
Performance Tuning Guide

B E A W e b L o g i c C o m m e r c e S e r v e r 3 . 5
B E A W e b L o g i c P e r s o n a l i z a t i o n S e r v e r 3 . 5

D o c u m e n t E d i t i o n 3 . 5

BEA WebLogic Commerce Server

A p r i l 2 0 0 1

BEA WebLogic Personalization Server

B E A C a m p a i g n M a n a g e r f o r W e b L o g i c 1 . 1

BEA Campaign Manager for WebLogic

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA Campaign Manager for WebLogic, E-Business
Control Center, BEA WebLogic Process Integrator, BEA WebLogic Collaborate, BEA WebLogic Enterprise, and
BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

Performance Tuning Guide

Document Edition Date Software Version

3.5 April 2001 BEA Campaign Manager for WebLogic 1.1
BEA WebLogic Commerce Server 3.5
BEA WebLogic Personalization Server 3.5

Contents

Precompile JSPs ..2
Specifying a Different Java Compiler ...4
Adjust the Intervals for Checking JSP and Servlet Modifications5

About the Page-Check Intervals Properties ..6
To Adjust the Intervals..7

Adjust Database Connections Available at Startup...7
For More Information ...9

Adjust Caching ..10
Adjust and Use the Session and Global Caches...10

For More Information ...11
Enabling the Caches..11
JSP Tags for Accessing HttpSession and the Session

and Global Caches ...12
An API for Accessing HttpSession and the Session

and Global Caches ...12
Guidelines for Placing Data in HttpSession, Session Cache,

or Global Cache ...13
Adjust Caching for Content Management..14

For More Information ...16
Enable Property Caching..16

Property Caching in a Clustered Environment16
To Enable Property Caching ...17
For More Information ...18

Enable Group Caching ...19
Group Caching in a Clustered Environment ...19
To Set Up the Group-Cache Table..20
To Enable and Configure the Group Cache ..20
Performance Tuning Guide iii

Configure Servers to Use the Master Cache .. 22
To Access Data in the Group Cache Table .. 23

Adjust Caching for the Discount Service .. 23
Adjusting the Campaign-Discount Cache .. 24
Adjusting the Global-Discount Cache.. 25
How the Discount-Service Cache Behaves in a

Clustered Environment ... 26
Use CachedProfileBean to Get and Set User Properties from the API 26

Increase the Size of the Display-Count Buffer ... 28
Adjust Portal and Portlet Settings While Load Testing...................................... 29

For More Information... 30
Display Metadata, Sort and Query Explicit Metadata .. 31

For More Information... 31
Use LDAP for Authentication Only ... 32

For More Information... 32
Use the DocumentManager EJB... 32
Use the HotSpot Virtual Machine .. 32

Deactivating HotSpot for Debugging.. 33
iv Performance Tuning Guide

Performance Tuning Guide
When you first install BEA WebLogic Commerce Server™, BEA WebLogic
Personalization Server™, and BEA Campaign Manager for Weblogic™, it is
configured to support Web-site developers and administrators.

When you are ready to make your Web site available to customers, refer to the
following topics in this document for information about tuning WebLogic Commerce
Server and Personalization Server performance:

� Precompile JSPs

� Specifying a Different Java Compiler

� Adjust the Intervals for Checking JSP and Servlet Modifications

� Adjust Database Connections Available at Startup

� Adjust Caching

� Adjust and Use the Session and Global Caches

� Adjust Caching for Content Management

� Enable Property Caching

� Enable Group Caching

� Adjust Caching for the Discount Service

� Use CachedProfileBean to Get and Set User Properties from the API

� Increase the Size of the Display-Count Buffer

� Adjust Portal and Portlet Settings While Load Testing

� Display Metadata, Sort and Query Explicit Metadata

� Use LDAP for Authentication Only
Performance Tuning Guide 1

� Use the DocumentManager EJB

� Use the HotSpot Virtual Machine

For information on tuning the Behavior Tracking service, refer to "Persisting Tracking
Behavior Data" under "Event Properties in the weblogiccommerce.properties File" in
the Guide to Events and Behavior Tracking.

Precompile JSPs

By default, Campaign Manager for WebLogic, WebLogic Commerce Server, and
WebLogic Personalization Server web applications deactivate the JavaServer Page
(JSP) precompile option. With this option deactivated, the server starts quickly but
must compile each new or modified JSP when you access it, causing a significant delay
the first time you request a new or modified JSP.

When you activate the precompile option, the server startup process checks for new or
modified JSPs in the web application and compiles them. Activating the precompile
option can cause a significant delay in server startup if you have modified or added
JSPs but avoids delays when you access a new or modified JSP for the first time.

To activate the precompile option for a web application that is deployed as an
expanded directory hierarchy, do the following:

1. From the web application’s WEB-INF directory, open the web.xml file in a text
editor and find the following element:

<context-param>
<param-name>weblogic.jsp.precompile</param-name>
<param-value>false</param-value>

</context-param>

2. In the <param-value> element, replace false with true. For example,
<param-value>true</param-value>

3. Save the file and restart the server.

For information on shutting down and starting the server, refer to “Starting and
Shutting Down the Server" in the Deployment Guide.
2 Performance Tuning Guide

PRECOMPILE JSPS
To activate the precompile option for a web application that is deployed as a .war file
do the following:

1. Make a backup copy of the .war file.

2. Create a temporary directory and copy the.war file to the directory.

3. In the temporary directory, unjar the .war file by entering the following
command:

pathname\jar -xf WarFileName

For example:

c:\jdk1.3\bin\jar -xf tools.war

4. Under the temporary directory, open WEB-INF\web.xml in a text editor and find
the following element:

<context-param>
<param-name>weblogic.jsp.precompile</param-name>
<param-value>true</param-value>

</context-param>

5. In the <param-value> element, replace false with true. For example,
<param-value>true</param-value>

6. Save web.xml.

7. Under the temporary directory, if the WEB-INF directory contains a subdirectory
named _tmp_war, delete the _tmp_war directory. This directory contains
compiled JSPs and you must remove them before you re-jar the .war file to
ensure that Campaign Manager for WebLogic, WebLogic Commerce Server, and
WebLogic Personalization Server recompile all JSPs the next time you start the
server.

