
Getting Started

W e b L o g i c E n t e r p r i s e 5 . 1
D o c u m e n t E d i t i o n 5 . 1

M a y 2 0 0 0

BEA WebLogic Enterprise

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, and WebLogic Enterprise
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Getting Started

Document Edition Part Number Date Software Version

5.1 861-001001-004 May 2000 BEA WebLogic Enterprise 5.1

. viii

... viii

... ix

.... ix

.... ix

......x

.. 1-1

... 1-3

... 1-4

2-1

. 2-2

.. 2-3

2-4

-6

. 2-8

. 2-9

2-11

2-12

2-13
Contents

About This Document
What You Need to Know ...

e-docs Web Site ..

How to Print the Document..

Related Information...

Contact Us! ..

Documentation Conventions ...

Part I. Overview of the WebLogic Enterprise Product and
Programming Environments

1. Overview of the WebLogic Enterprise Product
Product Overview..

J-Engine Features ...

T-Engine Features ..

2. The WebLogic Enterprise CORBA Programming Environment
Overview of the WebLogic Enterprise CORBA Programming Features

IDL Compilers...

Development Commands ...

Administration Tools..

ActiveX Application Builder ... 2

WebLogic Enterprise CORBA Object Services...

WebLogic Enterprise Architectural Components ..

Bootstrap Object...

IIOP Listener/Handler ..

ORB..
Getting Started iii

2-14

16

-17

18

2-18

-19

-21

3-2

.. 3-3

.... 3-5

3-5

. 3-9

-10

-11

. 4-2

.. 4-4

. 4-5

... 4-6

. 4-8

4-9

4-12

-16

4-17

4-19

-21
TP Framework ..

How WebLogic Enterprise CORBA Client and Server Applications Interact 2-

Step 1: The Server Application Is Initialized ...2

Step 2: The Client Application Is Initialized.. 2-

Step 3: The Client Application Authenticates Itself to the WebLogic
Enterprise Domain...

Step 4: The Client Application Obtains a Reference to the Object
Needed to Execute Its Business Logic .. 2

Step 5: The Client Application Invokes an Operation
on the CORBA Object... 2

3. The WebLogic Enterprise JavaBeans (EJB) Programming
Environment

Overview of the WebLogic Enterprise EJB Programming Environment

Types of Beans Supported in WebLogic Enterprise..

EJBs and Persistence ...

Roles of People Who Develop, Build, Deploy, and Administer EJBs..............

Items You Create for an EJB Application ..

Tools and Facilities Provided for Building and Deploying EJBs.................... 3

EJBs and Failover in the WebLogic Enterprise Environment......................... 3

Part II. Developing WebLogic Enterprise CORBA Applications

4. Developing WebLogic Enterprise CORBA Applications
Overview of the Development Process for WebLogic Enterprise CORBA

Applications...

The Simpapp Sample Application ...

Step 1: Write the OMG IDL Code..

Step 2: Generate Client Stubs and Skeletons..

Step 3: Write the Server Application..

Writing the Methods That Implement Each Interface’s Operations

Creating the Server Object ...

Defining an Object’s Activation Policies ... 4

Creating and Registering a Factory ..

Releasing the Server Application ...

Step 4: Write the Client Application ... 4
iv Getting Started

. 4-24

4-25

-28

4-29

-30

-30

31

. 5-1

. 5-2

. 5-4

... 5-6

-6

-7

. 6-1

.. 6-3

.. 6-4

... 6-7

6-8

-10

11

-13

6-14

. 7-3

.. 7-5

. 7-7

.. 7-8

-13
Step 5: Create an XA Resource Manager...

Step 6: Create a Configuration File ...

Step 7: Create the TUXCONFIG File ... 4

Step 8: Compile the Server Application..

Step 9: Compile the Client Application... 4

Step 10: Start the WebLogic Enterprise CORBA Application 4

Additional WebLogic Enterprise CORBA Sample Applications 4-

5. Using Security
Overview of the Security Service...

How Security Works ..

The Security Sample Application...

Development Steps...

