
Guide to Events and

BEA WebLogic Commerce Server
BEA WebLogic Personalization Server

B E A W e b L o g i c P e r s o n a l i z a t i o n S e r v e r 3 . 5

Behavior Tracking

BEA Campaign Manager for WebLogic

B E A C a m p a i g n M a n a g e r f o r W e b L o g i c 1 . 1
B E A W e b L o g i c C o m m e r c e S e r v e r 3 . 5

D o c u m e n t E d i t i o n 3 . 5 . 1
J u n e 2 0 0 1

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc.
DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE,
OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

Guide to Events and Behavior Tracking

Document Edition Date Software Version

3.5.1 June 2001 Campaign Manager for WebLogic 1.1
WebLogic Commerce Server 3.5
WebLogic Personalization Server 3.5

Contents

1. Overview of Events and Behavior Tracking
What Are Events?.. 1-2

Behavior Tracking ... 1-2

Event Details ... 1-3

Session Events.. 1-4

SessionBeginEvent.. 1-4

SessionEndEvent... 1-4

SessionLoginEvent.. 1-5

Registration Event .. 1-5

UserRegistrationEvent .. 1-5

Product Events.. 1-6

ClickProductEvent .. 1-6

DisplayProductEvent .. 1-7

Content Events ... 1-7

ClickContentEvent .. 1-7

DisplayContentEvent .. 1-8

Cart Events ... 1-8

AddToCartEvent ... 1-9

RemoveFromCartEvent .. 1-9

PurchaseCartEvent .. 1-10

Buy Event ... 1-11

BuyEvent... 1-11

Rules Event .. 1-11

RuleEvent.. 1-12

Campaign Events.. 1-12

CampaignUserActivityEvent .. 1-12
Guide to Events and Behavior Tracking iii

DisplayCampaignEvent... 1-13

ClickCampaignEvent .. 1-14

Event Triggers ... 1-14

Event Mechanism .. 1-16

Event Sequence.. 1-18

2. Creating Custom Events
Overview of Creating a Custom Event .. 2-1

Writing a Custom Event Class... 2-2

Writing a Custom Event Listener .. 2-5

Installing a Listener Class in the Event Service ... 2-7

Writing a Behavior Tracking Event Class ... 2-8

Facilitating OffLine Processing.. 2-9

TrackingEvent Base Class Constructor .. 2-12

XML Creation of Behavior Tracking Events ... 2-16

Custom Behavior Tracking Event Listeners... 2-19

Writing Custom Event Triggers ... 2-20

Debugging the Event Service .. 2-22

3. Registering Custom Events
Overview of Creating a Custom Event .. 3-1

Why Register an Event? .. 3-2

Registering a Custom Event .. 3-2

Instructions for Registering a Custom Event.. 3-4

Entering Property Values and Setting the Default Value........................... 3-7

Entering Properties with Boolean or a Single Value and Single
Default.. 3-8

Entering Properties with Multiple Values and Single, Multiple, or
All Defaults .. 3-8

Entering Properties with Date and Time Values............................... 3-10

Updating a Registered Custom Event.. 3-12

4. Persisting Behavioral Tracking Data
Activating Behavior Tracking ... 4-1

Event Properties in the weblogiccommerce.properties File 4-2

Data Storage .. 4-3
iv Guide to Events and Behavior Tracking

Relational Databases .. 4-3

Database Directory Paths ... 4-4

Behavior Tracking Database Schema .. 4-5

The EVENT Database Table.. 4-6

The EVENT_ACTION Database Table... 4-10

The EVENT_TYPE Database Table.. 4-10

Constraints and Indexes ... 4-11

Scripts .. 4-11

Development Environment Scenario ... 4-12

Production Environment Scenario ... 4-12

Description of Each Script ... 4-13

5. JSP Tag Library Reference for Events and Behavior Tracking
<tr:clickContentEvent> .. 5-3

Example .. 5-3

<tr:displayContentEvent> .. 5-5

Example .. 5-5

<trp:clickProductEvent> .. 5-6

Example .. 5-7

<trp:displayProductEvent> .. 5-8

Example .. 5-9

<trc:clickCampaignEvent> .. 5-10

Example .. 5-11

Index
Guide to Events and Behavior Tracking v

vi Guide to Events and Behavior Tracking

About This Document

This document describes events and behavior tracking in BEA Campaign Manager for
WebLogic™, BEA WebLogic Commerce Server™, and BEA WebLogic
Personalization Server™.

This document includes the following topics:

n Chapter 1, “Overview of Events and Behavior Tracking,” which describes the
high-level architecture for events and behavior tracking. It also provides detailed
information about each event type.

n Chapter 2, “Creating Custom Events,” describes how to create custom events,
custom behavior tracking events, custom event listeners, and custom behavior
tracking listeners.

n Chapter 3, “Registering Custom Events,” which describes how to register custom
events with the BEA Business-Control Center.

n Chapter 4, “Persisting Behavioral Tracking Data,” which describes how to
record behavior tracking data and the database structure for behavior tracking.

What You Need to Know

This document is intended for the following audiences:

n The Commerce Business Engineer (CBE) or JSP content developer, who uses
JSP templates to specify which products and Web site content trigger events.

n The business analyst, who defines the company’s business protocols for its Web
sites. This user may design scenario actions used in campaigns.
Guide to Events and Behavior Tracking vii

n The System Analyst or Database Administrator, who administers databases.

n The Java developer, who creates Java code for custom events.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://e-docs.beasys.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the Campaign Manager for WebLogic,
the WebLogic Commerce Server, and the WebLogic Personalization Server
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document
(or a portion of it) in book format. To access the PDFs, open the Campaign Manager
for WebLogic, WebLogic Commerce Server, and WebLogic Personalization Server
documentation Home page, click the PDF files button and select the document you
want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.
viii Guide to Events and Behavior Tracking

Related Information

The following Campaign Manager for WebLogic, WebLogic Commerce Server, and
WebLogic Personalization Server documents contain information that is relevant to
using events and behavior tracking.

n Using the E-Business Control Center.

n Guide to Registering Customers and Managing Customer Services.

Contact Us!

Your feedback on Campaign Manager for WebLogic, WebLogic Commerce Server,
and WebLogic Personalization Server documentation is important to us. Send us
e-mail at docsupport@beasys.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the Campaign Manager for WebLogic, WebLogic Commerce Server, and WebLogic
Personalization Server documentation.

In your e-mail message, please indicate that you are using the documentation for
Campaign Manager for WebLogic, WebLogic Commerce Server, and WebLogic
Personalization Server Product Version: release.

If you have any questions about this version of Campaign Manager for WebLogic,
WebLogic Commerce Server, or WebLogic Personalization Server, or if you have
problems installing and running Campaign Manager for WebLogic, WebLogic
Commerce Server, or WebLogic Personalization Server, contact BEA Customer
Support through BEA WebSUPPORT at www.beasys.com. You can also contact
Customer Support by using the contact information provided on the Customer Support
Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address
Guide to Events and Behavior Tracking ix

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr
x Guide to Events and Behavior Tracking

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
Guide to Events and Behavior Tracking xi

xii Guide to Events and Behavior Tracking

1 Overview of Events and
Behavior Tracking

To help personalize campaigns and to effectively analyze customer interactions with a
Web site, you need a comprehensive event tracking and logging system. To fulfill this
requirement, BEA Campaign Manager for WebLogic, BEA WebLogic Commerce
Server, and BEA WebLogic Personalization Server include an Event and Behavior
Tracking system. Events identify how a customer is currently interacting with an
e-commerce site and the Behavior Tracking system records the event information.
With these systems you have the ability to specify, customize, and record selected
information. Event data can be used by leading e-analytics and e-marketing systems to
evaluate behavioral and transactional data from your online customers. With this
analysis you can create and enhance personalization rules, customize product offers,
and optimize interactive marketing campaigns. This topic introduces you to Events and
Behavior Tracking and provides a general survey of the elements that make up this
system.

This topic includes the following sections:

n What Are Events?

n Behavior Tracking

n Event Details

n Event Triggers

n Event Mechanism

n Event Sequence
Guide to Events and Behavior Tracking 1-1

1 Overview of Events and Behavior Tracking
What Are Events?

In general, an event is a notification that something has happened in a computer
program. Campaign Manager for WebLogic, WebLogic Commerce Server, and
WebLogic Personalization Serverprovide various points for triggering events. Events
provide a detailed and comprehensive view of the entire customer life cycle across
your e-commerce site. These points can be tailored for your applications.

You can use events with campaigns to enhance promotion of products and services.
Additionally, you can use events to gather intelligence to evaluate the effectiveness of
a campaign. Underlying campaigns are scenarios. Scenarios are executed in the
context of a campaign. Scenarios are a set of rules, called scenario actions, that allow
you to personalize customer experiences on your e-commerce site. For example, if a
customer clicks a Subscribe Me link on your Web site, you may want to send that
customer an e-mail confirming the subscription. Using events and scenarios, you can
choreograph the interactions between customers and the site.

With regard to tracking visitor behavior for analysis, the primary interest is in what the
customer saw and what the customer did. Inherent in this investigation is information
about when customers came to the site and when they left it, plus knowledge about
which rules were fired during their visit.

Behavior Tracking

The Event Service passes messages to Behavior Tracking. When configured, the
Behavior Tracking data is recorded in a relational database. This information can then
be used by data-mining systems to provide Web site customer information for
e-marketing analysis. Behavior Tracking provides the following kinds of information:

n When did customers start, end, or login to their sessions?

n What content or products did customers see?

n What content or products did customers click on?

n What did customers put in their shopping cart?
1-2 Guide to Events and Behavior Tracking

Event Details
n What did customers buy?

n What rules were triggered?

The information generated from these events allows various kinds of behavior
analyses, such as the following:

n Associations: When one event can be correlated to another event.

n Sequences: When one event leads to another later event.

n Classification: The recognition of patterns and a resulting new organization of
data.

n Clustering: Finding and visualizing groups of facts not previously known.

n Forecasting: Discovering patterns in the data that can lead to predictions about
future customer behavior.

Event Details

This section provides information about the standard events provided by BEA.
Specifically, a description of the event, the type of trigger, the class where triggering
occurs, which product contains the event, and the elements of the event. Events
elements comprise the data that is present within each event object.

Events are organized into categories. The following list presents each type of event
category along with a brief description:

n Session: The start time, end time, and if executed, the login time of the
customer’s session.

n Registration: The customer registers on the e-commerce site.

n Product: The customer is presented with a product or clicks (selects) the
presented product.

n Content: The customer is presented some content, such as an ad, or clicks
(selects) the presented content.
Guide to Events and Behavior Tracking 1-3

1 Overview of Events and Behavior Tracking
n Cart: An item is added, removed, or updated to the customer’s shopping cart.
Also when an entire order is purchased.

n Buy: The customer completes the purchase of one or more items.

n Rules: The rules that are fired as a customer navigates a Web site.

n Campaign: The events generated within the context of a campaign.

Session Events

Session events fire at the start time, end time, and if executed, the login time of a
customer’s session.

SessionBeginEvent

SessionEndEvent

Description Occurs when a customer begins interacting with a Web site.

Trigger Type Fired internally

Class Not applicable

Elements event_date
event_type
session_id
user_id

Products Specific to WebLogic Personalization Server, available in Campaign
Manager for WebLogic and WebLogic Commerce Server

Description Occurs when a customer leaves a Web site, or when the customer’s
session has timed out.

Trigger Type Fired internally
1-4 Guide to Events and Behavior Tracking

Event Details
SessionLoginEvent

Registration Event

Only one registration event exists. It is described in the following table.

UserRegistrationEvent

Class Not applicable

Elements event_date
event_type
session_id
user_id

Products Specific to WebLogic Personalization Server, available in Campaign
Manager for WebLogic and WebLogic Commerce Server

Description Occurs when a customer logs on a Web site.

Trigger Type Fired internally using the Weblogic Server j_security_hook

Class Not applicable

Elements event_date
event_type
session_id
user_id

Products Specific to WebLogic Personalization Server, available in and WebLogic
Commerce Server

Description Occurs when customer registers on a Web site.

Trigger Type Input processor
Guide to Events and Behavior Tracking 1-5

1 Overview of Events and Behavior Tracking
Product Events

These events occur when customer is presented with a product or clicks (selects) the
presented product.