8. Remove the old .war file from the temporary directory.

9. Create a new .war file for the web application by entering the following
command:

pathname\jar -cf WarFileName *.*

For example:

c:\jdk1.3\bin\jar -cf tools.war *.*
Performance Tuning Guide 3

10. Move the new .war file back to its original directory.

11. Remove any other files in the original directory that may have been left over
from previous .war extractions. For example, there may be a WEB-INF directory
remaining from the last time you ran the web application from the .war file.

12. Restart the server.

For information on shutting down and starting the server, refer to “Starting and
Shutting Down the Server" in the Deployment Guide.

The server console logs a message for each file it compiles. Ignore any [JSP Enum]

no match messages. These are displayed for files that do not match the .jsp file
extension.

Specifying a Different Java Compiler

The WebLogic Server Administration Console specifies a Java compiler for the
components in a WebLogic Server domain. You can override this property for a web
application by activating the following element in the web application’s
weblogic.xml file:

<--
<jsp-param>

<param-name>compileCommand</param-name>
<param-value>java-compiler</param-value>

</jsp-param>
-->

To activate the element, remove the <-- and --> comment tags.

Then change the <param-value> to specify the pathname of the Java compiler that
you want to use for the web application.

The weblogic.xml file is located in a web application’s WEB-INF directory. To
deploy any modifications to this file, you must restart the server.
4 Performance Tuning Guide

ADJUST THE INTERVALS FOR CHECKING JSP AND SERVLET MODIFICATIONS
Adjust the Intervals for Checking JSP and
Servlet Modifications

By default, each time a Web browser requests a JSP, Campaign Manager for
WebLogic, WebLogic Commerce Server, and WebLogic Personalization Server
checks for any modifications to the JSP source file. Likewise, each time the server
sends a request to a servlet, it checks for any modifications to the servlet class files.

For your production Web site, you can decrease the amount of time in which Campaign
Manager for WebLogic, WebLogic Commerce Server, and WebLogic Personalization
Server serves JSPs and processes requests to servlets by increasing the intervals at
which the server checks for modifications.

Although the server performs faster with higher values for the modification-check
intervals, the higher values reduce sensitivity to changes in your source files. For
example, you can set the server to check for JSP modifications every 10 minutes. After
you change a JSP, it will take up to 10 minutes for the server to see the modifications.

This section includes the following topics:

� About the Page-Check Intervals Properties

� To Adjust the Intervals
Performance Tuning Guide 5

About the Page-Check Intervals Properties

The pageCheckSeconds property determines the interval at which WebLogic Server
checks to see if JSP files in a web application have changed and need recompiling.
Each web application defines this property separately in its WEB-INF\weblogic.xml
file. For example, the e-commerce sample web application defines this property in the
following file:
WL_COMMERCE_HOME\config\wlcsDomain\applications\wlcsApp\wlcs\WEB-
INF\weblogic.xml

The following excerpt from the e-commerce sample web application shows the
weblogic.jsp.pageCheckSeconds context parameter in boldface text with the
default value:

<jsp-param>
<param-name>weblogic.jsp.pageCheckSeconds</param-name>
<param-value>300</param-value>

</jsp-param>

Note: The page-check interval does not determine the frequency with which
Commerce Server checks for updated content that is stored in the database and
in a content management system. Instead, the ttl (time-to-live) settings for
various caches determine the refresh rate for content. For example, if you set
the page-check intervals to once a second, and you set the ttl for the content
cache to 10 minutes, it can take up to 10 minutes for the server to see the new
content, even though it is checking for new JSP source code every second. For
information on setting ttl properties for caches, refer to “Adjust Caching” on
page 10.
6 Performance Tuning Guide

ADJUST DATABASE CONNECTIONS AVAILABLE AT STARTUP
To Adjust the Intervals

To determine the optimal page-check and reload-servlet intervals for your production
Web site do the following:

1. Establish performance baselines by testing Commerce Server performance with
the interval set to -1 (which specifies that the server never checks for
modifications).

2. Test the performance with the interval set to various numbers of seconds. For
example, set the interval to 600 seconds (10 minutes) and test the performance.
Then set the interval to 900 seconds and test the performance.

3. Choose an interval that provides the best performance while checking for
modifications to JSP files and servlet classes at a satisfactory rate.

Adjust Database Connections Available at
Startup

To optimize the database pool performance for your production Web site, do the
following:

1. Start the WebLogic Server Administration Console for your domain.

For information on starting the Administration Console, refer to "Viewing and
Modifying Properties in the WebLogic Server Administration Console" under
"The Server Configuration" in the Deployment Guide.

2. On the home page, under JDBC, click Connection Pools.

3. On the JDBC Connection Pools page, in the Name column, click commercePool.
Performance Tuning Guide 7

4. Do the following:

a. Increase the value in Initial Capacity to match the value in Maximum Capacity

b. Change Login Delay Seconds to 0

c. Clear the Allow Shrinking check box

d. Click Apply (see Figure 1)

5. Click the Testing tab and clear the Test Reserve Connections check box.

6. Click Apply.

7. Restart the server.
8 Performance Tuning Guide

ADJUST DATABASE CONNECTIONS AVAILABLE AT STARTUP
Figure 1 Change Values on the commercePool Tab

For More Information

For more information on database connection pools, refer to the Administration
Console online help and to “Setting Up Connection Pools” under “Creating and
Managing Content” in the Guide to Building Personalized Applications.
Performance Tuning Guide 9

Adjust Caching

To adjust caching for production Web site, complete the following tasks:

� Adjust and Use the Session and Global Caches

� Adjust Caching for Content Management

� Enable Property Caching

� Enable Group Caching

� Use CachedProfileBean to Get and Set User Properties from the API

Adjust and Use the Session and Global Caches

In a clustered environment, you can improve scalability and performance by
minimizing the use of HttpSession objects. (HttpSession is part of the JDK
session-tracking mechanism, which servlets use to maintain state about a series of
requests from the same user.)