Step 1: Define the Security Level in the Configuration File...................... 5

Step 2: Write the CORBA Client Application ... 5

6. Using Transactions
Overview of the Transaction Service ...

What Happens During a Transaction ..

Transactions Sample Application..

Development Steps...

Step 1: Write the OMG IDL Code ..

Step 2: Define Transaction Policies for the Interfaces 6

Step 3: Write the CORBA Client Application ... 6-

Step 4: Write the Server Application ... 6

Step 5: Create a Configuration File..

Part III. Developing WebLogic Enterprise EJB Applications

7. Developing WebLogic Enterprise EJB Applications
Overview of the Development Process for WebLogic Enterprise

EJB Applications...

The statefulSession EJB Sample Application ...

Developing EJB Applications ..

Step 1: Create the EJB..

Step 2: Create the Module Initializer Object.. 7
Getting Started v

7-14

7-19

-20

-21

-26

7-28

-29

-33

-36

-37

-39

8-2

8-2

. 8-5

.. 8-11

8-11

8-12

. 8-14

. 8-18

.. 8-21
Step 3: Create the Deployment Descriptor...

Step 4: Create a Standard EJB JAR File ..

Building and Deploying EJB Applications ... 7

Step 5: Create the WebLogic EJB Extensions
to the Deployment Descriptor DTD ..7

Step 6: Modify the Deployment Descriptor ... 7

Step 7: Package the Components Into a Deployable EJB JAR File.........

Step 8: Configure the EJB Application .. 7

Step 9: Create the Client Application...7

Step 10: Start and Run the WebLogic Enterprise EJB Application7

Step 11: Dynamically Manage the EJB Deployment
(Hot Redeployment) .. 7

WebLogic Enterprise EJB Sample Applications... 7

8. Designing Enterprise JavaBeans for the WebLogic Enterprise
System

Designing EJB Applications for the WebLogic Enterprise System

The Client Application Programmer’s View..

The EJB Programmer’s View..

EJBs and Persistence ...

Development Considerations for EJBs and Persistence...........................

Container-managed Entity Beans ...

Bean-managed Entity Beans..

Stateful Session Beans...

Stateless Session Beans ..

Index
vi Getting Started

and
rise

ct;
g

the
nline
About This Document

This document presents an overview of the BEA WebLogic Enterprise™ product
describes the development process for developing distributed CORBA and Enterp
JavaBeans (EJB) applications using the WebLogic Enterprise software.

This document does not discuss every feature of the WebLogic Enterprise produ
instead, it gives a general description of building a typical application or bean usin
the WebLogic Enterprise programming environment. To find information about all
WebLogic Enterprise features, see the home page of the WebLogic Enterprise o
documentation.

This document covers the following topics:

� Chapter 1, “Overview of the WebLogic Enterprise Product,” presents an
overview of the WebLogic Enterprise product.

� Chapter 2, “The WebLogic Enterprise CORBA Programming Environment,”
describes the CORBA programming environment available in the WebLogic
Enterprise product and the architectural components of the CORBA
programming environment.

� Chapter 3, “The WebLogic Enterprise JavaBeans (EJB) Programming
Environment,” describes the EJB programming environment available in the
WebLogic Enterprise product and the architectural components of the EJB
programming environment.

� Chapter 4, “Developing WebLogic Enterprise CORBA Applications,” explains
how to build a typical WebLogic Enterprise CORBA application, using the
Simpapp sample application as an example.

� Chapter 5, “Using Security,” describes how security is incorporated into a
WebLogic Enterprise CORBA application. The Security sample application is
used as an example.
Getting Started vii

ith

uct.

at
� Chapter 6, “Using Transactions,” describes how transactions are incorporated
into a WebLogic Enterprise CORBA application. The Transactions sample
application is used as an example.

� Chapter 7, “Developing WebLogic Enterprise EJB Applications,” explains how
to build a typical WebLogic Enterprise EJB application, using the
statefulSession EJB application, which is shipped with the WebLogic
Enterprise software, as an example.

� Chapter 8, “Designing Enterprise JavaBeans for the WebLogic Enterprise
System,” explains how to design a typical EJB application using the WebLogic
Enterprise programming environment.