ClickProductEvent

Class com.beasys.commerce.ebusiness.customer.webflow.Log
inCustomerIP

Elements event_date
event_type
session_id
user_id

Products Specific to WebLogic Personalization Server, available in Campaign
Manager for WebLogic and WebLogic Commerce Server

Description Occurs when a customer clicks a product link.

Trigger Type JSP Tag

Class com.bea.commerce.ebusiness.tracking.tags.ClickProd
uctTag

Elements event_date
event_type
session_id
user_id
document_type
document_id
sku
category_id
application_name

Products Specific to WebLogic Commerce Server, available in Campaign
Manager for WebLogic
1-6 Guide to Events and Behavior Tracking

Event Details
DisplayProductEvent

Content Events

These events occur when the customer is presented some content, such as an
advertisement, or clicks the presented content.

ClickContentEvent

Description Occurs when a product is displayed to the customer.

Trigger Type JSP Tag

Class com.bea.commerce.ebusiness.tracking.tags.DisplayPr
oductEventTag

Elements event_date
event_type
session_id
user_id
document_type
document_id
sku
category_id
application_name

Products Specific to WebLogic Commerce Server, available in Campaign
Manager for WebLogic

Description Occurs when a customer clicks some Web site content, such as a link or
banner.

Trigger Type JSP Tag

Class com.bea.commerce.platform.tracking.tags.ClickConte
ntTag
Guide to Events and Behavior Tracking 1-7

1 Overview of Events and Behavior Tracking
DisplayContentEvent

Cart Events

These events indicate that one or more items are added or removed from a customer’s
shopping cart.

Elements event_date
event_type
session_id
user_id
document_type
document_id

Products Specific to WebLogic Personalization Server, available in Campaign
Manager for WebLogic and WebLogic Commerce Server

Description Occurs when content is presented to a customer, usually any content from
a content management system.

Trigger Type JSP Tag

Class com.bea.commerce.platform.tracking.tags.DisplayCon
tentEventTag

Elements event_date
event_type
session_id
user_id
document_type
document_id

Products Specific to WebLogic Personalization Server, available in Campaign
Manager for WebLogic and WebLogic Commerce Server
1-8 Guide to Events and Behavior Tracking

Event Details
AddToCartEvent

RemoveFromCartEvent

Description Occurs when an item is added to a customer’s shopping cart.

Trigger Type Pipeline component

Class com.bea.commerce.ebusiness.tracking.pipeline.AddTo
CartTrackerPC

Elements event_date
event_type
session_id
user_id
sku
quantity
unit_list_price
currency
application_name

Products Specific to WebLogic Commerce Server, available in Campaign
Manager for WebLogic

Description Occurs when an item is removed from a customer’s shopping cart.

Trigger Type Pipeline component

Class com.bea.commerce.ebusiness.tracking.pipeline.Remov
eFromCartTrackerPC

Elements event_date
event_type
session_id
user_id
sku
quantity
unit_price
currency
application_name
Guide to Events and Behavior Tracking 1-9

1 Overview of Events and Behavior Tracking
PurchaseCartEvent

Products Specific to WebLogic Commerce Server, available in Campaign
Manager for WebLogic

Description Occurs once for an entire order, unlike the BuyEvent, which occurs for
each line item. This event is useful for campaigns. You can use it when
writing scenario actions to know when your customer makes a purchase
with specific characteristics, such as an order greater than $100 or the
purchase of a particular product.

Trigger Type Pipeline component

Class com.bea.commerce.ebusiness.tracking.pipeline.Purch
aseTrackerPC

Elements session_id
user_id
event_date
event_type
total_price
order_id
currency
application_name

Products Specific to WebLogic Commerce Server, available in Campaign
Manager for WebLogic
1-10 Guide to Events and Behavior Tracking

Event Details
Buy Event

Only one buy event exists. It is described in the following table.

BuyEvent

Rules Event

Only one rule event exists. It is described in the following table.

Description Occurs when a customer completes the purchase. A BuyEvent occurs
for each line item. A purchase may consist of one or more line items. A
line item may consist of one or more items. For example, although a
particular line item may have quantity of four items, only one BuyEvent
occurs.

Trigger Type Pipeline component

Class com.bea.commerce.ebusiness.tracking.pipeline.Purch
aseTrackerPC

Elements event_date
event_type
session_id
user_id
sku
quantity
unit_price
currency
application_name
order_line_id

Products Specific to WebLogic Commerce Server, available in Campaign
Manager for WebLogic
Guide to Events and Behavior Tracking 1-11

1 Overview of Events and Behavior Tracking
RuleEvent

Campaign Events

These events occur when a customer participates in a campaign.

CampaignUserActivityEvent

Description Indicates the rules that were fired as a customer navigates a Web site.

Trigger Type Fired internally from advislets

Class Not applicable

Elements event_date
event_type
session_id
user_id
ruleset_name
rule_name

Products Specific to WebLogic Personalization Server, available in Campaign
Manager for WebLogic and WebLogic Commerce Server

Description Occurs when a customer participates in a campaign. Specifically, this
event is fired whenever one or more scenario actions are true and the
campaign service is activated. You can limit this event to a single
occurrence for a particular scenario. This event is intended for use by
analytic software.

Trigger Type Fired internally from the campaign service

Class Not applicable
1-12 Guide to Events and Behavior Tracking

Event Details
DisplayCampaignEvent

Elements event_date
event_type
session_id
user_id
campaign_id
scenario_id

Products Campaign Manager for WebLogic only

Description Occurs when campaign content, such as an ad, is presented to the
customer. Specifically, this event is fired whenever a campaign
placeholder displays an ad placed in the ad bucket by a campaign. You
can use this event to trigger another campaign. Analytic software uses
this event to determine if a customer saw an ad as a result of a campaign.

Trigger Type Fired internally from the campaign service

Class Not applicable

Elements event_date
event_type
session_id
user_id
document_type
document_id
campaign_id
scenario_id
application_name
placeholder_id

Products Campaign Manager for WebLogic only
Guide to Events and Behavior Tracking 1-13

1 Overview of Events and Behavior Tracking
ClickCampaignEvent

Event Triggers

The standard events supplied by BEA are triggered at important points in an
e-commerce site. The components that enable events include Java APIs, JSP tags, JSP
scriptlets, Webflow input processors, Pipeline components, the Flow Manager, content
selectors, and classification advislets. You can add or customize triggers for each of
the following events:

n DisplayContentEvent

n DisplayProductEvent

n ClickContentEvent

Description Occurs when a campaign item, such as an ad, is clicked on by the
customer. Specifically, this event is fired whenever a customer clicks a
campaign ad that was placed in the ad bucket by a campaign. You can use
this event to trigger another campaign. Analytic software uses this event
to determine if a customer clicked on an ad as a result of a campaign.

Trigger Type Fired internally from campaign service

Class Not applicable

Elements event_date
event_type
session_id
user_id
document_type
document_id
campaign_id
scenario_id
application_name
placeholder_id

Products Campaign Manager for WebLogic only
1-14 Guide to Events and Behavior Tracking

Event Triggers
n ClickProductEvent

Note: DisplayProductEvent and ClickContentEvent are available in only
Campaign Manager for WebLogic and WebLogic Commerce Server.

Each of these events are triggered by JSP tags. You can use the JSP tags that trigger
these events to specify which products and what content triggers these events. For
example, in the WLCS Web Application, the JSP tag for the DisplayProductEvent
is located in the details.jsp.

The tag shown in Listing 1-1 triggers an event for any product displayed on a catalog
detail page. If you wanted to trigger an event for one particular product, you could
write a scriptlet that keys off the SKU for that product.

Listing 1-1 JSP Tag

<%-- once the product is displayed, fire off a displayProductEvent --%>
<productTracking:displayProductEvent documentId="<%= item.getName() %>"
 documentType="<%= DisplayProductEvent.ITEM_BROWSE %>"
 sku="<%= item.getKey().getIdentifier() %>" />

When you add a JSP tag for an event, you should include a reference to the tag library
descriptor, as shown below:

<%@ taglib uri="productTracking.tld" prefix="productTracking" %>

Notes: For more information about JSP tags, see Chapter 5, “JSP Tag Library
Reference for Events and Behavior Tracking.”

 The details.jsp is located at:

l %WL_COMMERCE_HOME%\config\wlcsDomain\wlcsApp\wlcs\commerce\c

atalog\details.jsp (Windows)

l $WL_COMMERCE_HOME/config/wlcsDomain/wlcsApp/wlcs/commerce/ca

talog/details.jsp (UNIX)

where WL_COMMERCE_HOME is the directory in which you installed Campaign
Manager for WebLogic and WebLogic Commerce Server.
Guide to Events and Behavior Tracking 1-15

1 Overview of Events and Behavior Tracking
Event Mechanism

The Event service is an extensible, general purpose, event construction and
propagation system. As shown in Figure 1-1, an event is generated by a trigger, such
as a JSP tag, which creates the event object, locates the Event service bean, and passes
the event object to the Event service. The Event service works with plug-in listeners
that disseminate events to listeners interested in receiving the events. At creation time,
each event listener returns the list of event types that it wants to receive. When the
Event service receives an event, it checks the type of the event and sends the event to
all listeners that are subscribed to receive that event’s type.

The Event service has two sets of listeners: those that respond to events synchronously
and those that respond to events asynchronously. The synchronous listeners use the
thread of execution that created and transmitted the event to perform actions in
response to that event. The asynchronous listeners receive the event from the thread
where it was created and some time later, handle the event in a different thread of
execution. The asynchronous service exists so that long-running event handlers can
execute without delaying the application from a Web site visitor’s perspective.

Whether a particular plug-in listener is installed on the synchronous or the
asynchronous side of the Event service is based on the requirements of the application
and is specified in the weblogiccommerce.properties file.
1-16 Guide to Events and Behavior Tracking

Event Mechanism
Figure 1-1 Event Mechanism
Guide to Events and Behavior Tracking 1-17

1 Overview of Events and Behavior Tracking
Event listeners implement the
com.bea.commerce.platform.events.EventListener interface. The interface
defines signatures for two public methods:

n public String[] getTypes()

n public void handleEvent(Event theEvent)

The first method returns a list of event types that the listener is interested in receiving
from the Event service. For example, if a listener is designed to receive events of type
Foo, the listener returns Foo as an item in the array returned from invoking
getTypes() on the listener. The second method is invoked when an event is passed to
the listener. A listener has no knowledge of whether it is synchronous or asynchronous.

If you wish to create a listener interested in only campaign events, you would list the
listener’s fully-qualified classname in the weblogiccommerce.properties file in
either the eventService.listeners property or the
asynchronousHandler.listeners property (for synchronous or asynchronous
handling, respectively). The listener would implement the EventListener interface
and return the following event types:

{“ClickCampaignEvent”,“DisplayCampaignEvent”,“CampaignUserActiv
ityEvent” }

when its getTypes() method is invoked.

After the listener is installed, events of one of these three types arrive through the
listener’s handleEvent(Event theEvent) interface.

The Asynchronous Delivery graphic in Figure 1-1 indicates that the asynchronous
event handler receives events transmitted asynchronously from the synchronous side
of the Event service. It then dispatches events to the pluggable asynchronous listeners
based on the event types each listener is subscribed to receive.

Event Sequence

Figure 1-2 and Figure 1-3 provide a sample of the firing of events. These figures are
intended to give you a sense of the order in which events fire, not a comprehensive
examination of event sequencing.
1-18 Guide to Events and Behavior Tracking

Event Sequence
Figure 1-2 Event Sequence Sample—Part 1
Guide to Events and Behavior Tracking 1-19

1 Overview of Events and Behavior Tracking
Figure 1-3 Event Sequent Sample—Part 2
1-20 Guide to Events and Behavior Tracking

Overview of Creating a Custom Event
2 Creating Custom
Events

This topic provides the information necessary to write a custom event. You can create
a custom event for anything you wish to track. For example, you could create an event
that would tell you which pages are displayed for each customer. You could then use
the information to determine how many pages are viewed on average per session and
which pages are the most popular. Additionally, marketing professionals could use this
event when developing scenario actions that are based on the display of particular
pages. To demonstrate how to write a custom event, a simple example is provided.
Each section references and expands the example.