To minimize using HttpSession, each server in the WebLogic Commerce Server and
Personalization Server cluster provides the following caches:

� session cache, which stores data in memory about each session. The function
of the session cache is the same as HttpSession, however, unlike
HttpSession, it is not replicated across the cluster.

� global cache, which stores data in memory that multiple sessions can use. For
example, sessions for anonymous users can access data from the global cache.
Like the session cache, it is not replicated across the cluster.

This section discusses the following topics:

� Enabling the Caches

� JSP Tags for Accessing HttpSession and the Session and Global Caches

� An API for Accessing HttpSession and the Session and Global Caches

� Guidelines for Placing Data in HttpSession, Session Cache, or Global Cache
10 Performance Tuning Guide

ADJUST CACHING
For More Information

For more information about how WebLogic Commerce Server and Personalization
Server process HTTP requests, refer to “Foundation Classes and Utilities” in the Guide
to Building Personalized Applications. For more information about HttpSession, see
http://java.sun.com/products/servlet/2.2/javadoc/javax/servlet/http/HttpSession.html.

Enabling the Caches

To enable the session and global caches, add the following properties to
$WL_COMMERCE_HOME/weblogiccommerce.properties:

_sessionCache.ttl=900000
_sessionCache.capacity=10000
_sessionCache.enabled=true

_globalCache.ttl=600000
_globalCache.capacity=1000
_globalCache.enabled=true

The ttl (time-to-live) property determines the number of milliseconds that the server
maintains the cache. The capacity property determines the maximum number of
objects in the cache. (Both session and global are in-memory caches.) The enabled
property determines whether the cache is activated. A false value deactivates the
cache and obviates the ttl and capacity properties; true activates it.

You can increase or decrease values for ttl and capacity based on the amount of
available memory and the level of performance you desire.

Note: Each server in a cluster maintains its own set of caches, each of which must be
configured separately by modifying the server’s
weblogiccommerce.properties file. Because the session and global caches
are not replicated across servers in the cluster, if a server fails, the data in its
caches is inaccessible. For guidelines about which types of data to place in the
session and global caches, see “Guidelines for Placing Data in HttpSession,
Session Cache, or Global Cache” on page 13.
Performance Tuning Guide 11

JSP Tags for Accessing HttpSession and the Session and Global Caches

Use the following JSP tags from the FlowManager tag library to place, retrieve, and
remove data from HttpSession as well as the session and global caches:

� <fm:getCachedAttribute>

� <fm:setCachedAttribute>

� <fm:removeCachedAttribute>

� <fm:getSessionAttribute>

� <fm:setSessionAttribute>

� <fm:removeSessionAttribute>

For information about these tags, refer to “JSP Tag Library Reference” in the Guide to
Building Personalized Applications.

An API for Accessing HttpSession and the Session and Global Caches

Use the following methods of the
com.beasys.commerce.foundation.flow.helper.FlowManagerHelper API to
place, retrieve, and remove data from HttpSession and the session and global caches:

� getCachedValue

� setCachedValue

� removeCachedValue

� getGlobalCachedValue

� setGlobalCachedValue

� removeGlobalCachedValue

� getSessionAttribute

� setSessionAttribute

� removeSessionAttribute
12 Performance Tuning Guide

ADJUST CACHING
For information about these methods, refer to the documentation for
com.beasys.commerce.foundation.flow.helper.FlowManagerHelper in the
WebLogic Personalization Server Javadoc.

Guidelines for Placing Data in HttpSession, Session Cache, or Global Cache

In general, place only the following in HttpSession:

� Items that are required for replication across the cluster.

� Any keys that are required to look up information. When you enable session
replication for WebLogic Server, HttpSession is replicated on all machines in a
cluster. Placing information in HttpSession while session replication is enabled
provides a backup for data lookups. For example, you place query parameters
for a search in HttpSession and the search results in the session cache. While
returning the search results the server fails. Another server can recreate the
search by referring to the parameters that are stored in the HttpSession replica.

Place any information that multiple users require (either within the same application
or across multiple applications) in the global cache.

Place all other session-related information in the session cache.
Performance Tuning Guide 13

Adjust Caching for Content Management

To optimize content-management performance for your production Web site,
configure WebLogic Personalization Server as follows:

� For the cm:select, cm:selectById, pz:contentQuery, and
pz:contentSelector JSP tags, use the useCache attribute whenever possible.
Doing so avoids a call to DocumentManager and, in the case of
pz:ContentSelector, to the Rules Manager.

For information on using the useCache attribute, refer to “JSP Tag Library
Reference” in the Guide to Building Personalized Applications.

To clear cached content when user and/or document attributes change, use the
remove method of com.beasys.commerce.content.ContentCache. For more
information, see the Javadoc for
com.beasys.commerce.content.ContentCache.

For an example of a JSP file that uses the remove method, see
WL_COMMERCE_HOME/server/public_html/examples/content/cache-cont
rol.jsp

� For the cm:select, cm:selectById, pz:contentQuery, and
pz:contentSelector JSP tags, set the cacheScope attribute to application
whenever possible. For example:
<cm:select id="myDocs" query="riskFactor = 'Low'"
useCache="true" cacheId="myDocs"
cacheScope="application"
max="10" cacheTimeout="300000" />

The application cache type is global instead of per-user and should speed up
queries by avoiding a call to the DocumentManager EJB.

