'a' oo,

% hea
BEA WebLogic Enterprise

Getting Started

WebLogic Enterprise 5.1
Document Edition 5.1
May 2000

Copyright
Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, and WebLogic Enterprise
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.
Getting Started

Document Edition Part Number Date Software Version

5.1 861-001001-004 May 2000 BEA WebLogic Enterprise 5.1

Contents

About This Document

What YOU NEe t0 KNOWoooiiiiiiiiiii et e e e e e aa e Viii

E-AOCS WED SItE ..ot eeaeaens viii
HOW t0 Print the DOCUMENT........ooiiiiiiiie e e e e e e ix
Related INfOrmation............oooiiii e iX
CONtACT US ... e e ix
Documentation CONVENTIONSccceiiiiieeei i e X

Part I. Overview of the WebLogic Enterprise Product and
Programming Environments

1.

Overview of the WebLogic Enterprise Product

PrOUCT OVEIVIEW ...ttt ettt et nee e 11
J-ENQINE FEALIUIESeeiiiiiie ettt 1-3
T-ENQINE FEATUIES ...ttt ettt et 1-4

The WebLogic Enterprise CORBA Programming Environment

Overview of the WebLogic Enterprise CORBA Programming Features 2-1
IDL COMPIIEIS. ettt 2-2
Development COMMANASueiiiiiiiiier ettt 2-3
AdMINISration TOOIS........ueviiiiii e 2-4
ActiveX Application BUIIAErc.ueeiiiiiiiie e 2-6

WebLogic Enterprise CORBA Object SErviCes........cccovvuuieiiiieiiniiiiiie e 2-8

WebLogic Enterprise Architectural CoOmponentscccccoveeeriieeeniiieneeennenens 2-9
BOOtSrap ODJECT........coiiiiiiii e 2-11
[HOP Listener/HANIETccueiiiiiie et 2-12
ORB.. ettt ettt ettt e e et e e e e e 2-13

Getting Started iii

iv

TP FrameEWOrKveiiiiiiiie et e 2-1
How WebLogic Enterprise CORBA Client and Server Applications Interact 2-16

Step 1: The Server Application Is Initializedccccooiiiiininin, 2-17
Step 2: The Client Application Is Initialized...........ccccocveeiriininiiinen, 2-18
Step 3: The Client Application Authenticates Itself to the WebLogic
ENErpriSe DOMAIN.ccoiiiiiieiiiiieiee ittt e 2-1¢
Step 4: The Client Application Obtains a Reference to the Object
Needed to Execute I1tS BUSINESS LOGICcevveviierieeiriiiiie e 2-1¢
Step 5: The Client Application Invokes an Operation
0N the CORBA ODJECL......ccciiiiiiiiiiiie e 2-21
3. The WebLogic Enterprise JavaBeans (EJB) Programming
Environment
Overview of the WebLogic Enterprise EJB Programming Environment 3-2
Types of Beans Supported in WebLogic Enterprise..........ccocceeeeeviiiiciiieneinnenn. 3-
EJBS @Nd PErSISTENCEooiiiiiiiiiii ettt e :
Roles of People Who Develop, Build, Deploy, and Administer EJBs.............. 3-5
Items You Create for an EJB ApPliCationc.ccooviiiiiriiiiiieeiie e 3-¢
Tools and Facilities Provided for Building and Deploying EJBs.................... 3-10
EJBs and Failover in the WebLogic Enterprise Environment...............c.c....... 3-11

Part Il. Developing WebLogic Enterprise CORBA Applications
4. Developing WebLogic Enterprise CORBA Applications

Overview of the Development Process for WebLogic Enterprise CORBA

APPIICALIONS ...t 4-
The Simpapp Sample ApplCAtioNccoeiiiiii e 4-
Step 1: Write the OMG IDL COUE.......ccoiiiuiiieiiiiie et 4-F
Step 2: Generate Client Stubs and Skeletons..........cccccoveviiiiiie e 4
Step 3: Write the Server AppliCatioN.........coovviiiiiiiiie e 4-

Writing the Methods That Implement Each Interface’s Operations 4-9

Creating the Server ODJECTuiiiiiiiii e 4-1

Defining an Object’'s Activation POlICIESccceviiiiiiiiiiiii e, 4-16

Creating and Registering a Factorycccceviiiiieiiiiiiiee e 4-1

Releasing the Server AppliCationccooviiiiiiiiiein e 4-1!
Step 4: Write the Client APPlICAtIONcuvieeiriiiiii e 4-21

Getting Started

Step 5: Create an XA ReSOUICE MaN@AQEruvuieieiiniieiirieiiieiieeen e 4-24

Step 6: Create a Configuration File ..o 4-25
Step 7: Create the TUXCONFIG Filecooiiiiiiiiiiiii e 4-28
Step 8: Compile the Server Applicationoceeiiiiiieiiii e 4-29
Step 9: Compile the Client Application............oocuviiiiiiiie i 4-30
Step 10: Start the WebLogic Enterprise CORBA Application 4-30
Additional WebLogic Enterprise CORBA Sample Applications 4-31

5. Using Security

Overview Of the SECUNLY SEIVICEciiiiiii it 5-1
HOW SECUILY WOIKS ...ttt ettt 5-2
The Security Sample APPlICAtION.........coouiiiiaii e 5-4
DEVEIOPMENT STEPS ..ttt ettt 5-6
Step 1: Define the Security Level in the Configuration File...................... 5-6
Step 2: Write the CORBA Client Applicationcccccoviiiiiniiiiieienn 5-7
6. Using Transactions
Overview of the TranSaction SEIVICEueiiiiiieiiiiiiie e 6-1
What Happens DUuring @ TranSactioncceeeeoriirieeiriiieees e 6-3
Transactions Sample ApPlCAtIONccceviiiiiiiiie e 6-4
DEVEIOPMENT STEPS ..ttt 6-7
Step 1: Write the OMG IDL COEcccoiuiiiiiiiiiiie it 6-8
Step 2: Define Transaction Policies for the Interfaces..........ccccccoevenne 6-10
Step 3: Write the CORBA Client Applicationcccoovivieiiiiieeeneinn 6-11
Step 4: Write the Server Application ... 6-13
Step 5: Create a Configuration File ..., 6-14
Part Ill. Developing WebLogic Enterprise EJB Applications
7. Developing WebLogic Enterprise EJB Applications
Overview of the Development Process for WebLogic Enterprise
EJIB APPHCALIONS......eiiiiiiii ittt 7-3
The statefulSession EJB Sample Applicationcccccoeviiiieiniiiiiiiiiie e 7-5
Developing EJIB APPlICALIONSuvuiiiiiiiiiiiiiit et e 7-7
Step 1: Create the EJB........ooceiiiiiiie ettt 7-8
Step 2: Create the Module Initializer Object.........ccocvoviiiiiiieniieeee 7-13

Getting Started %

Vi

Step 3: Create the Deployment DeSCHPIOr.......cc.uvvieiriieeee e 7-1

Step 4: Create a Standard EJB JAR Fileoooeviiiiiiiiiee e 7-1
Building and Deploying EJB AppliCationSccoviiiiieiiiiiie e 7-20
Step 5: Create the WebLogic EJB Extensions
to the Deployment Descriptor DTDcccuveeiiieieeeeisiiiiiee e e e 7-21
Step 6: Modify the Deployment DeSCrPLOrccoovivieeeriiiiiieniiiee e 7-26
Step 7: Package the Components Into a Deployable EJB JAR File......... 7-2¢
Step 8: Configure the EJB APPliCatioNceeeeiiiiieiiniiiiii e 7-2¢
Step 9: Create the Client AppliCationooeiiiiiiii i 7-3:
Step 10: Start and Run the WebLogic Enterprise EJB Application......... 7-36
Step 11: Dynamically Manage the EJB Deployment
(Hot REdePIOYMENL) ..ottt e 7-31
WebLogic Enterprise EJB Sample Applications..........ccccoveeriiiieiiiiniiiiee e, 7-3¢

8. Designing Enterprise JavaBeans for the WebLogic Enterprise

System
Designing EJB Applications for the WebLogic Enterprise System.................. 8-2
The Client Application Programmer’s VIEW..........ccoovieeiiiiiiiie e 8-2
The EJB Programmer’s VIEW..........ueiiiiiieitieiiiie ettt ee e 8-
EJBS @nd PErSISIENCE ...ttt e eeeee e 8-
Development Considerations for EJBs and Persistence.........ccccccceevneeee 8-1
Container-managed Entity BEANSccueiiiiiiiiiie e 8-1
Bean-managed Entity BEaNS.........c.uueiiiiiiiiiiiie e 8-1
Stateful SESSION BEANS......ccciiiiiii ittt e e 8-
StateleSs SESSION BEANSccoiiiiiiieiiiieie ettt e 8-
Index

Getting Started

About This Document

This document presents an overview of the BEA WebLogic Enterprise™ product and
describes the development process for developing distributed CORBA and Enterprise
JavaBeans (EJB) applications using the WebLogic Enterprise software.

This document does not discuss every feature of the WebLogic Enterprise product;
instead, it gives a general description of building a typical application or bean using
the WebLogic Enterprise programming environment. To find information about all the
WebLogic Enterprise features, see the home page of the WebLogic Enterprise online
documentation.

This document covers the following topics:

Chapter 1, “Overview of the WebLogic Enterprise Product,” presents an
overview of the WebLogic Enterprise product.

Chapter 2, “The WebLogic Enterprise CORBA Programming Environment,”
describes the CORBA programming environment available in the WebLogic
Enterprise product and the architectural components of the CORBA
programming environment.

Chapter 3, “The WebLogic Enterprise JavaBeans (EJB) Programming
Environment,” describes the EJB programming environment available in the
WebLogic Enterprise product and the architectural components of the EJB
programming environment.

Chapter 4, “Developing WebLogic Enterprise CORBA Applications,” explains
how to build a typical WebLogic Enterprise CORBA application, using the
Simpapp sample application as an example.

Chapter 5, “Using Security,” describes how security is incorporated into a
WebLogic Enterprise CORBA application. The Security sample application is
used as an example.

Getting Started vii

m Chapter 6, “Using Transactions,” describes how transactions are incorporated
into a WebLogic Enterprise CORBA application. The Transactions sample
application is used as an example.

m Chapter 7, “Developing WebLogic Enterprise EJB Applications,” explains how
to build a typical WebLogic Enterprise EJB application, using the
statefulSession EJB application, which is shipped with the WebLogic
Enterprise software, as an example.

m Chapter 8, “Designing Enterprise JavaBeans for the WebLogic Enterprise
System,” explains how to design a typical EJB application using the WebLogic
Enterprise programming environment.

What You Need to Know

This document is intended for programmers who want to familiarize themselves with
the WebLogic Enterprise programming environment and create either distributed
CORBA or Enterprise JavaBeans applications using the WebLogic Enterprise product

e-docs Web Site

The BEA Weblogic Enterprise product documentation is available from the BEA
Systems, Inc. corporate Web site. From the BEA Home page, click the Product
Documentation button or go directly to the “e-docs” Product Documentation page at
http://e-docs.bea.com

viii Getting Started

How to Print the Document

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterprise
documentation Home page, click the PDF Files button, and select the document you
want to print.

If you do not have the Adobe Acrobat Reader installed, you can download it for free
from the Adobe Web site dittp://www.adobe.corn

Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA
Tuxedo®, distributed object computing, transaction processing, C++ programming,
and Java programming, see tBibdliographyin the WebLogic Enterprise online
documentation.

Contact Us!

Your feedback on the BEA WebLogic Enterprise documentation is important to us.
Send us e-mail atocsupport@bea.conif you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Enterprise 5.1 release.

Getting Started iX

If you have any questions about this version of BEA WebLogic Enterprise, or if you
have problems installing and running BEA WebLogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORTvatw.bea.comYou can also

contact Customer Support by using the contact information provided on the Custome
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:
m Your name, e-mail address, phone number, and fax number

m Your company name and company address

m Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

X

The following documentation conventions are used throughout this document.

Convention ltem

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

Getting Started

Documentation Conventions

Convention Item

monospace Indicates code samples, commands and their options, data structures and
text their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples
#include <iostream.h> void main () the pointer psz
chmod u+w *

\tux\data\ap
.doc
tux.doc
BITMAP
float
monospace Identifies significant words in code.
boldface Example
text void commit ()
monospace Identifies variables in code.
;f)gc Exgmple
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR
{1} Indicates a set of choices in a syntax line. The braces themselves should

never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.
Example
buildobjclient [-v] [-0 name] [-f file-list]...

[filedist ..

Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Getting Started Xi

Xii

Convention

Iltem

Indicates one of the following in a command line:

m That an argument can be repeated several times in acommand line

m That the statement omits additional optional arguments

m That you can enter additional parameters, values, or other information
The ellipsis itself should never be typed.

Example

buildobjclient [-v] [-0 name] [-f file-list]...
[l file-list]...

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Getting Started

Partl Overview of the
WebLogic
Enterprise
Product and
Programming
Environments

Chapter 1. Overview of the WebLogic Enterprise

Product
Chapter 2. The WebLogic Enterprise CORBA
Programming Environmen t

Chapter 3. The WebLogic Enterprise JavaBeans (EJB)
Programming Environmen t

CHAPTER

1 oOverview of the

WebLogic Enterprise
Product

This topic includes the following sections:
m Product Overview
m J-Engine Features

m T-Engine Features

Product Overview

The BEA WebLogic Enterprise product features the integration of BEA Systems Inc.
industry-leading technologies — a high performance Java application server and a
scalable back-end transaction platform. These technologies are now merged into a
single product that gives you maximum choice and flexibility in building robust
e-commerce applications that extend from the Web to the enterprise.

The J-Engine in the WebLogic Enterprise product is built upon the BEA WebLogic
Server™ technology. The J-Engine offers an award-winning Java application server
that incorporates the most comprehensive implementation of the Java 2 Enterprise
Edition (J2EE) standards. The application server provides the foundation for the rapid
development of Web applications and the performance and reliability required for
mission-critical e-commerce sites.

Getting Started 1-1

1 overview of the WebLogic Enterprise Product

The T-Engine in the WebLogic Enterprise product is built upon the proven
infrastructure provided in the BEA Tuxedo™ product. The T-Engine delivers a
scalable transaction platform with unparalleled choice of development and
deployment options. Using the T-Engine, you can build integrated enterprise
applications using multiple programming models. CORBA, J2EE, and Tuxedo
applications can all be developed with fully integrated transaction management,
security, administration, and reliability capabilities.

The connection pooling technology incorporated into the WebLogic Enterprise
product provides for scalable connectivity between the J-Engine and T-Engine
environments.

Figure 1-1 illustrates the WebLogic Enterprise product.

Figure 1-1 The WebLogic Enterprise Product

Web RMI C%TEA C\(])asgA ActiveX Tuxedo
Browsers Clients -) Clients Clients
Clients Clients

- N
J-Engine T-Engine
Comprehensive J2EE Multiple programming
support including: models including:
e Java Server Pages ¢ Tuxedo
e Servlets e CORBA
* EJBs Connection Pooling | * J%EE
J _ J
BEA WebLogic Enterprise

1-2 Getting Started

J-Engine Features

The following sections outline the features of the T-Engine and J-Engine in the
WebLogic Enterprise product.

J-Engine Features

The J-Engine in WebLogic Enterprise product provides the following set of features:

A complete implementation of EJB, servlets, Java Server Pages (JSPs), Java
Message Service (JMS), Java Database Connectivity (JDBC), and the Java
Naming and Directory Interface (JNDI) as specified by the J2EE standard.

Web page and component clustering of EJBs across multiple servers.

Web page clustering handles transparent replication, load-balancing, and failover
for presentation logic. Component clustering handles the complexities of
replication, load-balancing, and failover for EJBs.

JSPs for easy development and deployment of dynamic Web content. JSPs can
be used with personalization, database access, and transaction EJBs to
development many kinds of high-performance Web applications.

Remote Method Invocation (RMI). With RMI, an application can use distributed
objects as easily as local objects. RMI can be clustered across multiple
WebLogic Servers.

JMS for applications requiring real-time information about changing application
conditions. The JMS implementation in the J-Engine provides store and forward
and point-to-point messaging with guaranteed delivery. JMS also provides a
publish/subscribe event management model.

Multitiered JDBC which allows a Java application to access and update
databases from anywhere on the network. The J-Engine includes its own native
JDBC drivers for leading database products and also works with any third-party
JDBC driver.

Support for Wireless Markup Language (WML) and integration with leading
WAP servers for support of wireless clients.

XML support for any XML-compliant browser.

Getting Started 1-3

1 overview of the WebLogic Enterprise Product

Interoperablity with Microsoft COM objects. Microsoft COM objects can be
integrated into the Weblogic Server environment, wrapped with a Java class, and
transparently shared over the network.

Access for Web browsers directly via HTTP request. Forwarding capabilities,
such as HTTP proxy support, enable dispatching to servers other than the
original Web server.

Support for the Java Transaction application programming interface (API) which
allows client or server applications to initiate transactions that are propagated to
other servers.

A Java management console for remotely monitoring and updating the state of
applications and clusters. SNMP support which allows use of any third-party,
SNMP-compliant management framework.

A Zero Administration Client (ZAC) which supports that automatic distribution
of Java applets, applications, or systems. With ZAC, program libraries, even a
new WebLogic Server release, can be installed centrally by an administrator.

Dynamic application partitioning and cluster membership.
Support for Oracle, Informix, Sysbase, and MS SQL-server databases.

Integration with Integrated Development Environments (IDEs) including IBM
VisualAge, Inprise Jbuilder, Microsoft Visual J++ or any Java 1.1 or higher
compliant IDE.

Integrated security and firewall support. Network applications are secured with
optional encryption, authentication, and authorization based on the SSL protocol,
X.509 digital certificates, and access control lists (ACLS).

Management of IIOP connections that allows the restarting of a connection pool
without affecting the availability of the Web environment.

T-Engine Features

1-4

The T-Engine in WebLogic Enterprise product provides the following set of features:

A full suite of server-side components including:

Getting Started

T-Engine Features

e BEA Tuxedo

¢ ACORBAC++ ORB
¢ A CORBA Java ORB
e EJB container

e RMI support

One or more BEA Tuxedo, CORBA Java, CORBA C++, EJB, or RMI server
components can be deployed in a single WebLogic Enterprise application.

The WebLogic Enterprise product supports version 1.1 of the Sun Microsystems,
Inc. Enterprise JavaBeans Specification.

Rich clients options including:
e Tuxedo /workstation client
e A CORBA C++ ORB client
e A CORBA Java ORB client
e A WebLogic Enterprise RMI client

e An ActiveX client

A proven runtime infrastructure for hosting e-commerce transaction applications,
including client connection concentrators, high-performance message routing
and load balancing, high-availability features, and database connection pooling.

Full support for Tuxedo 6.x applications.
EJB version 1.1 support for Enterprise Java Bean applications.

A Transaction Processing (TP) Framework for object state and transaction
management in CORBA applications.

Interoperability with [IOP-compliant ORBs such as the JDK 1.2 Java ORB.

Access to databases from Java applications using two-phase commit via BEA
JDBC-XA drivers. Support for XA-compliant databases using Tuxedo or C++.
Drivers are provided for Oracle 8.0.5 and 8.1.5 databases.

A Management Information Base (MIB) that defines the key management
attributes of WebLogic Enterprise applications. In addition, programming
interfaces and scripting capabilities are available to access the MIBs.

Getting Started 1-5

1 overview of the WebLogic Enterprise Product

1-6

An Administration Console graphical user interface (GUI) for the management
of the WebLogic Enterprise environment.

Hot deployment of EJBs through the Deployer GUI tool.

The Java Naming and Directory Interface (JNDI) used by WebLogic Enterprise
client applications to find WebLogic Enterprise server-side EJB Home objects
and RMI objects.

The CORBA and Java Transaction Services (OTS and JTS) to ensure the
integrity of your data even when transactions span multiple programming
models, databases, and applications.

A security service that handles authentication for principals that need to access
resources in a CORBA object or EJB in the WebLogic Enterprise environment.
Access control lists (ACLSs) are also provided for EJBs in your WebLogic
Enterprise application.

The Secure Sockets Layer (SSL) protocol to encrypt client to server
communication on the wire. SSL support includes IIOP connection pools
between the J-Engine and the T-Engine.

Propagation of the security context from the J-Engine to the T-Engine through
[IOP connection pools.

A Security Service Plug-In Interface (SPI) for CORBA that allows integration of
third-party security plug-ins.

A Notification Service that receives event posting messages, filters them, and

distributes the messages to subscribers. The Notification Service provides two
sets of interfaces: a CORBA-based interface and a simplified BEA-proprietary
interface.

An implementation of the CosLifeCycle service.

An implementation of CosNaming that allows WebLogic Enterprise CORBA
server applications to advertise object references using logical names.

An interface repository that stores meta information about WebLogic Enterprise
CORBA objects. Meta information includes information about modules,
interfaces, operations, attributes, and exceptions.

Dynamic Invocation Interface (DII) support. DIl allows WebLogic Enterprise
CORBA client applications to dynamically create requests for objects that were
not defined at compile time.

Getting Started

T-Engine Features

m Jolt for client-side access to BEA Tuxedo services. Jolt enables browser-based
clients (both Java applets and applications) to invoke BEA Tuxedo services and
process the results. Jolt is installed separately from the T-Engine.

m Java Enterprise Tuxedo (JET) application programming interface (API) for
server-side access to BEA Tuxedo services. The JET API enables Java server
applications (CORBA Java, EJB, or RMI) running within a WebLogic Enterprise
domain to invoke BEA Tuxedo services and process the results. The JET APl is
automatically installed when you install the WebLogic Enterprise product.

The rest of thisSetting Startednanual describes the programming environment of the
T-Engine and the development process for CORBA objects and EJBs in the T-Engine
environment. For a description of the programming environment and development
process for the J-Engine, see theerviewgopic in the Weblogic Server portion of the
online documentation CD.

Getting Started 1-7

1 overview of the WebLogic Enterprise Product

1-8 Getting Started

CHAPTER

2 The WebLogic

Enterprise CORBA
Programming
Environment

This topic includes the following sections:

m Overview of the WebLogic Enterprise CORBA Programming Features
m WebLogic Enterprise CORBA Object Services

m WebLogic Enterprise Architectural Components

m How WebLogic Enterprise CORBA Client and Server Applications Interact

Overview of the WebLogic Enterprise
CORBA Programming Features

The WebLogic Enterprise product offers a robust CORBA programming environment
that simplifies the development and management of distributed objects. The following
topics describe the features of the programming environment:

Getting Started 2-1

2 The WebLogic Enterprise CORBA Programming Environment

m IDL Compilers
m Development Commands
m Administration Tools

m ActiveX Application Builder

IDL Compilers

The WebLogic Enterprise product comes with two IDL compilers that make object
development easier:

m idl —compiles the OMG IDL file and generates client stub and server skeleton
files required for interface definitions being implemented in C++.

m idltojava —compiles IDL files to Java source code based on IDL-to-Java
mappings defined by the OMG. Tlditojava compiler provided with the
WebLogic Enterprise product includes several enhancements, extensions and
additions that are not present in the original Sun Microsystems, Inc. version of
the compiler. The WebLogic Enterprise specific revisions are summarized below.

¢ Differs from that described in the Sun Microsystems, Inc. documentation in
behavior and defaults of the flags.

e Includes a new #pragma tagpragma ID < name> <Repostitory_id>.
e Includes a new #pragma tagpragma version < name> <m.n>.

e Extends thetpragma prefix to work on inner scope. A blank prefix
reverts.

e Allows unions with boolean discriminators.

¢ Allow declarations nested inside complex types.

m m3iditojava —compiles the OMG IDL file and generates client stub and server
skeleton files required for interface definitions being implemented in Java.

For a description of how to use the IDL compilers, see Chapter 4, “Developing
WebLogic Enterprise CORBA Applications.”

2-2 Getting Started

Overview of the WebLogic Enterprise CORBA Programming Features

For a description of thall , idltojava , andma3iditojava ~ commands, see
Commands, Server Processes, and MIB Referanitee WebLogic Enterprise online
documentation.

Development Commands

Table 2-1 lists the commands that the WebLogic Enterprise product provides for
developing CORBA application components and managing the Interface Repository.

Table 2-1 WebLogic Enterprise CORBA Development Commands

Development Description

Command

buildjavaserver Constructs a server application JAR file for a Java server
application.

buildobjclient Constructs a C++ client application.

buildobjserver Constructs a C++ server application.

buildXAJS Constructs an XA resource manager to be used with a Java server

application group.

genicf Generates an Implementation Configuration File (ICF). The ICFfile
defines activation and transaction policies for C++ server
applications.

id12ir Creates the Interface Repository and loads interface definitions into
it.

ir2idl Shows the content of the Interface Repository.

irdel Deletes the specified object from the Interface Repository.

For a description of how to use the development commands to develop client and
server applications, see Chapter 4, “Developing WebLogic Enterprise CORBA
Applications.”

For a description of the development commands,Ge@mands, Server Processes,
and MIB Referencen the WebLogic Enterprise online documentation.

Getting Started 2-3

2 The WebLogic Enterprise CORBA Programming Environment

Administration Tools

2-4

The WebLogic Enterprise product provides a complete set of tools for administering
your WebLogic Enterprise environment. You can manage the WebLogic Enterprise
application through commands, through a graphical user interface, or by including
administration utilities in a script.

You can use the commands listed in Table 2-2 to perform administration tasks for you!
WebLogic Enterprise application.

Table 2-2 WebLogic Enterprise Administration Commands

Administration Description

Command

tmadmin Displays information about current configuration parameters.
tmboot Activates the WebLogic Enterprise application referenced in

the specified configuration file. Depending on the options used,
the entire application or parts of the application are started.

tmconfig Dynamically updates and retrieves information about the
configuration of a WebLogic Enterprise application.

tmloadcf Parses the configuration file and loads the binary version of the
configuration file.

tmshutdown Shuts down a set of specified server applications, or removes
interfaces from a configuration file.

tmunloadcf Unloads the configuration file.

The Administration Console is a Java-based applet that you can download into your
Internet browser and use to remotely manage your WebLogic Enterprise applications
The Administration Console allows you to perform administration tasks, such as
monitoring system events, managing system resources, creating and configuring
administration objects, and viewing system statistics. Figure 2-1 shows the main
window of the Administration Console.

Getting Started

Overview of the WebLogic Enterprise CORBA Programming Features

Figure 2-1 Administration Console Main Window

[EiBEA Administration Console
Darmnain Settings Tools Help

|) | & %) | BO | =) | 2 |

Riefrezh Search Activate Deact Migrate Log file Event Statz Settings 5 Help

] Configuration Tool — T_DOMAIN

General | security | Limits 1 | Limits 2 | Timers | L
r:iGn:nups
t3I:Ii|3nts
r-“ﬁDevice& Damain 1D |
[ﬁW’S Handlers :
D‘ﬁﬁmups master, Backup Machine: |

- servers tdemory Model: | Single Machine =

B simps. ewe [GROUF1 /2] w

T8 simpserv.exe [GROUF1 /4] IPC ey
B BEL exe [SITE1/0] Object State:
- 5L eve [GROUPTA] _ _
(TR TMFFMAME. exe [GROUPZ/2] HIEESE CEmIperEns:
BT TMFFNAME exe [GROUR2/3] License Expiration Date:
(T TMFFMAME. exe [GROLPZ2/4] Userse Mesi i s
BT TMSYSEVT exe [GROUF2/1] '
IZ]—'E" servvicky.exe [GROUP1/5] License Serial Mumber:
BT simpfactarys [GROUPT /3]

: 2 ST [P S ﬂ Change | Cancel | Mev.. | Dielete ‘

3| [Javadpplet Window

In addition, a set of utilities called the AdminAPI is provided for directly accessing and
manipulating system settings in the Management Information Bases (MIBs) for the
WebLogic Enterprise product. The advantage of the AdminAPI is that it can be used
to automate administrative tasks, such as monitoring log files and dynamically
reconfiguring an application, thus eliminating the need for manual intervention.

