the page.

JavaServer Pages (JSPs)

Guide to Building a Product Catalog 5-31

Location in the WebLogic Commerce Server Directory Structure

You can find the browse.jsp file at the following location, where
WL_COMMERCE_HOME is the directory in which you installed WebLogic Commerce
Server:

%WL_COMMERCE_HOME%\config\wlcsDomain\applications\wlcsApp\wlcs\

commerce\catalog\browse.jsp (Windows)
$WL_COMMERCE_HOME/config/wlcsDomain/applications/wlcsApp/wlcs/

commerce/catalog/browse.jsp (UNIX)

Tag Library Imports

The browse.jsp template uses Pipeline and Catalog JSP tags. Therefore, the template
includes the following JSP tag libraries:

<%@ taglib uri="pipeline.tld" prefix="pipeline" %>
<%@ taglib uri="cat.tld" prefix="catalog" %>

Note: For more information on the Pipeline JSP tags, see BEA WebLogic Commerce
Server Business Logic: Using Webflow and Pipeline. For more information
about the Catalog JSP tags, see “The Catalog JSP Tag Library: cat.tld” on page
6-3.

These files reside in the following directory for the WebLogic Commerce Server Web
application:

%WL_COMMERCE_HOME%\config\wlcsDomain\applications\wlcsApp\

WEB-INF (Windows)
$WL_COMMERCE_HOME/config/wlcsDomain/applications/wlcsApp/

WEB-INF (UNIX)

Java Package Imports

The browse.jsp template uses Java classes in the following packages and therefore
includes these import statements:

<%@ page import="com.beasys.commerce.webflow.*" %>
<%@ page import="com.beasys.commerce.foundation.pipeline.*" %>
<%@ page import="com.beasys.commerce.ebusiness.catalog.*" %>

5 The Product Catalog JSP Templates

5-32 Guide to Building a Product Catalog

Location in the Default Webflow

The browse.jsp template is displayed (with the included category.jsp template)
when a customer clicks on a link for one of the categories shown on the main.jsp
template. The browse.jsp template is redisplayed (with different content using the
included category.jsp template) each time a customer clicks on a subcategory link.
It is also displayed when a customer selects a sibling link from the list above the
category. The browse.jsp continues to be displayed until the customer arrives at item
summaries (shown by the category.jsp template’s included itemsummary.jsp
templates). From there, the customer can choose to view more details about an item
(which loads the details.jsp template), or add the item to their shopping cart (which
loads the shoppingcart.jsp template).

Customers can also still enter keywords and click the Find button to perform a Quick
Look-up of a particular product item or category (which loads the
searchresults.jsp template). If the customer is logged into the site, the customer
can also choose to view their order history (which loads the orderhistory.jsp
template), view their payment history (which loads the paymenthistory.jsp
template), or log out (which loads the generic version of the main.jsp template).

Note: For more information about the default Webflow, see Figure 5-4.

Included JSP Templates

The following JSP templates are included into the browse.jsp template:

n header.inc, which creates the top banner, and also includes the leftside.inc
template; the leftside.inc template reserves column space for generated
content that is displayed in main.jsp.

n leftside.inc, which provides a keyword-based search tool for finding product
items via keywords that have already been assigned.

n navigation.jsp, which builds a hierarchical browse list for the catalog’s
categories from the top-level Home category down to the current category. For
more information about the navigation.jsp template, see “About the Included
navigation.jsp Template” on page 5-33.

n category.jsp, which displays links to the current category’s subcategories, and
also includes the itemsummary.jsp template (if particular items are available).
For more details about the category.jsp template, see “About the Included
category.jsp Template” on page 5-35. For more details about the

JavaServer Pages (JSPs)

Guide to Building a Product Catalog 5-33

itemsummary.jsp template, see “About the Included itemsummary.jsp
Template” on page 5-41.

n footer.inc, which creates a horizontal footer at the bottom of the page.

About the Included navigation.jsp Template

The navigation.jsp template (included in the browse.jsp template) is responsible
for generating the ancestor category navigation bar that is shown at the top of the page.
The navigation.jsp template utilizes Pipeline, Catalog, and the WebLogic
Personalization Server’s Utility JSP tags to generate this content.

First, the getPipelineProperty Pipeline JSP tag is used to obtain the current
category (that is, the CATALOG_CATEGORY attribute) from the Pipeline session, as
shown in Listing 5-8.

Listing 5-8 Obtaining the CATALOG_CATEGORY Attribute

<pipeline:getPipelineProperty
 propertyName="<%=PipelineSessionConstants.CATALOG_CATEGORY%>"
 returnName="category"
 returnType="com.beasys.commerce.ebusiness.catalog.Category"
 attributeScope="<%= PipelineConstants.REQUEST_SCOPE %>"/>

Note: For more information on the Pipeline JSP tags, see BEA WebLogic Commerce
Server Business Logic: Using Webflow and Pipeline.

Next, the <es> JSP tag (one of the WebLogic Personalization Server Utility JSP tags)
is used to ensure that the conditions under which the ancestor category navigation bar
is displayed are appropriate. If so, the category’s ancestors are obtained from the
Pipeline session (again using the getPipelineProperty Pipeline JSP tag).

Listing 5-9 Establishing Conditional Display of the Navigation Bar and
Obtaining the Category’s Ancestors

<%-- Only output the navigation bar if a current category exists in
the PipelineSession --%>

<es:notNull item="<%=category%>">

5 The Product Catalog JSP Templates

5-34 Guide to Building a Product Catalog

 <%-- Get the category’s ancestors from the PipelineSession --%>

 <pipeline:getPipelineProperty
 propertyName="<%=PipelineSessionConstants.CATALOG_ANCESTORS%>"
 returnName="ancestors"
 returnType="com.beasys.commerce.ebusiness.catalog.Category[]"
 attributeScope="<%=PipelineConstants.REQUEST_SCOPE%>"/>

Note: For more information on the Pipeline JSP tags, see BEA WebLogic Commerce
Server Business Logic: Using Webflow and Pipeline. For more information on
the WebLogic Personalization Server’s Utility JSP tags, see “JSP Tag
Reference” in the BEA WebLogic Personalization Server documentation.

Browse parameters for the navigation.jsp template are concatenated into a single
string, and a link is created for each category ancestor. These parameters are used to
establish context for the page (that is, a knowledge of previous activity) and provide
the Pipelines with appropriate information during their subsequent executions. In the
case of the last ancestor, a link to the main catalog page is also created. This is
accomplished with the <es> WebLogic Personalization Server Utility JSP tag and the
getProperty Catalog JSP tag, as shown in Listing 5-10.

Listing 5-10 Generating the Hierarchical Category Navigation Bar

 <%-- Declare a String containing common browse parameters --%>

 <%! static final String commonParameters = "&" +
 HttpRequestConstants.CATALOG_SOURCE_KEY + "=" +
 PipelineSessionConstants.CATALOG_CATEGORIES + "&" +
 HttpRequestConstants.CATALOG_DESTINATION_KEY +
 "=wlcs_siblings&"; %>

 <%-- Iterate through all the category’s ancestors, creating a
 browse link for each --%>

 <es:forEachInArray id="ancestor"
 type="com.beasys.commerce.ebusiness.catalog.Category"
 array="<%=ancestors%>" counterId="i">

 <%-- Add a link to the main catalog page in the case of the last
 ancestor --%>

 <% if (i.intValue() == 0) { %>
 <p><a href="<%= WebflowJSPHelper.createWebflowURL

JavaServer Pages (JSPs)

Guide to Building a Product Catalog 5-35

 (pageContext, "navigation.jsp", "link(home)", true)
 %>">Home

 <%-- Otherwise, link to the browse page for the current
 ancestor --%>

 <% } else { %>
 <a href="<%= WebflowJSPHelper.createWebflowURL
 (pageContext, "navigation.jsp", "link(browse)",
 commonParameters + HttpRequestConstants.CATALOG_CATEGORY_ID
 + "=" + ancestor.getKey().getIdentifier(), true) %>">

<catalog:getProperty object="<%=ancestor%>"
 propertyName="Name"/>

 <% } %>

 >

 </es:forEachInArray>

<%-- Insert the category name --%>

 <catalog:getProperty object="<%=category%>"
 propertyName="Name"/>
 </p>

</es:notNull>

Note: For more information about the WebLogic Personalization Server’s Utility
JSP tags, see “JSP Tag Reference” in the BEA WebLogic Personalization
Server documentation. For more information about the Catalog JSP tags, see
“The Catalog JSP Tag Library: cat.tld” on page 6-3.

About the Included category.jsp Template

The category.jsp template (included in the browse.jsp template) provides a
standardized format for the display of hyperlinked subcategories. In the WebLogic
Commerce Server Web application, this format is a simple list. However, you can
always modify the template to use a different format.

5 The Product Catalog JSP Templates

5-36 Guide to Building a Product Catalog

The category.jsp template utilizes Pipeline and Catalog JSP tags to generate the
specialized content displayed in the browse.jsp template. This is accomplished by
first obtaining the current catalog category and its subcategories from the Pipeline
session using the getPipelineProperty Pipeline JSP tag, as shown in Listing 5-11.

Listing 5-11 Obtaining the CATALOG_CATEGORY and
CATALOG_CATEGORIES Attributes

<%-- Get the current category from the PipelineSession --%>

<pipeline:getPipelineProperty
 propertyName="<%=PipelineSessionConstants.CATALOG_CATEGORY%>"
 returnName="category"
 returnType="com.beasys.commerce.ebusiness.catalog.Category"
 attributeScope="<%=PipelineConstants.REQUEST_SCOPE%>"/>

<%-- Get the subcategories from the PipelineSession --%>

<pipeline:getPipelineProperty
 propertyName="<%=PipelineSessionConstants.CATALOG_CATEGORIES%>"
 returnName="subcategories"
 returnType="com.beasys.commerce.ebusiness.catalog.ViewIterator"
 attributeScope="<%=PipelineConstants.REQUEST_SCOPE%>"/>

Note: For more information on the Pipeline JSP tags, see BEA WebLogic Commerce
Server Business Logic: Using Webflow and Pipeline.

Next, a string containing common browse parameters for the page is created. These
parameters are used to establish context for the page (that is, a knowledge of previous
activity) and provide the Pipelines with appropriate information during their
subsequent executions. The category.jsp template then displays the current
category name using the getProperty Catalog JSP tag, as shown in Listing 5-12.

Listing 5-12 Generating Browse Parameters and Inserting the Category Name

<%! static final String commonParameters = "&" +
 HttpRequestConstants.CATALOG_SOURCE_KEY + "=" +
 PipelineSessionConstants.CATALOG_CATEGORIES + "&" +
 HttpRequestConstants.CATALOG_DESTINATION_KEY +
 "=wlcs_siblings&"; %>

JavaServer Pages (JSPs)

Guide to Building a Product Catalog 5-37

<%-- Insert the category name --%>

<table border="0" width="90%" cellpadding="3">

<tr>

 <td align="left">

 <p class="head1"><catalog:getProperty
 object="<%= category %>" propertyName="Name"/></p>

 </td>

Note: For more information about the Catalog JSP tags, see “The Catalog JSP Tag
Library: cat.tld” on page 6-3.

Any subcategories associated with the category are then displayed as hyperlinks that
allow the customer to browse further. This is done using the iterateViewIterator
Catalog JSP tag, as shown in Listing 5-13.

Listing 5-13 Displaying Hyperlinked Subcategories

<center>
<table cellpadding="3" border="0" width="90%">

 <catalog:iterateViewIterator
 iterator="<%=subcategories%>"
 id="subcategory"
 returnType="com.beasys.commerce.ebusiness.catalog.Category">

 <tr><td width="30%" valign="top">
 <p class="tabletext">
 <a href="<%=WebflowJSPHelper.createWebflowURL(pageContext,
 "category.jsp", "link(browse)", commonParameters +
 HttpRequestConstants.CATALOG_CATEGORY_ID + "=" +
 subcategory.getKey().getIdentifier(), true) %>">

 <catalog:getProperty object="<%=subcategory%>"
 propertyName="Name"/></p>

 </td></tr>
 </catalog:iterateViewIterator>
</table>
</center>

5 The Product Catalog JSP Templates

5-38 Guide to Building a Product Catalog

Note: For more information about the Catalog JSP tags, see “The Catalog JSP Tag
Library: cat.tld” on page 6-3.

If there are any individual items at this level in the hierarchy, the category.jsp
template retrieves them using the getPipelineProperty Pipeline JSP tag, and sets
the view. The view is basically a pointer that indicates the location in the complete list
of results where we want to start displaying information. This processing is shown in
Listing 5-14.

Listing 5-14 Obtaining Individual Product Items and Setting the View

<pipeline:getPipelineProperty
propertyName="<%= PipelineSessionConstants.CATALOG_ITEMS %>"
returnName="items"
returnType="com.beasys.commerce.ebusiness.catalog.ViewIterator"
attributeScope="<%= PipelineConstants.REQUEST_SCOPE %>"/>
.
.
.
// Goto the correct view within the ViewIterator

String viewIndexString =
(String)request.getParameter(HttpRequestConstants.CATALOG_VIEW_INDEX);

if (viewIndexString == null) { viewIndexString = "0"; }

int viewIndex = Math.min(Integer.valueOf(viewIndexString).intValue(),
items.getViewCount() - 1);

if (viewIndex > 0) { items.gotoViewAt(viewIndex); }

%>

Note: For more information on the Pipeline JSP tags, see BEA WebLogic Commerce
Server Business Logic: Using Webflow and Pipeline.

Adding previous and next navigation

If individual product items were obtained, the category.jsp template iterates
through each item using the iterateThroughView and getProperty Catalog JSP
tags, and includes an itemsummary.jsp template to display the information related to
each item, as shown in Listing 5-15.

JavaServer Pages (JSPs)

Guide to Building a Product Catalog 5-39

Listing 5-15 Iterating Through and Displaying Product Item Information

<catalog:iterateThroughView
iterator="<%=items%>" id="item"
returnType="com.beasys.commerce.ebusiness.catalog.ProductItem"
viewIndex="<%= viewIndex %>">

<%-- Add the required parameters for the included JSP to the request --%>

<% request.setAttribute("product_item", item); %>
<% request.setAttribute("details_link", "details"); %>

<%-- Get the summary JSP from the current product item --%>

<catalog:getProperty
object="<%=item%>"
propertyName="Jsp"
getterArgument="<%= new Integer(ProductItem.SUMMARY_DISPLAY_JSP_INDEX) %>"
id="summaryJsp"
returnType="com.beasys.commerce.ebusiness.catalog.JspInfo"/>

<%-- Include the summary JSP --%>

<jsp:include page="<%=summaryJsp.getUrl()%>" flush="true"/>

</catalog:iterateThroughView>

Note: For more information about the Catalog JSP tags, see “The Catalog JSP Tag
Library: cat.tld” on page 6-3. For more information about the
itemsummary.jsp template, see the following section.

Lastly, the category.jsp template counts the number of itemsummary.jsp files
used (the number of items), and inserts a numeric range of items across from the
category name. For example, if there are nine items on the page, the category.jsp
template inserts “1 - 9” to indicate that the page contains items one through nine. If
there are enough items to create more than one page (for example, more than 10 items),
the template inserts “previous” and/or “next” hyperlinks to navigate to the previous or
next page of items, depending on where the visitor is.

5 The Product Catalog JSP Templates

5-40 Guide to Building a Product Catalog

Listing 5-16 Setting Top and Bottom “Previous” and “Next” Links

<%-- Add "Next" and "Previous" top navigation --%>

 <% if (items.size() > 0) { %>

 <td align="right">

<%-- Add "Previous" link --%>

 <% if (items.hasPreviousView()) { %>

<a href="<%= WebflowJSPHelper.createWebflowURL(pageContext,
"category.jsp", "link(browse)", commonParameters +
HttpRequestConstants.CATALOG_CATEGORY_ID + "=" +
category.getKey().getIdentifier() + "&" +
HttpRequestConstants.CATALOG_VIEW_INDEX + "=" +
(viewIndex - 1), true) %>">Previous |

 <% } %>

 <%-- Add current view indicies --%>

 <% if (items.size() > 1) { %>

<%= items.getCurrentView().getFirstIndex() %> -
<%= items.getCurrentView().getLastIndex() %>

 <% } %>

<%-- Add "Next" link --%>

 <% if (items.hasNextView()) { %>

 | <a href="<%= WebflowJSPHelper.createWebflowURL(pageContext,
"category.jsp", "link(browse)", commonParameters +
HttpRequestConstants.CATALOG_CATEGORY_ID + "=" +
category.getKey().getIdentifier() + "&" +
HttpRequestConstants.CATALOG_VIEW_INDEX + "=" + (viewIndex + 1),
true) %>">Next</td>

JavaServer Pages (JSPs)

Guide to Building a Product Catalog 5-41

About the Included itemsummary.jsp Template

The itemsummary.jsp template (included in the category.jsp template) provides
a standardized format for the display of specific product items. In the WebLogic
Commerce Server Web application, this format contains an image, a link to more
details about the item (that is, to the details.jsp template), some brief information
about the item, and an Add to Cart button. However, you can always modify the
template to use a different format.

The itemsummary.jsp template uses a combination of Pipeline, Catalog, and the
WebLogic Personalization Server’s Utility JSP tags to generate the specialized content
displayed for each item within the category.jsp template. This is accomplished by
first obtaining all required parameters from the request object, and then obtaining the
current catalog category (that is, the CATALOG_CATEGORY attribute) from the Pipeline
session using the getPipelineProperty Pipeline JSP tag, as shown in Listing 5-17.

Listing 5-17 Obtaining Request Object Parameters and the
CATALOG_CATEGORY Attribute

<% ProductItem productItem =
 (ProductItem)request.getAttribute("product_item"); %>

<% String detailsLink =
 (String)request.getAttribute("details_link"); %>

<%-- Get the current category from the PipelineSession --%>

<pipeline:getPipelineProperty
 propertyName="<%=PipelineSessionConstants.CATALOG_CATEGORY%>"
 returnName="category"
 returnType="com.beasys.commerce.ebusiness.catalog.Category"
 attributeScope="<%=PipelineConstants.REQUEST_SCOPE%>"/>

Note: For more information on the Pipeline JSP tags, see BEA WebLogic Commerce
Server Business Logic: Using Webflow and Pipeline.

Next, each piece of descriptive information for the item is displayed, using the
getProperty Catalog JSP tag and the <es> WebLogic Personalization Server Utility
JSP tag, as shown in Listing 5-18.

5 The Product Catalog JSP Templates

5-42 Guide to Building a Product Catalog

Listing 5-18 Displaying Product Item Information

<%-- Add the small image --%>

<catalog:getProperty object="<%=productItem%>"
 propertyName="Image"
 getterArgument="<%=new Integer(ProductItem.SMALL_IMAGE_INDEX)%>"
 id="smallImage"
 returnType="com.beasys.commerce.ebusiness.catalog.ImageInfo"/>

<td valign="top">
 <img src="<%=com.beasys.commerce.webflow.WebflowJSPHelper.
 createGIFURL(request, response, smallImage.getUrl())%>"
 align="left"></td>

<td align="left" valign="top" width="90%">

 <%-- Add the item name and creator --%>
 <%-- Create the details link --%>

 <% String detailsUrl = null; %>
 <es:isNull item="<%=category%>">

 <% detailsUrl = WebflowJSPHelper.createWebflowURL(pageContext,
 "itemsummary.jsp", "link(" + detailsLink + ")", "&" +
 HttpRequestConstants.CATALOG_ITEM_SKU + "=" +
 productItem.getKey().getIdentifier() + "&" +
 HttpRequestConstants.DOCUMENT_TYPE + "=" +
 detailsLink, true); %>

 </es:isNull>

 <es:notNull item="<%=category%>">

 <% detailsUrl = WebflowJSPHelper.createWebflowURL(pageContext,
 "itemsummary.jsp", "link(" + detailsLink + ")", "&" +
 HttpRequestConstants.CATALOG_ITEM_SKU + "=" +
 productItem.getKey().getIdentifier() + "&" +
 HttpRequestConstants.CATALOG_CATEGORY_ID + "=" +
 category.getKey().getIdentifier() + "&" +
 HttpRequestConstants.DOCUMENT_TYPE + "=" +
 detailsLink, true); %>

 </es:notNull>

 <div class="tabletext">

<%-- we will fire off a clickProductEvent when the user clicks on
the product details to see this product --%>

JavaServer Pages (JSPs)

Guide to Building a Product Catalog 5-43

<productTracking:clickProductEvent
id="url"
documentId="<%= productItem.getName() %>"
sku="<%= productItem.getKey().getIdentifier() %>" />

<% detailsUrl = detailsUrl + "&" + url; %>

 <a href="<%=detailsUrl%>">
 <catalog:getProperty object="<%=productItem%>"
 propertyName="Name"/>

 ,

 <catalog:getProperty object="<%=productItem%>"
 propertyName="Creator"/>

 </div>

 <%-- Add the item price --%>

 <div class="tabletext">

 <catalog:getProperty object="<%=productItem%>"
 propertyName="CurrentPrice" id="price"
 returnType="com.beasys.commerce.axiom.units.Money"/>

 <i18n:getMessage messageName="<%= price.getCurrency() %>"/>
 <%= WebflowJSPHelper.priceFormat(price.getValue()) %>

 , Reg.

 <catalog:getProperty object="<%=productItem%>"
 propertyName="Msrp" id="msrp"
 returnType="com.beasys.commerce.axiom.units.Money"/>

 <i18n:getMessage messageName="<%= msrp.getCurrency() %>"/>
 <%= WebflowJSPHelper.priceFormat(msrp.getValue()) %>

 </div>

<%-- Add inventory information --%>

 <catalog:getProperty object="<%=productItem%>"
 propertyName="Availability" id="inventory"
 returnType="com.beasys.commerce.ebusiness.catalog.InventoryInfo"
 />

 <div class="tabletext">

5 The Product Catalog JSP Templates

5-44 Guide to Building a Product Catalog

 <% if (inventory.getInStock()) { %>
 In stock (<%=inventory.getShippingTime()%>)
 <% } else { %>
 Out of stock.
 <% } %>

 </div>

<%-- Add a short description of the item --%>

 <div class="tabletext">

 <catalog:getProperty object="<%=productItem%>"
 propertyName="Description"
 getterArgument="<%=new Integer
 (CatalogItem.SHORT_DESCRIPTION_INDEX)%>"/>

 </div>

<%-- Add the ’Add to Cart’ link --%>

 <div align="right">

 <a href="<%=WebflowJSPHelper.createWebflowURL(pageContext,
 "itemsummary.jsp", "link(add)", "&" +
 HttpRequestConstants.CATALOG_ITEM_SKU + "=" +
 productItem.getKey().getIdentifier(), true) %>">
 <img src="<%=com.beasys.commerce.webflow.WebflowJSPHelper.
 createGIFURL(request, response, "/commerce/images/
 btn_addcart.gif")%>" alt="Add To Shopping Cart" border="0"
 vspace="4">

 </div>

</td>

Note: For more information about the Catalog JSP tags, see “The Catalog JSP Tag
Library: cat.tld” on page 6-3. For more information about the WebLogic
Personalization Server’s Utility JSP tags, see “JSP Tag Reference” in the BEA
WebLogic Personalization Server documentation.