Note: For pz:contentSelector, set the cacheScope attribute to application
only when you want to select shared content. For example, in exampleportal,
the Acme Promotion portlet uses an application-scoped cache to select content
for non-authenticated users. Because it uses the application scope, all
non-authenticated users see the same content. For authenticated users, Acme
Promotion provides personalized content by switching to a session scoped
cache.
14 Performance Tuning Guide

ADJUST CACHING
� Whenever you can predict the next document that users will view based on the
document that they are currently viewing, load the next document into the cache
before users request it. This “forward caching” will greatly improve the speed at
which Personalization Server responds to user requests (assuming that your
prediction is correct; forward caching a document that no one requests will only
degrade performance and scalability).

The following JSP fragment is an example of forward caching a document:
<%-- Get the first set of content --%>

<cm:select id="myDocs" query="riskFactor = 'Low'"
useCache="true" cacheId="myDocs"
cacheScope="application"
max="10" cacheTimeout="300000" />

<%-- Generate a query from each content's relatedDocId --%>

<% String query = null; %>
<es:forEachInArray array="<%=myDocs%>" id="myDoc"
type="com.beasys.commerce.axiom.content.Content">

<% String relId = (String)myDoc.getProperty("relatedDocId",
null); %>
<es:notNull item="<%=relId%>">

<%
if (query != null)
query += " || ";
else
query = "";
query += "identifier = '" +
ExpressionHelper.toStringLiteral(relId) + "'";

%>

</es:notNull>
</es:forEachInArray>

<%-- Load the related content into the cache via cm:select
--%>

<es:notNull item="<%=query%>">

<cm:select query="<%=query%>" id="foo" useCache="true"
cacheId="relatedDocs"
cacheScope="session" max="10" cacheTimeout="300000" />

</es:notNull>
Performance Tuning Guide 15

For More Information

For more information about content management, see “Creating and Managing
Content” in the Guide to Building Personalized Applications.

For more information about JSP tags for content management, see “JSP Tag Library
Reference” in the Guide to Building Personalized Applications.

Enable Property Caching

The WebLogic Server Configurable Entity and Entity Property Manager provide
several in-memory caches that you can enable for WebLogic Commerce Server and
Personalization Server. The caches decrease the amount of time needed to access user,
group, and other properties, but introduce the possibility of stale data.

This section discusses the following topics:

� Property Caching in a Clustered Environment

� To Enable Property Caching

Property Caching in a Clustered Environment

With property caching enabled in a clustered environment, each server in a cluster
maintains its own cache; the cache is not replicated on other servers. In this
environment, when properties that are stored in the defaultPropertyCache,
entityPropertyCache, directPropertyManager, or ldapPropertyCache
change on one server, they may not change on another server in a timely fashion.

In most cases, immediate or quick access to properties on another server is not
necessary: user sessions are pinned to a single server, and even with caching enabled,
users immediately see changes they make to their own settings on the server.

However, if a server fails and loses the data in its caches, modifications to properties
may be lost, depending on the longevity of the property cache. In addition, if an
administrator changes a user's properties, the user may not see the changes during the
current session if the user and the administrator are pinned to different servers in the
cluster.
16 Performance Tuning Guide

ADJUST CACHING
You can mitigate these situations by specifying a small ttl (time-to-live) setting when
you enable the caches. The small ttl setting provides performance gains by caching
data, but the short-lived caches increase the rate at which property changes are
replicated across servers.

If you require multiple servers in a cluster to have immediate access to modified
properties, disable property caching by adding the entries described in “To Enable
Property Caching” and specifying false for the
unifiedProfileTypeCache.enabled value.

To Enable Property Caching

To enable property caching, add the following entries to
WL_COMMERCE_HOME\weblogiccommerce.properties, adjusting the values based
on the number of properties in your property sets and the frequency with which you
want the data updated:

Note: These entries enable in-memory caching. Caches that grow exceedingly large
may degrade performance.

� To create a cache of unified profile types that lives for 1 hour and contains 100
entries, add:
unifiedProfileTypeCache.ttl=3600000
unifiedProfileTypeCache.capacity=100
unifiedProfileTypeCache.enabled=true

� To create a cache of default schema properties that lives for 10 minutes and
contains 500 entries, add:
defaultPropertyCache.ttl=600000
defaultPropertyCache.capacity=500
defaultPropertyCache.enabled=true

� To create a cache of entity properties that lives for 10 minutes and contains 500
entries, add:
entityPropertyCache.ttl=600000
entityPropertyCache.capacity=500
entityPropertyCache.enabled=true
Performance Tuning Guide 17

� To create a cache of LDAP entity properties that lives for 10 minutes and
contains 500 entries, add:
ldapEntityPropertyCache.ttl=600000
ldapEntityPropertyCache.capacity=500
ldapEntityPropertyCache.enabled=true

� To create a cache of entity ids that lives for 1 hour and contains 500 entries, add:
entityIdCache.ttl=3600000
entityIdCache.capacity=500
entityIdCache.enabled=true

� To create a cache of explicit properties that lives for 10 minutes and contains
100 entries, add:
directPropertyManager.ttl=600000
directPropertyManager.capacity=100
directPropertyManager.enabled=true

� To create a cache of ConfigurableEntity methods that lives for 1 hour and
contains 100 entries, add:
ConfigurableEntityMethodCache.ttl=3600000
ConfigurableEntityMethodCache.capacity=100
ConfigurableEntityMethodCache.enabled=true

For More Information

For more information about property sets, see “Creating and Managing Property Sets”
in the Guide to Building Personalized Applications.