For information about the Administration commands, €@emands, Server
Processes, and MIB ReferermedAdministrationin the WebLogic Enterprise online
documentation.

Getting Started 2-5

The WebLogic Enterprise CORBA Programming Environment

For a description of the Administration Console and how it works, see the online help
that is integrated into the Administration Console graphical user interface (GUI).

For information about the Admin API, s&&EA Tuxedo Referendethe WebLogic
Enterprise online documentation.

ActiveX Application Builder

2-6

The ActiveX Application Builder is a development tool that you use with a client
development tool (such as Visual Basic) to select which CORBA interfaces in a
WebLogic Enterprise domain you want your ActiveX client application to interact
with. In addition, you use the ActiveX Application Builder to create Automation
bindings for CORBA interfaces, and to create packages for deploying ActiveX views
of CORBA objects to client machines.

Figure 2-2 shows the ActiveX Application Builder main window.

Getting Started

Overview of the WebLogic Enterprise CORBA Programming Features

Figure 2-2 ActiveX Application Builder Main Window

El Builder - Services
File Edit ¥iew Toolz Window Help

=@ Ble] alal 5] 2]l

BE|Services Hi= &= Workstation Yiews
-1 Weblogic = Autarnation
E|[:| Interfaces gﬁ DIUniversityB azic_F egistrar
- =3l lazic o) UniversityB asic_CourseSyrapsisE numerator
g CourseSynopsisE numerator ﬁ UniversityB azic_R eqistrarF actan
gﬁ Registrar

gﬁ RegistrarF actam
E - WisualEdge
[Dbjects

L

For Help, press F1

For a description of the ActiveX Application Builder and how it works, see the online
help that is integrated into the ActiveX Application Builder graphical user interface
(GUI). For information about creating ActiveX client applications, see the PDF
version of theWebLogic Enterprise ActiveX Client Developer’s Guik¢he

WebLogic Enterprise online documentation.

Getting Started 2-7

2 The WebLogic Enterprise CORBA Programming Environment

WebLogic Enterprise CORBA Object Services

2-8

The WebLogic Enterprise product includes a set of environmental objects that provide
object services to client applications in a WebLogic Enterprise domain. You access the
environmental objects through a bootstrapping process that accesses the services ir
particular WebLogic Enterprise domain.

The following services are provided:

m Object Life Cycle service

The Object Life Cycle service is provided through the FactoryFinder
environmental object. The FactoryFinder object is a CORBA object that can be
used to locate a factory, which in turn can create object references for CORBA
objects. Factories and FactoryFinder objects are implementations of the
CORBAservices Life Cycle Service. WebLogic Enterprise applications use the
Object Life Cycle service to find object references.

For information about using the Object Life Cycle Service, see “How WebLogic
Enterprise CORBA Client and Server Applications Interact” on page 2-16.

m Security service

The Security service is accessed through the SecurityCurrent environmental
object. The SecurityCurrent object is used to authenticate a client application
into a WebLogic Enterprise domain with the proper security. The WebL ogic
Enterprise software provides an implementation of the CORBAservices Security
Service.

For information about using security, s&sing Securityn the WebLogic
Enterprise online documentation.

m Transaction service

The Transaction service is accessed through either the TransactionCurrent
environmental object or the UserTransaction object. The TransactionCurrent
object allows a client application to participate in a transaction. The WebLogic
Enterprise software provides an implementation of the CORBAservices Object
Transaction Service (OTS). In addition, the UserTransaction object provides
access to the Sun Microsystems, Inc. Java Transaction API (JTA) defined in the
javax.transaction package.

Getting Started

WebLogic Enterprise Architectural Components

For information about using transactions, keng Transactiong the
WebLogic Enterprise online documentation.

m Interface Repository service

The Interface Repository service is accessed through the IntefaceRepository
object. The InterfaceRepository object is a CORBA object that contains interface
definitions for all the available CORBA interfaces and the factories used to
create object references to the CORBA interfaces. The Interface Repository
object is used with client applications that use DII.

For information about using DII, se@reating CORBA Client Applications

The WebLogic Enterprise software provides environmental objects for the following
programming environments:

m C++
m Java

m Automation (used by ActiveX client applications)

WebLogic Enterprise Architectural
Components

This section provides an introduction to the following architectural components of the
WebLogic Enterprise system:

Bootstrap Object
[IOP Listener/Handler

m ORB
m TP Framework

Figure 2-3 illustrates the components in a WebLogic Enterprise application.

Getting Started 2-9

The WebLogic Enterprise CORBA Programming Environment

Figure 2-3 Components in a WebLogic Enterprise Application

Client Machine

Client Application

Bootstrap
Object

TransactionCurrent
Object Reference

SecurityCurrent
Object Reference

WLE Domain
Server Machine(s)
Server Application
FactoryFinder P
Object Framework
SecurityCurrent Port_able
Object Object
Adapter
TransactionCurrent Factory
Object
Bootstrap
i ject
InterfaceRepository Objec
Object
[
[

2-10

IIOP Listener/

Handler

/

loP
e

Object Request Broker

Getting Started

WebLogic Enterprise Architectural Components

Bootstrap Object

The Bootstrap object establishes communication between a client application and a
WebLogic Enterprise domain. A domain is simply a way of grouping objects and
services together as a management entity. A WebLogic Enterprise domain has at least
one IIOP Listener/Handler and is identified by a name. One client application can
connect to multiple WebLogic Enterprise domains using different Bootstrap objects.

One of the first things that client applications do after startup is create a Bootstrap
object by supplying the host and port of the IIOP Listener/Handler using one of the
following URL address formats:

m //host:port
m corbaloc://host:port

m corbalocs://host:port

For more information about the Bootstrap URL address formatd,se®y Securityn
the WebLogic Enterprise online documentation.

The client application then uses the Bootstrap object to obtain references to the objects
in a WebLogic Enterprise domain. Once the Bootstrap object is instantiated, the
resolve_initial_references() method is invoked by the client application,
passingin atring id , to obtain a reference to the objects in the domain that provide
CORBA services. The valid values fetring id are FactoryFinder,
TransactionCurrent, SecurityCurrent, and InterfaceRepository.

Figure 2-4 illustrates how the Bootstrap object works in a WebLogic Enterprise
domain.

Getting Started 2-11

2 The WebLogic Enterprise CORBA Programming Environment

Figure 2-4 How the Bootstrap Object Works in a WebLogic Enterprise Domain

Client -
o WLE Domain
Application
Bootstrap Factggj(gér’:der
Object \
resolve_initial_references() \\) lHOP TransactionCurrent
Listener/Handler Object
FactoryFinder S i
. ecurityCurrent
Object Reference Ol)alject
TransactionCurrent InterfaceRepository
Object Reference Object

SecurityCurrent
Object Reference

InterfaceRepository
Object Reference

IIOP Listener/Handler

The IIOP Listener/Handler is a process that receives the client request, which is sent
using IIOP, and delivers that request to the appropriate server application. The IIOP
Listener/Handler serves as a communication concentrator, providing a critical
scalability feature. The IIOP Listener/Handler removes from the server application the
burden of maintaining client connections. For information about configuring the 11OP
Listener/Handler, seAdminstrationand the description of the ISL command in the
Commands, Server Processes, and MIB Referemitee WebLogic Enterprise online
documentation.

2-12 Getting Started

WebLogic Enterprise Architectural Components

ORB

The ORB serves as an intermediary for requests that client applications send to server
applications, so that client applications and server applications do not need to contain
information about each other. The ORB is responsible for all the mechanisms required
to find the implementation that can satisfy the request, to prepare an object's
implementation to receive the request, and to communicate the data that makes up the
request. The WebL ogic Enterprise product provides a C++ ORB and a BEA version of
the Java IDL ORB provided with the Java Development Kit (JDK) from Sun
Microsystems, Inc.

Figure 2-5 shows the relationship between an ORB, a client application, and a server
application.

Figure 2-5 The ORB in a Client/Server Environment

Client Server
Application Application
(Directs Directs)
Requt_asts Response Request Returns
Service Response

\ to Client to Server

Object Request Broker

When the client application uses IIOP to send a request to the domain, the ORB
performs the following functions:

m Validates each request and its arguments to ensure that the client application
supplied all the required arguments.

Getting Started 2-13

2 The WebLogic Enterprise CORBA Programming Environment

m Manages the mechanisms required to find the CORBA object that can satisfy the
client application’s request. To do this, the ORB interacts with the Portable
Object Adapter (POA). The POA prepares an object's implementation to receive
the request and communicates the data in the request.

m Marshals data. The ORB on the client machine writes the data associated with
the request into a standard form. The ORB receives this data and converts it into
the format appropriate for the machine on which the server application is
running. When the server application sends data back to the client application,
the ORB marshals the data back into its standard form and sends it back to the
ORB on the client machine.

TP Framework

2-14

The TP Framework provides a programming model that achieves high levels of
performance while shielding the application programmer from the complexities of the
CORBA interfaces. The TP Framework supports the rapid construction of WebLogic
Enterprise applications, which makes it easier for application programmers to adher
to design patterns associated with successful TP applications.

The TP Framework interacts with the Portable Object Adapter (POA) and the
WebLogic Enterprise application, thus eliminating the need for direct POA calls in an
application. In addition, the TP Framework integrates transactions and state
management into the WebLogic Enterprise application.

The application programmer uses an application programming interface (API) that
automates many of the functions required in a standard CORBA application. The
application programmer is responsible only for writing the business logic of the
WebLogic Enterprise application and overriding default actions provided by the TP
Framework.

The TP Framework API provides routines that perform the following functions
required by a CORBA application:

m Initializing the server application and executing startup and shutdown routines
m Creating object references
m Registering and unregistering object factories

m Managing objects and object state

Getting Started

WebLogic Enterprise Architectural Components

m Tying the server application to WebLogic Enterprise system resources
m Getting and initializing the ORB
m Performing object housekeeping

The TP Framework ensures that the execution of a client request takes place in a
coordinated, predictable manner. The TP Framework calls the objects and services
available in the WebLogic Enterprise application at the appropriate time, in the correct
sequence. In addition, the TP Framework maximizes the reuse of system resources by
objects. Figure 2-6 illustrates the TP Framework.

Figure 2-6 The TP Framework

WLE Domain

Server Machine

TP Framework
Server Object

TP Object

CORBA

Object

Implementations
[

Factory

Portable Object
Adapter

The TP Framework is not a single object, but is rather a collection of objects that work
together to manage the CORBA objects that contain and implement your WebLogic
Enterprise application’s data and business logic.

Getting Started 2-15

2 The WebLogic Enterprise CORBA Programming Environment

One of the TP Framework objects is the Server object. The Server object is a
user-written programming entity that implements operations that perform tasks such a
initializing and releasing the server application; for server applications implemented in
C++, the TP Framework instantiates the CORBA objects needed to satisfy a client
request.

If a client request that requires an object that is not currently active and in memory in
the server application arrives, the TP Framework coordinates all the operations that ar
required to instantiate the object. This includes coordinating with the ORB and the
POA to get the client request to the appropriate object implementation code.

How WebLogic Enterprise CORBA Client and
Server Applications Interact

2-16

The interaction between WebLogic Enterprise CORBA client and server applications
includes the following steps:

1. The server application is initialized.

2. The client application is initialized.

3. The client application authenticates itself to the WebLogic Enterprise domain.
4

. The client application obtains a reference to the object needed to execute its
business logic.

5. The client application invokes an operation on the CORBA object.

The following topics describe what happens during each step.

Getting Started

How WebLogic Enterprise CORBA Client and Server Applications Interact

Step 1: The Server Application Is Initialized

The system administrator enters thvoot command on a machine in the WebLogic
Enterprise domain to start the WebLogic Enterprise server application. The TP
Framework invokes thiitialize() operation in the Server object to initialize the
server application.

WLE Server Application

TP Framework

Server Object

Initialize server {
Register factories;

}

During the initialization process, the Server object does the following:

1. Gets the Bootstrap object and a reference to the FactoryFinder object.
2. Typically registers any factories with the FactoryFinder object.

3. Optionally gets an object reference to the ORB.
4

. Performs any process-wide initialization.

Getting Started 2-17

2 The WebLogic Enterprise CORBA Programming Environment

Step 2: The Client Application Is Initialized

During initialization, the client application uses the Bootstrap object in the domain to
obtain initial references to the environmental objects available in the domain.

WLE Client Application

Instantiate the Bootstrap object; Bootstrap
Resolve initial references; e ——> Object

The Bootstrap object returns references to the FactoryFinder, SecurityCurrent,
TransactionCurrent, NameService, and InterfaceRepository objects in the WebLogic
Enterprise domain.

Step 3: The Client Application Authenticates Itself to the
WebLogic Enterprise Domain

If the WebLogic Enterprise domain has a security model in effect, the client
application needs to authenticate itself to the WebLogic Enterprise domain before it
can invoke any operations in the server application. To authenticate itself to the
WebLogic Enterprise domain using Tuxedo authentication, the client application:

1. Uses the Bootstrap object to obtain a reference to the SecurityCurrent object.

2. Invokes thaogon() operation of theéPrincipalAuthenticator object, which
is retrieved from the SecurityCurrent object.

Note: For information about using certificate-based authentication|ségg
Securityin the WebLogic Enterprise online documentation.

2-18 Getting Started

How WebLogic Enterprise CORBA Client and Server Applications Interact

Step 4: The Client Application Obtains a Reference to the
Object Needed to Execute Its Business Logic

The client application needs to perform the following steps:

1. Obtain areference to the factory for the object it needs.

For example, the client application needs a reference tgithgeFactory
object. The client application obtains this factory reference from the
FactoryFinder object, shown in the following figure.

WLE Server Application

TP Framework
Server Object

WLE Client Application
| . he B biect: Initialize server {
nstantiate the Bootstrap object; Register factories;
Resolve initial references; }

Log on;
Find one factory
FactoryFinder
Object
SecurityCurrent
Object

2. Invoke theSimpleFactory object to get a reference to tisénple object.

If the SimpleFactory ~ object is not active, what happens next depends on the
programming language in which the server application is implemented:
¢ InJava, the WebLogic Enterprise system instantiate sthpleFactory

object dynamically.

e In C++, the TP Framework instantiates thienpleFactory object by
invoking theServer::create_servant() method on the Server object,

shown in the following figure.

Getting Started 2-19

2 The WebLogic Enterprise CORBA Programming Environment

WLE Server Application

TP Framework
Server Object

Initialize server {
Register factories;

}
WLE Client Application |4 Server::create_servant() {

}

Instantiate the Bootstrap object;

Resolve initial references;

Log on;

Find a factory by ID; SimpleFactory

3. The TP Framework invokes thetivate_object() andfind_simple()

operations on th&impleFactory ~ object to get a reference to tisanple object,
shown in the following figure.

WLE Server Application

TP Framework
Server Object

Initialize server {
Register factories;

}

WLE Client Application
Instantiate the Bootstrap object;
Resolve initial references;
Log on;
Find a factory by ID; | SimpleFactory
Find_simple; - ¢

Simple

TheSimpleFactory object then returns the object reference tosheple object to
the client application.

2-20 Getting Started

How WebLogic Enterprise CORBA Client and Server Applications Interact

Note: Because the TP Framework activates objects by default, the Simpapp sample
application does not implicitly use thetivate_object() operation for the
SimpleFactory object.

Step 5: The Client Application Invokes an Operation on
the CORBA Object

Using the reference to the CORBA object that the factory has returned to the client
application, the client application invokes an operation on the object. For example,
now that the client application has an object reference tsithple object, the client
application can invoke the_upper() operation on it. The instance of the Simple
object required for the client request is created as shown in the following figure.

WLE Server Application

/ TP Framework

Server Object

Initialize server {
Register factories;

8

- — Server::create_servant() {
WLE Client Application }
Instantiate the Bootstrap object;
Resolve initial references; A,
Log on; [E— SimpleFactory
Find a factory by ID; «— |
Find_simple; i
to_upper(); —me—0 0000000 |
I Simple

If the server application were implemented in Java Sinele object required for the
client request is instantiated dynamically by the WebLogic Enterprise system.

Getting Started 2-21

2 The WebLogic Enterprise CORBA Programming Environment

The TP Framework invokes thetivate_object() operation on th&imple object
and theSimpleFactory object to allow the object to initialize any object state
necessary, shown in the following figure.

WLE Server Application

TP Framework
Server Object

itialize server {
Register factories;
}

Server::create_servant() {

}

Client Application SimpleFactory

/Y

Instantiate the Bootstrap object; L1
Resolve initial references; SimpleFactory
Log on;

Find a factory by ID; Activate object {...}

Find_registrar; | ¥ to_upper() {...}
to_upper();]

Object state initialization often involves reading durable state information from disk
for that object. The TP Framework invokes the operation on the object, returning the
response to the client application.

2-22 Getting Started

CHAPTER

3

The WebLogic
Enterprise JavaBeans
(EJB) Programming
Environment

This topic includes the following sections:

Overview of the WebLogic Enterprise EJB Programming Environment
Types of Beans Supported in WebLogic Enterprise

EJBs and Persistence

Roles of People Who Develop, Build, Deploy, and Administer EJBs
Items You Create for an EJB Application

Tools and Facilities Provided for Building and Deploying EJBs

EJBs and Failover in the WebLogic Enterprise Environment

Getting Started 3-1

3 The WebLogic Enterprise JavaBeans (EJB) Programming Environment

Overview of the WebLogic Enterprise EJB
Programming Environment

3-2

The Enterprise JavaBeans Specification 1.1, published by Sun Microsystems, Inc.,
defines a component architecture for building distributed, object-oriented business
applications in Java. The EJB architecture addresses the development, deployment,
and run-time aspects of an enterprise application's lifecycle.

An EJB encapsulates business logic inside a component framework that manages tt
details of security, transaction, and state management. Low-level details, such as th
following, are handled by the EJB container:

m Multithreading

m Resource pooling

m Scaling

m Distributed naming

m Automatic persistence

m Remote invocation

m Transaction boundary management
m Distributed transaction management

This built-in, low-level support allows the EJB to focus on the business problem to be
solved.

With the WebLogic Enterprise EJB model, you can write or buy business components
(such as invoices, bank accounts, and shipping routes) and, during deployment into
certain project, specify how the component should be used -- which users have acce:
to which methods, whether the container should automatically start a transaction or
whether it should inherit the caller's transaction, and so on. In this scenario, an EJB
contains the business logic (methods) and the customization needed for a particular
application (deployment descriptor), and the EJB will run within any standard
implementation of the EJB container. An EJB is, in essence, a distributed object for
which transactions and security can be specified declaratively in deployment
descriptors.

Getting Started

Types of Beans Supported in WebLogic Enterprise

The spirit of "write once, run anywhere" carries through into EJB: any vendors's EJB
container (that conforms to the EJB Specification) can run any third-party EJBs (that
also conform to the EJB Specification) to create an application. Nuances of the security
mechanisms and specific distributed transaction monitors are entirely abstracted out of
the application code (unless the Bean Provider chooses to make such calls explicitly).

Types of Beans Supported in WebLogic
Enterprise

With the WebLogic Enterprise system, you can build and deploy standard, portable
EJBs. The EJB Specification defines three types of beans as listed and described in
Table 3-1.

Table 3-1 Bean Types Specified by the EJB Specification

Bean Type Description

Stateless session bean An instance of a stateless session bean has no conversational state
for the client that created the instance. This instance is not assigned
permanently to the client. The EJB container can maintain a pool of
instances and allocate method invocations coming from any client to
any available instance (that is, not processing a request for a
particular client). Therefore, any instance can receive method
invocations from any client, and these requests can be processed on
behalf of different transactions and security contexts.

The EJB container decides the life of an instance; that is, the
container can destroy an instance when resources are required or
according to other policies. However, the client decides the life of
the reference to the bean. The reference obtained from the bean’s
home interface is valid until the client destroys it.

Note that stateless session beans cannot use the
SessionSynchronization interface to synchronize with the
starting and stopping of a transaction.

Getting Started 3-3

3 The WebLogic Enterprise JavaBeans (EJB) Programming Environment

3-4

Table 3-1 Bean Types Specified by the EJB Specification (Continued)

Bean Type

Description

Stateful session bean

An instance of a stateful session bean maintains a conversational
state for the client that created the instance. Therefore, instances of
a stateful session bean are assigned to a particular client and are
destroyed only when the client decides to remove the EJB object.
Instances of stateful session beans do not survive a crash of the EJB
container (which in WebLogic Enterprise spans all the processes in
the same group where the bean is deployed) or a redeployment of the
bean.

The EJB container can passivate inactive instances to maximize the
use of the system resources -- that is, to deactivate the bean with its
state saved to be restored at a later time during the bean’s
reactivation. Stateful session beans can use the
SessionSynchronization interface to synchronize with the
starting and stopping of a transaction.

Entity bean

An instance of an entity bean has a unique identity called the
primary key . Object references to an entity bean should be usable
for along time and clients should be able to reuse them across server
crash or restart. The reference becomes invalid when a client
application removes the EJB or when the EJB is reconfigured.

Note: If a server group crashes, and the System Administrator
restarts that group using the same group ID and persistence
store, the EJB container can process requests for beans in
that group again. The EJB container for stateless session
beans spans the entire domain in which the beans are
deployed.

Multiple client applications can access an entity bean instance; the
EJB container is responsible for synchronizing the access to the
instance.

Typically, an entity bean has a persistent state, and application
designers can choose between managing the persistence directly
from the bean (bean-managed) or letting the EJB container manage
the persistence (container-managed). In either case, the EJB
container determinaghenan entity bean instance can be passivated
(which also triggers the persistent storage of the state of the
instance). An entity bean cannot use the

SessionSynchronization interface to synchronize with the
starting and stopping of a transaction.

Getting Started

EJBs and Persistence

EJBs and Persistence

An entity EJB can save its state in any transactional or nontransactional persistent
storage, or it can ask the EJB container to save its nontransient instance variables
automatically. The WebLogic Enterprise system allows both choices. An EJB that
manages its own persistence is referred to as hawag-managed persisters; an

EJB that delegates to the EJB container the saving and restoring of its state is referred
to as havingcontainer-managed persistence

You control the persistence characteristics of a bean, such as where its data is
maintained in durable storage, in its deployment descriptor; in the case of
bean-managed persistence, you implement the specific method invocations in the bean
that load and store state.

For more information about development and deployment considerations with regards
to persistence, see the following topics:

m Chapter 7, “Developing WebLogic Enterprise EJB Applications.”

m “Development Considerations for EJBs and Persistence” on page 8-11.

Roles of People Who Develop, Build, Deploy,
and Administer EJBs

The Enterprise JavaBeans Specification describes the six roles regarding who
develops, builds, deploys, and administers an EJB application. These roles are
summarized in Table 3-2 to help clarify what needs to be done, by whom, and when
during the entire life cycle of an EJB in a way that is consistent with the EJB
Specification.

Getting Started ~ 3-5

3 The WebLogic Enterprise JavaBeans (EJB) Programming Environment

3-6

Table 3-2 EJB Roles

Role

Description

Enterprise Bean Provider

The Enterprise Bean Providers (or Bean Providers) produce
enterprise beans. Their output is an EJB Java ARchive (EJB
JAR) file that contains one or more enterprise beans. The Bean
Provider is responsible for:

m The Java classes that implement the enterprise bean’s
business methods

m The definition of the bean’s remote and home interfaces

m The bean’s deployment descriptor

The deployment descriptor includes the structural information
(for example, the name of the enterprise bean class) of the
enterprise bean and declares all the enterprise bean’s external
dependencies (for example, the names and types of resources
that the enterprise bean uses).

Application Assembler

Getting Started

The Application Assembler combines enterprise beans into
larger deployable application units. The input to the
Application Assembler is one or more EJB JAR files produced
by the Bean Providers. The Application Assembler outputs one
or more EJB JAR files that contain the enterprise beans along
with their application assembly instructions. The Application
Assembler has inserted the application assembly instruction
into the deployment descriptors.

Bean providers cooperate with the Application Assembler to
combine EJBs into larger deployable units. In the WebLogic
Enterprise environment, creating these larger deployable units
is more efficient if the Application Assembler takes into
account the scalability and resource management capabilities
provided by the WebLogic Enterprise environment. For
example, EJBs that access the same resources should be
packaged together. The Application Assembler also specifies
the security required by the application by associating client
role names with the methods of the different beans.

Roles of People Who Develop, Build, Deploy, and Administer EJBS

Table 3-2 EJB Roles (Continued)

Role

Description

Deployer

The Deployer uses the EJB container tools to customize one or
more EJB JAR files produced by a Bean Provider or
Application Assembler so that the beans can run in the
corresponding EJB environment. These tools generate the
additional classes required to manage the beans. The Deployer
is primarily focused on the individual EJBs.

In the WebLogic Enterprise environment, the Deployer uses
theejbc command or the WebLogic EJB Deployer for this
purpose. These tools can also be used by the Application
Assembler to construct an EJB package, which is the EJB JAR
file containing all the bean implementations and the assembly
instructions. The Deployer also ensures that the security role
names defined by the Application Assembler map to existing
user groups and accounts that exist in the EJB environment.

The Deployer must resolve all the external dependencies
declared by the Bean Provider (for example, Deployers must
ensure that all resources used by the enterprise beans are
present in the operational environment, and they must bind
them to the resource manager connection factory references
declared in the deployment descriptor), and must follow the
application assembly instructions defined by the Application
Assembler.

EJB Server Provider

The EJB Server Provider (in the WebLogic Enterprise system,
this is BEA) is a specialistin the area of distributed transaction
management, distributed objects, and other lower-level,
system-level services.

Getting Started ~ 3-7

3 The WebLogic Enterprise JavaBeans (EJB) Programming Environment

3-8

Table 3-2 EJB Roles (Continued)

Role

Description

EJB Container Provider

The EJB Container Provider (in the WebLogic Enterprise
system, this is BEA) provides:

m The deployment tools necessary for the deployment of
enterprise beans

m The run-time support for the deployed enterprise beans’
instances

From the perspective of the enterprise beans, the container is a
part of the target operational environment. The container run
time provides the deployed enterprise beans with transaction
and security management, network distribution of clients,
scalable management of resources, and other services that are
generally required as part of a manageable server platform.

System Administrator

The System Administrator is responsible for the configuration
and administration of the enterprise’s computing and
networking infrastructure, which includes the EJB server and
container. The System Administrator is also responsible for
overseeing the well-being of the deployed enterprise bean
applications at run time.

The System Administrator cooperates with the Deployer to
define the environment needed by the application. The System
Administrator configures the WebLogic Enterprise domain by
defining the different machines, server groups, and other
resources needed by the application (for example, JDBC
connection pools and XA resource managers).

The System Administrator also needs to add any security
information needed by the application (for example, new user
groups). The administrator is also responsible for monitoring
the application and performing any run-time changes needed to
adapt the operational environment to failures or other
conditions.

Getting Started

Items You Create for an EJB Application

Items You Create for an EJB Application

Table 3-3 summarizes all the items you need to create for an EJB application that runs
in the WebLogic Enterprise environment, regardless of which role you are assuming,
and explains where you can find more information about creating the item.

Table 3-3 Items You Create for an EJB Application

ltem Description Where to Find More Information

One or more EJBs The basic beans containing your “Step 1: Create the EJB” on page 7-8
application’s business logic.

Deployment descriptor ~ An XML file, created by one of the “Step 3: Create the Deployment
following methods, that specifies basic Descriptor” on page 7-14 and “Step 6:
configuration and run-time information Modify the Deployment Descriptor” on
relevant to the deployment of the EJBspage 7-26
m DDGenerator command
m WebLogic EJB Deployer
m Manually, using a common text

editor

EJB JAR file A Java ARchive (JAR) file that contains“Step 4: Create a Standard EJB JAR File”
all the Java classfiles for the EJBs in theon page 7-19 and “Step 7: Package the
application. This file is created initially Components Into a Deployable EJB JAR
by the Bean Provider, and is then File” on page 7-28
modified by the Bean Deployer and
Application Assembler.