What You Need to Know

This document is intended for programmers who want to familiarize themselves w
the WebLogic Enterprise programming environment and create either distributed
CORBA or Enterprise JavaBeans applications using the WebLogic Enterprise prod

e-docs Web Site

The BEA Weblogic Enterprise product documentation is available from the BEA
Systems, Inc. corporate Web site. From the BEA Home page, click the Product
Documentation button or go directly to the “e-docs” Product Documentation page
http://e-docs.bea.com.
viii Getting Started

How to Print the Document

ing

on
ent
rise
you

ee

g,

s.

ate

the
How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by us
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documentati
CD). You can open the PDF in Adobe Acrobat Reader and print the entire docum
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterp
documentation Home page, click the PDF Files button, and select the document
want to print.

If you do not have the Adobe Acrobat Reader installed, you can download it for fr
from the Adobe Web site athttp://www.adobe.com/.

Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA
Tuxedo®, distributed object computing, transaction processing, C++ programmin
and Java programming, see theBibliographyin the WebLogic Enterprise online
documentation.

Contact Us!

Your feedback on the BEA WebLogic Enterprise documentation is important to u
Send us e-mail atdocsupport@bea.comif you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and upd
the WebLogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for
BEA WebLogic Enterprise 5.1 release.
Getting Started ix

u

mer

ion:
If you have any questions about this version of BEA WebLogic Enterprise, or if yo
have problems installing and running BEA WebLogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORT atwww.bea.com. You can also
contact Customer Support by using the contact information provided on the Custo
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following informat

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.
x Getting Started

Documentation Conventions

d
s.

d.
monospace
text

Indicates code samples, commands and their options, data structures an
their members, data types, directories, and filenames and their extension
Monospace text also indicates text that you must enter from the keyboar

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Convention Item
Getting Started xi

n

.

... Indicates one of the following in a command line:

� That an argument can be repeated several times in a command line

� That the statement omits additional optional arguments

� That you can enter additional parameters, values, or other informatio

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line
The vertical ellipsis itself should never be typed.

Convention Item
xii Getting Started

)

Part I Overview of the
WebLogic
Enterprise
Product and
Programming
Environments
Chapter 1. Overview of the WebLogic Enterprise

Product

Chapter 2. The WebLogic Enterprise CORBA
Programming Environment

Chapter 3. The WebLogic Enterprise JavaBeans (EJB
Programming Environment

CHAPTER

nc.
a
a

c
ver
e
pid
1 Overview of the
WebLogic Enterprise
Product

This topic includes the following sections:

� Product Overview

� J-Engine Features

� T-Engine Features

Product Overview

The BEA WebLogic Enterprise product features the integration of BEA Systems I
industry-leading technologies — a high performance Java application server and
scalable back-end transaction platform. These technologies are now merged into
single product that gives you maximum choice and flexibility in building robust
e-commerce applications that extend from the Web to the enterprise.

The J-Engine in the WebLogic Enterprise product is built upon the BEA WebLogi
Server™ technology. The J-Engine offers an award-winning Java application ser
that incorporates the most comprehensive implementation of the Java 2 Enterpris
Edition (J2EE) standards. The application server provides the foundation for the ra
development of Web applications and the performance and reliability required for
mission-critical e-commerce sites.
Getting Started 1-1

1 Overview of the WebLogic Enterprise Product
The T-Engine in the WebLogic Enterprise product is built upon the proven
infrastructure provided in the BEA Tuxedo™ product. The T-Engine delivers a
scalable transaction platform with unparalleled choice of development and
deployment options. Using the T-Engine, you can build integrated enterprise
applications using multiple programming models. CORBA, J2EE, and Tuxedo
applications can all be developed with fully integrated transaction management,
security, administration, and reliability capabilities.

The connection pooling technology incorporated into the WebLogic Enterprise
product provides for scalable connectivity between the J-Engine and T-Engine
environments.

Figure 1-1 illustrates the WebLogic Enterprise product.