For more information about JSP tags for managing property sets, see “JSP Tag Library
Reference” in the Guide to Building Personalized Applications.
18 Performance Tuning Guide

ADJUST CACHING
Enable Group Caching

In systems with a deep group hierarchies, you can improve performance using group
caching, which precalculates group membership information and stores the calculation
results in a new database table, WLCS_USER_GROUP_CACHE. Any queries that are
submitted while group caching is recalculating data return the old, previously
committed data.

With group caching, you exchange faster performance for the risk of stale or
inconsistent data. To balance performance with data consistency, you can configure
the interval at which the caching mechanism recalculates and updates the table.

This section contains the following topics:

� Group Caching in a Clustered Environment

� To Set Up the Group-Cache Table

� To Enable and Configure the Group Cache

� To Access Data in the Group Cache Table

Group Caching in a Clustered Environment

To improve performance of group caching in a cluster, you can establish one cache as
the master. The server with the master cache periodically updates its
WLCS_USER_GROUP_CACHE table. All other servers in the cluster read this
master table; they do not update the table or maintain their own copy. For information
on setting up a master cache, refer to “To Enable and Configure the Group Cache” on
page 20.
Performance Tuning Guide 19

To Set Up the Group-Cache Table

To set up the table for group caching, issue the following SQL commands:

CREATE TABLE WLCS_USER_GROUP_CACHE (USER_NAME VARCHAR2(100) NOT NULL,

GROUP_NAME VARCHAR2(100) NOT NULL);

ALTER TABLE WLCS_USER_GROUP_CACHE

ADD CONSTRAINT WLCS_USER_GROUP_CACHE_INDEX PRIMARY KEY (USER_NAME,

GROUP_NAME);

To Enable and Configure the Group Cache

To enable the group cache, do the following:

1. Start the WebLogic Server Administration Console for your domain.

For information on starting the Administration Console, refer to "Viewing and
Modifying Properties in the WebLogic Server Administration Console" under
"The Server Configuration" in the Deployment Guide.

2. In the left pane of the Administration Console, click wlcsDomain →
Deployments → Startup & Shutdown.

When you click Startup & Shutdown, the Administration Console displays
startup and shutdown properties in the right pane. (See Figure 2.)

Figure 2 Startup & Shutdown in the Left Pane
20 Performance Tuning Guide

ADJUST CACHING
3. In the right pane, click Create a New Startup Class.

4. On the wlcsDomain → Startup Classes → create page click the Configuration
tab.

5. On the Configuration tab, enter the following:

� In the Name box, enter GroupCache

In a clustered environment, enter MasterGroupCache or some other similar
name.

� In the ClassName box, enter
 com.beasys.commerce.axiom.contact.security.GroupCache

� In the Arguments box, enter updateDb=true

6. Click Create. (See Figure 3.)

The Administration Console creates the group cache.

Figure 3 Create the Group Cache

7. To deploy the group cache, click the Targets tab.
Performance Tuning Guide 21

8. On the Servers subtab, select wlcsServer from the Available Servers list. Then
move it to the Chosen Servers list.

In a clustered environment, deploy the MasterGroupCache startup class only on
the server that you want to contain the master cache.

9. Click Apply.

10. In a clustered environment, you can configure the remaining servers to use the
master cache that you deployed in step 9. For more information, refer to
“Configure Servers to Use the Master Cache” on page 22.

11. To configure the number of seconds that the server waits before calculating and
updating the table, do the following:

a. From the left pane of the Administration Console, click wlcsDomain →
Security → CachingRealms → wlcsCachingRealm.

b. In the right pane, on the wlcsDomain → Security → Caching Realms →
wlcsCachingRealm page, click the Groups subtab.

c. Modify the value in the Group Cache TTL Positive box.

12. Restart the server.

For information on shutting down and starting the server, refer to “Starting and
Shutting Down the Server" in the Deployment Guide.

Note: You do not need to specify the size of the group cache. The depth of the group
hierarchies determines the size of the group cache table.

Configure Servers to Use the Master Cache

After you create a master group cache as described in “To Enable and Configure the
Group Cache” on page 20, configure other servers to use the master cache by doing the
following:

1. In the left pane of the Administration Console, click Startup & Shutdown.

2. On the wlcsDomain → Startup & Shutdown page, click Create a New Startup
Class.

3. On the wlcsDomain → Startup Classes → Create page click the Configuration
tab.
22 Performance Tuning Guide

ADJUST CACHING
4. On the Configuration tab, enter the following:

� In the Name box, enter GroupCache

� In the ClassName box, enter
 com.beasys.commerce.axiom.contact.security.GroupCache

� In the Arguments box, enter updateDb=false

5. Click Create.

6. Click the Targets tab.

7. On the Servers subtab, from the Available Servers list, select the remaining
servers in the cluster. (That is, select all servers except the server on which you
deployed the MasterGroupCache startup class.) Then move them to the Chosen
Servers list.

8. Click Apply.

To Access Data in the Group Cache Table

To access data in the group cache table, use any of the following:

� The new UserManager method of getCachedGroupNamesForUser

� The static method of the GroupCache object

For more information about these methods, refer to WebLogic Personalization Server
Javadoc.

Adjust Caching for the Discount Service

To reduce the amount of time the Order and Shopping Cart services need to calculate
order and price information that include discounts, the Discount Service caches
information about discounts that are available to customers.

When a customer adds an item to the shopping cart, removes an item from the
shopping cart, checks out, or confirms an order, the Pricing Service is responsible for
determining the price of the items in the cart.
Performance Tuning Guide 23

To calculate the effect of discounts on the shopping cart, the Pricing Service requests
the Discount Service to retrieve information about all global discounts and about any
campaign discounts that apply to the current customer.

Global discounts apply to all customers, regardless of customer properties or customer
segments. Campaign discounts are targeted to specific customers or customer
segments, and are available only if you use BEA Campaign Manager for WebLogic.

The first request for information about discounts requires a separate call to the database
for each discount that applies. For example, if you have defined one global discount
and if a customer is eligible for two campaign-related discounts, the Discount Service
makes three calls to the database.