WebLogic EJB An XML file, specifying configuration “Step 5: Create the WebLogic EJB
extensions to the information pertinent to the WebLogic Extensions to the Deployment Descriptor
deployment descriptor Enterprise environment. DTD” on page 7-21

DTD

Module initializer object A Java object specifying the module “Step 2: Create the Module Initializer
initializer class. This entity is optional. Object” on page 7-13

Getting Started 3-9

3 The WebLogic Enterprise JavaBeans (EJB) Programming Environment

Tools and Facilities Provided for Building
and Deploying EJBs

To help application programmers and deployers build EJBs that fully leverage the
WebLogic Enterprise system, the WebLogic Enterprise software provides the tools
and facilities listed in Table 3-4.

Table 3-4 Resources for Building and Deploying EJBs

Tool or Facility

Description

ejbc command

Used by application programmers, Application Assemblers, and
deployers as a command-line alternative to the WebLogic EJB
Deployer to construct a deployable EJB JAR file.

DDGenerator
command

Used by the Bean Provider to create the initial deployment
descriptor file.

WebLogic EJB
Deployer

Used by the Bean Provider, Bean Deployer, and Application
Assembler to configure and deploy EJBs for use with your
WebLogic Enterprise server. You can use the WebLogic EJB
Deployer to:

m Examine an existing EJB and the configurable properties in
its deployment descriptor.

m Modify the properties and save the changes to afiel or
Jjar format).

m Generate EJB interface classes for a particular WebLogic
environment.

m Generate deployment classes for the beans.

The WebLogic EJB Deployer is documented in the online help
available from that tool’s Help menu.

UBBCONFIGile

Used for configuring the EJB container and the Java server in
which the EJB container is run and which loads the JVM and
other modules needed by the EJB application. (You can also use
the TMIB in place of theJBBCONFIdile.)

3-10 Getting Started

EJBs and Failover in the WebLogic Enterprise Environment

For more information about deploying and administering EJB applications in the

WebLogic Enterprise environment, see Chapter 7, “Developing WebLogic Enterprise
EJB Applications.”

EJBs and Failover in the WebLogic
Enterprise Environment

The WebLogic Enterprise system provides the following failover characteristics of
EJB applications deployed in a WebLogic Enterprise domain. Note that client
applications cannot control where EJBs are instantiated. Figure 3-1 shows how, in the

instance of a machine crash, failover is managed wholly by the WebLogic Enterprise
system.

Getting Started 3-11

3 The WebLogic Enterprise JavaBeans (EJB) Programming Environment

3-12

Figure 3-1 EJB Failover Capabilities in WebLogic Enterprise

eployment Environment
on Machine 1

Deployment Environment
on Machine 2

Server Proési

O O

O

rver Process

O

Server Process

OO
OO

Server Process

OO
OO

Container

EJB Contai

r

EJB Container

EJB Container

s

IIOP Listener/
Handler

Web/Java

Workstatlon

Workstatlon

EJB

Workstatlon

Stateless session beani§the server process hosting a stateless session bean fails, the
bean is automatically instantiated in a different server process (on the same server o
on another group within the domain), provided that the server process that is capable
of supporting the session bean is available.

Entity beans. If one group that hosts one or more entity beans fails and in cases wher
the client application receivesRemoteException , the client application can invoke
thefindByPrimarykey ~ method to find the home interface for the entity bean, with the
specified unique key, on another group in the domain. This works as long as the othe
group is configured to support that entity bean. Application developers can write client
application code within a loop that begins by invoking finedByPrimaryKey

method; this way, if a group fails, the client application retries the invocation on a
different group.

Getting Started

EJBs and Failover in the WebLogic Enterprise Environment

Note that, for bean-managed persistence, the Bean Provider must implement this
method explicitly; for container-managed persistence, this method is generated
automatically.

Stateful session beandf one group fails, the administrator must dynamically
configure the group on a different machine. For more information, see the
Administration Guiden the WebLogic Enterprise online documentation.

For file-based persistence, recovery depends on whether persistence storage resides on
a file system that is still network accessible (for example, an NFS-mounted volume).
Because theersistence-store-directory-root element in the WebLogic

Enterprise EJB extensions to the deployment descriptor DTD specifies the path for
persistent storage, the bean's state can be recovered. (Note that this file persistence
mechanism is internal to the WebLogic Enterprise system.)

For JDBC-based persistence, the application simply reconnects to the database, aslong
as the DBMS node is running and the network is accessible to the new node.

Note: In general, you should use JDBC-based persistence for production
applications because it is more robust than file-based persistence. File-based
persistence is typically appropriate only for development and prototyping
purposes.

Getting Started 3-13

3 The WebLogic Enterprise JavaBeans (EJB) Programming Environment

3-14 Getting Started

Part Il Developing
WebLogic
Enterprise
CORBA
Applications

Chapter 4. Developing WebLogic Enterprise CORBA
Applications

Chapter 5. Using Security

Chapter 6. Using Transac tions

CHAPTER

A

Developing WebLogic

Enterprise CORBA
Applications

This topic includes the following sections:

Overview of the Development Process for WebLogic Enterprise CORBA

Applications

The Simpapp Sample Application

Step 1: Write the OMG IDL Code

Step 2: Generate Client Stubs and Skeletons
Step 3: Write the Server Application

Step 4: Write the Client Application

Step 5: Create an XA Resource Manager
Step 6: Create a Configuration File

Step 7: Create the TUXCONFIG File

Step 8: Compile the Server Application

Step 9: Compile the Client Application

Step 10: Start the WebLogic Enterprise CORBA Application

Additional WebLogic Enterprise CORBA Sample Applications

Getting Started

4 Developing WebLogic Enterprise CORBA Applications

For an in-depth discussion of creating WebLogic Enterprise CORBA client and server
applications, see the following in the WebLogic Enterprise online documentation:

m Creating CORBA Client Applications
m Creating CORBA C++ Server Applications

m Creating CORBA Java Server Applications

Overview of the Development Process for
WebLogic Enterprise CORBA Applications

Table 4-1 outlines the development process for WebLogic Enterprise CORBA
applications.

Table 4-1 Development Process for WebLogic Enterprise CORBA Applications

Step Description

1 Write the Object Management Group (OMG) Interface Definition
Language (IDL) code for each CORBA interface you want to use in
your WebLogic Enterprise application.

2 Generate the client stubs and the skeletons.

3 Write the server application.

4 Write the client application.

5 Create an XA resource manager.

6 Create a configuration file.

7 Create aTUXCONFIJile.

8 Compile the server application.

9 Compile the client application.

10 Start the WebLogic Enterprise CORBA application.

4-2 Getting Started

Overview of the Development Process for WebLogic Enterprise CORBA Applications

The steps in the development process are described in the following sections.

Figure 4-1 illustrates the process for developing WebLogic Enterprise CORBA
applications.

Figure 4-1 Development Process for WebLogic Enterprise CORBA Applications

Interface Specifications m3|d|to_Jé:1Iva
in OMG IDL = orl
Command
Client Stubs Skeletons Server Description
File or

Implementation
Configuration File

Write Method

Write Client Implementations
Application Code

Write Server Object

Compile Server UBBCONFIG
e -—
Application Code

Compile Client
Application Code

| | |

| Running | | Server !

| i : | .

| g“e;t + Client : | | Skeleton + | imol Method + | Java Archive

| tubs Code | | mplementations File*

| | |

. ____ I - - ________________
Client Application Server Application

Object Request Broker

* For CORBA Java server applications only

Getting Started 4-3

4 Developing WebLogic Enterprise CORBA Applications

The Simpapp Sample Application

Throughout this topic, the Simpapp sample application is used to demonstrate the
development steps. C++ and Java versions of the Simpapp sample application are
available.

The server application in the Simpapp sample application provides an implementatior
of a CORBA object that has the following two methods:

e Theupper() method accepts a string from the client application and
converts the string to uppercase letters.

e Thelower () method accepts a string from the client application and converts
the string to lowercase letters.

Figure 4-2 illustrates how the Simpapp sample application works.

Figure 4-2 Simpapp Sample Application

Server
Application

SimpleFactory
7 find_simple()

Client

pplication

Simple
N p

to_upper()
to_lower()

4-4 Getting Started

Step 1: Write the OMG IDL Code

The source files for the C++ and Java versions of the Simpapp sample application are
located in thasamples\corba\simpapp and \samples\corba\simpap_java

directories of the WebLogic Enterprise software. Instructions for building and running
the Simpapp sample applications are in Headme.txt files in the directories. For
instructions for building and running the C++ and Java Simpapp sample applications,
seeSamplesn the WebLogic Enterprise online documentation.

Note: The Simpapp sample applications demonstrate building C++ client and server
applications and Java client and server applications. For information about
building a simple ActiveX client application, see tBasic sample application
in the WebLogic Enterprise online documentation.

The WebLogic Enterprise product offers a suite of sample applications that
demonstrate and aid in the development of WebLogic Enterprise CORBA
applications. For an overview of the available sample applicationSaelesn the
WebLogic Enterprise online documentation.

Step 1: Write the OMG IDL Code

The first step in writing a WebLogic Enterprise application is to specify all of the
CORBA interfaces and their methods using the Object Management Group (OMG)
Interface Definition Language (IDL). An interface definition written in OMG IDL
completely defines the CORBA interface and fully specifies each operation’s
arguments. OMG IDL is a purely declarative language. This means that it contains no
implementation details. Operations specified in OMG IDL can be written in and
invoked from any language that provides CORBA bindings.

The Simpapp sample application implements the CORBA interfaces listed in
Table 4-2.

Table 4-2 CORBA Interfaces for the Simpapp Sample Application

Interface Description Operation

SimpleFactory Creates object references to thefind_simple()
Simple object

Getting Started 4-5

4 Developing WebLogic Enterprise CORBA Applications

Step 2:

Table 4-2 CORBA Interfaces for the Simpapp Sample Application (Continued)

Interface Description Operation
Simple Converts the case of a string to_upper()
to_lower()

Listing 4-1 shows theimple.idl file that defines the CORBA interfaces in the
Simpapp sample application. The same OMG IDL file is used by both the C++ and
Java Simpapp sample applications.

Listing 4-1 OMG IDL Code for the Simpapp Sample Application

#pragma prefix "beasys.com”

interface Simple

{
/IConvert a string to lower case (return a new string)
string to_lower(in string val);

/IConvert a string to upper case (in place)
void to_upper(inout string val);

h

interface SimpleFactory

{
h

Simple find_simple();

Generate Client Stubs and Skeletons

The interface specification defined in OMG IDL is used by the IDL compiler to
generate client stubs for the client application, and skeletons for the server application
The client stubs are used by the client application for all operation invocations. You
use the skeleton, along with the code you write, to create the server application that
implements the CORBA objects.

4-6 Getting Started

Step 2: Generate Client Stubs and Skeletons

During the development process, use one of the following commands to compile the
OMG IDL file and produce client stubs and skeletons for WebLogic Enterprise client
and server applications:

m If you are creating C++ client and server applications, usédthecommand.

For a description of thall

command, se€ommands, System Processes, and

MIB Referencen the WebLogic Enterprise online documentation.

m If you are creating Java client and server applications, usm8t#tojava
command. For a description of th&idltojava = command, seeCommands,
System Processes, and MIB Refereindde WebLogic Enterprise online
documentation.

Table 4-3 lists the files that are created by #tle command.

Table 4-3 Files Created By the idl Command

File Default Name Description

Client stub file application ~ _c.cpp Contains generated code for sending a request.

Client stub header file application _c.h Contains class definitions for each interface and
type specified in the OMG IDL file.

Skeleton file application ~ _s.cpp Contains skeletons for each interface specified in
the OMG IDL file. During run time, the skeleton
maps client requests to the appropriate operation
in the server application.

Skeleton header file application _s.h Contains the skeleton class definitions.

Implementation file application _i.cpp Contains signatures for the methods that
implement the operations on the interfaces
specified in the OMG IDL file.

Implementation header file application _i.h Contains the initial class definitions for each

interface specified in the OMG IDL file.

Getting Started 4-7

4 Developing WebLogic Enterprise CORBA Applications

Table 4-4 lists the files that are created by th&ditojava command.

Table 4-4 Files Created By the m3idltojava Command

File Default Name Description

Base interface class file interface .java Contains an implementation of the interface,
written in Java.

Copy this file to create a new file, and add your
business logic to the new file. By convention in
the samples and in this document, this file is
namedinterface Impljava . Substitute
the actual name of the interface in the filename.
This new file is called avbject implementation

file.
Client stub file _interface Stub.java Contains generated code for sending a request.
Server skeleton file _interface ImplBase Contains Java skeletons for each interface
Jjava specified inthe OMG IDL file. During run time,

the skeleton maps client requests to the
appropriate operation in the Java server
application during run time.

Holder class file interface Holder java Contains the implementation of the Holder
class. The Holder class provides operations for
out andinout arguments, which CORBA
has, but which do not map exactly to Java.

Helper class file interface Helper.java Contains the implementation of the Helper
class. The Helper class provides auxiliary
functionality, notably themarrow method.

Step 3: Write the Server Application

The WebLogic Enterprise software supports C++ and Java server applications. The
steps for creating server applications are:

1. Write the methods that implement each interface’s operations.

2. Create the server object.

4-8 Getting Started

Step 3: Write the Server Application

3.
4,
5.

Define object activation policies.
Create and register a factory.

Release the server application.

Writing the Methods That Implement Each Interface’s

Operations

After you compile the OMG IDL file, you need to write methods that implement the
operations for each interface in the file. An implementation file contains the following:

Method declarations for each operation specified in the OMG IDL file
Your application’s business logic
Constructors for each interface implementation (implementing these is optional)

Theactivate_object() anddeactivate_object() methods (optional)

Within the activate_object () anddeactivate_object() methods, you

write code that performs any particular steps related to activating or deactivating
the object. For more information, s€&reating CORBA C++ Server
ApplicationsandCreating CORBA Java Server Applicatioinghe WebLogic
Enterprise online documentation.

You can write the implementation file by hand. However, bothithe and
m3iditojava commands have an option that generates a template forimplementation
files.

Listing 4-2 includes the C++ implementation of the Simple and SimpleFactory
interfaces in the Simpapp sample application.

Listing 4-2 C++ Implementation of the Simple and SimpleFactory Interfaces

/I Implementation of the Simple_i::ito_lower method which converts
/I a string to lower case.

char* Simple_i::to_lower(const char* value)

CORBA::String_var var_lower = CORBA::string_dup(value);

Getting Started 4-9

4 Developing WebLogic Enterprise CORBA Applications

4-10

for (char* ptr = v_lower; ptr && *ptr; ptr++) {
*ptr = tolower(*ptr);

return var_lower._retn();

}

/I Implementation of the Simple_i::to_upper method which converts
/I a string to upper case.

void Simple_i::to_upper(char*& valuel)

{
CORBA::String_var var_upper = value;
var_upper = CORBA::string_dup(var_upper.in());
for (char* ptr = var_upper; ptr && *ptr; ptr++) {

*ptr = toupper(*ptr);

}
value = var_upper._retn();

}

/I Implementation of the SimpleFactory_i::find_simple method which
/I creates an object reference to a Simple object.

Simple_ptr SimpleFactory_i:find_simple()
CORBA::Object_var var_simple_oref =
TP::create_object_reference(
_tc_Simple->id(),

"simple"”,
CORBA::NVList:_nil()

}

Listing 4-3 includes the Java implementation of the Simple interface from the Simpapp
sample application.

Listing 4-3 Java Implementation of the Simple Interface

import com.beasys.Tobj.TP;

/**

*The Simplelmpl class implements the to_upper and to_lower
*methods.

*/

public class Simplelmpl extends _SimplelmplBase

/*Converts a string to upper case.*/

Getting Started

Step 3: Write the Server Application

public void to_upper(org.omg.CORBA.StringHolder data)

if (data.value == null)

return;
data.value = data.value.toUpperCase();
return;

}

/*Converts a string to lower case.*/
public String to_lower(String data)
if (data == null)

return null;
return data.toLowerCase();

}

Listing 4-4 includes the Java implementation of the SimpleFactory interface from the
Simpapp sample application.

Listing 4-4 Java Implementation of the SimpleFactory Interface

import com.beasys.Tobj.TP;

/**

*The SimpleFactorylmpl class provides code to create the Simple
*object.

*

public class SimpleFactorylmpl extends _SimpleFactorylmplBase

{

[*Create an object reference to a Simple object*/

public Simple find_simple()

{
org.omg.CORBA.Object simple_oref =
TP.create_object_reference(
SimpleHelper.id(), //Repository ID
“simple”, /lobject id
null /lrouting criteria
)i
/ISend back the narrowed reference
return SimpleHelper.narrow(simple_oref);
¥
¥

Getting Started 4-11

4 Developing WebLogic Enterprise CORBA Applications

Creating the Server Object

4-12

The Server object performs the following tasks:

m Initializes the server application, including registering factories, allocating
resources needed by the server application, and, if necessary, opening an XA

resource manager.

m Performs server application shutdown and cleanup procedures.

m In C++ server applications, instantiates CORBA objects needed to satisfy client

requests.

In C++ server applications, the Server object is already instantiated and a header file
for the Server object is available. You implement methods that initialize and release

the server application, and, if desired, create servant objects.

Listing 4-5 includes the C++ code from the Simpapp sample application for the Server

object.

Listing 4-5 C++ Server Object

static CORBA::Object_var static_var_factory_reference;

/I Method to start up the server

CORBA:

{

Getting Started

:Boolean Server::initialize(int argc, char* argv[])

/I Create the Factory Object Reference

static_var_factory_reference =
TP::create_object_reference(
_tc_SimpleFactory->id(),
"simple_factory",
CORBA:NVList::_nil()

);
/I Register the factory reference with the FactoryFinder

TP::register_factory(
static_var_factory_reference.in(),
_tc_SimpleFactory->id()
)i
return CORBA_TRUE;

Step 3: Write the Server Application

/I Method to shutdown the server
void Server::release()

/I Unregister the factory.

try { _
TP::unregister_factory(

static_var_factory_reference.in(),
_tc_SimpleFactory->id()
);

}
catch (...) {

TP::userlog("Couldn't unregister the SimpleFactory");
}

/I Method to create servants

Tobj_Servant Server::create_servant(const char*
interface_repository_id)
{
if (Istrcmp(interface_repository_id,
_tc_SimpleFactory->id())) {
return new SimpleFactory_i();
}

if (Istrcmp(interface_repository _id,
_tc_Simple->id())) {

return new Simple_i();
}

return O;

}

In Java server applications, you implement the Server object by creating a new class
that derives from theom.beasys.Tobj.Server class and overrides the

initialize() andrelease() = methods. In the server application code, you can also
write a public default constructor for the Server object. When creating Java server
applications, you identify the name of the Server object in the Server Description File.

Thecreate_servant() method, used in the C++ programming environment of the
WebLogic Enterprise product, is not used in the Java environment. In Java, objects are
created dynamically, without prior knowledge of the classes being used. In the Java
environment of the WebLogic Enterprise product, a servant factory is used to retrieve
an implementation class, given the interface repository ID. This information is stored
in a server descriptor file. When a method request is received, and no servant is
available for the interface, the servant factory looks up the interface and creates an
object of the appropriate implementation class.

Getting Started 4-13

4 Developing WebLogic Enterprise CORBA Applications

4-14

This collection of the object's implementation and data compose the run-time, active
instance of the CORBA object.

When your Java server application starts, the TP Framework creates the Server obje
specified in the XML file. Then, the TP Framework invokes thialize()

method. If the method returnisie , the server application starts. If the method throws
thecom.beasys.TobjS.InitializeFailed exception, or returnfalse , the server
application does not start.

When the server application shuts down, the TP Framework invokes the release
method on the Server object.

Any command-line options specified in timOPTparameter for your specific server
application in theSERVERSsection of the WebLogic Enterprise domaidBBCONFIG

file are passed to the publimolean initialize(string[] args) method as

args . For more information about passing arguments to the server application, see
Administration Guiden the WebLogic Enterprise online documentation.

Within theinitialize() method, you can include code that does the following, if
applicable:

m Creates and registers factories

m Allocates any machine resources

m Initializes any global variables needed by the server application
m Opens the databases used by the server application

m Opens the XA resource manager

Listing 4-6 includes the Java code from the Simpapp sample application for the Serve
object.

Listing 4-6 Java Server Object

import com.beasys.Tobj.TP;

public class Serverimpl
extends com.beasys.Tobj.Server
{

static org.omg.CORBA.Object factory_reference;

Getting Started

Step 3: Write the Server Application

/**Method to start up the server*/

public boolean initialize(String[] args)
{
try {
/I Create the factory object reference.
factory_reference = TP.create_object_reference(
SimpleFactoryHelper.id(),
"simple_factory",
null

);
/I Register the factory reference with the FactoryFinder

TP.register_factory(
factory_reference,
SimpleFactoryHelper.id()

)
return true;

} catch (Exception e){
TP.userlog("Couldn't initialize server: " +
e.getMessage());
e.printStackTrace();
return false;

}

/** Method to shutdown the server*/

public void release()

{
try {
TP.unregister_factory(

factory_reference,
SimpleFactoryHelper.id()

} catch (Exception e}
TP.userlog("Couldn't unregister the
SimpleFactory: " + e.getMessage());
e.printStackTrace();

Getting Started 4-15

4 Developing WebLogic Enterprise CORBA Applications

Defining an Object’s Activation Policies

As part of server development, you determine what events cause an object to be
activated and deactivated by assigning object activation policies, as follows:

m For C++ server applications, specify object activation policies in the
Implementation Configuration File (ICF). A template ICF file is created by the
genicf command.

m For Java server applications, specify object activation policies in the Server
Description File, written in Extensible Markup Language (XML).

Note: You also define transaction policies in the ICF and Server Description Files.
For information about using transactions in your WebLogic Enterprise
CORBA application, sebJsing Transactionin the WebLogic Enterprise
online documentation.

The WebLogic Enterprise software supports the activation policies listed in Table 4-5

Table 4-5 Activation Policies

Activation Policy Description

method Causes the object to be active only for the duration of the
invocation on one of the object’s operations. This is the default
activation policy.

transaction Causes the object to be activated when an operation is invoked
onit. If the object is activated within the scope of a transaction,
the object remains active until the transaction is either
committed or rolled back.

process Causes the object to be activated when an operation is invoked
on it, and to be deactivated only when one of the following
occurs:
m The process in which the server application exists is shut
down.
m The methodl'P::deactivateEnable() (C++)or

com.beasys.Tobj.TP.deactivateEnable()
(Java) has been invoked on the object.

4-16 Getting Started

Step 3: Write the Server Application

The Simple interface in the Simpapp sample application is assigned the default
activation policy of method. For more information about managing object state and
defining object activation policies, s€eating CORBA C++ Server Applicatioasd
Creating CORBA Java Server Applicatioinsthe WebLogic Enterprise online
documentation.

Creating and Registering a Factory

If your server application manages a factory that you want client applications to be able
to locate easily, you need to write the code that registers that factory with the
FactoryFinder object.

To write the code that registers a factory managed by your server application, you do
the following:

1. Create an object reference to the factory.

You include an invocation to thereate object_reference() method,
specifying the Interface Repository ID of the factory’s OMG IDL interface or
the object ID (OID) in string format. In addition, you can specify routing
criteria.

2. Register the factory with the WebLogic Enterprise domain.

Use theregister_factory() method to register the factory with the
FactoryFinder object in the WebLogic Enterprise domain. The

register_factory() method requires the object reference for the factory and
a string identifier.

Listing 4-7 includes the code from the C++ Simpapp sample application that creates
and registers a factory.

Listing 4-7 C++ Example of Creating and Registering a Factory

CORBA::Object_var v_reg_oref =
TP:create_object_reference(

_tc.SimpleFactory->id(), /[Factory Interface 1D
“simplefactory”, /[Object 1D
CORBA:NVList::_nil() //Routing Criteria

Getting Started 4-17

4 Developing WebLogic Enterprise CORBA Applications

4-18

TP::register_factory(
CORBA::Object_var v_reg_oref.in(),
_tc_SimpleFactory->id(),

In Listing 4-7, notice the following:

m tc.SimpleFactory->id() specifies the SimpleFactory object's Interface
Repository ID by extracting it from its typecode.

B CORBA:NVList:_nil() specifies that no routing criteria are used, with the
result that an object reference created for the Simple object is routed to the same
group as the SimpleFactory object that created the object reference.

Listing 4-8 includes the code from the Java Simpapp sample application that creates
and registers a factory.

Listing 4-8 Java Example of Creating and Registering a Factory

/I Save the Simple factory name.
SimpleFName = new String(args[0]);

org.omg.CORBA.Object simple_oref =
TP.create_object_reference(
SimpApp.SimpleHelper.id(), // Repository ID
SimpleFName, /I Object ID
null /I Routing Criteria
)i

/I Register the factory reference with the factory finder.

TP.register_factory(

fact_oref, /I factory object referenc
SimpleFName /I factory name
)i

Getting Started

Step 3: Write the Server Application

Releasing the Server Application

You need to include code in your server application to perform a graceful shutdown of
the server application. Thelease() method is provided for that purpose. Within the
release() method, you may perform any application-specific cleanup tasks that are
specific to the server application, such as:

m Unregistering object factories managed by the server application
m Deallocating resources

m Closing any databases

m Closing an XA resource manager

Once a server application receives a request to shut down, the server application can
no longer receive requests from other remote objects. This has implications on the
order in which server applications should be shut down, which is an administrative
task. For example, do not shut down one server process if a second server process
contains an invocation in itelease() method to the first server process.

During server shutdown, you may want to unregister each of the server application's
factories. The invocation of thewregister_factory() method should be one of the
first actions intheelease() implementation. Thenregister_factory() method
unregisters the server application's factories. This operation requires the following
input arguments:

m The object reference for the factory

m A string identifier, based on the factory object's interface typecode, used to
identify the Interface Repository ID of the object's OMG IDL interface

Listing 4-9 includes C++ code that releases a server application and unregistered the
factories in the server application.

Listing 4-9 C++ Example of Releasing a WebLogic Enterprise Server
Application

B-ublic void release()

{

TP::unregister_factory(

Getting Started 4-19

4 Developing WebLogic Enterprise CORBA Applications

factory_reference.in(),
SimpleFactoryHelper->id

Listing 4-10 includes Java code that releases a server application and unregistered tl
factories in the server application.

Listing 4-10 Java Example of Releasing a WebLogic Enterprise Server

Application

ik

* Method to shutdown the server.
*

public void release)()

{

/IThis method will only be called if Server.initialize()
/Isucceeded, therefore, we know that the factory has been
[Iregistered with the factory finder.

/lUnregister the factory.
/lUse a try block since cleanup code should not throw
/lexceptions.

try{ _
TP.unregister_factory(

fact_ref, /[factory object reference
SimpleFactoryHelper.id() //factory repository id

}catch (Exception e){
/ISome exception occurred. The call to TP.userlog()
/Iwill put the message in the ULOG file.
TP.userlog("Couldn’t unregister the SimpleFactory:"
+e.getMessage());
e.printStackTrace();
}
}

4-20 Getting Started

Step 4: Write the Client Application

Step 4: Write the Client Application

The WebLogic Enterprise software supports the following types of client applications:
m CORBA C++

m CORBA Java

m CORBA Java applets

m ActiveX

The steps for creating client applications are as follows:

1. Initialize the ORB.

2. Use the Bootstrap environmental object to establish communication with the
WebLogic Enterprise domain

3. Resolve initial references to the FactoryFinder environmental object
4. Use a factory to get an object reference for the desi@BBA object.

5. Invoke methods on the CORBA object.

Note: For information about creating an ActiveX client application, ¥éebLogic
Enterprise ActiveX Client Developer’s Guitdethe WebLogic Enterprise
online documentation.