Figure 1-1 The WebLogic Enterprise Product

Comprehensive J2EE
support including:

� Java Server Pages
� Servlets
� EJBs

Multiple programming
models including:

� Tuxedo
� CORBA
� J2EE

J-Engine T-Engine

Connection Pooling

BEA WebLogic Enterprise

Web
Browsers

RMI
Clients

CORBA
Java

Clients

ActiveX
Clients

CORBA
C++

Clients

Tuxedo
Clients
1-2 Getting Started

J-Engine Features

es:

ver

an

d

n
rd

ve
ty
The following sections outline the features of the T-Engine and J-Engine in the
WebLogic Enterprise product.

J-Engine Features

The J-Engine in WebLogic Enterprise product provides the following set of featur

� A complete implementation of EJB, servlets, Java Server Pages (JSPs), Java
Message Service (JMS), Java Database Connectivity (JDBC), and the Java
Naming and Directory Interface (JNDI) as specified by the J2EE standard.

� Web page and component clustering of EJBs across multiple servers.

Web page clustering handles transparent replication, load-balancing, and failo
for presentation logic. Component clustering handles the complexities of
replication, load-balancing, and failover for EJBs.

� JSPs for easy development and deployment of dynamic Web content. JSPs c
be used with personalization, database access, and transaction EJBs to
development many kinds of high-performance Web applications.

� Remote Method Invocation (RMI). With RMI, an application can use distribute
objects as easily as local objects. RMI can be clustered across multiple
WebLogic Servers.

� JMS for applications requiring real-time information about changing applicatio
conditions. The JMS implementation in the J-Engine provides store and forwa
and point-to-point messaging with guaranteed delivery. JMS also provides a
publish/subscribe event management model.

� Multitiered JDBC which allows a Java application to access and update
databases from anywhere on the network. The J-Engine includes its own nati
JDBC drivers for leading database products and also works with any third-par
JDBC driver.

� Support for Wireless Markup Language (WML) and integration with leading
WAP servers for support of wireless clients.

� XML support for any XML-compliant browser.
Getting Started 1-3

1 Overview of the WebLogic Enterprise Product

and

ch
to

f

h
col,

ol

es:
� Interoperablity with Microsoft COM objects. Microsoft COM objects can be
integrated into the Weblogic Server environment, wrapped with a Java class,
transparently shared over the network.

� Access for Web browsers directly via HTTP request. Forwarding capabilities,
such as HTTP proxy support, enable dispatching to servers other than the
original Web server.

� Support for the Java Transaction application programming interface (API) whi
allows client or server applications to initiate transactions that are propagated
other servers.

� A Java management console for remotely monitoring and updating the state o
applications and clusters. SNMP support which allows use of any third-party,
SNMP-compliant management framework.

� A Zero Administration Client (ZAC) which supports that automatic distribution
of Java applets, applications, or systems. With ZAC, program libraries, even a
new WebLogic Server release, can be installed centrally by an administrator.

� Dynamic application partitioning and cluster membership.

� Support for Oracle, Informix, Sysbase, and MS SQL-server databases.

� Integration with Integrated Development Environments (IDEs) including IBM
VisualAge, Inprise Jbuilder, Microsoft Visual J++ or any Java 1.1 or higher
compliant IDE.

� Integrated security and firewall support. Network applications are secured wit
optional encryption, authentication, and authorization based on the SSL proto
X.509 digital certificates, and access control lists (ACLs).

� Management of IIOP connections that allows the restarting of a connection po
without affecting the availability of the Web environment.

T-Engine Features

The T-Engine in WebLogic Enterprise product provides the following set of featur

� A full suite of server-side components including:
1-4 Getting Started

T-Engine Features

s,

ns,

g.
� BEA Tuxedo

� A CORBA C++ ORB

� A CORBA Java ORB

� EJB container

� RMI support

One or more BEA Tuxedo, CORBA Java, CORBA C++, EJB, or RMI server
components can be deployed in a single WebLogic Enterprise application.

The WebLogic Enterprise product supports version 1.1 of the Sun Microsystem
Inc. Enterprise JavaBeans Specification.