To decrease the response time for any subsequent requests, the Discount Service places
the information about each discount in one of the following caches:

� A cache for campaign discounts

� A cache for global discounts

You can use the properties in Listing 1 to adjust the default cache settings.

This section contains the following subsections:

� Adjusting the Campaign-Discount Cache

� Adjusting the Global-Discount Cache

� How the Discount-Service Cache Behaves in a Clustered Environment

Adjusting the Campaign-Discount Cache

The discountCache.capacity (illustrated in Listing 1) property determines how
many campaign discounts the Discount Service caches. For maximum performance,
set the capacity to the number of campaign discounts that are currently deployed. A
larger capacity will potentially use more memory than a smaller capacity.
24 Performance Tuning Guide

ADJUST CACHING
The discountCache.ttl (time-to-live property) determines the number of
milliseconds that the Discount Service keeps the information in the cache. After the
cache value times out, the next request for the value requires the Discount Service to
call the database to retrieve the information and then cache the value. A longer TTL
decreases the number of database calls made over time when requesting cached
objects. In a clustered environment, the TTL is the maximum time required to
guarantee that any changes to global discounts are available on all servers.

The discountCache.enabled=true property enables the cache. To disable the
cache, set the value to false.

Adjusting the Global-Discount Cache

If you enable the global-discount cache, the Discount Service caches all global
discounts. The globalDiscountCache.capacity property does not need to be
modified.

The globalDiscountCache.ttl (time-to-live property) determines the number of
milliseconds that the Discount Service keeps information in the global-discount cache.
After the time-to-live (TTL) expires, the next request for global discount information
requires the Discount Service to call the database to retrieve the information and then
cache the value. A longer TTL decreases the number of database calls made over time
when requesting cached objects. In a clustered environment, the TTL is the maximum
time required to guarantee that any changes to campaign discounts are available on all
servers.

Listing 1 Discount Service Cache Settings

Discount Service cache entries
cache of all discounts, 5 minutes, 100 entries

discountCache.ttl=300000
discountCache.capacity=100
discountCache.enabled=true

the global discount cache, 5 minutes, 10 entries

globalDiscountCache.ttl=300000
globalDiscountCache.capacity=10
globalDiscountCache.enabled=true
Performance Tuning Guide 25

How the Discount-Service Cache Behaves in a Clustered Environment

In either environment (clustered or non-clustered), when you change a discount
priority, end date, or its active/inactive state, WebLogic Commerce Server flushes the
discount from the appropriate cache. Changes to a campaign discount flush only the
specific discount from the campaign-discount cache. Changes to a global discount
flush all discounts from the global-discount cache.

For example, you log in to a WebLogic Commerce Server host named bread and
deactivate a campaign discount named CampaignDiscount1. WebLogic Commerce
Server flushes the CampaignDiscount1 from the campaign-discount cache on bread.

In a clustered environment, other machines in the cluster continue to use their cached
copy of the discount until the TTL for that discount expires.

Use CachedProfileBean to Get and Set User Properties
from the API

To get and set user properties in a servlet via the API, use CachedProfileBean instead
of entity beans like User, Group, and UnifiedUser.

For getting user properties, the first invocation of
com.beasys.commerce.user.jsp.beans.CachedProfileBean.getProperty(

) is significantly faster than invoking
com.beasys.commerce.axiom.contact.User.getProperty(). Subsequent
invocations of CachedProfileBean.getProperty() are orders of magnitude faster.

For setting user properties, CachedProfileBean.setProperty() is slower than
User.setProperty() but it reduces the possibility of deadlocks when setting
properties in highly shared entity beans.

CachedProfileBean minimizes contact with the User entity bean by using a session
cache. When it does need to contact the User entity bean to update a property, it must
first get a reference, then update the property. For this reason,
CachedProfileBean.setProperty() can be slower than User.setProperty()
for setting property values. However, using CachedProfileBean reduces the risk of
deadlocks, especially with highly shared entity beans like Group. As the number of
references to an entity bean grows, the risk of a deadlock increases; since
CachedProfileBean doesn't store a reference to the entity bean, the risk of deadlock
is lowered.
26 Performance Tuning Guide

ADJUST CACHING
If you have a large number of set statements in a row, you can improve performance
by wrapping the statements in a transaction, such as
javax.transaction.UserTransaction. In addition to reducing database
connections (thereby improving performance), wrapping the statements in a
transaction causes all of the set statements to succeed or fail as a unit.

Do not set properties with User.setProperty() and get them with
CachedProfileBean.getProperty(). User.setProperty() updates the database
but not the cache. CachedProfileBean.getProperty() retrieves data from the
cache. Depending on the cache’s last update, it might not contain properties that
User.setProperty() placed in the database.

Other notes on CachedProfileBean:

� We recommend that you instantiate a separate CachedProfileBean for each
user whose profile is to be manipulated.

� To use CachedProfileBean with a Unified User, use the default no-argument
constructor, then set the profile key and profile type. The profile type should
match the Unified Profile Type you defined using the Administration Tool web
application. It is important to set the profile key before setting anything else,
because this call causes all other state to be cleared. For example:

CachedProfileBean user = new CachedProfileBean();
user.setProfileKey("unifieduser_bob");

user.setProfileType("Unified Profile Example");
String points = user.getPropertyAsString(null, "userPoints",
true);

String favChar = user.getPropertyAsString("exampleportal",

"FavoriteCharacter", true);

� To use the CachedProfileBean in a clustered environment, maintain an
instance of CachedProfileBean in each user's session. For example, to set a
user property, do the following:

a. Retrieve the CachedProfileBean from the user's HttpSession

b. Use setProperty()

c. Return the CachedProfileBean to the session

When you get a property, use the existing CachedProfileBean from the user's
session instead of instantiating a new one.
Performance Tuning Guide 27

� If you use the CachedProfileBean on a t3 client or in a servlet that is
deployed on a server other than Campaign Manager for WebLogic, WebLogic
Commerce Server, and WebLogic Personalization Server, you must set the Java
server’s commerce.properties environment property to
weblogiccommerce.properties. The CachedProfileBean uses
weblogiccommerce.properties for JNDI lookups. You can set this property
on the command line when you start your t3 client (or server) as follows:
java -Dcommerce.properties=weblogiccommerce.properties

MyT3Client

Increase the Size of the Display-Count Buffer

If you use campaigns (available only with BEA Campaign Manager for WebLogic),
the adservicebean.display.flush.size property in
weblogiccommerce.properties determines the number of display counts that are
stored in memory before updating the database. (See Listing 2.)