JavaServer Pages (JSPs)

Guide to Building a Product Catalog 5-45

Events

Every time a customer clicks a link or a button on the browse.jsp template, it is
considered an event. Each event triggers a particular response in the default Webflow
that allows the customer to continue. While this response can be to load another JSP,
it is usually the case that an input processor and/or Pipeline is invoked first. Table 5-4
provides information about these events and the Webflow responses they invoke.
Descriptions are provided only for Pipelines.

For more information about individual Pipeline components, see “Pipeline
Components” on page 5-88.

Because the category.jsp template also includes the itemsummary.jsp template,
the events shown in Table 5-5 are also considered part of the browse.jsp template.

Table 5-4 browse.jsp (and included category.jsp) Events

Event Webflow Response(s) Description

link(browse) BrowseCategory (IP)

MoveSiblingResults (IP)

GetBrowseDetails Contains GetCategoryPC, GetParentPC,
GetSubcategoriesPC, MoveAttributePC,
GetCategoryPC, GetAncestorsPC,
GetSubcategoriesPC,
GetProductItemsPC and is not transactional.

Table 5-5 itemsummary.jsp Events

Event Webflow Response(s)

link(details) GetProductItemDetails (IP)

link(add) AddProductItemToShoppingCart (IP)

5 The Product Catalog JSP Templates

5-46 Guide to Building a Product Catalog

Dynamic Data Display

The primary purpose of the browse.jsp template is to dynamically display content
based on the hyperlinked path the customer chooses to follow. As previously
described, this is accomplished mostly through the included category.jsp and
itemsummary.jsp templates. (For more information, see “About the Included
category.jsp Template” on page 5-35 and “About the Included itemsummary.jsp
Template” on page 5-41.)

However, there is still some dynamic data that is handled solely by the browse.jsp
template; that is, the list of sibling categories above the category name. First, the
getPipelineProperty Pipeline JSP tag retrieves the CATALOG_CATEGORY and
wlcs_siblings attributes from the Pipeline session. Table 5-6 provides more
detailed information on these attributes.

Listing 5-19 illustrates how these attributes are retrieved from the Pipeline session
using the getPipelineProperty Pipeline JSP tag, along with the category siblings.

Listing 5-19 Obtaining the CATALOG_CATEGORY and wlcs_siblings
Attributes

<%-- Get the current category --%>

<pipeline:getPipelineProperty
 propertyName="<%=PipelineSessionConstants.CATALOG_CATEGORY%>"
 returnName="category"
 returnType="com.beasys.commerce.ebusiness.catalog.Category"
 attributeScope="<%= PipelineConstants.REQUEST_SCOPE %>"/>
.
.
.

Table 5-6 browse.jsp Pipeline Session Attributes

Attribute Type Description

PipelineSessionConstants
.CATALOG_CATEGORY

com.beasys.commerce.ebusiness
.catalog.Category

Contains the root category
for the Product Catalog.

wlcs_siblings com.beasys.commerce.ebusiness
.catalog.ViewIterator

Contains the siblings for a
given category.

JavaServer Pages (JSPs)

Guide to Building a Product Catalog 5-47

<%-- Get the siblings from the PipelineSession --%>

<pipeline:getPipelineProperty
 propertyName="wlcs_siblings"
 returnName="siblings"
 returnType="com.beasys.commerce.ebusiness.catalog.ViewIterator"
 attributeScope="<%= PipelineConstants.REQUEST_SCOPE %>"/>

Note: For more information on the Pipeline JSP tags, see BEA WebLogic Commerce
Server Business Logic: Using Webflow and Pipeline.

Next, a string containing common browse parameters for the page is created. These
parameters are used to establish context for the page (that is, a knowledge of previous
activity) and provide the Pipelines with appropriate information during their
subsequent executions. The iterateViewIterator and getProperty Catalog JSP
tags are then used to iterate through the siblings and create browse hyperlinks for each
of them (if appropriate), as shown in Listing 5-20. This activity happens prior to any
calls to the included category.jsp and/or itemsummary.jsp templates.

Listing 5-20 Establishing Common Browse Parameters and Creating Browse
Links for Categories

<%-- Declare a String containing common browse parameters --%>

<%! static final String commonParameters = "&" +
HttpRequestConstants.CATALOG_SOURCE_KEY + "=" +
PipelineSessionConstants.CATALOG_CATEGORIES + "&" +
HttpRequestConstants.CATALOG_DESTINATION_KEY + "=wlcs_siblings&";
%>

<%-- Iterate through all siblings, creating a browse link for each.
--%>

<catalog:iterateViewIterator iterator="<%=siblings%>" id="sibling"
 returnType="com.beasys.commerce.ebusiness.catalog.Category">

<%-- Just highlight the category name if the current sibling is the
current category --%>

<% if (sibling.getKey().equals(category.getKey())) { %>
 <p>
 <catalog:getProperty object="<%=sibling%>" propertyName="Name"/>
 </p>

5 The Product Catalog JSP Templates

5-48 Guide to Building a Product Catalog

<% } else { %>

<%-- Otherwise, link to the browse page for the current sibling --%>

 <p><a href="<%=WebflowJSPHelper.createWebflowURL(pageContext,
 "browse.jsp", "link(browse)", commonParameters +
 HttpRequestConstants.CATALOG_CATEGORY_ID + "=" +
 sibling.getKey().getIdentifier(), true) %>">

 <catalog:getProperty object="<%=sibling%>"
 propertyName="Name"/></p>

<% } %>

</catalog:iterateViewIterator>

Note: For more information about the Catalog JSP tags, see “The Catalog JSP Tag
Library: cat.tld” on page 6-3.

Form Field Specification

No form fields are used in the browse.jsp template, nor in the browse.jsp
template’s included category.jsp or itemsummary.jsp templates.

JavaServer Pages (JSPs)

Guide to Building a Product Catalog 5-49

details.jsp Template

The brief description presented for each product item on the generated
itemsummary.jsp templates includes a hyperlink to the item. When customers click
this link, the browser loads the details.jsp template, which customer can use to
view more detailed information about the item. Although the WebLogic Commerce
Server Web application presents the same information on the itemsummary.jsp
template and the details.jsp template, you can use this page separation to
customize the content for your customers.

Because the name of the detailed display JSP is loaded from the database (that is, it
does not have to always be details.jsp), you can have different display JSPs for
different Product Catalog items. For example, you can provide custom display JSPs to
include seasonal or promotional text. The Product Catalog administrator simply needs
to switch between the detailed display JSPs (once they have been tested) using the
Administration Tools.

Notes: For more information about the itemsummary.jsp template, see “About the
Included itemsummary.jsp Template” on page 5-41.

For more information about the Product Catalog Administration Tools, see
Chapter 4, “Catalog Administration Tasks.”

Sample Browser View

Figure 5-11 shows a version of a details.jsp template.

5 The Product Catalog JSP Templates

5-50 Guide to Building a Product Catalog

Figure 5-11 The details.jsp Template

The numbers in the following list refer to the numbered regions in the figure:

1. The admin banner is created from an import of the admin.inc template. The
banner provides links to the current template’s About information, the JSP template
index, and the Administration Tools page. The import call is:

<%@ include file="/commerce/includes/admin.inc" %>

You should remove the admin.inc template from the production pages before
you move them to your live server.

JavaServer Pages (JSPs)

Guide to Building a Product Catalog 5-51

2. The page header is created from an import of the header.inc template. This is
standard across many of the JSP templates provided by WebLogic Commerce
Server. The import call is:

 <%@ include file="/commerce/includes/header.inc" %>

3. Region 3 of the details.jsp template includes navigation.jsp, which builds
a hierarchical browse list for the catalog’s categories from the top-level Home
category down to the current category. The call to include this JSP is:

<jsp:include page="/commerce/catalog/includes/navigation.jsp"
flush="true"/>

4. Region 4 of the details.jsp template shows the results generated from
processing with the Webflow and Pipeline mechanisms that found the detailed
information for this particular product item (presented in the included
itemdetails.jsp template).

5. Region 5 of the details.jsp template contains the included footer.inc
template. The include statement is:

<%@ include file="/commerce/includes/footer.inc" %>

The footer.inc file consists of the horizontal footer at the bottom of the page.

Location in the WebLogic Commerce Server Directory Structure

You can find the details.jsp file at the following location, where
WL_COMMERCE_HOME is the directory in which you installed WebLogic Commerce
Server:

%WL_COMMERCE_HOME%\config\wlcsDomain\applications\wlcsApp\wlcs\

commerce\catalog\details.jsp (Windows)
$WL_COMMERCE_HOME/config/wlcsDomain/applications/wlcsApp/wlcs/

commerce/catalog/details.jsp (UNIX)

Tag Library Imports

The details.jsp template uses Pipeline and Catalog JSP tags. Therefore, the
template includes the following JSP tag libraries:

<%@ taglib uri="pipeline.tld" prefix="pipeline" %>
<%@ taglib uri="cat.tld" prefix="catalog" %>
<%@ taglib uri="productTracking.tld" prefix="productTracking" %>

5 The Product Catalog JSP Templates

5-52 Guide to Building a Product Catalog

Note: For more information on the Pipeline JSP tags, see BEA WebLogic Commerce
Server Business Logic: Using Webflow and Pipeline. For more information
about the Catalog JSP tags, see “The Catalog JSP Tag Library: cat.tld” on page
6-3.

These files reside in the following directory for the WebLogic Commerce Server Web
application:

%WL_COMMERCE_HOME%\config\wlcsDomain\applications\wlcsApp\wlcs\

WEB-INF (Windows)
$WL_COMMERCE_HOME/config/wlcsDomain/applications/wlcsApp/wlcs/

WEB-INF (UNIX)

Java Package Imports

The details.jsp template uses Java classes in the following packages and therefore
includes these import statements:

<%@ page import="com.beasys.commerce.webflow.*" %>
<%@ page import="com.beasys.commerce.foundation.pipeline.*" %>
<%@ page import="com.beasys.commerce.ebusiness.catalog.*" %>
<%@ page import="com.bea.commerce.ebusiness.tracking.events.
DisplayProductEvent" %>

Location in the Default Webflow

The details.jsp template is displayed when a customer clicks on a link for a
particular product item shown on an itemsummary.jsp template (part of the
browse.jsp or search.jsp templates). From the details.jsp template, the
customer can choose to browse back up the ancestor category navigation bar (which
loads the browse.jsp template) or add the product item to their shopping cart (which
loads the shoppingcart.jsp template).

Note: For more information about the default Webflow, see Figure 5-4.

Included JSP Templates

The following JSP templates are included into the details.jsp template:

n header.inc, which creates the top banner, and also includes the leftside.inc
template; the leftside.inc template reserves column space for generated
content that is displayed in details.jsp.

JavaServer Pages (JSPs)

Guide to Building a Product Catalog 5-53

n navigation2.jsp, which builds a hierarchical browse list for the catalog’s
categories from the top-level Home category down to the current category (only
if the previous page was the browse.jsp template). The navigation2.jsp
template is similar to the navigation.jsp template, except that it also adds a
link for the top-level category. For more information about the navigation.jsp
template, see “About the Included navigation.jsp Template” on page 5-33.

n itemdetails.jsp, which displays the detailed information about the selected
product item. For more details about the itemdetails.jsp template, see
“About the Included itemdetails.jsp Template” on page 5-53.

n footer.inc, which creates a horizontal footer at the bottom of the page.

About the Included itemdetails.jsp Template

The itemdetails.jsp template (included in the details.jsp template) provides a
standardized format for the display of specific item information. In the WebLogic
Commerce Server Web application, this format is the same as what is shown in the
itemsummary.jsp templates, with some exceptions. In the itemdetails.jsp
template, for example, there is a link to a larger version of the image, and no link to the
product item itself. (For more information about itemsummary.jsp templates, see
“About the Included itemsummary.jsp Template” on page 5-41.) Remember, you can
always modify the template to use a different format that better suits your
requirements.

Events

Every time a customer clicks a link or button on a JSP, it is considered an event. Events
trigger particular responses in the default Webflow that allow customers to continue.
While this response can be to load another JSP, it is usually the case that an input
processor and/or Pipeline is invoked first.

Because the details.jsp template includes the itemdetails.jsp template (which
is used to display most of the information), Table 5-7 provides information about the
only event for the included itemdetails.jsp template, and the Webflow responses
it invokes. Descriptions are provided only for Pipelines.

5 The Product Catalog JSP Templates

5-54 Guide to Building a Product Catalog

For more information about individual Pipeline components, see “Pipeline
Components” on page 5-88.

Dynamic Data Display

The primary purpose of the details.jsp template is to dynamically display content
about a customer-selected product item. As previously described, this is accomplished
mostly through the included itemdetails.jsp template. (For more information, see
“About the Included itemdetails.jsp Template” on page 5-53.)

However, there is still some dynamic data that is handled solely by the details.jsp
template. After an include to navigation2.jsp (which generates the ancestor
category navigation bar at the top of the page), the details.jsp template obtains the
CATALOG_ITEM and CATALOG_CATEGORY attributes from the Pipeline session.
Table 5-8 provides more detailed information on these attributes.

Table 5-7 itemdetails.jsp Events

Event Webflow Response(s) Description

link(add) AddProductItemToShoppingCart (IP)

AddProductItemToShoppingCart Contains GetProductItemPC and
AddProductItemToShoppingCartPC,
and is not transactional.

RefreshSavedList Contains RefreshSavedListPC and is
not transactional.

Table 5-8 details.jsp Pipeline Session Attributes

Attribute Type Description

PipelineSessionConstants
.CATALOG_CATEGORY

com.beasys.commerce.ebusiness
.catalog.Category

Contains the root category
for the Product Catalog.

PipelineSessionConstants
.CATALOG_CATEGORIES

com.beasys.commerce.ebusiness
.catalog.ViewIterator

Contains the top-level
categories for the Product
Catalog.

JavaServer Pages (JSPs)

Guide to Building a Product Catalog 5-55

Listing 5-21 illustrates how these attributes are obtained from the Pipeline session
using the getPipelineProperty Pipeline JSP tag. It also shows how the required
request parameters for the included JSP are added to the request. This activity happens
prior to any calls to the included itemdetails.jsp template.

Listing 5-21 Obtaining the CATALOG_CATEGORY and
CATALOG_CATEGORIES Attributes

<%-- Get the item from the PipelineSession --%>

<pipeline:getPipelineProperty
 propertyName="<%=PipelineSessionConstants.CATALOG_ITEM%>"
 returnName="item"
 returnType="com.beasys.commerce.ebusiness.catalog.ProductItem"
 attributeScope="<%= PipelineConstants.REQUEST_SCOPE %>"/>

<%-- Get the category from the PipelineSession --%>

<pipeline:getPipelineProperty
 propertyName="<%=PipelineSessionConstants.CATALOG_CATEGORY%>"
 returnName="category"
 returnType="com.beasys.commerce.ebusiness.catalog.Category"
 attributeScope="<%= PipelineConstants.REQUEST_SCOPE %>"/>

<%-- Add the required parameters for the included JSP to the request --%>

<% request.setAttribute("product_item", item); %>
<% request.setAttribute("category", category); %>

<%-- Get the summary JSP from the current product item --%>

<catalog:getProperty object="<%=item%>"
 propertyName="Jsp"
 getterArgument="<%=new Integer(ProductItem.DETAILED_DISPLAY_JSP_INDEX)%>"
 id="detailJsp"
 returnType="com.beasys.commerce.ebusiness.catalog.JspInfo"/>

Note: For more information on the Pipeline JSP tags, see BEA WebLogic Commerce
Server Business Logic: Using Webflow and Pipeline. For more information
about the Catalog JSP tags, see “The Catalog JSP Tag Library: cat.tld” on page
6-3.

5 The Product Catalog JSP Templates

5-56 Guide to Building a Product Catalog

Form Field Specification

No form fields are used in the details.jsp template, nor in the details.jsp
template’s included itemdetails.jsp template.

search.jsp

The search.jsp template displays a form field that allows users to perform advanced
searches on the Product Catalog. Searches are performed using Boolean expressions;
results are displayed below the search area, using included summary JSPs.

Notes: It is not expected that end users will search a Product Catalog using a free
form, text-based query syntax. The free form syntax input field is provided to
illustrate the power of the search functionality. You should customize the
search.jsp template to include drop-down lists with the attributes that are
appropriate for your business or product items. For example, companies
selling books might have edit fields that correspond to Author Name, ISBN,
Price, and so on. The contents of these fields would then be converted into a
search expression and passed to the catalog system for processing.

For more information about using the search.jsp to perform searches and a
description of the syntax for a search expression, refer to “Query-Based Search
Syntax” on page 5-75.

Sample Browser View

Figure 5-12 shows a version of the search.jsp template.

JavaServer Pages (JSPs)

Guide to Building a Product Catalog 5-57

Figure 5-12 The search.jsp Template

The numbers in the following list refer to the numbered regions in the figure:

1. The admin banner is created from an import of the admin.inc template. The
banner provides links to the current template’s About information, the JSP template
index, and the Administration Tools page. The import call is:

<%@ include file="/commerce/includes/admin.inc" %>

You should remove the admin.inc template from the production pages before
you move them to your live server.

2. The page header is created from an import of the header.inc template. This is
standard across many of the JSP templates provided by WebLogic Commerce
Server. The import call is:

 <%@ include file="/commerce/includes/header.inc" %>

5 The Product Catalog JSP Templates

5-58 Guide to Building a Product Catalog

3. Region 3 of the search.jsp template is the search area. It provides examples of
searches using Boolean expressions, and provides the form field in which
customers can enter their search criteria. Following the execution of a search, this
region also includes a search results section, as shown in Figure 5-13.

Figure 5-13 The search.jsp Template with Search Results

4. Region 4 of search.jsp contains the included footer.inc template. The
include call statement is:

<%@ include file="/commerce/includes/footer.inc" %>

The footer.inc file consists of the horizontal footer at the bottom of the page.

JavaServer Pages (JSPs)

Guide to Building a Product Catalog 5-59

Location in the WebLogic Commerce Server Directory Structure

You can find the search.jsp file at the following location, where
WL_COMMERCE_HOME is the directory in which you installed WebLogic Commerce
Server:

%WL_COMMERCE_HOME%\config\wlcsDomain\applications\wlcsApp\wlcs\

commerce\catalog\search.jsp (Windows)
$WL_COMMERCE_HOME/config/wlcsDomain/applications/wlcsApp/wlcs/

commerce/catalog/search.jsp (UNIX)

Tag Library Imports

The search.jsp template uses Pipeline, Catalog, and WebLogic Server JSP tags.
Therefore, the template includes the following JSP tag libraries:

<%@ taglib uri="pipeline.tld" prefix="pipeline" %>
<%@ taglib uri="cat.tld" prefix="catalog" %>
<%@ taglib uri="weblogic.tld" prefix="wl" %>

Note: For more information on the Pipeline JSP tags, see BEA WebLogic Commerce
Server Business Logic: Using Webflow and Pipeline. For more information
about the Catalog JSP tags, see “The Catalog JSP Tag Library: cat.tld” on page
6-3. For more information on the WebLogic Server JSP tags, see “JSP Tag
Reference” in the BEA WebLogic Personalization Server documentation.

These files reside in the following directory for the WebLogic Commerce Server Web
application:

%WL_COMMERCE_HOME%\config\wlcsDomain\applications\wlcsApp\wlcs\

WEB-INF (Windows)
$WL_COMMERCE_HOME/config/wlcsDomain/applications/wlcsApp/wlcs/

WEB-INF (UNIX)

Java Package Imports

The search.jsp template uses Java classes in the following packages and therefore
includes these import statements:

<%@ page import="com.beasys.commerce.webflow.*" %>
<%@ page import="com.beasys.commerce.foundation.pipeline.*" %>
<%@ page import="com.beasys.commerce.ebusiness.catalog.*" %>

5 The Product Catalog JSP Templates

5-60 Guide to Building a Product Catalog

Location in the Default Webflow

The search.jsp template is displayed any time a customer clicks the Search button
located in the top banner of most pages. When a Boolean search is submitted, the
search.jsp template is reloaded (with included itemsummary.jsp templates for
each resulting item). From any of the included itemsummary.jsp templates,
customers can view details about the item (which loads the details.jsp template) or
add the item to their shopping cart (which loads the shoppingcart.jsp template).
Because search results are viewed in groups of 10 by default, the customer may also
be able to click Previous/Next links that reload the search.jsp template with new
content.

Note: For more information about the default Webflow, see Figure 5-4.

Included JSP Templates

The following JSP templates are included into the search.jsp template:

n header.inc, which creates the top banner, and also includes the leftside.inc
template; the leftside.inc template reserves column space for generated
content that is displayed in details.jsp.

n itemsummary.jsp, which displays the detailed information about each resulting
product item. For more details about the itemsummary.jsp template, see
“About the Included itemsummary.jsp Template” on page 5-41.

n footer.inc, which creates a horizontal footer at the bottom of the page.

Events

Every time a customer clicks a link or button on a JSP, it is considered an event. Events
trigger particular responses in the default Webflow that allow customers to continue.
While this response can be to load another JSP, it is usually the case that an input
processor and/or Pipeline is invoked first. Table 5-9 provides information about the
events for the search.jsp template, and the Webflow responses they invoke.
Descriptions are provided only for Pipelines.

JavaServer Pages (JSPs)

Guide to Building a Product Catalog 5-61

Note: The NewSearch input processor and Pipeline are not triggered by an event on
the search.jsp template. Rather, they are executed when customers click the
Search button in the top banner. These mechanisms reset the search results
prior to display of the search.jsp template.

For more information about individual Pipeline components, see “Pipeline
Components” on page 5-88.

Because the search.jsp template also includes the itemsummary.jsp template, the
events shown in Table 5-10 are also considered part of the search.jsp template.

Table 5-9 search.jsp Events

Event Webflow Response(s) Description

-- NewSearch (IP)

NewSearch Contains RemoveAttributePC and is not
transactional.

link(search) ExpressionSearch (IP)

ExpressionSearch Contains SearchPC and is not transactional.

Table 5-10 itemsummary.jsp Events

Event Webflow Response(s)

link(details) GetProductItemDetails (IP)

link(add) AddProductItemToShoppingCart (IP)

5 The Product Catalog JSP Templates

5-62 Guide to Building a Product Catalog

Dynamic Data Display

One purpose of the search.jsp template is to present customers with information
about the product items that resulted from their search, which customers can then
browse. This is accomplished using a combination of Pipeline and Catalog JSP tags.

First, the getPipelineProperty Pipeline JSP tag is used to obtain the
CATALOG_SEARCH_RESULTS attribute from the Pipeline session. Table 5-11 provides
more detailed information on this attribute.

Listing 5-22 illustrates how this attribute is obtained from the Pipeline session using
the getPipelineProperty Pipeline JSP tag.

