
Commands, System Processes,

W e b L o g i c E n t e r p r i s e 5 . 1
D o c u m e n t E d i t i o n 5 . 1

M a y 2 0 0 0

BEA WebLogic Enterprise

and MIB Reference

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA elink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Commands, Processes, and MIB Reference

Document Edition Date Software Version

5.1 May 2000 BEA WebLogic Enterprise 5.1

Contents

About This Document
What You Need to Know ..v

e-docs Web Site ... vi

How to Print the Document... vi

Related Information... vi

Contact Us! ... vii

Documentation Conventions .. vii

1. Commands Reference
buildjavaserver .. 1-3

buildobjclient .. 1-5

buildobjserver.. 1-9

buildtms... 1-13

buildXAJS... 1-14

ejbc .. 1-16

genicf... 1-19

idl .. 1-20

idl2ir .. 1-24

idltojava... 1-26

ir2idl .. 1-30

irdel ... 1-31

ISL... 1-32

m3idltojava.. 1-41

tmadmin .. 1-44

tmboot ... 1-45

tmconfig .. 1-46

tmloadcf .. 1-47
Commands, Processes, and MIB Reference iii

tmshutdown ... 1-48

tmunloadcf... 1-49

tpgrpadd... 1-50

tpgrpdel.. 1-51

tpgrpmod ... 1-52

tpusradd ... 1-53

tpusrdel .. 1-54

tpusrmod.. 1-55

weblogic.rmc ... 1-56

2. Server Process and File Format Reference
TMFFNAME... 2-2

TMIFRSVR... 2-5

factory_finder.ini... 2-6

UBBCONFIG.. 2-10

3. MIB Reference
T_IFQUEUE Class.. 3-2

T_INTERFACE Class... 3-6

T_JDBCCONNPOOL Class ... 3-13

T_ROUTING Class... 3-18

T_SERVER Class ... 3-23
iv Commands, Processes, and MIB Reference

pport

nd

r

ic

e,
le with
.

About This Document

This document describes the commands used to build and manage BEA WebLogic
Enterprise™ (WLE) applications and Enterprise JavaBeans (EJB), the server
processes used by WebLogic Enterprise applications, and the BEA Tuxedo®
management information base (MIB) classes that were added or enhanced to su
WebLogic Enterprise applications.

This document covers the following topics:

n Chapter 1, “Commands Reference,” describes the commands used to build a
manage WebLogic Enterprise CORBA applications and WebLogic Enterprise
EJBs.

n Chapter 2, “Server Process and File Format Reference,” describes the serve
processes and file formats used by the WebLogic Enterprise system.

n Chapter 3, “MIB Reference,” describes the BEA Tuxedo management
information bases (MIBS) that have been added or enhanced for the WebLog
Enterprise product.

What You Need to Know

This document is intended for programmers who are interested in creating secur
scalable, transaction-based server applications. It assumes you are knowledgeab
CORBA, Enterprise JavaBeans, and the C++ and Java programming languages
Commands, Processes, and MIB Reference v

e at

sing

tion
ent
rise

 you

rom

do,
va
e-docs Web Site

The BEA WebLogic Enterprise product documentation is available on the BEA
Systems, Inc. corporate Web site. From the BEA Home page, click the Product
Documentation button or go directly to the “e-docs” Product Documentation pag
http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by u
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documenta
CD). You can open the PDF in Adobe Acrobat Reader and print the entire docum
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterp
documentation Home page, click the PDF Files button, and select the document
want to print.

If you do not have Adobe Acrobat Reader installed, you can dowload it for free f
the Adobe Web site at http://www.adobe.com/.

Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA Tuxe
distributed object computing, transaction processing, C++ programming, and Ja
programming, see the WebLogic Enterprise Bibliography in the WebLogic Enterprise
online documentation.
vi Commands, Processes, and MIB Reference

Documentation Conventions
Contact Us!

Your feedback on the BEA WebLogic Enterprise documentation is important to us.
Send us e-mail at docsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Enterprise 5.1 release.

If you have any questions about this version of BEA WebLogic Enterprise, or if you
have problems installing and running BEA WebLogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORT at www.bea.com. You can also
contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.
Commands, Processes, and MIB Reference vii

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

Convention Item
viii Commands, Processes, and MIB Reference

Documentation Conventions
| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
Commands, Processes, and MIB Reference ix

x Commands, Processes, and MIB Reference

CHAPTER
1 Commands Reference

The WebLogic Enterprise system provides the following commands to build and
manage WebLogic Enterprise CORBA applications and WebLogic Enterprise EJBs:

n buildjavaserver

n buildobjclient

n buildobjserver

n buildtms

n buildXAJS

n ejbc

n genicf

n idl

n idltojava

n idl2ir

n ir2idl

n irdel

n ISL

n m3idltojava

n tmadmin

n tmboot

n tmconfig
Commands, Processes, and MIB Reference 1-1

1 Commands Reference
n tmloadcf

n tmshutdown

n tmunloadcf

n tpgrpadd

n tpgrpdel

n tpgrpmod

n tpusradd

n tpusrdel

n tpusrmod

n weblogic.rmc

This topic describes these commands.
1-2 Commands, Processes, and MIB Reference

ion

lt.

er

iler,

 is
buildjavaserver

Synopsis Constructs a Java WLE server application jar file.

Syntax buildjavaserver [-s searchpath] input_file

Description Once the class files that make up a server application have been created and specified,
along with interface activation and transaction policies, in the Server Description File,
you use the buildjavaserver command to create the jar file. The jar file contains
all the server application class files and a server descriptor. The server descriptor is a
serialized Java object that contains:

t Information about all the servant classes implemented by the server application

t Activation and transaction policies for all the interfaces that have been defined
in the application’s OMG IDL file

t The name of the Server object, which initializes and stops the server applicat
and performs object housekeeping

Options -s

Specifies a path to be used by the buildjavaserver command to locate the
classes and packages needed for building the jar file. If you do not specify
this option, the buildjavaserver command uses the class path by defau

input_file

Specifies the name of the Server Description File.

Environment
Variables

TUXDIR

Finds the WLE libraries and include files to use when compiling the serv
application.

LD_LIBRARY_PATH (UNIX systems)
Indicates which directories contain shared objects to be used by the comp
in addition to the WLE shared objects. A colon (:) is used to separate the list
of directories.

LIB (Windows NT systems)
Indicates a list of directories within which to find libraries. A semicolon (;)
used to separate the list of directories.

Portability The buildjavaserver command is not supported on client-only WLE systems.
Commands, Processes, and MIB Reference 1-3

1 Commands Reference
Example The following example builds a Java WLE server application jar file on a UNIX
system. This example uses the com/acme path for locating classes and packages for the
archive and also uses the Server Description File MyServer.xml.

buildjavaserver -s com/acme MyServer.xml
1-4 Commands, Processes, and MIB Reference

buildobjclient

Synopsis Constructs a WLE client application.

Syntax buildobjclient [-v][-o name] [-f firstfile-syntax]
 [-l lastfile-syntax] -P

Description Use the buildobjclient command to construct a WLE client application. The
command combines the files specified in the -f and -l options with the standard WLE
libraries to form a client application. The client application is built using the default
C++ language compile command defined for the operating system in use.

All specified .c and .cpp files are compiled in one invocation of the compilation
system for the operating system in use. Users may specify the compiler to invoke by
setting the CC environment variable to the name of the compiler. If the CC environment
variable is not defined when buildobjclient is invoked, the default C++ language
compile command for the operating system in use will be invoked to compile all .c
and .cpp files.

Users may specify options to be passed to the compiler by setting the CFLAGS or the
CPPFLAGS environment variables. If CFLAGS is not defined when buildobjclient is
invoked, the buildobjclient command uses the value of CPPFLAGS if that variable
is defined.

Options -v

Specifies that the buildobjclient command should work in verbose mode.
In particular, it writes the compile command to its standard output.

-o name

Specifies the name of the client application generated by this command. If the
name is not supplied, the application file is named client<.type>, where
type is an extension that is dependent on the operating system for an
application (for example, on a UNIX system, there would not be a type; on
a Windows NT system, the type would be .EXE).

-f firstfile-syntax
Specifies a file to be included first in the compile and link phases of the
buildobjclient command. The specified file is included before the WLE
libraries are included. There are three ways of specifying a file or files, as
shown in Table 1-1.
Commands, Processes, and MIB Reference 1-5

1 Commands Reference
Note: Filenames that include spaces are not supported

Note: The -f option may be specified multiple times.

-l lastfile-syntax
Specifies a file to be included last in the compile and link phases of the
buildobjclient command. The specified file is included after the WLE
libraries are included. There are three ways of specifying a file, as shown in
Table 1-2.

Note: The -l option may be specified multiple times.

-P

Specifies that the appropriate POA libraries should be linked into the image
(that is, libraries that allow a client to also function as a server). The resulting
image can act as a server and can use the Callbacks wrapper class for
creating objects. The resulting joint client/server cannot take advantage of the
object state management and transaction management provided by the WLE
TP Framework. The -P switch should have been passed to the IDL compiler

Table 1-1 Specifying the First Filename(s)

Filename Specification Definition

-f firstfile One file is specified.

-f "file1.cpp file2.cpp file3.cpp ..." Multiple files may be specified
if they are enclosed in quotation
marks and are separated by
white space.

Table 1-2 Specifying the Last Filename(s)

Filename Specification Definition

-l lastfile One file is specified.

-l "file1.cpp file2.cpp file3.cpp ..." Multiple files may be specified
if they are enclosed in quotation
marks and are separated by
white space.
1-6 Commands, Processes, and MIB Reference

when generating the client. Use buildobjserver to build a server with all
the support provided by the TP Framework. The default is to not link in the
server libraries; that is, the default is to create a client only, not a joint
client/server.

-h or -?

Provides help that explains the usage of the buildobjclient command. No
other action results.

Environment
Variables

TUXDIR

Finds the WLE libraries and include files to use when compiling the client
applications.

CC
Indicates the compiler to use to compile all files with .c or .cpp file
extensions. If not defined, the default C++ language compile command for
the operating system in use will be invoked to compile all .c and .cpp files.

CFLAGS
Indicates any arguments that are passed as part of the compiler command line
for any files with a .c or .cpp file extensions. If CFLAGS does not exist in the
buildobjclient command environment, the buildobjclient command
checks for the CPPFLAGS environment variable.

CPPFLAGS

Note: Arguments passed by the CFLAGS environment variable take priority over
the CPPFLAGS variable.

Contains a set of arguments that are passed as part of the compiler command
line for any files with a .c or .cpp file extensions.
This is in addition to the command line option "-I$(TUXDIR)/include"
for UNIX systems or the command line option /I%TUXDIR%\include for
Windows NT systems, which is passed automatically by the
buildobjclient command. If CPPFLAGS does not exist in the
buildobjclient command environment, no compiler commands are added.

LD_LIBRARY_PATH (UNIX systems)
Indicates which directories contain shared objects to be used by the compiler,
in addition to the objects shared by the WLE software. A colon (:) is used to
separate the list of directories.

LIB (Windows NT systems)
Indicates a list of directories within which to find libraries. A semicolon (;) is
used to separate the list of directories.
Commands, Processes, and MIB Reference 1-7

1 Commands Reference
Portability The buildobjclient command is not supported on client-only platforms.

Examples The following example builds a WLE client application on an NT system:

set CPPFLAGS=-I%APPDIR%\include
buildobjclient -o empclient.exe -f emp_c.cpp -l userlib1.lib

The following example builds a WLE client application on a UNIX system using the

c shell:

setenv CPPFLAGS=$APPDIR/include
buildobjclient -o empclient -f emp_c.cpp -l userlib1.a
1-8 Commands, Processes, and MIB Reference

buildobjserver

Synopsis Constructs a WLE server application.

Syntax buildobjserver [-v] [-o name] [-f firstfile-syntax]
 [-l lastfile-syntax] [-r rmname]

Description Use the buildobjserver command to construct a WLE server application. The
command combines the files specified in the -f and -l options with the main routine
and the standard WLE libraries to form a server application. The server application is
built using the default C++ compiler provided for the platform.

All specified .c and .cpp files are compiled in one invocation of the compilation
system for the operating system in use. Users may specify the compiler to invoke by
setting the CC environment variable to the name of the compiler. If the CC environment
variable is not defined when buildobjserver is invoked, the default C++ language
compile command for the operating system in use will be invoked to compile all .c
and .cpp files.

Users may specify options to be passed to the compiler by setting the CFLAGS or the
CPPFLAGS environment variables. If CFLAGS is not defined when buildobjserver is
invoked, the buildobjserver command uses the value of CPPFLAGS if that variable
is defined.

Options -v

Specifies that the buildobjserver command should work in verbose mode.
In particular, it writes the compile command to its standard output.

-o name
Specifies the name of the server application generated by this command. If
the name is not supplied, the application file is named server<.type>,
where type is the extension that is dependent on the operating system for an
application (for example, on UNIX systems, there would not be a type; on
Windows NT systems, the type would be .EXE).

-f firstfile-syntax
Specifies a file to be included first in the compile and link phases of the
buildobjserver command. The specified file is included before the WLE
libraries are included. For a description of the three ways to specify a file or
files, see Table 1-1, “Specifying the First Filename(s),” on page 1-6.

-l lastfile-syntax
Specifies a file to be included last in the compile and link phases of the
buildobjserver command. The specified file is included after the WLE
Commands, Processes, and MIB Reference 1-9

1 Commands Reference

r

r.
 table.

er
libraries are included. For a description of the three ways to specify a file or
files, see Table 1-2, “Specifying the Last Filename(s),” on page 1-6.

-r rmname

Specifies the resource manager associated with this server. The value rmname
must appear in the resource manager table located in $TUXDIR/udataobj/RM

on UNIX systems or %TUXDIR%\udataobj\RM on Windows NT systems.
Each entry in this file is of the form
rmname:rmstructure_name:library_names.

Using the rmname value, the entry in $TUXDIR/udataobj/RM or
%TUXDIR%\udataobj\RM automatically includes the associated libraries fo
the resource manager and properly sets up the interface between the
transaction manager and the resource manager. The value TUXEDO/SQL
includes the libraries for the BEA Tuxedo System/SQL resource manage
Other values can be specified as they are added to the resource manager
If the -r option is not specified, the default is to use the null resource
manager.

-h or -?

Provides help that explains the usage of the buildobjserver command. No
other action results.

Environment
Variables

TUXDIR

Finds the WLE libraries and include files to use when compiling the serv
application.

CC
Indicates the compiler to use to compile all files with .c or .cpp file
extensions that are passed in through the –l or -f options.

CFLAGS

 Specifies any arguments that are passed as part of the compiler command line
for any files with .c or .cpp file extensions. If CFLAGS does not exist in the
buildobjserver command environment, the buildobjserver command
checks for the CPPFLAGS environment variable.

CPPFLAGS

Note: Arguments passed by the CFLAGS environment variable take priority over
the CPPFLAGS environment variable.

Contains a set of arguments that are passed as part of the compiler command
line for any files with a .c or .cpp file extensions.This is in addition to the
command line option -I$(TUXDIR)/include for UNIX systems or the

command line option /I%TUXDIR%\include for Windows NT systems,
1-10 Commands, Processes, and MIB Reference

which is passed automatically by the buildobjserver command. If
CPPFLAGS does not exist in the buildobjserver command environment, no
compiler commands are added.

LD_LIBRARY_PATH (UNIX systems)
Indicates which directories contain shared objects to be used by the compiler,
in addition to the WLE shared objects. A colon (:) is used to separate the list
of directories.

LIB (Windows NT systems)
Indicates a list of directories within which to find libraries. A semicolon (;) is
used to separate the list of directories.

Portability The buildobjserver command is not supported on client-only WLE systems.

Examples The following example builds a WLE server application on a UNIX system using the
emp_s.cpp and emp_i.cpp files:

buildobjserver -r TUXEDO/SQL -o unobserved
 -f “emp_s.cpp emp_i.cpp”

The following example shows how to use the CC and CFLAGS environment variables
with the buildobjserver command. The example also shows how to link in the math
library on UNIX systems using the Bourne or Korn shells using the -f and -lm

options:

CFLAGS=-g CC=/bin/cc \
buildobjserver -r TUXEDO/SQL -o TLR -f TLR.o -f util.o -l -lm

The following example shows how to use the buildobjserver command on UNIX
systems with no resource manager specified:

buildobjserver -o PRINTER -f PRINTER.o

Sample RM
Files

The following are sample RM files for all the supported operating system platforms:

Windows NT

Oracle_XA;xaosw;C:\Orant\rdbms73\xa\xa73.lib
 C:\Orant\pro22\lib\msvc\sqllib18.lib

UNIX

Oracle_XA:xaosw:-L$ORACLE_HOME/rdbms/lib
 -L$ORACLE_HOME/precomp/lib -lc
 -L/home4/m01/app/oracle/product/7.3.2/lib -lsql -lclntsh
 -lsqlnet -lncr -lcommon -lgeneric -lepc -lnlsrtl3 -lc3v6
Commands, Processes, and MIB Reference 1-11

1 Commands Reference
 -lcore3 -lsocket -lnsl -lm -ldl -lthread

Digital UNIX

Oracle_XA:xaosw:-L${ORACLE_HOME}/lib -lxa
 ${ORACLE_HOME}/lib/libsql.a -lsqlnet -lncr -lsqlnet
 ${ORACLE_HOME}/lib/libclient.a -lcommon -lgeneric -lsqlnet
 -lncr -lsqlnet ${ORACLE_HOME}/lib/libclient.a -lcommon
 -lgeneric -lepc -lepcpt -lnlsrtl3 -lc3v6 -lcore3
 -lnlsrtl3 -lcore3 -lnlsrtl3 -lm

AIX

Oracle_XA:xaosw:-L${ORACLE_HOME}/lib -lxa -lsql -lsqlnet
 -lncr -lclient -lcommon -lgeneric -lepc -lnlsrtl3 -lc3v6
 -lcore3 -lm -lld

HP-UX : Oracle 8.04

 Oracle_XA:xaosw:-L${ORACLE_HOME}/lib -lclntsh
1-12 Commands, Processes, and MIB Reference

buildtms

See the description of the buildtms command in the BEA Tuxedo Reference manual.
Commands, Processes, and MIB Reference 1-13

1 Commands Reference

r to the
n

r

r.
 table.

 is

er
buildXAJS

Synopsis Constructs an XA resource manager to be used with a Java server application group.