The client development steps are illustrated in Listing 4-11 and Listing 4-12, which
include code from the Simpapp sample application. In the Simpapp sample
application, the client application uses a factory to get an object reference to the Simple
object and then invokes the upper() andto_lower() methods on the Simple
object.

Getting Started 4-21

4 Developing WebLogic Enterprise CORBA Applications

Listing 4-11 C++ Client Application From the Simpapp Sample Application

int main(int argc, char* argv[])
{

try {
/I Initialize the ORB

CORBA::ORB_var var_orb = CORBA:ORB_init(argc, argv, ™);

/I Create the Bootstrap object
Tobj_Bootstrap bootstrap(var_orb.in(), ™);

/I Use the Bootstrap object to find the FactoryFinder
CORBA::Object_var var_factory_finder_oref =
bootstrap.resolve_initial_references("FactoryFinder");

/I Narrow the FactoryFinder
Tobj::FactoryFinder_var var_factory_finder_reference =
Tobj::FactoryFinder::_narrow
(var_factory_finder_oref.in());

/I Use the factory finder to find the Simple factory
CORBA::Object_var var_simple_factory_oref =
var_factory_finder_reference->find_one_factory_by id(
_tc_SimpleFactory->id()

)i

/I Narrow the Simple factory
SimpleFactory_var var_simple_factory_reference =
SimpleFactory::_narrow(
var_simple_factory_reference.in());

/I Find the Simple object
Simple_var var_simple =
var_simple_factory_reference->find_simple();

/I Get a string from the user
cout << "String?";

char mixed[256];

cin >> mixed;

/I Convert the string to upper case :

CORBA::String_var var_upper = CORBA::string_dup(mixed);
var_simple->to_upper(var_upper.inout());

cout << var_upper.in() << endl;

/I Convert the string to lower case

CORBA::String_var var_lower = var_simple->to_lower(mixed);
cout << var_lower.in() << endl;

4-22 Getting Started

Step 4: Write the Client Application

return O;

}

Listing 4-12 Java Client Application From the Simpapp Sample Application

public class SimpleClient

{

public static void main(String args[])

/I Initialize the ORB.
ORB orb = ORB.init(args, null);

/I Create the Bootstrap object
Tobj_Bootstrap bootstrap = new Tobj_Bootstrap(orb, ");

/Il Use the Bootstrap object to locate the FactoryFinder
org.omg.CORBA.Object factory_finder_reference =
bootstrap.resolve_initial_references("FactoryFinder");

/I Narrow the FactoryFinder
FactoryFinder factory finder_reference =
FactoryFinderHelper.narrow(factory _finder_reference);

/I Use the FactoryFinder to find the Simple factory.
org.omg.CORBA.Object simple_factory_reference =
factory_finder_reference.find_one_factory_by id
(SimpleFactoryHelper.id());

/I Narrow the Simple factory
SimpleFactory simple_factory_reference =
SimpleFactoryHelper.narrow(simple_factory_reference);

/I Find the Simple object.
Simple simple = simple_factory_reference.find_simple();

/I Get a string from the user.
System.out.printin("String?");
String mixed = in.readLine();

/I Convert the string to upper case.
org.omg.CORBA.StringHolder buf = new
org.omg.CORBA.StringHolder(mixed);
simple.to_upper(buf);
System.out.printin(buf.value);

Getting Started 4-23

Developing WebLogic Enterprise CORBA Applications

/I Convert the string to lower case.
String lower = simple.to_lower(mixed);
System.out.printin(lower);

Step 5: Create an XA Resource Manager

4-24

When using transactions in a WebLogic Enterprise CORBA application, you need to
create a server process for the resource manager that interacts with a database on bel
of the WebLogic Enterprise CORBA application. The resource manager you use mus
conform to the X/OPEN XA specification and you need the following information
about the resource manager:

m The name of the structure of type_switch_t that contains the name of the
XA resource manager.

m Flags indicating the capabilities of the XA resource manager and function
pointers for the actual XA functions.

m The name of the object files that provide the services of the XA interface.

m The commands needed to open and close the XA resource manager. This
information is specified in thOPENINFOCandCLOSEINFOparameters in the
UBBCONFI&onfiguration file.

When integrating a new XA resource manager into the WebLogic Enterprise system
the file $TUXDIR/udataobj/RM must be updated to include information about the XA
resource manager. The information is used to include the correct libraries for the XA
resource manager and to automatically and properly set up the interface between th
transaction manager and the XA resource manager. The format of this file is as
follows:

rm_name: rm_structure_name : library_names

whererm_nameis the name of the XA resource manager, structure_name is the
name of thexa_switch_t structure that defines the name of the XA resource manager,
andlibrary_names s the list of the object files for the XA resource manager. White
space (tabs and/or spaces) is allowed before and after each of the values and may b

Getting Started

Step 6: Create a Configuration File

embedded within thébrary_names . The colon (:) character may not be embedded
within any of the values. Lines beginning with a pound sign (#) are treated as
comments and are ignored.

Use thebuildtms command to build a server process for the XA resource manager.
The files that result from theuildtms command need to be installed in the
$TUXDIR/bin directory.

For more information about theuildtms command, seeCommands, System
Processes, and MIB Referenioethe WebLogic Enterprise online documentation.

Step 6: Create a Configuration File

Because the WebLogic Enterprise software offers great flexibility and many options

to application designers and programmers, no two applications are alike. An
application, for example, may be small and simple (a single client and server running
on one machine) or complex enough to handle transactions among thousands of client
and server applications. For this reason, for every WebLogic Enterprise CORBA
application being managed, the system administrator must provide a configuration file
that defines and manages the components (for example, domains, server applications,
client applications, and interfaces) of that application.

When system administrators create a configuration file, they are describing the
WebLogic Enterprise application using a set of parameters that the WebLogic
Enterprise software interprets to create a runnable version of the application. During
the setup phase of administration, the system administrator’s job is to create a
configuration file. The configuration file contains the sections listed in Table 4-6.

Table 4-6 Sections in the Configuration File for WebLogic Enterprise CORBA
Applications

Sections in the Description
Configuration File

RESOURCES Defines defaults (for example, user access and the main
administration machine) for the WebLogic Enterprise CORBA
application.

Getting Started 4-25

4 Developing WebLogic Enterprise CORBA Applications

4-26

Table 4-6 Sections in the Configuration File for WebLogic Enterprise CORBA

Applications (Continued)

Sections in the
Configuration File

Description

MACHINES Defines hardware-specific information about each machine
running in the WebLogic Enterprise CORBA application.

GROUPS Defines logical groupings of server applications or CORBA
interfaces.

SERVERS Defines the server application processes (for example, the
Transaction Manager) used in the WebLogic Enterprise
CORBA application.

SERVICES Defines parameters for services provided by the WebLogic
Enterprise application.

INTERFACES Defines information about the CORBA interfaces in the
WebLogic Enterprise CORBA application.

JDBCONNPOOLS Describes the pooling of JDBC connections for Java servers.

ROUTING Defines routing criteria for the WebLogic Enterprise CORBA

application.

Listing 4-13 shows the configuration file for the Simpapp sample application.

Listing 4-13 Configuration File for Simpapp Sample Application

*RESOURCES
IPCKEY
DOMAINID
MASTER
MODEL
LDBAL

*MACHINES
"PCWIZ"
LMID
APPDIR

TUXCONFIG

Getting Started

simpapp
SITE1

SITE1
"C\WLEDIR\MY_SIM~1"
"C:\WLEDIR\MY_SIM~1\results\tuxconfig"

Step 6: Create a Configuration File

TUXDIR = "C:\WLEDIR"
MAXWSCLIENTS = 10

*GROUPS
SYS_GRP
LMID = SITE1
GRPNO =1
APP_GRP
LMID = SITE1
GRPNO =2

*SERVERS
DEFAULT:
RESTART
MAXGEN
TMSYSEVT
SRVGRP = SYS _GRP
SRVID =1
TMFFNAME
SRVGRP = SYS GRP
SRVID 2
CLOPT "-A - -N -M"
TMFFNAME
SRVGRP = SYS GRP
SRVID 3
CLOPT
TMFFNAME
SRVGRP = SYS GRP
SRVID 4
CLOPT "A - -F"
simple_server
SRVGRP = APP_GRP

S
=5

SRVID =1
RESTART = N
ISL
SRVGRP = SYS_GRP
SRVID =5
CLOPT = "-A -- -n //PCWIZ:2468"

*SERVICES

When creating Java server applications, includeltivaServer parameter in the
UBBCONFIdile to start the Java server application. For example:

*SERVERS

JavaServer

Getting Started 4-27

4 Developing WebLogic Enterprise CORBA Applications

SRVTYPE = JAVA

MODULES = Bankapp.jar

SRVGRP = APP_GRP

SRVID = 2

SYSTEM_ACCESS = FASTPATH
CLOPT = “A -- -M 10 TellerFactory_1"
RESTART = N

If you are using an XA resource manager, used@aServerXA parameter in place

of theJavaServer parameter to associate the XA resource manager with a specified
server group. You need to include the information to open and close the resource
manager in the©PENINFOandCLOSEINFOparameters in theROUPSection of the
UBBCONFIdile. The information needed to open and close the resource manager
should be provided by the manufacturer of the resource manager.

Step 7: Create the TUXCONFIG File

There are two forms of the configuration file:

m An ASCIl version of the file, created and modified with any editor. Throughout
the WebLogic Enterprise documentation, the ASCII version of the configuration
file is referred to as theBBCONFIdile. The configuration file may, in fact, be
given any filename.

m TheTUXCONFIdile, a binary version of th&/BBCONFIdile created using the
tmloadcf command. When thenloadcf command is executed, the
environment variabl#UXCONFIGMust be set to the name and directory location
of the TUXCONFIGile. Thetmloadcf command converts the configuration file
to binary form and writes it to the location specified in the command.

For more information about thenloadcf command, se€Commands, System
Processes, and MIB Referenicethe WebLogic Enterprise online documentation.

4-28 Getting Started

Step 8: Compile the Server Application

Step 8: Compile the Server Application

You use theévuildobjserver command to compile and link C++ server applications.
Thebuildobjserver command has the following format:

buildobjserver [-o servername | [options]
In thebuildobjserver command syntax:

m -0 servername representsthe name of the server application to be generated
by this command.

m options represents the command-line options tolthigdobjserver
command.

When creating Java server applications, usgdvee compiler to create the
bytecodes for all the class files that comprise your WebLogic Enterprise CORBA
application. This set of files includes thgava source files generated by the
m3iditojava compiler, plus the objectimplementation files and server class files you
created.

You use théuildjavaserver command to build a Java ARchive (JAR) file and link
the Java server applications. Tingldjavaserver command has the following

format:
buildjavaserver [-s searchpath] input_file xml
In thebuildjavaserver command syntax:

m -s searchpath is used to locate the classes and packages when building the
archive. If this optional value is not specified, it defaults to the value of the
CLASSPATHenvironment variable.

m input file is the name of the XML Server Description File.

You then need to specify in thPPDIR system environment variable the location of

the JAR file for your Java server application. On Windows NT systems, this directory
must be on a local drive (not a networked drive). On Solaris systems, the directory can
be local or remote.

Getting Started 4-29

4 Developing WebLogic Enterprise CORBA Applications

Step 9: Compile the Client Application

The final step in the development of the CORBA client application is to produce the
executable client application. To do this, you need to compile the code and then link
against the client stub.

When creating CORBA C++ client applications, use tthidobjclient command

to construct a WebLogic Enterprise client application executable. The command
combines the client stubs for interfaces that use static invocation, and the associatec
header files, with the standard WebLogic Enterprise libraries to form a client
executable. For the syntax of thwuildobjclient command, se€€Commands,

System Processes, and MIB Refereindhe WebLogic Enterprise online
documentation.

When creating CORBA Java client applications, see your Java ORB’s documentatior
for information about building client executables. You need to include the
wledir\udataobj\java\jdk\m3envobj.jar file in your CLASSPATHvhen you
compile the CORBA Java client application. Th@envobjjar file contains the Java
classes for the WebLogic Enterprise environmental objects.

Step 10: Start the WebLogic Enterprise
CORBA Application

4-30

Use thetmboot command to start the server processes in your WebLogic Enterprise
CORBA application. The WebLogic Enterprise CORBA application is usually booted
from the machine designated as aSTERn the RESOURCESection of the
UBBCONFIdile.

For thetmboot command to find executables, the WebLogic Enterprise system
processes must be locatedsiTUXDIR/bin . Server applications should beARPDIR,
as specified in the configuration file.

Getting Started

Additional WebLogic Enterprise CORBA Sample Applications

When booting server applications, th@boot command uses theLOPT SEQUENCE
SRVGRPSRVID, andMIN parameters from the configuration file. Server applications
are booted in the order in which they appear in the configuration file.

For more information about using theboot command, seeCommands, System
Processes, and MIB Referenioethe WebLogic Enterprise online documentation.

Additional WebLogic Enterprise CORBA
Sample Applications

Sample applications demonstrate the tasks involved in developing a WebLogic
Enterprise CORBA application, and provide sample code that can be used by client
and server programmers to build their own WebLogic Enterprise CORBA application.
Code from the sample applications are used throughout the information topics in the
WebLogic Enterprise product to illustrate the development and administrative steps.
For information about building and running the sample applicationsSsegplesn

the WebLogic Enterprise online documentation.

Table 4-7 describes the additional WebLogic Enterprise CORBA sample applications.

Table 4-7 The WebLogic Enterprise CORBA Sample Applications

WebLogic Enterprise Description
CORBA
Sample Application

Simpapp Provides a C++ client application and a C++ server
application. The C++ server application contains two
operations that manipulate strings received from the C++
client application.

Java Simpapp Provides a Java client application and a Java server
application. The Java server application contains two
operations that manipulate strings received from the Java
client application.

Getting Started 4-31

4 Developing WebLogic Enterprise CORBA Applications

4-32

Table 4-7 The WebLogic Enterprise CORBA Sample Applications (Continued)

WebLogic Enterprise Description
CORBA
Sample Application

Basic Describes how to develop WebLogic Enterprise clientand
server applications and configure the WebLogic
Enterprise application. Building C++ server applications
and CORBA C++, CORBA Java, and ActiveX client
applications are demonstrated.

Security Demonstrates adding Tuxedo authentication to a
WebLogic Enterprise application. For information about
building and running the Security sample application, see
Using Securityin the WebLogic Enterprise online
documentation.

Transactions Adds transactional objects to the C++ server application
and client applications in the Basic sample application.
The Transactions sample application demonstrates how to
use the Implementation Configuration File (ICF) to define
transaction policies for CORBA objects. For information
about building and running the Transactions sample
application, se#Jsing Transactionén the WebLogic
Enterprise online documentation.

Wrapper Demonstrates how to wrap an existing BEA Tuxedo
application as a CORBA object.

Production Demonstrates replicating server applications, creating
stateless objects, and implementing factory-based routing
in server applications.

JDBC Bankapp Implements an automatic teller machine (ATM) interface
and uses Java Database Connectivity (JDBC) to access a
database that stores account and customer information.
For information about building and running the JDBC
Bankapp sample application, sgeing Transactionin
the WebLogic Enterprise online documentation.

Getting Started

Additional WebLogic Enterprise CORBA Sample Applications

Table 4-7 The WebLogic Enterprise CORBA Sample Applications (Continued)

WebLogic Enterprise

CORBA
Sample Application

Description

XA Bankapp

Implements the same ATM interface as JDBC Bankapp;
however, XA Bankapp uses a database XA library to
demonstrate using the Transaction Manager to coordinate
transactions. For information about building and running
the XA Bankapp sample application, sgeing
Transactionsin the WebLogic Enterprise online
documentation.

Secure Simpapp

Implements the necessary development and
administrative changes to the Simpapp sample application
to support certificate-based authentication. Java and C++
versions are provided. For information about building and
running the Secure Simpapp sample application, see
Using Securityin the WebLogic Enterprise online
documentation.

Introductory Events

Demonstrates how to use joint client/server applications
and callback objects to implement events in a WebLogic
Enterprise CORBA application. The C++ version uses the
BEA Simple Events API and the Java version uses the
CosNatification API. For information about building and
running the Introductory Events sample application, see
Using the Notification Servide the WebLogic Enterprise
online documentation.

Advanced Events

Provides a more complex implementation of eventsin a
WebLogic Enterprise CORBA application with transient
and persistent subscriptions and data filtering. The C++
version uses the BEA Simple Events API and the Java
version uses the CosNotification API. For information
about building and running the Advanced Events sample
application, se&Jsing the Notification Servica the
WebLogic Enterprise online documentation.

Getting Started 4-33

4 Developing WebLogic Enterprise CORBA Applications

4-34 Getting Started

CHAPTER

5 Using Security

This topic includes the following sections:

Overview of the Security Service

How Security Works

The Security Sample Application

Development Steps

Note: This chapter describes using username/password authentication. For a
complete description of all the security features available in the WebLogic
Enterprise product and instructions for implementing the security features, see
Using Securityin the WebLogic Enterprise online documentation.

Overview of the Security Service

The WebLogic Enterprise product offers a security model based on the
CORBAservices Security Service. The WebLogic Enterprise security model
implements the authentication portion of the CORBAservices Security Service.

Security information is defined on a domain basis. The security level for the domain is
defined in the configuration file. Client applications use the SecurityCurrent object to

provide the necessary authentication information to log on to the WebLogic Enterprise
domain.

Getting Started 5-1

S Using Security

The following levels of authentication are provided:

m TOBJ_NOAUTH

No authentication is needed; however, the client application may still
authenticate itself, and may specify a username and a client application name,
but no password.

m TOBJ SYSAUTH

The client application must authenticate itself to the WebLogic Enterprise
domain and must specify a username, client application name, and application
password.

m TOBJ_APPAUTH

In addition to the TOBJ_SYSAUTH information, the client application must
provide application-specific information. If the default WebLogic Enterprise
authentication service is used in the application configuration, the client
application must provide a user password; otherwise, the client application
provides authentication data that is interpreted by the custom authentication
service in the application.

Note: If a client application is not authenticated and the security level is
TOBJ_NOAUTHbhe IIOP Listener/Handler of the WebLogic Enterprise domain
registers the client application with the username and client application name
sent to the IIOP Listener/Handler.

In the WebLogic Enterprise software, only the PrincipalAuthenticator and Credentials
properties on the SecurityCurrent object are supported. For a description of the
SecurityLevell::Current and SecurityLevel2::Current interfaces, see the
C++ and Java topics iBommands, System Processes, and MIB Refeiarthe
WebLogic Enterprise online documentation.

How Security Works

Figure 5-1 illustrates how security works in a WebLogic Enterprise domain.

5-2 Getting Started

How Security Works

Figure 5-1 How Security Works in a WebLogic Enterprise Domain

Client WLE Domain
Application
. Bootstrap Object Object Reference for
TO?J_:ZOTSUap | SecurityCurrent
orb,//sling.com,2143 L Obiject
or —— lop)
Tobj_Bootstrap Listener/
(orb,corblocs://sling.com, 2143) / Handler
L Authentication Level

SecurityCurrent Object ‘ for WLE Domain

PrincipalAuthenticator
get_auth_type();

N

logon(username ,
application_name ,
passwor d);

The steps are as follows:

1. The client application uses the Bootstrap object to return an object reference to the
SecurityCurrent object for the WebLogic Enterprise domain.

2. The client application obtains the PrincipalAuthenticator.

3. The client application uses the
Tobj::PrincipalAuthenticator::get_auth_type() method to get the
authentication level for the WebLogic Enterprise domain.

4. The proper authentication level is returned to the client application.

5. The client application uses thebj::PrincipalAuthenticator::logon()
method to log on to the WebLogic Enterprise domain with the proper
authentication information.

Getting Started 5-3

S Using Security

The Security Sample Application

5-4

The Security sample application demonstrates username/password authentication. T
Security sample application requires each student using the application to have an IL
and a password. The Security sample application works in the following manner:

m The client application haslagon() operation. This operation invokes
operations on the PrincipalAuthenticator object, which is obtained as part of the
process of logging on to access the domain.

m The server application implementget_student_details() operation on the
Registrar ~ object to return information about a student. After the user is
authenticated, logon is complete and tfee student_details() operation

accesses the student information in the database to obtain the student
information needed by the client logon operation.

m The database in the Security sample application contains course and student
information.

Figure 5-2 illustrates the Security sample application.

Getting Started

The Security Sample Application

Figure 5-2 Security Sample Application

Server
Application
CORBA C+t browse_courses() PP
Client
Application get_course_details() . .
v Registrar Object
< » logon()
CORBA Java
Client * get_student_details() K
Application
CORBA A
ActiveX Client
Application
Database

E Security Required

The source files for the Security sample application are located in the
\samples\corba\university directory in the WebLogic Enterprise software. For
information about building and running the Security sample applicationUségy
Securityin the WebLogic Enterprise online documentation.

Getting Started 5-5

S Using Security

Development Steps

Table 5-1 lists the development steps for writing a WebLogic Enterprise CORBA
application that has username/password authentication security.

Table 5-1 Development Steps for WebLogic Enterprise CORBA Applications
That Have Security

Step Description
1 Define the security level in the configuration file.
2 Write the CORBA client application.

Step 1: Define the Security Level in the Configuration File

The security level for a WebLogic Enterprise domain is defined by setting the
SECURITYparameter in thRESOURSESection of the configuration file to the desired
security level. Table 5-2 lists the options for tRECURITY parameter.

Table 5-2 Options for the SECURITY Parameter

Option Definition

NONE No security is implemented in the domain. This option is the
default. This option maps to the TOBJ_NOAUTH level of
authentication.

APP_PW Requires that client applications provide an application

password during initialization. Thémloadcf command
prompts for an application password. This option maps to the
TOBJ_APPAUTH level of authentication.

USER_AUTH Requires an application password and performs a per-user
authentication during the initialization of the client application.
This option maps to the TOBJ_SYSAUTH level of
authentication.

5-6 Getting Started

Development Steps

In the Security sample application, tBECURITYparameter is set taPP_PWor
application-level security. For information about adding security to a WebLogic
Enterprise CORBA application, séksing Securityn the WebLogic Enterprise online
documentation.

Step 2: Write the CORBA (Client Application

Write client application code that does the following:

1. Usesthe Bootstrap object to obtain a reference to the SecurityCurrent object for the
specific WebLogic Enterprise domain.

2. Gets the PrincipalAuthenticator object from the SecurityCurrent object.

3. Uses thget_auth_type() operation of the PrincipalAuthenticator object to
return the type of authentication expected by the WebLogic Enterprise domain.

Listing 5-1 and Listing 5-2 include the portions of the CORBA C++ and CORBA Java
client applications in the Security sample application that illustrate the development

steps for security.

Listing 5-1 Example of Security in a CORBA C++ Client Application

CORBA::Object_var var_security_current_oref =
bootstrap.resolve_initial_references(“SecurityCurrent”);

SecurityLevel2::Current_var var_security_current_ref =
SecurityLevel2::Current::_narrow(var_security_current_oref.in());

/IGet the PrincipalAuthenticator
SecurityLevel2::PrincipalAuthenticator_var var_principal_authenticator_oref =
var_security_current_ref->principal_authenticator();
/INarrow the PrincipalAuthenticator
Tobj::PrincipalAuthenticator_var var_bea_principal_authenticator =
Tobj::PrincipalAuthenticator::_narrow
var_principal_authenticator_oref.in());

/IDetermine the security level

Tobj::AuthType auth_type = var_bea_principal_authenticator->get_auth_type();

Security::AuthenticationStatus status = var_bea_principalauthenticator->logon(
user_name,
client_name,

Getting Started

5-7

S Using Security

system_password,
user_password,
0);

Listing 5-2 Example of Security in a CORBA Java Client Application

org.omg.CORBA.Object SecurityCurrentObj =
gBootstrapObjRef.resolve_initial_references(“SecurityCurrent”);

org.omg.SecurityLevel2.Current secCur =
org.omg.SecurityLevel2.CurrentHelper.narrow(secCurObj);

/IGet the PrincipalAuthenticator

org.omg.SecurityLevel2.PrincipalAuthenticator authlevel2 =
secCur.principal_authenticator();

/INarrow the PrincipalAuthenticator

com.beasys.Tobj.PrincipalAuthenticatorObjRef gPrinAuthObjRef =
(com.beasys.Tobj.PrincipalAuthenticator)
org.omg.SecurityLevel2.PrincipalAuthenticatorHelper.narrow(authlevel2);

//IDetermine the security level
com.beasys.Tobj.Authtype authType = gPrinAuthObjRef.get_auth_type();

org.omg.Security.AuthenticationStatus status = gPrinAuthObjRef.logon
(gUserName, ClientName, gSystemPassword, gUserPassword,0);

5-8 Getting Started

CHAPTER

Using Transactions

This topic includes the following sections:

Overview of the Transaction Service
What Happens During a Transaction
Transactions Sample Application

Development Steps

Note: This topic describes using the C++ interface to the CORBAservices Object

Transaction service. For a complete description of all the transaction features
available in the WebLogic Enterprise product and instructions for
implementing the transaction features, §sng Transactionn the

WebLogic Enterprise online documentation.

Overview of the Transaction Service

One of the most fundamental features of the WebLogic Enterprise product is
transaction management. Transactions are a means to guarantee that database
transactions are completed accurately and that they take on #IQHe properties
(atomicity, consistency, isolation, and durability) of a high-performance transaction.
The WebLogic Enterprise system protects the integrity of your transactions by
providing a complete infrastructure for ensuring that database updates are done
accurately, even across a variety of resource managers.

Getting Started 6-1

6 Using Transactions

6-2

The WebLogic Enterprise system includes the following:

The CORBAservices Object Transaction Service (OTS) and the Java Transactior
Service (JTS)

The WebLogic Enterprise product provides a C++ interface to the OTS and a
Java interface to the OTS via the JTS. The JTS is the Sun Microsystems, Inc.
Java interface for transaction services, and is based on the OTS. The OTS and
the JTS are accessed through the TransactionCurrent environmental object. For
information about using the TransactionCurrent environmental object, see
CORBA C++ Programming Referenoe CORBA Java Programming Reference

in the WebLogic Enterprise online documentation.

The Sun Microsystems, Inc. Java Transaction API (JTA)

Only the application-level demarcation interface
(javax.transaction.UserTransaction) is supported. For information about
JTA, refer to the following:

e The javax.transaction package description in th&P| Javadoc

e The Java Transaction API specification, published by Sun Microsystems, Inc.
and available from the Sun Microsystems, Inc. Web site.

OTS, JTS, and JTA each provide the following support for your business transactions

Creates a global transaction identifier when a client application initiates a
transaction.

Works with the TP Framework to track objects that are involved in a transaction
and, therefore, need to be coordinated when the transaction is ready to commit.

Notifies the resource managers—which are, most often, databases—when they
are accessed on behalf of a transaction. Resource managers then lock the
accessed records until the end of the transaction.

Orchestrates the two-phase commit when the transaction completes, which
ensures that all the participants in the transaction commit their updates
simultaneously. It coordinates the commit with any databases that are being
updated using The Open Group XA protocol. Almost all relational databases
support this standard.

Executes the rollback procedure when the transaction must be stopped.

Getting Started

What Happens During a Transaction

m Executes arecovery procedure when failures occur. It determines which
transactions were active in the machine at the time of the crash, and then
determines whether the transaction should be rolled back or committed.

What Happens During a Transaction

Figure 6-1 illustrates how transactions work in a WebLogic Enterprise CORBA
application.

Figure 6-1 How Transactions Work in a WebLogic Enterprise CORBA

Application
C_Iien_t WLE Domain
Application
Object Reference for
Bootstrap Object > | TransactionCurrent
Object
TransactionCurrent
Object
) TP Framework
.
- / activate_object()
; begin() register_for_courses()
register_for_courses() deactivate. object()
commit() _

}

Transaction Manager

A

Database

Getting Started

6-3

6 Using Transactions

A basic transaction works in the following way:

1. The client application uses the Bootstrap object to return an object reference to th
TransactionCurrent object for the WebLogic Enterprise domain.