Listing 5-22 Obtaining the CATALOG_SEARCH_RESULTS Attribute

<pipeline:getPipelineProperty
propertyName="<%=PipelineSessionConstants.CATALOG_SEARCH_RESULTS%>"
returnName="results"
returnType="com.beasys.commerce.ebusiness.catalog.ViewIterator" />
attributeScope="<%= PipelineConstants.REQUEST_SCOPE %>" />

Note: For more information on the Pipeline JSP tags, see BEA WebLogic Commerce
Server Business Logic: Using Webflow and Pipeline.

Then, the search.jsp template sets the view. The view is a pointer that indicates the
location in the complete list of results where we want to start displaying information.
This processing is shown in Listing 5-23.

Table 5-11 search.jsp Pipeline Session Attributes

Attribute Type Description

PipelineSessionConstants
.CATALOG_SEARCH_RESULTS

com.beasys.commerce.ebusiness
.catalog.ViewIterator

Contains the results of the
customer’s search.

JavaServer Pages (JSPs)

Guide to Building a Product Catalog 5-63

Listing 5-23 Setting the View of the Search Results

<% if (results != null && results.size() > 0) { %>
 <%-- Goto the correct view within the ViewIterator --%>
 <% String viewIndexString =
 (String)request.getParameter(HttpRequestConstants.CATALOG_VIEW_INDEX); %>

 <% if (viewIndexString == null) { viewIndexString = "0"; } %>
 <% int viewIndex = Math.min(Integer.valueOf(viewIndexString).intValue(),
 results.getViewCount() - 1); %>
 <% results.gotoViewAt(viewIndex); %>

Next, if the search results require more than one view, a navigation bar (containing
Previous and Next links, as well as text showing the results currently being viewed) is
generated, as shown in Listing 5-24.

Listing 5-24 Generating the View Navigation Bar

<!-- Add search results navigation bar -->
<table border="0" width="90%">
<tr>

<td align="left" valign="top"><p class="head2">Results of your search</p></td>

<td align="right" valign="bottom">
 <p class="tabletext">

 <%-- Add previous link --%>

 <% if (results.hasPreviousView()) { %>
 <a href="<%= WebflowJSPHelper.createWebflowURL(pageContext, "search.jsp",
 "link(search)","&" + HttpRequestConstants.CATALOG_VIEW_INDEX + "=" +
 (viewIndex - 1), true) %>">Previous |
 <% } %>

 <%-- Add current view indicies --%>

 <% if (results.size() > 1) { %>
 <%= results.getCurrentView().getFirstIndex() %> - <%= results.
 getCurrentView().getLastIndex() %>
 <% } %>

 <%-- Add next link --%>

5 The Product Catalog JSP Templates

5-64 Guide to Building a Product Catalog

 <% if (results.hasNextView()) { %>
 | <a href="<%= WebflowJSPHelper.createWebflowURL(pageContext, "search.jsp",
 "link(search)","&" + HttpRequestConstants.CATALOG_VIEW_INDEX + "=" +
 (viewIndex + 1), true) %>">Next
 <% } %>

</td>
</tr>
</table>

Lastly, the iterateThroughView Catalog JSP tag is used to iterate through the
product items that are in the current view. The required parameters for the included JSP
are added to the request, and the getProperty Catalog JSP tag obtains the correct
itemsummary.jsp templates for inclusion into the search.jsp template. This
processing is shown in Listing 5-25.

Listing 5-25 Obtaining and Displaying the Product Item Summaries

<%-- Iterate through the items in the current view, including the summary JSP for
each --%>

<catalog:iterateThroughView iterator="<%=results%>" id="item"
 returnType="com.beasys.commerce.ebusiness.catalog.ProductItem"
 viewIndex="<%= viewIndex %>">

 <%-- Add the required parameters for the included JSP to the request --%>

 <% request.setAttribute("product_item", item); %>
 <% request.setAttribute("details_link", "itemdetails"); %>

 <%-- Get the summary JSP from the current product item --%>

 <catalog:getProperty object="<%=item%>" propertyName="Jsp"
 getterArgument="<%= new Integer(ProductItem.SUMMARY_DISPLAY_JSP_INDEX) %>"
 id="summaryJsp"
 returnType="com.beasys.commerce.ebusiness.catalog.JspInfo"/>

 <%-- Included the summary JSP --%>

 <jsp:include page="<%= summaryJsp.getUrl() %>" flush="true"/>

</catalog:iterateThroughView>

JavaServer Pages (JSPs)

Guide to Building a Product Catalog 5-65

Note: For more information about the Catalog JSP tags, see “The Catalog JSP Tag
Library: cat.tld” on page 6-3.

Form Field Specification

The primary purpose of the search.jsp template is to allow customers to enter their
search criteria into an HTML form field. It is also used to pass needed information to
the Webflow.

The form fields used in the search.jsp template, and a description for each of these
form fields are listed in Table 5-12.

Note: Parameters that are literals in the JSP code are shown in quotes, while
non-literals will require scriptlet syntax (such as
<%= HttpRequestConstants.CATALOG_VIEW_SIZE %>) for use in the JSP.

Table 5-12 search.jsp Form Fields

Parameter Name Type Description

HttpRequestConstants.
CATALOG_VIEW_SIZE

Hidden Optional parameter that lets you specify the number of
items shown in a result view.

HttpRequestConstants.
CATALOG_SEARCH_STRING

Text The form field into which customers will enter their
search criteria.

HttpRequestConstants.
CATALOG_SOURCE_KEY

Hidden Used to determine whether results are from a new
search or an iteration through an existing search.

5 The Product Catalog JSP Templates

5-66 Guide to Building a Product Catalog

searchresults.jsp

The searchresults.jsp template displays results from a keyword search that is
launched from the Quick Look-up text field. The Quick Look-up is available in the
left-side column of any page on the site.

Sample Browser View

Figure 5-14 shows a version of the searchresults.jsp template.

Figure 5-14 The searchresults.jsp Template

JavaServer Pages (JSPs)

Guide to Building a Product Catalog 5-67

The numbers in the following list refer to the numbered regions in the figure:

1. The admin banner is created from an import of the admin.inc template. The
banner provides links to the current template’s About information, the JSP template
index, and the Administration Tools page. The import call is:

<%@ include file="/commerce/includes/admin.inc" %>

You should remove the admin.inc template from the production pages before
you move them to your live server.

2. The page header is created from an import of the header.inc template. This is
standard across many of the JSP templates provided by WebLogic Commerce
Server. The import call is:

 <%@ include file="/commerce/includes/header.inc" %>

3. Region 3 of the searchresults.jsp template contains the leftside.inc
template that is included. This template provides a keyword-search feature. The
include statement is:

 <%@ include file="/commerce/includes/leftside.inc" %>

4. Region 4 provides customers with a link back to the home page (that is, the
main.jsp template) and some information about how many matches to their
search criteria were identified. Both are presented in a format that is similar to the
ancestor category navigation bar that appears on the browse.jsp template.

Note: For more information about the browse.jsp template, see “browse.jsp
Template” on page 5-25.

5. Region 5 of the searchresults.jsp template shows the results generated from
processing with the Webflow and Pipeline mechanisms that found the detailed
information for each resulting product item (presented in the included
itemsummary.jsp template).

6. Region 6 of the searchresults.jsp template contains the included
footer.inc template. The include statement is:

<%@ include file="/commerce/includes/footer.inc" %>

The footer.inc file consists of the horizontal footer at the bottom of the page.

5 The Product Catalog JSP Templates

5-68 Guide to Building a Product Catalog

Location in the WebLogic Commerce Server Directory Structure

You can find the searchresults.jsp file at the following location, where
WL_COMMERCE_HOME is the directory in which you installed WebLogic Commerce
Server:

%WL_COMMERCE_HOME%\config\wlcsDomain\applications\wlcsApp\wlcs\

commerce\catalog\searchresults.jsp (Windows)
$WL_COMMERCE_HOME/config/wlcsDomain/applications/wlcsApp/wlcs/

commerce/catalog/searchresults.jsp (UNIX)

Tag Library Imports

The searchresults.jsp template uses Pipeline, Catalog, and the WebLogic
Personalization Server Utility JSP tags. Therefore, the template includes the following
JSP tag libraries:

<%@ taglib uri="pipeline.tld" prefix="pipeline" %>
<%@ taglib uri="cat.tld" prefix="catalog" %>
<%@ taglib uri="es.tld" prefix="es" %>

Note: For more information on the Pipeline JSP tags, see BEA WebLogic Commerce
Server Business Logic: Using Webflow and Pipeline. For more information
about the Catalog JSP tags, see “The Catalog JSP Tag Library: cat.tld” on page
6-3. For more information on the WebLogic Personalization Server Utility JSP
tags, see “JSP Tag Reference” in the BEA WebLogic Personalization Server
documentation.

These files reside in the following directory for the WebLogic Commerce Server Web
application:

%WL_COMMERCE_HOME%\config\wlcsDomain\applications\wlcsApp\wlcs\

WEB-INF (Windows)
$WL_COMMERCE_HOME/config/wlcsDomain/applications/wlcsApp/wlcs/

WEB-INF (UNIX)

JavaServer Pages (JSPs)

Guide to Building a Product Catalog 5-69

Java Package Imports

The searchresults.jsp template uses Java classes in the following packages and
therefore includes these import statements:

<%@ page import="com.beasys.commerce.webflow.*" %>
<%@ page import="com.beasys.commerce.foundation.pipeline.*" %>
<%@ page import="com.beasys.commerce.ebusiness.catalog.*" %>

Location in the Default Webflow

Customers arrive at the searchresults.jsp template after they enter a keyword in
the Quick Look-up text field (located in the left-side column of every page) and click
the Find button. From here, customers can navigate back to the main.jsp template
using the Home link at the top of the page. Customers can also choose to view more
details about a particular item shown in the results list (which loads the details.jsp
template), or add the product item to their shopping cart (which loads the
shoppingcart.jsp template). Finally, customers can also choose to perform another
search by using the Quick Look-up again.

Note: For more information about the default Webflow, see Figure 5-4.

Included JSP Templates

The following JSP templates are included into the searchresults.jsp template:

n header.inc, which creates the top banner, and also includes the leftside.inc
template; the leftside.inc template reserves column space for generated
content that is displayed in searchresults.jsp.

n leftside.inc, which provides a keyword-based search tool for finding product
items via keywords that have already been assigned.

n itemsummary.jsp, which displays the detailed information about each resulting
product item. For more details about the itemsummary.jsp template, see
“About the Included itemsummary.jsp Template” on page 5-41.

n footer.inc, which creates a horizontal footer at the bottom of the page.

5 The Product Catalog JSP Templates

5-70 Guide to Building a Product Catalog

Events

Every time a customer clicks a link or button on a JSP, it is considered an event. Events
trigger particular responses in the default Webflow that allow customers to continue.
While this response can be to load another JSP, it is usually the case that an input
processor and/or Pipeline is invoked first. Table 5-13 provides information about these
events and the Webflow responses they invoke. Descriptions are provided only for
Pipelines.

For more information about individual Pipeline components, see “Pipeline
Components” on page 5-88.

Because the searchresults.jsp template also includes the itemsummary.jsp
template, the events shown in Table 5-14 are also considered part of the search.jsp
template.

Table 5-13 searchresults.jsp Events

Event Webflow Response(s) Description

link(home) GetTopCategories (IP)

GetTopCategories Contains GetCategoryPC and
GetSubcategoriesPC and is not
transactional.

link(quicksearch) KeywordSearch (IP)

KeywordSearch Contains SearchPC and is not
transactional.

Table 5-14 itemsummary.jsp Events

Event Webflow Response(s)

link(details) GetProductItemDetails (IP)

link(add) AddProductItemToShoppingCart (IP)

JavaServer Pages (JSPs)

Guide to Building a Product Catalog 5-71

Dynamic Data Display

The primary purpose of the searchresults.jsp template is to present customers
with information about the product items that resulted from their search, which
customers can then browse through. This is accomplished using a combination of
Pipeline and Catalog JSP tags.

First, the getPipelineProperty Pipeline JSP tag is used to obtain the
CATALOG_QUERY and CATALOG_SEARCH_RESULTS attributes from the Pipeline
session. Table 5-15 provides more detailed information on these attributes.

Listing 5-26 illustrates how this attribute is obtained from the Pipeline session using
the getPipelineProperty Pipeline JSP tag.

Listing 5-26 Obtaining the CATALOG_QUERY and
CATALOG_SEARCH_RESULTS Attributes

<pipeline:getPipelineProperty
 propertyName="<%= PipelineSessionConstants.CATALOG_QUERY %>"
 returnName="query"
 returnType="com.beasys.commerce.ebusiness.catalog.service.query.KeywordQuery"/>

<pipeline:getPipelineProperty
 propertyName="<%= PipelineSessionConstants.CATALOG_SEARCH_RESULTS %>"
 returnName="results"
 returnType="com.beasys.commerce.ebusiness.catalog.ViewIterator"
 attributeScope="<%= PipelineConstants.REQUEST_SCOPE %>" />

Table 5-15 searchresults.jsp Pipeline Session Attributes

Attribute Type Description

PipelineSessionConstants
.CATALOG_QUERY

com.beasys.commerce.ebusiness
.catalog.service.query.
KeywordQuery

Contains the customer’s
search criteria.

PipelineSessionConstants
.CATALOG_SEARCH_RESULTS

com.beasys.commerce.ebusiness
.catalog.ViewIterator

Contains the results of the
customer’s search.

5 The Product Catalog JSP Templates

5-72 Guide to Building a Product Catalog

Note: For more information on the Pipeline JSP tags, see BEA WebLogic Commerce
Server Business Logic: Using Webflow and Pipeline.

Next, the navigation bar at the top of the page (containing the Home link and number
of matches) is constructed using the <es> WebLogic Personalization Server Utility
JSP tag, as shown in Listing 5-27.

Listing 5-27 Constructing the Top Navigation Bar

<p>
<a href="<%= WebflowJSPHelper.createWebflowURL(pageContext,
 "searchresults.jsp", "link(home)", true) %>">Home

 >

Result of search for "

 <es:forEachInArray id="keyword" type="java.lang.String"
 array="<%= query.getKeywords() %>">
 <%= " " + keyword %>
 </es:forEachInArray>"
 - <%= results.size() %> match<% if (results.size() > 1 ||
 results.size() == 0) { %>es<% } %>

</p>

<hr size="1" width="90%" align="left">

Note: For more information on the WebLogic Personalization Server Utility JSP
tags, see “JSP Tag Reference” in the BEA WebLogic Personalization Server
documentation.

Then, the searchresults.jsp template sets the view. The view is a pointer that
indicates the location in the complete list of results where we want to start displaying
information. This processing is shown in Listing 5-28.

JavaServer Pages (JSPs)

Guide to Building a Product Catalog 5-73

Listing 5-28 Setting the View of the Search Results

<!-- Found items are summarized here -->
<% if (results != null && results.size() > 0) { %>
 <%-- Goto the correct view within the ViewIterator --%>
 <% String viewIndexString =
 (String)request.getParameter(HttpRequestConstants.CATALOG_VIEW_INDEX); %>

 <% if (viewIndexString == null) { viewIndexString = "0"; } %>
 <% int viewIndex = Math.min(Integer.valueOf(viewIndexString).intValue(),
 results.getViewCount() - 1); %>
 <% results.gotoViewAt(viewIndex); %>

Next, if the search results require more than one view, a navigation bar (containing
Previous and Next links, as well as text showing the results currently being viewed) is
generated, as shown in Listing 5-29.

Listing 5-29 Generating the View Navigation Bar

<table border="0" width="90%">
<tr>

<td align="left" valign="top"><p class="head2">Results of your search</p></td>

<td align="right" valign="bottom">
 <p class="tabletext">

 <%-- Add previous link --%>

 <% if (results.hasPreviousView()) { %>
 <a href="<%= WebflowJSPHelper.createWebflowURL(pageContext,
 "searchresults.jsp", "link(quicksearch)","&" +
 HttpRequestConstants.CATALOG_VIEW_INDEX + "=" +
 (viewIndex - 1), true) %>">Previous |
 <% } %>

 <%-- Add current view indicies --%>

 <% if (results.size() > 1) { %>
 <%= results.getCurrentView().getFirstIndex() %> - <%= results.
 getCurrentView().getLastIndex() %>
 <% } %>

 <%-- Add next link --%>

5 The Product Catalog JSP Templates

5-74 Guide to Building a Product Catalog

 <% if (results.hasNextView()) { %>
 | <a href="<%= WebflowJSPHelper.createWebflowURL(pageContext,
 "searchresultsjsp", "link(quicksearch)","&" +
 HttpRequestConstants.CATALOG_VIEW_INDEX + "=" +
 (viewIndex + 1), true) %>">Next
 <% } %>

</td>
</tr>
</table>

Lastly, the iterateThroughView Catalog JSP tag is used to iterate through the
product items that are in the current view. The required parameters for the included JSP
are added to the request, and the getProperty Catalog JSP tag obtains the correct
itemsummary.jsp templates for inclusion into the searchresults.jsp template.
This processing is shown in Listing 5-30.

Listing 5-30 Obtaining and Displaying the Product Item Summaries

<%-- Iterate through the items in the current view, including the summary JSP for
each --%>

<catalog:iterateThroughView iterator="<%=results%>" id="item"
 returnType="com.beasys.commerce.ebusiness.catalog.ProductItem"
 viewIndex="<%= viewIndex %>">

 <%-- Add the required parameters for the included JSP to the request --%>

 <% request.setAttribute("product_item", item); %>
 <% request.setAttribute("details_link", "itemdetails"); %>

 <%-- Get the summary JSP from the current product item --%>

 <catalog:getProperty object="<%=item%>" propertyName="Jsp"
 getterArgument="<%= new Integer(ProductItem.SUMMARY_DISPLAY_JSP_INDEX) %>"
 id="summaryJsp"
 returnType="com.beasys.commerce.ebusiness.catalog.JspInfo"/>

 <%-- Included the summary JSP --%>

 <jsp:include page="<%= summaryJsp.getUrl() %>" flush="true"/>

</catalog:iterateThroughView>

Query-Based Search Syntax

Guide to Building a Product Catalog 5-75

Note: For more information about the Catalog JSP tags, see “The Catalog JSP Tag
Library: cat.tld” on page 6-3.

Form Field Specification

No form fields are used in the searchresults.jsp template.

Query-Based Search Syntax

Search queries within the BEA WebLogic Commerce Server product use a syntax
similar to the SQL string syntax that supports basic Boolean-type comparison
expressions, including nested parenthetical queries. In general, the syntax includes a
metadata property name, a comparison operator, and a literal value.

The basic query uses the following syntax:

attribute_name comparison_operator literal_value

Note: Consult the Javadoc API documentation on
com.beasys.commerce.util.ExpressionHelper for more information
about the query syntax.

Several constraints apply to queries constructed using this syntax:

n String literals must be enclosed in single quotes, as shown below:

l ‘WebLogic Server’

l ‘football’

n Date literals can be created via a simplistic toDate method that takes one or two
String arguments (enclosed in single quotes). The first, if two arguments are
supplied, is the SimpleDateFormat format string; the second argument is the
date string. If only one argument is supplied, it should include the date string in
the MM/dd/yyyy HH:mm:ss z format (also enclosed in single quotes), as shown
below:

l toDate(‘EE dd MMM yyyy HH:mm:ss z’, ‘Thr 06 Apr 2000
16:56:00 MDT’)

l toDate(‘02/23/2000 13:57:43 MST’)

5 The Product Catalog JSP Templates

5-76 Guide to Building a Product Catalog

n Use the toProperty method to compare properties whose names include spaces
or other special characters. In general, use toProperty when the property name
does not comply with the Java variable-naming convention that uses
alphanumeric characters, as shown below:

l toProperty (‘My Property’) = ‘Content’

n To include a scope into the property name, use either scope.propertyName or
the toProperty method with two arguments, as shown below:

l toProperty (‘myScope’, ‘myProperty’)

Note: The reference document management system ignores property scopes.

n Use \ along with the appropriate character(s) to create an escape sequence that
includes special characters in string literals, as shown below:

l toProperty (‘My Property\’s Contents’) = ‘Content’

n Additionally, use Java-style unicode�escape sequences to embed non-ASCII
characters in string literals, as shown below:

l Description like ‘*\u65e5\u672c\u8a9e*’

Notes: The query syntax can only contain ASCII and extended ASCII characters
(0-255).

Use ExpressionHelper.toStringLiteral to convert an arbitrary string to
a fully quoted and escaped string literal, which can then be placed in a query.

n The now keyword—only used on the literal value side of the expression—refers
to the current date and time.

n Boolean literals are either true or false.

n Numeric literals consist of the numbers themselves without any text decoration
(like quotation marks). The system supports scientific notation in the forms (for
example, 1.24e4 and 1.24E-4).

n An exclamation mark (!) can be placed at an opening parenthesis to negate an
expression, as shown below:

l !(size >= 256)

n The Boolean and operator is represented by the literal &&, as shown below:

l author == ‘james’ && age < 55

Query-Based Search Syntax

Guide to Building a Product Catalog 5-77

n The Boolean or operator is represented by the literal ||, as shown below:

l creationDate > now || expireDate < now

The following examples illustrate full expressions:

Example 1:

((color=‘red’ && size <=1024) || (keywords contains ‘red’ &&
creationDate < now))

Example 2:

creationDate > toDate (‘MM/dd/yyyy HH:mm:ss’, ‘2/22/2000 14:51:00’)
&& expireDate <= now && mimetype like ‘text/*’

Using Comparison Operators to Construct Queries

To support advanced searching, the system allows construction of nested Boolean
queries incorporating comparison operators. The following table summarizes the
comparison operators available for each metadata type.

Operator Type Characteristics

Boolean (==, !=) Boolean attributes support an equality check against Boolean.TRUE or
Boolean.FALSE.

Numeric (==, !=, >, <, >=, <=) Numeric attributes support the standard equality, greater than, and less than
checks against a java.lang.Number.

Text (==, !=, >, <, >=, <=, like) Text strings support standard equality checking (case sensitive), plus
lexicographical comparison (less than or greater than). In addition, strings
can be compared using wildcard pattern matching (that is, the like
operator), similar to the SQL LIKE operator or DOS prompt file matching.
In this situation, the wildcards will be * (asterisk) for match any and ?
(question mark) for match single. Interval matching (for example, using [])
is not supported. To match * or ? literally, the escape character will be \
(backslash).

Datetime (==, !=, >, <, >=, <=) Date/time attributes support standard equality, greater than, and less than
checks against a java.sql.Timestamp.

5 The Product Catalog JSP Templates

5-78 Guide to Building a Product Catalog

Note: The search parameters and expression objects support negation (using !) of
expressions via a bit flag.