Syntax buildXAJS [-v] -r rmname [-o outfile]

Description Use this command to build an XA resource manager that you want to use with a Java
server application group. In the application’s UBBCONFIG file, you use the
JavaServerXA element in place of the JavaServer element to associate the XA
resource manager with a specified server group. Note that a server application
configured to use the default XA resource manager (that is, NULL) cannot coexist in a
server group that uses a nondefault XA resource manager, such as Oracle. Refe
Administration Guide for more information about configuring server groups with a
XA resource manager.

Options -v

Specifies that the buildXAJS command should work in verbose mode. In
particular, it writes the build command to its standard output.

-r rmname

Specifies the resource manager associated with this server. The value rmname
must appear in the resource manager table located in $TUXDIR/udataobj/RM

on UNIX systems, or %TUXDIR%\udataobj\RM on Windows NT systems.
On UNIX systems, each entry in this file is of the form
rmname:rmstructure_name:library_names. On NT systems, each entry
in this file is of the form rmname;rmstructure_name;library_names.
Using the rmname value, the entry in $TUXDIR/udataobj/RM or
%TUXDIR%\udataobj\RM automatically includes the associated libraries fo
the resource manager and properly sets up the interface between the
transaction manager and the resource manager. The value TUXEDO/SQL
includes the libraries for the BEA Tuxedo System/SQL resource manage
Other values can be specified as they are added to the resource manager
If the -r option is not specified, the default is to use the null resource
manager.

-o outfile
Specifies the name of the output file. If no name is specified, the default
JavaServerXA.

Environment
Variables

TUXDIR

Finds the WLE libraries and include files to use when compiling the serv
application.
1-14 Commands, Processes, and MIB Reference

LD_LIBRARY_PATH (UNIX systems)
Indicates which directories contain shared objects to be used by the compiler,
in addition to the WLE shared objects. A colon (:) is used to separate the list
of directories.

LIB (Windows NT systems)
Indicates a list of directories within which to find libraries. A semicolon (;) is
used to separate the list of directories.

Portability The buildXAJS command is not supported on client-only WLE systems.

Example The following example builds a Java server XA resource manager on a UNIX system:

buildXAJS -r oracle7
Commands, Processes, and MIB Reference 1-15

1 Commands Reference
ejbc

Synopsis Produces a deployable EJB JAR file.

Syntax java com.beasys.ejb.utils.ejbc options jar-file archive-files

Description The ejbc command produces a deployable EJB JAR file. You can also use this
command to generate a standard EJB JAR file for distribution. The primary input to
the ejbc command is a standard EJB deployment descriptor file specified in XML, and
optionally an XML deployment descriptor file specifying the WebLogic EJB
extensions to the deployment descriptor DTD.

The ejbc command performs the following steps:

1. Parses the standard EJB deployment descriptor XML file and the WebLogic EJB
extensions to the deployment descriptor DTD. You can provide this input as
separate input files, or as an existing EJB JAR file. The XML file names are
ejb-jar.xml and weblogic-ejb-extensions.xml. If you use the –nodeploy
option, the file containing the WebLogic EJB extensions to the deployment
descriptor DTD, if specified, is ignored.

2. Checks the deployment descriptors for semantic consistency, and writes any
inconsistencies to standard output.

3. Generates the wrapper java classes and compiles them. This is performed for
each EJB in the deployment descriptor. Note that the ejbc command does not
compile the bean classes; the bean classes must be compiled before you use the
ejbc command.

If you specify the –nodeploy option, the ejbc command does not generate any
wrapper classes.

4. Packages the XML deployment descriptors and the generated class files into a
deployable EJB JAR file. The ejbc command ignores the archive arguments; the
ejbc command simply packages the contents of the destination directory (which
may be the current dirrectory) and the standard deployment descriptor and
WebLogic EJB extensions to the deployment descriptor DTD files into the EJB
JAR file.

Options -help

Prints a short description of the arguments for the command.
1-16 Commands, Processes, and MIB Reference

-i input-file
Specifies the input file, which can be either an existing EJB JAR file or a
standard EJB deployment descriptor file. If you do not specify an input file,
the ejbc command checks for an existing EJB JAR file and uses that for
input. You must name the standard EJB deployment descriptor file
ejb-jar.xml.

-x wldd-file

Optional. Identifies the WebLogic EJB extensions to the deployment
descriptor DTD. If you do not specify this file, but you do provide an input
EJB JAR file, the ejbc command attempts to read the WebLogic EJB
extensions to the deployment descriptor DTD from the EJB JAR file instead.
You must name the extended EJB deployment descriptor file
wlejb-jar.xml.

-classpath path
Sets the CLASSPATH for the ejbc command. This overrides the system or
shell CLASSPATH.

-d directory
Sets the destination directory for the generated class files. If you do not enter
this option, the ejbc command uses the current directory.

-compiler javac
Sets the Java compiler. The default is javac.

-keepgenerated

Saves the intermediate Java files generated for deployment.

-nodeploy

Creates a standard EJB JAR file. When you use this option, the ejbc
command does not generate wrapper classes, and only processes standard
XML. If a file specifying the WebLogic EJB extensions to the deployment
descriptor DTD is present in the input to the ejbc command, that XML
descriptor is ignored and is not written to the archive.

jar-file

Optional. This specifies the output deployable EJB JAR file for the
WebLogic Enterprise JavaServer. This file also serves as the default input for
the deployment descriptors, if you do not specify them explicitly using the –
i or –x option. If you do not specify this argument, any generated class files
are placed only in the destination directory.
Commands, Processes, and MIB Reference 1-17

1 Commands Reference
archive-files

Identifies the files to be included in the output EJB JAR file. This argument uses the
same syntax as the standard JDK jar utility, and can specify one or more files or
directories. If any of the files is a directory, the ejbc command processes the directory
recursively. You may use wildcards in the file specification. This archive-files
argument is optional. If you do not specify this argument, the ejbc command places
the generated classes in the destination directory (specified with the -d option).
1-18 Commands, Processes, and MIB Reference

genicf

Synopsis Generates an ICF file.

Syntax genicf [options] idl-filename...

Description Given the idl-filename(s), generates an ICF file that provides the code generation
process with additional information about policies on implementations and the
relationship between implementations and the interface they implement. If an ICF file
is provided as input to the idl command, the idl command generates server code for
only the implementation/interface pairs specified in the ICF file.

The generated ICF file has the same filename as the first idl-filename specified on
the command line, but with a .icf extension.

If incorrect OMG IDL syntax is specified in the idl-filename(s) file, appropriate
errors are returned.

Options -D identifier=[definition]

Performs the same function as the #define C++ preprocessor directive; that
is, the -D option defines a token string or a macro to be substituted for every
occurrence of a given identifier in the definition file. If a definition is not
specified, the identifier is defined as 1. Multiple -D options can be specified.
White space between the -D option and the identifier is optional.

-I pathname

Specifies directories within which to search for include files, in addition to
any directories specified with the #include OMG IDL preprocessor
directive. Multiple directories can be specified by using multiple -I options.

There are two types of #include OMG IDL preprocessor directives: system
(for example, <a.idl>) and user (for example, "a.idl"). On UNIX
systems, the path for system #include directories is /usr/include and any
directories specified with the -I option; the path for user #include
directives is the location of the file containing the #include directive,
followed by the path specified for the system #include directive. On
Windows NT systems, no distinction is made between the system #include
directories and the user #include directives.

-h and -?

 Provides help that explains the usage of the genicf command. No other
action results.

Example This command creates the emp.icf file: genicf emp.idl.
Commands, Processes, and MIB Reference 1-19

1 Commands Reference
idl

Synopsis Compiles the Object Management Group (OMG) Interface Definition Language (IDL)
file and generates the files required for the interface.

Syntax idl [-i] [-Did[=value]] [-I pathname][-h] [-P] [-T] idl-filename...
 [icf-filename...]

Description Given the provided idl-filename() file(s) and optional icf-filename() file(s),
the idl command generates the following files:

idl-filename_c.cpp
Client stub (includes embedded user-defined data type functions).

idl-filename_c.h
Class definitions for interfaces.

idl-filename_s.cpp

Server skeleton containing an implementation of the POA_skeleton classes.

idl-filename_s.h
POA_skeleton class definitions.

idl-filename_i.cpp

Example version of the implementation. This file is generated only when the
-i option is given.

idl-filename_i.h
Class definition of an example implementation that inherits from the
POA_skeleton class. This file is generated only when the -i option is given.

Note: If any ICF files are specified, the information within the ICF files is used to
provide the code generator with information about the
interface/implementations that override the defaults. Typically, an activation
policy and a transaction policy for an implementation may be specified in the
ICF file. If no ICF files are specified, default policies are in effect for all of the
interfaces specified in the OMG IDL file, and skeleton code for all of the
interfaces is generated. If an icf-filename is provided as input to the idl
command, only the implementation/interfaces specified in the icf-filename
are generated as part of the server.

The IDL compiler places the generated client stub information in the
filename_c.cpp and filename_c.h files. The generated server skeleton
information is placed in the filename_s.cpp and filename_s.h files.
1-20 Commands, Processes, and MIB Reference

The IDL compiler overwrites the generated client stub files (filename_c.cpp and
filename_c.h), and the generated server skeleton files (filename_s.cpp and
filename_s.h). Any previous versions are destroyed.

When using the -i option, the IDL compiler overwrites the sample implementation class
definition file (filename_i.h). Previous versions are destroyed. The sample implementation
file (filename_i.cpp) is overwritten, however, any code contained within the code
preservation blocks is preserved and restored in the newly generated file. To avoid the loss of
data, it is recommended that you copy the sample implementation files (filename_i.h and
filename_i.cpp) to a safe location before regenerating these files.

If an unknown option is passed to this command, the offending option and a usage
message is displayed to the user, and the compile is not performed.

Parameter idl filename
The name of one or more files that contain OMG IDL statements.

Options -D identifier[=definition]

Performs the same function as the #define C++ preprocessor directive; that
is, the -D option defines a token string or a macro to be substituted for every
occurrence of a given identifier in the definition file. If a definition is not
specified, the identifier is defined as 1. Multiple -D options can be specified.
White space between the -D option and the name is optional.

-I pathname

Specifies directories within which to search for include files, in addition to
any directories specified with the #include OMG IDL preprocessor
directive. Multiple directories can be specified by using multiple -I options.

There are two types of #include OMG IDL preprocessor directives:
system (for example, <a.idl>) and user (for example, "a.idl"). The
path for system #include directories is the system include directory and any
directories specified with the -I option. The path for user #include
directives is the location of the file containing the #include directive,
followed by the path specified for the system #include directive.

By default, the text in files included with an #include directive is not
included in the client and server code that is generated.
Commands, Processes, and MIB Reference 1-21

1 Commands Reference
-i

Results in idl-filename_i.cpp files being generated. These files contain
example templates for the implementations that implement the interfaces
specified in the OMG IDL file.

Note: When using the idl command -i option to update your implementation
files, proceed as follows to update your implementation files:

1. Back up your implementation files.

2. If you are migrating from BEA ObjectBroker to WLE, edit your generated
implementation files to change the code preservation block delimiters from
“OBB_PRESERVE_BEGIN” and “OBB_PRESERVE_END” to
“M3_PRESERVE_BEGIN” and “M3_PRESERVE_END”.

3. If you added include files to your method implementation file (*_i.cpp), edit
the file and move the includes inside the INCLUDES preservation block.

4. Regenerate your edited implementation files (using the idl command with the
-i option).

5. If you previously made modifications to the implementation definition file
(*_i.h), edit the newly generated definition file and add your modifications
back in. Be sure to put your modifications inside the code preservation blocks so
subsequent updates will automatically retain them. Pay particular attention to the
implementation constructor and destructor functions; the function signatures have
been changed in this release.

6. If you previously made modifications outside the preservation blocks of the
method implementation file (*_i.cpp) or to the implementation constructor
and destructor functions, edit the newly generated file and add those
modifications. Be sure to put the modifications inside a preservation block so
subsequent updates will automatically retain them.

-P

Generates server code that uses the POA instead of the TP Framework. With
this option specified, the skeleton class does not inherit from the TP
Framework Tobj_ServantBase class, but instead inherits directly from the
PortableServer::ServantBase class. By default, the skeleton class uses
the TP Framework. So you must use this switch when you are developing
joint client/servers as these servers do not use the TP framework.

Not having the Tobj_ServantBase class in the inheritance tree for a servant
means that the servant does not have activate_object and
1-22 Commands, Processes, and MIB Reference

deactivate_object methods. In WLE servers these methods are called by
the TP Framework to dynamically initialize and save a servant’s state before
invoking a method on the servant. For WLE joint client/servers, user-written
code must explicitly create a servant and initialize a servant’s state; therefore,
the Tobj_ServantBase operations are not needed. When using the -P
option, ICF files are not used because the TP Framework is not available.

-T

Generates tie-based servant code that allows the use of delegation to tie an
instance of a C++ implementation class to the servant. This option allows
classes that are not related to skeletons by inheritance to implement CORBA
object operations. This option is set to off by default.

-h or -?
Provides help that explains the usage of the idl command. No other action
results.

Examples idl emp.idl
idl emp.idl emp.icf
Commands, Processes, and MIB Reference 1-23

1 Commands Reference
idl2ir

Synopsis Creates the Interface Repository and loads interface definitions into it.

Syntax idl2ir [options] definition-filename-list

Options The options are as follows:

[-f repository-name] [-c]
[-D identifier[=definition]]
[-I pathname [-I pathname] [...]] [-N{i|e}]

Description Use this command to create the Interface Repository and to load it with interface
definitions. If no repository file exists, this command creates it. If a repository file does
exist, this command loads the specified interface definitions into it and, in effect,
updates the file.

One of the side effects of doing this is that a new Interface Repository database file is
created.

Parameters definition-filename-list

A list of file specifications containing the repository definitions. These files
are treated as one logical file and are loaded in one operation.

-f repository-name

The filename of the Interface Repository file. If you do not specify the -f
option, the idl2ir command creates repository.ifr as the Interface
Repository file on UNIX systems and repository_1.ifr on Microsoft
Windows NT systems.

-c
Indicates that a new repository is to be created. If a repository exists and this
option is specified, the idl2ir command ignores the existing repository and
replaces it with a new one. If a repository exists and this option is not
specified, the idl2ir command updates the existing repository.

-D identifier[=definition]
Performs the same function as the #define preprocessor directive; that is, the
-D option defines a token string or a macro to be substituted for every
occurrence of a given identifier in the definition file. If a definition is not
specified, the identifier is defined as 1.You can specify multiple -D options.
1-24 Commands, Processes, and MIB Reference

-I pathname

Specifies a directory within which to search for include files, in addition to
any directories specified with the #include OMG IDL preprocessor
directive.

There are two types of #include OMG IDL preprocessor directives: system
(for example, <a.idl>) and user (for example, "a.idl"). The path for
system #include directives is /usr/include for UNIX systems, and any
directories specified with the -I option. The path for system #include
directives is the local directory for Windows NT systems, and any directories
specified with the -I option.

The path for user #include directives is the current directory and any
directories specified with the -I option. Multiple -I options can be specified.

Note: Additional definitions loaded into the interface repository while the server
process for the Interface Repository is running are not accepted until the server
process for the Inteface Repository is stopped and started again.
Commands, Processes, and MIB Reference 1-25

1 Commands Reference
idltojava

Synopsis Compiles IDL files to Java source code based on IDL to Java mappings defined by the
OMG.

The idltojava compiler provided with BEA WebLogic Enterprise (WLE) includes
several enhancements, extensions and additions that are not present in the original Sun
Microsystems, Inc. version of the compiler. The WebLogic Enterprise specific
revisions are summarized here.

The BEA WebLogic Enterprise idltojava compiler:

n Differs from that described in the Sun Microsystems, Inc. documentation in
behavior and defaults of the flags.

n Includes a new #pragma tag: #pragma ID <name> <Repostitory_id>

n Includes a new #pragma tag: #pragma version <name> <m.n>

n Extends the #pragma prefix to work on inner scope. A blank prefix reverts.

n Allows unions with boolean discriminators

n Allow declarations nested inside complex types

Syntax idltojava [idltojava Command Flags] [idltojava Command Options]
filename ...

m3idltojava [idltojava Command Flags] [idltojava Command Options]
filename ...