The Campaign Service uses display counts to determine whether a campaign has met
its end goals. Each time an ad placeholder displays an ad as a result of a scenario
action, the Campaign Service updates the display count. With the default setting of 10,
the Campaign Service does not update the display count in the database until 10 ads
have displayed as a result of one or more scenario actions placing queries in ad
placeholders.

If the server crashes before the Campaign Server flushes this display-count buffer to
the database, you can lose display-count updates, up to the value of the
adservicebean.display.flush.size property.

For sites with high traffic, increase this number to a range of 50 to 100.
28 Performance Tuning Guide

ADJUST PORTAL AND PORTLET SETTINGS WHILE LOAD TESTING
Listing 2 Display-Count Property in weblogiccommerce.properties

###

AdTargetTag Properties
adtargettag.rendering=com.bea.commerce.platform.ad.AdClickThruServlet

...

This value determines how many display update counts are cached before
we flush them to the database

adservicebean.display.flush.size=10

Adjust Portal and Portlet Settings While
Load Testing

If you are testing the performance of the portal framework, do the following:

� Enable session and global caches as described in “Adjust and Use the Session
and Global Caches” on page 10. (You do not need to add JSP tags or API
methods that access the caches when testing the portal framework; the
framework includes them by default.)
Performance Tuning Guide 29

� Because slow portlets can severely slow a portal’s performance, remove all of
the portlets from the portal except for Dictionary, Search, and Quote. These
portlets do not invoke external activities such as database connections.

� Modify the framework’s Application Initialization Property Set as follows:

� For refreshWorkingDir, increase the default number of seconds to prevent
Personalization Sever from refreshing the working directory every five
minutes (300 seconds) during a long load test.

The working directory is the root of the portal pages and WebLogic
Personalization Server pages hierarchy. You define the working directory in a
JSP, and you can change it as needed without restarting the server. The
refreshWorkingDir property determines how frequently the server checks
to see if you have changed the working directory.

The Application Initialization Property Set for the exampleportal defines the
refreshWorkingDir property. If you base your portal on the exampleportal,
it too will define the refreshWorkingDir property.

� For ttl, increase the default number of milliseconds to prevent
Personalization Sever from reloading properties every five minutes (300000
milliseconds) during a long load test.

For More Information

For more information, see the Guide to Creating Portals and Portlets.
30 Performance Tuning Guide

DISPLAY METADATA, SORT AND QUERY EXPLICIT METADATA
Display Metadata, Sort and Query Explicit
Metadata

If you used the BulkLoader to load document metadata into the reference
implementation document database, you can improve document management
performance when retrieving documents by doing the following:

� Display a document’s metadata instead of the full document.

� Sort on explicit (system-defined) metadata attributes instead of implicit
(user-defined) metadata attributes.

� Query on explicit metadata attributes instead of implicit metadata attributes.

For More Information

For more information about content management, see “Creating and Managing
Content” in the Guide to Building Personalized Applications.
Performance Tuning Guide 31

Use LDAP for Authentication Only

For improved performance, use LDAP for authentication only; do not use it to retrieve
user and group properties. Instead of retrieving properties from LDAP servers,
configure your system to use properties stored in the RDBMS by minimizing the
number of properties registered for retrieval from LDAP in the user management tools.

For More Information

For more information about changing LDAP settings, see “Using Other Realms” under
“Creating and Managing Users” in the Guide to Building Personalized Applications.

Use the DocumentManager EJB

Always use a DocumentManager EJB instead of a Document EJB. Document EJBs are
deprecated.

Use the HotSpot Virtual Machine

Hot Spot enhances JDK 1.3 performance by using a just-in-time compiler (JIT) and
other features. It provides two implementations: a client VM and a server VM.

On Windows, Campaign Manager for WebLogic, WebLogic Commerce Server, and
WebLogic Personalization Server support the client VM; they do not support the
server VM.

On UNIX, Campaign Manager for WebLogic, WebLogic Commerce Server, and
WebLogic Personalization Server support the server VM; they do not support the
client VM.
32 Performance Tuning Guide

USE THE HOTSPOT VIRTUAL MACHINE
The default StartCommerce startup script activates the HotSpot VM that is
appropriate for each platform type.

Deactivating HotSpot for Debugging

Because HotSpot uses a JIT, you cannot access thread dumps while it is active. If you
require thread dumps while developing and debugging your application, do the
following:

1. Open the $WL_COMMERCE_HOME/StartCommerce script and remove the value
from the JAVA_VM variable.

If you use your own startup script, on Windows, remove the -hotspot
parameter from the Java command that starts the server. On UNIX, remove the
-server parameter.