Searchable Catalog Attributes

You can base your searches on the following attributes of the Product Catalog:

n sku

n identifier

n name

n shortDesc

n shortDescription

n description

n creator

n publisher

n contributor

n creationDate

Multi-valued Comparison
Operators (contains, containsall)

Multi-valued attributes support a contains operator that takes an object
of the attribute’s subtype and checks that the attribute’s value contains it.
Additionally, multi-valued attributes support a containsall operator,
which takes another collection of objects of the attribute’s subtype and
checks that the attribute’s value contains all of them.

Single-valued operators applied to a multi-valued attribute should cause the
operator to be applied over the attribute’s collection of values. Any value
that matches the operator and operand should return true. For example, if
the multi-valued text attribute keywords has the values BEA, Computer,
and WebLogic and the operand is BEA, then the < operator returns true
(BEA is less than Computer), the > operator returns false (BEA is not
greater than any of the values), and the == operator returns true (BEA is
equal to BEA).

User Defined Comparison
Operators

Currently, no operators can be applied to a user-defined attribute.

Operator Type Characteristics

Query-Based Search Syntax

Guide to Building a Product Catalog 5-79

n source

n lang

n language

n relation

n coverage

n rights

n format

n type

n inStock

n msrpCurrency

n msrpAmount

n priceCurrency

n priceAmount

n price

n estimateShipTime

n shipTime

n specialNotes

n notes

n taxCode

n shippingCode

n modifiedDate

Note: Some of the attributes have several aliases (for example, shortDesc and
shortDescription, lang and language) but refer to a single attribute.

Controlling the Number of Search Results

The number of items returned from a keyword- or attribute-based search is controlled
using the following APIs:

n getMaxSearchResults()

5 The Product Catalog JSP Templates

5-80 Guide to Building a Product Catalog

n setMaxSearchResults(int max)

These are methods on the
com.beasys.commerce.ebusiness.catalog.service.query.KeywordQuery
and ProductItemQuery interfaces.

If an unlimited number of search results is desired, use:

setMaxSearchResults(CatalogQuery.ALL_RESULTS);

Limiting the number of search results returned prevents potentially very large result
sets from being moved from the database to the JSP container. If the search query name
like ’*’ is executed, all the items in the database will be returned. It may be desirable
to limit the size of the result set to a suitably large number such as 1,000.

By default, the results from queries are not limited. As shown in Listing 5-31, the
default search result size is controlled by the catalog.searchresults.size
property in the wlcs-catalog.properties file. The file resides in the
WL_COMMERCE_HOME\classes directory, where WL_COMMERCE_HOME is the directory
in which you installed the WebLogic Commerce Server software.

Listing 5-31 Using the wlcs-catalog.properties File to Control the Default Search
Result Size

###
Maximum search results returned by the catalog
#
You can dynamically change the searchresults by using the
get/set MaxSearchResults methods on the CatalogQuery object
#
Set the value to -1 to return all results by the search engine
###
catalog.searchresults.size=-1

Input Processors

Guide to Building a Product Catalog 5-81

Input Processors

This section provides a brief description of each input processor associated with the
Product Catalog JSP templates.

CatalogIP

Class Name com.beasys.commerce.ebusiness.catalog.webflow.
CatalogIP

Description Base InputProcessor for all Catalog-related InputProcessors. This
abstract class contains global Catalog HTTP request parameter extraction and
validation.

Required
HTTPServletRequest

Parameters

None

Optional
HTTPServletRequest

Parameters

HttpRequestConstants.CATALOG_VIEW_SIZE

Required Pipeline
Session Attributes

None

Updated Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_VIEW_SIZE (Request scope)
only if CATALOG_VIEW_SIZE is given in the HTTPServletRequest.

Removed Pipeline
Session Attributes

None

Validation Verifies that the CATALOG_VIEW_SIZE parameter is specified appropriately.
Because view size is an optional parameter, no action is taken if it is not
specified.

5 The Product Catalog JSP Templates

5-82 Guide to Building a Product Catalog

GetProductItemIP

Exceptions ProcessingException, thrown if the CATALOG_VIEW_SIZE is invalid.

Class Name com.beasys.commerce.ebusiness.catalog.webflow.
GetProductItemIP

Description Creates a ProductItemKey based on a product item SKU HTTP request
parameter and adds it to the Pipeline session.

Required
HTTPServletRequest

Parameters

HttpRequestConstants.CATALOG_ITEM_SKU

Optional
HTTPServletRequest

Parameters

None

Required Pipeline
Session Attributes

None

Updated Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_ITEM_KEY (Request scope)

Removed Pipeline
Session Attributes

None

Validation Verifies that the CATALOG_ITEM_SKU parameter is valid.

Exceptions ProcessingException, thrown if the CATALOG_ITEM_SKU parameter is
invalid.

Input Processors

Guide to Building a Product Catalog 5-83

GetCategoryIP

Class Name com.beasys.commerce.ebusiness.catalog.webflow.
GetCategoryIP

Description Creates a CategoryKey based on a category ID HTTP request parameter and
adds it to the Pipeline session. If no such parameter is supplied, the
CategoryKey for the root category is added.

Required
HTTPServletRequest

Parameters

HttpRequestConstants.CATALOG_CATEGORY_ID

Optional
HTTPServletRequest

Parameters

None

Required Pipeline
Session Attributes

None

Updated Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_CATEGORY_KEY (Request
scope)

Removed Pipeline
Session Attributes

None

Validation Validates that the CATALOG_CATEGORY_ID parameter is valid.

Exceptions ProcessingException, thrown if the CATALOG_CATEGORY_ID
parameter is invalid.

5 The Product Catalog JSP Templates

5-84 Guide to Building a Product Catalog

KeywordSearchIP

Class Name com.beasys.commerce.ebusiness.catalog.webflow.
KeywordSearchIP

Description Creates a KeywordQuery based on a keyword search HTTP request
parameter and adds it to the Pipeline session.

Required
HTTPServletRequest

Parameters

None

Optional
HTTPServletRequest

Parameters

HttpRequestConstants.CATALOG_SEARCH_STRING

Required Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_QUERY. Required only if the
CATALOG_SEARCH_STRING parameter does not exist.

Updated Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_QUERY

Removed Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_SEARCH_RESULTS, only if
the CATALOG_SEARCH_STRING parameter exists.

Validation Verifies that the CATALOG_SEARCH_STRING parameter is valid.

Exceptions InvalidSessionStateException, thrown if the
CATALOG_SEARCH_STRING parameter does not exist and the
PipelineSessionConstants.CATALOG_SEARCH_RESULTS Pipeline
session attribute has expired.

ProcessingException, thrown if the CATALOG_SEARCH_RESULTS
parameter is invalid.

Input Processors

Guide to Building a Product Catalog 5-85

ExpressionSearchIP

Class Name com.beasys.commerce.ebusiness.catalog.webflow.
ExpressionSearchIP

Description Creates a ProductItemQuery based on a search expression HTTP request
parameter and adds it to the Pipeline session.

Required
HTTPServletRequest

Parameters

None

Optional
HTTPServletRequest

Parameters

HttpRequestConstants.CATALOG_SEARCH_STRING

Required Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_QUERY. Required only if the
CATALOG_SEARCH_STRING parameter does not exist.

Updated Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_QUERY

Removed Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_SEARCH_RESULTS if the
CATALOG_SEARCH_STRING parameter exists.

Validation Verifies that the CATALOG_SEARCH_STRING parameter is a valid expression.

Exceptions InvalidSessionStateException, thrown if the
CATALOG_SEARCH_STRING parameter does not exist and the
PipelineSessionConstants.CATALOG_SEARCH_RESULTS Pipeline
session attribute has expired.

ProcessingException, thrown if the CATALOG_SEARCH_STRING
parameter is invalid.

5 The Product Catalog JSP Templates

5-86 Guide to Building a Product Catalog

MoveAttributeIP

Class Name com.beasys.commerce.ebusiness.catalog.webflow.
MoveAttributeIP

Description Sets Pipeline session attributes when moving a Pipeline session attribute value
from a source attribute to a destination attribute. The source and destination
attributes are specified as HTTP request parameters.

Required
HTTPServletRequest

Parameters

HttpRequestConstants.CATALOG_SOURCE_KEY

HttpRequestConstants.CATALOG_DESTINATION_KEY

Optional
HTTPServletRequest

Parameters

None

Required Pipeline
Session Attributes

None

Updated Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_SOURCE_KEY (Request scope)

PipelineSessionConstants.CATALOG_DESTINATION_KEY
(Request scope)

Removed Pipeline
Session Attributes

None

Validation Verifies that the CATALOG_SOURCE_KEY and the
CATALOG_DESTINATION_KEY parameters are valid strings.

Exceptions ProcessingException, thrown if either the source key or destination key
is invalid.

Input Processors

Guide to Building a Product Catalog 5-87

RemoveAttributeIP

Class Name com.beasys.commerce.ebusiness.catalog.webflow.
RemoveAttributeIP

Description Sets Pipeline session attributes for removing a Pipeline session attribute value
from a source attribute. The source attribute is specified as an HTTP request
parameter.

Required
HTTPServletRequest

Parameters

HttpRequestConstants.CATALOG_SOURCE_KEY

Optional
HTTPServletRequest

Parameters

None

Required Pipeline
Session Attributes

None

Updated Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_SOURCE_KEY (Request scope)

Removed Pipeline
Session Attributes

None

Validation Verifies that the CATALOG_SOURCE_KEY parameter is valid.

Exceptions ProcessingException, thrown if the CATALOG_SOURCE_KEY parameter
is invalid.

5 The Product Catalog JSP Templates

5-88 Guide to Building a Product Catalog

Pipeline Components

This section provides a brief description of each Pipeline component associated with
the Product Catalog JSP templates.

CatalogPC

Class Name com.beasys.commerce.ebusiness.catalog.pipeline.CatalogPC

Description Base PipelineComponent for all Catalog-related PipelineComponents.
This abstract class contains Catalog-related Pipeline utility methods.

Required Pipeline
Session Attributes

None

Optional Pipeline
Session Attributes

None

Updated Pipeline
Session Attributes

None

Removed Pipeline
Session Attributes

None

Type Java object

JNDI Name None

Exceptions None

Pipeline Components

Guide to Building a Product Catalog 5-89

GetCategoryPC

Class Name com.beasys.commerce.ebusiness.catalog.pipeline.
GetCategoryPC

Description Retrieves a Category based upon the CategoryKey in the Pipeline session
CATALOG_CATEGORY_KEY attribute. The resultant Category is placed into the
Pipeline session as the CATALOG_CATEGORY attribute.

Required Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_CATEGORY_KEY (Request
scope)

Optional Pipeline
Session Attributes

None

Updated Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_CATEGORY (Request scope)

Removed Pipeline
Session Attributes

None

Type Java object

JNDI Name None

Exceptions PipelineFatalException on Catalog finder error, Catalog general error,
EJB create error, or JNDI lookup error.

5 The Product Catalog JSP Templates

5-90 Guide to Building a Product Catalog

GetProductItemPC

Class Name com.beasys.commerce.ebusiness.catalog.pipeline.
GetProductItemPC

Description Retrieves a ProductItem based upon the ProductItemKey contained in the
Pipeline session CATALOG_ITEM_KEY attribute. The resultant ProductItem is
placed into the Pipeline session as the CATALOG_ITEM attribute.

Required Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_ITEM_KEY (Request scope)

Optional Pipeline
Session Attributes

None

Updated Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_ITEM (Request scope)

Removed Pipeline
Session Attributes

None

Type Java object

JNDI Name None

Exceptions PipelineFatalException on Catalog finder error, Catalog general error,
Catalog create error, or JNDI lookup error.

Pipeline Components

Guide to Building a Product Catalog 5-91

GetParentPC

Class Name com.beasys.commerce.ebusiness.catalog.pipeline.
GetParentPC

Description Retrieves the parent Category of the category contained in the Pipeline session
CATALOG_CATEGORY attribute. The resultant Category is placed into the
Pipeline session as the CATALOG_CATEGORY attribute.

Required Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_CATEGORY (Request scope)

Optional Pipeline
Session Attributes

None

Updated Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_CATEGORY (Request scope)

Removed Pipeline
Session Attributes

None

Type Java object

JNDI Name None

Exceptions PipelineFatalException on Catalog finder error, Catalog general error,
Catalog create error, or JNDI lookup error.

5 The Product Catalog JSP Templates

5-92 Guide to Building a Product Catalog

GetAncestorsPC

Class Name com.beasys.commerce.ebusiness.catalog.pipeline.
GetAncestorsPC

Description Retrieves the ancestor Categories of the Category contained in the Pipeline
session CATALOG_CATEGORY attribute. The resultant Category array is placed
into the Pipeline session as the CATALOG_ANCESTORS attribute.

Required Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_CATEGORY (Request scope)

Optional Pipeline
Session Attributes

None

Updated Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_ANCESTORS (Request scope)

Removed Pipeline
Session Attributes

None

Type Java object

JNDI Name None

Exceptions PipelineFatalException on Catalog finder error, Catalog general error,
Catalog create error, or JNDI lookup error.

Pipeline Components

Guide to Building a Product Catalog 5-93

GetProductItemsPC

Class Name com.beasys.commerce.ebusiness.catalog.pipeline.
GetProductItemsPC

Description Retrieves the ProductItems associated with the Category contained in the
Pipeline session CATALOG_CATEGORY attribute. The resultant ViewIterator
of ProductItems is placed into the Pipeline session as the CATALOG_ITEMS
attribute. The view size of the resultant ViewIterator may be specified with
the optional CATALOG_VIEW_SIZE Pipeline session attribute.

Required Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_CATEGORY (Request scope)

Optional Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_VIEW_SIZE (Request scope)

Updated Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_ITEMS (Request scope)

Removed Pipeline
Session Attributes

None

Type Java object

JNDI Name None

Exceptions PipelineFatalException on Catalog finder error, Catalog general error,
Catalog create error, or JNDI lookup error.

5 The Product Catalog JSP Templates

5-94 Guide to Building a Product Catalog

GetSubcategoriesPC

Class Name com.beasys.commerce.ebusiness.catalog.pipeline.
GetSubcategoriesPC

Description Retrieves the subcategories of the Category in the Pipeline session
CATALOG_CATEGORY attribute. The resultant ViewIterator of Categories is
placed into the Pipeline session as the CATALOG_CATEGORIES attribute. The
view size of the resultant ViewIterator may be specified with the optional
CATALOG_VIEW_SIZE Pipeline session attribute.

Required Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_CATEGORY (Request scope)

Optional Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_VIEW_SIZE (Request scope)

Updated Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_CATEGORIES (Request scope)

Removed Pipeline
Session Attributes

None

Type Java object

JNDI Name None

Exceptions PipelineFatalException on Catalog finder error, Catalog general error,
EJB create error, or JNDI lookup error.

Pipeline Components

Guide to Building a Product Catalog 5-95

MoveAttributePC

Class Name com.beasys.commerce.ebusiness.catalog.pipeline.
MoveAttributePC

Description Moves a Pipeline session attribute value from a source attribute to a destination
attribute. The source and destination attributes are specified by the
CATALOG_SOURCE_KEY and CATALOG_DESTINATION_KEY Pipeline session
attributes.

Required Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_SOURCE_KEY (Request scope)

PipelineSessionConstants.CATALOG_DESTINATION_KEY (Request
scope)

Optional Pipeline
Session Attributes

None

Updated Pipeline
Session Attributes

Both request and session scoped Pipeline session attributes keyed by the
CATALOG_DESTINATION_KEY Pipeline session attribute.

Removed Pipeline
Session Attributes

Both request and session scoped Pipeline session attributes keyed by the
CATALOG_SOURCE_KEY Pipeline session attribute.

Type Java object

JNDI Name None

Exceptions None

5 The Product Catalog JSP Templates

5-96 Guide to Building a Product Catalog

RemoveAttributePC

Class Name com.beasys.commerce.ebusiness.catalog.pipeline.
RemoveAttributePC

Description Removes a Pipeline session attribute value from a source attribute. The source
attribute is specified by the CATALOG_SOURCE_KEY Pipeline session attributes.

Required Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_SOURCE_KEY (Request scope)

Optional Pipeline
Session Attributes

None

Updated Pipeline
Session Attributes

None

Removed Pipeline
Session Attributes

Both request and session scoped Pipeline session attributes keyed by the
CATALOG_SOURCE_KEY Pipeline session attribute.

Type Java object

JNDI Name None

Exceptions None

Pipeline Components

Guide to Building a Product Catalog 5-97

SearchPC

Class Name com.beasys.commerce.ebusiness.catalog.pipeline.SearchPC

Description Performs a Catalog query based upon the CatalogQuery in the Pipeline session
CATALOG_QUERY attribute. The resultant ViewIterator of ProductItems
is placed into the Pipeline session as the CATALOG_SEARCH_RESULTS attribute.
The view size of the resultant ViewIterator may be specified with the optional
CATALOG_VIEW_SIZE Pipeline session attribute.

Required Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_QUERY (Request scope)

Optional Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_VIEW_SIZE (Request scope)

Updated Pipeline
Session Attributes

PipelineSessionConstants.CATALOG_SEARCH_RESULTS

Removed Pipeline
Session Attributes

None

Type Java object

JNDI Name None

Exceptions PipelineFatalException on Catalog finder error, Catalog general error,
EJB create error, or JNDI lookup error.

5 The Product Catalog JSP Templates

5-98 Guide to Building a Product Catalog

Guide to Building a Product Catalog 6-1

CHAPTER

6 Product Catalog JSP
Tag Library Reference

The BEA WebLogic Commerce Server provides JavaServer Page (JSP) templates and
JSP tags that implement commonly used Web-based Product Catalog features. The
Product Catalog JSP templates allow your customers to search for product items or
browse through categories to locate items; the JSP tags are used to implement this
functionality.

This topic includes the following sections:

n Introduction

n The Catalog JSP Tag Library: cat.tld

l <catalog:getProperty>

l <catalog:iterateViewIterator>

l <catalog:iterateThroughView>

n The E-Business JSP Tag Library: eb.tld

l <eb:smnav>

Note: In this topic, the environment variable WL_COMMERCE_HOME is used to
represent the directory in which you installed the WebLogic Commerce Server
software.

6 Product Catalog JSP Tag Library Reference

6-2 Guide to Building a Product Catalog

Introduction

The JSP templates and JSP tags included in the BEA WebLogic Commerce Server
allow you to easily customize the presentation of the Product Catalog. The names of
the JSPs for categories and product items are stored in the database as attributes of the
categories and items. (See Chapter 2, “The Product Catalog Database Schema,” for
information about the DISPLAY_JSP_URL column in the WLCS_CATEGORY database
table, and the SUM_DISPLAY_JSP_URL column [a pointer to the item’s summary page]
and the DET_DISPLAY_JSP_URL column [a pointer to the item’s detail page] in the
WLCS_PROD_ITEM database table.)

The WebLogic Commerce Server Product Catalog integrates with the Webflow
engine, which automatically selects the appropriate JSP for displaying a particular
category or product item. The Webflow is set by entries in the webflow.properties
file, as explained in the Guide to Managing Presentation and Business Logic: Using
Webflow and Pipeline documentation.

JSP tag libraries allow you to easily retrieve the attributes of items and categories in
the Product Catalog. You can then format these attributes using HTML tags. Any
HTML editor can be used to create custom layouts. You can also include custom Java
code within the JSPs to display categories and items. Table 6-1 describes the catalog
tags in the JSP Tag Library.

Table 6-1 JSP Tag Library

Tag Description

<catalog:getProperty> Retrieves a property for display from a specified
ProductItem or Category. Either explicit or implicit
properties may be retrieved.

<catalog:iterateViewIterator> Iterates a specified ViewIterator. The ViewIterator
may be iterated either by View (one View per iteration) or by
contained Catalog item (one ProductItem or Category
per iteration).

<catalog:iterateThroughView> Iterates a specified ViewIterator through the
ProductItems or Categories contained within a
specified View.

The Catalog JSP Tag Library: cat.tld

Guide to Building a Product Catalog 6-3

The Catalog JSP Tag Library: cat.tld

Table 6-1 summarizes the tags that comprise the WebLogic Commerce Server Product
Catalog JSP Tag Library. To use the functionality provided by a catalog tag, you must
import the cat.tld tag library into your JSP file, as follows:

<%@ taglib uri=”cat.tld” prefix=”catalog” %>

These tags are used in the JSP templates that comprise the default Product Catalog.
You can add or remove tags in your use of the JSP templates to match your specific
formatting requirements.

The tag elements always start with <catalog: and are followed by the type of
operation and one or more parameters. The operation, such as getProperty, always
follows <catalog: without a space or breaking line. You do include a space between
the tag element name and its parameters. Each parameter uses an equal sign and the
parameter’s value is enclosed in double quotes. End each tag with the forward slash,
followed by the closing angle bracket: />.

Subsequent sections in this chapter describe the tags in more detail.

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

6 Product Catalog JSP Tag Library Reference

6-4 Guide to Building a Product Catalog

<catalog:getProperty>

Use the <catalog:getProperty> tag (Table 6-2) to retrieve a property for display
from either a ProductItem or Category. The property can either be an explicit
property (a property that can be retrieved using a get method on the Catalog item) or
an implicit property (a property available through the ConfigurableEntity
getProperty methods on the Catalog item). The tag first checks to see if the specified
property can be retrieved as an explicit property. If it cannot, the specified property is
retrieved as an implicit property.

Table 6-2 <catalog:getProperty>

Tag Attribute Required Type Description R/C

object yes Catalog item Denotes a reference to a ProductItem or
Category object that must be presented in
the form <%= objectReference %>.

R

propertyName yes String propertyName=”propertyName”

Name of the property to retrieve. If the
property is explicit, it may be one of the
following values shown in Table 6-3.

R

getterArgument no String Denotes a reference to an object supplied as
an argument to an explicit property getter
method.

May also be used to obtain implicit or
custom properties that are defined using the
property set framework, in which case the
getterArgument would be the scope
name for the property set (see second
example below).

The object must be presented in the form
<%= getterArgumentReference %>
and must be a run-time expression.

R

id no String id=”newInstance”

If the id attribute is supplied, the value of the
retrieved property will be available in the
variable name to which id is assigned.
Otherwise, the value of the property is
inlined.

C

The Catalog JSP Tag Library: cat.tld

Guide to Building a Product Catalog 6-5

Example 1

This example retrieves the Detail JSP information from an existing ProductItem:

<%@ taglib uri=”cat.tld” prefix=”catalog” %>
.
.
.
<catalog:getProperty
object="<%= item %>"
 propertyName="Jsp"
 getterArgument=
 "<%= new Integer(ProductItem.DETAILED_DISPLAY_JSP_INDEX) %>"
 id="detailJspInfo"
returnType="com.beasys.commerce.ebusiness.catalog.JspInfo"
/>

returnType no String returnType=”returnType”

If the id attribute is supplied, declares the
type of the variable specified by the id
attribute.