To run idltojava on Client-side IDL files, use the following command:

idltojava <flags> <options> <idl-files>

The idltojava command requires a C++ pre-processor, and is used to generate
deprectated names. The command idltojava generates Java code as is appropriate
for the client-side ORB.

Note: A remote joint client/server is a client that implements server objects to be
used as callback objects. The server role of the remote joint client/server is
considerably less robust than that of a WebLogic Enterprise server. Neither the
client nor the server has any of the WebLogic Enterprise administrative and
infrastructure components, such as tmadmin, JNDI registration, and ISL/ISH
(hence, none of scalability and reliability attributes of WebLogic Enterprise)
1-26 Commands, Processes, and MIB Reference

To run m3idltojava on Server-side IDL files, use the following command:

m3idltojava <flags> <options> <idl-files>

The server-side ORB is built to use non-deprecated names. The command
m3idltojava generates Java code using non-deprecated names as is appropriate for
the server-side ORB.

Description The idltojava command compiles IDL source code into Java source code. You then
use the javac compiler to compile that source to Java bytecodes.

The command idltojava is used to translate IDL source code into generic client stubs
and generic server skeletons which can be used for callbacks. The command
m3idltojava is used to translate IDL into generic client stubs and WebLogic
Enterprise server skeletons.

The IDL declarations from the named IDL files are translated to Java declarations
according to the mappings specified in the OMG IDL to Java mappings.

Options Note: Several option descriptions have been added here that are not documented in
the original Sun Microsystems Inc. idltojava compiler documentation.

Option Description

-j javaDirectory Specifies that generated Java files should be written to the given
directory. This directory is independent of the -p option, if any.

-J filesFile Specifies that a list of the files generated by idltojava should
be written to filesFile

-p package-name Specifies the name of an outer package to enclose all the
generated Java. It has the same function as #pragma
javaPackage.

Note: You must include an outer package. The compiler does
not do this for you. If you do not have an outer package,
the idltojava compiler will still generate Java files
for you but you will get a Java compiler error when you
try to compile the *.java files.

The following options are identical to the equivalent C/C++ compiler options (cpp):

-Idirectory Specifies a directory or path to be searched for files that are
#included in IDL files. This option is passed to the preprocessor.
Commands, Processes, and MIB Reference 1-27

1 Commands Reference
Command Flags The flags can be turned on by specifying them as shown, and they can be turned off by
prefixing them with the letters no-. For example, to prevent the C preprocessor from
being run on the input IDL files, use -fno-cpp.

The table below includes descriptions of all flags.

-Dsymbol Specifies a symbol to be defined during preprocessing of the
IDL files. This option is passed to the preprocessor.

-Usymbol Specifies a symbol to be undefined during preprocessing of the
IDL files. This option is passed to the preprocessor.

Option Description

Flag Description

-flist-flags Requests that the state of all the -f flags be printed. The default value of this
flag is off.

-flist -debug-flags Provides a list of debugger flags

-fcaseless Request that case not be significant in keywords and identifiers. The default
value of this flag is ’on’.

-fclient Requests the generation of the client side of the IDL files supplied. The default
value of this flag is ‘off’.

-fcpp Requests that the idl source be run through the C/C++ preprocessor before
being compiled by the idltojava compiler. The default value of this flag is on.

-fignore-duplicates specifies that duplicate definitions be ignored. This may be useful if compiling
multiple idl files at one time. The default value of this flag is off.

-flist-options Lists the options specified on the command line. The default value of this flag
is off.

-fmap-included-files Specifies that java files be generated for definitions included by #include
preprocessor directives. The default value for this flag is off which specifies
that the java files for included definitions not be generated.

-fserver Requests the generation of the server side of the IDL files supplied. The
default value of this flag is off.
1-28 Commands, Processes, and MIB Reference

 is
Notes The BEA WebLogic Enterprise idltojava compiler processes #pragma somewhat
differently from the Sun Microsystems, Inc. idltojava compiler.

RepositoryPrefix="prefix"

A default repository prefix can also be requested with the line #pragma prefix
"requested prefix" at the top-level in the IDL file itself.

#pragma javaPackage "package"

Wraps the default package in one called package. For example, compiling an IDL
module M normally creates a Java package M. If the module declaration is preceded
by:

#pragma javaPackage browser

the compiler will create the package M inside package browser. This pragma is useful
when the definitions in one IDL module will be used in multiple products. The
command line option -p can be used to achieve the same result

#pragma ID scoped-name "IDL:<path>:<version>"

specifies the repository ID of the identifier scoped-name. This pragma may appear any
where in an IDL file. If the pragma appears inside a complex type such as structure or
union then only as much of scoped-name need be specified to specify the element. A
scoped-name is of the form outer_name::name::inner_name. The
<path>component of the repository id is a series of identifiers separated by forward
slashes (/). The <version>component is a decimal number MM.mm, where MM is the
major version number and mm is the minor version number.

-fverbose Requests that the compiler comment on the progress of the compilation. The
default value of this flag is off.

-fversion Requests that the compiler print its version and timestamp. The default value
of this flag is off.

-fwarn-pragma Requests that warning messages be issued for unknown or improperly
specified #pragma’s. The default value of this flag is on.

-fwrite-files Requests that the derived java files be written. The default value of this flag
'on'. You might specify -fno-write-files if you wished to check for errors
without actually writing the files.
Commands, Processes, and MIB Reference 1-29

1 Commands Reference
ir2idl

Synopsis Shows the contents of an Interface Repository.

Syntax ir2idl [options] [interface-name]

Options The options are as follows:

[-f repository-name] [-n]
[-t interface-type] [-o filename]

Description This command shows the contents of an Interface Repository. By directing the output
to a file with the -o option, you can extract the OMG IDL file from the repository. By
default, the repository file is repository.ifr.

Parameters interface-name

The name of the interface whose contents are to be shown. If you do not
specify an interface name, all interfaces in the repository are shown.

-f repository-name
The name of the repository to search for the interface definitions. If you do
not specify the -f option, repository.ifr is used.

-n

Specifies that the output should not include those objects that were inherited.

-t interface-type

Indicates the type of objects to display. The object type must be one of the
following keywords:

Attribute
Constant
Exception
Interface
Method
Module
Operation
Typedef

If you do not specify this option, the default is to display all of the types.

-o filename

The file specification for the file in which to write the retrieved OMG IDL
statements. The default is standard output.
1-30 Commands, Processes, and MIB Reference

irdel

Synopsis Deletes the specified object from an Interface Repository.

Syntax irdel [-f repository-name] [-i id] object-name

Description This command deletes the specified interface from the repository. Only interfaces not
referenced from another interface can be deleted. By default, the repository file is
repository.ifr.

Parameters -f repository-name

An optional parameter that specifies an Interface Repository. The
repository-name value is the file specification of an Interface Repository.
If this option is not specified, the repository.ifr is used as the default.

-i id

The repository id for the specified object. The id is used as a secondary level
of lookup. If the id does not match the id of the named object, the object is
not deleted.

object-name

The name of the interface to delete from the repository. The name can be a
simple object name or a scoped name, for example, MOD1::INTERF2::OP3
(operation OP3 is within interface INTERF2, which is in application MOD1).
Commands, Processes, and MIB Reference 1-31

1 Commands Reference
ISL

Synopsis Enables access to WLE objects by remote WLE clients using IIOP.

Syntax ISL SRVGRP="identifier"

 SRVID="number"

 CLOPT="[-A] [servopts options] -- -n netaddr
 [-a]
 [-C {detect|warn|none}]
 [-d device]

 [-E principal_name]
 [-K {client|handler|both|none}]
 [-m minh]
 [-M maxh]
 [-T Client-timeout]
 [-x mpx-factor]
 [-H external-netaddr]
 [-O]
 [-o outbound-max-connections]
 [-s Server-timeout]
 [-u out-mpx-users]”
 [-R renegotiation-interval]
 [-S secure port]
 [-v {detect|warn|none}]
 [-z [0|40|56|128]]
 [-z [0|40|56|128]]

Description The IIOP Server Listener (ISL) is a WLE-supplied server command that enables
access to WLE objects by remote WLE clients using IIOP. The application
administrator enables access to the application objects by specifying the IIOP Server
Listener as an application server in the SERVERS section. The associated command-line
options are used to specify the parameters of the IIOP Server Listener and IIOP Server
Handlers.

The location, server group, server ID , and other generic server-related parameters are
associated with the ISL using the standard configuration file mechanisms for servers.
ISL command-line options allow for customization.

Each ISL booted as part of an application facilitates application access for a large
number of remote WLE clients by providing access via a single, well-known network
address. The IIOP Server Handlers are started and stopped dynamically by the ISL, as
necessary, to meet the incoming load.
1-32 Commands, Processes, and MIB Reference

For joint client/servers, if the remote joint client/server ORB supports bidirectional
IIOP connections, the ISL can use the same inbound connection for outbound invokes
to the remote joint client/server. The ISL also allows outbound invokes (outbound
IIOP) to objects located in a joint client/server that is not connected to an ISH. This
capability is enabled when the –O option is specified. The associated command-line
options (those shown above in boldface text) allow configuration of outbound IIOP
support:

Parameters -A

Indicates that the ISL is to be booted to offer all its services. This is a default,
but it is shown to emphasize the distinction between system-supplied servers
and application servers. The latter can be booted to offer only a subset of their
available services. The double-dash (--) marks the beginning of parameters
that are passed to the ISL after it has been booted.

You specify the following options in the CLOPT string after the double-dash (--) in the
CLOPT parameters:

-n netaddr

 Specifies the network address to be used by a server listener to accept
connections from remote CORBA clients. The remote client must set the
environment variable (TOBJADDR) to this value, or specify the value in the
Bootstrap object constructor. See the C++ Programming Reference for
details. This is the only required parameter.

TCP/IP addresses must be specified in one of the following two formats:
"//hostname:port_number"
"//#.#.#.#:port_number"

In the first format, the domain finds an address for hostname using the local
name facilities (usually DNS). The host must be the local machine, and the
local name resolution facilities must unambiguously resolve hostname to the
address of the local machine.

Note: The hostname must begin with a letter character.

In the second format, the "#.#.#.#" is the dotted decimal format. In dotted
decimal format, each # must be a number from 0 to 255. This dotted decimal
number represents the IP address of the local machine.
In both of the above formats, port_number is the TCP port number at which
the domain process listens for incoming requests. port_number can be a
number between 0 and 65535 or a name. If port_number is a name, it must
be found in the network services database on your local machine.
Commands, Processes, and MIB Reference 1-33

1 Commands Reference

e
e:

host

at

ers;
d it
t.

one
ntly,
 the
he
IIOP
Note: The Java Tobj_Bootstrap object uses a short type to store the
port_number. Therefore, you must use a port_number in the range of 0
to 32767 if you plan to support connections from Java clients.

Note: The network address that is specified by programmers in the Bootstrap
constructor or in TOBJADDR must exactly match the network address in the
application’s UBBCONFIG file. The format of the address as well as the
capitalization must match. If the addresses do not match, the call to th
Bootstrap constructor will fail with a seemingly unrelated error messag

ERROR: Unofficial connection from client at
<tcp/ip address>/<port-number>:

For example, if the network address is specified as //TRIXIE:3500 in the
ISL command line option string, specifying either //192.12.4.6:3500
or //trixie:3500 in the Bootstrap constructor or in TOBJADDR will cause
the connection attempt to fail.

On UNIX systems, use the uname -n command on the host system to
determine the capitalization used. On Windows NT systems, see the
system's Network control panel to determine the capitalization used.

Note: Unlike the BEA Tuxedo system Workstation Listener (WSL), the form
of the network addresses is limited to //host:port. The reason for this
limitation is that the host name and port number are used by WLE serv
the host name does not appear as such in the hexadecimal format, an
could only be passed to the servers using the dotted IP address forma

[-a]
Specifies that certificate-based authentication should be enabled when
accepting an SSL connection from a remote application.

[-C detect|warn|none]
Determines how the IIOP Listener/Handler will behave when unofficial
connections are made to it. The default value is detect.

The official way for the CORBA client to connect to the IIOP
Listener/Handler is via a Bootstrap object. The unofficial connection is
established directly from an IOR. For example, a client could connect to
IIOP Listener/Handler via a Bootstrap object and then, perhaps inadverte
connect to a second IIOP Listener/Handler by using an IOR that contains
host and port of the second IIOP Listener/Handler. Typically, this is not t
case. Usually, the client uses IORs that contain the host and port of the
1-34 Commands, Processes, and MIB Reference

 at
Listener/Handler that the client connected to via a Bootstrap object. Use of
such IORs does not cause an additional connection to be made.

Caution: The use of unofficial connections can cause problems for remote client
applications that use transactions. The application may have the notion that
invocations on both the official and unofficial connections within the same
transaction have succeeded; however, in reality, only invocations on the
official connection are ACID (Atomicity, Consistency, Isolation, and
Durability).

A value of detect causes the ISL/ISH to raise a NO_PERMISSION exception
when an unofficial connection is detected. A value of warn causes the
ISL/ISH to log a message to the user log exception when an unofficial
connection is detected; no exception will be raised. A value of none causes
the ISL/ISH to ignore unofficial connections.

[-d device]

Specifies the device filename used for network access by the server listener
and its server handlers. This parameter is optional because some transport
providers (for example, sockets) do not require a device name. However,
other providers (for example, TLI) do require a device name. In the case of
TLI, this option is mandatory. There is no default for this parameter. (This
does not apply to Windows NT systems.)

[-E principal_ name]
An optional parameter that indicates the identity of the principal that is
required in order to establish a trusted connection pool. A trusted connection
pool can only be established if a WebLogic Enterprise application is
configured to require users to be authenticated.

If a remote client application attempts to propagate per-request security
information over a connection that is not part of a trusted connection pool, the
accompanying propagated security information will be ignored.

[-K {client|handler|both|none}]
Directs the client, or the ISH process, or both, to activate the network
provider’s KEEPALIVE option. This option improves the speed and reliability
of network failure detection by actively testing an idle connection’s state
the protocol stack level. The availability and timeout thresholds for this
feature are determined by operating system tunable parameters.

A value of client configures this option for the client; a value of handler
configures this option for the ISL; and a value of both will configure both
Commands, Processes, and MIB Reference 1-35

1 Commands Reference

’s

L
ete

nge

s the

r
s
 than

the
e
cts
e.

er of
The
emote
 or
sides of the connection. The default value is none, in which case neither side
has the KEEPALIVE option configured.

Note: The KEEPALIVE interval is an operating system parameter, so changing the
value affects any other applications that enable KEEPALIVE. Many
platforms have a two-hour default value that may be longer than desired.

This option is not available on all platforms. A userlog warning message is
generated if the KEEPALIVE option is specified but is not available on the
ISH’s machine. If KEEPALIVE is requested but is not available on the client
machine, the setting is ignored.

[-m minh]

Specifies the minimum number of handlers that should be available in
conjunction with this ISL at any given time. The default is 0. The The IS
will start this many ISHs immediately upon being booted and will not depl
the supply of ISHs below this number until the administrator issues a
shutdown to the ISL. The default value for this parameter is 0. The legal ra
is between 0 and 255.

[-M maxh]

Specifies the maximum number of handlers that should be available in
conjunction with this ISL at any given time. The Handlers are started as
necessary to meet the demand of remote WLE clients attempting to acces
system. The default value for this parameter is equal to the setting for
MAXWSCLIENTS on the logical machine, divided by the multiplexing factor fo
this ISL (see -x option below), rounded up by one. The legal range for thi
parameter is between 1 and 4096. The value must be equal to or greater
minh.

[-T Client-timeout]
 Specifies the inactive client timeout option. The inactive client timeout is
time (in minutes) allowed for a client to stay idle. If a client does not mak
any requests within this time period, the IIOP Listener/Handler disconne
the client. If this argument is not given or is set to 0, the timeout is infinit

[-x mpx-factor]
This is an optional parameter used to control the degree of multiplexing
desired within each ISH. The value for this parameter indicates the numb
remote WLE clients that can be supported simultaneously by each ISH.
ISH ensures that new handlers are started as necessary to handle new r
WLE clients. This value must be greater than or equal to 1 and less than
equal to 4096. The default value for this parameter is 10.
1-36 Commands, Processes, and MIB Reference

[-H external netadder]
Specifies the external network address to be set as the host and port in
interoperable object references returned to clients of the ISL. It has the same
format as the ISL CLOPT -n netaddr option. This feature is useful when an
IIOP, or remote, client needs to connect to an ISL through a firewall.

[-O]

This option (uppercase letter O) enables outbound IIOP to objects that are not
located in a client that is connected to an ISH. Since the –O option requires a
small amount of extra resources, the default is to not allow outbound IIOP.

[-o outbound-max-connections]

This option (lowercase letter o) specifies the maximum number of outbound
connections that each ISH may have. In effect, it limits the number of
simultaneous Outbound IIOP sockets that any single ISH under the control of
this ISL will have active at one time.
This option requires that the –O (uppercase letter O) option is also specified.
The value of this option must be greater than 0, but not more than 4096. An
additional requirement is that the value of this option,
(outbound-max-connections) times the maximum number of handlers,
must be less than 32767. The default for this option is 20.

[-R renegotiation-interval]
Specifes the renegotiation internal in minutes. If a connection does not have
a renegotiation in the specified interval, the IIOP Listener/Handler will
request that the client renegotiate the session for inbound connections or
actually perform the renegotiation in the case of outbound connections. The
default is 0 minutes which results in no periodic session renegotiations.