2. A client application begins a transaction using the
Tobj:: TransactionCurrent::begin() method, and issues a request to the
CORBA interface through the TP Framework. All operations on the CORBA
interface execute within the scope of a transaction.

e If a call to any of these operations raises an exception (either explicitly or as
a result of a communication failure), the exception can be caught and the
transaction can be rolled back.

¢ If no exceptions occur, the client application commits the current transaction
using theTobj:: TransactionCurrent::commit() method. This method
ends the transaction and starts the processing of the operation. The
transaction is committed only if all of the participants in the transaction agree
to commit.

3. TheTobj:: TransactionCurrent:commit() method causes the TP Framework
to call the Transaction Manager to complete the transaction.

4. The Transaction Manager updates the database.

Transactions Sample Application

In the Transactions sample application, the operation of registering for courses is
executed within the scope of a transaction. The transaction model used in the
Transactions sample application is a combination of the conversational model and th
model in which a single client invocation invokes multiple individual operations on a
database.

The Transactions sample application works in the following way:
1. Students submit a list of courses for which they want to be registered.

2. For each course in the list, the server application checks whether:

e The course is in the database

6-4 Getting Started

Transactions Sample Application

e The student is already registered for a course

e The student exceeds the maximum number of credits the student can take

3. One of the following occurs:

¢ If the course meets all the criteria, the server application registers the student
for the course.

¢ Ifthe course is not in the database or if the student is already registered for
the course, the server application adds the course to a list of courses for
which the student could not be registered. After processing all the
registration requests, the server application returns the list of courses for
which registration failed. The client application can then choose to either
commit the transaction (thereby registering the student for the courses for
which registration request succeeded) or to roll back the transaction (thus,
not registering the student for any of the courses).

¢ If the student exceeds the maximum number of credits the student can take,
the server application returnstaoManyCredits user exception to the client
application. The client application provides a brief message explaining that
the request was rejected. The client application then rolls back the
transaction.

Figure 6-2 illustrates how the Transactions sample application works.

Getting Started 6-5

6 Using Transactions

Figure 6-2 Transactions Sample Application

CORBA C++
Client get_student_details()
Application get_course_details()
browse_courses()
CORBA Java register_for_courses()
Client - Server

Application A " Application
A
ActiveX Client CORBA A

Application

Database

A Part of a Transaction

The Transactions sample application shows two ways in which a transaction can be
rolled back:

m Nonfatal. If the registration for a course fails because the course is not in the
database, or because the student is already registered for the course, the server
application returns the numbers of those courses to the client application. The
decision to roll back the transaction lies with the user of the client application.

m Fatal. If the registration for a course fails because the student exceeds the
maximum number of credits he or she can take, the server application generates
a CORBA exception and returns it to the client application. The decision to roll
back the transaction also lies with the client application.

Note: For information about how transactions are implemented in WebLogic
Enterprise CORBA Java applications, see the description of the XA Bankapp
sample application iUsing Transactionin the WebLogic Enterprise online
documentation.

6-6 Getting Started

Development Steps

Development Steps

This topic describes the development steps for writing a WebLogic Enterprise
CORBA application that includes transactions. Table 6-1 lists the development steps.

Table 6-1 Development Steps for WebLogic Enterprise CORBA Applications
That Have Transactions

Step Description

1 Write the OMG IDL code for the transactional CORBA
interface.

2 Define the transaction policies for the CORBA interface in the

Implementation Configuration file (ICF) for C++ WebLogic
Enterprise CORBA applications, or in the Server Description
File for Java WebLogic Enterprise CORBA client applications.

3 Write the client application.
4 Write the server application.
5 Create a configuration file.

The Transactions sample application is used to demonstrate these development steps.
The source files for the Transactions sample application are located in the
\samples\corba\university directory of the WebLogic Enterprise software. For
information about building and running the Transactions sample application, see
Samplesn the WebLogic Enterprise online documentation.

The XA Bankapp sample application demonstrates how to use transactions in Java
WebLogic Enterprise CORBA applications. The source files for the XA Bankapp
sample application are located in th&les\corba\bankapp_java directory of

the WebLogic Enterprise software. For information about building and running the XA
Bankapp sample application, s&lesn the WebLogic Enterprise online
documentation.

Getting Started 6-7

6 Using Transactions

Step 1: Write the OMG IDL Code

6-8

You need to specify interfaces involved in transactions in Object Management Group
(OMG) Interface Definition Language (IDL) just as you would any other CORBA
interface. You must also specify any user exceptions that may occur from using the
interface.

For the Transactions sample application, you would define in OMG IDL the
Registrar interface and theegister_for_courses() operation. The
register_for_courses() operation has a parametlntRegisteredList, which
returns to the client application the list of courses for which registration failed. If the
value ofNotRegisteredList is empty, the client application commits the
transaction. You also need to define fmManyCredits ~ user exception.

Listing 6-1 includes the OMG IDL code for the Transactions sample application.

Listing 6-1 OMG IDL Code for the Transactions Sample Application

#pragma prefix "beasys.com”
module UniversityT

{

typedef unsigned long CourseNumber;
typedef sequence<CourseNumber> CourseNumberList;

struct CourseSynopsis

{
CourseNumber course_number;
string title;

h

typedef sequence<CourseSynopsis> CourseSynopsisList;

interface CourseSynopsisEnumerator
{
/IReturns a list of length O if there are no more entries
CourseSynopsisList get_next_n(
in unsigned long number_to_get, // 0 = return all
out unsigned long number_remaining

):

void destroy();

Getting Started

Step 1: Write the OMG IDL Code

typedef unsigned short Days;

const Days MONDAY = 1;
const Days TUESDAY = 2
const Days WEDNESDAY = 4;
const Days THURSDAY = 8§;
const Days FRIDAY = 16;

/IClasses restricted to same time block on all scheduled days,
/Istarting on the hour

struct ClassSchedule

{
Days class_days; // bitmask of days
unsigned short start_hour; // whole hours in military time
unsigned short duration; // minutes
h
struct CourseDetails
{
CourseNumber course_number;
double cost;
unsigned short number_of_credits;
ClassSchedule class_schedule;
unsigned short number_of_seats;
string title;
string professor;
string description;
h

typedef sequence<CourseDetails> CourseDetailsList;
typedef unsigned long Studentid;

struct StudentDetails

{
Studentld student _id;
string name,
CourseDetailsList registered_courses;
h
enum NotRegisteredReason
AlreadyRegistered,
NoSuchCourse
%
struct NotRegistered
{
CourseNumber course_number;
NotRegisteredReason not_registered_reason;
h

typedef sequence<NotRegistered> NotRegisteredList;

Getting Started 6-9

6 Using Transactions

exception TooManyCredits

{
kh

/IThe Registrar interface is the main interface that allows
/Istudents to access the database.
interface Registrar

unsigned short maximum_credits;

{
CourseSynopsisList
get_courses_synopsis(
in string search_criteria,
in unsigned long number_to_get,
out unsigned long number_remaining,
out CourseSynopsisEnumerator rest
)i
CourseDetailsList get_courses_details(in CourseNumberList
courses);
StudentDetails get_student_details(in Studentld student);
NotRegisteredList register_for_courses(
in Studentld student,
in CourseNumberList courses
) raises (
TooManyCredits
)i
h

/I The RegistrarFactory interface finds Registrar interfaces.

interface RegistrarFactory

{

Registrar find_registrar(

):

Step 2: Define Transaction Policies for the Interfaces

Transaction policies are used on a per-interface basis. During design, it is decided
which interfaces within a WebLogic Enterprise application will handle transactions.
The transaction policies are:

6-10 Getting Started

Step 1: Write the OMG IDL Code

Transaction Policy Description

always The interface must always be part of a transaction. If the
interface is not part of a transaction, a transaction will be
automatically started by the TP Framework.

ignore The interface is not transactional; however, requests made to
this interface within a scope of a transaction are allowed. The
AUTOTRANarameter, specified in ti¢BBCONFIGile for this
interface, is ignored.

never The interface is not transactional. Objects created for this
interface can never be involved in a transaction. The WebLogic
Enterprise system generates an exception
(INVALID_TRANSACTION) if an interface with this policy is
involved in a transaction.

optional The interface may be transactional. Objects can be involved in a
transaction if the requestis transactional. This transaction policy
is the default.

During development, you decide which interfaces will execute in a transaction by
assigning transaction policies, as follows:

m For C++ server applications, you specify transaction policies in the
Implementation Configuration File (ICF). A template ICF file is created by the
genicf command.

m For Java server applications, you specify transaction policies in the Server
Description File, written in Extensible Markup Language (XML).

In the Transactions sample application, the transaction policy ak¢p@atrar
interface is set talways .

Step 3: Write the CORBA (Client Application

The CORBA client application needs code that performs the following tasks:

1. Obtains a reference to the TransactionCurrent object from the Bootstrap object.

Getting Started 6-11

6 Using Transactions

2. Begins a transaction by invoking tfebj:: TransactionCurrent::begin()
operation on the TransactionCurrent object.

3. Invokes operations on the object. In the Transactions sample application, the
client application invokes theegister_for_courses() operation on the
Registrar object, passing a list of courses.

Listing 6-2 illustrates the portion of the CORBA C++ client applications in the
Transactions sample application that illustrates the development steps for transactior

For an example of a CORBA Java client application that uses transactions, see the X,
Bankapp sample application @uide to the Java Sample Applicaticinshe
WebLogic Enterprise online documentation.

Listing 6-2 Transactions Code for CORBA C++ Client Applications

CORBA::Object_var var_transaction_current_oref =
Bootstrap.resolve_initial_references(“TransactionCurrent”);

CosTransactions::Current_var transaction_current_oref=
CosTransactions::Current::_narrow(var_transaction_current_oref.in());

/IBegin the transaction

var_transaction_current_oref->begin();

try {

/IPerform the operation inside the transaction
pointer_Registar_ref->register_for_courses(student_id, course_number_list);

/NIf operation executes with no errors, commit the transaction:
CORBA::Boolean report_heuristics = CORBA_TRUE;
var_transaction_current_ref->commit(report_heuristics);

}
catch (...) {
/NIf the operation has problems executing, rollback the
/ftransaction. Then throw the original exception again.
/NIf the rollback fails,ignore the exception and throw the
/loriginal exception again.

try {
var_transaction_current_ref->rollback();

}
catch (...) {
TP::userlog(“rollback failed");

throw;

}

6-12 Getting Started

Step 1: Write the OMG IDL Code

Step 4: Write the Server Application

When using transactions in server applications, you need to write methods that
implement the interface’s operations. In the Transactions sample application, you
would write a method implementation for thegister_for_courses() operation.

If your WebLogic Enterprise CORBA application uses a database, you need to include
code in the server application that opens and closes an XA resource manager. These
operations are included in ti8erver::initialize() andServer::release()

operations of the Server object.

Listing 6-3 shows the portion of the code for the Server object in the Transactions
sample application that opens and closes the XA resource manager.

Note: For a complete example of a C++ server application that implements
transactions, see the Transactions sample applicatidsiing Transactionf
the WebLogic Enterprise online documentation.

For an example of a Java server application that implements transactions, see

the description of the XA Bankapp sample applicatiorliaing Transactions
in the WebLogic Enterprise online documentation.

Listing 6-3 C++ Server Object in Transactions Sample Application

CORBA::Boolean Server:initialize(int argc, char* argv[])

{
TRACE_METHOD("Server::initialize");
try {
open_database();
begin_transactional();
register_fact();
return CORBA_TRUE;
}

catch (CORBA::Exception& e) {
LOG(“CORBA exception : “ <<e);

catch (SamplesDBException& e) {
LOG(*Can’t connect to database”);

}
catch (...) {
LOG("Unexpected exception”);

cleanup();

Getting Started 6-13

6 Using Transactions

return CORBA_FALSE;
}

void Server:release()

TRACE_METHOD(“Server::release”);

cleanup();
}
static void cleanup()
{

unregister_factory();
end_transactional();
close_database();

/IUtilities to manage transaction resource manager

CORBA::Boolean s_became_transactional = CORBA_FALSE;
static void begin_transactional()

{
TP::open_xa_rm();
s_became_transactional = CORBA_TRUE;

static void end_transactional()

if(!s_became_transactional){
return//cleanup not necessary

}
try {
TP::close_xa_rm ();
}
catch (CORBA::Exception& e) {
LOG("CORBA Exception : “ << e);
}
catch (...) {
LOG(“unexpected exception”),
}
s_became_transactional = CORBA_FALSE;
}

Step 5: Create a Configuration File

You need to add the following information to the configuration file for a transactional
WebLogic Enterprise CORBA application.

6-14 Getting Started

Step 1: Write the OMG IDL Code

m |n the SERVERSsection:

e Define a server group that includes both the server application that includes
the interface and the server application that manages the database. This
server group needs to be specified as transactional.

e ReplaceJavaServer with JavaServerXA to associate the XA resource
manager with a specified server grougagaServer uses the null RM.)

m In the OPENINFOandCLOSEINFO parameters of theROUPSection, include
information to open and close the XA resource manager for the database. You
obtain this information from the product documentation for your database. Note
that the default version of thewm.beasys.Tobj.Server.initialize()
operation automatically opens the resource manager.

m Include the pathname to the transaction logdQ in the TLOGDEVICE
parameter. For more information about the transaction logAskeeinistrationin
the WebLogic Enterprise online documentation.

Listing 6-4 includes the portions of the configuration file that define this information
for the Transactions sample application.

Listing 6-4 Configuration File for Transactions Sample Application

*RESOURCES
IPCKEY 55432
DOMAINID university
MASTER SITE1

MODEL SHM

LDBAL N

SECURITY APP_PW
*MACHINES

BLOTTO

LMID = SITE1

APPDIR = C:\TRANSACTION_SAMPLE
TUXCONFIG=C:\TRANSACTION_SAMPLE\tuxconfig
TLOGDEVICE=C:\APP_DIR\TLOG
TLOGNAME=TLOG

TUXDIR="C:\WLEdir"

MAXWSCLIENTS=10

*GROUPS

SYS_GRP
LMID = SITE1

Getting Started 6-15

6 Using Transactions

GRPNO =1
ORA_GRP
LMID = SITE1
GRPNO =2

OPENINFO = "ORACLE_XA:Oracle_XA+SqgINet=ORCL+Acc=P
/scott/tiger+SesTm=100+LogDir=.+MaxCur=5"

OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/tiger
+SesTm=100+LogDir=.+MaxCur=5"

CLOSEINFO = "

TMSNAME = "TMS_ORA"

*SERVERS
DEFAULT:
RESTART
MAXGEN

o <

TMSYSEVT
SRVGRP
SRVID =1

SYS_GRP

TMFFNAME
SRVGRP = SYS_GRP
SRVID =2
CLOPT = "A - -N -M"
TMFFNAME
SRVGRP = SYS_GRP
SRVID 3
CLOPT "A -~ -N"

TMFFNAME
SRVGRP = SYS_GRP
SRVID = 4
CLOPT = "A - -F*
TMIFRSVR
SRVGRP = SYS_GRP
SRVID =5

UNIVT_SERVER
SRVGRP = ORA_GRP

SRVID =1
RESTART = N
ISL
SRVGRP = SYS_GRP
SRVID =6
CLOPT = -A - -n //MACHINENAME:2500

6-16 Getting Started

Step 1: Write the OMG IDL Code

*SERVICES

Forinformation about the transaction log and defining parameters in the Configuration
file, seeCreating a Configuration Filén the WebLogic Enterprise online
documentation.

Getting Started 6-17

6 Using Transactions

6-18 Getting Started

Part Il Developing

WebLogic Enterprise
EJB Applications

Chapter 7. Developing WebLogic Enterprise EJB Applications

Chapter 8. Designing Enterprise JavaBeans for the WebLogic Enterprise

System

CHAPTER

7

Developing WebLogic
Enterprise EJB
Applications

This chapter provides a step-by-step tutorial that explains how to create an EJB
application that you can build and run in the WebLogic Enterprise environment. The
steps described in this chapter use gtagefulSession EJB sample application
provided with the WebLogic Enterprise software. TdwgefulSession example
exists in the following location on your system:

Windows NT
$TUXDIR\samples\j2ee\ejb\basic\statefulSession
UNIX
$TUXDIR/samples/j2ee/ejb/basic/statefulSession
This topic includes the following sections:

m Overview of the Development Process for WebLogic Enterprise EJB
Applications

m The statefulSession EJB Sample Application
m Developing EJB Applications
m Building and Deploying EJB Applications

m WeblLogic Enterprise EJB Sample Applications

Getting Started ~ 7-1

7 Developing WebLogic Enterprise EJB Applications

Note the following about using this chapter:

m The steps in this chapter lead you through the process of creating an EJB that
can be deployed in the WebLogic Enterprise environment, also known as a
deployable EJB. To create a standard EJB -- that is, a portable bean that lacks
the extensions specific to the WebLogic Enterprise environment -- see Chapter 8.
“Designing Enterprise JavaBeans for the WebLogic Enterprise System.”

m For a more thorough understanding of Enterprise JavaBeans, especially with
regards to background information and programming considerations, refer to the
following resources:

e Valesky, T. 1999Enterprise JavaBeans: Developing Component-Based
Distributed ApplicationsAddison-Wesley.

e Sun Microsystems, Inc. Enterprise JavaBeans Specification 1.1.

7-2 Getting Started

Overview of the Development Process for WebLogic Enterprise EJB Applications

Overview of the Development Process for
WebLogic Enterprise EJB Applications

Table 7-1 outlines the development process for WebLogic Enterprise EJB
applications.

Table 7-1 EJB Application Development Process in WebLogic Enterprise

Step Description

1 Create the EJB.

2 Create the module initializer class.

3 Create the deployment descriptor.

4 Create a standard EJB JAR file.

5 Create the WebLogic extensions to the deployment descriptor DTD.
6 Modify the Deployment Descriptor.

7 Package the components into a deployable EJB JAR file.
8 Configure the EJB application.

9 Create the client application.

10 Start and run the WebLogic Enterprise EJB application.
11 Dynamically manage the EJB deployment.

Figure 7-1 illustrates the process for developing WebLogic Enterprise EJB
applications. In this figure, the shaded objects represent entities you need to create.

Getting Started 7-3

7 Developing WebLogic Enterprise EJB Applications

Figure 7-1 Process for Developing WebLogic Enterprise EJB Applications

EJB EJB Home EJB Remote
Implementation Interface Interface
class File class File class File

Deployment
Descriptor

jar Command

WebLogic
Standard EJB Extensions to
JAR File the Deployment

Descriptor DTD

4’74’7
b

ejbc Command

——

7-4

Module Initializer Deployable EJB)
Object JAR File UBBCONFIG File
WLE EJB
Application

Getting Started

The statefulSession EJB Sample Application

The statefulSession EJB Sample Application

The statefulSession sample application shows how repeated calls to the same
session bean have a persistent state -- the change in the cash account -- that is
maintained across all the calls. Notice that neither the client nor the EJB do anything
to maintain that state: the container handles it transparently. All the logic for the cash
account is encapsulated in the bean, unlike the stateless session sample where all
persistence is provided by the client.

The EJB in this sample provides basic trading methods such as buying and selling
stocks. Since there are no persistent stores involved in this sample, all the stock data
are set in the deployment descriptor of the EJB as environment properties. The
container supplies the data to the EJB through the JNDI lookup operation.

This sample provides two types of clients: one is a simple, single-threaded RMI client
application, and the other is a multithreaded RMI client application. The
statefulSession bean sample application implements the classes listed and
described in Table 7-2.

Table 7-2 Classes Implemented in the Stateful Session Bean Example

Class Description
Client This class:
m Creates amnitialContext class.

m Creates atrader, and performs repeated buying and selling of
shares.

m Shows persistence of state between calls toTtladerBean ;
the client does not do anything to maintain state between calls.

m Searches the JNDI tree for an appropriate container.

Getting Started 7-5

7 Developing WebLogic Enterprise EJB Applications

7-6

Table 7-2 Classes Implemented in the Stateful Session Bean Example

Class Description
MultiClient This class:

m Creates amnitialContext class.

m Creates a trader, and performs repeated buying and selling of
shares.

m Shows calling a stateful session bean using multiple colocated
clients: each thread is a trader, and performs repeated buying
and selling of shares.

m Shows persistence of state between calls torlaelerBean
bean.

Like the single-threade@lient bean, theMultiClient bean

does not do anything to maintain state between calls.

TraderBean This bean does not manage any persistence of state between

invocations on it. Creating the business methods on this bean is
described in the section “Create the Bean’s Implementation Class”
on page 7-11.

TradeResult

This bean contains the results of a buy/sell transaction.

Figure 7-2 shows how the stateful session bean example works.

Getting Started

Developing EJB Applications

Figure 7-2 Stateful Session Bean Sample Application

WebLogic Enterprise Domain

WLE EJB Container

Trader Home

Interface
6 RMI Client Application
Trader Bean

newInitialContext();

ctx.lookup("statefulSession.Tra buy()

derHome"); IIOP sell()

Server getBalance()
RMI/IO Listener/ getTraderName()

trader.getTraderName(); Handler

trader.buy();

trader.sell();

trader.getBalance();

Trader Remote
Interface

Developing EJB Applications

This section describes the following steps for developing an EJB application in the
WebLogic Enterprise system:

m Step 1: Create the EJB
m Step 2: Create the Module Initializer Object

m Step 3: Create the Deployment Descriptor

Getting Started ~ 7-7

7 Developing WebLogic Enterprise EJB Applications

m Step 4: Create a Standard EJB JAR File

Step 1: Create the EJB

The EJB Specification 1.1, published by Sun Microsystems, Inc., describes the
different requirements of the EJB writer and the EJB framework; EJBs created for the
WebLogic Enterprise environment must conform to those requirements. When you
write EJBs, pay close attention to these requirements.

When writing an EJB, you must implement the following:

m The bean’s home interface

m The bean’s remote interface

m The bean’s implementation class, which includes:

The business methods for the bean
TheejbCreate |, ejbPostCreate , andejbRemove callback methods

For session beans, the callbacks defined bys#wionBean interface and,
optionally, the callbacks on th&essionSynchronization interface

For entity beans, the callbacks defined on EhétyBean interface, and the
primary key classes

For bean-managed persistence, tid oad andejoStore callbacks

Notes: The direct use of threads by Bean Providers is discouraged by the EJB

Specification 1.1. This constraint also applies to WebLogic Enterprise server
applications -- bean and RMI implementers should not attempt to manage,
change properties, start, stop, suspend, or resume a thread or a thread grouy

Theejbc command, which is provided with the WebLogic Enterprise
development software, includes a compliance checker utility that examines the
packaged EJBs and determines if the EJBs conform to these requirements.

The subsections that follow provide details on implementing an EJB, using the statefu
session EJB sample application as an example.

7-8 Getting Started

Developing EJB Applications

Create the Bean's Home Interface

Each EJB has a home interface that creates instances of the bean. EJB client
applications use the home interface as a means of obtaining a reference, or a handle, to
the EJB. The home interface is analogous to a factory object in CORBA. The home
interface defines the methods used by client applications to create, remove, and find
objects of the corresponding EJB type.

The home interface for thetatefulSession EJB contains thereate method,
which corresponds to thgbCreate method on the EJB itself. The following code
example shows the home interface for thederBean EJB:

package samples.j2ee.ejb.basic.statefulSession;

import java.rmi.RemoteException;
import javax.ejb.*;

/**

* This interface is the home interface for the TraderBean.java

*

public interface TraderHome extends EJBHome {

Trader create(String traderName) throws CreateException, RemoteException;

}

Create the Bean's Remote Interface

Each EJB has a well-defined remote interface that defines the EJB callbacks and the
business methods that can be invoked by a client. As stated in the EJB Specification
1.1, a client application never directly accesses instances of a bean’s class. A client
always uses the bean’s remote interface to access that bean’s instance. The class that
implements the bean’s remote interface is provided by the EJB container.

The EJB’s remote interface does the following:
m Defines the business logic methods of the EJB.

m Supports the methods of thevax.ejb.EJBObject interface. These methods
allow the client to:

e Get the EJB’s home interface
e Getthe EJB’s handle
e Testif the EJB is identical with another EJB

Getting Started 7-9

7 Developing WebLogic Enterprise EJB Applications

¢ Remove the EJB

The following business methods are also defined on the remote interface of the
TraderBean EJB:

m buy()
m sell()
m getBalance()

m getTraderName()

Listing 7-1 shows the remote interface for thederBean EJB.

Listing 7-1 TraderBean Remote Interface

package samples.j2ee.ejb.basic.statefulSession;
import java.rmi.RemoteException;
import javax.ejb.*;

/**

* The methods in this interface are the public face of TraderBean.
* The signatures of the methods are identical to those of the EJBean, except
* that these methods throw a java.rmi.RemoteException.

*/

public interface Trader extends EJBObject {

public TradeResult buy(String customerName, String stockSymbol, int shares)
throws ProcessingErrorException, RemoteException;

public TradeResult sell(String customerName, String stockSymbol, int shares)
throws ProcessingErrorException, RemoteException;

public double getBalance()
throws RemoteException;

public String getTraderName()
throws RemoteException;
}

7-10 Getting Started

Developing EJB Applications

Create the Bean’s Implementation Class

The bean’s implementation class includes the following:
m A declaration of the type of bean being implemented (session or entity).
m The business methods on the bean.

m A specific set of callback methods. The set you implement depends on the type
of bean you are creating.

Dedlaring the Bean Type

After you declare your bean’s package name and import classes, you declare what
interface your bean implements: session or entity. The following line declares that the
TraderBean class implements thgessionBean interface:

public class TraderBean implements SessionBean

Implementing the Business Methods on the Bean

TheTraderBean EJB implements the following business methods:
m buy()
Buys shares of a stock for a named customer.
m sell()
Sells shares of a stock for a named customer.
m getBalance()
Returns the current balance of a trading session.
B getTraderName()

Returns the name of the current Trader class.

Implementing the Callback Methods on the Bean

You need to implement the following methods on the bean, which are standard for all
beans. These are commonly referred to as callback methods.

Getting Started 7-11

7 Developing WebLogic Enterprise EJB Applications

7-12

ejbCreate()

Corresponds to thereate method in the home interfad@aderHome. java

The parameter sets of thghCreate andcreate methods are identical. When
the client calls thereate method on the bean’s home interface, the EJB
container allocates an instance of thaderBean EJB and then calls the
ejoCreate method on the EJB.

ejbRemove()

This method is automatically invoked by the EJB container before it ends the
life of the session bean. Invoking this method occurs as a result of a client
application invoking theemove method on the bean’s remote object, or when
the EJB container decides to terminate the session object after a timeout. This
method is required by the EJB Specification.

ejbPassivate()

This method is invoked by the EJB container before a bean is moved into a
passive state, causing any resources used by the bean to be released. This
method is required by the EJB Specification, but is not used by the
statefulSession bean example.

ejbActivate()

This method is invoked by the EJB container when a bean is activated from a
passive state, causing any resources required by the bean to be restored. This
method is required by the EJB Specification, but is not used by the
statefulSession bean example.

setSessionContext()

This method sets the associated session context. The WebLogic Enterprise
container invokes this method after the EJB has been instantiated. The EJB
instance should store the reference to the context object in an instance variable.

ejbCreate Callback Example

The following code example shows th@pCreate method on th@raderBean EJB:

public void ejbCreate(String traderName) throws CreateException {
printTrace("ejbCreate (" + traderName + ")");

this.traderName = traderName;
this.tradingBalance = 0.0;

Getting Started

Developing EJB Applications

setSessionContext Callback Example

The following code example shows thetSessionContext ~ method on the
TraderBean EJB, storing the context in the variakie :

public void setSessionContext(SessionContext ctx) {
printTrace("setSessionContext called");
this.ctx = ctx;

}

Step 2: Create the Module Initializer Object

The module initializer object is optional for EJB applications that run in the WebLogic
Enterprise environment. You use it for specifying special requirements for your EJB
application, such as custom operations; for example:

m Performing basic module initialization (or EJB JAR file deployment) operations,
which may include allocating resources needed by the EJB JAR file.

m Performing basic server application initialization operations, which may include
registering homes or factories managed by the server application and allocating
resources needed by the server application.

m Performing server process shutdown and cleanup procedures when the server
application has finished servicing requests.