C

Table 6-3 propertyName Values

Property Name Catalog Item Type

“contributor | coverage | creationDate |
creator | description | image | key |
language | modifiedDate | name |
publisher | relation | rights | source”

Catalog Item (common
properties)

“jsp” Category

“availability | currentPrice | format |
jsp | msrp | shippingCode | taxCode |
type | visible”

ProductItem

Table 6-2 <catalog:getProperty> (Continued)

Tag Attribute Required Type Description R/C

6 Product Catalog JSP Tag Library Reference

6-6 Guide to Building a Product Catalog

Example 2

The following example shows how to use the getterArgument attribute to obtain an
implicit or custom property for a property set/schema with the following
characteristics:

n Name: MyCatalog

n PropertyName: color

Note: Because the getterArgument must be a run-time expression, we assign
MyCatalog to a String variable and use the variable as the value to the
getterArgument.

<%@ taglib uri=”cat.tld” prefix=”catalog” %>
.
.
.
<%
String myPropertySetName = "MyCatalog";
ProductItem myProductItem =; // reference to a ProductItem
%>
<catalog:getProperty
 object="<%=myProductItem%>
 propertyName="color"
 getterArgument="<%=myPropertySetName%>"
/>

The Catalog JSP Tag Library: cat.tld

Guide to Building a Product Catalog 6-7

<catalog:iterateViewIterator>

Use the <catalog:iterateViewIterator> tag (Table 6-4) to iterate through a
ViewIterator. A ViewIterator is an iterator over a potentially large collection of
remote data that is broken up into a series of fixed sized Views. ViewIterators are
returned from all Catalog service API methods that may potentially return a large set
of ProductItems or Categories. This tag allows you to iterate the ViewIterator
one item (ProductItem or Category) at a time (the default behavior) or by an entire
View (fixed size set of ProductItems or Categories) at a time. It is important to
note that this tag does not reset the state of the ViewIterator upon completion.

Table 6-4 <catalog:iterateViewIterator>

Tag Attribute Required Type Description R/C

iterator yes ViewIterator Denotes a reference to a ViewIterator
object. Must be presented in the form <%=
iteratorReference %>.

R

id yes String id=”newInstance”

The value of the current iterated object will
be available in the variable name to which
the id is assigned.

C

iterateByView no String iterateByView=”{true|false}”

Specifies whether to iterate the
ViewIterator by View or by Catalog
item. If not specified, the ViewIterator
will be iterated by Catalog item.

C

returnType no String returnType=”returnType”

Declares the type of the variable specified by
the id attribute. Defaults to
java.lang.Object.

 If iterateByView is true, the type is
assumed to be
com.beasys.commerce.ebusiness.

catalog.View.

C

6 Product Catalog JSP Tag Library Reference

6-8 Guide to Building a Product Catalog

Example 1

The following example displays the keys of all Categories in a ViewIterator:

<%@ taglib uri=”cat.tld” prefix=”catalog” %>
.
.
.
<catalog:iterateViewIterator
 iterator="<%= myIterator %>"
 id="category"
 returnType="com.beasys.commerce.ebusiness.catalog.Category">
 <%= category.getKey().toString() %>
</catalog:iterateViewIterator>

Example 2

The following example displays all the Views contained within a ViewIterator:

<%@ taglib uri=”cat.tld” prefix=”catalog” %>
.
.
.
<catalog:iterateViewIterator
 iterator="<%= myIterator %>"
 id="view"
 returnType="com.beasys.commerce.ebusiness.catalog.ViewIterator"
 iterateByView=”true”>
 <%= view.toString() %>
</catalog:iterateViewIterator>

<catalog:iterateThroughView>

The <catalog:iterateThroughView> tag (Table 6-5) iterates through a View of a
specified ViewIterator. The tag will iterate the View one Catalog item at a time until
the end of the View is reached. If you do not specify a specific View (by index) through
which to iterate, the current View of the ViewIterator is used. It is important to note
that this tag does not reset the state of the ViewIterator upon completion.

The Catalog JSP Tag Library: cat.tld

Guide to Building a Product Catalog 6-9

Example 1

The following example displays the keys of all the ProductItems contained in the
current View of a specified ViewIterator:

<%@ taglib uri=”cat.tld” prefix=”catalog” %>
.
.
.
<catalog:iterateThroughView
 iterator="<%= myIterator %>"
 id="item"
 returnType="com.beasys.commerce.ebusiness.catalog.ProductItem">
<%= item.getKey().toString() %>
</catalog:iterateThroughView>

Table 6-5 <catalog:iterateThroughView>

Tag Attribute Required Type Description R/C

iterator yes ViewIterator Denotes a reference to a ViewIterator
object that must be presented in the form
<%= iteratorReference %>

R

id yes String id=”newInstance”

The value of the current iterated object will
be available in the variable name to which
the id is assigned.

C

 returnType no String returnType=”returnType”

Declares the type of the variable specified by
the id attribute. Defaults to
java.lang.Object.

C

viewIndex no Integer Specifies the index of the View (relative to
the start of the ViewIterator) through
which to iterate. The referenced object must
be presented in the form <%=
viewIndexIntegerReference %>.

R

6 Product Catalog JSP Tag Library Reference

6-10 Guide to Building a Product Catalog

Example 2

The following example displays the keys of all the ProductItems contained in the
first View of a specified ViewIterator:

<%@ taglib uri=”cat.tld” prefix=”catalog” %>
.
.
.
<catalog:iterateThroughView
 iterator="<%= myIterator %>"
 id="item"
 returnType="com.beasys.commerce.ebusiness.catalog.ProductItem"
 viewIndex=”new Integer(0)”>
 <%= item.getKey().toString() %>
</catalog:iterateThroughView>

The E-Business JSP Tag Library: eb.tld

The <eb:> preface stands for E-Business. The eb.tld tag library consists of just one
tag, <eb:smnav>.

To import the E-Business JSP tag, use the following code:
<%@ taglib uri="eb.tld" prefix="eb" %>

Note: In the following table, the Required column specifies if the attribute is required
(yes) or optional (no). In the R/C column, C means that the attribute is a
Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<eb:smnav>

A Scrollable Model is used to retrieve value objects so that only what is viewed is
retrieved. The <eb:smnav> tag (Table 6-6) provides a presentation of which elements
in the list of value objects are being viewed, and potentially a link to the previous page
and one to the next page.

The E-Business JSP Tag Library: eb.tld

Guide to Building a Product Catalog 6-11

The Scrollable Model can be use throughout the E-Business package to iterate through
a list of objects. It can be used in conjunction with transaction, shopping cart, order
history, or shipping services.

This tag relies on a pipeline session containing a ScrollableModel object on the
PipelineSessionConstants.SCROLLABLE_MODEL key.

Example

The orderhistory.jsp page lets the user go page by page over the set of orders
placed. Only 10 orders are displayed at a time. To go to the next or to the previous
page, the user clicks on the “Next” or “Previous” hyperlinks shown by the tag. In this
example, if the user has 40 orders and is viewing the second page, the tag will be
displayed as “Previous | 20-29 | Next”.

<%@ taglib uri="eb.tld" prefix="eb" %>
.
.
.
<!-- Show the Previous / 10-19 / Next navigation string -->
<eb:smnav origin="orderhistory.jsp" event="link(viewOrderHistory)"
 prevstring="Previous" nextstring="Next"
 pageindex="<%=pageIndexString%>" />

Table 6-6 <eb:smnav>

Tag Attribute Required Type Description R/C

Origin yes String The current jsp page. R

Event yes String The name of the link configurable in the
Webflow as the user clicks on Next or
Previous.

R

Prevstring yes String The localized name for Previous. Could
be as simple as “<”.

R

Nextstring yes String The localized name for Next. Could be
as simple as “>”.

R

PageIndex no String The index of the page to display. C

6 Product Catalog JSP Tag Library Reference

6-12 Guide to Building a Product Catalog

Guide to Building a Product Catalog 7-1

CHAPTER

7 Using the API to Extend
the Product Catalog

This chapter describes the various options available for extending, customizing, or
writing third-party integrations for the WebLogic Commerce Server Product Catalog.
The catalog defines interfaces for services that are required to access and administer
an electronic product catalog. The architecture is built on Java 2 Enterprise Edition
(J2EE) standards-based components and BEA WebLogic Server.

In addition, an implementation of the services is provided that defines an electronic
product catalog that uses JDBC as a persistence mechanism.

Note: The descriptions in this chapter assume that you are an experienced EJB
developer.

This topic includes the following sections:

n Overview of the Product Catalog API

n Catalog Architecture and Services

l Catalog Architecture

l Catalog Manager

l Product Item Manager

l Category Manager

l Custom Data Manager

l Catalog Query Manager

n The Catalog Cache

n Writing Your Own Catalog Service

7 Using the API to Extend the Product Catalog

7-2 Guide to Building a Product Catalog

Note: In this chapter, the environment variable WL_COMMERCE_HOME is used to
represent the directory in which you installed the WebLogic Commerce Server
software.

Overview of the Product Catalog API

The Product Catalog API package structure is organized as follows:

com.beasys.commerce.ebusiness.catalog is the main end-user package for
Product Catalog development. It contains all the commonly accessed classes for
accessing both Product Items and Categories.

com.beasys.commerce.ebusiness.catalog.loader contains the classes
necessary to support the command-line Product Catalog database bulk loader,
DBLoader. This loader allows you to easily and quickly import data into the Product
Catalog from simple character separated value files.

com.beasys.commerce.ebusiness.catalog.pipeline contains all Pipeline
Components that facilitate accessing the Product Catalog from JavaServer Pages.

com.beasys.commerce.ebusiness.catalog.service contains the base services
on top of which all pluggable Product Catalog services are implemented. Additionally,
this packaged contains several subpackages for managing Product Items and
Categories, searching the Product Catalog, and providing custom attribute support.

com.beasys.commerce.ebusiness.catalog.service.category contains the
classes that define a pluggable service to manage the Categories and hierarchical
structure of the Product Catalog.

com.beasys.commerce.ebusiness.catalog.service.data contains the classes
that define a pluggable service to manage the custom attributes for Product Items and
Categories within the Product Catalog.

com.beasys.commerce.ebusiness.catalog.service.item contains the classes
that define a pluggable service to manage the Product Items within the Product
Catalog.

Catalog Architecture and Services

Guide to Building a Product Catalog 7-3

com.beasys.commerce.ebusiness.catalog.service.query contains the
classes that define a pluggable service to perform powerful searching of the Product
Catalog. The Product Items within the Catalog can be searched using keywords or
Boolean search expressions across their attributes.

com.beasys.commerce.ebusiness.catalog.sql contains the classes that provide
a database persistence model for the Product Catalog. Industry standard JDBC and
SQL are used to ensure compatibility with a wide range of databases.

com.beasys.commerce.ebusiness.catalog.util contains the classes that
provide utility methods for the Product Catalog.

com.beasys.commerce.ebusiness.catalog.webflow contains all Input
Processors that facilitate accessing the Product Catalog from JavaServer Pages.

Catalog Architecture and Services

The WebLogic Commerce Server Product Catalog architecture divides the
functionality of the Product Catalog into five functional areas, each of which requires
an implementation of an associated Product Catalog server interface. The five services
are:

n Catalog Manager

n Product Item Manager

n Category Manager

n Custom Data Manager

n Catalog Query Manager

All services are implemented using J2EE-compliant stateless session EJBs. These
EJBs separate the functionality of the Catalog into discrete, pluggable components.

Catalog Architecture

Figure 7-1 illustrates the Catalog architecture.

7 Using the API to Extend the Product Catalog

7-4 Guide to Building a Product Catalog

Figure 7-1 Product Catalog Architecture

For example, the process of displaying a product item in a user’s browser involves the
following phases:

1. The Web browser opens the JavaServer Page (JSP) that is running in an instance of
the WebLogic Server.

2. One or more Catalog Pipeline Components are executed. For example,
GetProductItemPC is executed when a user views a product item.

3. The Pipeline Component finds the CatalogManager stateless session EJB.

4. The Pipeline Component requests a service from the CatalogManager (such as
the service provided by the ProductItemManager) and receives a stateless
session EJB that implements the ProductItemManager interface.

5. The Pipeline Component calls a method on the ProductItemManager interface.
An example is getItem(12345) , where 12345 is the unique identifier for a
product item, in the form of a Stock Keeping Unit (SKU) number.

Catalog Architecture and Services

Guide to Building a Product Catalog 7-5

6. The catalog services analyze the incoming request and the in-memory cache. If
the request can be satisfied using in-memory cached data, the cached data is
returned. Otherwise, a service provider is selected (based upon deployment
settings) that can handle the request, and the corresponding method is invoked on
the service (which must also implement the ProductItemManager interface).
The return value from the service is added to the cache and the return value is
propagated back to the Pipeline Component.

7. The Pipeline Component then adds the result of the Catalog request to the
Pipeline Session.

8. The JSP uses the WebLogic Commerce Server tag libraries to extract the results
of the Catalog request from the Pipeline Session and formats the results as
HTML.

Catalog Manager

The Catalog Manager will not typically require customization. Its main purpose is to
provide a single point of access to the other catalog services. Table 7-1 shows the
method summary for the CatalogManager interface.

Table 7-1 Method Summary for the CatalogManager Interface

Return Type Method Signature

CatalogRequest createAdminCatalogRequest()

Creates a CatalogRequest with administrative user access
permissions.

CatalogRequest createCatalogRequest()

Creates a CatalogRequest with default user access permissions.

CatalogQueryManager getCatalogQueryManager(CatalogRequest request)

Returns the CatalogQueryManager catalog service.

CategoryManager getCategoryManager(CatalogRequest request)

Returns the CategoryManager catalog service.

CustomDataManager getCustomDataManager(CatalogRequest request)

Returns the CustomDataManager catalog service.

7 Using the API to Extend the Product Catalog

7-6 Guide to Building a Product Catalog

The JNDI names of the EJBs returned from the CatalogManager methods are defined
in the weblogic-ejb-jar.xml deployment descriptor for the CatalogManager, as
shown in Listing 7-1.

Note: You can find the ejb-jar.xml and weblogic-ejb-jar.xml deployment
descriptor files in the ebusiness.jar file, which is in
WL_COMMERCE_HOME\lib.

Listing 7-1 CatalogManager Deployment Descriptor

<weblogic-enterprise-bean>

 <ejb-name>com.beasys.commerce.ebusiness.catalog.CatalogManager</ejb-name>

 <reference-descriptor>

 <ejb-reference-description>

 <ejb-ref-name>ejb/ProductItemManager</ejb-ref-name>

 <jndi-name>

 com.beasys.commerce.ebusiness.catalog.service.item.ProductItemManager

 </jndi-name>

 </ejb-reference-description>

 <ejb-reference-description>

 <ejb-ref-name>ejb/CategoryManager</ejb-ref-name>

 <jndi-name>

 com.beasys.commerce.ebusiness.catalog.service.category.CategoryManager

 </jndi-name>

ProductItemManager getProductItemManager(CatalogRequest request)

Returns the ProductItemManager catalog service.

void onRemoveItem(CatalogRequest request,
CatalogItemKey item)

Callback method.

Table 7-1 Method Summary for the CatalogManager Interface (Continued)

Catalog Architecture and Services

Guide to Building a Product Catalog 7-7

 </ejb-reference-description>

 <ejb-reference-description>

 <ejb-ref-name>ejb/CatalogQueryManager</ejb-ref-name>

 <jndi-name>

 com.beasys.commerce.ebusiness.catalog.service.query.CatalogQueryManager

 </jndi-name>

 </ejb-reference-description>

 <ejb-reference-description>

 <ejb-ref-name>ejb/CustomDataManager</ejb-ref-name>

 <jndi-name>

 com.beasys.commerce.ebusiness.catalog.service.data.CustomDataManager

 </jndi-name>

 </ejb-reference-description>

 <ejb-reference-description>

 <ejb-ref-name>ejb/CatalogManager</ejb-ref-name>

 <jndi-name>

 com.beasys.commerce.ebusiness.catalog.CatalogManager

 </jndi-name>

 </ejb-reference-description>

 </reference-descriptor>

 <jndi-name>

 com.beasys.commerce.ebusiness.catalog.CatalogManager

 </jndi-name>

</weblogic-enterprise-bean>

7 Using the API to Extend the Product Catalog

7-8 Guide to Building a Product Catalog

Product Item Manager

The Product Item Manager is responsible for creating, getting, updating, and deleting
items within the Catalog. Table 7-2 shows the method summary for the
ProductItemManager interface.

Table 7-2 Method Summary of the ProductItemManager Interface

Return Type Method Signature

void createItem(CatalogRequest request,
ProductItem product)

Creates a new product item.

ProductItem getItem(CatalogRequest, request,
ProductItemKey, productKey)

Returns the product item with the specified key.

int getItemCount(CatalogRequest request)

Returns the number of product items in the Product Catalog.

ProductItemKey[] getItemKeys(CatalogRequest request, int
beginIndex, int endIndex)

Returns an array over all existing product item keys within
the specified ordered range.

ViewIterator getItems(CatalogRequest request, int
viewSize)

Returns a ViewIterator over all existing product items.

ProductItem[] getItems(CatalogRequest request,
ProductItemKey[] productKeys)

Returns the product items with the given product item keys.

java.lang.String[] getKeywords(CatalogRequest request,
ProductItemKey productKey)

Returns the keywords associated with a given product item.

void setKeywords(CatalogRequest request,
ProductItemKey productKey,
java.lang.String[] keywords)

Sets the keywords for a given product item.

Catalog Architecture and Services

Guide to Building a Product Catalog 7-9

Category Manager

The Category Manager is responsible for managing the hierarchical structure of the
electronic Product Catalog. It defines the interface that allows the hierarchy to be
created and modified, as well as the mapping of items into categories to be managed.

Table 7-3 shows the method summary for the CategoryManager interface.

void removeItem(CatalogRequest request,
ProductItemKey productKey)

Removes a product item.

void updateItem(CatalogRequest request,
ProductItem product)

Updates a product item.

Table 7-2 Method Summary of the ProductItemManager Interface (Continued)

Return Type Method Signature

Table 7-3 Method Summary of the CategoryManager Interface

Return Type Method Signature

void addItem(CatalogRequest request,
CategoryKey categoryKey,
ProductItemKey itemKey)

Adds an item to the specified category.

void createCategory(CatalogRequest request,
CategoryKey parentKey, Category category)

Creates a subcategory within the supplied parent category.

Category[] getAncestors(CatalogRequest request,
CategoryKey categoryKey)

Returns the ancestors of the specified category in ascending order.

Category[] getCategories(CatalogRequest request,
CategoryKey[] categoryKeys)

Returns the categories with the given category keys.

7 Using the API to Extend the Product Catalog

7-10 Guide to Building a Product Catalog

ViewIterator getCategories(CatalogRequest request,
int viewSize)

Returns a ViewIterator over all existing categories.

Category getCategory(CatalogRequest request,
CategoryKey categoryKey)

Returns the category with the given category key.

int getCategoryCount(CatalogRequest request)

Returns the total number of categories in the product catalog.

CategoryKey[] getCategoryKeys(CatalogRequest request,
int beginIndex, int endIndex)

Returns an array of all existing category keys within the specified
ordered range.

int getItemCount(CatalogRequest request,
CategoryKey categoryKey)

Returns the number of product items associated with the specified
category.

ProductItemKey[] getItemKeys(CatalogRequest request,
CategoryKey categoryKey, int beginIndex,
int endIndex)

Returns an array of all product item keys of the specified category
within the specified ordered range.

ViewIterator getItems(CatalogRequest request,
CategoryKey categoryKey, int viewSize)

Returns a ViewIterator over all product items of the specified
category.

int getOrphanedItemCount(CatalogRequest request)

Returns the number of orphaned items in the catalog. An
orphaned item (uncategorized) is an item that does not belong to
any categories.

Table 7-3 Method Summary of the CategoryManager Interface (Continued)

Return Type Method Signature

Catalog Architecture and Services

Guide to Building a Product Catalog 7-11

ProductItemKey[] getOrphanedItemKeys(CatalogRequest request,
int beginIndex, int endIndex)

Returns an array of all existing orphaned item keys within the
specified ordered range. An orphaned item (uncategorized) is an
item that does not belong to any categories.

ViewIterator getOrphanedItems(CatalogRequest request,
int viewSize)

Returns a ViewIterator over all existing orphaned items. An
orphaned item (uncategorized) is an item that does not belong to
any categories.

Category getParent(CatalogRequest request,
CategoryKey categoryKey)

Returns the parent of the specified category.

Category getRootCategory(CatalogRequest request)

Returns the root category.

int getSiblingCount(CatalogRequest request,
CategoryKey categoryKey)

Returns the number of siblings associated with the specified
category.

CategoryKey[] getSiblingKeys(CatalogRequest request,
CategoryKey categoryKey, int beginIndex,
int endIndex)

Returns an array of all sibling keys of the specified category
within the specified ordered range.

ViewIterator getSiblings(CatalogRequest request,
CategoryKey categoryKey, int viewSize)

Returns a ViewIterator over all siblings of the specified
category.

ViewIterator getSubCategories(CatalogRequest request,
CategoryKey categoryKey, int viewSize)

Returns a ViewIterator over all subcategories of the specified
category.

Table 7-3 Method Summary of the CategoryManager Interface (Continued)

Return Type Method Signature

7 Using the API to Extend the Product Catalog

7-12 Guide to Building a Product Catalog

Custom Data Manager

The Custom Data Manager defines an interface that allows custom attributes
(attributes not defined in the ProductItem interface) to be persisted for Product Items.
The getProperty and setProperty Configurable Entity methods on Categories and
Product Items use the Custom Data Manager service to allow a client to retrieve and
set customer attributes.

int getSubCategoryCount(CatalogRequest request,
CategoryKey categoryKey)

Returns the number of subcategories associated with the specified
category.

CategoryKey[] getSubCategoryKeys(CatalogRequest request,
CategoryKey categoryKey, int beginIndex,
int endIndex)

Returns an array of all subcategory keys of the specified category
within the specified ordered range.

void moveCategory(CatalogRequest request,
CategoryKey categoryKey,
CategoryKey newParentKey)

Moves the specified category under the specified parent.

void removeCategory(CatalogRequest request,
CategoryKey categoryKey)

Removes the specified category.

void removeItem(CatalogRequest request,
CategoryKey categoryKey,
ProductItemKey itemKey)

Removes an item from the specified category.

void updateCategory(CatalogRequest request,
Category category)

Updates an existing category.

Table 7-3 Method Summary of the CategoryManager Interface (Continued)

Return Type Method Signature

Catalog Architecture and Services

Guide to Building a Product Catalog 7-13

Table 7-4 shows the method summary for the CustomDataManager interface.

Table 7-4 Method Summary for the CustomDataManager Interface

Return Type Method Signature

java.util.Map getProperties(CatalogRequest request,
CatalogItemKey itemKey)

Retrieves all the property values.

java.util.Map getProperties(CatalogRequest request,
CatalogItemKey itemKey,
java.lang.String namespace)

Retrieves all the property values within a namespace.

java.lang.Object getProperty(CatalogRequest request,
CatalogItemKey itemKey,
java.lang.String namespace,
java.lang.String key,
java.lang.Object defaultValue)

Retrieves the value associated with the named key.

void removeProperties(CatalogRequest request,
CatalogItemKey itemKey)

Removes all the properties for an item.

java.lang.Object removeProperty(CatalogRequest request,
CatalogItemKey itemKey,
java.lang.String namespace,
java.lang.String key)

Removes the property associated with the named key.

void setProperty(CatalogRequest request,
CatalogItemKey itemKey,
java.lang.String namespace,
java.lang.String key,
java.lang.Object value)

Associates the specified value with the named key.