[-S secure-port]

Specifies the port number that the IIOP Listener/Handler should use to listen
for secure connections using the SSL protocol. You can configure the IIOP
Listener/Handler to allow only secure connections by setting the port
numbers specified by the -S and -n options to the same value.

[-s Server-timeout]
Server-timeout is the time, in minutes, allowed for a remote server to remain
idle. If a remote server does not receive any requests within this time period,
the ISL disconnects the outbound IIOP connection to the server. The ISH
reconnects to the remote server on subsequent requests. This option can be
used for server platforms that are unstable. Note that this is a best-attempt
value in that the ISL does not disconnect the connection before this time is up,
Commands, Processes, and MIB Reference 1-37

1 Commands Reference

than

ct
SSL)

t the
igital
is

in
ame
e
he

he
e

ction.

and

ck
but does not guarantee to disconnect the connection once the exact time has
elapsed. This option requires that the –O (uppercase letter O) option is also
specified. The value must be greater than or equal to 1. If this option is not
specified, the default is 60 (one hour).

[-u out-mpx-users]

An optional parameter used to control the degree of outbound multiplexing
desired within each ISH. The value for this option indicates the number of
outbound IIOP users (native clients or servers) that can be supported
simultaneously by each outbound IIOP connection in the ISH. The ISL
ensures that new ISHs are started, as necessary, to handle new users up to the
value of this option (out-mpx-users) . This option requires that the –O
(uppercase letter O) option is also specified. This option must be greater
0 (zero), but not more than 1024; the default value is 10.

[-v {detect|warn|none}]

Determines how the IIOP Listener/Handler will behave when a digital
certificate for a peer of an outbound connection initiated by the BEA obje
request broker (ORB) us received as part of the Secure Sockets Layer (
protocol handshake. The validation is only performed by the initiator of a
secure connection and confirms that the peer server is actually located a
same network address as specified by the domain name in the server’s d
certificate. This validation is not technically part of the SSL protocol but
similar to the check done in web browsers.

A value of detect causes the BEA ORB to verify that the host specified
the object reference used to make the connection matches the domain n
specified in the peer server’s digital certificate. If the comparison fails, th
BEA ORB refuses the authenticate the peer and drops the connection. T
detect value is the default value.

A value of warn causes the BEA ORB to verify that the host specified in t
object reference used to make the connection matches the domain nam
specified in the peer’s digital certificate. If the comparison fails, the BEA
ORB logs a message to the user log but continues to process the conne

A value of none causes the BEA ORB to not perform the peer validation
to continue to process the connection.

The -v parameter is only available if the WebLogic Enterprise Security pa
is installed.
1-38 Commands, Processes, and MIB Reference

[-z |0|40|56|128]]

Specifies the minimum level of encryption when establishing a network
connection between a client and the IIOP Listener/Handler. 0 means no
encryption while 40, 56, and 128 specify the length (in bits) of the encryption
key. If this minimum level of encryption cannot be met, a connection will not
be established. This option is only available if the WebLogic Enterprise
Security Pack is installed.

[-Z |0|40|56|128]]

Specifies the maximum level of encryption when establishing a network
connection between a client and the IIOP Listener/Handler. 0 means no
encryption while 40, 56, and 128 specify the length (in bits) of the encryption
key. The default is whatever capability is specified by the license. This option
is only available if the WebLogic Enterprise Security Pack is installed

Portability The IIOP Server Listener is supported as a WLE-supplied server on UNIX and
Microsoft Windows NT operating systems.

Interoperability The ISL works with any IIOP compliant ORB.

Depending on the type of remote object and the desired outbound IIOP configuration,
you may have to perform additional programming tasks. lists the requirements for
each type of object and outbound IIOP configuration.

Table 1-3 Programming Requirements for Using Outbound IIOP

Types of
Objects

Asymmetric
Requirements

Paired-connection
Requirements

Bidirectional Requirements

Remote joint
client/servers

Set ISL CLOPT
-O option.

Use the
Tobj_Bootstrap::register
_callback_port method to
register the callback port.

Use the
CORBA::ORB::create_policy
method to set BiDirPolicy on the
POA.

Foreign
(non-WLE)
ORBs

Set ISL CLOPT
-O option.

Not applicable. If the foreign ORB supports the POA
and BiDirPolicy, use the
CORBA::ORB::create_policy
method to set BiDirPolicy on the
POA.

Remote clients Remote clients are not servers, so outbound IIOP is not possible.
Commands, Processes, and MIB Reference 1-39

1 Commands Reference
Network
Addresses

Suppose the local machine on which the ISL is being run is using TCP/IP addressing
and is named backus.company.com, with address 155.2.193.18. Further suppose
that the port number at which the ISL should accept requests is 2334. The address
specified by the -l option could be:

 //155.2.193.18:2334

 //backus.company.com:2334

Examples *SERVERS

ISL SRVGRP="ISLGRP" SRVID=1002 RESTART=Y GRACE=0

 CLOPT="-A -- -n //piglet:1900 -d /dev/tcp"

Native joint
client/servers

Outbound IIOP is not used.

Native clients Outbound IIOP is not used.

Table 1-3 Programming Requirements for Using Outbound IIOP (Continued)
1-40 Commands, Processes, and MIB Reference

.

y

ge

ents.
m3idltojava

Synopsis Compiles the Object Management Group (OMG) Interface Definition Language (IDL)
file and generates client stub and server skeleton files required for the interface
definitions being implemented in Java. Use this command only when you are creating
a Java server application.

Syntax m3idltojava [-p] [-j javaDirectory] [-Idirectory][-Dsymbol]
 [-Usymbol] [-foptions] idl-filename...

Description The m3idltojava command compiles OMG IDL source files into Java source code.
You then use the javac compiler to compile that source into Java bytecodes. The OMG
IDL declarations from the named OMG IDL files are translated to Java declarations
according to the mapping from OMG IDL to Java.

Given the provided idl-filename file(s), the m3idltojava command generates the
following files for each interface defined in the server application’s OMG IDL file:

interface-name.java
Contains the Java version of the interface definitions in the OMG IDL file
Each interface implementation extends the org.omg.CORBA.Object class.

_interface-nameStub.java

Is the client stub file.

_interface-nameImplBase.java
Is the Server skeleton file, which is extended by the server application’s
object implementation classes.

interface-nameHelper.java
Contains the helper class for the object.

interface-nameHolder.java
Contains the holder class for the object.

The m3idltojava compiler generates the client stub and server skeleton files. An
previous versions are overwritten.

If an unknown option is passed to this command, the offending option and a usa
message is displayed to the user, and the compile is not performed.

Parameter idl-filename
Represents the name of one or more files that contain OMG IDL statem
Commands, Processes, and MIB Reference 1-41

1 Commands Reference
Options -p package
Specifies that generated Java classes should be part of the given package. The
compiler creates the appropriate directory hierarchy and stores the generated
files in the directory that corresponds to their package. If you specify the -j
option, the hierarchy is created under the specified directory. Otherwise, the
hierarchy is created under the current directory. You can override this option
by using #pragma javaPackage in the OMG IDL source file.

-j javaDirectory
Specifies that generated Java files should be written to the specified directory.
This directory is independent of the -p option, if used.

-Idirectory
Specifies directories within which to search for include files, in addition to
any directories specified with the #include OMG IDL preprocessor
directive. Multiple directories can be specified by using multiple -I options.

There are two types of #include OMG IDL preprocessor directives:
system (for example, <a.idl>) and user (for example, "a.idl"). The
path for system #include directories is the system include directory and any
directories specified with the -I option. The path for user #include
directives is the location of the file containing the #include directive,
followed by the path specified for the system #include directive.

By default, the text in files included with an #include directive is not
included in the client and server code that is generated.

-Dsymbol
Specifies a symbol to be defined during OMG IDL file preprocessing. The
m3idltojava command passes this symbol to the preprocessor.

-Usymbol
Specifies a symbol to be undefined during OMG IDL file preprocessing. The
m3idltojava command passes this symbol to the preprocessor.

-foptions
You can enable the following options by specifying them as shown, and
disable them by appending the string no-. For example, to prevent the C
preprocessor from being run on the input OMG IDL files, specify -fno-cpp.

-flist-flags

Displays the state of all -f flags. By default, this option is disabled.

-fclient

Generates the client application files. By default, this option is
enabled.
1-42 Commands, Processes, and MIB Reference

-fserver

Generates the server application files. By default, this option is
enabled.

-fverbose

Specifies that the m3idltojava command should work in verbose
mode. In particular, it writes command output to its standard output.
By default, this option is disabled.

-fversion

Specifies that the compiler prints its version and timestamp. By
default, this option is disabled.

Examples The following command generates only the server application files for Simple.idl:

m3idltojava -fno-client Simple.idl

The following command generates only the client application files for Simple.idl:

m3idltojava -fno-server Simple.idl
Commands, Processes, and MIB Reference 1-43

1 Commands Reference
tmadmin

See the description of the tmadmin command in the BEA Tuxedo Reference manual.
1-44 Commands, Processes, and MIB Reference

tmboot

See the description of the tmboot command in the BEA Tuxedo Reference manual.
Commands, Processes, and MIB Reference 1-45

1 Commands Reference
tmconfig

See the description of the tmconfig command in the BEA Tuxedo Reference manual.
1-46 Commands, Processes, and MIB Reference

tmloadcf

See the description of the tmloadcf command in the BEA Tuxedo Reference manual.
Commands, Processes, and MIB Reference 1-47

1 Commands Reference
tmshutdown

See the description of the tmshutdown command in the BEA Tuxedo Reference
manual.
1-48 Commands, Processes, and MIB Reference

tmunloadcf

See the description of the tmunloadcf command in the BEA Tuxedo Reference
manual.
Commands, Processes, and MIB Reference 1-49

1 Commands Reference
tpgrpadd

See the description of the tpgrpadd command in the BEA Tuxedo Reference manual.
1-50 Commands, Processes, and MIB Reference

tpgrpdel

See the description of the tpgrpdel command in the BEA Tuxedo Reference manual.
Commands, Processes, and MIB Reference 1-51

1 Commands Reference
tpgrpmod

See the description of the tpgrpmod command in the BEA Tuxedo Reference manual.
1-52 Commands, Processes, and MIB Reference

tpusradd

See the description of the tpusradd command in the BEA Tuxedo Reference manual.
Commands, Processes, and MIB Reference 1-53

1 Commands Reference
tpusrdel

See the description of the tpusrdel command in the BEA Tuxedo Reference manual.
1-54 Commands, Processes, and MIB Reference

tpusrmod

See the description of the tpusrmod command in the BEA Tuxedo Reference manual.
Commands, Processes, and MIB Reference 1-55

1 Commands Reference
weblogic.rmc

Synopsis A proxy is a class used by the clients of a remote object to handle the marshaling and
unmarshaling of parameters across a network. In RMI, the stub and skeleton class files
generated by the RMI compiler are proxies for the RMI client and RMI server objects,
respectively.

The Weblogic RMI compiler (weblogic.rmic) is a tool for generating stubs for RMI
clients and skeletons for RMI servers.

To generate stubs and skeletons, run the WebLogic RMI compiler on the
fully-qualified package name of the compiled class that contains the remote object
implementation. (Note that you must first have generated class files by running the
javac compiler on the Java source files.)

Syntax The syntax for using the WebLogic RMI compiler is as follows:

java weblogic.rmic [options] ClassName

Options The options to the java weblogic.rmic command are shown in the following table.

Option Description

-help Prints the complete list of command line options.

-version Prints version information.

-d <dir> Indicates (top-level) directory for compilation.

-notransactions Skip transaction context propagation

-verbosemethods Instruments proxies to print debug information to std err.

-descriptor <example> Associates or creates a descriptor for each remote class.

-visualCafeDebugging Instruments proxies to support distributed debugging under
VisualCafe.

-v1.2 Generates Java 1.2 style stubs

-keepgenerated Keeps the generated .java files.

-commentary Emit commentary.
1-56 Commands, Processes, and MIB Reference

ss

nd

e
The weblogic.rmic command also accepts any option supported by javac—the
options are passed directly to the Java compiler.

Description To create a proxy stub file for the client and skeleton file for the server, you must run
the weblogic.rmic compiler on the fully-qualified package names of compiled cla
files that contain remote object implementations, like my.package.MyImpl_WLstub.
The weblogic.rmic command takes one or more class names as an argument a
produces class files of the form MyImpl_WLStub.class and MyImpl_WLSkel.class.

(Note that you must first have generated class files by running the javac compiler on
the Java source files.)

For example, to generate the stub and skeleton class files for the class
classes/my/package/MyImpl.class, you would change directories (cd) into the
classes directory and run the weblogic.rmic command on the generated class fil
as follows:

java weblogic.rmic -d . my.package.MyImpl

-compiler <JavaCompiler> Explicitly indicate which Java compiler to use. For example:
java weblogic.rmic -compiler sj examples.hello.HelloImpl

-g Compile debugging info into class file.

-O Compile with optimization on.

-debug Compile with debugging on.

-nowarn Compile without warnings.

-verbose Compile with verbose output.

-nowrite Do not generate .class files.

-deprecation Warn about deprecated calls.

-normi Passed through to the Symantec sj compiler.

-J<option> Flags passed through to java runtime.

-classpath <path> Classpath to use during compilation.

Option Description
Commands, Processes, and MIB Reference 1-57

1 Commands Reference

as the

leton

t.
lling
ted
The weblogic.rmic command accepts any option supported by javac—the options
are passed directly to the Java compiler. In the example, the -d option indicates the
root directory in which to place the compiled stub and skeleton class files. So the
preceding command creates the following files in the directory
classes/my/package:

MyImpl_WLStub.class

MyImpl_WLSkel.class

The generated stub class implements exactly the same set of remote interfaces
remote object itself, and handles the necessary encoding (marshaling) and decoding
(unmarshaling) of parameters sent across the network.

The skeleton class is also generated by the WebLogic RMI compiler but the ske
is not used in WebLogic RMI. Generally, the RMI skeleton would unmarshal the
invoked method and arguments on the remote object, invoke the method on the
instance of the remote object, and then marshal the results for return to the clien
WebLogic Enterprise handles the unmarshaling, method invocation, and marsha
on the RMI server side using reflection. If necessary, you can discard the genera
skeleton class files to save disk space.
1-58 Commands, Processes, and MIB Reference

CHAPTER
2 Server Process and File
Format Reference

The WebLogic Enterprise system uses the following server processes and files:

n TMFFNAME

n TMIFRSVR

n factory_finder.ini

n UBBCONFIG

This topic describes these server processes.
Commands, Processes, and MIB Reference 2-1

2 Server Process and File Format Reference

ins a
rvice
ager

gers
n
TMFFNAME

Synopsis Server that runs the FactoryFinder and supporting NameManager services.

Syntax TMFFNAME SRVGRP=”identifier” SRVID=”number”
 [CLOPT=”[-A] [servopts options]
[-- [-F] [-N | -N –M [-f filename]]]”]

Description TMFFNAME is a server provided by WebLogic Enterprise that runs the FactoryFinder
and supporting NameManager services which maintain a mapping of
application-supplied names to object references.

Parameters -A
Advertise all services built into the server

-F

FactoryFinder service

-N
Slave NameManager service
This is the default.

–M

Master NameManager service

-f filename
Location of FactoryFinder import file

The FactoryFinder service is a CORBA-derived service that provides client
applications with the ability to find application factories that correspond to
application-specified search criteria. Consult the C++ Programming Reference for a
complete description on the FactoryFinder API and Creating C++ Server Applications
for a description of registering and unregistering factories. The FactoryFinder service
is the “default” service if no services are specified in the CLOPT.

The NameManager service is a WebLogic Enterprise-specific service that mainta
mapping of application-supplied names to object references. One usage of this se
is to maintain the application factory name-to-object reference list. The NameMan
service can be booted with an -M option that designates a Master role. If the -M option
is not specified, the NameManager is assumed to be a Slave. Slave NameMana
obtain updates from the Master. Only one Master NameManager can be specified i
an application.
2-2 Commands, Processes, and MIB Reference

ror

ates

ster

elf

d
The master NameManager can be configured to support the location of factory objects
that reside in a remote domain through the use of an initialization file (for example
import_factories.ini). The location of the initialization file is specified with the
-f command-line option.

If the -f option is specified and the factoyfinder.ini file is not found, the initialization
of the master NameManager will fail. If the -f option is not specified, the
masterNameManger will be initialized however, the process will only contain locally
registered factory objects.

Note: It is possible to boot one or more TMFFNAME processes running the same
service. To provide increased reliability, at least two NameManager services
must be configured, preferably on different machines.

Interoperability The TMFFNAME servers run on WebLogic Enterprise version 4.0 software and later.

Notes If there are less than two NameManager services configured in the application’s
UBBCONFIG (TMFFNAME -N), the server terminates itself during boot and writes an er
message to the user log.

If a Master NameManager service is not configured in the application’s UBBCONFIG
file and is running when a Slave NameManager service starts, the server termin
itself during boot and writes an error message to the user log. Additionally, if the
Master is down, registration and unregistration of factories is disabled until the Ma
restarts.

If a TMSYSEVT server is not configured in the application’s UBBCONFIG file and is not
running when a NameManager service is being started, the server terminates its
during boot and writes an error message to the user log.