� Rich clients options including:

� Tuxedo /workstation client

� A CORBA C++ ORB client

� A CORBA Java ORB client

� A WebLogic Enterprise RMI client

� An ActiveX client

� A proven runtime infrastructure for hosting e-commerce transaction applicatio
including client connection concentrators, high-performance message routing
and load balancing, high-availability features, and database connection poolin

� Full support for Tuxedo 6.x applications.

� EJB version 1.1 support for Enterprise Java Bean applications.

� A Transaction Processing (TP) Framework for object state and transaction
management in CORBA applications.

� Interoperability with IIOP-compliant ORBs such as the JDK 1.2 Java ORB.

� Access to databases from Java applications using two-phase commit via BEA
JDBC-XA drivers. Support for XA-compliant databases using Tuxedo or C++.
Drivers are provided for Oracle 8.0.5 and 8.1.5 databases.

� A Management Information Base (MIB) that defines the key management
attributes of WebLogic Enterprise applications. In addition, programming
interfaces and scripting capabilities are available to access the MIBs.
Getting Started 1-5

1 Overview of the WebLogic Enterprise Product

t

e

s
t.

f

o

e

e

� An Administration Console graphical user interface (GUI) for the managemen
of the WebLogic Enterprise environment.

� Hot deployment of EJBs through the Deployer GUI tool.

� The Java Naming and Directory Interface (JNDI) used by WebLogic Enterpris
client applications to find WebLogic Enterprise server-side EJB Home objects
and RMI objects.

� The CORBA and Java Transaction Services (OTS and JTS) to ensure the
integrity of your data even when transactions span multiple programming
models, databases, and applications.

� A security service that handles authentication for principals that need to acces
resources in a CORBA object or EJB in the WebLogic Enterprise environmen
Access control lists (ACLs) are also provided for EJBs in your WebLogic
Enterprise application.

� The Secure Sockets Layer (SSL) protocol to encrypt client to server
communication on the wire. SSL support includes IIOP connection pools
between the J-Engine and the T-Engine.

� Propagation of the security context from the J-Engine to the T-Engine through
IIOP connection pools.

� A Security Service Plug-In Interface (SPI) for CORBA that allows integration o
third-party security plug-ins.

� A Notification Service that receives event posting messages, filters them, and
distributes the messages to subscribers. The Notification Service provides tw
sets of interfaces: a CORBA-based interface and a simplified BEA-proprietary
interface.

� An implementation of the CosLifeCycle service.

� An implementation of CosNaming that allows WebLogic Enterprise CORBA
server applications to advertise object references using logical names.

� An interface repository that stores meta information about WebLogic Enterpris
CORBA objects. Meta information includes information about modules,
interfaces, operations, attributes, and exceptions.

� Dynamic Invocation Interface (DII) support. DII allows WebLogic Enterprise
CORBA client applications to dynamically create requests for objects that wer
not defined at compile time.
1-6 Getting Started

T-Engine Features

d
nd

r
e
is

e
gine
t

� Jolt for client-side access to BEA Tuxedo services. Jolt enables browser-base
clients (both Java applets and applications) to invoke BEA Tuxedo services a
process the results. Jolt is installed separately from the T-Engine.

� Java Enterprise Tuxedo (JET) application programming interface (API) for
server-side access to BEA Tuxedo services. The JET API enables Java serve
applications (CORBA Java, EJB, or RMI) running within a WebLogic Enterpris
domain to invoke BEA Tuxedo services and process the results. The JET API
automatically installed when you install the WebLogic Enterprise product.

The rest of thisGetting Startedmanual describes the programming environment of th
T-Engine and the development process for CORBA objects and EJBs in the T-En
environment. For a description of the programming environment and developmen
process for the J-Engine, see theOverviewstopic in the Weblogic Server portion of the
online documentation CD.
Getting Started 1-7

1 Overview of the WebLogic Enterprise Product
1-8 Getting Started

CHAPTER

ent
ing
2 The WebLogic
Enterprise CORBA
Programming
Environment

This topic includes the following sections:

� Overview of the WebLogic Enterprise CORBA Programming Features

� WebLogic Enterprise CORBA Object Services

� WebLogic Enterprise Architectural Components

� How WebLogic Enterprise CORBA Client and Server Applications Interact

Overview of the WebLogic Enterprise
CORBA Programming Features

The WebLogic Enterprise product offers a robust CORBA programming environm
that simplifies the development and management of distributed objects. The follow
topics describe the features of the programming environment:
Getting Started 2-1

2 The WebLogic Enterprise CORBA Programming Environment

t

n

f
ow.

r

� IDL Compilers

� Development Commands

� Administration Tools

� ActiveX Application Builder

IDL Compilers

The WebLogic Enterprise product comes with two IDL compilers that make objec
development easier:

� idl —compiles the OMG IDL file and generates client stub and server skeleto
files required for interface definitions being implemented in C++.