7 Using the API to Extend the Product Catalog

7-14 Guide to Building a Product Catalog

Catalog Query Manager

The Catalog Query Manager is responsible for searching the Catalog for Product
Items. It currently defines two types of catalog search: keyword search and
query-based search.

The keyword search is a search of the keywords associated with a product item.
Query-based search allows a complex Boolean expression on any of the item attributes
to be evaluated.

Table 7-5 shows the method summary for the CatalogQueryManager interface.

For related information, see the section “Query-Based Search Syntax” on page 5-75.

The Catalog Cache

The Catalog architecture includes a powerful caching mechanism for items and
categories within the Product Catalog. Integrators can choose between integrating
services in front of the cache or behind the cache. Currently the ProductItemManager
and CategoryManager benefit from the caching architecture, as illustrated earlier in
this chapter in Figure 7-1.

Table 7-5 Method Summary for the CatalogQueryManager Interface

Return Type Method Signature

ProductItemKey[] search(CatalogRequest request,
CatalogQuery query)

Returns the keys of product items that met the criteria of the
supplied catalog query object.

ViewIterator search(CatalogRequest request,
CatalogQuery query, int viewSize)

Returns a ViewIterator over all product items that met the
criteria of the supplied catalog query object.

The Catalog Cache

Guide to Building a Product Catalog 7-15

Replacing the JNDI name of a bean in the CatalogManager’s deployment descriptor
will replace a service in front of the cache. The service will have to implement its own
caching mechanism or forgo the benefits of caching.

The services defined by BEA, specified in the deployment descriptor for the
CatalogManager, implement the caching for access to items and categories. The
following beans query the cache and returned cached data if available; otherwise they
delegate to the beans specified in their deployment descriptors:

com.beasys.commerce.ebusiness.catalog.service.item.ProductItemManager
com.beasys.commerce.ebusiness.catalog.service.category.CategoryManager

By editing the deployment descriptors for the ProductItemManager and
CategoryManager beans, the functionality of the Product Catalog can be extended
behind the cache. This enables developers to concentrate on the persistence model for
the catalog without worrying about the caching architecture. For example, in
Listing 7-2, you could replace the current delegate service provider class
(JdbcCategoryManager) with the name of a new session bean that implements the
CategoryManager interface. This listing is from the ejb-jar.xml deployment
descriptor file (platform independent).

Listing 7-2 CategoryManager Deployment Descriptor

<session>
 <ejb-name>
 com.beasys.commerce.ebusiness.catalog.service.category.CategoryManager
 </ejb-name>
 <home>
 com.beasys.commerce.ebusiness.catalog.service.category.CategoryManagerHome
 </home>
 <remote>com.beasys.commerce.ebusiness.catalog.service.category.CategoryManager
 </remote>
 <ejb-class>
 com.beasys.commerce.ebusiness.catalog.service.category.CategoryManagerImpl
 </ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>

 <!-- one specifies the delegateName to tell the Bridge component (the one
 used by the catalog manager which ejb to delegate to. That way, one
 can change delegates by changing the env-entry...
 -->

 <env-entry>
 <env-entry-name>delegateName</env-entry-name>

7 Using the API to Extend the Product Catalog

7-16 Guide to Building a Product Catalog

 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>ejb/JdbcCategoryManager</env-entry-value>
 </env-entry>

 <ejb-ref>
 <ejb-ref-name>ejb/JdbcCategoryManager</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>
 com.beasys.commerce.ebusiness.catalog.service.category.JdbcCategoryManagerHome
 </home>
 <remote>
 com.beasys.commerce.ebusiness.catalog.service.category.JdbcCategoryManager
 </remote>
 </ejb-ref>

 <ejb-ref>
 <ejb-ref-name>ejb/CatalogManager</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>

 <home>
 com.beasys.commerce.ebusiness.catalog.CatalogManagerHome
 </home>
 <remote>
 com.beasys.commerce.ebusiness.catalog.CatalogManager
 </remote>
 </ejb-ref>
</session>

Again, the previous listing is from the ejb-jar.xml deployment descriptor file. You
would need to make corresponding changes in the weblogic-ejb-jar.xml file. The
ejb-jar.xml file (platform independent) and weblogic-ejb-jar.xml file
(platform specific) file are packaged in the ebusiness.jar file. (This JAR file can be
found in the WL_COMMERCE_HOME\lib directory, where WL_COMMERCE_HOME is the
directory in which you installed WebLogic Commerce Server.) For related
information, see the WebLogic Server EJB Reference documentation at
http://www.weblogic.com/docs51/classdocs/API_ejb/EJB_reference.html, and the
WebLogic Server Deployment Guide at
http://www.weblogic.com/docs51/techdeploy/index.html.

Writing Your Own Catalog Service

Guide to Building a Product Catalog 7-17

Writing Your Own Catalog Service

This section describes the steps required to implement Product Catalog services, by
way of an example. In this example, we replace the JdbcProductItemManager and
the JdbcCatalogQueryManager with non-JDBC based implementations. Both
provide simple (that is, not suitable for production) implementations based around
storing items in memory and serializing them to (and from) disk.

Also outlined in this section are the changes to the Catalog Services deployment
description that are required to plug in the new service implementation. Because these
new services reside “behind” the catalog caching mechanism (see the Tier 2 portion of
Figure 7-1), the new services can take advantage of the powerful caching features of
the WebLogic Commerce Server Product Catalog.

To implement the new services, the general steps are as follows:

1. Create the new services.

2. Compile the new services.

3. Adjust the service deployment descriptor.

4. Deploy the new services.

Note: Steps 1 and 3 are described in the remainder of this chapter. For information
about steps 2 and 4, please refer to the BEA WebLogic Server Deployment
Guide at http://www.weblogic.com/docs51/techdeploy/index.html.

The following topics are covered in this section:

n Create New Services

n Changes to ejb-jar.xml

n Changes to weblogic-ejb-jar.xml

The ejb-jar.xml and weblogic-ejb-jar.xml files are packaged in the
ebusiness.jar file, which can be found in the WL_COMMERCE_HOME\lib directory,
where WL_COMMERCE_HOME is the directory in which you installed WebLogic
Commerce Server.

7 Using the API to Extend the Product Catalog

7-18 Guide to Building a Product Catalog

You can find all the source code shown in this section in the
WL_COMMERCE_HOME/src/examples/catalog/file directory. (The updated
deployment descriptors are not in this directory, however.)

Warning: This section assumes that you are familiar with building and deploying
EJBs. This section also describes modifications to WebLogic Commerce
Server deployment JAR files; therefore, it is important that you first back
up all files and JAR libraries that you intend to modify.

Create New Services

The first step in creating a new catalog service is to implement the corresponding
Stateless Session EJB service API. Some of the files are optional, as explained in the
following summary. After the summary, sample source code is provided for the
implementation files, FileCatalogQueryManagerImpl.java and
FileProductItemManagerImpl.java. Again, you can find this source code in the
following directory:

WL_COMMERCE_HOME/src/examples/catalog/file

n FileCatalogQueryManager.java

This is the remote interface for the FileCatalogQueryManager session bean.
The new remote interface is not required, and the remote interface for the bean
specified in ejb-jar.xml should remain CatalogQueryManager.

n FileCatalogQueryManagerHome.java

The Home for the new service is not required, as access to the bean should
always be through the environment of the CatalogManager or one of the Tier 1
Service Providers’ environments.

n FileCatalogQueryManagerImpl.java

The implementation file for the new Tier 2 service. It implements a file-based
Product Catalog search engine.

n FileProductItemManager.java

This is the remote interface for the FileProductItemManager session bean.
The new remote interface is not required, and the remote interface for the bean
specified in ejb-jar.xml should remain ProductItemManager.

n FileProductItemManagerHome.java

Writing Your Own Catalog Service

Guide to Building a Product Catalog 7-19

The Home for the new service is not required, as access to the bean should
always be through the environment of the CatalogManager or one of the Tier 1
Service Providers’ environments.

n FileProductItemManagerImpl.java

The implementation file for the new Tier 2 service contains the new
functionality desired. It implements a file-based Product Item management
service.

Sample Source Code

Listing 7-3 show sample implementation source code for:

n FileProductItemManagerImpl.java

n FileCatalogQueryManagerImpl.java

After you install WebLogic Commerce Server, these files can be found in the
WL_COMMERCE_HOME/src/examples/catalog/file directory.

In the following listing, the bold typeface is used to direct your attention to the most
relevant lines of code.

Listing 7-3 FileProductItemManagerImpl.java

/*
 * B E A S Y S T E M S
 *
 * C O M M E R C E C O M P O N E N T S
 *
 * Copyright (c) 1997-2001 BEA Systems, Inc.
 *
 * All Rights Reserved. Unpublished rights reserved under the copyright laws
 * of the United States. The software contained on this media is proprietary
 * to and embodies the confidential technology of BEA Systems, Inc. The
 * possession or receipt of this information does not convey any right to disclose
 * its contents, reproduce it, or use, or license the use, for manufacture or
 * sale, the information or anything described therein. Any use, disclosure, or
 * reproduction without BEA System’s prior written permission is strictly
 * prohibited.
 *
 *
 * $Header:$
 */

7 Using the API to Extend the Product Catalog

7-20 Guide to Building a Product Catalog

package com.beasys.commerce.ebusiness.catalog.examples.file;
import com.beasys.commerce.foundation.*;
import com.beasys.commerce.util.*;
import java.util.*;
import java.rmi.*;
import javax.ejb.*;
import javax.naming.*;
//$Import$_Begin ------------ CUSTOM CODE ---------------
import com.beasys.commerce.ebusiness.catalog.*;
import com.beasys.commerce.ebusiness.catalog.service.*;
import com.beasys.commerce.ebusiness.catalog.service.item.*;
import java.io.*;
//$Import$_End ^^
/**
 *
 *
 * @see
com.beasys.commerce.ebusiness.catalog.service.item.FileProductItemManager
 * @see
com.beasys.commerce.ebusiness.catalog.service.item.FileProductItemManagerHome
 */
public class FileProductItemManagerImpl extends
com.beasys.commerce.ebusiness.catalog.service.CatalogServiceImpl
 //$Implements$_Begin ------------ CUSTOM CODE ---------------
 // USER CHANGES: Add interfaces that are implemented here
 //$Implements$_End ̂ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
{

 //$AdditionalAttributeDeclarations$_Begin ------------ CUSTOM CODE
 // ---------------
 private Hashtable itemTable = null;
 private Hashtable keywordTable = null;

 //$AdditionalAttributeDeclarations$_End ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 public FileProductItemManagerImpl()
 {
 super();
 //$Constructor$_Begin ------------ CUSTOM CODE ---------------
 //$Constructor$_End ^^
 }
 private void loadData()
 {
 if(itemTable == null || keywordTable == null)
 {
 try
 {
 FileInputStream istream = new FileInputStream("items.bin");
 ObjectInputStream objIn = new ObjectInputStream(istream);

Writing Your Own Catalog Service

Guide to Building a Product Catalog 7-21

 itemTable = (Hashtable) objIn.readObject();
 keywordTable = (Hashtable) objIn.readObject();
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }

 if(itemTable == null)
 itemTable = new Hashtable();

 if(keywordTable == null)
 keywordTable = new Hashtable();
 }
 }
 private void saveData()
 {
 try
 {
 FileOutputStream ostream = new FileOutputStream("items.bin");
 ObjectOutputStream objOut = new ObjectOutputStream(ostream);
 objOut.writeObject(itemTable);
 objOut.writeObject(keywordTable);
 }
 catch(Exception e)
 {
 e.printStackTrace();
 }
 }
 public void ejbCreate() throws CreateException
 {
 super.ejbCreate();
 //$EjbCreate$_Begin ------------ CUSTOM CODE ---------------
 // read all the items from the input stream
 loadData();
 //$EjbCreate$_End ^^
 }
 public void ejbPostCreate() throws CreateException
 {
 super.ejbPostCreate();

 //$EjbPostCreate$_Begin ------------ CUSTOM CODE ---------------
 //$EjbPostCreate$_End ^^
 }

 public void ejbActivate() throws EJBException
 {
 super.ejbActivate();

7 Using the API to Extend the Product Catalog

7-22 Guide to Building a Product Catalog

 //$EjbActivate$_Begin ------------ CUSTOM CODE ---------------
 //$EjbActivate$_End ^^
 }

 public void ejbPassivate() throws EJBException
 {
 super.ejbPassivate();

 //$EjbPassivate$_Begin ------------ CUSTOM CODE ---------------
 //$EjbPassivate$_End ^^
 }

 public void ejbRemove() throws EJBException
 {
 super.ejbRemove();
 //$EjbRemove$_Begin ------------ CUSTOM CODE ---------------

 saveData();

 itemTable = null;
 keywordTable = null;

 //$EjbRemove$_End ^^
 }

 public void setSessionContext(SessionContext ctx) throws EJBException
 {
 super.setSessionContext(ctx);

 //$SetSessionContext$_Begin ------------ CUSTOM CODE ---------------
 //$SetSessionContext$_End ^^
 }

 /**
 * Returns the number of product items in the product catalog.
 * @param request The catalog request object
 * @return The number of product items in the product catalog.
 * @throws CatalogException on general error.
 */
 public int getItemCount(CatalogRequest request) throws CatalogException
 {
 //$Method int getItemCount(CatalogRequest request)$_Begin ------------
CUSTOM CODE ---------------
 return itemTable.size();
 //$Method int getItemCount(CatalogRequest request)$_End
^^
 }

 /**

Writing Your Own Catalog Service

Guide to Building a Product Catalog 7-23

 * Returns the product item with the specified key.
 * @param request The catalog request object.
 * @param productKey The key of the target product.
 * @throws CatalogFinderException if the product item could not be found.
 * @throws CatalogException on general error.
 */
 public ProductItem getItem(CatalogRequest request, ProductItemKey productKey
) throws CatalogFinderException,CatalogException
 {
 //$Method ProductItem getItem(CatalogRequest request, ProductItemKey
productKey)$_Begin ------------ CUSTOM CODE ---------------
 ProductItem item = (ProductItem) itemTable.get(productKey);

 if(item == null)
 throw new CatalogFinderException(productKey);

 return item;
 //$Method ProductItem getItem(CatalogRequest request, ProductItemKey
productKey)$_End ^^
 }

 /**
 * Returns the product items with the given product item keys.
 * @param request The catalog request object.
 * @param keys The keys of the target product items.
 * @returns The product items with the given product item keys.
 * @throws CatalogFinderException if a product item with a given key does not
exist.
 * @throws CatalogException on general error.
 */
 public ProductItem[] getItems(CatalogRequest request, ProductItemKey[]
productKeys) throws CatalogFinderException,CatalogException
 {
 //$Method ProductItem[] getItems(CatalogRequest request, ProductItemKey[]
productKeys)$_Begin ------------ CUSTOM CODE ---------------
 ProductItem[] itemArray = new ProductItem[productKeys.length];

 for(int n = 0; n < productKeys.length; n++)
 itemArray[n] = getItem(request, productKeys[n]);

 return itemArray;
 //$Method ProductItem[] getItems(CatalogRequest request, ProductItemKey[]
productKeys)$_End ^^
 }

 /**
 * Returns an array over all existing product item keys within the specified
ordered range.
 * @param request The catalog request object.

7 Using the API to Extend the Product Catalog

7-24 Guide to Building a Product Catalog

 * @param beginIndex The lower bound index for returned product item keys.
 * @param endIndex The upper bound index for returned product item keys.
 * @return An array of the product item keys.
 * @throws CatalogException on general error.
 */
 public ProductItemKey[] getItemKeys(CatalogRequest request, int beginIndex,
int endIndex) throws CatalogException
 {
 //$Method ProductItemKey[] getItemKeys(CatalogRequest request, int
beginIndex, int endIndex)$_Begin ------------ CUSTOM CODE ---------------
 Enumeration keysEnum = itemTable.keys();

 LinkedList keyList = new LinkedList();

 int index = 0;

 while(keysEnum.hasMoreElements() != false && index < endIndex)
 {
 ProductItemKey key = (ProductItemKey) keysEnum.nextElement();

 if(index >= beginIndex && index < endIndex && key != null)
 keyList.add(key);
 }

 return (ProductItemKey[]) keyList.toArray(new ProductItemKey[0]);
 //$Method ProductItemKey[] getItemKeys(CatalogRequest request, int
beginIndex, int endIndex)$_End ^^
 }

 /**
 * Returns a ViewIterator over all existing product items.
 * @param request The catalog request object.
 * @param viewSize The view size of the returned ViewIterator.
 * @return A ViewIterator over all existing product items.
 * @throws CatalogException on general error.
 */
 public ViewIterator getItems(CatalogRequest request, int viewSize) throws
CatalogException,RemoteException
 {
 //$Method ViewIterator getItems(CatalogRequest request, int
viewSize)$_Begin ------------ CUSTOM CODE ---------------
 int numItems = getItemCount(request);
 ProductItemIterator iterator = new ProductItemIterator(
getCatalogManagerJndiName(), request, numItems, viewSize);
 return iterator;
 //$Method ViewIterator getItems(CatalogRequest request, int viewSize)$_End
^^
 }

Writing Your Own Catalog Service

Guide to Building a Product Catalog 7-25

 /**
 * Returns the keywords associated with a given product item.
 * @param request The catalog request object.
 * @param productKey The key of the target product.
 * @return The keywords associated with the given product item. If there are
no keywords associated with the item, a zero length <code>String</code>
array is returned.
 * @throws CatalogFinderException if the product item could not be found.
 * @throws CatalogException on general error.
 * @throws SQLException on database access error.
 */
 public String[] getKeywords(CatalogRequest request, ProductItemKey productKey
) throws CatalogFinderException,CatalogException
 {
 //$Method String[] getKeywords(CatalogRequest request, ProductItemKey
productKey)$_Begin ------------ CUSTOM CODE ---------------
 String[] stringArray = (String[]) keywordTable.get(productKey);

 if(stringArray == null)
 stringArray = new String[0];

 return stringArray;
 //$Method String[] getKeywords(CatalogRequest request, ProductItemKey
productKey)$_End ^^
 }

 /**
 * Sets the keywords for a given product item.
 * @param request The catalog request object.
 * @param productKey The key of the target product.
 * @param keywords The keywords to associate with the given product item.
 * @throws CatalogFinderException if the product item could not be found.
 * @throws CatalogException on general error.
 * @throws SQLException on database access error.
 */
 public void setKeywords(CatalogRequest request, ProductItemKey productKey,
String[] keywords) throws CatalogFinderException,CatalogException
 {
 //$Method void setKeywords(CatalogRequest request, ProductItemKey
productKey, String[] keywords)$_Begin ------------ CUSTOM CODE ---------------
 validateAuthorization(request, CatalogRequest.ADMINISTRATION);

 keywordTable.put(productKey, keywords);
 saveData();

 //$Method void setKeywords(CatalogRequest request, ProductItemKey
productKey, String[] keywords)$_End ^^
 }

7 Using the API to Extend the Product Catalog

7-26 Guide to Building a Product Catalog

 /**
 * Creates a new product item.
 * @param request The catalog request object.
 * @param product The product item to persist.
 * @throws CatalogCreateException if the product item could not be created.
 * @throws CatalogException on general error.
 */
 public void createItem(CatalogRequest request, ProductItem product) throws
CatalogCreateException,CatalogException
 {
 //$Method void createItem(CatalogRequest request, ProductItem
product)$_Begin ------------ CUSTOM CODE ---------------
 validateAuthorization(request, CatalogRequest.ADMINISTRATION);
 itemTable.put((ProductItemKey) product.getKey(), product);
 saveData();

 //$Method void createItem(CatalogRequest request, ProductItem product)$_End
^^
 }

 /**
 * Updates a product item.
 * @param request The catalog request object.
 * @param product The product item to update.
 * @throws CatalogFinderException if the product item could not be found.
 * @throws CatalogException on general error.
 */
 public void updateItem(CatalogRequest request, ProductItem product) throws
CatalogFinderException,CatalogException
 {
 //$Method void updateItem(CatalogRequest request, ProductItem
product)$_Begin ------------ CUSTOM CODE ---------------
 validateAuthorization(request, CatalogRequest.ADMINISTRATION);
 itemTable.put((ProductItemKey) product.getKey(), product);
 saveData();

 //$Method void updateItem(CatalogRequest request, ProductItem product)$_End
^^
 }

 /**
 * Removes a product item.
 * @param request The catalog request object.
 * @param product The product item to remove.
 * @throws CatalogRemoveException if the product item could not be removed.
 * @throws CatalogFinderException if the product item could not be found.
 * @throws CatalogException on general error.
 */
 public void removeItem(CatalogRequest request, ProductItemKey productKey)

Writing Your Own Catalog Service

Guide to Building a Product Catalog 7-27

throws CatalogRemoveException,CatalogFinderException,CatalogException
 {
 //$Method void removeItem(CatalogRequest request, ProductItemKey
productKey)$_Begin ------------ CUSTOM CODE ---------------
 validateAuthorization(request, CatalogRequest.ADMINISTRATION);
 itemTable.remove(productKey);
 saveData();

 //$Method void removeItem(CatalogRequest request, ProductItemKey
productKey)$_End ^^
 }
}

Listing 7-4 shows the source code for FileCatalogQueryManagerImpl.java.