If a NameManager service is not configured in the application’s UBBCONFIG file and a
FactoryFinder service is being started, the server terminates itself during boot an
writes an error message to the user log.

Example *SERVERS
TMSYSEVT SRVGRP=ADMIN1 SRVID=44 RESTART=Y
 CLOPT=”-A”

TMFFNAME SRVGRP=ADMIN1 SRVID=45 RESTART=Y
CLOPT=”-A -- -F”

TMFFNAME SRVGRP=ADMIN1 SRVID=46 RESTART=Y
CLOPT=”-A -- -N –M –f c:\appdir\import_factories.ini”
TMFFNAME SRVGRP=ADMIN2 SRVID=47 RESTART=Y
CLOPT=”-A -- -N”
Commands, Processes, and MIB Reference 2-3

2 Server Process and File Format Reference
TMFFNAME SRVGRP=ADMIN3 SRVID=48 RESTART=Y
CLOPT=”-A -- -F”
TMFFNAME SRVGRP=ADMIN4 SRVID=49 RESTART=Y
CLOPT=”-A -- -F”

See Also factory_finder.ini, TMSYSEVT (5), userlog (3), UBBCONFIG(5) in the BEA
Tuxedo Reference, and the TP Framework chapter in the C++ Programming
Reference.
2-4 Commands, Processes, and MIB Reference

TMIFRSVR

Synopsis The Interface Repository server.

Syntax TMIFRSVR SRVGRP="identifier" SRVID="number" RESTART=Y GRACE=0

CLOPT="[servopts options] -- [-f repository_file_name]"

Description The TMIFRSVR server is a server provided by BEA for accessing the Interface
Repository. The API is a subset of the CORBA-defined Interface Repository API. For
a description of the Interface Repository API, see the C++ Programming Reference.

Parameter [-f repository_file_name]
Interface Repository file name. This file must have been generated previously
using the idl2ir command. If this parameter is not specified, the default
repository file name repository.ifr located in the application directory
(APPDIR) for the machine is used. If the repository file cannot be read, the
server fails to boot.

Examples *SERVERS

#This server uses the default repository TMIFRSVR
SRVGRP="IFRGRP" SRVID=1000 RESTART=Y GRACE=0

#This server uses a non-default repository TMIFRSVR
SRVGRP="IFRGRP" SRVID=1001 RESTART=Y GRACE=0
CLOPT="-- -f /nfs/repository.ifr"

See Also ir2idl, UBBCONFIG(5), and servopts(5) in the BEA Tuxedo Reference.
Commands, Processes, and MIB Reference 2-5

2 Server Process and File Format Reference

ain”

lable
factory_finder.ini

Name ASCII FactoryFinder domain configuration file

Description factory_finder.ini is the FactoryFinder configuration file for domains. This file
is parsed by the TMFFNAME service when it is started as a Master NameManager. The
file contains information used by NameManagers to control the import and the export
of object references for factory objects with other domains. To use the information in
the factory_finder.ini file, you must specify the factory_finder.ini file in
the -f option of the TMFFNAME server process.

Definitions A WebLogic Enterprise system domain application is defined as the environment
described in a single TUXCONFIG file. A WebLogic Enterprise system application can
communicate with another WebLogic Enterprise system application or with another
TP application via a domain gateway group. In “WebLogic Enterprise system dom
terms, an application is the same as a TP domain.

A Remote Factory is a factory object that exists in a remote domain that is made
available to the application through a WebLogic Enterprise FactoryFinder.

A Local Factory is a factory object that exists in the local domain that is made avai
to remote domains through a WebLogic Enterprise FactoryFinder.

File Format The file is made up of two specification sections. Allowable section names are:
DM_REMOTE_FACTORIES and DM_LOCAL_FACTORIES.

n Formatting Guidelines

Parameters are generally specified by: KEYWORD = value. This sets KEYWORD to
value. Valid keywords are described within each section. KEYWORDs are
reserved; they cannot be used as values, unless they are quoted.

If a value is an identifier, standard C rules are used. An identifier must
start with an alphabetic character or underscore and must contain only
alphanumeric characters or underscores. An identifier cannot be the same as
any KEYWORD.

A value that is not an identifier must be enclosed in double quotes.

Input fields are separated by at least one space or tab character.

“#” introduces a comment. A newline ends a comment.

Blank lines and comments are ignored.
2-6 Commands, Processes, and MIB Reference

in.

ble

a

ry

Lines are continued by placing at least one tab after the newline. Comments can
not be continued.

n DM_LOCAL_FACTORIES section

This section provides information about the factories exported by each local
domain. This section is optional; if it is not specified, all local factory objects
can be exported to remote domains. If this section is specified, it should be used
to restrict the set of local factory objects that can be retrieved from a remote
domain. The reserved factory_id.factory_kind identifier of “NONE” can
be used to restrict any local factory from being retrieved from a remote doma

Lines within this section have the form:

 factory_id.factory_kind

where factory_id.factory_kind is the local name (identifier) of the
factory. This name must correspond to the identifier of a factory object
registered by one or more WebLogic Enterprise server applications with the
WebLogic Enterprise FactoryFinder.

The factory_kind must be specified for TMFFNAME to locate the appropriate
factory. An entry that does not contain a factory_kind value does not default
to a value of “FactoryInterface” .

n DM_REMOTE_FACTORIES section

This section provides information about factory objects “imported” and availa
on remote domains. Lines within this section have the form:

factory_id.factory_kind required parameters

where factory_id.factory_kind is the name (identifier) of the factory
object used by the local WebLogic Enterprise system domain application for
particular remote factory object. Remote factory objects are associated with a
particular remote domain.

Note: If you use the TobjFactoryFinder interface, the factory_kind must be
FactoryInterface.

The required parameter is:

DOMAINID = domain_id

This parameter specifies the identity of the remote domain in which the facto
object is to be retrieved. The DOMAINID must not be greater than 32 octets in
length. If the value is a string, it must be 32 characters or fewer (counting the
Commands, Processes, and MIB Reference 2-7

2 Server Process and File Format Reference

ill
s
ified

a

:

n

 be

y
trailing null). The value of domain_id can be a sequence of characters or a
sequence of hexadecimal digits preceded by “0x”.

The optional parameter is:

RNAME = string

This parameter specifies the name exported by remote domains. This value w
be used by a remote domain to request this factory object. If this parameter i
not specified, the remote factory object name is the same as the named spec
in factory_id.factory_kind.

Multiple entries with the same name can be specified as long as the values
associated with either the DOMAINID or RNAME parameter results in the
identification of a unique factory object.

Examples n Example 1

The following FactoryFinder domain configuration file defines two entries for
factory object that will be known in the local domain by the identifier
Teller.FactoryIdentity that is imported from two different remote domains

 # BEA WebLogic Enterprise FactoryFinder Domain
 # Configuration File
 #
 *DM_REMOTE_FACTORIES
 Teller.FactoryIdentity
 DOMAINID=”Northwest”
 RNAME=Teller.FactoryType
 Teller.FactoryIdentity
 DOMAINID=”Southwest”

In the first entry, a factory object is to be imported from the remote domain with
an identity of “Northwest” that has been registered with a factory identity of
Teller.FactoryType.

In the second entry, a factory object is to be imported from the remote domai
with an identity of “Southwest” that has been registered with a factory identity
of Teller.FactoryIdentity. Note that because no RNAME parameter was
specified, the name of the factory object in the remote domain is assumed to
the same as the factory’s name in the local domain.

n Example 2

The following FactoryFinder domain configuration file defines that only factor
objects registered with the identity of Teller.FactoryInterface in the local
2-8 Commands, Processes, and MIB Reference

domain are allowed to be exported to any remote domain. Requests for any other
factory should be denied.

 # BEA WebLogic Enterprise FactoryFinder Domain
 # Configuration File
 #
 *DM_LOCAL_FACTORIES
 Teller.FactoryInterface

n Example 3

The following FactoryFinder domain configuration file defines that none of the
factory objects registered with the WebLogic Enterprise FactoryFinder are to be
exported to a remote domain.

 # BEA WebLogic Enterprise FactoryFinder Domain
 # Configuration File
 #
 *DM_LOCAL_FACTORIES
 NONE
Commands, Processes, and MIB Reference 2-9

2 Server Process and File Format Reference
UBBCONFIG

See the description of the UBBCONFIG in the BEA Tuxedo Reference manual.
2-10 Commands, Processes, and MIB Reference

CHAPTER
3 MIB Reference

The following BEA Tuxedo management information bases (MIBS) have been added
or enhanced for the WebLogic Enterprise product:

n T_IFQUEUE Class

n T_INTERFACE Class

n T_JDBCCONNPOOL Class

n T_ROUTING Class

n T_SERVER Class

This topic describes these MIBs.
Commands, Processes, and MIB Reference 3-1

3 MIB Reference
T_IFQUEUE Class

O verview The T_IFQUEUE MIB class represents runtime attributes of an interface as it pertains
to a particular server queue (T_QUEUE). This is primarily a read-only class providing
access to the inherited configuration attributes of an interface as well as statistics
relating to the interface on the queue. Additionally, this class gives administrators finer
granularity in suspending and activating interfaces. This class provides the link
between an interface name and the server processes capable of processing method
invocations on the interface, that is, TA_RQADDR can be used as a key search field on
the T_SERVER class.

Attribute Table
T_IFQUEUE Class Definition Attribute Table

Attribute Usage Type Permissions Values Default

TA_INTERFACENAME * string R--R--R-- string[1..128] N/A

TA_SRVGRP * string R--R--R-- string[1..30] N/A

TA_RQADDR * string R--R--R-- string[1..30] N/A

TA_STATE k string R-XR-XR-- GET: "{ACT|SUS|PAR}"
SET: "{ACT|SUS}"

N/A

TA_AUTOTRAN string R--R--R-- "{Y|N}" N/A

TA_LOAD long R--R--R-- 1 <= num < 32K N/A

TA_PRIO long R--R--R-- 1<= num < 101 N/A

TA_TIMEOUT long R--R--R-- 0 <= num N/A

TA_TRANTIME long R--R--R-- 0 <= num N/A

TA_FBROUTINGNAME string R--R--R-- string[1...15] N/A

TA_LMID k string R--R--R-- LMID N/A

TA_NUMSERVERS long R--R--R-- 0 <= num N/A

TA_TPPOLICY string R--R--R-- "{method |
transaction |
process}"

N/A

TA_TXPOLICY string R-R-R-- "{always | never |
optional | ignore}"

N/A

TA_NCOMPLETED l long R-XR-XR-- 0 <= num N/A
3-2 Commands, Processes, and MIB Reference

Attribute
Semantics

TA_INTERFACENAME: string[1..128]
The fully qualified interface name. The interface repository id for the
interface. The format of this name is dependent on the options specified in
the IDL which generates the interface implementation. See CORBA 2.1
Specification Section 7.6 [CORBA] for details.

TA_SRVGRP: string[0..30]
Server group name. Server group names cannot contain an asterisk, comma
or colon.

TA_RQADDR: string[1..30]
Symbolic address of the request queue for an active server offering this
interface. See T_SERVER:TA_RQADDR for more information on this attribute.

TA_STATE:

GET: {ACTive | SUSpended | PARtitioned}

A GET operation will retrieve configuration information for the selected
T_IFQUEUE objects. The following states indicate the meaning of a TA_STATE
returned in response to a GET request. States not listed will not be returned.

SET: { ACTive | SUSpended}

The following states indicate the meaning of a TA_STATE set in a SET request.
States not listed may not be set.

TA_NQUEUED l long R--R--R-- 0 <= num N/A

TA_CUROBJECTS l long R--R--R-- 0 <= num N/A

TA_CURTRANSACTIONS l long R--R--R-- 0 <= num N/A

(k) - GET key field
(l) - Local Field
(*) - GET/SET key, one or more required for SET operations

ACTive T_IFQUEUE object represents an available interface in the running
system.

SUSpended T_IFQUEUE object represents a currently suspended interface in the
running system.

PARtitioned T_IFQUEUE object represents a currently partitioned interface in the
running system.
Commands, Processes, and MIB Reference 3-3

3 MIB Reference
Limitation: Dynamic advertisement of interfaces (i.e., state change from
INActive or INValid to ACTive) is not supported, nor is unadvertisement
(i.e., state change from ACTive to INActive).

TA_AUTOTRAN: { Y | N }

Signifies whether a transaction will be automatically started for invocations
made outside a transaction context. See T_INTERFACE description of this
attribute for discussion of limitations regarding this attribute.

TA_LOAD: 1 <= num <= 32K

This T_INTERFACE object imposes the indicated load on the system.
Interface loads are used for load balancing purposes, that is, queues with
higher enqueued workloads are less likely to be chosen for a new request.

TA_PRIO: 1 <= num <= 101

This T_INTERFACE object has the indicated dequeuing priority. If multiple
interface requests are waiting on a queue for servicing, the higher priority
requests will be handled first.

TA_TIMEOUT: 0 <= num

Time limit (in seconds) for processing individual method invocations for this
interface. Servers processing method invocations for this interface will be
abortively terminated if they exceed the specified time limit in processing
the request. A value of 0 for this attribute indicates that the server should not
be abortively terminated.

TA_TRANTIME: 0 <= num

Transaction timeout value in seconds for transactions automatically started
for this T_INTERFACE object. Transactions are started automatically when a
requests not in transaction mode is received and the
T_INTERFACE:TA_AUTOTRAN attribute value for the interface is "Y".

TA_FBROUTINGNAME: string[1..15]

The factory-based routing criteria associated with this interface.

TA_LMID: LMID
Current logical machine on which the queue offering this interface is
located.

ACTive Activate the T_IFQUEUE object. State change only allowed when in
the SUSpended state. Successful return leaves object in ACTive state.

SUSpended Suspend the T_IFQUEUE object. State change only allowed when in
the ACTive state. Successful return leaves object in SUSpended state.
3-4 Commands, Processes, and MIB Reference

TA_NUMSERVERS: 0 <= num

Number of corresponding servers offering this interface on this queue.

TA_TPPOLICY: { method | transaction | process }

The TP framework deactivation policy. This reflects the policy registered
with the framework at server startup. The first server to register the interface
sets the value in T_INTERFACE. This value cannot be changed.

TA_TXPOLICY: { optional | always | never | ignore }

The transaction policy for the interface. The setting in this attribute affects
the effect of the TA_AUTOTRAN attribute. See TA_AUTOTRAN for further
explanation. This attribute is always read-only. It is set by the developer
when the server is built and registered at server startup.

TA_NCOMPLETED: 0 <= num

Number of interface method invocations completed since the interface was
initially offered.

TA_NQUEUED: 0 <= num

Number of requests currently enqueued for this interface.

TA_CUROBJECTS: 0 <= num
Number of active objects for this interface for associated queue. This
number represents the number of entries in the active object table for this
queue on the associated machine. This includes objects that are not in
memory but that were invoked within an active transaction.

TA_CURTRANSACTIONS: 0 <= num

Number of active global transactions associated with this interface for its
associated queue.
Commands, Processes, and MIB Reference 3-5

3 MIB Reference
T_INTERFACE Class

Overview The T_INTERFACE MIB class represents configuration and runtime attributes of
CORBA interfaces at both the domain and server group levels.

A domain-level T_INTERFACE object is one that is not associated with a Server
Group. Its TA_SRVGRP attribute contains a null string (string of length 0, "").

A server group level T_INTERFACE object is one that has an associated server group
(i.e., its TA_SRVGRP attribute contains a valid server group name for the domain). This
Server Group level representation of an interface also provides a container for
managing interface state (TA_STATE) and for collecting accumulated statistics.

An associated server group level T_INTERFACE object must exist for any CORBA
Interfaces that are activated in a server. The activation of interfaces in a server is
controlled by the state of a T_IFQUEUE object for the interface. Activation of a
T_IFQUEUE object causes its attributes to be initialized with the values specified for
the associated server group level T_INTERFACE object. If such an object does not
exist, then one will be dynamically created. This dynamically-created server group
level T_INTERFACE object will be initialized with the attributes of the domain level
T_INTERFACE object for the interface if one exists. If an associated domain level
T_INTERFACE object does not exist, system specified default configuration values
will be applied. Once activated, interfaces are always associated with a server group
level T_INTERFACE object.

The specification of configuration attributes for interfaces at any level is completely
optional, system defined defaults will be provided and run-time server group level
T_INTERFACE objects will be created. Interfaces to be offered by a server are
identified via the ICF file used to generate server skeletons and advertised
automatically by the system at server activation time.
3-6 Commands, Processes, and MIB Reference

Attribute Table
T_INTERFACE Class Definition Attribute Table

Attribute Usage Type Permissions Values Default

TA_INTERFACENAME

TA_SRVGRP

r*

r*

string

string

ru-r--r--

ru-r--r--

string[1..128]

string[0..30]

N/A

N/A

TA_STATE k string rwxr-xr-- GET: "{ACT |
INA | SUS |
PAR}"

SET: "{NEW |
INV | ACT | REA
| SUS}"

N/A

TA_AUTOTRAN string rwxr-xr-- "{Y|N}" "N"a

TA_LOAD long rwxr-xr-- 1 <= num < 32K 501

TA_PRIO long rwxr-xr-- 1<= num < 101 50a

TA_TIMEOUT long rwxr-xr-- 0 <= num 0a

TA_TRANTIME long rwxr-xr-- 0 <= num 30a

TA_FBROUTINGNAME string rwyr-yr-- string[1...15] 2

TA_LMID k string R--R--R-- LMID N/A

TA_NUMSERVERS long R--R--R-- 0 <= num N/A

TA_TPPOLICY string R--R--R-- "{method |
transaction |
process}"

N/A

TA_TXPOLICY string R-R-R-- "{always |
never |
optional |
ignore}"

N/A

TA_NCOMPLETED l long R-XR-XR-- 0 <= num N/A3

TA_NQUEUED l long R--R--R-- 0 <= num N/A

(k) - GET key field
(l) - Local Field
(r) - Required field for object creation (SET TA_STATE NEW)
(*) - GET/SET key, one or more required for SET operations
Commands, Processes, and MIB Reference 3-7

3 MIB Reference
Attribute
Semantics

TA_INTERFACENAME: string[1..128]

The fully qualified interface name. The interface repository id for the
interface. The format of this name is dependent on the options specified in
the IDL which generates the interface implementation. See CORBA 2.1
Specification Section 7.6 [CORBA] for details.