This topic includes the following sections:

n Overview of Creating a Custom Event

n Writing a Custom Event Class

n Writing a Custom Event Listener

n Writing a Behavior Tracking Event Class

n Debugging the Event Service

Overview of Creating a Custom Event

The creation of a custom event is a multiple-step process. The following list provides
an overview of the process and references the information not covered in this topic:
Guide to Events and Behavior Tracking 2-1

2 Creating Custom Events
n Write the code that defines the event and event listener.

n Write the code to trigger the event with a JSP tag or an API call.

n Register the event. For more information, see Chapter 3, “Registering Custom
Events.”

n To record the event data to the EVENT table, modify the
weblogiccommerce.properties file to include the new event and create an
entry for the event in the EVENT_TYPE table. For more information, see
Chapter 4, “Persisting Behavioral Tracking Data.”

Writing a Custom Event Class

To create a custom event, you first write an event object. This object encapsulates all
the necessary information for correctly interpreting and handling the event when it
arrives at a listener. All custom events must subclass the
com.bea.commerce.platform.events.Event class. This base class handles
setting and retrieving an event’s timestamp and type and provided access to the custom
event’s attributes. Two Event class methods set and retrieve attributes:

setAttribute(String theKey, Serializable theValue)
getAttribute(String theKey)

These methods can be called from the custom event’s constructor to set attributes
specific to the new event. Keep in mind that all objects set as values in the Event object
must be Java serializable. The getTimeStamp() method returns the date of the event’s
creation in milliseconds. The type of an event is accessed using the Event class’s
getType() method. The timestamp and type of an Event object instance can be set
only at creation time in the Event constructor.

To illustrate the process of creating a custom event, a simple example is presented
here, called TestEvent. The example is a basic demonstration of how to create an
event subclass. An actual custom event would probably be more elaborate.

A custom event must first have a type. This type should be passed to the superclass
constructor (for example, in the Event class); this type is returned at getType()
invocations on custom-event object instances. For example:
2-2 Guide to Events and Behavior Tracking

Writing a Custom Event Class
/** Event Type */
public static final String TYPE = "TestEvent";

To properly initialize the Event base class of the custom event object, the value TYPE
is passed to the event constructor. The type of all events must be a simple Java string
object.

After defining the type, you must define the keys that access the attributes stored in the
custom event. These attributes can be given values in the constructor. For example, the
TestEvent class has two properties, userPropertyOne and userPropertyTwo; the
type of the value associated with userPropertyOne is a String and
userPropertyTwo is a Double. The keys are defined as follows:

/**
 * Event attribute key name for the first user defined property
 * Attribute value is a String
 */
public static final String USER_PROPERTY_ONE_KEY =
 "userPropertyOne";

/**
 * Event attribute key name for the second user defined property
 * Attribute value is a Double
 */
public static final String USER_PROPERTY_TWO_KEY =
 "userPropertyTwo";

Finally, a constructor brings the event type and the process of setting attributes
together to create an event object. The constructor looks like:

/**
 * Create a new TestEvent
 *
 *
 * @param userPropertyOne some user defined property typed as
 * a String
 * @param userPropertyTwo some user defined property typed as
 * a Double
 */
 public TestEvent(String userPropertyOneValue,
 Double userPropertyTwoValue)
 {
 /* calls the Event class constructor with this event’s type */
 super(TYPE);

 if(userPropertyOneValue != null)
 setAttribute(USER_PROPERTY_ONE_KEY,
 userPropertyOneValue);
Guide to Events and Behavior Tracking 2-3

2 Creating Custom Events
 if(userPropertyTwoValue != null)
 setAttribute(USER_PROPERTY_TWO_KEY,
 userPropertyTwoValue);
 }

Putting all the parts together, the entire custom event class is shown in Listing 2-1.

Listing 2-1 TestEvent Class

/* Start TestEvent class */

public class TestEvent
 extends com.bea.commerce.platform.events.Event
{
 /** Event Type */
 public static final String TYPE = "TestEvent";

 /**
 * Event attribute key name for the first user defined property
 * Attribute value is a String
 */
 public static final String USER_PROPERTY_ONE_KEY = "userPropertyOne";

 /**
 * Event attribute key name for the second user defined property
 * Attribute value is a Double
 */
 public static final String USER_PROPERTY_TWO_KEY = "userPropertyTwo";

 /**
 * Crate a new TestEvent
 *
 *
 * @param userPropertyOne some user defined property typed as a String
 * @param userPropertyTwo some user defined property typed as a Double
 */
 public TestEvent(String userPropertyOneValue,
 Double userPropertyTwoValue)
 {
 /* calls the Event class constructor with this event’s type */
 super(TYPE);

 if(userPropertyOneValue != null)
 setAttribute(USER_PROPERTY_ONE_KEY, userPropertyOneValue);

 if(userPropertyTwoValue != null)
2-4 Guide to Events and Behavior Tracking

Writing a Custom Event Listener
 setAttribute(USER_PROPERTY_TWO_KEY, userPropertyTwoValue);
 }
}
/* End TestEvent class */

The example in Listing 2-1 shows you how to use the fundamental aspects of the
Event base class and the event service. An actual custom event constructor would
probably be more complex. For example, it might check for default values or disallow
null attributes. Additionally, the custom-event object might have more methods or
member data.

Writing a Custom Event Listener

In order to listen for an event, you must define an event listener. All event listeners
must implement the com.bea.commerce.platform.events.EventListener
interface and have a no arguments (default) constructor. This interface specifies two
methods that are fundamental to transmitting events of a given type to interested
listeners:

public String[] getTypes()

public void handleEvent(Event ev)

The first method returns the types, in a string array, that the listener is interested in
receiving. The event service dispatches events of a given type to listeners that return
the event’s type in the types array. When the event service has determined that a given
listener has registered to receive the type of the current event, an event of that type is
dispatched to the listener using the handleEvent(Event ev) call.

When writing a custom event listener, both methods must be implemented from the
EventListener interface. Continuing with the TestEvent example, the
TestEventListener listens for instances of TestEvent that are sent through the
event service. This can be specified as follows:

/** The types this listener is interested in */
private String[] eventTypes = {"TestEvent"};

/**
 The method invoked by the event service to determine the
Guide to Events and Behavior Tracking 2-5

2 Creating Custom Events
 types to propagate to this listener.
 */
public String[] getTypes()
{
 return eventTypes;
}

To handle the event, the handleEvent(Event evt) method is implemented as
follows:

/**
 * Handle events that are sent from the event service
 */
public void handleEvent(Event ev)
{
 System.out.println("TestListener::handleEvent " +
 " -> received an event" +
 " of type: " + ev.getType());

 /* Do the work here */

 return;
}

Putting all of these pieces together with a constructor, Listing 2-2 shows a simple event
listener that registers to receive TestEvent objects.

Listing 2-2 Event Listener

 import com.bea.commerce.platform.events.EventListener;
 import com.bea.commerce.platform.events.Event;

 /**
 * TestListener to demonstrate the ease with which listeners can be plugged
 * into the behavior tracking system.
 *
 * This class should be added to the property eventService.listeners
 * in order to receive events. The fully qualified classname must be added
 * to this property; don’t forget to add the ",\" at the end of the previous
 * line or the properties parser will not find the new classname.
 *
 * The types of events that are heard are listed in the eventTypes
 * String array. Add and remove strings of that type as necessary.
 *
 * @author Copyright (c) 2001 by BEA Systems, Inc. All Rights Reserved.
 */
 public class TestListener
2-6 Guide to Events and Behavior Tracking

Writing a Custom Event Listener
 implements EventListener
 {

 private String[] eventTypes = {"TestEvent"};

 public TestListener()
 {
 }

 public String[] getTypes()
 {
 return eventTypes;
 }

 public void handleEvent(Event ev)
 {
 System.out.println("TestListener::handleEvent -> received an event" +
 " of type: " + ev.getType());

 return;
 }
}

As with writing a simple event, writing a simple EventListener is also
straightforward. Any event listener’s internals should be generic; the same
TestEventListener instance may not handle all TestEvent objects. Therefore
TestEventListener should be entirely stateless and should operate on data that is
contained in the event object or stored externally (that is, in a database).

Note: Multiple instances of any listener may execute concurrently.

Installing a Listener Class in the Event Service

After you have created a custom event and listener, you must install them in the
weblogiccommerce.properties file. Installation of a listener allows the listener to
receive events when the server is started. As discussed in “Event Mechanism” on page
1-16, there are two sides to the event service: synchronous and asynchronous. Each
side has a list of listeners residing in the weblogiccommerce.properties file. The
lists are eventService.listeners and asynchronousHandler.listeners,
respectively.
Guide to Events and Behavior Tracking 2-7

2 Creating Custom Events
To install a listener, the fully-qualified class name must be entered into the appropriate
list of listeners. Additionally, to continue the property to the next line, the listener list
for both sides must be comma delimited and have a backslash (,\) at the end of each
line. As shown below, installing the TestEventListener is done by adding the class
name to the existing list:

eventService.listeners=\
 <path to the class>.TestEventListener

To install the listener on the asynchronous side, add the class name as follows:

asynchronousHandler.listeners=\
 <path to the class>.TestEventListener

Although not shown, other listeners may be installed at either of these properties.

Note: The server must be restarted after any changes to this list.

Writing a Behavior Tracking Event Class

A Behavior Tracking event is a special type of event that tracks a customer’s
interactions with an e-commerce site. E-analysis systems use the data gathered from
Behavior Tracking events to evaluate customer behavior. The evaluation is primarily
used for campaign development and optimizing customer experience on a Web site.

A Behavior Tracking event and its listeners are created in much the same way as the
TestEvent class and TestEventListener examples. A simple example is also
presented here. The example tracking event is called TestTrackingEvent. All
Behavior Tracking events persisted (recorded) to a database for use with BEA
Behavior Tracking are handled by the
com.bea.commerce.platform.listeners.BehaviorTrackingListener. The
BehaviorTrackingListener extends the
com.bea.commerce.platform.events.EventListener class.

The BehaviorTrackingListener receives and persists Behavior Tracking events
from the event service when it is plugged into one of the listener’s properties in the
weblogiccommerce.properties file.

Note: For scalability reasons, you should plug the BehaviorTrackingListener
into the eventService.listeners property.
2-8 Guide to Events and Behavior Tracking

Writing a Behavior Tracking Event Class
This listener receives events from the event service and adds them to a cache that is
intermittently persisted to the Behavior Tracking tables in the database. The frequency
of the sweeping of events from the cache is controlled by the following properties in
the weblogiccommerce.properties file:

n behaviorTracking.cache.maxSize

n behaviorTracking.cache.checkIntervalSec

n behaviorTracking.cache.maxAgeSec

You should tune these properties to optimize performance. A cache sweep should be
performed often enough that writing to the database is not too time consuming but not
so frequent that the operation is wasteful.

Facilitating OffLine Processing

For facilitating offline processing of customer interactions with a Web site, Behavior
Tracking events are designed to be persisted to a table in the database, called the EVENT
table. Part of the process of recording data from Behavior Tracking events is creating
an XML representation of the data, which is stored in the xml_definition column of
the EVENT table. You can persist events in an alternate location and table structure as
requirements dictate. This discussion assumes that you are planning to use the BEA
Behavior Tracking event persistence mechanism. Therefore, to persist events in the
provided EVENT table, your custom event must conform to the descriptions in this
section so that it is created and persisted properly.

To formally specify the data comprising a Behavior Tracking event, you need to
develop an XML-XSD schema for the new event. While XSDs are not used internally
to verify the creation of XML, the XML that is created represents the event’s data in
the database. If the event class is properly developed and used, it will conform to the
XML-XSD schema. With an XSD document, development of the constructor and
attribute keys for a Behavior Tracking event follows easily.

To correctly turn a Behavior Tracking event into an XML representation, the Behavior
Tracking event must have several pieces of member data that fully describe an XML
instance document for the schema associated with the event type. This data describes
the namespace and XSD file associated with the event. It also lists the keys and their
order for creating an XML instance document from an event object. The structure of
an XSD document and details on XML namespaces can be found at
http://www.w3.org/XML/Schema. Several XSD schemas for BEA Behavior Tracking
Guide to Events and Behavior Tracking 2-9

2 Creating Custom Events
events can be found in:

n %WL_COMMERCE_HOME%\lib\dtd\tracking (Windows)

n $WL_COMMERCE_HOME/lib/dtd/tracking (UNIX)

where WL_COMMERCE_HOME is the directory in which you installed BEA Campaign
Manager for WebLogic, BEA WebLogic Commerce Server, and/or BEA WebLogic
Personalization Server.