Listing 7-4 FileCatalogQueryManagerImpl.java

/*

 * B E A S Y S T E M S
 *
 * C O M M E R C E C O M P O N E N T S
 *
 * Copyright (c) 1997-2001 BEA Systems, Inc.
 *
 * All Rights Reserved. Unpublished rights reserved under the copyright laws
 * of the United States. The software contained on this media is proprietary
 * to and embodies the confidential technology of BEA Systems, Inc. The
 * possession or receipt of this information does not convey any right to disclose
 * its contents, reproduce it, or use, or license the use, for manufacture or
 * sale, the information or anything described therein. Any use, disclosure, or
 * reproduction without BEA System’s prior written permission is strictly
prohibited.
 *
 *
 * $Header:$
 */

package com.beasys.commerce.ebusiness.catalog.examples.file;

import com.beasys.commerce.foundation.*;
import com.beasys.commerce.util.*;

import java.util.*;
import java.rmi.*;

7 Using the API to Extend the Product Catalog

7-28 Guide to Building a Product Catalog

import javax.ejb.*;
import javax.naming.*;

//$Import$_Begin ------------ CUSTOM CODE ---------------
import java.sql.Connection;
import java.sql.SQLException;
import com.beasys.commerce.ebusiness.catalog.*;
import com.beasys.commerce.foundation.expression.Criteria;
import com.beasys.commerce.foundation.expression.Logical;
import com.beasys.commerce.foundation.expression.Expression;
import com.beasys.commerce.util.ExpressionHelper;
import com.beasys.commerce.util.TypesHelper;
import com.beasys.commerce.ebusiness.catalog.service.query.*;
import com.beasys.commerce.ebusiness.catalog.service.item.*;
// USER CHANGES: Place additional import statements here
//$Import$_End ^^

/**
 *
 *
 * @see
com.beasys.commerce.ebusiness.catalog.service.query.JdbcCatalogQueryManager
 * @see
com.beasys.commerce.ebusiness.catalog.service.query.JdbcCatalogQueryManagerHome
 */
public class FileCatalogQueryManagerImpl extends
com.beasys.commerce.ebusiness.catalog.service.CatalogServiceImpl
 //$Implements$_Begin ------------ CUSTOM CODE ---------------
 // USER CHANGES: Add interfaces that are implemented here
 //$Implements$_End ̂ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
{

 //$AdditionalAttributeDeclarations$_Begin ------------ CUSTOM CODE

 //$AdditionalAttributeDeclarations$_End
^^

 public FileCatalogQueryManagerImpl()
 {
 super();
 //$Constructor$_Begin ------------ CUSTOM CODE ---------------
 // USER CHANGES: Add constructor code here
 //$Constructor$_End ^^
 }

 public void ejbCreate() throws CreateException

Writing Your Own Catalog Service

Guide to Building a Product Catalog 7-29

 {
 super.ejbCreate();

 //$EjbCreate$_Begin ------------ CUSTOM CODE ---------------
 //$EjbCreate$_End ^^
 }

 public void ejbPostCreate() throws CreateException
 {
 super.ejbPostCreate();

 //$EjbPostCreate$_Begin ------------ CUSTOM CODE ---------------
 // USER CHANGES: Add custom code here
 //$EjbPostCreate$_End ^^
 }

 public void ejbActivate() throws EJBException
 {
 super.ejbActivate();

 //$EjbActivate$_Begin ------------ CUSTOM CODE ---------------
 // USER CHANGES: Add custom code here
 //$EjbActivate$_End ^^
 }

 public void ejbPassivate() throws EJBException
 {
 super.ejbPassivate();

 //$EjbPassivate$_Begin ------------ CUSTOM CODE ---------------
 // USER CHANGES: Add custom code here
 //$EjbPassivate$_End ^^
 }

 public void ejbRemove() throws EJBException
 {
 super.ejbRemove();
 //$EjbRemove$_Begin ------------ CUSTOM CODE ---------------
 // USER CHANGES: Add custom code here
 //$EjbRemove$_End ^^
 }

 public void setSessionContext(SessionContext ctx) throws EJBException
 {
 super.setSessionContext(ctx);

7 Using the API to Extend the Product Catalog

7-30 Guide to Building a Product Catalog

 //$SetSessionContext$_Begin ------------ CUSTOM CODE ---------------
 // USER CHANGES: Add custom code here
 //$SetSessionContext$_End ^^
 }

 /**
 * Returns the results of the search performed using the supplied catalog
query object.
 * @param request The catalog request object.
 * @param catalogQuery The catalog query object.
 * @return An array of product item keys.
 * @throws CatalogException on general error.
 */
 public ProductItemKey[] search(CatalogRequest request,
com.beasys.commerce.ebusiness.catalog.service.query.CatalogQuery query) throws
CatalogException
 {
 //$Method ProductItemKey[] search(CatalogRequest request,
com.beasys.commerce.ebusiness.catalog.service.query.CatalogQuery query)$_Begin
------------ CUSTOM CODE ---------------

 LinkedList resultList = new LinkedList();

 Expression expr = null;

 if (query == null)
 throw new CatalogException("Null query");

 try
 {
 if (query instanceof KeywordQuery)
 {
 String[] keywords = ((KeywordQuery) query).getKeywords();

 if (keywords == null || keywords.length <= 0)
 throw new CatalogException("Empty keywords");

 // get all the items in the catalog
 ProductItemManager productItemManager =
getCatalogManager().getProductItemManager(request);

 ProductItemKey[] itemKeys = productItemManager.getItemKeys(request,
0, productItemManager.getItemCount(request));

 if(itemKeys != null)
 {
 for(int n = 0; n < itemKeys.length; n++)
 {

Writing Your Own Catalog Service

Guide to Building a Product Catalog 7-31

 if(itemKeys[n] != null)
 {
 String[] itemKeywords = productItemManager.getKeywords(
request, itemKeys[n]);

 if(itemKeywords != null)
 {
 boolean found = false;
 // could be optimized...
 for(int i = 0; i < itemKeywords.length && found
== false; i++)
 {
 for(int x = 0; x < keywords.length && found
== false; x++)
 {
 if(keywords[x] != null && keywords[x].equals(
itemKeywords[i]) != false)
 {
 found = true;
 resultList.add(itemKeys[n]);
 }
 }
 }
 }
 }
 }
 }
 }
 }
 catch(RemoteException re)
 {
 re.printStackTrace();
 }

 return (ProductItemKey[]) resultList.toArray(new ProductItemKey[0]);

 //$Method ProductItemKey[] search(CatalogRequest request,
com.beasys.commerce.ebusiness.catalog.service.query.CatalogQuery query)$_End
^^
 }

 /**
 * Returns a ViewIterator over the results of the search performed using the
supplied catalog query object.
 * @param request The catalog request object.
 * @param catalogQuery The catalog query object.
 * @param viewSize The view size of the returned ViewIterator.
 * @return A ViewIterator over the product items returned by the search.
 * @throws CatalogException on general error.

7 Using the API to Extend the Product Catalog

7-32 Guide to Building a Product Catalog

 */
 public ViewIterator search(CatalogRequest request,
com.beasys.commerce.ebusiness.catalog.service.query.CatalogQuery query, int
viewSize) throws CatalogException, RemoteException
 {
 //$Method ViewIterator search(CatalogRequest request,
com.beasys.commerce.ebusiness.catalog.service.query.CatalogQuery query, int
viewSize)$_Begin ------------ CUSTOM CODE ---------------

 ProductItemKey[] keys = search(request, query);
 return new SearchItemIterator(getCatalogManagerJndiName(), request, keys,
viewSize);

 //$Method ViewIterator search(CatalogRequest request,
com.beasys.commerce.ebusiness.catalog.service.query.CatalogQuery query, int
viewSize)$_End ^^
 }

 //$AdditionalMethod$_Begin ------------ CUSTOM CODE ---------------
 //$AdditionalMethod$_End ^^
}

Changes to ejb-jar.xml

In ejb-jar.xml, the first step is to change the name of the delegate session bean in
the environment for the Tier 1 service providers. Occurrences of
JdbcProductItemManager need to be changed to the name of the new Tier 2 service
provider: FileProductItemManager. This step is done by modifying the Tier 1
Service Provider to delegate to the new service implementation by adjusting several
EJB deployment settings in the ejb-jar.xml and weblogic-ejb-jar.xml
deployment descriptors. Finally, the modified Tier 1 service provider must be
redeployed and the new service implementation deployed.

Warning: Create a backup copy of the file before you modify its contents.

Note: In Listing 7-5, lines that should be removed are shown in italics. Lines that
should be added are shown in bold.

Writing Your Own Catalog Service

Guide to Building a Product Catalog 7-33

Listing 7-5 Changes to the ejb-jar.xml File

<session>
 <ejb-name>com.beasys.commerce.ebusiness.catalog.service.data.CustomDataManager
 </ejb-name>

 <env-entry>
 <env-entry-name>delegateName</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>ejb/JdbcProductItemManager</env-entry-value>
 <env-entry-value>ejb/FileProductItemManager</env-entry-value>
 </env-entry>
 <ejb-ref>
 <ejb-ref-name>ejb/JdbcProductItemManager</ejb-ref-name>
 <ejb-ref-name>ejb/FileProductItemManager</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>
 com.beasys.commerce.ebusiness.catalog.service.item.JdbcProductItemManagerHome
 </home>
 <remote>
 com.beasys.commerce.ebusiness.catalog.service.item.JdbcProductItemManager
 </remote>
 <home>
 com.beasys.commerce.ebusiness.catalog.examples.file.FileProductItemManagerHome
 </home>
 <remote>
 com.beasys.commerce.ebusiness.catalog.examples.file.FileProductItemManager
 </remote>
 </ejb-ref>

<session>
 <ejb-name>
 com.beasys.commerce.ebusiness.catalog.service.query.CatalogQueryManager
 </ejb-name>
 <env-entry>
 <env-entry-name>delegateName</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>ejb/JdbcCatalogQueryManager</env-entry-value>
 <env-entry-value>ejb/FileCatalogQueryManager</env-entry-value>
 </env-entry>
 <ejb-ref>
 <ejb-ref-name>ejb/JdbcCatalogQueryManager</ejb-ref-name>
 <ejb-ref-name>ejb/FileCatalogQueryManager</ejb-ref-name>
 <ejb-ref-type>Session</ejb-ref-type>
 <home>
 com.beasys.commerce.ebusiness.catalog.service.query.JdbcCatalogQueryManagerHome
 </home>
 <remote>

7 Using the API to Extend the Product Catalog

7-34 Guide to Building a Product Catalog

 com.beasys.commerce.ebusiness.catalog.service.query.JdbcCatalogQueryManager
 </remote>
 <home>
 com.beasys.commerce.ebusiness.catalog.examples.file.FileCatalogQueryManagerHome
 </home>
 <remote>
 com.beasys.commerce.ebusiness.catalog.examples.file.FileCatalogQueryManager
 </remote>
 </ejb-ref>

<session>
 <ejb-name>
 com.beasys.commerce.ebusiness.catalog.service.item.JdbcProductItemManager
 </ejb-name>
 <ejb-name>
 com.beasys.commerce.ebusiness.catalog.examples.file.FileProductItemManager
 </ejb-name>
 <home>
 com.beasys.commerce.ebusiness.catalog.service.item.ProductItemManagerHome
 </home>
 <remote>
 com.beasys.commerce.ebusiness.catalog.service.item.ProductItemManager
 </remote>
 <ejb-class>
 com.beasys.commerce.ebusiness.catalog.service.item.JdbcProductItemManagerImpl
 </ejb-class>
 <ejb-class>
 com.beasys.commerce.ebusiness.catalog.examples.file.FileProductItemManagerImpl
 </ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <env-entry>
 <env-entry-name>SchemaFile</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>wlcs-catalog</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>SqlManagerClass</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>
 com.beasys.commerce.ebusiness.catalog.sql.JdbcSqlManager
 </env-entry-value>
 </env-entry>

<session>
 <ejb-name>
 com.beasys.commerce.ebusiness.catalog.service.query.JdbcCatalogQueryManager
 </ejb-name>
 <ejb-name>

Writing Your Own Catalog Service

Guide to Building a Product Catalog 7-35

 com.beasys.commerce.ebusiness.catalog.examples.file.FileCatalogQueryManager
 </ejb-name>
 <home>
 com.beasys.commerce.ebusiness.catalog.service.query.CatalogQueryManagerHome
 </home>
 <remote>
 com.beasys.commerce.ebusiness.catalog.service.query.CatalogQueryManager
 </remote>
 <ejb-class>
 com.beasys.commerce.ebusiness.catalog.service.query.JdbcCatalogQueryManagerImpl
 </ejb-class>
 <ejb-class>
 com.beasys.commerce.ebusiness.catalog.examples.file.FileCatalogQueryManagerImpl
 </ejb-class>
 <session-type>Stateless</session-type>
 <!-- com.beasys.commerce.ebusiness.catalog.service.item.JdbcProductItemManager
 -->
 <!-- com.beasys.commerce.ebusiness.catalog.examples.file.FileProductItemManager
 -->
 <method>
 <ejb-name>
 com.beasys.commerce.ebusiness.catalog.service.item.JdbcProductItemManager
 </ejb-name>
 <ejb-name>
 com.beasys.commerce.ebusiness.catalog.examples.file.FileProductItemManager
 </ejb-name>
 <method-name>getCatalogManager</method-name>
 </method>

Changes to weblogic-ejb-jar.xml

Listing 7-6 shows the deletions and additions needed in the weblogic-ejb-jar.xml
file. The weblogic-ejb-jar.xml files is packaged in the ebusiness.jar file,
which can be found in the WL_COMMERCE_HOME\lib directory, where
WL_COMMERCE_HOME is the directory in which you installed WebLogic Commerce
Server.

Warning: Create a backup copy of the file before you modify its contents.

Note: In Listing 7-6, lines that should be removed are shown in italics. Lines that
should be added are shown in bold.

7 Using the API to Extend the Product Catalog

7-36 Guide to Building a Product Catalog

Listing 7-6 Changes to the weblogic-ejb-jar.xml File

<weblogic-enterprise-bean>
 <ejb-name>
 com.beasys.commerce.ebusiness.catalog.service.item.ProductItemManager
 </ejb-name>
 <caching-descriptor>
 <initial-beans-in-free-pool>1</initial-beans-in-free-pool>
 </caching-descriptor>
 <reference-descriptor>
 <ejb-reference-description>

 <ejb-ref-name>ejb/JdbcProductItemManager</ejb-ref-name>
 <jndi-name>
 com.beasys.commerce.ebusiness.catalog.service.item.JdbcProductItemManager
 </jndi-name>
 <ejb-ref-name>ejb/FileProductItemManager</ejb-ref-name>
 <jndi-name>
 com.beasys.commerce.ebusiness.catalog.examples.file.FileProductItemManager
 </jndi-name>

 </ejb-reference-description>

<weblogic-enterprise-bean>
 <ejb-name>
 com.beasys.commerce.ebusiness.catalog.service.query.CatalogQueryManager
 </ejb-name>
 <caching-descriptor> <!--
 <initial-beans-in-free-pool>5</initial-beans-in-free-pool> -->
 </caching-descriptor>
 <reference-descriptor>
 <ejb-reference-description>

 <ejb-ref-name>ejb/JdbcCatalogQueryManager</ejb-ref-name>
 <jndi-name>
 com.beasys.commerce.ebusiness.catalog.service.query.JdbcCatalogQueryManager
 </jndi-name>
 <ejb-ref-name>ejb/FileCatalogQueryManager</ejb-ref-name>
 <jndi-name>
 com.beasys.commerce.ebusiness.catalog.examples.file.FileCatalogQueryManager
 </jndi-name>

 </ejb-reference-description>

 <weblogic-enterprise-bean>

 <ejb-name>
 com.beasys.commerce.ebusiness.catalog.service.item.JdbcProductItemManager
 </ejb-name>

Writing Your Own Catalog Service

Guide to Building a Product Catalog 7-37

 <ejb-name>
 com.beasys.commerce.ebusiness.catalog.examples.file.FileProductItemManager
 </ejb-name>

 <jndi-name>
 com.beasys.commerce.ebusiness.catalog.service.item.JdbcProductItemManager
 </jndi-name>
 <jndi-name>
 com.beasys.commerce.ebusiness.catalog.examples.file.FileProductItemManager
 </jndi-name>

 <ejb-name>
 com.beasys.commerce.ebusiness.catalog.service.item.JdbcProductItemManager
 </ejb-name>
 <ejb-name>
com.beasys.commerce.ebusiness.catalog.service.examples.file.FileProductItemMana
ger
 </ejb-name>

<weblogic-enterprise-bean>
 <ejb-name>
 com.beasys.commerce.ebusiness.catalog.service.query.JdbcCatalogQueryManager
 </ejb-name>
 <ejb-name>
 com.beasys.commerce.ebusiness.catalog.examples.file.FileCatalogQueryManager
 </ejb-name>

 <jndi-name>
 com.beasys.commerce.ebusiness.catalog.service.query.JdbcCatalogQueryManager
 </jndi-name>
 <jndi-name>
 com.beasys.commerce.ebusiness.catalog.examples.file.FileCatalogQueryManager
 </jndi-name>

 <ejb-name>
 com.beasys.commerce.ebusiness.catalog.service.query.JdbcCatalogQueryManager
 </ejb-name>
 <ejb-name>
 com.beasys.commerce.ebusiness.catalog.examples.file.FileCatalogQueryManager
 </ejb-name>

7 Using the API to Extend the Product Catalog

7-38 Guide to Building a Product Catalog

Guide to Building a Product Catalog 8-1

CHAPTER

8 Product Catalog
Internationalization
Support

Internationalization is an important part of the development process for companies
doing business in both domestic and overseas markets. However, providing a
multilingual product catalog via the Web adds complexity to the internationalization
effort and may require additional modifications to the Product Catalog architecture.
Although the strings displayed to users can easily be translated by editing various
property files (such as wlcs-catalog.properties), maintaining dynamic
multilingual catalog content and allowing the user to specify a language preference can
be more difficult.

Note: For more information about the wlcs-catalog.properties file, see “Using
the wlcs-catalog.properties File” on page 4-48.

To meet these objectives, the BEA WebLogic Commerce Server includes several
features that you can utilize to build a multilingual product catalog. These features will
help you internationalize your system and render a localized version of each category
or item on a Web page, including text descriptions, images, item cost, type of currency,
and so on. This topic describes these features in detail.

Note: It is important that you understand the architecture of the WebLogic
Commerce Server Product Catalog before reading about support for
internationalization. For more information about the Product Catalog
architecture, see “Catalog Architecture and Services” on page 7-3.

This topic includes the following sections:

8 Product Catalog Internationalization Support

8-2 Guide to Building a Product Catalog

n Support for Multiple Languages

l Language and Country Codes

l About the CatalogRequest Object

l Persisting Language Information to the Catalog Database

l Limiting Search Results by Language

n Using the Catalog Architecture to Maintain Internationalized Product Catalogs

l Method 1: Filtering Product Catalog Content

l Method 2: Parsing Language-Specific Data

l Method 3: Multiple Product Catalog Instances

l Method 4: Language-Based Service Routing

Support for Multiple Languages

BEA recognizes that an e-commerce Web site may need to support international users.
To meet this requirement, a company may want to display their product catalog items
in several languages. For example, a Canadian company may display product items to
their potential customers in both English and French. Some European companies may
support ten or more languages to localize their pages and ensure the success of their
e-business. This section explains how you can use the built-in language attribute to
support multiple languages.

Language and Country Codes

The best practice language descriptions defined by RFC 1766 include a two letter
language code, optionally followed by a two letter country code. (These language
codes are obtained from the ISO 639 and ISO 3166 standards, respectively.) For
example, a language description of “en-uk” indicates that the language is English and
that the country is the United Kingdom.

Support for Multiple Languages

Guide to Building a Product Catalog 8-3

About the CatalogRequest Object

The first parameter to every product catalog API is a CatalogRequest object, which
contains a language attribute. The language attribute is a String that should conform
to the format described in “Language and Country Codes” on page 8-2.

The language attribute of the CatalogRequest object informs the product catalog
system about the language a user would like to receive. For example, if the catalog
contains both an “en-US" and an "en-GB" version of SKU 1001 and the incoming
CatalogRequest object has specified the language as "en-GB", then code can be
written to return the "en-GB" version of SKU 1001 according to the user's language
preference.

An example of setting the language on a CatalogRequest object is shown in
Listing 8-1.

Listing 8-1 Setting the Language on a CatalogRequest Object

CatalogManager cm = null;
// lookup the CatalogManager using JNDI (omitted)

CatalogRequest cr = cm.createCatalogRequest();

cr.setLanguage("en-GB");

Once you have set the language attribute, you can use the CatalogRequest object in
other API calls, as shown in Listing 8-2.

Listing 8-2 Using the CatalogRequest Object

final int viewSize = 50;
ViewIterator subIterator = cm.getCategoryManager(cr).
 getSubCategories(cr, CategoryKey.ROOT, viewSize);

8 Product Catalog Internationalization Support

8-4 Guide to Building a Product Catalog

Persisting Language Information to the Catalog
Database

Each product item, category, and product image also has a language attribute. This
individualized information is stored in the database and later used to retrieve
information based on a user’s specified language preference.

Product Items and Categories

Items and categories within the product catalog each have a language attribute as
defined in the Dublin Core Standard. The format of the language attribute for product
items and categories should conform to that described in “Language and Country
Codes” on page 8-2.

Note: For more information about WebLogic Commerce Server and the Dublin Core
Standard, see “The Catalog Schema Is Based on Dublin Core Standard” on
page 2-4.

An example of creating a new item with a language specification and persisting it to
the database is shown in Listing 8-3.

Listing 8-3 Creating and Persisting an Item with a Language Specification

MutableProductItem mutItem =
CatalogFactory.createMutableProductItem(new ProductItemKey(
"SKU001"));

// set the language attributes on the item

mutItem.setLanguage("en-GB");
ImageInfo smallImage = mutItem.getImage(SMALL_IMAGE_INDEX);
smallImage.setLanguage("en-GB");
mutItem.setImage(SMALL_IMAGE_INDEX , smallImage);

// create the new item

CatalogManager cm = null;

// lookup the CatalogManager using JNDI (omitted)

// create an administration catalog request object
// (required for write access to the catalog)

Support for Multiple Languages

Guide to Building a Product Catalog 8-5

CatalogRequest cr = cm.createAdminCatalogRequest();

// create the new item using the ProductItemManager

cm.getProductItemManager().createItem(cr, mutItem);

Image Support

As shown in Listing 8-3, each image associated with an item or category also has a
language attribute for storing multilingual images. This attribute allows you to provide
a description of the product item or category in one language, while displaying an
image that corresponds to the version of the item that is available for speakers of that
language (that is, the item version for a particular country or region). In this case, the
appropriate image would be chosen based on the language specified in the
CatalogRequest object to ensure that customers are previewing the version of the
product for their country.

Note: For more information about the CatalogRequest object, see “About the
CatalogRequest Object” on page 8-3.

Limiting Search Results by Language

The default CatalogQueryManager Tier 1 Service Provider provides you with the
ability to limit search results by language. To activate this feature, set the language
attribute on the CatalogRequest object to non-null, using the format described in
“Language and Country Codes” on page 8-2. An example is shown in Listing 8-1.

If CatalogRequest.getLanguage() is non-null, then search results will be limited
to the language specified (exact, case-sensitive matches only). If
CatalogRequest.getLanguage() is null, then search results are not automatically
limited to a language.

The CatalogRequest.getLanguage()method originally contains a value set by the
catalog.request.language.default property of the
wlcs-catalog.properties file. In the version of this file that ships with the
WebLogic Commerce Server product, the catalog.request.language.default
property is commented out, meaning that the default language is null. This portion of
the default wlcs-catalog.properties file is shown in Listing 8-4.

8 Product Catalog Internationalization Support

8-6 Guide to Building a Product Catalog

Listing 8-4 Default Language for Catalog Requests as Set in the
wlcs-catalog.properties File

###
##############
DEFAULT LANGUAGE FOR CATALOG REQUESTS
If this entry is not specified the default language will be set
to null.
###
##############
catalog.request.language.default=en_US

Note: In the current release, the language attribute of the CatalogRequest object is
only used when searching the Product Catalog (if non-null). The other APIs
do not use this attribute and will return Product Catalog items irrespective of
that specified in the language attribute.