TA_SRVGRP: string[0..30]

Server group name. Server group names cannot contain an asterisk, comma
or colon. An explicitly specified 0 length string for this attribute is used to
specify and query domain level configuration and runtime information for an
interface. There are certain limitations and semantic differences noted in
other attributes with respect to domain and group level objects in this class.

TA_STATE:

Following are the semantics for GET and SET TA_STATE values on the
T_INTERFACE class. Where semantics differ between group and domain
level objects, those differences are noted.

GET: {ACTive | INActive | SUSpended | PARtitioned}

A GET operation will retrieve configuration information for the selected
T_INTERFACE objects. The following states indicate the meaning of a
TA_STATE returned in response to a GET request. States not listed will not be
returned.

1. Group level T_INTERFACE objects (TA_SRVGRP != "") determine their defaults from the
domain level T_INTERFACE object with a matching TA_INTERFACENAME setting if one exists. The
listed defaults apply if no domain level object exists or if a domain level object is being created.

2. All T_INTERFACE objects with the same TA_INTERFACENAME must have matching
TA_FBROUTINGNAME values. Therefore, the default for a newly configured object is the 0 length
string ("") if there are currently no matching objects with the same TA_INTERFACENAME. Other-
wise, the default (and in fact only legal value) is the currently configured TA_FBROUTINGNAME
value for the existing matched objects.

3. TA_NCOMPLETED and TA_IMPLID (locals) require TA_LDBAL="Y" in the T_DOMAIN MIB class.
3-8 Commands, Processes, and MIB Reference

SET: {NEW | INValid | ACTive | REActivate | SUSpended}

A SET operation will update configuration and runtime information for the
selected T_INTERFACE object. Note that modifications may affect more than
one server group when making domain level changes and runtime
modifications may affect more than one server if multiple servers are
currently offering an interface. The following states indicate the meaning of
a TA_STATE set in a SET request. States not listed may not be set.

ACTive T_INTERFACE object is defined and at least one corresponding
T_IFQUEUE entry is in the ACTive state.

Note: For a group level T_INTERFACE object, corresponding
T_IFQUEUE entries are those with matching TA_INTERFACENAME
and TA_SRVGRP attributes. For a domain level T_INTERFACE object,
corresponding T_IFQUEUE entries are those with matching
TA_INTERFACENAME attributes regardless of their TA_SRVGRP
value.

INActive T_INTERFACE object is defined and there are no corresponding
T_IFQUEUE entries in any ACTive equivalent state.

SUSpended T_INTERFACE object is defined and amongst all corresponding
T_IFQUEUE entries there are none in the ACTive state and at least one
in the SUSpended state. This state is ACTive equivalent for the
purpose of determining permissions.

PARtitioned T_INTERFACE object is defined and amongst all corresponding
T_IFQUEUE entries there are

1. none in the ACTive state

2. none in the SUSpended state and

3. at least one in the PARtitioned state. This state is ACTive
equivalent for the purpose of determining permissions.

NEW Create T_INTERFACE object for application. State change only allowed
when in the INValid state. Successful return leaves object in INActive
state. Creation of a domain level T_INTERFACE object will affect
existing group level objects with the same TA_INTERFACENAME value
by resetting all TA_FBROUTINGNAME values if a new value is explicitly
specified. All other configuration attribute settings will not affect existing
group level T_INTERFACE objects.
Commands, Processes, and MIB Reference 3-9

3 MIB Reference
Limitation: Dynamic advertisement of interfaces (i.e., state change from
INActive or INValid to ACTive) is not supported, nor is unadvertisement
(i.e., state change from ACTive to INActive).

TA_AUTOTRAN: { Y | N }

Signifies whether a transaction will be automatically started for invocations
made outside a transaction context.
Limitations: Run-time updates to this attribute are not reflected in active
equivalent T_INTERFACE objects and TA_TXPOLICY may override the value
specified for this attribute in the ubbconfig file. If TA_TXPOLICY is:

INValid Delete T_INTERFACE object for application. State change only allowed
when in the INActive state. Successful return leaves object in INValid
state.

ACTive Activate the T_INTERFACE object. Setting this state on the domain level
object has the effect of activating all corresponding T_IFQUEUE entries
that are currently SUSpended throughout the domain. Setting this state
on the group level object will affect only servers within the group offering
the interface. State change only allowed when in the SUSpended state.
Successful return leaves object in ACTive state.

REActivate Reactivate the T_INTERFACE object. Setting this state on the domain
level object has the effect of activating all corresponding T_IFQUEUE
entries that are currently SUSpended throughout the domain. Setting this
state on the group level object will affect only servers within the group
offering the interface. State change only allowed when in the ACTive or
SUSpended states. Successful return leaves object in ACTive state. This
state permits global activation of T_IFQUEUE entries suspended at the
group level without having to individually activate each group level
T_INTERFACE object.

SUSpended Suspend the T_INTERFACE object. Setting this state on the domain level
object has the effect of suspending all corresponding T_IFQUEUE entries
that are currently ACTive throughout the domain. Setting this state on the
group level object will affect only servers within the group offering the
interface. State change only allowed when in the ACTive state.
Successful return leaves object in SUSpended state.

always A value of N will have no effect at run time. Behavior will be as though the
setting was Y.

never A value of Y will have no effect. The interface will never be involved in a
transaction.
3-10 Commands, Processes, and MIB Reference

TA_LOAD: 1 <= num <= 32K
This T_INTERFACE object imposes the indicated load on the system.
Interface loads are used for load balancing purposes, that is, queues with
higher enqueued workloads are less likely to be chosen for a new request.
Limitation: Run-time updates to this attribute for domain level objects will
not affect corresponding group level objects for the same interface.

TA_PRIO: 1 <= num <= 101
This T_INTERFACE object has the indicated dequeuing priority. If multiple
interface requests are waiting on a queue for servicing, the higher priority
requests will be handled first.
Limitation: Run-time updates to this attribute for domain level objects will
not affect corresponding group level objects for the same interface.

TA_TIMEOUT: 0 <= num

Time limit (in seconds) for processing individual method invocations for this
interface. Servers processing method invocations for this interface will be
abortively terminated if they exceed the specified time limit in processing
the request. A value of 0 for this attribute indicates that the server should not
be abortively terminated.
Limitation: Run-time updates to this attribute for domain level objects will
not affect corresponding group level objects for the same interface.

TA_TRANTIME: 0 <= num
Transaction timeout value in seconds for transactions automatically started
for this T_INTERFACE object. Transactions are started automatically when a
requests not in transaction mode is received and the T_INTERFACE:
TA_AUTOTRAN attribute value for the interface is "Y".
Limitation: Run-time updates to this attribute for domain level objects will
not affect corresponding group level objects for the same interface.
Note: Updating this value at runtime for domain level objects should cause a
warning, since the only use would be to set the default for a subsequent boot
of the application.

TA_FBROUTINGNAME: string[1..15]
The factory-based routing criteria associated with this interface. The name
FBROUTINGNAME is used to allow for the future possibility of other routing
criteria for message-based routing. This will be less confusing than trying to
overload ROUTINGNAME

ignore A value of Y will have no effect. The interface will never be involved in a
transaction.
Commands, Processes, and MIB Reference 3-11

3 MIB Reference
Limitation: This attribute may be set only for a domain level T_INTERFACE
object, i.e., TA_SRVGRP is "".

TA_LMID: LMID
Current logical machine with which the active equivalent group level
T_INTERFACE object is associated. This attribute is blank, i.e., "" for domain
level objects unless a local query is performed, i.e., TA_FLAGS has the
MIB_LOCAL bit set. In the local case, multiple domain level objects will be
returned for the same interface, one per machine, with the local values
retrieved from each machine represented in the separate objects.

TA_NUMSERVERS: 0 <= num

Number of corresponding servers offering this interface.

TA_TPPOLICY: { method | transaction | process }

The TP framework deactivation policy. This reflects the policy registered
with the framework at server startup. The first server to register the interface
sets the value in T_INTERFACE. This value cannot be changed.

TA_TXPOLICY: { optional | always | never | ignore }

The transaction policy for the interface. The setting in this attribute affects
the effect of the TA_AUTOTRAN attribute. See TA_AUTOTRAN for further
explanation. This attribute is always read-only. It is set by the developer
when the server is built and registered at server startup.

TA_NCOMPLETED: 0 <= num
Number of interface method invocations completed with respect to the
corresponding T_IFQUEUE objects since they were initially offered. Local
queries (TA_FLAGS MIB_LOCAL bit set) on domain level objects will return
one object per machine with the statistics for the indicated interface on that
machine.

TA_NQUEUED: 0 <= num
Number of requests currently enqueued for this interface. Local queries
(TA_FLAGS MIB_LOCAL bit set) on domain level objects will return one
object per machine with the statistics for the indicated interface on that
machine.

Implementation
Hint

The T_INTERFACE MIB is a mapping from an interface to a BEA Tuxedo service. The
MIB server can implement some of the get/set operations for an interface by calling
the existing logic for the associated T_SERVICE object.
3-12 Commands, Processes, and MIB Reference

T_JDBCCONNPOOL Class

Overview This class represents the configuration and runtime attributes of JDBC
connection pools on a Java server. The attributes consist of statistics or
values associated with each connection pool. Except for TA_STATE, attribute
values are persistent in TUXCONFIG. Local attributes are local to the memory
allocated to a Java server.

Attribute Table

T_JDBCCONNPOOL Class Definition Attribute Table

Attribute Type Permissions Values Default

TA_SRVID(r)(*) string ru-r--r-- 1<=num<30,001 N/A

TA_SRVGRP(r)(*) string ru-r--r-- string[1...30] N/A

TA_DSNAME(r)(*) string ru-r--r-- string[0...30] N/A

TA_DRIVER string rw-r--r-- string[0...256] N/A

TA_URL string rw-r--r-- string[2...256] N/A

TA_STATE string rw-r--r-- GET:VALID
SET:"{NEW|INVALID}"

N/A
N/A

TA_DBNAME string rw-r--r-- string[0...30] N/A

TA_DBUSER string rw-r--r-- string[0...30] N/A

TA_DBPASSWORD string rw------ string[0...64] N/A

TA_USERROLE string rw-r--r-- string[0...30] N/A

TA_DBHOST string rw-r--r-- string[0...30] N/A

TA_DBNETPROTOCOL string rw-r--r-- string[0...30] N/A

TA_DBPORT long rw-r--r-- 0<num<64K N/A

TA_PROPS string rw-r--r-- string[0...256] N/A

TA_ENABLEXA string rw-r--r-- {Y | N} N

TA_CREATEONSTARTUP string rw-r--r-- {Y | N} Y

TA_LOGINDELAY long rw-r--r-- 0<=num 0

TA_INITCAPACITY long rw-r--r-- 0<num N/A

TA_MAXCAPACITY long rw-r--r-- 0<num N/A

TA_CAPACITYINCR long rw-r--r-- 0<num N/A
Commands, Processes, and MIB Reference 3-13

3 MIB Reference
Attribute
Semantics

TA_SRVID 1<=num<30,001

Together with the server group name, this value is used to identify a Java
server, specified in the SERVERS section of the UBBCONFIG, for which the
connection pool is being described.

TA_SRVGRP string[1...30]
Name of a server group. This is used to identify a Java server, specified in the
SERVERS section of the UBBCONFIG, for which the connection pool is being
described.

TA_DSNAME string[0...30]
The data source name for the connection pool.

TA_DRIVER string[0...256]
The class name for the Java driver.

TA_ALLOWSHRINKING string rw-r--r-- {Y | N} N

TA_SHRINKPERIOD long rw-r--r-- 1<=num 15

TA_TESTTABLE string rw-r--r-- string[0...256] N/A

TA_REFRESH long rw-r--r-- 0<=num 5

TA_TESTONRESERVE string rw-r--r-- {Y | N} N

TA_TESTONRELEASE string rw-r--r-- {Y | N} N

TA_WAITFORCONN string rw-r--r-- {Y | N} Y

TA_WAITTIMEOUT long rw-r--r-- 0<=num N/A

T_JDBCCONNPOOL Class:LOCAL Attributes

TA_CONNUSED long R--R--R-- 0<=num N/A

TA_CONNAVAILABLE long R--R--R-- 0<=num N/A

TA_HWMCONNUSE long R--R--R-- 0<=num N/A

TA_HWMCONNCREATED long R--R--R-- 0<=num N/A

TA_AWAITINGCONN long R--R--R-- 0<=num N/A

TA_HWMFORWAIT long R--R--R-- 0<=num N/A

(r) - Required field for object creation (SET TA_STATE NEW)
(*) - GET/SET key, one or more required for SET operations

T_JDBCCONNPOOL Class Definition Attribute Table (Continued)

Attribute Type Permissions Values Default
3-14 Commands, Processes, and MIB Reference

ed 24

s
TA_URL string[0...256]
URL for a JDBC driver that is not JDBC 2.0-compliant.

TA_STATE

The INVALID state is used to delete entries from the configuration file on a
SET request. VALID is always returned by a GET request.

TA_DBNAME string[0...30]
The database name.

TA_DBUSER string[0...30]
User’s account name.

TA_DBPASSWORD string[0...64]
The user’s password. The password entered by the user should not exce
bytes.

TA_DBUSERROLE string[0...30]
The user’s SQL role.

TA_DBHOST string[0...30]
Database server name.

TA_DBNETPROTOCOL string[0...30]
The protocol used to communicate with the database.

TA_DBPORT 0<num<64K
The port used for database connections.

TA_PROPS string[0...256]
Vendor-specific information for the JDBC driver.

TA_ENABLEXA Y or N
If set to Y, indicates that the pool supports XA mode.

TA_CREATEONSTARTUP Y or N
If set to Y, indicates that the connection pool is created when the server i
started. If set to N, the pool is created when the first request arrives.

TA_LOGINDELAY

The login delay in seconds.

TA_INITCAPACITY 0<num
The number of connections initially supported in the connection pool. num
should not exceed the value of TA_MAXCAPACITY.
Commands, Processes, and MIB Reference 3-15

3 MIB Reference

t

 a
e

ne
er
TA_MAXCAPACITY 0<num
The maximum number of connections supported in the connection pool.

TA_CAPACITYINCR 0<num
The number of connections added to the pool when the current limit is
exceeded but the maximum capacity has not yet been reached.

TA_ALLOWSHRINKING Y or N
If set to Y, allows connection pool shrinking.

TA_SHRINKPERIOD 1=<num
The interval after which shrinking occurs, in minutes.

TA_TESTTABLE string[0...256]
The name of a table in the database that is used to test the viability of
connections in the connection pool. The query select count(*) from
TESTTABLE is used to test a connection. The table must exist and be
accessible to the database user for the connection.

TA_REFRESH 0<=num
The refresh interval, in minutes.

TA_TESTONRESERVE Y or N
If set to Y, the Java server tests a connection after removing it from the pool
and before giving it to the client. The test adds a small delay in serving the
client’s request for a connection from the pool but ensures that the clien
receives a working connection. A value for TA_TESTTABLE must be set for
this feature to work.

TA_TESTONRELEASE Y or N
If set to Y, the Java server tests a connection before returning it to the
connection pool. If all the connections in the pool are already in use and
client is waiting for a connection, the client’s wait will be slightly longer du
to the test of the connection. A value for TA_TESTTABLE must be set for this
feature to work.

TA_WAITFORCONN Y or N
If set to Y, enables an application to wait for a connection indefinitely if no
is currently available. If set to N, a request for a connection returns to the call
immediately if there is no connection available. Y is assumed unless
TA_WAITTIMEOUT is specified, in which case it becomes N.
3-16 Commands, Processes, and MIB Reference

TA_WAITTIMEOUT 0<num
Time in seconds that an application will wait for a connection to become
available.
Commands, Processes, and MIB Reference 3-17

3 MIB Reference
T_ROUTING Class

Overview The T_ROUTING class represents configuration attributes of routing specifications for
an application. These attribute values identify and characterize application data
dependent routing criteria with respect to field names, buffer types, and routing
definitions.

Attribute Table

1TA_BUFTYPE only applies to BEA Tuxedo data-dependent routing criteria.
TA_FIELDTYPE only applies to WebLogic Enterprise Factory-Based routing criteria.
The specified u (uniqueness) permission applies only in the relevant case. That is: the
combination of TA_ROUTINGNAME, TA_TYPE and TA_BUFTYPE must be unique for
TA_TYPE=SERVICE, and TA_ROUTINGNAME, TA_TYPE and TA_FIELD must be unique
for TA_TYPE=FACTORY.