The namespace and schema are specified as:

/**
 The XML namespace for this event
 */
private static final String XML_NAMESPACE=
 "http://<your URI>/testtracking";

/**
 The XSD file containing the schema for this event
 */
private static final String XSD_FILE="TestTrackingEvent.xsd";

Note: These values are used when creating an instance document to populate the
fields.

The schemaKeys are a list of strings which are keys to the event class’s
getAttribute and setAttribute methods. These keys are used to extract the data
that populate elements in the XML instance document which represent the Behavior
Tracking event. The keys should be listed in an array that consists of string-typed
objects. Their order specifies the order in which they appear in the XML instance
document. In the XSD files that the Behavior Tracking system generates, the order of
the elements is important; an XML file will not validate with an XSD file if elements
are out of order. Elements can be omitted by using the XML numOccurs keyword and
setting the value to zero. For examples of how this is done, see the XSD schemas for
BEA Behavior Tracking events in

n %WL_COMMERCE_HOME%\lib\dtd\tracking (Windows)

n $WL_COMMERCE_HOME/lib/dtd/tracking (UNIX)

where WL_COMMERCE_HOME is the directory in which you installed Campaign Manager
for WebLogic, WebLogic Commerce Server, and/or WebLogic Personalization
Server.
2-10 Guide to Events and Behavior Tracking

Writing a Behavior Tracking Event Class
An example array for the Behavior Tracking version of the TestEvent described
above might appear as:

/**
 These are the keys and their order for elements that
 will be present in the XML representing this object.
 */
private static final String localSchemaKeys[] =
{
 SESSION_ID, USER_ID, USER_PROPERTY_ONE_KEY,
 USER_PROPERTY_TWO_KEY
};

The SESSION_ID and the USER_ID are data elements in the localSchemaKeys array
that are useful in implementing a tracking event. The SESSION_ID is the WebLogic
Server session ID that is created for every session object. (For more information, see
the WebLogic Server 6.0 Documentation Center.) The USER_ID field (which may be
null) is the username of the Web site customer associated with the session from which
the event was generated. For some events, a user may not be associated with an event;
as previously mentioned, the numOccurs for the USER_ID field in an XSD file should
be zero. To persist events in the EVENT table, the SESSION_ID must be non-null.

All Behavior Tracking events must extend the
com.bea.commerce.tracking.events.TrackingEvent class. This class defines
three keys that are useful for setting attributes for all tracking events, as follows:

n TrackingEvent.SESSION_ID

n TrackingEvent.USER_ID

n TrackingEvent.REQUEST.

These keys are used in setAttribute calls made in the TrackingEvent constructor
when setting the SESSION_ID, USER_ID, and REQUEST (an HttPServletRequest
object), respectively. They should also be used to retrieve values associated with each
key when invoking Event.getAttribute (String Key) on event objects that extend
TrackingEvent.
Guide to Events and Behavior Tracking 2-11

2 Creating Custom Events
TrackingEvent Base Class Constructor

The TrackingEvent base class has a constructor that is more complicated than the
Event class’s constructor. The Event constructor is invoked by the super(String
eventType) call in the TrackingEvent constructor. The TrackingEvent
constructors are shown in Listing 2-3 and Listing 2-4.

Listing 2-3 Tracking Event Constructor—Example 1

/**
 * Create a new TrackingEvent.
 *
 * @param theEventType the event’s type
 * @param theSessionId from HttpSession.getId()
 * @param theUserId from HttpServletRequest.getRemoteUser() or equivalent
 * (null if unknown)
 * @param theXMLNamespace the namespace for an XML representation of this event
 * type
 * @param theXSDFile the file that contains the schema which specifies and
 * enforces typing on the data in the XML file
 * @param theSchemaKeys the list of keys (in their order in the XSD schema)
 * representing the data to be persisted in this event’s XML
 */
public TrackingEvent(String theEventType,
 String theSessionId,
 String theUserId,
 String theXMLNamespace,
 String theXSDFile,
 String[] theSchemaKeys)

The TrackingEvent constructor shown in Listing 2-4 takes an
HttpServletRequest object.

Listing 2-4 Tracking Event Constructor—Example 2

/**
 * Create a new TrackingEvent.
 *
 * @param theEventType the event’s type
2-12 Guide to Events and Behavior Tracking

Writing a Behavior Tracking Event Class
 * @param theSessionId from HttpSession.getId()
 * @param theUserId from HttpServletRequest.getRemoteUser() or equivalent
 * (null if unknown)
 * @param theXMLNamespace the namespace for an XML representation of this event
 * type
 * @param theXSDFile the file that contains the schema which specifies and
 * enforces typing on the data in the XML file
 * @param theSchemaKeys the list of keys (in their order in the XSD schema)
 * representing the data to be persisted in this event’s XML
 * @param theRequest the http servlet request object
 */
public TrackingEvent(String theEventType,
 String theSessionId,
 String theUserId,
 String theXMLNamespace,
 String theXSDFile,
 String[] theSchemaKeys,
 HttpServletRequest theRequest)

In the first constructor, shown in Listing 2-3, the only data that is optional (that is, that
can be null) is theUerId; all other data is required so that the tracking event is
correctly persisted to the EVENT table. In the second constructor, shown in Listing 2-4,
the HttpServletRequest object can be passed in from triggering locations where the
HttpServletRequest object is available. This object provides the data needed to fire
rules against event instances.

Note: In order to fire rules on a custom Behavior Tracking event, the
HttpServletRequest and the USER_ID must be non-null. Generally, a
non-null USER_ID means that a customer is logged into a Web site. Rules
cannot be fired on an event with a null-user.

The TestTrackingEvent constructor is shown in Listing 2-5.

Listing 2-5 TestTrackingEvent Constructor

/**
 * Create a new TestTrackingEvent
 *
 * @param theSessionId from HttpSession.getId()
 * @param theUserId from HttpServletRequest.getRemoteUser() or equivalent
 * (null if unknown)
 * @param userPropertyOne some user defined property typed as a String
 * @param userPropertyTwo another user defined property typed as a Double
 */
Guide to Events and Behavior Tracking 2-13

2 Creating Custom Events
public TestTrackingEvent(String theSessionId,
 String theUserId,
 String userPropertyOneValue,
 Double userPropertyTwoValue)
{
 super(TYPE, theSessionId, theUserId, XML_NAMESPACE, XSD_FILE,
 localSchemaKeys);

 if(userPropertyOneValue != null)
 setAttribute(USER_PROPERTY_ONE_KEY, userPropertyOneValue);

 if(userPropertyTwoValue != null)
 setAttribute(USER_PROPERTY_TWO_KEY, userPropertyTwoValue);

}

This constructor calls the TrackingEvent constructor to populate the required values
and then sets the attributes necessary for this particular Behavior Tracking event type.

The entire TestTrackingEvent is shown in Listing 2-6.

Listing 2-6 TestTracking Event

import com.bea.commerce.platform.tracking.events.TrackingEvent;

/**
 * Test, user-defined behavior tracking event.
 *
 * This event can be persisted to the database.
 *
*/
public class TestTrackingEvent
 extends TrackingEvent
{

 /** Event type */
 public static final String TYPE = "TestTrackingEvent";

 /**
 The XML namespace for this event
 */
 private static final String XML_NAMESPACE="http://<your URI>/testtracking";

 /**
2-14 Guide to Events and Behavior Tracking

Writing a Behavior Tracking Event Class
 The XSD file containing the schema for this event
 */
 private static final String XSD_FILE="TestTrackingEvent.xsd";

 /**
 * Event attribute key name for the first user defined property
 * Attribute value is a String
 */
 public static final String USER_PROPERTY_ONE_KEY = "userPropertyOne";

 /**
 * Event attribute key name for the second user defined property
 * Attribute value is a Double
 */
 public static final String USER_PROPERTY_TWO_KEY = "userPropertyTwo";

 /**
 These are the keys and their order for elements that
 will be present in the XML representing ths object.
 */
 private static final String localSchemaKeys[] =
 {
 SESSION_ID, USER_ID, USER_PROPERTY_ONE_KEY, USER_PROPERTY_TWO_KEY
 };

 /**
 * Create a new TestTrackingEvent
 *
 * @param theSessionId from HttpSession.getId()
 * @param theUserId from HttpServletRequest.getRemoteUser() or equivalent
 * (null if unknown)
 * @param userPropertyOne some user defined property typed as a String
 * @param userPropertyTwo another user defined property typed as a Double
 */
 public TestTrackingEvent(String theSessionId,
 String theUserId,
 String userPropertyOneValue,
 Double userPropertyTwoValue)
 {
 super(TYPE, theSessionId, theUserId, XML_NAMESPACE, XSD_FILE,
 localSchemaKeys);

 if(userPropertyOneValue != null)
 setAttribute(USER_PROPERTY_ONE_KEY, userPropertyOneValue);

 if(userPropertyTwoValue != null)
 setAttribute(USER_PROPERTY_TWO_KEY, userPropertyTwoValue);
 }
}

Guide to Events and Behavior Tracking 2-15

2 Creating Custom Events
The TestTrackingEvent, shown in Listing 2-6, correctly sets its own attributes and
sets the attributes in its instantiation of TrackingEvent. This enables correct
population of the XML instance document at the time of its creation. Recall that the
XML instance document represents the TestTrackingEvent in the database’s EVENT
table.

If you want the custom Behavior Tracking event type to be persisted in the database,
the event must be added to the behaviorTracking.persistToDatabase property
list. (If you are not persisting the event, you do not need to add the event type to the
property.) This list is already present in the weblogiccommerce.properties file. It
is a list of types that are listened for by the BehaviorTrackingListener and added
to the cache of events that are persisted in the database when listened-for event types
are received. Accordingly, if you wanted to add the TestTrackingEvent to the list,
you would add the type TestTrackingEvent to the list and add a comma and a
backslash (,\) to the end of the item on the previous row.

XML Creation of Behavior Tracking Events

When persisting Behavior Tracking events to the EVENT table, the bulk of the data must
be converted to XML. The XML document should conform to an XML XSD schema
that you create which specifies the order of the XML elements in the XML instance
document. Additionally, the schema must include the types of elements and their
cardinalities. The process of creating XML from an event object is handled by a helper
class that utilizes variables and constants in a Behavior Tracking event’s class file. All
schema documents use the namespace: “http://www.w3.org/1999/XMLSchema” and
all instances of Behavior Tracking schemas use the namespace:
“http://www.w3.org/1999/XMLSchema-instance”. The XML created in Listing 2-7
will conform to the XSD schema.

Listing 2-7 XSD Document Example

<?xml version="1.0"?>
<schema
targetNamespace="http://<your URI>/testtracking"
xmlns="http://www.w3.org/1999/XMLSchema"
xmlns:bt="http://<your URI>/testtracking"
2-16 Guide to Events and Behavior Tracking

Writing a Behavior Tracking Event Class
>
<element name="TestTrackingEvent">
<complexType>
<sequence>
<element ref="bt:event_date"/>
<element ref="bt:event_type"/>
<element ref="bt:session_id"/>
<!--
minOccurs defaults to 1. Setting it to 0 makes
the element optional.
-->
<element ref="bt:user_id" minOccurs="0" />
<element ref="bt:userPropertyOne"/>
<element ref="bt:userPropertyTwo"/>
</sequence>
</complexType>
</element>
<element name="event_date" type="timeInstant"/>
<element name="event_type" type="string"/>
<element name="session_id" type="string"/>
<element name="user_id" type="string"/>
<element name="userPropertyOne" type="string"/>
<element name="userPropertyTwo" type="double"/>
</schema>

Creation of an event’s representation in XML takes place generically relative to the
event’s type. Consequently, to create an accurate XML instance document, each event
must specify the namespace, event type, elements, and order of its elements. Using the
TestTrackingEvent example, the XML representing an instance of the
TestTrackingEvent is constructed as follows:

Note: Assume that testTrackingEvent is a well-formed instance of a
TestTrackingEvent.