Notes: For EJBs, the scope of the module initializer objectis at the EJB JAR file level
and not of the entire server application, as with the Server object and
WebLogic Enterprise CORBA applications.

The statefulSession EJB sample application does not include a module
initializer object.

If you have enabled hot redeployment for the modules in your EJB application, the
module initializer object is automatically invoked at appropriate times when the
module is deployed or undeployed.

You implement this module initializer object by creating a module initializer class that
derives fromcom.beasys.Tobj.Server and by implementing the following two
methods on that class:

Getting Started 7-13

7 Developing WebLogic Enterprise EJB Applications

m initialize
Theinitialize method is invoked when the EJB JAR file is loaded (generally
when the WebLogic Enterprise server process is booted).

H release

Therelease method is invoked when the WebLogic Enterprise server process
is shut down or when the EJB JAR file is redeployed to another server process.

In the module initializer object application code, you can also write a public default
constructor. You create the module initializer object class from scratch using a text
editor.

If you have created a module initializer object, the EJB container parses the WebLogic
EJB extensions to the deployment descriptor DTD in each deployed EJB JAR file
(specified in thedBBCONFIdile) during startup.

Themodule-initializer-class-name elementin the WebLogic EJB extensions to
the deployment descriptor DTD identifies the module initializer object to be used at
server initialization and shutdown or, if you are using hot redeployment, when a
module is deployed or undeployed. When the server process is booted or a module |
deployed, the EJB container instantiates this module initializer object and invokes its
initialize method, passing in any startup arguments specified iIWHBCONFIG

file. When the server process is shut down or a module is undeployed, the EJB
container invokes the module initializer objectéease method.

For information about theom.beasys.Tobj.Server base class, see t@é| Javadoc

in the WebLogic Enterprise online documentation. For more information about hot
redeployment, setStep 11: Dynamically Manage the EJB Deployment (Hot
Redeployment)” on page 7-37

Step 3: Create the Deployment Descriptor

7-14

The deployment descriptor is an XML file that specifies structural information (for
example, the name of the enterprise bean class) about the EJB and declares all the
EJB's external dependencies (for example, the names and types of resources that tt
enterprise bean uses). For complete details on all the elements you can specify in tr
deployment descriptor, see tBdB XML Referencia the WebL ogic Enterprise online
documentation.

Getting Started

Developing EJB Applications

The deployment descriptor also ties together the different classes and interfaces, and
is used by thejbc command to build the code-generated class files. You can also use
the deployment descriptor to specify critical aspects of the EJB's deployment at run
time.

You create the deployment descriptor using one of the following methods:
m Using the WebLogic EJB Deployer

m Using theDDGenerator command

m Manually, using a text editor

Note that theDDGenerator command is an unsupported tool. For information about
using theDDGenerator command, see thkelease Notes

The deployment descriptor you create must:

m Be valid with respect to the Document Type Definition (DTD) documented in
the EJB Specification 1.1

m Conform to the semantics rules specified in the DTD comments and elsewhere
in the EJB Specification 1.1

m If you are creating the deployment descriptor from scratch, include the following
reference to the deployment descriptor DTD at the beginning of the file:

<IDOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//[DTD Enterprise
JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_2.dtd">

The sections that follow describe the elements you must specify in a deployment
descriptor for a given type of EJB, using thtatefulSession as an example, and
show the EJB Deployer.

Required Elements for Session Beans

The elements that you need to specify in the deployment descriptor for the stateless
session EJB is listed and described in Table 7-3.

Getting Started 7-15

7 Developing WebLogic Enterprise EJB Applications

Table 7-3 Required Elements for Session Beans

Element Description Purpose

ejb-name EJB’s name Specifies the logical name you assign to each EJB in the
EJB JAR file. There is no architected relationship between
this name and the JNDI name that the Deployer assigns to
the EJB.

ejb-class EJB’s class Specifies the fully qualified name of the Java class that
implements the EJB’s business methods.

home EJB’s home interface Specifies the fully qualified name of the EJB’s home
interface.

remote EJB’s remote interfaces Specifies the fully qualified name of the EJB’s remote
interface.

session | entity EJB’s type The EJB types asession andentity . Use the

appropriatesession orentity elementto declare the
EJB’s structural information.

session-type Session bean’s state Declares whether the session bean is stateful or stateless.
management type

transaction-type Session bean’s If the EJB is a session bean, declares whether transaction
transaction demarcation demarcation is performed by the enterprise bean or by the
type container.

Listing 7-2 shows the deployment descriptor for titsefulSession EJB. Line
numbers are added to help with the discussion of this deployment descriptor, which
follows.

Listing 7-2 Stateful Session Bean Deployment Descriptor

<IDOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//[DTD Enterprise
JavaBeans 1.1/EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_2.dtd">

<ejb-jar>
<enterprise-beans>
<session>
<ejb-name>

NOoO o~ WNRE

7-16 Getting Started

Developing EJB Applications

statefulSession
</ejb-name>
<home>
samples.j2ee.ejb.basic.statefulSession. TraderHome
</home>
<remote>
samples.j2ee.ejb.basic.statefulSession.Trader
</remote>
<ejb-class>
samples.j2ee.ejb.basic.statefulSession.TraderBean
</ejb-class>
<l-- Session bean state management type declaration -->
<session-type>
Stateful
</session-type>
<l-- Transaction demarcation type declararion -->
<transaction-type>
Container
</transaction-type>

<l-- Environment entries: Stock symbols, and prices -->
<env-entry>
<env-entry-name>
BEAS
</env-entry-name>
<env-entry-type>
java.lang.Double
</env-entry-type>
<env-entry-value>
10.0
</env-entry-value>
</env-entry>

</session>
</enterprise-beans>

<l-- Assembly description -->
<assembly-descriptor>

<l-- Container transaction attributes -->
<container-transaction>
<method>
<ejb-name>
statefulSession
</ejb-name>

<l-- Apply to all the methods (*) of the ejb -->

Getting Started 7-17

7 Developing WebLogic Enterprise EJB Applications

57 <method-name>
58 *

59 </method-name>
60 </method>

61

62 <!-- Transaction attributes for the methods -->
63 <trans-attribute>

64 NotSupported

65 </trans-attribute>

66 </container-transaction>
67 </assembly-descriptor>
68 </ejb-jar>

In the preceding deployment descriptor, note the following:

m Lines 7-9 identifystatefulSession as the EJB name.

m Lines 10-15 identify the home and remote interfaces.

m Lines 20-22 identify that thetatefulSession EJB is stateful.

m Lines 28-42 identify a number of environment entries specific to the
statefulSession EJB.

m Lines 46-67 identify assembly descriptor information for transaction attributes.
For information about EJBs and transactions,deig Transactioné the
WebLogic Enterprise online documentation.

Using the WebLogic EJB Deployer to Create the Deployment Descriptor

You can use the WebLogic EJB Deployer to create the deployment descriptor for the
EJB. Figure 7-3 shows the EJB Deployer main window.

7-18 Getting Started

Developing EJB Applications

Figure 7-3 WebLogic EJB Deployer Main Window

*ﬁWehLogic EJB Deployer

=] E3
File Tools Help
& |@ |@| || @’lﬁél Ol
- Projects statefulSession ClasseS|
= Deployer
= @ ejh_basic_statefulSession jar —Beancla
- Fileg |Samples.j2ee.ejb.basic.statefuISessiUn.TraderElean
- Security
-Method transactions —Home interface cla
*Method Permissions |Samples.j2ee.ejb.basic.statefuISessinn.TraderHome
- Module Initialization
El@ Beans —Remote interface clas
= @ HE i

= |Samples.j2ee.ejb.basic.statefuISessinn.Trader
-Role references

- Environment entries —Harme JMNDI name
-EJB refarences

-Resource factory references
-Persistence N .
- File ¥ Maintains conversational state

- Cptimizations

[stateruiSession

[~ Manages its own transactions
----- Developer

B Servers
o lavaServer_APP_GRP_5

Messages | Problemsl CDnSDlBI

For information about how to start and use the EJB DeployerUsérg the WebLogic
Enterprise EJB Deployan the WebLogic Enterprise online documentation.

Step 4: Create a Standard EJB JAR File

In this step, you create a standard EJB JAR file. A standard EJB JAR file contains an
EJB that has been built, but lacks the specific deployment information on any specific
system. You typically build a standard EJB with the goal of being able to distribute that
EJB to a variety of deployment environments. Typically, the Bean Provider performs

Getting Started 7-19

7 Developing WebLogic Enterprise EJB Applications

steps 1 through 4, as described in the chapter, and a standard EJB JAR file provides
convenient package that can be handed off to the Application Assembler or Deployer
who may perform steps 5 through 9.

The input to the standard EJB JAR file is typically:

m Compiled class files for the EJB’s implementation class, the home interface, and
remote interface

m The deployment descriptor

You can create a standard EJB JAR file usingjtihe command.
Building and Deploying EJB Applications

This section describes the steps to develop an EJB application for the WebLogic
Enterprise system:

m Step 5: Create the WebLogic EJB Extensions to the Deployment Descriptor
DTD

m Step 6: Modify the Deployment Descriptor

m Step 7: Package the Components Into a Deployable EJB JAR File
m Step 8: Configure the EJB Application

m Step 9: Create the Client Application

m Step 10: Start and Run the WebLogic Enterprise EJB Application

7-20 Getting Started

Building and Deploying EJB Applications

Step 5: Create the WebLogic EJB Extensions to the
Deployment Descriptor DTD

For an EJB application to be deployable in the WebLogic Enterprise environment, you
need to create a file containing the WebLogic EJB extensions to the deployment
descriptor DTD. This file specifies the following run time and configuration
information for the EJB application:

m Custom application startup and shutdown properties
m Registration of the application’s home interfaces
m Persistence information

For complete details on all the elements you can specify in the WebLogic EJB
extensions to the deployment descriptor DTD, see&bi2 XML Referencim the
WebLogic Enterprise online documentation.

Creating the WebLogic EJB Extensions to the Deployment Descriptor DTD

You can create the file containing the WebLogic EJB extensions to the deployment
descriptor DTD using one of the following methods:

m Using the WebLogic EJB Deployer

m By hand, in a common text editor

Specifying the WebLogic EJB Extensions DTD

The file that includes the WebLogic EJB extensions to the deployment descriptor DTD
must specify the following DTD reference at the beginning of the file:

<IDOCTYPE weblogic-ejb-extensions SYSTEM "weblogic-ejb-extensions.dtd" >

Registering Names for the EJB Home Classes

A name for the EJB home class must be registered in the global WebL ogic Enterprise
JNDI namespace. This allows Java clients to perform a lookup on the JNDI name for
the EJB home, even across WebLogic Enterprise domains, and gain access to the
object. The name for the EJB home class can be different tharejhh@ame>

Getting Started 7-21

7 Developing WebLogic Enterprise EJB Applications

Example

7-22

element specified in the standard EJB XML. Td&b-name> in the standard
deployment descriptor must be unique only among the names of the EJBs in the sam
EJB JAR file. However, the JNDI name must be unique among all global home or
factory names in a WebLogic Enterprise domain; this includes EJB homes, CORBA
factories, and RMI-named objects.

Listing 7-3 is from the fileweblogic-ejb-extensions.xml , Which specifies the
WebLogic extensions to the deployment descriptor DTD for the stateful session bear
example. Line numbers are used to aid in the brief discussion that follows.

Listing 7-3 Specifying the Name of the EJB Home Class

1 <weblogic-ejb-extensions>

2 <weblogic-version>

3 WebLogic Enterprise Server 5.0
4 </weblogic-version>

5 <weblogic-enterprise-bean>

6

7

8

<ejb-name>
statefulSession

</ejb-name>
9 <weblogic-deployment-params>
10 <jndi-name>
11 statefulSession.TraderHome
12 </jndi-name>
13
14
15 .
16 </weblogic-deployment-params>

17 </weblogic-ejb-extensions>

In the preceding WebLogic EJB extensions to the deployment descriptor DTD, note
the following lines:

m Lines 9 through 16 contain specific deployment parameters for metrics like the
size of the bean pool and the size of the cache.

m Lines 10 through 12 specify the name of the EJB that is registered with JNDI,
this is the name on which the client application perfornieokup invocation.

Getting Started

Building and Deploying EJB Applications

Specifying Persistence Information

The WebLogic Enterprise EJB container provides container-managed persistence. The
code forimplementing the persistence is generated bgjtee command based on the
deployment descriptors. The persistence store can be aflat file or it can be a database
managed with a JDBC connection pool. For the EJB state to fully cooperate in a
WebLogic Enterprise global transaction, configure the EJB to use the JDBC-managed
database store provided in WebLogic Enterprise. Use file-based persistence only

during development and prototyping.

The standard deployment descriptor created by the Bean Provider normally specifies:

m The fields in the EJB that are to be persistent, viadhp-field element

m For entity beans, information about the primary key

However, you, as the deployer, need to specify additional information for mapping an
EJB to its persistent store via the WebLogic EJB extensions to the deployment

descriptor DTD.

File-based Persistence

Listing 7-4 shows the WebLogic EJB extensions to the deployment descriptor DTD

for specifying file-based persistence.

Listing 7-4 File-based Persistence Elements

<l--

Persistence store descriptor. Specifies what type of persistence store
EJB container should use to store state of bean.

>

<I[ELEMENT persistence-store-descriptor (description?,
(persistence-store-file |

persistence-store-jdbc)?)>

<l--

Persistence store using file. Bean is serialized to a file.
Mainly used to store state of Stateful Session Beans.
>

<IELEMENT persistence-store-file (description?,
persistence-store-directory-root

?)>

<l--

Root directory on File system for storing files per bean.

Getting Started

7-23

7 Developing WebLogic Enterprise EJB Applications

>
<I[ELEMENT persistence-store-directory-root (#PCDATA)>

The information supplied for thgersistence-store-directory-root elementis
used by the EJB container to store all instances of the EJB, wijithrame element
converted to a directory name.

Database-stored Persistence

Listing 7-5 shows the WebLogic EJB extensions to the deployment descriptor DTD
for specifying a JDBC connection for database-stored persistence.

Listing 7-5 Database-stored Persistence Elements

<l--

Persistence store is any RDBMS. JDBC driver is used to talk to database.
Required for CMP.

>

<IELEMENT persistence-store-jdbc (description?, pool-name, user?, password?,
driver-url?, driver-class-name?, table-name, attribute-map,

finder-descriptor*)>

<l-- Required for CMP -->
<I[ELEMENT pool-name (#PCDATA)>

&

<l-- Ignored in WebLogic Enterprise Server as this
pool

setup at startup -->

<IELEMENT user (#PCDATA)>

part of connection

&

<l-- Ignored in WebLogic Enterprise Server as this
pool

setup at startup -->

<I[ELEMENT password (#PCDATA)>

part of connection

&

<l-- Ignored in WebLogic Enterprise Server as this
pool

setup at startup -->

<I[ELEMENT driver-url (#PCDATA)>

part of connection

&

<l-- Ignored in WebLogic Enterprise Server as this
pool

setup at startup -->

<I[ELEMENT driver-class-name (#PCDATA)>

part of connection

7-24 Getting Started

Building and Deploying EJB Applications

<l-- Required for CMP -->
<I[ELEMENT table-name (#PCDATA)>

<l-- Required for CMP -->
<IELEMENT attribute-map (description?, attribute-map-entry+)>

<l-- Required for CMP -->
<IELEMENT attribute-map-entry (bean-field-name, table-column-name)>

<l-- Required for CMP -->
<IELEMENT bean-field-name (#PCDATA)>

<l-- Required for CMP -->
<IELEMENT table-column-name (#PCDATA)>

<l-- Required for CMP -->
<IELEMENT finder-descriptor (description?, method?, query-grammar?)>

<l-- Required for CMP -->
<IELEMENT query-grammar (#PCDATA)>

The EJB instances are stored in a database that has been previously set up with a JDBC
connection pool, which is identified by tipeol-name element. Theable-name and
attribute-map elements map the EJB fields to the appropriate table columns in the
database.

Finder descriptors are the WebLogic Enterprise implementation of thefikdlB
methods. Thdinder-descriptor elements are pairs of method signatures and
expressions. You specify a method signature irefBHomeinterface, and you specify
the method’s expression in the deployment descriptor vigtkey-grammar

element. The finder methods return an enumeration of EJBs. For more information
about specifying finder descriptors, see BB XML Referencm the WebLogic
Enterprise online documentation.

Example

Listing 7-6 is from the fileweblogic-ejb-extensions.xml , Which specifies the
WebL ogic extensions to the deployment descriptor DTD for the stateful session bean
example to show specifying the persistence information.

Getting Started 7-25

Developing WebLogic Enterprise EJB Applications

Listing 7-6 Persistence Directory Root

<persistence-store-descriptor>
<persistence-store-file>
<persistence-store-directory-root>
c:\mystore
</persistence-store-directory-root>
</persistence-store-file>
</persistence-store-descriptor>

Specifying the Module Initializer Class

If your EJB application uses a module initializer class, as explained in the section “Stey
2: Create the Module Initializer Object” on page 7-13, you need to specify that class
among the XML elements for startup and shutdown procedures in the WebLogic EJB
extensions to the deployment descriptor DTD. The WebLogic Enterprise EJB
container parses the XML at run time and performs the startup and shutdown
processing.

Note: ThestatefulSession EJB sample application does not include a module
initializer object.

Step 6: Modify the Deployment Descriptor

7-26

The Bean Provider specifies some initial deployment information in the deployment
descriptor. The deployer typically needs to add to or modify that information, such as
shown in Table 7-4.

Table 7-4 Deployment Descriptor Fields Modified By the Deployer

Field Description

The EJB’s name You may change the enterprise bean’s name defined in the
ejb-name element.

Values of environment You may change existing values or define new values for the
entries environment properties.

Description fields You may change existing or create new description elements.

Getting Started

Building and Deploying EJB Applications

Table 7-4 Deployment Descriptor Fields Modified By the Deployer (Continued)

Field

Description

Binding of enterprise
bean references

You may link an enterprise bean reference to another enterprise
bean in the EJB JAR file. You create the link by adding the
ejb-link element to the referencing bean.

Security roles

You may define one or more security roles. The security roles
define the recommended security roles for the clients of the
enterprise beans. You define the security roles using the
security-role elements. For more information about EJB
security, se&Jsing Securityn the WebLogic Enterprise online
documentation.

Method permissions

You may define method permissions, which are binary
relationships between the security roles and the methods of the
remote and home interfaces of the EJBs. You define method
permissions using theethod-permission elements.

Linking of security role
references

If you define security roles in the deployment descriptor, you
must link the security role references declared by the Bean
Provider to the security roles. You define these links using the
role-link element. For more information about EJB security,
seeUsing Securityn the WebLogic Enterprise online
documentation.

Getting Started 7-27

7 Developing WebLogic Enterprise EJB Applications

Table 7-4 Deployment Descriptor Fields Modified By the Deployer (Continued)

Field Description

Changing persistent The deployer can change the type of persistent storage used by a
storage information, if ~ bean. If thepersistentStoreType isfile ,the serialized
necessary files are created in this directory. The default file is

| pstore | bean_name.dat , where the directorystore
represents the directory from which the WebLogic Enterprise
application was started, artttan_name is the fully qualified
name of the EJB with underscoreg ¢(eplacing the periods { in
the name.

If the persistentStoreType isjdbc , the container looks for
additional values to determine the appropriate values for the
JDBC connection. Note that if the bean’s persistence is stored in
adatabase viaa JDBC connection, the system administrator needs
to add this information to thelBBCONFIGile as well. For more
information, sedJsing the JDBC Driversn the WebLogic

Enterprise online documentation.

Note that persistence information is specified in the WebLogic
EJB extensions to the deployment descriptor DTD file, as
described in the section “Specifying Persistence Information” on
page 7-23.

However, if the Bean Provider, the Application Assembler, and the Deployer are the
same person, all the information shown in the preceding table may have been specifie
already in the deployment descriptor step described in “Step 3: Create the Deploymen
Descriptor” on page 7-14.

Step 7: Package the Components Into a Deployable EJB
JAR File

In this step, you package the deployment descriptor, the compiled files for the EJB
classes, and any additional required classes into a deployable EJB JAR file. You car
package multiple beans together, provided that there is a deployment descriptor for
each bean.

You can use the WebLogic Enterprisec command to create the deployable EJB
JAR file. Theejbc command performs the following steps:

7-28 Getting Started

Building and Deploying EJB Applications

1. Parses the standard EJB deployment descriptor and WebL ogic Enterprise extended
deployment descriptor XML files.

2. Checks the deployment descriptors for semantic consistency, and writes any
inconsistencies to standard output.

3. Generates the wrapper Java classes and compiles them. This is performed for
each EJB in the deployment descriptor.

4. Packages the XML deployment descriptors and the generated class files into a
deployable EJB JAR file.

If you have multiple bean packages meant to be assembled as a deployable unit, the
bean packages must be specified in a single deployment descriptor.

The following command line builds the deployable EJB JAR file for the
statefulSession bean example:

java weblogic.ejbc -validate -i ejb-jar.xml -x weblogic-ejb-extensions

ejb-jar-file

In the preceding command line:
m The-i option specifies the name of the deployment descrigibijar.xml

m The-x option specifies the name of the WebLogic EJB extensions to the
deployment descriptor DTDyeblogic-ejb-extensions

m The file ejb-jar-file is the name of the EJB JAR file.

For more information about thgbc command, se€ommands, System Processes,
and MIB Referencim the WebLogic Enterprise online documentation. Note that using
the-validate option is recommended.

Step 8: Configure the EJB Application

Because the WebLogic Enterprise software offers great flexibility and many options
to application designers and programmers, no two applications are alike. An
application, for example, may be small and simple (a single client and server running
on one machine) or complex enough to handle transactions among thousands of client
and server applications. For this reason, for every WebLogic Enterprise EJB

Getting Started 7-29

7 Developing WebLogic Enterprise EJB Applications

application being managed, the system administrator must provide a configuration file
that defines and manages the components (for example, domains, server application
client applications, and modules) of that application.

When system administrators create a configuration file, they are describing the WLE
application using a set of parameters that the WLE software interprets to create a
runnable version of the application. During the setup phase of administration, the
system administrator’s job is to create a configuration file. The configuration file
contains the sections listed in Table 7-5.

Table 7-5 Configuration File Sections

Sections in the Description
Configuration File

RESOURCES Defines defaults (for example, user access and the main
administration machine) for the WebLogic Enterprise CORBA
application.

MACHINES Defines hardware-specific information about each machine

running in the WebLogic Enterprise CORBA application.

GROUPS Defines logical groupings of server applications or CORBA
interfaces.

SERVERS Defines the server application processes (for example, the
Transaction Manager) used in the WebLogic Enterprise CORBA
application.

SERVICES Defines parameters for services provided by the WebLogic
Enterprise application.

MODULES Defines information about the EJB application process.

JDBCONNPOOLS Describes the pooling of JDBC connections for Java servers.

When creating a configuration file for an EJB application meant to be runin a
WebLogic Enterprise domain, note the following:

m The WebLogic Enterprise EJB container runs in a JavaServer, which you
configure in theSERVERSection.

m You configure the EJB application server process usingjthekeyword in the
MODULESection. Important: the server group and server ID (specified by the

7-30 Getting Started

Building and Deploying EJB Applications

SRVGRRandSRVID keywords, respectively) for the EJB server process must
match the server group and server ID for the JavaServer that runs the EJB
container.

m You use therILE parameter in the configuration information for your EJB
application to specify the EJB JAR file.

m For complete details about thuBBCONFIdile, seeCreating a Configuration
File in the WebLogic Enterprise online documentation.

The following section shows an example configuration file used for an EJB
application.

Example Configuration File

Listing 7-7 shows a configuration file for treeatefulSession bean example. Note

in theSERVERSection how the server group and server ID for the JavaServer, in which
the EJB container runs, is the same as for the EJB application configured in the
MODULESection.

Listing 7-7 Sample UBBCONFIG File

#.
D:\BEA\WLES51\test\ejb\basic\statefulSession\ubbconfig.nt
Generated for basic\statefulSession EJB Sample
#.
*RESOURCES
IPCKEY 55432
DOMAINID ejbsample
MASTER SITE1
MODEL SHM
LDBAL N
#
*MACHINES
"HOWE"
LMID = SITE1
APPDIR = "D:\BEA\WLES51\test\ejb\basic\statefulSession"
TUXCONFIG = "D:\BEA\WLES51\test\ejb\basic\statefulSession\tuxconfig"
TUXDIR = "d:\\BEA\WLE51\m3"
MAXWSCLIENTS = 10
#.
*GROUPS
SYS_GRP
LMID = SITE1

Getting Started 7-31

7 Developing WebLogic Enterprise EJB Applications

GRPNO =1
APP_GRP
LMID = SITE1
GRPNO =2
#
*SERVERS
DEFAULT:
RESTART =Y
MAXGEN =5
TMSYSEVT
SRVGRP = SYS _GRP
SRVID =1
TMFFNAME
SRVGRP = SYS _GRP
SRVID =2
CLOPT ="A - -N -M"
TMFFNAME
SRVGRP = SYS _GRP
SRVID =3
CLOPT ="A - -N"
TMFFNAME
SRVGRP = SYS _GRP
SRVID =4
CLOPT ="A - -F"
JavaServer
SRVGRP = APP_GRP
SRVID =5
CLOPT ="A"
RESTART = N
ISL
SRVGRP = SYS _GRP
SRVID =6
CLOPT = "-A -- -n //HOWE:7001"
.
*MODULES
ejb
SRVGRP = APP_GRP
SRVID =5
FILE =

"D:\BEA\WLED51\test\ejb\basic\statefulSession\ejb_basic_statefulSession.jar"
*SERVICES

7-32 Getting Started

Building and Deploying EJB Applications

Compiling the Configuration File

There are two forms of the configuration file:

m An ASCII version of the file, created and modified with any editor. Throughout
the WebLogic Enterprise documentation, the ASCII version of the configuration
file is referred to as theBBCONFIdile. The configuration file may, in fact, be
given any file name.

m The TUXCONFIdile, a binary version of th&/BBCONFIHile created using the
tmloadcf command. When thenloadcf command is executed, the
environment variabl@UXCONFIGMust be set to the name and directory location
of the TUXCONFIdile. Thetmloadcf command converts the configuration file
to binary form and writes it to the location specified in the command.

For more information about thenloadcf command, se€ommands, System
Processes, and MIB Referenicethe WebLogic Enterprise online documentation.

Bean Passivation Behavior -- the EJB Cache

The WebLogic Enterprise EJB container has the ability to cache beans across method
invocations as well as across transactions. This significantly reduces the frequency of
beans being passivated, thereby providing the performance improvement. EJB caching
is enabled by default for stateful beans.

For more information about EJB caching, see the section “Controlling the Passivation
of Beans -- the EJB Cache” on page 8-9.

Step 9: Create the Client Application

When you create a client application that can invoke methods on a session EJB
deployed in the WebL ogic Enterprise environment, you need to include code that does

the following:
m Creates amitialContext object
m Uses thaookup method on thenitialContext object to obtain a reference to

the the EJB’s home interface

m |nvokes thecreate method on the EJB’s home interface to create an instance of
the EJB

Getting Started 7-33

v

Developing WebLogic Enterprise EJB Applications

m Invokes the business methods on the EJB
m Destroys the instance of the bean

The sections that follow show fragments from ttsefulSession EJB application

to show the basic building blocks of an RMI client application that invokes an EJB in
the WebLogic Enterprise environment. For complete details on creating an RMI client
application, sedJsing RMI in a WebLogic Enterprise Environmenthe WebLogic
Enterprise online documentation.