2. Restart the server.

For information on shutting down and starting the server, refer to “Starting and
Shutting Down the Server" in the Deployment Guide.
Performance Tuning Guide 33

	Performance Tuning Guide
	Precompile JSPs
	1. From the web application’s WEB-INF directory, open the web.xml file in a text editor and find ...
	2. In the <param-value> element, replace false with true. For example, <param-value>true</param-v...
	3. Save the file and restart the server.
	1. Make a backup copy of the .war file.
	2. Create a temporary directory and copy the.war file to the directory.
	3. In the temporary directory, unjar the .war file by entering the following command:
	4. Under the temporary directory, open WEB-INF\web.xml in a text editor and find the following el...
	5. In the <param-value> element, replace false with true. For example, <param-value>true</param-v...
	6. Save web.xml.
	7. Under the temporary directory, if the WEB-INF directory contains a subdirectory named _tmp_war...
	8. Remove the old .war file from the temporary directory.
	9. Create a new .war file for the web application by entering the following command:
	10. Move the new .war file back to its original directory.
	11. Remove any other files in the original directory that may have been left over from previous
	12. Restart the server.

	Specifying a Different Java Compiler
	Adjust the Intervals for Checking JSP and Servlet Modifications
	About the Page-Check Intervals Properties
	To Adjust the Intervals
	1. Establish performance baselines by testing Commerce Server performance with the interval set t...
	2. Test the performance with the interval set to various numbers of seconds. For example, set the...
	3. Choose an interval that provides the best performance while checking for modifications to JSP ...

	Adjust Database Connections Available at Startup
	1. Start the WebLogic Server Administration Console for your domain.
	2. On the home page, under JDBC, click Connection Pools.
	3. On the JDBC Connection Pools page, in the Name column, click commercePool.
	4. Do the following:
	a. Increase the value in Initial Capacity to match the value in Maximum Capacity
	b. Change Login Delay Seconds to 0
	c. Clear the Allow Shrinking check box
	d. Click Apply (see Figure�1)
	5. Click the Testing tab and clear the Test Reserve Connections check box.
	6. Click Apply.
	7. Restart the server.
	For More Information

	Adjust Caching
	Adjust and Use the Session and Global Caches
	For More Information
	Enabling the Caches
	JSP Tags for Accessing HttpSession and the Session and Global Caches
	An API for Accessing HttpSession and the Session and Global Caches
	Guidelines for Placing Data in HttpSession, Session Cache, or Global Cache

	Adjust Caching for Content Management
	For More Information

	Enable Property Caching
	Property Caching in a Clustered Environment
	To Enable Property Caching
	For More Information

	Enable Group Caching
	Group Caching in a Clustered Environment
	To Set Up the Group-Cache Table
	CREATE TABLE WLCS_USER_GROUP_CACHE (USER_NAME VARCHAR2(100) NOT NULL,
	GROUP_NAME VARCHAR2(100) NOT NULL);
	ALTER TABLE WLCS_USER_GROUP_CACHE
	ADD CONSTRAINT WLCS_USER_GROUP_CACHE_INDEX PRIMARY KEY (USER_NAME,
	GROUP_NAME);

	To Enable and Configure the Group Cache
	1. Start the WebLogic Server Administration Console for your domain.
	2. In the left pane of the Administration Console, click wlcsDomain Æ Deployments Æ Startup & Shu...
	3. In the right pane, click Create a New Startup Class.
	4. On the wlcsDomain Æ Startup Classes Æ create page click the Configuration tab.
	5. On the Configuration tab, enter the following:
	6. Click Create. (See Figure�3.)
	7. To deploy the group cache, click the Targets tab.
	8. On the Servers subtab, select wlcsServer from the Available Servers list. Then move it to the ...
	9. Click Apply.
	10. In a clustered environment, you can configure the remaining servers to use the master cache t...
	11. To configure the number of seconds that the server waits before calculating and updating the ...
	a. From the left pane of the Administration Console, click wlcsDomain Æ Security Æ CachingRealms ...
	b. In the right pane, on the wlcsDomain Æ Security Æ Caching Realms Æ wlcsCachingRealm page, clic...
	c. Modify the value in the Group Cache TTL Positive box.
	12. Restart the server.

	Configure Servers to Use the Master Cache
	1. In the left pane of the Administration Console, click Startup & Shutdown.
	2. On the wlcsDomain Æ Startup & Shutdown page, click Create a New Startup Class.
	3. On the wlcsDomain Æ Startup Classes Æ Create page click the Configuration tab.
	4. On the Configuration tab, enter the following:
	5. Click Create.
	6. Click the Targets tab.
	7. On the Servers subtab, from the Available Servers list, select the remaining servers in the cl...
	8. Click Apply.

	To Access Data in the Group Cache Table

	Adjust Caching for the Discount Service
	Adjusting the Campaign-Discount Cache
	Adjusting the Global-Discount Cache
	# Discount Service cache entries # cache of all discounts, 5 minutes, 100 entries
	discountCache.ttl=300000 discountCache.capacity=100 discountCache.enabled=true
	# the global discount cache, 5 minutes, 10 entries
	globalDiscountCache.ttl=300000 globalDiscountCache.capacity=10 globalDiscountCache.enabled=true

	How the Discount-Service Cache Behaves in a Clustered Environment

	Use CachedProfileBean to Get and Set User Properties from the API
	a. Retrieve the CachedProfileBean from the user's HttpSession
	b. Use setProperty()
	c. Return the CachedProfileBean to the session

	Increase the Size of the Display-Count Buffer
	###
	# AdTargetTag Properties adtargettag.rendering=com.bea.commerce.platform.ad.AdClickThruServlet
	...
	# This value determines how many display update counts are cached before # we flush them to the d...
	adservicebean.display.flush.size=10

	Adjust Portal and Portlet Settings While Load Testing
	For More Information

	Display Metadata, Sort and Query Explicit Metadata
	For More Information

	Use LDAP for Authentication Only
	For More Information

	Use the DocumentManager EJB
	Use the HotSpot Virtual Machine
	Deactivating HotSpot for Debugging
	1. Open the $WL_COMMERCE_HOME/StartCommerce script and remove the value from the JAVA_VM variable.
	2. Restart the server.