1. Get the event’s type with the testTrackingEvent.getType() call.

2. Get the event’s namespace with the
((TrackingEvent)testTrackingEvent).getXMLNamespace()call.

3. Get the event’s XSD filename with the
((TrackingEvent)testTrackingEvent).getXSDFile() call.
Guide to Events and Behavior Tracking 2-17

2 Creating Custom Events
Using the schema keys from the TestTrackingEvent class, values are inserted into
the XML document. Schema key/attribute value pairs correspond to XML elements in
this way:

<schema Key>value</schema Key>

The helper class that creates XML for Behavior Tracking assumes that the elements
inserted into an XML instance document are not deeply nested. Additionally, the
toString() method is used to create a representation of the value object that is
retrieved through the Event classes’s getAttribute(String Key) call. The
contents of the string returned by invoking toString() on the value object must
match the type specified in the event’s schema document. The TestTrackingEvent
retrieves values using the following keys in the order specified in the schemaKeys
array:

n SESSION_ID

n USER_ID

n USER_PROPERTY_ONE_KEY

n USER_PROPERTY_TWO_KEY

The values for these keys are retrieved using the
testTrackingEvent.getAttribute(<schema Key>) call. The order in which
the XML formatted key/value pairs are inserted into the instance document is specified
by the constant schemaKeys array, which is defined and populated in the
TestTrackingEvent class.

The steps assembled to create an XML instance document for the
TestTrackingEvent are presented in Listing 2-8.

Listing 2-8 XML Instance Document Example

<TestTrackingEvent
 xmlns="http://<your URI>/testtracking"
 xmlns:xsi="http://www.w3.org/1999/XMLSchema-instance"
 xsi:schemaLocation="http://<your URI>/testtracking
TestTrackingEvent.xsd"
 >
<event_date>XML time instant formatted event date</event_date>
<event_type>TestTrackingEvent</event_type>
 <session_id>theSessionIdValue</session_id>
 <user_id>theUserIdValue</user_id>
 <userPropertyOne>userPropertyOneValue</userPropertyOne>
2-18 Guide to Events and Behavior Tracking

Writing a Behavior Tracking Event Class
 <userPropertyTwo>userPropertyTwoValue</userPropertyTwo>
</TestTrackingEvent>

The XML creation is performed automatically when events arrive at the
BehaviorTrackingListener, which enables Behavior Tracking in Campaign
Manager for WebLogic, WebLogic Commerce Server, and/or WebLogic
Personalization Server. The Behavior Tracking listener is installed by adding it to the
eventService.listeners property in the weblogiccommerce.properties file.

You must be careful when defining the namespaces, XSD documents, and schema
keys variables in custom Behavior Tracking event classes, especially if they will be
persisted to the EVENT table. The method for creating and storing XML presented in
this discussion exactly follows the variables and constants specified in the event class.
You are free to develop other ways of creating and storing XML; this section is
directed only at the process of persisting XML Behavior Tracking representations in
the BEA EVENT table.

Note: The Event’s date is retrieved using the Event class’s getTimeStamp() call,
which returns a Java primitive long typed value. That long must be converted
into the type specified for the event_date element in the XSD schema
document. The type in this case is time instant. Event date and event type the
first two elements in all XML instance documents created through the
BehaviorTrackingListener.

Custom Behavior Tracking Event Listeners

To create a custom Behavior Tracking listener, in addition to or instead of the default
BehaviorTrackingListener, follow the example presented in “Writing a Custom
Event Listener” on page 2-5. Add the new event types to the custom listener’s
eventTypes array (for example, TestTrackingEvent). A given listener can listen
for any number of event types that may or may not be Behavior Tracking events. The
custom Behavior Tracking listener can be installed on either the synchronous or
asynchronous side of the event service, whichever is appropriate.
Guide to Events and Behavior Tracking 2-19

2 Creating Custom Events
Writing Custom Event Triggers

Once events are created, you must set up a mechanism for triggering events in the
application. Events may be generated from pipeline components, input processors, JSP
scriptlets, or JSP tags. Some Behavior Tracking events are triggered from within
Campaign Manager for WebLogic, WebLogic Commerce Server, or WebLogic
Personalization Server software.

After determining the mechanism for triggering events, tracking events can be sent to
the event system using the
com.bea.commerce.platform.tracking.TrackingEventHelperImpl class.
This class defines helper methods that pass events to the event service. Listing 2-9
shows an example of passing the TestTrackingEvent.

Listing 2-9 Dispatching an Event

/*
 * Create the event
 */
Event theEvent = new TestTrackingEvent("<some session id>",
 "<some user id> ",
 new String("userPropertyOneValue"),
 new Double(3.14));

/*
 * Dispatch the event
 */
TrackingEventHelperImpl.getInstance().dispatchEvent(theEvent);

To dispatch a TestEvent to the event service, the event service name can be looked
up in the JNDI, and an instance of the EventService bean can be obtained by
invoking the create() method on an EventServiceHome instance. The JNDI name
of the EventServiceHome interface is the classname of the EventServiceHome class
(com.bea.commerce.platform.events.EventServiceHome). Listing 2-10 shows
an example.
2-20 Guide to Events and Behavior Tracking

Writing a Behavior Tracking Event Class
Listing 2-10 JNDI Example

import com.beasys.commerce.axiom.util.helper.JNDIHelper;
import com.bea.commerce.platform.events.Event;
import com.bea.commerce.platform.events.EventServiceHome;
import com.bea.commerce.platform.events.EventService;

import javax.ejb.CreateException;
import javax.rmi.PortableRemoteObject;

/* code here */

 public void demonstrateEventDispatch()
 {
 Event event = <some event instance>;

 try
 {
 EventServiceHome home = (EventServiceHome)
 PortableRemoteObject.narrow(JNDIHelper.lookup
 ("com.bea.commerce.platform.events.EventServiceHome"),
 EventServiceHome.class);

 EventService eventService = home.create();

 eventService.dispatchEvent(event);
 }
 catch(Exception e)
 {
 /*
 Do exception handling here
 */
 }
 }
/* more code here */
Guide to Events and Behavior Tracking 2-21

2 Creating Custom Events
Debugging the Event Service

The DebugEventListener listener logs events to the weblogic.log file. The
DebugEventListener, as with all event listeners, can be plugged in on the
synchronous or asynchronous sides of the event service and can be used to make sure
that custom events are firing correctly.

Note: The weblogic.log file gets extremely large very quickly. Therefore, this
listener should not be included in a production environment.

To use the listener, add the class
com.bea.commerce.platform.events.listeners.DebugEventListener to
either the eventService.listeners or the asynchronousHandler.listeners
properties in the weblogiccommerce.properties file.
2-22 Guide to Events and Behavior Tracking

Overview of Creating a Custom Event
3 Registering Custom
Events

This topic contains basic information about registering custom events. This
information includes background information about custom events, how to register
events using the Events Editor in the BEA E-Business Control Center, and what you
need to do when you make changes to custom events.

This topic contains the following sections:

n Overview of Creating a Custom Event

n Why Register an Event?

n Registering a Custom Event

n Updating a Registered Custom Event

Note: You cannot change any of the standard events supplied with BEA Campaign
Manager for WebLogic, BEA WebLogic Commerce Server, or BEA
WebLogic Personalization Server.

Overview of Creating a Custom Event

The creation of a custom event is a multiple-step process. The following list provides
an overview of the process:

n Create the code that defines the event and event listener.
Guide to Events and Behavior Tracking 3-1

3 Registering Custom Events
n Create the code to trigger the event with a JSP tag or an API call.

n Register the event using the instructions in this topic.

n To record the event data for Behavior Tracking analysis, modify the
weblogiccommerce.properties file to include the new event and create an
entry for the event in the EVENT_TYPE table.

Note: For information about defining an event and defining a trigger, see Chapter 2,
“Creating Custom Events.” For information about modifying the
weblogiccommerce.properties file, and creating an entry in the
EVENT_TYPE table, see Chapter 4, “Persisting Behavioral Tracking Data.”

Why Register an Event?

When you create a custom event, you must register the event. Registering a custom
event lets the E-Business Control Center know that the custom event exists.
Registering permits campaign developers using the E-Business Control Center to
create scenario actions that refer to the event. Registering also identifies the event’s
properties.

Whenever you change the event code, you must update the event registration.
Conversely, whenever you change the event registration, you must also update the
event code. A possible ramification of event modification is that the scenario actions
that refer to the event’s properties may need to be modified.

Registering a Custom Event

The Event Editor in the E-Business Control Center allows you to easily register a
custom event. For the purpose of registering an event, you can consider an event
property as a name-value pair. During the registration of a custom event, you specify
the event’s name, description, and one or more properties. Each property has a range,
3-2 Guide to Events and Behavior Tracking

Registering a Custom Event
type of permissible value, and default value. The information you need to register for
an event should be available from your Commerce Business Engineer (CBE) or Java
developer.

The properties for a custom event includes the following information:

n Data type: Specifies the data type for your property. The possible values are
Text, Numeric, Floating Point Number, Boolean, and Date/Time.

n Selection mode: Specifies whether an property has a single default value or a
collection of default values.

n Value range: Specifies whether the defaults are restricted to one specific value,
one or more specific values, or any value.

Note: When you set property values, you are not guaranteed that the property will
adhere to these restrictions at run time. Events are not checked by the
SchemaManager for adherence to a property schema. Therefore, you need to
keep the event type definition and the event registration synchronized.

As the previous list suggests, a combination of property values are possible. The
possible combinations of properties are listed here:

n Boolean: The values for this type of property are either True or False. You can
choose the default. The default value is displayed only in the Enter Property
Values Window, not in the Edit Event Property window. When this data type is
selected, the Selection mode and Value range are unavailable.

n Single, Unrestricted: This type of property has only one value, which is also the
default value.

n Single, Restricted: This type of property has multiple values and a single
default value. You can select which value is the default.

n Multiple, Restricted: This type of property has multiple values. You can select
one or more values as defaults values.

n Multiple, Unrestricted: This type of property has multiple values. You cannot
select any defaults; all values are defaults
Guide to Events and Behavior Tracking 3-3

3 Registering Custom Events
Instructions for Registering a Custom Event

To register a custom event, complete the following steps:

1. Start the E-Business Control Center and connect it to a server. The Explorer
window opens as shown in Figure 3-1.

Note: For more information on connecting the E-Business Control Center to a
server, see “Connecting the BEA E-Business Control Center to a Server”
in the Using the E-Business Control Center documentation.
3-4 Guide to Events and Behavior Tracking

Registering a Custom Event
Figure 3-1 E-Business Control Center Window

2. Open the Event Editor as follows:

Note: You cannot edit the standard events.

a. In the Explorer window, select the Event icon. A list of events appears in the
Events field.

b. Click the New Button, and then select Event. The Event Editor window appears
as shown in Figure 3-2.
Guide to Events and Behavior Tracking 3-5

3 Registering Custom Events
Figure 3-2 Event Editor Window

3. In the Edit Event Editor window, complete these steps:

a. In the Name field, enter a unique name for the event no longer than 100
characters (required).

b. In the Description field, enter a description for the event no longer than 254
characters (required).

c. Click the Save button in the E-Business system toolbar.

d. To create properties for the event, click the New button. The Edit Event
Property window opens, as shown in Figure 3-3.
3-6 Guide to Events and Behavior Tracking

Registering a Custom Event
Figure 3-3 Edit Event Property Window

4. In the Edit Event Property window, complete these steps:

a. In the Name field, enter a unique name for the property no longer than 100
characters (required).

b. In the Description field, enter a description of the property no longer than 254
characters (required).

c. In the Data type list, select the data type.

Note: If you select Boolean as the data type, the Selection mode and Value range
are no longer available. The default for Boolean is Single, Restricted.

d. In the Selection mode list, select either Single or Multiple.

e. In the Value range list, select whether the value is Restricted or Unrestricted.

f. Click the Add/Edit Values button.

The type of window that appears depends on the values selected.

Entering Property Values and Setting the Default Value

Depending on the data type, different steps are required for entering values and setting
default values. The following property categories are available:

n Entering Properties with Boolean or a Single Value and Single Default.

n Entering Properties with Multiple Values and Single, Multiple, or All Defaults
Guide to Events and Behavior Tracking 3-7

3 Registering Custom Events
n Entering Properties with Date and Time Values

Entering Properties with Boolean or a Single Value and Single Default

To enter the default value for Boolean property or a property with a single value and a
single default (unrestricted), complete the following steps:

1. In the applicable Enter Property Value window (Figure 3-4), perform one of the
following:

l For a Boolean property, select either True or False.

l For a Single Value, Single Default property, enter a value.