Creating an InitialContext Object

Each WebLogic Enterprise EJB client application needs to creatéialContext
object to store information about the EJB application and the WebLogic Enterprise

domain so that the client application can run. TitigalContext objectis typically
created with the following data, which are passed as parameters to the constructor o
thenitialContext object:

m The address of the entry points to the WebLogic Enterprise environment

m The name of the factory to access the WebLogic Enterprise domain and global
naming service

m Security information, such as the type of authentication, the security principal
name, credentials, roles, and passwords

m The URL for remote class loading

The statefulSession client application implements a method named
newlnitialContext , iInwhich thelnitialContext objectis created as a hash table.
This hash table specifiesiv as

com.beasys.com.jndi.WLEInitialContextFactory . After the context is created,

the client application has access to bean homes in the WebLogic Enterprise domain
using WebLogic Enterprise as the name service provider.

The newinitialContext method is shown in the following code fragment:

static public Context newlnitialContext() throws Exception {

7-34

Hashtable env = new Hashtable();

/I specify an IIOP Listener/Handler for the desired WLE target domain
env.put(Context. PROVIDER_URL, url);

/Il Name of the factory to access WLE domain and global naming service.
env.put(Context.INITIAL_CONTEXT_FACTORY,

Getting Started

Building and Deploying EJB Applications

“com.beasys.jndi. WLEInitialContextFactory");
/* Security style: strong for SSL, simple for Tuxedo, and none
* for no authentication at all. If no value is specified then, Tuxedo
* style authentication is attempted.
*
env.put(Context. SECURITY_AUTHENTICATION, "simple");
if (user != null) {
printTrace("user:

+ user);

[* Specifies the identity of the principal for authenticating the caller
* to the WLE domain

*
env.put(Context. SECURITY_PRINCIPAL, user);
if (password == null) {

password = "

}

/I A string password is used for Tuxedo style authentication.
env.put(Context. SECURITY_CREDENTIALS, password);
} else {

/I User id is null.
env.put(Context. SECURITY_AUTHENTICATION, "none");

return new InitialContext(env);

}

The RMI client application in thetatefulSession bean example invokes this
newlnitialContext method to create itwitialContext object, on which the
application can then make the appropriate invocations, as shown in the following
statement:

Context ctx = newlnitialContext();

The newlnitialContext method also creates thtialContext object with

specific information related to WebLogic Enterprise security. For information about
the security data in thisitialContext object, and other client application
requirements related to WebLogic Enterprise security Usseg Securityin the
WebLogic Enterprise online documentation.

Getting Started 7-35

7 Developing WebLogic Enterprise EJB Applications

Obtaining a Reference to the EJB’s Home Interface

The following code fragment, from thetatefulSession client application, shows
the following:

1. Looking up the name of theraderBean ’'s home interfaceTraderHome .
2. Using thePortableRemoteObiject to narrow the reference to typeader .
Object objref = ctx.lookup('statefulSession.TraderHome");

TraderHome brokerage = (TraderHome) PortableRemoteObject.narrow(objref,
TraderHome.class);

Creating an Instance of the EJB

Before a client application can invoke business methods on a bean, the bean needs
be instantiated. EJBs are instantiated when the client application invokes the create
method on the EJB’s home interface.

The following code fragment, from thetatefulSession bean example, shows
invoking thecreate method on th&raderHome class, which causes the TraderBean
and its remote interface to be instantiated:

Trader trader = brokerage.create("Terry");

Destroying the Instance of the Bean

After a client application is finished with the bean, it is good programming practice to
include an invocation to the beanwmove method, as in the following example:

trader.remove();

Step 10: Start and Run the WebLogic Enterprise EJB
Application

Use thetmboot command to start the server processes in your WebLogic Enterprise
EJB application. The EJB application is usually booted from the machine designatec
as theMASTERN the RESOURCESection of theJBBCONFIdile.

7-36 Getting Started

Building and Deploying EJB Applications

For thetmboot command to find executables, the WebLogic Enterprise system
processes must be locatediTUXDIR/bin . Server applications should beARPDIR,
as specified in the configuration file.

When booting server applications, th@boot command uses theLOPT SEQUENCE
SRVGRPSRVID, andMIN parameters from the configuration file. Server applications
are booted in the order in which they appear in the configuration file.

For details about starting and running the statefulSession bean exampByjidego
the EJB Sample Applications

For more information about using thenboot command, se€ommands, System
Processes, and MIB Referenioethe WebLogic Enterprise online documentation.

Step 11: Dynamically Manage the EJB Deployment (Hot
Redeployment)

This step is optional. The WebLogic Enterprise system provides a means, sometimes
referred to avot redeployment to dynamically make the following changes to the
modules in a running EJB application:

m Add new modules
m Remove existing modules

m Update deployed modules

Note: A module in an EJB application is a unit of deployment that is more than
simply the classes in an EJB JAR file. For example, a module can consist of
support libraries.

With WebLogic Enterprise hot redeployment:

m You can change modules used in an EJB application without shutting the
application down or starting or restarting JavaServers.

m Clients connected to other EJB modules in the WebLogic Enterprise domain that
are not the target of a hot redeployment have no interruption in service.

Getting Started 7-37

7 Developing WebLogic Enterprise EJB Applications

7-38

m Client applications of a module affected by hot redeployment will experience an
interruption of service, but the hot redeployment does not require the shutting
down or starting of additional server processes.

m Hot redeployment is disabled by default.

To use hot redeployment to add, change, or remove a module in a running EJB
application:

m Make sure that the module’s classes are not present in the defaA8SPATH

m In the UBBCONFIdile, enable hot deployment for the JavaServer by specifying
the-Dwle.dynamic option in theCLOPTattribute.

m While the EJB application is running, use the followingadmin commands to,
respectively, add, remove, or change modules:
e addmodule
e removemodule

e changemodule

Notes: The TMIB T_MODULEIlass has been modified to represent modules that can
and cannot be modified.

If you attempt to redeploy a module in a JavaServer for which hot
redeployment has not been enabled, no change to the module will occur.

For more information about using hot redeployment, see the following:

m For information about specifying the JavaServer iniB8 CONFIdile, see the
topic “Starting JavaServer” i@reating a Configuration File

m For information about specifying thewle.dynamic option in theCLOPT
attribute, see the section “Using Server Command-line Option€rauating a
Configuration File

m For more information about th@ldmodule , removemodule , and
changemodule commands, see thmadmin command in Section 1 of thREA
Tuxedo Reference Manual

Getting Started

WebLogic Enterprise EJB Sample Applications

WebLogic Enterprise EJB Sample
Applications

WebLogic Enterprise provides the sample applications described in the following list.
For more information about these samples, how they work, and how you can build and
run them, se&uide to the EJB Sample Applications

® samples.j2ee.ejb.basic.statelessSession

Shows a stateless session bean in which the client application must maintain any
state across invocations to that bean.

® samples.j2ee.ejb.basic.statefulSession
Shows a session bean that uses stateful persistence.
m samples.j2ee.ejb.sequence.jdbc

Shows an entity bean that automatically generates its primary key by calling
directly to a database using a connection pool and JDBC.

m samples.j2ee.ejb.sequence.oracle

Shows an entity bean that automatically generates its primary key by calling
directly to a database using a connection pool and an Oracle database.

m samples.j2ee.ejb.subclass.parent

Shows a stateless session bean catl@dntBean that is the parent class for
another bearchildBean

m samples.j2ee.ejb.subclass.child

Shows a stateless session bean catlgdiBean that inherits methods from a
ParentBean , and also shows one bean calling another bean.

Getting Started 7-39

7 Developing WebLogic Enterprise EJB Applications

7-40 Getting Started

CHAPTER

8 Designing Enterprise
JavaBeans for the
WebLogic Enterprise
System

This topic includes the following sections:
m Designing EJB Applications for the WebLogic Enterprise System
m EJBs and Persistence

The information in this chapter supplements the Sun Microsystems, Inc. Enterprise
JavaBeans Specification 1.1.

Getting Started 8-1

8 Designing Enterprise JavaBeans for the WebLogic Enterprise System

Designing EJB Applications for the
WebLogic Enterprise System

The WebLogic Enterprise software complies with the EJB Specification 1.1.
However, to design EJB applications that take advantage of the WebLogic Enterprise
architecture, you need to follow certain design rules and patterns. This section
describes these design considerations with respect to the following perspectives on tt
WebLogic Enterprise EJB environment:

m The client application programmer’s view

m The bean programmer’s view

The Client Application Programmer’s View

Client application programmers using EJBs have a uniform development model they
can use for beans regardless of whether the beans are local or remote. For each EJI
client programmers have access to the information in Table 8-1.

Table 8-1 EJB Information that Client Programmers Can Access

Information

Description

The bean’s home
interface

Each EJB has a home interface (factory) that creates instances of
the bean. The home interface defines the methods used by client
programmers to create, remove, and find objects of the
corresponding EJB type. To find a reference to a particular bean
home interface, client applications should useltwoikup

method of thdnitialContext object with the
PortableRemoteObject class. Inthe WebLogic Enterprise
system, home interfaces are available, and can be advertised,
across domains.

The bean’s remote
interface

8-2 Getting Started

Each EJB has a well-defined remote interface that defines the
business methods that can be invoked by a client.

Designing EJB Applications for the WebLogic Enterprise System

Table 8-1 EJB Information that Client Programmers Can Access (Continued)

Information Description

The object identity Each EJB instance lives in a home and has a unique identity
within its home. The identity of a session bean is generated by the
EJB container and is not exposed to the client. The Bean Provider
generates the identity of an entity bean (the primary key) and a
client can retrieve the primary key from the entity object
reference.

The bean’s metadata = The metadata interface allows clients (typically, application

interface assembly tools) to discover the metadata information about the
bean.
The object handle The handle identifies the object in a portable way. The handle can

be serialized. Having a serialized handle lets you store the handle
and then use it at a later time, possibly in a different process or in
a different system, or by another bean or object. Handles are more
useful with entity beans than with session beans.

To access any EJB, a client application needs to obtain a reference from the bean’s
home interface (factory); however, because the home is also an object, the client needs
also to obtain a reference to it. Getting a home reference to the client application
presents a bootstrapping problem. However, when you register home references with
a directory service -- namely, JNDI -- client applications have a means to obtain a
reference to the bean’s home, even across WebLogic Enterprise domains. This is
exactly what the WebLogic Enterprise EJB container provides.

From the WebL ogic Enterprise EJB container perspective, client applications
(including JSP and servlets acting as clients) are nontrusted entities that require
authentication. They typically require a network connection to access the WebLogic
Enterprise EJB container because they run on nontrusted machines.

How to set up this network connection is another bootstrapping problem. This is solved
in WebLogic Enterprise by providing a JNDI implementation that runs within the EJB
container trusted environment, and by establishing the network connection when the
JNDI initial context is created. The parameters required for the initialization are Java
properties (name/value pairs) passed as arguments to the constructor of the
InitialContext object.

A WebLogic Enterprise client application can set the properties shown in Table 8-2.

Getting Started 8-3

8 Designing Enterprise JavaBeans for the WebLogic Enterprise System

Table 8-2 InitialContext Object Parameters

Property Name Values Description

WLEContext. com.beasys.jndi. Specifies the WebLogic Enterprise JNDI.

INITIAL_CONTEXT_FACTORY WLEInitialContextFactory

WLEContext. PROVIDER_URL corbaloc://<host:port> or Defines the address of the entry points to the
corbalocs://<host:port> WebLogic Enterprise environment. The

identifiercorbaloc indicates that the
protocol is WebLogic RMI on IIOP. The
identifier corbalocs indicates that the
protocol is WebLogic RMI on 1IOP with
SSL.

WLEContext. none | simple | strong Defines the type of authentication:
SECURITY_AUTHENTICATION o o
® none means no authentication (thisis the

default).
m simple means WebLogic Enterprise
authentication.

m strong means SSL authentication
(certificate-based).

WLEContext. <Principal Identifier> Specifies the security principal name. For
SECURITY_PRINCIPAL . . : "
- more information, se&lsing Securityn the
WebLogic Enterprise online documentation.

WLEContext. <SSL credentials> or Specifies the credentials when authentication
SECURITY_CREDENTIALS <User Password> isstrong , or the user password when
authentication isimple

WLEContext. CLIENT_NAME <Security role> Specifies the security role name used by
simple authentication. For more
information, se&Jsing Securityn the
WebLogic Enterprise online documentation.

WLEContext. <password> Specifies the system password if #imple
SYSTEM_PASSWORD authentication is in effect.

WLEContext. CODEBASE <url> Specifies the URL for remote class loading.

8-4 Getting Started

Designing EJB Applications for the WebLogic Enterprise System

The client application is implicitly associated with the security context specified when
the InitialContext object is created. To specify a new security context -- for
example, to invoke objects in a different WebLogic Enterprise domain -- the client
application needs to close the current context and establish a new context with the new
security attributes. To find a reference to a particular bean home interface, client
applications should use theokup method of thenitialContext object with the
PortableRemoteObject class. Client applications can also useldugup method

to obtain a reference to the UserTransaction object. WebLogic Enterprise client
applications cannot modify the WebLogic Enterprise JNDI naming context; that is,
client applications can perform only lookup operations on this context.

The client can use the bean home interface to find or create session or entity bean
instances. Thereate method provided by the EJB home interface creates the
requested EJB and returns a reference to it. The client uses the reference for as long as
it needs, and when it finishes, can invalidate the reference (and eventually the EJB
instance) by invoking thejoRemove method on the EJB instance. Between these
method invocations, the client can invoke (optionally within a transaction) any of the
business methods provided by the EJB.

The WebLogic Enterprise system complies with the EJB Specification 1.1, and client
programmers must be aware of the subtle programming differences provided by the
different bean types (refer to the EJB Specification for more details).

Also note that the WebLogic RMI on IIOP protocol is not currently supported for
applets running on a Web browser.

The EJB Programmer’s View

As an EJB programmer, @ean Provider, as identified in the EJB Specification, you
must follow the conventions and programming restrictions established in the EJB
Specification 1.1 for the different EJB types. The following are the principal design
considerations to take into account when implementing beans with the WebLogic
Enterprise EJB environment:

m Choosing Between Session and Entity Beans
m Server Startup
m Home Interface Registration

m Bean Activation and Passivation

Getting Started 8-5

8 Designing Enterprise JavaBeans for the WebLogic Enterprise System

m EJBs as Client Applications

The sections that follow discuss each of these considerations in detail.

Choosing Between Session and Entity Beans

8-6

When to use one bean type or another depends upon the design pattern that bean
programmers want to use. There are a few commonly used rules:

m Stateless session beans provide a capability similar to the service model

provided by the Tuxedo system. They are highly recommended for short
interactions with the business data when there is no need to retain state.
Therefore, they do not need special operations to activate or deactivate their
state. EJB containers can freely pool instances, allocate instances as needed, an
apply load balancing strategies to distribute the load across different servers.

Stateful session beans are recommended when it is necessary to retain
in-memory state across multiple method invocations made by the client. These
beans are more expensive than stateless session beans because they allocate a
exclusively reserve resources during the private conversation with the client
application.

When developing a stateful session bean, you must implement the

ejpbPassivate andejbActivate methods in such a way that resources like

JDBC connections and network connections are handled properly. While the EJB
container is responsible for saving the conversational state in a portable way and
for reconstructing that state during activation, some precautions must be taken
by the Bean Provider to ensure that the EJB container handles state correctly.
(See section 6.4.1 in the EJB Specification 1.1 for more information.) You can
also decide if the bean’s state needs to be synchronized when the bean is
involved in a distributed transaction.

Entity beans are recommended when it is hecessary to associate a bean instanc:
with a particular application-defined identity, which is similar to the CORBA
model, and the bean’s state must be persistent (that is, the state cannot be lost).
Entity beans cannot use tisessionSynchronization interface to synchronize

with the starting and stopping of a transaction.

Entity beans can be used in many ways; for example, to implement a persistent
variant of CORBA objects or to provide an object representation of entities
stored in a database. You must be careful when you use entity beans to model
objects stored in a database, because these beans could introduce inefficiencies
such as having most of the business logic on the client application rather than in

Getting Started

Designing EJB Applications for the WebLogic Enterprise System

the server application. Moving the business logic to the server application
reduces the number of invocations needed to perform a particular business
transaction.

Server Startup

The WebLogic Enterprise EJB container gives you the flexibility to specify an object
thatis invoked by the EJB container when a WebLogic Enterprise server process loads
an EJB JAR file. This object is an instance of a class that implementether

interface, and is thus referred to amadule initializer object. Implementing the

module initializer object is described in the section “Step 2: Create the Module
Initializer Object” on page 7-13.

You can use the module initializer object to perform specialized initialization for some
objects, such as instantiating RMI objects. In WebLogic Enterprise EJB applications,
you can specify this class in thenodule-initializer-class> elementin the
WebLogic EJB extensions to the deployment descriptor DTD, which is a special
deployment descriptor that you create along with the standard deployment descriptor.

Home Interface Registration

When an EJB JAR file is deployed, the WebL ogic Enterprise container recognizes the
EJB home interfaces (factories) and automatically registers them within the WebLogic
Enterprise JNDI context. The information about the home interfaces is retrieved from
the deployment descriptor.

Bean Activation and Passivation

EJB containers have complete control of the passivation of EJBs. This allows the
container to pool instances of a bean and to decide when an instance can be passivated
(or removed from the pool) to provide better use of system resources.

As a bean programmer, you cannot make any assumptions about when a bean object
is passivated. This passivation can happen at any time. This is particularly important
when the bean accesses a database via cursors, because these cursors could become
invalid after the passivation; the EJB container can reactivate the bean in another
server process.

Getting Started 8-7

8 Designing Enterprise JavaBeans for the WebLogic Enterprise System

8-8

The WebLogic Enterprise EJB container currently follows a passivation model that is
similar to the model used by the WebLogic Enterprise TP Framework for CORBA
applications. If resources are scarce, the WebLogic Enterprise EJB container may
passivate an object at any time. When the bean is reactivated, it may be reactivated |
the same server process or in another server process in the same group.

If a client application creates or invokes a stateful or entity bean within a transaction,
the bean will never be passivated while it is participating in the transaction. If the
client invocation is nontransactional, the bean may be passivated at the end of the
method invocation.

For concurrency control, the WebLogic Enterprise system applies the following rules

m For entity beans, for a given primary key, there is only one active instance of the
bean at one time. This constraint is compatible with the activation policy
provided by the WebLogic Enterprise TP Framework.

m Although the client application can issue concurrent invocations on a bean, the
WebLogic Enterprise EJB container queues concurrent invocations on a bean so
those invocations are performed one at a time. The WebLogic Enterprise system
enforces this rule by running each active object on its own thread. This rule is
mandated by the EJB Specification 1.1. Also, note that the EJB Specification
discourages the direct use of threads by EJB programmers.

Note: If a passivated stateful bean is not removed due to application or system errors
its passivated state takes up disk space in the location specified by the
<persistence-store-directory-root> element. This passivated state
remains on disk until the temporary files containing that state are deleted by
the System Administrator. These files can be identified by the syntax of their
names, which include the following information:

m The server name, which includes the server group hame and the group
ID

m The server generation ID
m The bean name

m A string of several digits

Getting Started

Designing EJB Applications for the WebLogic Enterprise System

The server name and bean name components of the filename are the most
readily identifiable. To manage the number of unused bean state files that can
potentially accumulate over time, System Administrators may choose to create
scripts that delete those files whenever the WebLogic Enterprise system is
started or shut down.

Controlling the Passivation of Beans -- the EJB Cache

In WebLogic Enterprise 5.0, the EJB container cached stateful beans only for the
duration of a transaction. If such beans were notinvolved in a transaction, the container
passivated them after each method invocation on the bean.

In versions of WebLogic Enterprise after 5.0, the EJB container has the ability to cache
beans across method invocations as well as across transactions. This significantly
reduces the frequency of beans being passivated, thereby providing the performance
improvement. EJB caching is enabled by default for stateful beans.

When Stateful Beans Are Passivated

A cached stateful bean is normally only stored (passivated) if it is unused for a period
of time. You can configure an optional cache flush time, if desired. A bean may be
considered unused if other beans are being used more frequently and the bean is the
least recently used bean. The bean may also be passivated if the cache flush time
occurs and the bean is not presently active within a method call or a transaction.

Passivation After Creation

In the WebLogic Enterprise system, the EJB container still passivates stateful beans
immediately after thejbCreate method is called. This behavior may change in
future releases, however.

How to Set Up EJB Caching

EJB caching is enabled by default for stateful session beans and entity beans inthe EJB
container of theWebLogic Enterprise system, and can be set up using the following
mechanisms:

m Via the WebLogic EJB extensions to the deployment descriptor DTD. Using this
mechanism allows you to disable caching for individual beans.

Getting Started 8-9

8 Designing Enterprise JavaBeans for the WebLogic Enterprise System

m Specifying the JavaServer paramet@rs<EJBCACHBENAEJBCACHE_FLUSHIN
which you can establish two settings for bean caching:

¢ Maximum number of beans that can be cached at any one time

e Atime interval specifying when the bean cache is to be flushed by the
system

For more information about setting up the bean cache, see the section “Starting
JavaServer” in the topiCreating a Configuration File For information about scaling
and tuning the bean cache, seealing, Distributing, and Tuning Applications

EJBs as Client Applications

A bean may invoke the methods of another bean. When a bean behaves as a client

application, the client rules still apply: the bean must obtain the reference to the othel
bean from that bean’s home interface (factory), and references to the home interface
must be obtained using JNDI.

The main differences with the client environment are the following:

When the bean creates thtialContext object, there is no authentication or
connection setup because WebLogic Enterprise Java servers run within the
trusted server base.

The WebLogic Enterprise EJB container does not support reentrancy, and rejects
loopback calls (a bean calling another bean that then calls the first bean) by
throwing an exceptiorigva.rmi.RemoteException) to the client application.

Note: The WebLogic Enterprise EJB container does not propagate the security anc

transaction context on callbacks to a J2EE client.

Security, Transactions, and JDBC Connections

8-10

For additional EJB design considerations, see the following in the WebLogic

Enterprise online documentation:
m Using Security
m Using Transactios

m Using the JDBC Drivers

Getting Started

EJBs and Persistence

EJBs and Persistence

This section provides a general discussion about EJBs and persistence, and shows
sample fragments of EJB implementation code and deploymentdescriptors to illustrate
the following:

m Container-managed Entity Beans
m Bean-managed Entity Beans

m Stateful Session Beans

m Stateless Session Beans

The topics described in this section use code from the EJB sample applications that are
installed with the WebLogic Enterprise software.

Note: The code fragments shown in this section are taken from the EJB samples
provided with the WebLogic Enterprise software. These samples include
tracing code, which is turned on by theRBOSHlag, that helps show what is
happening when the samples are executed. These tracing statements are not
required by the EJB Specification 1.1; they are present for instructional
purposes only.

Development Considerations for EJBs and Persistence

Persistence refers to a bean’s state information, which may be contained in durable
storage when the bean is not active. When the bean is activated, this state is read in
from durable storage. As a Bean Provider, you basically have two choices for what
kind of broad mechanism you want to use for handling a bean’s persistence: either
directly in the bean’s logic, or by delegating to the EJB container the tasks of handling
the bean’s persistence.

A bean that delegates to the container all the logic for handling its persistent data has
what is referred to asontainer-managed persistenceA bean that contains its own

logic for handling its persistence data has what is referred beas-managed
persistence The choice you make for a bean must be specified in the bean’s
deployment descriptor.

Getting Started 8-11

8 Designing Enterprise JavaBeans for the WebLogic Enterprise System

Container-managed Entity Beans

If your entity bean uses container-managed persistence, you need to do the followin

m Inthe bean’s standard deployment descriptor, define the elements described in
the section “Required Deployment Descriptor Elements for Container-managed
Beans” on page 8-12.

m In the bean’s implementation, declare as public the class variables whose
persistence is container-managed, as shown in the code fragment in the section
“Declaring Container-managed Fields as Public Variables” on page 8-13.

Note: The EJB Specification 1.1 requires that class variables whose persistence
is container-managed have public access.

The subsections that follow also provide code fragments that show the use of the
ejpCreate , ejbStore , andejbRemove methods in such beans.

Required Deployment Descriptor Elements for Container-managed Beans

The required deployment descriptor elements for container-managed beans are liste
and described in Table 8-3.

Table 8-3 Required Deployment Descriptor Elements for Container-managed

Beans

Deployment Descriptor Description

Element

cmp-fields This element specifies the container-managed fields.
This is a standard property that lists the public
nontransient instance variables that the EJB expects
will be made automatically persistent. Even if there are
no managed fields, the bean's object reference and the
primary key are remembered by the EJB container.

persistence-type If the EJB is an entity bean, this element declares

whether the persistence management is performed by
the container or by the bean. For container-managed
persistence, this element should specifyptainer

8-12 Getting Started

EJBs and Persistence

Table 8-3 Required Deployment Descriptor Elements for Container-managed
Beans (Continued)

Deployment Descriptor Description
Element
persistence-store-jdbc This element specifies that the type of persistent store is

jdbc . (Note that in WebLogic Enterprise, file-based
persistence for entity beans is not supported.)

primary-key-class The deployment descriptor for any entity bean must set
this element, which identifies the primary key class for
the bean.

Declaring Container-managed Fields as Public Variables

The following code fragment shows a container-managed EJB declaring its

container-managed fields as public class variables. These variables need to be public
so that the container can manage them.

/I public container managed variables

public String accountld; // also the primary Key
public double balance;
public String type; // "Checking"

The ejbCreate Method

A container-managed entity bean needs to implemengjtt@eate method. Note

that theaccountld andinitialBalance parameters in this method are managed by
the container. The following code fragment shows a container-managed bean setting
the values of the public class variables shown in the code fragment in the section
“Declaring Container-managed Fields as Public Variables” on page 8-13.

public void ejbCreate(String accountld, double initialBalance,

String type) {
if (VERBOSE)

System.out.printin("ejpCreate(id = " + id() +
", initial balance = $" + initialBalance +

", type: " + type + 7))
this.accountld = accountld;

this.balance = initialBalance;
this.type = type;

Getting Started 8-13

8 Designing Enterprise JavaBeans for the WebLogic Enterprise System

The ejbStore Method

The EJB Specification 1.1 states that implementingefhstore method in a
container-managed entity bean is required, even if the method does not provide any
specific functionality. One advantage to having this method in your
container-managed bean is to provide a tracing capability for debugging purposes, a
in the following example:

public void ejbStore() {
if (VERBOSE)
System.out.printin("ejbStore (* + id() + ")");

The ejbRemove Method

As with theejbStore method in the preceding section, tjpRemove method is not
a functional component of a container-managed bean implementation; however, the
EJB Specification 1.1 requires this method to be present, as in the following example

public void ejbRemove() throws RemoveException {
if (VERBOSE)
System.out.printin("ejpRemove (" + id() + ")");

Bean-managed Entity Beans

8-14

If you are implementing a bean with bean-managed persistence, you need to do the
following:

m Declare the bean’s persistence type in the persistence-type element in the
standard deployment descriptor.

m Implement code in the bean that accesses the JDBC connection pool.

m Implement theejbCreate andejbStore methods to create a database entity
that contains the bean’s persistent data, and store that data.

The code fragments provided in this section illustrate performing these tasks, as wel
as using thesjpRemove method to remove a bean’s persistent data from a database.

Getting Started

EJBs and Persistence

Accessing the JDBC Pool

The following code example shows a bean-managed entity bean using static
initialization to establish access to the JDBC pool, which is defined in the EJB
application’sUBBCONFIdile:

static {

try{
Context ctx = new InitialContext();
pool = (DataSource)ctx.lookup(“jdbc/pooll");
} catch(Exception e) {
System.out.printin("problem with datasource.");
}

}

The ejbCreate Method
Abean-managed entity bean usesdjp€reate method to create the bean and update

the table in the database that contains the entity bean’s value. Listing 8-1 shows
creating a row in the table in that database, using a JBDC connection from the pool.