T_ROUTING Class Definition Attribute Table

Attribute Type Permissions Values Default

TA_ROUTINGNAME(r)(*) string ru-r--r-- string[1...15] N/A

TA_ROUTINGTYPE (r) string ru-r--r-- SERVICE or
FACTORY

SERVICE

TA_BUFTYPE(r)(*) string ru-r--r-- string[1...256] N/A1

TA_FIELD(r)(k) (*) string ru-r--r-- string[1...30] N/A1

TA_RANGES(r) carray rw-r--r-- carray[1...2048] N/A

TA_TYPE string ru-r--r-- string[1..15] “SERVICE2

TA_FIELDTYPE (r) string rw-r--r-- string[1..30] N/A

TA_STATE(k) string rw-r--r-- GET:"{VAL}"

SET:"{NEW|INV}"

N/A

N/A

(k) - GET key field
(r) - Required field for object creation (SET TA_STATE NEW)
(*) - GET/SET key, one or more required for SET operations
3-18 Commands, Processes, and MIB Reference

The TA_TYPE attribute determines the permissible attributes for the TA_ROUTING
object. TYPE=SERVICE corresponds to BEA Tuxedo data-dependent routing criteria.
TYPE=FACTORY corresponds to WebLogic Enterprise factory-based routing. The
default is SERVICE. SET operations are assumed to be for data-dependent routing if no
TA_TYPE is specified. Specification of TA_FIELDTYPE is invalid for data-dependent
routing. Specification of TA_BUFTYPE is invalid for factory-based routing.

Attribute
Semantics

TA_ROUTINGNAME: string[1...15]
Routing criteria name.

TA_ROUTINGTYPE:type
Specifies the routing type. The default is TYPE=SERVICE to ensure that
existing UBBCONFIG files used in BEA Tuxedo environments continue to
work properly. Use TYPE=FACTORY if you are implementing factory-based
routing for a WebLogic Enterprise interface.

TA_BUFTYPE: type1[:subtype1[,subtype2 . . .]][;type2[:subtype3[, . . .]]] . . .
List of types and subtypes of data buffers for which this routing entry is valid.
A maximum of 32 type/subtype combinations are allowed. The types are
restricted to be one of FML, VIEW, X_C_TYPE, or X_COMMON. No subtype can
be specified for type FML, and subtypes are required for types VIEW,
X_C_TYPE, and X_COMMON (‘‘*’’ is not allowed). Note that subtype names
should not contain semicolon, colon, comma, or asterisk characters.
Duplicate type/subtype pairs can not be specified for the same routing criteria
name; more than one routing entry can have the same criteria name as long as
the type/subtype pairs are unique. If multiple buffer types are specified for a
single routing entry, the data types of the routing field for each buffer type
must be the same.

TA_FIELD: string[1...30]
The routing field name. When TA_TYPE=FACTORY, this is assumed to be a
field that is specified in an NVList parameter to PortableServer::POA::create
_reference_with_criteria for an interface that has this factory routing criteria
associated with it. See section on factory-based routing for more details.
When TA_TYPE=SERVICE this field is assumed to be an FML buffer or view
field name that is identified in an FML field table (using the FLDTBLDIR and
FIELDTBLS environment variables) or an FML view table (using the VIEWDIR
and VIEWFILES environment variables), respectively. This information is
used to get the associated field value for data dependent routing during the
sending of a message.
Commands, Processes, and MIB Reference 3-19

3 MIB Reference
TA_FIELDTYPE (Factory-based Routing Only)
Routing field type. This field is only valid if TA_TYPE=FACTORY. Valid types
are: SHORT, LONG, FLOAT, DOUBLE, CHAR, STRING. Specification of this
attribute is only valid for factory-based routing criteria.

TA_RANGES: carray[1...2048]
The ranges and associated server groups for the routing field. The format of
string is a comma-separated, ordered list of range/group name pairs. A
range/group name pair has the following format:

lower[-upper]:group

lower and upper are signed numeric values or character strings in single
quotes. lower must be less than or equal to upper. To embed a single quote
in a character string value, it must be preceded by two backslashes (for
example, ’O\\’Brien’). The value MIN can be used to indicate the minimum
value for the data type of the associated field on the machine. The value MAX
can be used to indicate the maximum value for the data type of the associated
field on the machine. Thus, “MIN--5” is all numbers less than or equal to -5,
and “6-MAX” is all numbers greater than or equal to 6.

The meta-character ‘‘* ’’ (wildcard) in the position of a range indicates any
values not covered by the other ranges previously seen in the entry; only one
wild-card range is allowed per entry and it should be last (ranges following it
will be ignored).

The routing field can be of any data type supported in FML. A numeric routing
field must have numeric range values, and a string routing field must have
string range values.

String range values for string, carray, and character field types must be placed
inside a pair of single quotes and can not be preceded by a sign. Short and
long integer values are a string of digits, optionally preceded by a plus or
minus sign. Floating point numbers are of the form accepted by the C
compiler or atof(3): an optional sign, then a string of digits optionally
containing a decimal point, then an optional e or E followed by an optional
sign or space, followed by an integer.

The group name indicates the associated group to which the request is routed
if the field matches the range. A group name of ‘‘* ’’ indicates that the request
can go to any group where a server offers the desired service.

Limitation: Attribute values greater than 256 bytes in length will disable
interoperability with BEA Tuxedo Release 4.2.2 and earlier.
3-20 Commands, Processes, and MIB Reference

ible
TA_STATE:

GET: {VALid}
A GET operation will retrieve configuration information for the
selected T_ROUTING object(s). The following states indicate the
meaning of a TA_STATE returned in response to a GET request. States
not listed will not be returned.

SET: {NEW|INValid}
A SET operation will update configuration information for the
selected T_ROUTING object. The following states indicate the
meaning of a TA_STATE set in a SET request. States not listed may
not be set.

TA_TYPE
Routing criteria type. Valid values are “FACTORY” or “SERVICE”. “FACTORY”
specifies that the routing criteria applies to factory-based routing for a
CORBA interface. The specification of TYPE=FACTORY is mandatory for a
factory-based routing criteria. “SERVICE” specifies that the routing criteria
applies to data-dependent routing for a BEA Tuxedo service. Default is
“SERVICE”. Specification of this attribute is optional for data-dependent
routing criteria. Note that the type specified affects the validity and poss

VALid T_ROUTING object is defined. Note that this is the only valid
state for this class. Routing criteria are never ACTive; rather,
they are associated through the configuration with service
names and are acted upon at runtime to provide data dependent
routing. This state is INActive equivalent for the purpose of
permissions checking.

NEW Create T_ROUTING object for application. State change
allowed only when in the INValid state. Successful return
leaves the object in the VALid state.

unset Modify an existing T_ROUTING object. This combination is
not allowed in the INValid state. Successful return leaves
the object state unchanged.

INValid Delete T_ROUTING object for application. State change
allowed only when in the VALid state. Successful return
leaves the object in the INValid state.
Commands, Processes, and MIB Reference 3-21

3 MIB Reference
values for other fields defined for this MIB class. These are noted for each
field. TA_TYPE is required for SET operations for factory-based routing
criteria.

Limitations None.
3-22 Commands, Processes, and MIB Reference

at are

utes
T_SERVER Class

Overview The T_SERVER class represents configuration and run-time attributes of servers within
an application. These attribute values identify and characterize configured servers as
well as provide run-time tracking of statistics and resources associated with each
server object. Information returned will always include fields that are common among
all contexts of a server. In addition, for those servers that are not defined to the system
as multicontexted (that is, those for which the value of TA_MAXDISPATCHTHREADS is
1), this class includes information about the server’s context. For those servers th
defined to the system as multicontexted, placeholder values are reported for
per-context attributes. Per-context attributes can always be found as part of the
T_SERVERCTXT class. The T_SERVERCTXT class is defined even for single-contexted
servers.

The TA_CLTLMID, TA_CLTPID, TA_CLTREPLY, TA_CMTRET, TA_CURCONV,
TA_CURREQ, TA_CURRSERVICE, TA_LASTGRP, TA_SVCTIMEOUT, TA_TIMELEFT, and
TA_TRANLEV attributes are specific to each server dispatch context. All other attrib
are common to all server dispatch contexts.

TA_CLASSPATH, TA_JAVAHEAP, TA_JAVAHEAPUSE, TA_JAVAVERSION, and
TA_JAVAVENDOR apply to Java servers only.

Attribute Table

T_SERVER Class Definition Attribute Table

Attribute Type Permissions Values Default

TA_SRVGRP(r)(*) string ru-r--r-- string[1...30] N/A

TA_SRVID(r)(*) long ru-r--r-- 1 <= num < 30,001 N/A

TA_SERVERNAME(k)(r) string rw-r--r-- string[1...78] N/A

TA_SRVTYPE string r--r--r-- JAVA N/A

TA_GRPNO(k) long r--r--r-- 1 <= num < 30,000 N/A

TA_STATE(k) string rwxr-xr-- GET:"{ ACT|INA|MIG|CLE|
RES|SUS|PAR|DEA}"
SET:"{NEW|INV|ACT|INA
|DEA}"

N/A

N/A

TA_BASESRVID long r--r--r-- 1 <= num < 30,001 N/A

TA_CLOPT string rwyr--r-- string[0...256] "-A"

TA_ENVFILE string rwyr--r-- string[0...78] ""
Commands, Processes, and MIB Reference 3-23

3 MIB Reference
TA_GRACE long rwyr--r-- 0 <= num 86,400

TA_MAXGEN long rwyr--r-- 1 <= num < 256 1

TA_MAX long rwxr--r-- 1 <= num < 1,001 1

TA_MIN long rwyr--r-- 1 <= num < 1,001 1

TA_RCMD string rwyr--r-- string[0...78] ""

TA_RESTART string rwyr--r-- "{Y|N}" N

TA_SEQUENCE(k) long rwxr--r-- 1 <= num < 10,000 >= 10,000

TA_SYSTEM_ACCESS string rwyr--r-- "{FASTPATH|PROTECTED}" (1)

TA_CONV(k) string rw-r--r-- "{Y|N}" N

TA_REPLYQ string rw-r--r-- "{Y|N}" N

TA_RPPERM long rw-r--r-- 0001 <= num <= 0777 (1)

TA_RQADDR(k) string rw-r--r-- string[0...30] "GRPNO.SRVID"

TA_RQPERM long rw-r--r-- 0001 <= num <= 0777 (1)

TA_LMID(k) string R--R--R-- LMID N/A

TA_GENERATION long R--R--R-- 1 <= num < 32K N/A

TA_PID(k) long R--R--R-- 1 <= num N/A

TA_RPID long R--R--R-- 1 <= num N/A

TA_RQID long R--R--R-- 1 <= num N/A

TA_TIMERESTART long R--R--R-- 1 <= num N/A

TA_TIMESTART long R--R--R-- 1 <= num N/A

T_SERVER Class: LOCAL Attributes

TA_CLASSPATH string R--R--R-- string[0...2,047] N/A

TA_JAVAHEAP long R--R--R-- 0<num

TA_JAVAHEAPUSE long R--R--R-- 1<=num<=100 N/A

TA_JAVAVENDOR string R--R--R-- string[0...30] N/A

TA_JAVAVERSION string R--R--R-- string[0...30] N/A

TA_MAXDISPATCHTHREADS long R--R--R-- 0<num N/A

TA_NUMCONV long R-XR-XR-- 0 <= num N/A

T_SERVER Class Definition Attribute Table (Continued)

Attribute Type Permissions Values Default
3-24 Commands, Processes, and MIB Reference

TA_NUMDEQUEUE long R-XR-XR-- 0 <= num N/A

TA_NUMENQUEUE long R-XR-XR-- 0 <= num N/A

TA_NUMPOST long R-XR-XR-- 0 <= num N/A

TA_NUMREQ long R-XR-XR-- 0 <= num N/A

TA_NUMSUBSCRIBE long R-XR-XR-- 0 <= num N/A

TA_NUMTRAN long R-XR-XR-- 0 <= num N/A

TA_NUMTRANABT long R-XR-XR-- 0 <= num N/A

TA_NUMTRANCMT long R-XR-XR-- 0 <= num N/A

TA_THREADSTACKSIZE long R--R--R-- 0<num N/A

TA_TOTREQC long R-XR-XR-- 0 <= num N/A

TA_TOTWORKL long R-XR-XR-- 0 <= num N/A

TA_CLTLMID string R--R--R-- LMID N/A

TA_CLTPID long R--R--R-- 1 <= num N/A

TA_CLTREPLY string R--R--R-- "{Y|N}" N/A

TA_CMTRET string R--R--R-- "{COMPLETE|LOGGED}" N/A

TA_CURCONV long R--R--R-- 0 <= num N/A

TA_CURDISPATCHTHREADS long R--R--R-- 0<num N/A

TA_CUROBJECTS long R--R--R-- 0 <= num N/A

TA_CURINTERFACE string R--R--R-- string[0..128] N/A

TA_CURREQ long R--R--R-- 0 <= num N/A

TA_CURRSERVICE string R--R--R-- string[0...15] N/A

TA_CURTIME long R--R--R-- 1 <= num N/A

TA_HWDISPATCHTHREADS long R--R--R-- 0<num N/A

TA_LASTGRP long R--R--R-- 1 <= num < 30,000 N/A

TA_SVCTIMEOUT long R--R--R-- 0 <= num N/A

TA_TIMELEFT long R--R--R-- 0 <= num N/A

TA_TRANLEV long R--R--R-- 0 <= num N/A

T_SERVER Class Definition Attribute Table (Continued)

Attribute Type Permissions Values Default
Commands, Processes, and MIB Reference 3-25

3 MIB Reference
1Defaults to value set for this attribute in Class T_DOMAIN

Attribute
Semantics

TA_SRVGRP: string[1...30]
Logical name of the server group. Server group names cannot contain an
asterisk (*), comma, or colon.

TA_SRVID: 1 <= num < 30,001
Unique (within the server group) server identification number.

TA_SERVERNAME: string[1...78]
Name of the server executable file. The server identified by TA_SERVERNAME
will run on the machine(s) identified by the T_GROUP:TA_LMID attribute for
this server’s server group. If a relative pathname is given, then the search for
the executable file is done first in TA_APPDIR, then in TA_TUXDIR/bin, then
in /bin and /usr/bin, and then in <path>, where <path> is the value of the
first PATH= line appearing in the machine environment file, if one exists. Note
that the attribute value returned for an active server will always be a full
pathname. The values for TA_APPDIR and TA_TUXDIR are taken from the
appropriate T_MACHINE object. See discussion of the
T_MACHINE:TA_ENVFILE attribute for a more detailed discussion of how
environment variables are handled.

TA_GRPNO: 1 <= num < 30,000
Group number associated with this server’s group.

TA_STATE:

GET:{ACTive|INActive|MIGrating|CLEaning|REStarting|SUSpende
d|PARtitioned|DEAd}

A GET operation will retrieve configuration and run-time
information for the selected T_SERVER object(s). The following
states indicate the meaning of a TA_STATE returned in response to a
GET request. States not listed will not be returned.

(k) - GET key field
(r) - Required field for object creation (SET TA_STATE NEW)
(*) - GET/SET key, one or more required for SET operations

T_SERVER Class Definition Attribute Table (Continued)

Attribute Type Permissions Values Default
3-26 Commands, Processes, and MIB Reference

ACTive T_SERVER object defined and active. This is not an
indication of whether the server is idle or busy. An
active server with a non 0-length TA_CURRSERVICE
attribute should be interpreted as a busy server, that is,
one that is processing a service request.

INActive T_SERVER object defined and inactive.

MIGrating T_SERVER object defined and currently in a state of
migration to the server group’s secondary logical
machine. The secondary logical machine is the one
listed in T_GROUP:TA_LMID attribute that does not
match the T_GROUP:TA_CURLMID attribute. This
state is ACTive equivalent for the purpose of
determining permissions.

CLEaning T_SERVER object defined and currently being cleaned
up by the system after an abnormal death. Note that
restartable servers may enter this state if they exceed
TA_MAXGEN starts/restarts within their TA_GRACE
period. This state is ACTive equivalent for the
purpose of determining permissions.

REStarting T_SERVER object defined and currently being
restarted by the system after an abnormal death. This
state is ACTive equivalent for the purpose of
determining permissions.

SUSpended T_SERVER object defined and currently suspended
pending shutdown. This state is ACTive equivalent
for the purpose of determining permissions.

PARtitioned T_SERVER object defined and active; however, the
machine where the server is running is currently
partitioned from the T_DOMAIN:TA_MASTER site.
This state is ACTive equivalent for the purpose of
determining permissions.
Commands, Processes, and MIB Reference 3-27

3 MIB Reference
SET: {NEW|INValid|ACTive|INActive|DEAd}
A SET operation will update configuration and run-time information
for the selected T_SERVER object. The following states indicate the
meaning of a TA_STATE set in a SET request. States not listed may
not be set.

DEAd T_SERVER object defined, identified as active in the
bulletin board, but currently not running due to an
abnormal death. This state will exist only until the BBL
local to the server notices the death and takes action
(REStarting|CLEaning). Note that this state will
only be returned if the MIB_LOCAL TA_FLAGS value
is specified and the machine where the server was
running is reachable. This state is ACTive equivalent
for the purpose of determining permissions.