Figure 3-4 Enter Property Values Window—Boolean or Single Value, Single
Default

2. Click the OK button.

3. In the Edit Event Property window, click the OK button.

Entering Properties with Multiple Values and Single, Multiple, or All Defaults

To enter multiple property values and set one or more defaults (unrestricted), complete
the following steps:

1. In the applicable Enter Property Values window (Figure 3-5, Figure 3-6 or
Figure 3-7), enter a value, and then click the Add button.
3-8 Guide to Events and Behavior Tracking

Registering a Custom Event
Figure 3-5 Enter Property Values—Multiple Values, Single Default

Figure 3-6 Enter Property Values—Multiple Values, Multiple Restricted
Defaults
Guide to Events and Behavior Tracking 3-9

3 Registering Custom Events
Figure 3-7 Enter Property Values—Multiple Values, Multiple Unrestricted
Defaults

2. Repeat the previous step until you have entered all values.

3. To select one or more default values, complete one of the following:

l If you do not want to select a default, go to next numbered step.

l For multiple values with a single default, select the value (radio button) that
you want to set as the default, and then click the OK button.

Note: To remove the default value for a property with multiple values and a
single default, click the Deselect All button.

l For multiple values with multiple restricted defaults, select the value (check
boxes) that you want to set as defaults, and then click the OK button.

Note: For multiple values without restrictions (that is, the Value range is
Unrestricted), you do not need to select any defaults.

4. In the Edit Event Property window, click the OK button.

Entering Properties with Date and Time Values

Properties with date and time values can use all Selection mode and Value range
settings. For more information about these settings, see “Entering Properties with
Boolean or a Single Value and Single Default” and “Entering Properties with Multiple
Values and Single, Multiple, or All Defaults.”

To enter date and time values and set one or more defaults, complete the following
steps:
3-10 Guide to Events and Behavior Tracking

Registering a Custom Event
1. In the Enter Property Values window shown in Figure 3-8, click the drop-down
arrow in the Date list. A calendar appears.

Figure 3-8 Enter Date/Time Values

2. Select a date from the calendar.

3. In the Time field, enter a time.

4. Click the Add button.

5. To add more dates and times, repeat the first four steps until you have entered all
the values.

6. To select one or more default values, complete one of the following:

l If the event has a single date and time with a single default (restricted), click
the OK button.

l If the event has multiple dates and times with a single default (restricted),
select the value (radio button) that you want to set as the default, and then
click the OK button.

l If the event has multiple dates and times with multiple defaults (unrestricted),
select the values (check boxes) that you want to set as the default, and then
click the OK button.

7. In the Edit Event Property window, click the OK button.
Guide to Events and Behavior Tracking 3-11

3 Registering Custom Events
Updating a Registered Custom Event

Whenever you make changes to a custom event’s code, you should update that event’s
registration. Updating the registration lets the E-Business Control Center know about
the changes in the custom event and aids campaign developers using the E-Business
Control Center to modify any scenario actions that refer to the event.

To update a custom event, complete the following steps.

1. Start the E-Business Control Center and connect it to a Web server. The Explorer
window opens.

Note: For more information on connecting the E-Business Control Center to a
server, see “Connecting the BEA E-Business Control Center to a Server”
in the Using the E-Business Control Center documentation.

2. In the Explorer window, select the Event icon. A list of events appears in the
Events field as shown in Figure 3-9.

Note: You cannot edit standard events.

Figure 3-9 Explorer Window

3. Double-click the custom event that you wish to edit. The Event Editor window
opens as shown in Figure 3-10. The Event properties field displays a list of
existing properties.
3-12 Guide to Events and Behavior Tracking

Updating a Registered Custom Event
Figure 3-10 Event Editor Window

4. In the Event properties field, select the property that you want to edit.

Note: For more information about setting custom event properties, see “Entering
Property Values and Setting the Default Value” on page 3-7.

5. Click the Edit button. The Edit Event Editor window opens as shown in
Figure 3-11.

Figure 3-11 Edit Event Property Window
Guide to Events and Behavior Tracking 3-13

3 Registering Custom Events
6. To change the Data type, Selection mode, or Value range, select a setting from
the appropriate list box.

Note: If you change the property setting Data type, Selection mode, or Value
range, the associated values will be erased.

7. To add or change values, click the Add/Edit values button. The Enter Property
Value window opens as shown in Figure 3-12.

Figure 3-12 Enter Property Value Window

a. To remove a value, select the value, and then click the Remove button.

b. To add a value, enter the value, and then click the Add button.

c. To change a value, select the value, remove it, and then add the new value.

d. If required, select the default value or values.

e. To remove the default value for a property with multiple values and a single
default, click the Deselect All button.

f. Click the OK button. The Enter Property Value window closes.

8. After you have finished updating the properties or values for the event, click the
OK button in the Edit Event Property window.
3-14 Guide to Events and Behavior Tracking

Activating Behavior Tracking
4 Persisting Behavioral
Tracking Data

To record how online customers are interacting with your e-commerce site, you can
record event information to a database. These kinds of events are called Behavior
Tracking events. E-analytics and e-marketing systems can then analyze these events
offline to evaluate customer behavior and transactional data. You can use the
knowledge gained from analysis to create and optimize personalization rules, set up
product offers, and develop interactive marketing campaigns. This section describes
the requirements and database schema needed to log event data for analytical use.

This topic includes the following sections:

n Activating Behavior Tracking

n Data Storage

n Constraints and Indexes

n Scripts

Activating Behavior Tracking

Before Behavior Tracking events can be recorded to a database, you must enable the
Behavior Tracking listener. This is accomplished by adding a class to the
weblogiccommerce.properties file.
Guide to Events and Behavior Tracking 4-1

4 Persisting Behavioral Tracking Data
The weblogiccommerce.properties file contains the eventService.listeners
property, which is a list of listeners that hear events transmitted through the event
service. Each listener contains a list of one or more event types that the listener can
receive from the event service. To enable Behavior Tracking, add the following class
to the list:

com.bea.commerce.platform.tracking.listeners.BehaviorTrackingLi
stener

Note: You must configure your database before activating Behavior Tracking. For
information on how to do this, see “Production Environment Scenario” on
page 4-12.

Event Properties in the weblogiccommerce.properties
File

This section describes Behavior Tracking properties more fully and details the
mechanism that persists Behavior Tracking event data to the database.

As previously mentioned, Behavior Tracking events are persisted to a database and
then analyzed offline. The behaviorTracking.persistToDatabase property lists the
events that are persisted to the database. The types in this list must match the type
specified in the event; for example, the SessionBeginEvent has as its type the string
“SessionBeginEvent”.

Behavior tracking events are stored in a cache. The cache is intermittently swept into
the database. The frequency of the sweeping of events from the cache is controlled by
the following properties:

n behaviorTracking.cache.maxCount

n behaviorTracking.cache.checkIntervalSec

n behaviorTracking.cache.maxAgeSec

The sweeping is done as follows: Using the value of the checkIntervalSec property,
a check is made to see if the size of the cache is greater than the value of the
behaviorTracking.cache.maxCount property. If the size of the cache is greater than
the value of the property, all Behavior Tracking events present in the cache are swept
into the database in a single transaction. If the size criteria is not met after the
checkIntervalSec interval has passed, the check is made again in checkIntervalSec
4-2 Guide to Events and Behavior Tracking

Data Storage
seconds. Once the total amount of time since the last cache sweep is greater than
maxAgeSec value, a cache sweep is performed regardless of the number of events in the
cache.

The behaviorTracking.database.connectionPool property is the pool of database
connections used when Behavior Tracking events in the cache are swept into the
database. You can use a different connection pool. To do this, an additional pool must
be set up in the WebLogic Server console, and its name substituted for the
behaviorTracking.database.connectionPool property. For more information about
creating a connection pool, see the WebLogic Server 6.0 Documentation Center.

Data Storage

This section provides an overview of relational databases and the database schemas
and tables that are required for recording Behavior Tracking events.

Relational Databases

Relational databases have both logical and physical structures. Logically you may
define one or more databases. Each database may contain one or more tables and
indexes, and each table may have multiple columns and rows. The logical structure of
databases is quite similar between vendors. However, the physical structure of a
database is very vendor-specific. Essentially, the physical structure defines areas on
disk drives where the data is stored. Each database environment uses its own
terminology and implementation for storing data at the operating system level. For
example, Oracle uses the term tablespace and the Microsoft SQL Server uses the term
filegroup.

When a database structure is defined by a database administrator, attention must be
paid to the location of specific tables. Some tables are static in that they do not change
much; some tables are dynamic in that many rows are being added and deleted; and
some tables are read frequently and some rarely. Depending on their behavior, tables
should be placed on different physical locations. Some of the most highly-used tables
in Campaign Manager for WebLogic, WebLogic Commerce Server, and WebLogic
Personalization Server are used for Behavior Tracking. The activity of a single
customer moving around your site may generate multiple table entries. Therefore, it is
Guide to Events and Behavior Tracking 4-3

4 Persisting Behavioral Tracking Data
recommended that you place these tables on the fastest drives in the computer.
Experienced database administrators are aware of many techniques for monitoring and
configuring a database installation for optimal performance. If you do not have a
database administrator working with your installation and you have a lot of activity on
your site, you should bring in a well-qualified database administer for regular
maintenance of your system.

Database Directory Paths

The default database directory paths are:

n %WL_COMMERCE_HOME%\db\<db vendor>\<db version>\... (Windows)

n $WL_COMMERCE_HOME/db/<db vendor>/<db version>/... (UNIX)

where WL_COMMERCE_HOME is the directory in which you installed Campaign Manager
for WebLogic, WebLogic Commerce Server, and/or WebLogic Personalization
Server.

For example, if you are using Oracle 8.16 on UNIX, the location would be
$WL_COMMERCE_HOME/db/oracle/8.16/....

BEA provides scripts to help set up the database schema needed for recording
Behavior Tracking events, as well as the schema needed for recording data associated
with Campaign Manager for WebLogic, WebLogic Commerce Server, and WebLogic
Personalization Server. This data includes information from orders, catalogs, products,
portals, and portlets.

For Oracle databases, the tablespaces created for Campaign Manager for WebLogic,
WebLogic Commerce Server, and WebLogic Personalization Server data are the
WLCS_DATA and WLCS_INDEX.

Note: WLCS_DATA and WLCS_INDEX are tablespace names created by BEA scripts. If
you use a particular naming convention, you can rename them.

Behavior tracking uses a tablespace called WLCS_EVENT_DATA. This tablespace stores
all Behavior Tracking tables, indexes, and constraints. Because of the potential for
high volumes of data, this tablespace should be monitored closely.
4-4 Guide to Events and Behavior Tracking

Data Storage
Behavior Tracking Database Schema

Three tables are provided for the Behavior Tracking data. The EVENT table stores all
event data. The EVENT_ACTION table logs actions used by third-party vendors against
the recorded event data, and the EVENT_TYPE table references event types and
categories in the EVENT table. Figure 4-1 shows a logical entity-relation diagram for
the Behavior Tracking Database.

Figure 4-1 Entity-Relation Diagram for the Behavior Tracking Database
Guide to Events and Behavior Tracking 4-5

4 Persisting Behavioral Tracking Data
The EVENT Database Table

Table 4-1 describes the metadata for the EVENT table. This table stores all Behavior
Tracking event data. It is an extremely active table.

As shown in Table 4-1, the EVENT table has six columns; each column corresponds to
a specific event element. Five of the EVENT table’s columns contain data common to
every event type. The XML_DEFINITION column contains all information from these
five columns plus event data that is unique to each event type. An XML document is
created specifically for each event type. The data elements corresponding to each event
type are captured in the XML_DEFINITION column of the EVENT table. These elements
are listed in Table 4-2.

Table 4-1 The EVENT Table Metadata

Column Name Data Type Description and Recommendations

EVENT_ID NUMBER A unique, system-generated number used as the
record ID. This field is the table’s primary key.

EVENT_TYPE VARCHAR(30) A string identifier that shows which event was
fired.

EVENT_DATE DATE The date and time of the event.

WLS_SESSION_ID NUMBER A unique, WebLogic Server-generated number
assigned to the session.

XML_DEFINITION CLOB An XML document that contains pertinent
event information. It is stored as a CLOB
(Character Large Object).