Listing 8-1 Entity Bean Creating a Row in a Database

public AccountPK ejbCreate(String account_id, double initial_balance)
throws CreateException,

if (VERBOSE) {

System.out.printin("AccountBean.ejbCreate(id = " +
System.identityHashCode(this) + ", PK = " +
account_id + ", " + "initial balance = $ " +

initial_balance + ")");
}
Accountld = account _id;
Balance = initial_balance;

Connection connection = null;
PreparedStatement prep_stmt = null;

try {
connection = pool.getConnection();
prep_stmt = connection.prepareStatement(“insert into ejbAccounts "+
"(id, bal) values (?, ?)");
prep_stmt.setString(1, Accountld);

Getting Started 8-15

8 Designing Enterprise JavaBeans for the WebLogic Enterprise System

prep_stmt.setDouble(2, Balance);
if (prep_stmt.executeUpdate() != 1) {
throw new CreateException ("JDBC did not create any row");
}
AccountPK primary_key = new AccountPK();
primary_key.Accountld = Accountld;
return primary_key;
} catch (CreateException ce) {
throw ce;
} catch (SQLException sge) {
throw new CreateException (sge.getMessage());
} finally {
try {
prep_stmt.close();
connection.close();
} catch (Exception e) {

}
} /I end of finally
} /I end of ejbCreate(..)
Updating the Database

The following code fragment shows updating the database with the values. Since thi
bean uses bean-managed persistence, updating the database is done manually.
Whereas the code in the previous example created the database rows, the code in
Listing 8-2 specifies the values in those rows.

Listing 8-2 Entity Bean Updating the Database

ejbStore()
public void ejbStore() throws EJBException {

if (VERBOSE) {
System.out.printin("ejbStore (" + id() + ")");
}

Connection connection = null;
PreparedStatement prep_stmt = null;

try {
connection = pool.getConnection();
prep_stmt = connection.prepareStatement("update ejbAccounts set bal = "+

"? where id = ?");
prep_stmt.setDouble(1, Balance);
prep_stmt.setString(2, Accountld);
int i = prep_stmt.executeUpdate();
if i ==0){

8-16 Getting Started

EJBs and Persistence

throw new RemoteException ("ejbStore: AccountBean (* + Accountld +
") not updated");

} catch (RemoteException re) {
throw re;
} catch (SQLException sge) {
throw new EJBException (sge.getMessage());
} finally {
try {
prep_stmt.close();
connection.close();
} catch (Exception e) {
throw new EJBException (e.getMessage());

}
} /I end of finally
} /Il end of ejbStore()

Removing Values From the Database

Listing 8-3 shows using thgbRemove method to remove rows from the database that
were created and set in the preceding code examples.

Listing 8-3 Removing Values From a Database

public void ejbRemove()
throws RemoveException,
{

if (VERBOSE) {
System.out.printin(“ejpRemove (" + id() + ")");
}
/I we need to get the primary key from the context because
/I it is possible to do a remove right after a find, and
/I ejbLoad may not have been called.

Connection connection = null;
PreparedStatement prep_stmt = null;
try {
connection = getConnection();
AccountPK pk = (AccountPK) ctx.getPrimaryKey();
prep_stmt = connection.prepareStatement("delete from ejbAccounts where "+

"id = ?");
prep_stmt.setString(1, pk.Accountlid);
int i = prep_stmt.executeUpdate();
if (i ==20){

throw new EJBException ("AccountBean ("

Getting Started 8-17

8 Designing Enterprise JavaBeans for the WebLogic Enterprise System

+ pk.Accountld + " not found");

} catch (RemoteException re) {
throw re;
} catch (SQLException sge) {
throw new RemoteException (sqe.getMessage());

} finally {
try {

prep_stmt.close();
connection.close();
} catch (Exception e) {
throw new EJBException (e.getMessage());

}
} /I end of finally
} /I end of ejbRemove()

Stateful Session Beans

This section shows the following examples of stateful session beans:
m Required standard deployment descriptor elements

m Code fragments showing two stateful session beans: one in which the client
keeps track of the bean’s state, and one in which the bean keeps track of its state

The code examples shown here are from the EJB Samples directory, which is availabl
with the WebLogic Enterprise software.

Example Deployment Descriptor

8-18

A deployment descriptor for a stateful session bean can optionally define the
persistentDirectoryRoot element. The default file is

/pstore/ bean_name.dat , where the directorgstore represents the directory from
which the WebLogic Enterprise application was started, fagzth_name is the fully
qualified name of the EJB with underscore$ (eplacing the periods | in the name.

If the persistentStoreType element is defined gdbc , the container looks for
additional values to determine the appropriate values for the JDBC connection. Note
that if the bean’s persistence is stored in a database via a JDBC connection, the Syste
Administrator needs to add this information to thBBCONFIdile as well. For more
information, sedJsing the JDBC Driverén the WebLogic Enterprise online
documentation.

Getting Started

EJBs and Persistence

The following deployment descriptor fragment shows the location of the persistent
store for a stateful session bean:

<persistence-store-descriptor>
<persistence-store-file>
<persistence-store-directory-root>
c:\mystore
</persistence-store-directory-root>
</persistence-store-file>
</persistence-store-descriptor>

Client Application Maintaining a Bean’s State Information

The following code example shows an EJB client application keeping track of a bean’s
state information. In stateful session beans, you need to provide a one-to-one mapping
between the client and the bean in the server, represented by a key. This key provides
the map between the bean’s instance and the client, because the bean instance cannot
be shared with other clients.

Listing 8-4 shows the client application code creating the stateful session bean using
the primary class key.

Listing 8-4 Client Application Using the Primary Class Key

/I Give this trader a name
Trader trader = brokerage.create("Terry");
System.out.printin("Creating trader " + trader.getTraderName() + "\n");

String stockName;
int numberOfShares;

for (int i =1 ;i <=5; i++) {
System.out.printin("Start of Transaction " + i + " for " + customerName);

/I Buying

stockName = "WEBL";

numberOfShares = 100 * i;

System.out.printin("Buying " + numberOfShares + " of " + stockName);

TradeResult tr = trader.buy(customerName, stockName, numberOfShares);

System.out.printin("...Bought " + tr.numberTraded + " at $" +
tr.priceSoldAt);

/I Selling

stockName = "INTL";

numberOfShares = 100 * (i+1);

Getting Started 8-19

8 Designing Enterprise JavaBeans for the WebLogic Enterprise System

System.out.printin("Selling " + numberOfShares + " of " + stockName);

tr = trader.sell(customerName, stockName, numberOfShares);

System.out.printin("...Sold " + tr.numberTraded + " at $" +
tr.priceSoldAt);

/I Get change in Cash Account from EJBean
System.out.printin("Change in Cash Account: $" + trader.getBalance());

System.out.printin(‘End of Transaction " + i + "\n");

}

System.out.printin("Change in Cash Account: $" + trader.getBalance() + "\n");
System.out.printin("Removing trader " + trader.getTraderName());
trader.remove();

catch (ProcessingErrorException pe) {

System.out.printin("Processing Error: " + pe);
pe.printStackTrace();

}

catch (Exception e) {
System.out.printin(":::::: Error s,
e.printStackTrace();

}

Bean Keeping Track of Its Own State

Listing 8-5 shows a stateful session bean keeping track of its state, and its mapping t
a specific client. For example, the balance is kept on the EJB rather than on the clien

Listing 8-5 EJB State Management

/I The reason the following attribute is public is to test

/I passivation into a persistent store, because the deployment descriptor
/I says it should be a stateful session bean.

/I This and the ejbCreate method in this file are the differences

/I between the examples in the stateful and stateless directories.

public String traderName;
public double tradingBalance;
1l

public TradeResult buy(String customerName, String stockSymbol,
int shares)

8-20 Getting Started

EJBs and Persistence

throws ProcessingErrorException

if (VERBOSE && shares >= 0) {
System.out.printin("buy (* + customerName + ", " +
stockSymbol + ", " +
shares + ")");

}
try {
int tradeLimit = getTradeLimit();
if (shares > tradeLimit) /I limit for buying
shares = tradeLimit;
else if (shares < -tradeLimit) // limit for selling
shares = -tradeLimit;

double price = getStockPrice(stockSymbol);
tradingBalance = tradingBalance - (shares * price); // subtract purchases
from cash account
if (shares < 0)
shares = -shares;
return new TradeResult(shares, price);

catch (Exception e) {
throw new ProcessingErrorException("Trader error: " + e);
}

}

Stateless Session Beans

This section provides the following two code examples:
m An EJB client application keeping track of a stateless session bean’s state

m A stateless bean that keeps track of its own state data

Client Maintaining Bean’s State
Listing 8-6 shows a client application keeping track of thehBalance variable,

which is manipulated by the stateless bean. This example also shows the client
invoking theejbCreate method without any arguments and without any specific data.

Getting Started 8-21

8 Designing Enterprise JavaBeans for the WebLogic Enterprise System

Listing 8-6 Client State Management

try {
String customerName = "Erin"; // Default name for the customer
Context ctx = null; /I To hold JNDI context
Object objref = null; /I to hold object reference
String stockName = null; // Name of a stock
int numberOfShares = 0; /I No. of shares to trade
double cashBalance = 0.0; /I To hold balance between sessions
TraderHome brokerage = null; /I To hold home interface
Trader trader = null; /I To hold trader object
TradeResult tradeResult = null; /I To hold results from a trade

/I Create a new initial context based on the url, user, and password
ctx = newlnitialContext();

if (ctx == null){
System.out.printin("Initial context is null");
exit(-1);

}

/I do a JNDI lookup for the EJB;defined in the deployment descriptor
objref = ctx.lookup("statelessSession.TraderHome");

printTrace("Looked up home:");

/* Create a trader object, who'll later help us execute trades
* The lookup has resulted in an Object. We know
* this object is actually a reference of type TraderHome,
* so the reference is narrowed and cast to that type:
*
brokerage = (TraderHome) PortableRemoteObject.narrow(objref,
TraderHome.class);
printTrace("Narrowed home.");

/* Create the EJB on the WLE server.

* Unlike the statefulSession example,we don't give this trader a key
*

printTrace("Creating trader.");

trader = brokerage.create();

/* Unlike the statefulSession example,

* we have to keep track of the balance over the
* life of our use of the session bean

*/

for (int i = 1 ; i <= maxTransaction; i++) {
System.out.printin("Start of Transaction " + i + " for " +

8-22 Getting Started

EJBs and Persistence

customerName);

/* Buying

* Stock symbol must be found in the deployment descriptor's environment
* properties section. TraderBean EJB will check the validity of the

* symbol, and its price using JNDI lookup on the environment

* properties.

*/

stockName = "BEAS"
numberOfShares = 100 * i;
System.out.printin("Buying " + numberOfShares + " of " + stockName);

/I buy() is executed on the TraderBean EJB in the WLE Server

tradeResult = trader.buy(customerName, stockName, numberOfShares);

System.out.printin("...Bought " + tradeResult.numberTraded + " at $" +
tradeResult.priceSoldAt);

/I Keep track of the change in the Cash Account
cashBalance = cashBalance - (tradeResult.numberTraded *
tradeResult.priceSoldAt);

/I Selling

stockName = "INTL";

numberOfShares = 100 * (i+1);

System.out.printin("Selling " + numberOfShares + " of " + stockName);

/I sell() is executed on the TraderBean EJB in the WLE Server

tradeResult = trader.sell(customerName, stockName, numberOfShares);

System.out.printin("...Sold " + tradeResult.numberTraded + " at $" +
tradeResult.priceSoldAt);

/I Keep track of the change in the Cash Account
cashBalance = cashBalance + (tradeResult.numberTraded *
tradeResult.priceSoldAt);

/I Print change in Cash Account
System.out.printin("Change in Cash Account: $" + cashBalance);
System.out.printin("End of Transaction " + i + "\n");
}
System.out.printin("Change in Cash Account: $" + cashBalance + "\n");
System.out.printin("Removing trader");

/I Remove TraderBean EJB from the WLE server.
trader.remove();

catch (ProcessingErrorException pe) {
System.out.printin("Processing Error:
pe.printStackTrace();

+ pe);

Getting Started 8-23

8 Designing Enterprise JavaBeans for the WebLogic Enterprise System

}

catch (Exception e) {
System.out.printin(":::::i: Error s,
e.printStackTrace();

}

Stateless Bean Tracking Its Own State

Listing 8-7 shows a business method from ThaderBean example, available in the
EJB Samples directory provided with the WebLogic Enterprise software. In this
example, the bean does not preserve any state. The begmsethod performs simple
calculations on data provided by the client application.

Listing 8-7 Stateless Bean State Management

getStockPrice() and getTradeLimit() methods use DD environment properties to
access constant values using JNDI lookup() - prevents hardcoding data.

public TradeResult buy(String customerName, String stockSymbol,

int shares)

throws ProcessingErrorException

{
if (shares >= 0) {
printTrace("buy (* + customerName + ", " +

stockSymbol + ", " +
shares + ")");

}

try {

int tradeLimit = getTradeLimit();

if (shares > tradeLimit)
shares = tradeLimit;

else if (shares < -tradeLimit) // limit for selling
shares = -tradeLimit;

double price = getStockPrice(stockSymbol);
printTrace("Executing buy...");
if (shares < 0)
shares = -shares;
return new TradeResult(shares, price);

catch (Exception e) {
throw new ProcessingErrorException("Trader error: " + e);

}
}

8-24 Getting Started

Index

A

activation 8-7

activation policies
defining in Implementation

Configuration file 4-16

defining in Server Description file 4-16
Simpapp sample application 4-16
Simple interface 4-17
supported 4-16

ActiveX application builder
description 2-6

AdminAPI
description 2-5

administration commands
tmadmin command 2-4
tmboot command 2-4
tmconfig command 2-4
tmloadcf command 2-4
tmshutdown command 2-4
tmunloadcf command 2-4

Administration console
description 2-4

administration tools
AdminAPI 2-5
administration commands 2-4
Administration console 2-4

app 4-26

Application Assembler 3-5

Authenticates 2-18

authentication
client application 2-18

levels 5-2

bean-managed persistence 3-5
beans
See EJBs
Bootstrap object
description 2-11
illustrated 2-11
Simpapp sample application 4-21
building
C++ client applications 4-30
buildobjclient command 2-3
C++ server applications
buildobjserver command 2-3
genicf command 2-3
Java client applications 4-30
Java server applications
buildjavaserver command 2-3
buildjavaserver command
building Java server applications 2-3
description 2-3
format 4-29
in the Simpapp sample application 4-29
buildobjclient command
building C++ client applications 2-3
description 2-3
format 4-30
in the Simpapp sample application 4-30
buildobjserver command

Getting Started -1

building C++ server applications 2-3
description 2-3

format 4-29

in the Simpapp sample application 4-29

buildXAJS command

C

building an XA resource manager 2-3
description 2-3

client 4-30
client applications

authenticating into the WLE domain 2-
18

EJB 8-2

initialization process 2-18

invoking objects 2-21

using transactions 6-4

writing
Security sample application 6-11
Simpapp sample application 4-21
Transactions sample application 6-

11

client stubs

generating 4-6
in Simpapp sample application 4-6

code example

-2

C++ client application for Simpapp
sample application 4-22

C++ implementation of the Simple
interface 4-9

C++ Server object 4-12

C++ server object that supports
transactions 6-13

configuration file for Simpapp sample
application 4-26

Java client application for the Simpapp
sample application 4-23

Java implementation of SimpleFactory
interface 4-11

Java implementation of the Simple

Getting Started

Interface 4-10
Java Server object 4-14
OMG IDL for Simpapp sample
application 4-6
OMG IDL for Transactions sample
application 6-8
security in C++ client applications 5-7
security in Java client applications 5-8
transactions in C++ client application 6-
12
UBBCONFIG file for Transactions
sample application 6-15
compiling
C++ client applications 4-30
C++ server applications 4-29
Java client applications 4-30
Java server applications 4-29
container-managed persistence 3-5
CORBAservices Object Transaction Service
using in WLE applications 6-2
create_servant method 2-19
customer support contact information ix

D
Deployer 3-5
deployment, dynamic
See hot redeployment
development commands
buildjavaserver 2-3
buildobjclient command 2-3
buildobjserver command 2-3
buildXAJS command 2-3
genicf command 2-3
idI2ir command 2-3
ir2idl command 2-3
irdel command 2-3
development process
activation policies 4-16
client applications
Security sample application 5-7

Simpapp sample application 4-21
Transactions sample application 6-
11
defining object activation policies 4-16
illustrated 4-3
Implementation Configuration file 4-16
OMG IDL
Simpapp sample application 4-5

Transactions sample application 6-8

Security sample application 5-6
server applications
Simpapp sample application 4-8
Transactions sample application 6-
13
Server Description file 4-16
Simpapp sample application 4-4
steps for creating WLE applications 4-2
Transactions sample application 6-7
WLE applications 4-2
writing a configuration file 4-25
writing server application code 4-8
writing the client application code 4-21
writing the OMG IDL 4-5
documentation, where to find it viii
dynamic deployment
See hot redeployment

E

ejbCreate method 8-5
ejbPostCreate method 8-5
ejbRemove method 8-5
EJBs
and persistence 3-5
as clients 8-10
Container Provider 3-5
Deployer 3-5
design considerations 8-5
designing for client applications 8-2
entity 3-3, 8-6
initializing in server 8-7

provider 3-5

Server Provider 3-5

session 8-6

stateful session 3-3

stateless session 3-3
Enterprise Bean Provider 3-5
Enterprise JavaBeans

see EJBs
entity beans 3-3, 8-6
EntityBean interface 8-5
environmental objects

and client initialization 2-18

description 2-8

F

factories
finding 2-19
registering 2-19
FactoryFinder object
description 2-8
example use of 2-19

G

genicf command
creating a ICF file 2-3
description 2-3

H
Home interface 8-2
host
port 8-2
hot redeployment 7-37
and the module initializer object 7-13

IDL
See Interface Definition Language 2-2
idl command 2-2

Getting Started -3

description 2-2
files created by 4-7
generating client stubs 4-7
generating skeletons 4-7
IDL compiler
idl command 2-2
ma3idltojava command 2-2
supported 2-2
idI2ir command
description 2-3
idltojava compiler
differences from Sun version 2-2
[IOP Listener/Handler
description 2-12
Implementation Configuration file
defining activation policies 4-16
defining transaction policies 6-10
initialize method
on Server object 8-7
summary 2-16, 2-17
initializing EJB applications 8-7
Interface Repository
creating 2-3
deleting objects from 2-3
displaying the contents 2-3
idI2ir command 2-3
ir2idl command 2-3
irdel command 2-3
loading interface definitions into 2-3
InterfaceRepository object
description 2-9
interfaces
writing methods to implement
operations 4-9
ir2idl command
description 2-3
irdel command
description 2-3

-4 Getting Started

J

Java client applications
required files 4-30
Java Transaction Service
using in WLE applications 6-2

K

key
primary 3-3

M

m3idltojava command 2-2
description 2-2
files created by 4-8
generating client stubs 4-7
generating skeletons 4-7
Management Information Base
see MIB 1-5
managing
WLE applications
tmadmin command 2-4
tmboot command 2-4
tmconfig command 2-4
tmloadcf command 2-4
tmshutdown command 2-4
tmunloadcf command 2-4
method implementations
C++4-9
Java 4-10
writing 4-9
MIB
for WLE applications 1-5

0

object handle 8-2

Object Life Cycle service
description 2-8

object request broker

see ORB 2-13
object services
Interface Repository 2-9
Obiject Life Cycle service 2-8
Security service 2-8
Transaction service 2-8
objects
invoking 2-21
OMG IDL
compiling 4-6
generating client stubs 4-6
generating skeletons 4-6
Simple interface 4-5, 4-6
SimpleFactory interface 4-5, 4-6
Transactions sample application 6-8
ORB
description 2-13
illustrated 2-13

P

passivation 8-7
persistence
bean-managed 3-5
container-managed 3-5
POA
description 2-14
interaction with TP Framework 2-14
Portable Object Adapter
see POA 2-14
primary key 3-3
PrincipalAuthenticator object
using in client applications 5-4
printing product documentation ix
programming tools 2-2

R

register_factory method
example of 2-19
related information ix

release method

on Server object 8-7
Remote interface 8-2
RemoteException exception 8-10
resolve_initial_references method 2-18

S

security authentication 8-2
security credentials 8-2
security principal 8-2
Security sample application
defining security level 5-6
description 5-4
development process 5-6
illustrated 5-4
location of files 5-5
PrincipalAuthenticator object 5-4
SecurityCurrent object 5-4
using the PrincipalAuthenticator object
5-7
using the SecurityCurrent object 5-7
writing the client application 5-7
Security service
description 2-8
functional description 5-2
SecurityCurrent object
description 2-8
using in client applications 5-4
server applications
defining object activation policies 4-16
Implementation Configuration file 4-16
Server Description file 4-16
writing
Simpapp sample application 4-8
Transactions sample application 6-
13
writing method implementations 4-9
writing the Server object 4-12
Server Description file
defining activation policies 4-16

Getting Started I-5

defining transaction policies 6-11
Server object 6-13, 8-7
description 2-16
Transactions sample application 6-13
writing 4-12
session beans 3-3, 8-6
SessionBean interface 8-5
SessionSynchronization interface 8-5
Simpapp sample application
compiling
C++ client application 4-30
C++ server application 4-29
Java client application 4-30
compiling Java server application 4-29
configuration file 4-25, 7-29
description 4-4
file location 4-5
illustrated 4-4
interfaces defined for 4-5
OMG IDL 4-5
using the Bootstrap object 4-21
using the buildjavaserver command 4-29
using the buildobjserver command 4-29
writing the client application code 4-21
Simple interface
activation policy 4-17
OMG IDL 4-5
Simple Network Management Protocol
see SNMP 1-5
SimpleFactory interface
OMG IDL 4-5
skeletons
generating 4-6
in Simpapp sample application 4-6
SNMP
in the WLE product 1-5
stateful 8-6
stateful session beans 3-3
stateless 8-6
stateless session beans 3-3
support

-6 Getting Started

technical x
supporting databases 6-13
System Administrator 3-5

T

T_MODULE TMIB class 7-37
TLOGDEVICE parameter 6-15
tmadmin command
description 2-4
tmboot command
description 2-4
tmconfig command
description 2-4
tmloadcf command
creating a configuraiton file 4-28, 7-33
description 2-4
tmshutdown command
description 2-4
tmunloadcf command
description 2-4
Tobj_Bootstrap 2-18
TP Framework
description 2-14
illustrated 2-15
transaction policies
defined 6-10
Transaction server application
writing the server application 6-13
Transaction service
description 2-8, 6-1
features 6-2
TransactionCurrent object
description 2-8
transactions
functional overview 6-3
illustrated 6-3
in client applications 6-4
OMG IDL 6-4
Transactions sample application
description 6-4

file location 6-7

illustrated 6-5

OMG IDL 6-8

starting server application 6-13

transaction policies 6-11

UBBCONFIG file 6-14

writing client applications 6-11

writing server applications 6-13
Transactions sample application

development process 6-7

TUXCONFIG file

description 4-28, 7-33

U

UBBCONFIG file
adding transactions 6-14
description 4-28, 7-33
sections in 4-25
setting the security level 5-6
user exceptions

Transactions sample application 6-5

UserTransaction object
description 2-8

w

WLE applications
defining security levels 5-6
how they work 2-16
managing
tmadmin command 2-4
tmboot command 2-4
tmconfig command 2-4
tmloadcf command 2-4
tmshutdown command 2-4
tmunloadcf command 2-4
using CORBAservices Object
Transaction Service 6-2
using Java Transaction Service 6-2
WLE components

IIOP Listener/Handler 2-12
illustrated 2-10

ORB 2-13

TP Framework 2-14

WLE domain

adding security to 5-4

WLE product

ActiveX application builder 2-6

administration tools 2-4

description of components 2-9

development commands 2-3

features 1-3, 1-4

how client and server applications work
2-16

IDL compilers 2-2

object services 2-8

programming tools 2-1

wle.dynamic 7-37

Getting Started -7

-8 Getting Started

	Copyright
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Overview of the WebLogic Enterprise Product
	Product Overview
	J-Engine Features
	T-Engine Features

	2 The WebLogic Enterprise CORBA Programming Environment
	Overview of the WebLogic Enterprise CORBA Programming Features
	IDL Compilers
	Development Commands
	Administration Tools
	ActiveX Application Builder

	WebLogic Enterprise CORBA Object Services
	WebLogic Enterprise Architectural Components
	Bootstrap Object
	IIOP Listener/Handler
	ORB
	TP Framework

	How WebLogic Enterprise CORBA Client and Server Applications Interact
	Step 1: The Server Application Is Initialized
	Step 2: The Client Application Is Initialized
	Step 3: The Client Application Authenticates Itself to the WebLogic Enterprise Domain
	Step 4: The Client Application Obtains a Reference to the Object Needed to Execute Its Business L...
	Step 5: The Client Application Invokes an Operation on the CORBA Object

	3 The WebLogic Enterprise JavaBeans (EJB) Programming Environment
	Overview of the WebLogic Enterprise EJB Programming Environment
	Types of Beans Supported in WebLogic Enterprise
	EJBs and Persistence
	Roles of People Who Develop, Build, Deploy, and Administer EJBs
	Items You Create for an EJB Application
	Tools and Facilities Provided for Building and Deploying EJBs
	EJBs and Failover in the WebLogic Enterprise Environment

	4 Developing WebLogic Enterprise CORBA Applications
	Overview of the Development Process for WebLogic Enterprise CORBA Applications
	The Simpapp Sample Application
	Step 1: Write the OMG IDL Code
	Step 2: Generate Client Stubs and Skeletons
	Step 3: Write the Server Application
	Writing the Methods That Implement Each Interface’s Operations
	Creating the Server Object
	Defining an Object’s Activation Policies
	Creating and Registering a Factory
	Releasing the Server Application

	Step 4: Write the Client Application
	Step 5: Create an XA Resource Manager
	Step 6: Create a Configuration File
	Step 7: Create the TUXCONFIG File
	Step 8: Compile the Server Application
	Step 9: Compile the Client Application
	Step 10: Start the WebLogic Enterprise CORBA Application
	Additional WebLogic Enterprise CORBA Sample Applications

	5 Using Security
	Overview of the Security Service
	How Security Works
	The Security Sample Application
	Development Steps
	Step 1: Define the Security Level in the Configuration File
	Step 2: Write the CORBA Client Application

	6 Using Transactions
	Overview of the Transaction Service
	What Happens During a Transaction
	Transactions Sample Application
	Development Steps
	Step 1: Write the OMG IDL Code
	Step 2: Define Transaction Policies for the Interfaces
	Step 3: Write the CORBA Client Application
	Step 4: Write the Server Application
	Step 5: Create a Configuration File

	7 Developing WebLogic Enterprise EJB Applications
	Overview of the Development Process for WebLogic Enterprise EJB Applications
	The statefulSession EJB Sample Application
	Developing EJB Applications
	Step 1: Create the EJB
	Step 2: Create the Module Initializer Object
	Step 3: Create the Deployment Descriptor
	Step 4: Create a Standard EJB JAR File

	Building and Deploying EJB Applications
	Step 5: Create the WebLogic EJB Extensions to the Deployment Descriptor DTD
	Step 6: Modify the Deployment Descriptor
	Step 7: Package the Components Into a Deployable EJB JAR File
	Step 8: Configure the EJB Application
	Step 9: Create the Client Application
	Step 10: Start and Run the WebLogic Enterprise EJB Application
	Step 11: Dynamically Manage the EJB Deployment (Hot Redeployment)

	WebLogic Enterprise EJB Sample Applications

	8 Designing Enterprise JavaBeans for the WebLogic Enterprise System
	Designing EJB Applications for the WebLogic Enterprise System
	The Client Application Programmer’s View
	The EJB Programmer’s View

	EJBs and Persistence
	Development Considerations for EJBs and Persistence
	Container-managed Entity Beans
	Bean-managed Entity Beans
	Stateful Session Beans
	Stateless Session Beans