NEW Create T_SERVER object for application. State change
allowed only when in the INValid state. Successful
return leaves the object in the INActive state.

unset Modify an existing T_SERVER object. This combination is
allowed only when in the ACTive or INActive state.
Successful return leaves the object state unchanged.

INValid Delete T_SERVER object for application. State change
allowed only when in the INActive state. Successful
return leaves the object in the INValid state.

ACTive Activate the T_SERVER object. State change allowed only
when in the INActive state. (Servers in the MIGrating
state must be restarted by setting the
T_GROUP:TA_STATE to ACTive.) For the purpose of
determining permissions for this state transition, the active
object permissions are considered (that is, --x--x--x).
Successful return leaves the object in the ACTive state.
The TMIB_NOTIFY TA_FLAG value should be used
when activating a server if status on the individual server
is required.
3-28 Commands, Processes, and MIB Reference

TA_BASESRVID: 1 <= num < 30,001
Base server identifier. For servers with a TA_MAX attribute value of 1, this
attribute will always be the same as TA_SRVID. However, for servers with a
TA_MAX value greater than 1, this attribute indicates the base server identifier
for the set of servers configured identically.

TA_CLASSPATH string[0...2,047]
The current CLASSPATH for the run time.

TA_CLOPT: string[0...256]
Command-line options to be passed to server when it is activated. See the
servopts(5) reference page for details. Limitation: Run-time modifications
to this attribute will not affect a running server.

TA_ENVFILE: string[0...78]
Server specific environment file. See T_MACHINE:TA_ENVFILE for a
complete discussion of how this file is used to modify the environment.
Limitation: Run-time modifications to this attribute will not affect a running
server.

TA_GRACE: 0 <= num
The period of time, in seconds, over which the T_SERVER:TA_MAXGEN limit
applies. This attribute is meaningful only for restartable servers, that is, if the

INActive Deactivate the T_SERVER object. State change allowed
only when in the ACTive state. Successful return leaves
the object in the INActive state. The TMIB_NOTIFY
TA_FLAG value should be used when deactivating a server
if status on the individual server is required.

DEAd Deactivate the T_SERVER object by sending the server a
SIGTERM signal followed by a SIGKILL signal if the
server is still running after the appropriate timeout interval
(see TA_MIBTIMEOUT in MIB(5)). Note that by default, a
SIGTERM signal will cause the server to initiate orderly
shutdown and the server will become inactive even if it is
restartable. If a server is processing a long running service
or has chosen to disable the SIGTERM signal, then
SIGKILL may be used and will be treated by the system
as an abnormal termination. State change allowed only
when in the ACTive or SUSpended state. Successful
return leaves the object in the INActive, CLEaning or
REStarting state.
Commands, Processes, and MIB Reference 3-29

3 MIB Reference
T_SERVER:TA_RESTART attribute is set to "Y". When a restarting server would
exceed the TA_MAXGEN limit but the TA_GRACE period has expired, the system
resets the current generation (T_SERVER:TA_GENERATION) to 1 and resets the
initial boot time (T_SERVER:TA_TIMESTART) to the current time. A value of
0 for this attribute indicates that a server should always be restarted.

Note that servers sharing a request queue (that is, equal values for
T_SERVER:TA_RQADDR) should have equal values for this attribute. If they
do not, then the first server activated will establish the run-time value
associated with all servers on the queue.

Limitation: Run-time modifications to this attribute will affect a running
server and all other active servers with which it is sharing a request queue.
However, only the selected server’s configuration parameter is modified.
Thus, the behavior of the application depends on the order of boot in
subsequent activations unless the administrator ensures that all servers
sharing a queue have the same value for this attribute.

TA_JAVAHEAP 0<num
The heap size as specified in the run-time options.

TA_JAVAHEAPUSE 1<=num<=100
The percentage of heap space used.

TA_MAXGEN: 1 <= num < 256
Number of generations allowed for a restartable server
(T_SERVER:TA_RESTART == "Y") over the specified grace period
(T_SERVER:TA_GRACE). The initial activation of the server counts as one
generation and each restart also counts as one. Processing after the maximum
generations is exceeded is discussed above with respect to TA_GRACE.

Note that servers sharing a request queue (that is, equal values for
T_SERVER:TA_RQADDR) should have equal values for this attribute. If they do
not, then the first server activated will establish the run-time value associated
with all servers on the queue.

Limitation: Run-time modifications to this attribute will affect a running
server and all other active servers with which it is sharing a request queue.
However, only the selected server’s configuration parameter is modified.
Thus, the behavior of the application depends on the order of boot in
subsequent activations unless the administrator ensures that all servers
sharing a queue have the same value for this attribute.
3-30 Commands, Processes, and MIB Reference

TA_MAXDISPATCHTHREADS 0<num
The maximum number of threads, as specified with -M in the CLOPT.

TA_MAX: 1 <= num < 1,001
Maximum number of occurrences of the server to be booted. Initially,
tmboot(3c) boots T_SERVER:TA_MIN objects of the server, and additional
objects may be started individually (by starting a particular server ID) or
through automatic spawning (conversational servers only). Run-time
modifications to this attribute will affect all running servers in the set of
identically configured servers (see TA_BASESRVID above) as well as the
configuration definition of the server.

TA_MIN: 1 <= num < 1,001
Minimum number of occurrences of the server to be booted by. If a
T_SERVER:TA_RQADDR is specified and TA_MIN is greater than 1, then the
servers will form an MSSQ set. The server identifiers for the servers will be
T_SERVER:TA_SRVID up to TA_SRVID + T_SERVER:TA_MAX - 1. All
occurrences of the server will have the same sequence number, as well as any
other server parameters.

Limitation: Run-time modifications to this attribute will not affect a running
server.

TA_RCMD: string[0...78]
Application specified command to be executed in parallel with the system
restart of an application server. This command must be an executable UNIX
system file.

Note that servers sharing a request queue (that is, equal values for
T_SERVER:TA_RQADDR) should have equal values for this attribute. If they do
not, then the first server activated will establish the run-time value associated
with all servers on the queue.

Limitation: Run-time modifications to this attribute will affect a running
server and all other active servers with which it is sharing a request queue.
However, only the selected server’s configuration parameter is modified.
Thus, the behavior of the application depends on the order of boot in
subsequent activations unless the administrator ensures that all servers
sharing a queue have the same value for this attribute.
Commands, Processes, and MIB Reference 3-31

3 MIB Reference
TA_RESTART: {Y|N}
Restartable ("Y") or non-restartable ("N") server. If server migration is
specified for this server group (T_DOMAIN:TA_OPTIONS/MIGRATE and
T_GROUP:TA_LMID with alternate site), then this attribute must be set to "Y".
Note that servers sharing a request queue (that is, equal values for
T_SERVER:TA_RQADDR) should have equal values for this attribute. If they do
not, then the first server activated will establish the run-time value associated
with all servers on the queue.

Limitation: Run-time modifications to this attribute will affect a running
server and all other active servers with which it is sharing a request queue.
However, only the selected server’s configuration parameter is modified.
Thus, the behavior of the application depends on the order of boot in
subsequent activations unless the administrator ensures that all servers
sharing a queue have the same value for this attribute.

TA_SEQUENCE: 1 <= num < 10,000
Specifies when this server should be booted (tmboot(1)) or shutdown (
tmshutdown(1)) relative to other servers. T_SERVER objects added without
a TA_SEQUENCE attribute specified or with an invalid value will have one
generated for them that is 10,000 or more and is higher than any other
automatically selected default. Servers are booted by tmboot(1) in increasing
order of sequence number and shutdown by tmshutdown(1) in decreasing
order. Run-time modifications to this attribute affect onlytmboot(1) and
tmshutdown(1) and will affect the order in which running servers may be
shutdown by a subsequent invocation of tmshutdown(1).

TA_SYSTEM_ACCESS: {FASTPATH|PROTECTED}
Mode used by BEA Tuxedo system libraries within this server process to gain
access to BEA Tuxedo system’s internal tables. See
T_DOMAIN:TA_SYSTEM_ACCESS for a complete discussion of this attribute.

Limitation: Run-time modifications to this attribute will not affect a running
server.

TA_CONV: {Y|N}
Conversational server ("Y") or request/response server ("N").

TA_HWDISPATCHTHREADS

The high water mark for the number of threads in the server.
3-32 Commands, Processes, and MIB Reference

TA_REPLYQ: {Y|N}
Allocate a separate reply queue for the server (TA_REPLYQ == "Y"). MSSQ
servers that expect to receive replies should set this attribute to "Y".

TA_RPPERM: 0001 <= num <= 0777
UNIX system permissions for the server’s reply queue. If a separate reply
queue is not allocated (T_SERVER:TA_REPLYQ == "N"), then this attribute is
ignored. Limitation: This is a UNIX system specific attribute that may not be
returned if the platform on which the application is being run is not
UNIX-based.

TA_RQADDR: string[0...30]
Symbolic address of the request queue for the server. Specifying the same
TA_RQADDR attribute value for more than one server is the way multiple
server, single queue (MSSQ) sets are defined. Servers with the same
TA_RQADDR attribute value must be in the same server group.

TA_RQPERM: 0001 <= num <= 0777
UNIX system permissions for the server’s request queue.

Limitation: This is a UNIX system specific attribute that may not be returned
if the platform on which the application is being run is not UNIX-based.

TA_LMID: LMID
Current logical machine on which the server is running.

TA_GENERATION: 1 <= num < 32K
Generation of the server. When a server is initially booted via tmboot(1) or
activated through the TM_MIB(5), its generation is set to 1. Each time the
server dies abnormally and is restarted, its generation is incremented. Note
that when T_SERVER:TA_MAXGEN is exceeded and T_SERVER:TA_GRACE has
expired, the server will be restarted with the generation reset to 1.

TA_PID: 1 <= num
UNIX system process identifier for the server. Note that this may not be a
unique attribute since servers may be located on different machines allowing
for duplication of process identifiers.

Limitation: This is a UNIX system specific attribute that may not be returned
if the platform on which the application is being run is not UNIX-based.
Commands, Processes, and MIB Reference 3-33

3 MIB Reference
TA_RPID: 1 <= num
UNIX system message queue identifier for the server’s reply queue. If a
separate reply queue is not allocated (T_SERVER:TA_REPLYQ == "N"), then
this attribute value will be the same as T_SERVER:TA_RQID.

Limitation: This is a UNIX system specific attribute that may not be returned
if the platform on which the application is being run is not UNIX-based.

TA_RQID: 1 <= num
UNIX system message queue identifier for the server’s request queue. If a
separate reply queue is not allocated (T_SERVER:TA_REPLYQ == "N"), then
this attribute value will be the same as T_SERVER:TA_RPID.

Limitation: This is a UNIX system specific attribute that may not be returned
if the platform on which the application is being run is not UNIX-based.

TA_THREADSTACKSIZE 0<num
The stack size per thread as specified in the runtime options.

TA_TIMERESTART: 1 <= num
Time, in seconds, since 00:00:00 UTC, January 1, 1970, as returned by the
time(2) system call on T_SERVER:TA_LMID, when the server was last started
or restarted.

TA_TIMESTART: 1 <= num
Time, in seconds, since 00:00:00 UTC, January 1, 1970, as returned by the
time(2) system call on T_SERVER:TA_LMID, when the server was first started.
Restarts of the server do not reset this value; however, if
T_SERVER:TA_MAXGEN is exceeded and T_SERVER:TA_GRACE is expired, this
attribute will be reset to the time of the restart.

TA_NUMCONV: 0 <= num
Number of conversations initiated by this server via tpconnect(3c).

TA_NUMDEQUEUE: 0 <= num
Number of dequeue operations initiated by this server via tpdequeue(3c).

TA_NUMENQUEUE: 0 <= num
Number of enqueue operations initiated by this server via tpenqueue(3c).

TA_NUMPOST: 0 <= num
Number of postings initiated by this server via tppost(3c).

TA_NUMREQ: 0 <= num
Number of requests made by this server via tpcall(3c) or tpacall(3c).
3-34 Commands, Processes, and MIB Reference

TA_NUMSUBSCRIBE: 0 <= num
Number of subscriptions made by this server via tpsubscribe(3c).

TA_NUMTRAN: 0 <= num
Number of transactions begun by this server since its last (re)start.

TA_NUMTRANABT: 0 <= num
Number of transactions aborted by this server since its last (re)start.

TA_NUMTRANCMT: 0 <= num
Number of transactions committed by this server since its last (re)start.

TA_TOTREQC: 0 <= num
Total number of requests completed by this server. For conversational servers
(T_SERVER:TA_CONV == "Y"), this attribute value indicates the number of
completed incoming conversations. This is a run-time attribute that is kept
across server restart but is lost at server shutdown.

TA_TOTWORKL: 0 <= num
Total workload completed by this server. For conversational servers
(T_SERVER:TA_CONV == "Y"), this attribute value indicates the workload of
completed incoming conversations. This is a run-time attribute that is kept
across server restart but is lost at server shutdown.

TA_CLTLMID: LMID
Logical machine for the initiating client or server. The initiating client or
server is the process that made the service request on which the server is
currently working. The value in this field has meaning only for single-context
servers. In multi-context servers, the null string is returned as a placeholder.
This field element is also contained in the T_SERVERCTXT class, both for
single-context servers and for multicontext servers.

TA_CLTPID: 1 <= num
UNIX system process identifier for the initiating client or server. The value
in this field has meaning only for single-context servers. In multi-context
servers, -1 is returned as a placeholder. This field element is also contained in
the T_SERVERCTXT class, both for single-context servers and for multicontext
servers.

Limitation: This is a UNIX system-specific attribute that may not be returned
if the platform on which the application is being run is not UNIX-based.
Commands, Processes, and MIB Reference 3-35

3 MIB Reference
TA_CLTREPLY: {Y|N}
The initiating client or server is expecting a reply ("Y") or is not expecting a
reply ("N"). The value in this field has meaning only for single-context
servers. In multi-context servers, the null string is returned as a placeholder.
This field element is also contained in the T_SERVERCTXT class, both for
single-context servers and for multicontext servers.

TA_CMTRET: {COMPLETE|LOGGED}
Setting of the TP_COMMIT_CONTROL characteristic for this server. See the
description of the ATMI function call tpscmt(3c) for details on this
characteristic. The value in this field has meaning only for single-context
servers. In multi-context servers, the null string is returned as a placeholder.
This field element is also contained in the T_SERVERCTXT class, both for
single-context servers and for multicontext servers.

TA_CURCONV: 0 <= num
Number of conversations initiated by this server via tpconnect(3c) that are
still active. For multicontext servers, this field represents the total for all
server contexts. Values for individual server contexts can be found in the
T_SERVERCTXT class.

TA_CURDISPATCHTHREADS
The current number of threads in the server

TA_CUROBJECTS
The number of entries in use in the Bulletin Board object table for this server.
Scope is local.

TA_CURINTERFACE
The interface name of the interface currently active in this server. Scope is
local.

TA_CURREQ: 0 <= num
Number of requests initiated by this server via tpcall(3c) or tpacall(3c)
that are still active. For multicontext servers, this field represents the total for
all server contexts. Values for individual server contexts can be found in the
T_SERVERCTXT class.

TA_CURRSERVICE: string[0 . . . 15]
Service name that the server is currently working on, if any. The value in this
field has meaning only for single-context servers. In multicontext servers, the
null string is returned as a placeholder. This field element is also contained in
the T_SERVERCTXT class, both for single-context servers and for multicontext
servers.
3-36 Commands, Processes, and MIB Reference

TA_CURTIME: 1 <= num
Current time, in seconds, since 00:00:00 UTC, January 1, 1970, as returned
by the time(2) system call on T_SERVER:TA_LMID. This attribute can be used
to compute elapsed time from the T_SERVER:TA_TIMESTART and
T_SERVER:TA_TIMERESTART attribute values.

TA_LASTGRP: 1 <= num < 30,000
Server group number (T_GROUP:TA_GRPNO) of the last service request made
or conversation initiated from this server outward. The value in this field has
meaning only for single-context servers. In multicontext servers, -1 is
returned as a placeholder. This field element is also contained in the
T_SERVERCTXT class, both for single-context servers and for multicontext
servers.

TA_SVCTIMEOUT: 0 <= num
Time left, in seconds, for this server to process the current service request, if
any. A value of 0 for an active service indicates that no timeout processing is
being done. See T_SERVICE:TA_SVCTIMEOUT for more information. The
value in this field has meaning only for single-context servers. In
multicontext servers, -1 is returned as a placeholder. This field element is also
contained in the T_SERVERCTXT class, both for single-context servers and for
multicontext servers.

TA_TIMELEFT: 0 <= num
Time left, in seconds, for this server to receive the reply for which it is
currently waiting before it will timeout. This timeout may be a transactional
timeout or a blocking timeout. The value in this field has meaning only for
single-context servers. In multicontext servers, -1 is returned as a
placeholder. This field element is also contained in the T_SERVERCTXT class,
both for single-context servers and for multicontext servers.

TA_TRANLEV: 0 <= num
Current transaction level for this server. 0 indicates that the server is not
currently involved in a transaction. The value in this field has meaning only
for single-context servers. In multicontext servers, -1 is returned as a
placeholder. This field element is also contained in the T_SERVERCTXT class,
both for single-context servers and for multicontext servers.

Limitations None.
Commands, Processes, and MIB Reference 3-37

	Copyright
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Commands Reference
	2 Server Process and File Format Reference
	3 MIB Reference