USER_ID VARCHAR(50) The user ID associated with the session and
event. If the user has not logged in this column
will be null.
4-6 Guide to Events and Behavior Tracking

Data Storage
Table 4-2 XML_DEFINITION Data Elements

Event Data Element

AddToCartEvent event_date
event_type
session_id
user_id
sku
quantity
unit_list_price
currency

 BuyEvent event_date
event_type
session_id
user_id
sku
quantity
unit_price
currency
application_name

CampaignUserActivityEvent event_date
event_type
session_id
user_id
campaign_id

ClickCampaignEvent event_date
event_type
session_id
user_id
document_type
document_id
campaign_id
scenario_id
application_name

ClickContentEvent event_date
event_type
session_id
user_id
document_type
Guide to Events and Behavior Tracking 4-7

4 Persisting Behavioral Tracking Data
ClickProductEvent event_date
event_type
session_id
user_id
document_type
document_id
sku
category_id
application_name

DisplayCampaignEvent event_date
event_type
session_id
user_id
document_type
document_id
campaign_id
scenario_id
application_name

DisplayContentEvent event_date
event_type
session_id
user_id
document_type
document_id

DisplayProductEvent event_date
event_type
session_id
user_id
document_type
document_id
sku
category_id
application_name

Table 4-2 XML_DEFINITION Data Elements (Continued)

Event Data Element
4-8 Guide to Events and Behavior Tracking

Data Storage
PurchaseCartEvent session_id
user_id
event_date
event_type
total_price
order_id
currency
application_name

RemoveFromCartEvent event_date
event_type
session_id
user_id
sku
quantity
unit_price
currency
application_name

RuleEvent event_date
event_type
session_id
user_id
ruleset_name
rule_name

SessionBeginEvent event_date
event_type
session_id
user_id

SessionEndEvent event_date
event_type
session_id
user_id

SessionLoginEvent event_date
event_type
session_id
user_id

Table 4-2 XML_DEFINITION Data Elements (Continued)

Event Data Element
Guide to Events and Behavior Tracking 4-9

4 Persisting Behavioral Tracking Data
The EVENT_ACTION Database Table

Table 4-3 describes the metadata for the EVENT_ACTION table. This table logs actions
used by third-party vendors against the recorded event data. It is a fairly static. It has
two primary keys.

The EVENT_TYPE Database Table

Table 4-4 describes the metadata for the EVENT_Type table. This table references
event types and categories in the EVENT table. This table is static.

UserRegistrationEvent event_date
event_type
session_id
user_id

Table 4-2 XML_DEFINITION Data Elements (Continued)

Event Data Element

Table 4-3 EVENT_ACTION Table Metadata

Column Name Data Type Description and Recommendations

EVENT_ACTION VARCHAR(30) The event action taken such as BEGIN EXPORT
or END EXPORT. This field is one of the table’s
primary keys.

EVENT_DATE DATE The date and time of the event. This field is one
of the table’s primary keys.

EVENT_ID NUMBER The ID of the event that corresponds with the
event action taken.
4-10 Guide to Events and Behavior Tracking

Scripts
Note: To record custom events, you must create an entry in this table. If a custom
event does not have a record in this table, you cannot persist it to the EVENT
table.

Constraints and Indexes

There is a single foreign key constraint between the EVENT_TYPE columns in the
EVENT and EVENT_TYPE tables. As previously mentioned, if a custom event does not
have a record in the EVENT_TYPE table, it cannot be persisted to the EVENT table.

Other than Primary Keys on each of the tables, there are only two indexes on the EVENT
table. One index is on the EVENT.EVENT_DATE column and the other index is
comprised of the EVENT.EVENT_TYPE and EVENT.EVENT_DATE columns.

Scripts

BEA provides scripts to create the Behavior Tracking database schema and tables for
Oracle databases. This section provides information about the structures used in both
a development and a production environment.

Table 4-4 EVENT_TYPE Table Metadata

Column Name Data Type Description and Recommendations

EVENT_TYPE VARCHAR(30) A unique, system-generated number used as the
record ID. This field is the table’s primary key.

EVENT_GROUP VARCHAR(10) The event category group associated with the
event type.

DESCRIPTION VARCHAR(50) A description of the EVENT_TYPE.
Guide to Events and Behavior Tracking 4-11

4 Persisting Behavioral Tracking Data
Development Environment Scenario

In a development environment, you may not want or need separate databases or
tablespaces for recording Behavior Tracking events from the databases or tablespaces
used for Campaign Manager for WebLogic, WebLogic Commerce Server, and
WebLogic Personalization Server. Accordingly, you can include the Behavior
Tracking database objects along side the database objects of these products. The
easiest way to accomplish this is to execute the create_all script found in the event
directory of your database installation.

Log into Oracle using SQL*Plus and execute the create_all.sql script in this
location:

%WL_COMMERCE_HOME%/db/oracle/8.1.6/event/create_all.sql

where WL_COMMERCE_HOME is the directory in which you installed Campaign Manager
for WebLogic, WebLogic Commerce Server, and/or WebLogic Personalization
Server.

The create_all scripts in the event subdirectory executes the following scripts:

n drop_event.sql: Drops all the Behavior Tracking database objects.

n create_event.sql: Creates all the Behavior Tracking database objects.

n insert_event_type.sql: Populates the EVENT_TYPE table with base data.

Production Environment Scenario

This scenario is intended for use in an Oracle production environment where multiple
tablespaces and their corresponding elements, such as tables and indexes, can reside in
separate tablespaces and potentially on a different database server than Campaign
Manager for WebLogic, WebLogic Commerce Server, or WebLogic Personalization
Server database objects.

Before enabling the Behavior Tracking events, complete the following steps:

1. Identify the server and database used for recording Behavior Tracking events.
4-12 Guide to Events and Behavior Tracking

Scripts
2. In the WL_COMMERCE_HOME/db/oracle/8.1.6/event directory where
WL_COMMERCE_HOME is the directory in which you installed the Campaign
Manager for WebLogic, WebLogic Commerce Server, and/or WebLogic
Personalization Server:

a. Edit the create_event_tablespaces.sql script to properly define the
tablespace path and data filenames.

b. Execute the create_event_tablespaces.sql to create the tablespaces.

c. Edit the create_event_users.sql to ensure the correct user account will be
created when this script is executed (the account name by default is
WLCS_EVENT).

d. Execute the create_event_users.sql.

3. Using SQL*Plus, connect as the user defined in create_event_users.sql and
execute the script create_all.sql. This script will call drop_event.sql,
create_event.sql, and insert_event_type.sql.

4. Change your JDBC connection pool information to point to this host, database
instance, and user account. For more information, see “Event Properties in the
weblogiccommerce.properties File” on page 4-2.

Description of Each Script

The Oracle scripts are described in the following list:

n WL_COMMERCE_HOME/db/oracle/8.1.6/event/create_all.sql

Executes the following scripts: drop_event.sql, create_event.sql, and
insert_event_type.sql.

n WL_COMMERCE_HOME/db/oracle/8.1.6/event/create_event.sql

Creates the tables, indexes, and constraints associated with Behavior Tracking
events.

n WL_COMMERCE_HOME/db/oracle/8.1.6/event/create_event_tablespaces
.sql

Creates tablespaces for storage of Behavior Tracking events information.

n WL_COMMERCE_HOME/db/oracle/8.1.6/event/create_event_users.sql
Guide to Events and Behavior Tracking 4-13

4 Persisting Behavioral Tracking Data
Creates the WLCS_EVENT database user and grants the appropriate privileges for
working with the Behavior Tracking event tables.

n WL_COMMERCE_HOME/db/oracle/8.1.6/event/drop_event.sql

Drops the Behavior Tracking event tables.

n WL_COMMERCE_HOME/db/oracle/8.1.6/event/insert_event_type.sql

Populates the EVENT_TYPE table with base data.
4-14 Guide to Events and Behavior Tracking

CHAPTER
5 JSP Tag Library
Reference for Events
and Behavior Tracking

This tag library contains several tag extensions used in the BEA WebLogic
Personalization Server. Tags in this library are specifically used in the Events and
Behavior Tracking component of the server.

The Events and Behavior Tracking tags allow you specify user behavior that you are
interested in monitoring as users navigate across your site pages. These tags cause
events to be generated which may be subsequently analyzed by third-party analytical
tools, or which may be processed immediately in support of a campaign scenario.

The Events and Behavior Tracking tags are divided into three general areas: content
tracking, product tracking, and campaign tracking. Content and product tracking tags
can be used in any personalization or commerce application. The campaign tag
generates events that feed into active campaign scenarios.

Note: To use the campaign features, you must have the BEA Campaign Manager for
WebLogic installed on your system.
Guide to Events and Behavior Tracking 5-15

5 JSP Tag Library Reference for Events and Behavior Tracking
This topic includes the following sections:

n Content
<tr:clickContentEvent>
<tr:displayContentEvent>

n Product
<trp:clickProductEvent>
<trp:displayProductEvent>

n Campaign
<trc:clickCampaignEvent>

Use the following code to import the content events tag library:
<%@ taglib uri="tracking.tld" prefix="tr" %>

Use the following code to import the product events tag library:
<%@ taglib uri="productTracking.tld" prefix="trp" %>

Use the following code to import the campaign events tag library:
<%@ taglib uri="campaignTracking.tld" prefix="trc" %>

Note: The <tr:> prefix means “track.”
The <trp:> prefix means “track-product.”
The <trc:> prefix means “track-campaign.”
5-16 Guide to Events and Behavior Tracking

<tr:clickContentEvent>

The <tr:clickContentEvent> tag (Table 5-1) is used to generate a behavior event
when a user has clicked (through) on an ad impression. This tag will return a URL
query string containing event parameters. It is then used when forming the complete

URL that hyperlinks the content.

Use the following code to import the content events tag library:
<%@ taglib uri="tracking.tld" prefix="tr" %>

Example

The example below demonstrates a clickthrough example going to the flow manager
servlet. This link will cause a clickthrough content event to be generated and also
display the indicated content. If you wish to redirect the client to an external site after
recording the clickthrough event, specify a redirectURL attribute and target the
clickThroughServlet instead of the flow manager servlet.

Table 5-1 <tr:clickContentEvent>

Tag Attribute Req’d Type Description R/C

documentId No String ID of the item that is displayed, if applicable
(that is, an image URL or banner ad ID).

R

documentType No String Type or category of the item that is displayed (if
applicable).

R

id No String Page variable which will hold the output of this
tag.

C

redirectURL Yes String Where the server should redirect the client to
after the document is clicked on and after the
server processes the clickthrough event.

R

userId No String Name of the user that content was retrieved for.
If the optional value is not provided, it will be
set to the value of the
request.getRemoteUser().

R

Guide to Events and Behavior Tracking 5-17

5 JSP Tag Library Reference for Events and Behavior Tracking
<%@ taglib uri="tracking.tld" prefix="tr" %>
.
.
.
<%-- Note: example code is from the news_index.jsp servlet --%>

<es:forEachInArray id="nextRow" array="<%=headlines%>"

 type="com.beasys.commerce.axiom.content.Content">

 <es:notNull item="<%=nextRow%>">

 <tr:clickContentEvent

 id="url"

 documentId="<%=nextRow.getIdentifier()%>"

 documentType="<%=headingProp%>"

 userId="<%=request.getRemoteUser()%>"

 redirectURL="http://netscape.com" />

 <a href="<%=response.encodeURL(createURL(request,

getHomePage(request), (url + "&contentselected=" +

java.net.URLEncoder.encode

(nextRow.getIdentifier()))))%>">

<cm:printProperty id="nextRow" name="title" encode="html" />

 <%--

clickthrough example going to clickthrough servlet. This link will

cause a clickthrough content event to be generated and then redi-

rect the client.

 --%>

 <a href="<%=response.encodeURL(request.getContextPath()

 + getClickThruPage() + "?" + url)%>">

 <cm:printProperty id="nextRow" name="title" encode="html" />

</es:notNull>

</es:forEachInArray>
5-18 Guide to Events and Behavior Tracking

<tr:displayContentEvent>

The <tr:displayContentEvent> tag (Table 5-2) is used to generate a behavior
event when a user has received (viewed) an ad impression, (typically a gif image).

Use the following code to import the content events tag library:
<%@ taglib uri="tracking.tld" prefix="tr" %>

Example

The example below shows a code snippet of processing that would follow a
<cm:select> call. For each document returned but not displayed in this example, the
<tr:displayContentEvent> tag generates an event and passes the document’s ID
and type.