Additionally, the language attribute can be used in expression-based queries when
CatalogRequest.getLanguage() is null (for example, "description like ’*black*’
&& (language like ’*en*’ || language == null) ").

Using the Catalog Architecture to Maintain Internationalized Product Catalogs

Guide to Building a Product Catalog 8-7

Using the Catalog Architecture to Maintain
Internationalized Product Catalogs

Depending on your business and technical requirements, you can use the catalog
architecture in several different ways to maintain internationalized product catalogs.
The criteria for selection of an effective method include:

n The amount of JSP coding that will be required from your development team.

n The amount of EJB coding that will be required from your development team.

n Whether you want product categories and items for each language stored in a
single database table or in multiple tables.

n Whether or not you want to enable multilingual searching.

This section describes four methods for maintaining internationalized product
catalogs.

Method 1: Filtering Product Catalog Content

The first method for internationalization of product catalogs:

n Requires modification to the JSP templates to filter categories and items based
on a user’s language preference.

n Requires no EJB coding.

n Persists all product categories and items for each language to a single database
table.

n Allows for multilingual searching.

If you want to filter product catalog content, each JSP template will require
modification. All language versions of a category or product item will be returned
from the database, but the JSP template will contain logic that essentially filters the
information shown to the user based on their specified language preference. If the
language attribute of the category or item does not match that of the user’s specified

8 Product Catalog Internationalization Support

8-8 Guide to Building a Product Catalog

language, the item or category is not displayed. Otherwise, if the language attribute
does match that of the user’s selected language, you will want to display that item or
category.

Note: If you use this method, be sure you also add code in your JSP templates to
display the correct number of returned results (that is, the number of results for
the specified language only) to the user.

The content filtering method is simple because it does not require EJB coding or
redeployment, and still allows you to utilize the Administration Tools and DBLoader
utility as in the out-of-the-box product. Also, if multilingual items are not mapped into
non-country specific categories, it is not necessary to filter items in addition to the
categories. For example, if the current category has a language attribute value of
“en-GB”, then you can assume that all the items within this category will also have a
language of “en-GB”.

Note: For more information about the DBLoader utility available in the WebLogic
Commerce Server, see Chapter 3, “Using the Product Catalog Database
Loader.”

Method 2: Parsing Language-Specific Data

Although the content filtering method previously described is simple, it is not the most
elegant method for maintaining internationalized product catalogs. As a more
complex but elegant solution, the second method for internationalization of product
catalogs:

n Requires modification to the JSP template to parse language specific data from
items.

n Requires no EJB coding.

n Persists all product categories and items for each language to a single database
table.

n Allows for multilingual searching.

Using the Catalog Architecture to Maintain Internationalized Product Catalogs

Guide to Building a Product Catalog 8-9

Two Languages

Recall that in the Product Catalog JSP templates, there are two JSPs (containing two
separate images) that are responsible for displaying item summary and item detail
information. Out of the box, these pages contain very similar content. However, they
can be customized to render a product item in two different languages. For example,
instead of clicking the View Details link on the item summary page (which loads the
item details page with nearly the same information), the user could click a link that
allows them to view the item in French instead of English. The parsing logic for
extracting the language-specific data from the product item attributes would be
invoked from the relevant display JSP.

Note: For more information about the Product Catalog JSP templates, see Chapter 6,
“Product Catalog JSP Tag Library Reference.”

Multiple Languages

If it is necessary to display information about product items in more than two
languages, a master identifier can be used instead, as a reference (proxy) to several
language-specific identifiers. For example, a master identifier of 100 can be thought
of as a category and used to locate a number of language-defined subcategories. A
language-specific identifier of 100A can contain English versions of a product item, an
identifier of 100B can contain German versions, and so on. All but the master
identifier should be marked as invisible and orphaned to ensure that the user cannot
reach them directly by searching or by browsing the product catalog.

Note: To facilitate multilingual searches, language-specific identifiers should just be
marked orphaned and not marked invisible, as the user should be able to reach
these items through searches.

To display the categories in several languages, the language-specific identifiers (or
subcategories) of the master identifier should be encoded within a field of the master
identifier. The display JSP used to render the master identifier should be modified to
perform a JSP include of the localized version of the master identifier. To prevent the
user from browsing the localized categories, their top-level parent category can be set
to something other than root. Alternatively, if the localized categories are required to
be accessible from the Administration Tools, the template JSPs used to display the
siblings and child categories can be modified to exclude the top-level parent of the
localized categories.

8 Product Catalog Internationalization Support

8-10 Guide to Building a Product Catalog

Then, within the display JSPs for the product item, the master identifier can be parsed
to locate the correct language-specific item (identifier) and its data substituted.

Method 3: Multiple Product Catalog Instances

The third method for internationalization of product catalogs:

n Requires separate Administration support for additional product catalogs.

n Requires no EJB coding.

n Persists the product categories and items for each language to a separate
database table.

n Does not allow for multilingual searching.

Before learning more about the multiple instances method, it is important that you
understand what a schema file is and how it can be used for product catalog
internationalization.

Figure 8-1 shows the same Product Catalog architecture that is described in “Catalog
Architecture and Services” on page 7-3.

Using the Catalog Architecture to Maintain Internationalized Product Catalogs

Guide to Building a Product Catalog 8-11

Figure 8-1 Product Catalog Architecture

A schema file is the primary means for deploying multiple product catalogs and is
therefore one way to support internationalization. An instance of a Tier 2 Service
Provider can be bound to a schema file, which exists in the deployment descriptor for
the Tier 2 session bean. The schema file contains the names of the database tables,
columns, and SQL statements that the Tier 2 Service Provider will use for persistence.

By deploying multiple instances of the CatalogManager session bean (and the Tier 1
and Tier 2 session beans) multiple catalog instances can be deployed. Binding the new
Tier 2 session beans to different schema files provides for the maintenance of
independent, language-specific catalogs. Each CatalogManager should be bound to
a JNDI name appropriate for the language of the catalog. For example:

n catalog.en_US

n catalog.fr_FR

When a catalog function is required, a CatalogManager should be looked up using
the appropriate JNDI name.

8 Product Catalog Internationalization Support

8-12 Guide to Building a Product Catalog

Note: The WebLogic Commerce Server Administration Tools work against a
CatalogManager instance bound to the JNDI name
com.beasys.commerce.ebusiness.catalog.CatalogManager, which is
not customizable. Therefore, organizations using the multiple instances
method will need to administer additional catalogs via SQL or develop their
own GUI tools.

Although the two product catalogs are totally independent, the category and item
identifiers between catalogs should be the same to ensure that data can be easily
updated using the DBLoader utility.

Note: For more information about the DBLoader utility available in the WebLogic
Commerce Server, see Chapter 3, “Using the Product Catalog Database
Loader.”

Method 4: Language-Based Service Routing

The fourth method for internationalization of product catalogs:

n Requires separate Administration support for additional product catalogs.

n Requires developers to create a new, derived CatalogManager session bean.

n Persists the product categories and items for each language to a separate
database table.

n Does not allow for multilingual searching.

Instead of creating multiple instances, redeploying the Services, and binding the
Services to different schema files as described in “Method 3: Multiple Product Catalog
Instances” on page 8-10, you can simply create and redeploy a new CatalogManager
session bean to return an instance of a Tier 1 Service based on the language specified
in the CatalogRequest object.

The new CatalogManager session bean should extend the existing CatalogManager
to examine the language attribute of the incoming CatalogRequest object. By
deriving a new class from the CatalogManagerImpl object and overridding the
Service accessor method, you can easily implement language-based service routing, as
shown in the following example:

public ProductItemManager getProductItemManager (CatalogRequest
request)

Using the Catalog Architecture to Maintain Internationalized Product Catalogs

Guide to Building a Product Catalog 8-13

The overridden getProductItemManager() method will return an instance of a
ProductItemManager session bean, which delgates to a JdbcProductItemManager
session bean. The JdbcProductItemManager, in turn, is bound to a schema file for
the language required.

Note: Using the language-based service routing method, the WebLogic Commerce
Server’s Administration Tools will work as expected, because there is still
only one CatalogManager instance.

8 Product Catalog Internationalization Support

8-14 Guide to Building a Product Catalog

Guide to Building a Product Catalog I-1

Index

A
adding categories 4-9
adding items 4-15
administration tasks

adding categories 4-9
adding items 4-15
assigning items to categories 4-20
catalog cache settings 4-42
changing administrator password 4-6
controlling visibility of items 4-19
deleting categories 4-38
deleting items 4-32
editing attributes

categories 4-24
items 4-24

editing availability of items 4-30
introduction 4-1
moving items 4-40
starting the Admin tool 4-2
starting the server 4-2
wlcs-catalog.properties file 4-48

assigning items to categories 4-20
attribute-based search syntax 5-75
attributes

custom
for items 4-40

language 8-3
and expression-based queries 8-6
CatalogRequest object 8-3, 8-12
image 8-5
product items and categories 8-4

availability of items
editing 4-30

B
BEA, contacting xiv
browse.jsp template 5-25

C
cache

catalog 4-42
cat.tld tag library 6-3, 6-10
catalog

adding categories 4-9
adding items 4-15
administration 4-1
API overview 7-2
architecture and services 7-3, 8-1

using for internationalization 8-7
assigning items to categories 4-20
cache 4-42
caching settings 4-42
deleting categories 4-38
deleting items 4-32
development roles 1-8
Dublin Core standard 2-4
editing attributes

categories 4-24
items 4-24

editing availability of items 4-30
editing schema definition 4-51

I-2 Guide to Building a Product Catalog

Entity-Relation diagram 2-2
getProperty tag 6-4
hierarchy 1-6
input processors 5-81
internationalization

images 8-5
products and categories 8-4

introduction 1-1
iterateThroughView tag 6-8
iterateViewIterator tag 6-7
JSP tag library 6-3, 6-10
link with order processing 1-9
moving items 4-40
multiple instances 8-11
overview of schema 2-1
persisting language information 8-4
pipeline components 5-88
using API to extend 7-1
visibility of items 4-19
wlcs-catalog.properties file 4-48, 8-1
writing your own catalog service 7-17

CatalogIP input processor 5-81
CatalogManager interface 7-5, 8-11

extending 8-12
CatalogPC pipeline component 5-88
CatalogQueryManager interface 7-14

and internationalization 8-5
CatalogRequest object

language attribute 8-3, 8-12
categories

adding 4-9
assigning items to 4-20
deleting 4-38
displayed to users 4-31
editing attributes 4-24

category.jsp
about 5-35

CategoryManager interface 7-9
changing the administrator password 4-6
comparison operators in query 5-77
contacting BEA xiv

controlling number of search results 5-79
controlling visibility of items 4-19
custom attributes

for items 4-40
CustomDataManager interface 7-12

D
Data Junction 3-13
data loaders

introduction 3-11
third party 3-13

DataStage by Informix 3-13
DBLoader

and multiple catalog instances 8-12
database considerations 3-10
dbloader.properties files 3-4
input file 3-2
introduction 3-1
log files 3-9
running 3-7
validations 3-9

Defined Constraints 2-29
deleting categories 4-38
deleting items 4-32
development roles

for catalog 1-8
documentation, where to find it xiii
Dublin Core standard

catalog 2-4

E
editing attributes

categories 4-24
items 4-24

Entity-Relation diagram
for catalog tables 2-2

ETI-EXTRACT by ETI 3-13
event(s)

browse.jsp 5-45

Guide to Building a Product Catalog I-3

itemdetails.jsp 5-53
main.jsp 5-19
search.jsp 5-60
searchresults.jsp 5-70

expression-based search queries 8-6
ExpressionSearchIP input processor 5-85
extending catalog

using API 7-1

G
GetAncestorsPC pipeline component 5-92
GetCategoryIP input processor 5-83
GetCategoryPC pipeline component 5-89
GetParentPC pipeline component 5-91
GetProductItemIP input processor 5-82
GetProductItemPC pipeline component 5-90
GetProductItemsPC pipeline component 5-

93
getProperty tag 6-4
GetSubcategoriesPC pipeline component 5-

94

H
hierarchy

catalog 1-6

I
improving performance

catalog cache 4-42
input processors

for catalog JSPs 5-81
Internationalization

and catalog architecture 8-7
language and country codes 8-2
methods

filtering content 8-7
multiple catalog instances 8-10
parsing language-specific data 8-8

service routing 8-12
non-ASCII characters 5-76
of images 8-5
of product items and categories 8-4
product catalog support 8-1

itemdetails.jsp
about 5-53

items
adding 4-15
defining custom attributes 4-40
deleting 4-32
displayed to users 4-31
editing attributes 4-24
editing availability 4-30
moving 4-40
visibility of 4-19

itemsummary.jsp
about 5-41

iterateThroughView tag 6-8
iterateViewIterator tag 6-7

J
JSP tag library

cat.tld 6-3, 6-10
JSP tags

getPipelineProperty 5-20, 5-23, 5-46
Utilities

smnav 6-10
example 6-11

JSP templates 5-1, 6-1
overview 5-3

K
KeywordSearchIP input processor 5-84

L
language

attribute

I-4 Guide to Building a Product Catalog

and expression-based queries 8-6
CatalogRequest object 8-3, 8-12
product items and categories 8-4

limiting search results by 8-5

M
main.jsp template 5-14
methods

internationalization
filtering content 8-7
multiple catalog instances 8-10
parsing language-specific data 8-8
service routing 8-12

MoveAttributeIP input processor 5-86
MoveAttributePC pipeline component 5-95
moving items 4-40
multiple catalog instances 8-11

O
object, CatalogRequest

language attribute 8-3, 8-12
optimizing catalog cache 4-42
overview of JSP templates 5-3

P
passwords

administrator account 4-2
changing administrator’s 4-6

performance
improving with catalog cache 4-42

pipeline components
for catalog 5-88

PowerConnect by Informatica 3-13
printing product documentation xiii
product catalog

architecture 8-1
using for internationalization 8-7

editing schema definition 4-51

internationalization
images 8-5
product items and categories 8-4

introduction 1-1
multiple instances 8-11
overview of features 1-3
persisting language information 8-4

ProductItemManager interface 7-8

Q
query

comparison operators 5-77
expression-based and language attribute

8-6
query-based search syntax 5-75

R
related information xiv
RemoveAttributeIP input processor 5-87
RemoveAttributePC pipeline component 5-

96

S
schema

catalog tables 2-1
editing product catalog 4-51
file

for internationalization 8-11
search results

controlling number of 5-79
limiting by language 8-5

search syntax 5-75
search.jsp template 5-56
SearchPC pipeline component 5-97
searchresults.jsp template 5-66
server

starting 4-2
smnav JSP tag 6-10

Guide to Building a Product Catalog I-5

example 6-11
SQL Scripts 2-25

Cloudscape 2-25
Oracle 2-26
SQL Server 2-28

Start page
for JSPs 5-4

starting the server 4-2
support, technical xiv

T
templates

JSP overview 5-3

W
WLCS_CAT_ENTITY_ID database table 2-

16
WLCS_CAT_PROP_* database tables 2-15
WLCS_CAT_PROP_BOOLEAN database

table 2-16
WLCS_CAT_PROP_DATETIME database

table 2-17
WLCS_CAT_PROP_FLOAT database table

2-17
WLCS_CAT_PROP_ID database table 2-17
WLCS_CAT_PROP_INTEGER database

table 2-18
WLCS_CAT_PROP_TEXT database table

2-19
WLCS_CAT_PROP_USER_DEFINED

database table 2-19
WLCS_CATEGORY database table 2-5
WLCS_PRODUCT database table 2-9
WLCS_PRODUCT_CATEGORY database

table 2-13
WLCS_PRODUCT_KEYWORD database

table 2-13
WLCS_PROP_MD database table 2-20
WLCS_PROP_MD_BOOLEAN database

table 2-21
WLCS_PROP_MD_DATETIME 2-22
WLCS_PROP_MD_FLOAT database table

2-22
WLCS_PROP_MD_INTEGER database

table 2-23
WLCS_PROP_MD_TEXT database table 2-

23
WLCS_PROP_MD_USER_DEFINED

database table 2-24
WLCS_SCHEMA database table 2-14
wlcs-catalog.properties file 4-48, 8-1

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction to the Product Catalog
	What Does the Product Catalog Provide?
	Catalog Hierarchy
	Product Catalog Development Roles
	How the Product Catalog Features and Other Commerce Features Are Linked
	Next Step

	2 The Product Catalog Database Schema
	The Entity-Relation Diagram
	The Catalog Schema Is Based on Dublin Core Standard
	The Catalog Schema Metadata Tables
	The WLCS_CATEGORY Database Table
	The WLCS_PRODUCT Database Table
	The WLCS_PRODUCT_CATEGORY Database Table
	The WLCS_PRODUCT_KEYWORD Database Table
	The WLCS_SCHEMA Database Table

	The WLCS_CAT_PROP_* Database Tables for Custom Attributes
	The WLCS_CAT_ENTITY_ID Database Table
	The WLCS_CAT_PROP_BOOLEAN Database Table
	The WLCS_CAT_PROP_DATETIME Database Table
	The WLCS_CAT_PROP_FLOAT Database Table
	The WLCS_CAT_PROP_ID Database Table
	The WLCS_CAT_PROP_INTEGER Database Table
	The WLCS_CAT_PROP_TEXT Database Table
	The WLCS_CAT_PROP_USER_DEFINED Database Table

	The WLCS_PROP_MD_* Database Tables
	The WLCS_PROP_MD Database Table
	The WLCS_PROP_MD_BOOLEAN Database Table
	The WLCS_PROP_MD_DATETIME Database Table
	The WLCS_PROP_MD_FLOAT Database Table
	The WLCS_PROP_MD_INTEGER Database Table
	The WLCS_PROP_MD_TEXT Database Table
	The WLCS_PROP_MD_USER_DEFINED Database Table

	The SQL Scripts Used to Create the Database
	Cloudscape
	Oracle
	SQL Server

	Defined Constraints

	3 Using the Product Catalog Database Loader
	The Input File for DBLoader
	The dbloader.properties File
	Running the DBLoader Program
	To Run the Program

	DBLoader Log Files
	DBLoader Validations
	Important Database Considerations
	Using Database-Specific Data Loaders
	Using Third-Party Data Loaders

	4 Catalog Administration Tasks
	Starting the Server
	Starting the Administration Tools
	Changing the Administrator Password
	Loading Data into the Product Catalog
	Adding Categories to the Catalog
	Adding Items to the Catalog
	Controlling the Visibility of Items in the Catalog
	Assigning Items to Categories
	What if I Have a Large Amount of Data?
	Using the Administration Tools to Assign Items to Categories

	Editing the Attributes for Categories and Items
	Editing Category Attributes
	Editing Product Item Attributes

	Editing the Availability of an Item
	Determining How Categories and Items are Displayed to the Web Site User
	Deleting Items or Removing Items from One or More Categories
	Caching Considerations
	Deleting an Item from the Catalog
	Removing an Item from One or More Categories

	Removing Categories
	Moving Items from One Category to Another Category
	Defining Custom Attributes for Items
	Improving Catalog Performance by Optimizing the Catalog Cache
	Cache-Related Values in weblogiccommerce.properties
	Considering Hardware Costs Versus the Cost of Dissatisfied Web Site Users
	What’s in Each Cache Initially?
	The Catalog Cache Administration Screen

	Using the wlcs-catalog.properties File
	Location
	Some Property Values You Might Modify
	Editing the Catalog Schema Definition

	5 The Product Catalog JSP Templates
	Introduction
	JSP Templates Overview
	On Which JavaServer Page Will My Users Start?
	Web Applications
	XML Deployment Descriptor Files
	commercewf Property Set and DestinationDeterminer

	Sequence Review and the Browser View

	JavaServer Pages (JSPs)
	main.jsp Template
	Sample Browser View
	Location in the WebLogic Commerce Server Directory Structure
	Tag Library Imports
	Java Package Imports
	Location in the Default Webflow
	Included JSP Templates
	Events
	Dynamic Data Display
	Form Field Specification

	browse.jsp Template
	Sample Browser View
	Location in the WebLogic Commerce Server Directory Structure
	Tag Library Imports
	Java Package Imports
	Location in the Default Webflow
	Included JSP Templates
	Events
	Dynamic Data Display
	Form Field Specification

	details.jsp Template
	Sample Browser View
	Location in the WebLogic Commerce Server Directory Structure
	Tag Library Imports
	Java Package Imports
	Location in the Default Webflow
	Included JSP Templates
	Events
	Dynamic Data Display
	Form Field Specification

	search.jsp
	Sample Browser View
	Location in the WebLogic Commerce Server Directory Structure
	Tag Library Imports
	Java Package Imports
	Location in the Default Webflow
	Included JSP Templates
	Events
	Dynamic Data Display
	Form Field Specification

	searchresults.jsp
	Sample Browser View
	Location in the WebLogic Commerce Server Directory Structure
	Tag Library Imports
	Java Package Imports
	Location in the Default Webflow
	Included JSP Templates
	Events
	Dynamic Data Display
	Form Field Specification

	Query-Based Search Syntax
	Using Comparison Operators to Construct Queries
	Searchable Catalog Attributes
	Controlling the Number of Search Results

	Input Processors
	CatalogIP
	GetProductItemIP
	GetCategoryIP
	KeywordSearchIP
	ExpressionSearchIP
	MoveAttributeIP
	RemoveAttributeIP

	Pipeline Components
	CatalogPC
	GetCategoryPC
	GetProductItemPC
	GetParentPC
	GetAncestorsPC
	GetProductItemsPC
	GetSubcategoriesPC
	MoveAttributePC
	RemoveAttributePC
	SearchPC

	6 Product Catalog JSP Tag Library Reference
	Introduction
	The Catalog JSP Tag Library: cat.tld
	<catalog:getProperty>
	Example 1
	Example 2

	<catalog:iterateViewIterator>
	Example 1
	Example 2

	<catalog:iterateThroughView>
	Example 1
	Example 2

	The E-Business JSP Tag Library: eb.tld
	<eb:smnav>
	Example

	7 Using the API to Extend the Product Catalog
	Overview of the Product Catalog API
	Catalog Architecture and Services
	Catalog Architecture
	Catalog Manager
	Product Item Manager
	Category Manager
	Custom Data Manager
	Catalog Query Manager

	The Catalog Cache
	Writing Your Own Catalog Service
	Create New Services
	Sample Source Code

	Changes to ejb-jar.xml
	Changes to weblogic-ejb-jar.xml

	8 Product Catalog Internationalization Support
	Support for Multiple Languages
	Language and Country Codes
	About the CatalogRequest Object
	Persisting Language Information to the Catalog Database
	Product Items and Categories
	Image Support

	Limiting Search Results by Language

	Using the Catalog Architecture to Maintain Internationalized Product Catalogs
	Method 1: Filtering Product Catalog Content
	Method 2: Parsing Language-Specific Data
	Two Languages
	Multiple Languages

	Method 3: Multiple Product Catalog Instances
	Method 4: Language-Based Service Routing

	Index