<%@ taglib uri="tracking.tld" prefix="tr" %>

.

.

.

<es:forEachInArray id="nextRow" array="<%=headlines%>"

 type="com.beasys.commerce.axiom.content.Content">

 <es:notNull item="<%=nextRow%>">

 <tr:displayContentEvent

 documentId="<%=nextRow.getIdentifier()%>"

 documentType="<%=headingProp%>"/>

 </es:notNull>

</es:forEachInArray>

Table 5-2 <tr:displayContentEvent>

Tag Attribute Req’d Type Description R/C

documentId No String ID of the item that is displayed, if applicable
(that is, an image URL or banner ad ID).

R

documentType No String Type or category of the item that is displayed (if
applicable).

R

Guide to Events and Behavior Tracking 5-19

5 JSP Tag Library Reference for Events and Behavior Tracking
<trp:clickProductEvent>

The <trp:clickProductEvent> tag (Table 5-3) is used to generate a behavior event
when a user has clicked (through) on a product impression. This tag will return a URL
query string containing event parameters. It is then used when forming the complete
URL that hyperlinks the content.

At least one of sku, categoryId, or documentId is required.

Use the following code to import the product events tag library:
<%@ taglib uri="productTracking.tld" prefix="trp" %>

Table 5-3 <trp:clickProductEvent>

Tag Attribute Req’d Type Description R/C

applicationName No String The webApp or application name, if applicable.
Can be used to separate data when multiple
storefronts are hosted on the same server (or
persisted to the same database).

R

categoryId No String or
Category
object

Category of the product associated with the
content displayed, if applicable.

R

documentId Yes String Name of the item that is displayed, if applicable
(that is, an image URL or banner ad ID).

R

documentType No String Type or category of the item that is displayed (if
applicable).

R

redirectURL No String Where the server should redirect the client to
after the document is clicked on and after the
server processes the clickthrough event.

R

sku No String or
ProductItem
object

ID of the product associated with the content
item that is displayed, if applicable.

R

userId No String Name of the user that content was retrieved for.
If the optional value is not provided, it will be
set to the value of the
request.getRemoteUser().

R

5-20 Guide to Events and Behavior Tracking

Example

The example below demonstrates a clickthrough example going to the flow manager
servlet. This link will cause a clickthrough product event to be generated and also
display the indicated content. If you wish to redirect the client to an external site after
recording the clickthrough event, specify a redirectURL attribute and target the
clickThroughServlet instead of the flow manager servlet.

<%@ taglib uri="productTracking.tld" prefix="trp" %>

.

.

.

<%

detailsUrl = WebflowJSPHelper.createWebflowURL(pageContext,

"itemsummary.jsp", "link(" + detailsLink + ")",

"&" + HttpRequestConstants.CATALOG_ITEM_SKU + "=" +

productItem.getKey().getIdentifier() + "&" +

HttpRequestConstants.CATALOG_CATEGORY_ID + "=" +

category.getKey().getIdentifier() + "&" +

HttpRequestConstants.DOCUMENT_TYPE + "=" + detailsLink, true);

%>

<trp:clickProductEvent

 id="url"

 documentId="<%= productItem.getName() %>"

 sku="<%= productItem.getKey().getIdentifier() %>" />

<%

detailsUrl = detailsUrl + "&" + url;

%>

<a href="<%= detailsUrl %>">
Guide to Events and Behavior Tracking 5-21

5 JSP Tag Library Reference for Events and Behavior Tracking
<trp:displayProductEvent>

The <trp:displayProductEvent> tag (Table 5-4) is used to generate a behavior
event when a user has received (viewed) a product impression, (typically a gif image).

At least one of sku, categoryId, or documentId is required.

Use the following code to import the product events tag library:
<%@ taglib uri="productTracking.tld" prefix="trp" %>

Table 5-4 <trp:displayProductEvent>

Tag Attribute Req’d Type Description R/C

applicationName No String The webApp or application name, if applicable.
Can be used to separate data when multiple
storefronts are hosted on the same server (or
persisted to the same database).

R

categoryId No String or
Category
object

Category of the product associated with the
content displayed, if applicable.

R

documentId No String Name of the item that is displayed, if applicable
(that is, an image URL or banner ad ID).

R

documentType No String Type or category of the item that is displayed (if
applicable).

Suggestions:
DisplayProductEvent.CATEGORY_BRO
WSE

DisplayProductEvent.ITEM_BROWSE

DisplayProductEvent.CATEGORY_VIE
W

DisplayProductEvent.BANNER_AD_PR
OMOTION

R

sku No String or
ProductItem
object

ID of the product associated with the content
item that is displayed, if applicable.

R

5-22 Guide to Events and Behavior Tracking

Example

The example below shows a code snippet of processing that would follow the retrieval
of a catalog item. The <tr:displayProductEvent> tag generates an event and
passes the document’s ID, type and SKU number of the product item.

<%@ taglib uri="productTracking.tld" prefix="trp" %>

.

.

.

<trp:displayProductEvent

 documentId="<%= item.getName() %>"

 documentType="<%= DisplayProductEvent.ITEM_BROWSE %>"

 sku="<%= item.getKey().getIdentifier() %>" />
Guide to Events and Behavior Tracking 5-23

5 JSP Tag Library Reference for Events and Behavior Tracking
<trc:clickCampaignEvent>

The <trc:clickCampaignEvent> tag (Table 5-5) is used to explicitly generate a
clickthrough event relevant to a campaign. A clickthrough is when a user clicks on an
advertisement’s content. This tag will return a URL query string containing event
parameters. It is then used when forming the complete URL that hyperlinks the con-

tent.

Note: The <ph:placeholder> tag is the principal means used to generate campaign
click and display events on ads, which it does implicitly.

Use the following code to import the campaign events tag library:
<%@ taglib uri="campaignTracking.tld" prefix="trc" %>

Table 5-5 <trc:clickCampaignEvent>

Tag Attribute Req’d Type Description R/C

campaignId No String ID of the associated campaign. R

applicationName No String The webApp or application name, if applicable.

Can be used to separate data when multiple
storefronts are hosted on the same server (or
persisted to the same database).

R

documentId Yes String Name of the item that is displayed, if applicable
(that is, an image URL or banner ad ID).

R

documentType No String Type or category of the item that is displayed, if
applicable.

R

id No String Page variable which will hold the output of this
tag.

C

placeholderId No String Name of the placeholder. R

redirectURL Yes String Where the server should redirect the client to
after the document is clicked on and after the
server processes the clickthrough event.

R

scenarioId No String ID of the scenario assoicated with a campaign. R
5-24 Guide to Events and Behavior Tracking

Example

The example below shows a code snippet of processing that generates the query string
to be included in a campaign item hyperlink. Processing of the redirectURL attribute
is analagous to the use of the <tr:clickContentEvent> tag.

<%@ taglib uri="campaignTracking.tld" prefix="trc" %>

.

.

.

<trc:clickCampaignEvent

 id="url"

 campaignId="<%=campaignId%>"

 placeholderId="<%=placeholderId%>"

 applicationName="myAppName"

 userId="<%=request.getRemoteUser()%>"/>

userId No String Name of the user that content was retrieved for.
If the optional value is not provided, it will be
set to the value of the
request.getRemoteUser().

R

Table 5-5 <trc:clickCampaignEvent> (Continued)

Tag Attribute Req’d Type Description R/C
Guide to Events and Behavior Tracking 5-25

5 JSP Tag Library Reference for Events and Behavior Tracking
5-26 Guide to Events and Behavior Tracking

Index

A
activating behavior tracking 4-1

B
base class constructor 2-12
behavior tracking

cache 4-2
creating custom 2-8
database schema 4-5
defined 1-2
uses 1-3

C
CLOB 4-6
creating a custom event type 2-2
creating custom events 2-1
custom behavior tracking event listeners 2-19
custom event

attributes 2-3
example code 2-2

customer support contact information ix

D
data storage 4-3
database administrator 4-3
Database Directory Paths 4-4
debugging the event service 2-22
dispatching an event 2-20
documentation, where to find it viii

E
e-analytics and e-marketing systems 1-1
entity-relation diagraom 4-5
EVENT database table 4-6
event listener

coding 2-6
defining 2-5
installing 2-7

event mechanism 1-16
event types

AddToCartEvent 1-9
BuyEvent 1-11
CampaignUserActivityEvent 1-12
ClickCampaignEvent 1-14
ClickContentEvent 1-6, 1-7
ClickProductEvent 1-6
DisplayCampaignEvent 1-13
DisplayContentEvent 1-8
DisplayProductEvent 1-7
RemoveFromCartEvent 1-9
RuleEvent 1-12
SessionBeginEvent 1-4
SessionEndEvent 1-4
SessionLoginEvent 1-5
UserRegistrationEvent 1-5

event(s)
Buy 1-11
Campaign 1-12
Cart 1-8
categories 1-3
Content 1-7
Guide to Events and Behavior Tracking I-1

creating custom 2-1, 3-1
custom 2-1
defined 1-2
entering default values 3-7
Event Editor 3-5
listener types 1-16
objects 2-2
Product 1-6
property values

date/time 3-10
default 3-8

registration properties 3-3
relationship to scenario actions 3-2
Rules 1-11
sequence 1-18
session 1-4
triggers 1-14
updating registration 3-12

F
facilitating offline processing 2-9

L
listeners

asynchronous 1-16
class 1-18
installing 2-7
synchronous 1-16

N
namespace 2-16

P
persisting behavior tracking data 4-1
printing product documentation viii
promotion of products and services 1-2

R
related information ix
relational databases 4-3

S
support

technical ix

T
TestEvent class 2-4
tracking event constructor 2-12

W
weblogiccommerce.properties file 4-2
writing a custom event listener 2-5
writing custom event classes 2-2
writing custom event triggers 2-20

X
xml creation of behavior tracking events 2-16
XML document 4-6
XML instance document 2-17
XML namespaces 2-9
XML_DEFINITION data elements 4-7
XML-XSD schema 2-9
XSD schemas 2-10
I-2 Guide to Events and Behavior Tracking

	1 Overview of Events and Behavior Tracking
	What Are Events?
	Behavior Tracking
	Event Details
	Session Events
	SessionBeginEvent
	SessionEndEvent
	SessionLoginEvent

	Registration Event
	UserRegistrationEvent

	Product Events
	ClickProductEvent
	DisplayProductEvent

	Content Events
	ClickContentEvent
	DisplayContentEvent

	Cart Events
	AddToCartEvent
	RemoveFromCartEvent
	PurchaseCartEvent

	Buy Event
	BuyEvent

	Rules Event
	RuleEvent

	Campaign Events
	CampaignUserActivityEvent
	DisplayCampaignEvent
	ClickCampaignEvent

	Event Triggers
	Event Mechanism
	Event Sequence

	2 Creating Custom Events
	Overview of Creating a Custom Event
	Writing a Custom Event Class
	Writing a Custom Event Listener
	Installing a Listener Class in the Event Service

	Writing a Behavior Tracking Event Class
	Facilitating OffLine Processing
	TrackingEvent Base Class Constructor
	XML Creation of Behavior Tracking Events
	Custom Behavior Tracking Event Listeners
	Writing Custom Event Triggers

	Debugging the Event Service

	3 Registering Custom Events
	Overview of Creating a Custom Event
	Why Register an Event?
	Registering a Custom Event
	Instructions for Registering a Custom Event
	Entering Property Values and Setting the Default Value
	Entering Properties with Boolean or a Single Value and Single Default
	Entering Properties with Multiple Values and Single, Multiple, or All Defaults
	Entering Properties with Date and Time Values

	Updating a Registered Custom Event

	4 Persisting Behavioral Tracking Data
	Activating Behavior Tracking
	Event Properties in the weblogiccommerce.properties File

	Data Storage
	Relational Databases
	Database Directory Paths
	Behavior Tracking Database Schema
	The EVENT Database Table
	The EVENT_ACTION Database Table
	The EVENT_TYPE Database Table
	Constraints and Indexes

	Scripts
	Development Environment Scenario
	Production Environment Scenario
	Description of Each Script

	5 JSP Tag Library Reference for Events and Behavior Tracking
	<tr:clickContentEvent>
	Example

	<tr:displayContentEvent>
	Example

	<trp:clickProductEvent>
	Example

	<trp:displayProductEvent>
	Example

	<trc:clickCampaignEvent>
	Example

	Index