� idltojava —compiles IDL files to Java source code based on IDL-to-Java
mappings defined by the OMG. Theidltojava compiler provided with the
WebLogic Enterprise product includes several enhancements, extensions and
additions that are not present in the original Sun Microsystems, Inc. version o
the compiler. The WebLogic Enterprise specific revisions are summarized bel

� Differs from that described in the Sun Microsystems, Inc. documentation in
behavior and defaults of the flags.

� Includes a new #pragma tag:#pragma ID < name> <Repostitory_id>.

� Includes a new #pragma tag:#pragma version < name> <m.n>.

� Extends the#pragma prefix to work on inner scope. A blank prefix
reverts.

� Allows unions with boolean discriminators.

� Allow declarations nested inside complex types.

� m3idltojava —compiles the OMG IDL file and generates client stub and serve
skeleton files required for interface definitions being implemented in Java.

For a description of how to use the IDL compilers, see Chapter 4, “Developing
WebLogic Enterprise CORBA Applications.”
2-2 Getting Started

Overview of the WebLogic Enterprise CORBA Programming Features

ory.

r

o

For a description of theidl , idltojava , andm3idltojava commands, see
Commands, Server Processes, and MIB Referencein the WebLogic Enterprise online
documentation.

Development Commands

Table 2-1 lists the commands that the WebLogic Enterprise product provides for
developing CORBA application components and managing the Interface Reposit

For a description of how to use the development commands to develop client and
server applications, see Chapter 4, “Developing WebLogic Enterprise CORBA
Applications.”

For a description of the development commands, seeCommands, Server Processes,
and MIB Referencein the WebLogic Enterprise online documentation.

Table 2-1 WebLogic Enterprise CORBA Development Commands

Development
Command

Description

buildjavaserver Constructs a server application JAR file for a Java server
application.

buildobjclient Constructs a C++ client application.

buildobjserver Constructs a C++ server application.

buildXAJS Constructs an XA resource manager to be used with a Java serve
application group.

genicf Generates an Implementation Configuration File (ICF). The ICF file
defines activation and transaction policies for C++ server
applications.

id12ir Creates the Interface Repository and loads interface definitions int
it.

ir2idl Shows the content of the Interface Repository.

irdel Deletes the specified object from the Interface Repository.
Getting Started 2-3

2 The WebLogic Enterprise CORBA Programming Environment

ing
se
g

our

our
ons.

,

e

Administration Tools

The WebLogic Enterprise product provides a complete set of tools for administer
your WebLogic Enterprise environment. You can manage the WebLogic Enterpri
application through commands, through a graphical user interface, or by includin
administration utilities in a script.

You can use the commands listed in Table 2-2 to perform administration tasks for y
WebLogic Enterprise application.

The Administration Console is a Java-based applet that you can download into y
Internet browser and use to remotely manage your WebLogic Enterprise applicati
The Administration Console allows you to perform administration tasks, such as
monitoring system events, managing system resources, creating and configuring
administration objects, and viewing system statistics. Figure 2-1 shows the main
window of the Administration Console.

Table 2-2 WebLogic Enterprise Administration Commands

Administration
Command

Description

tmadmin Displays information about current configuration parameters.

tmboot Activates the WebLogic Enterprise application referenced in
the specified configuration file. Depending on the options used
the entire application or parts of the application are started.

tmconfig Dynamically updates and retrieves information about the
configuration of a WebLogic Enterprise application.

tmloadcf Parses the configuration file and loads the binary version of th
configuration file.

tmshutdown Shuts down a set of specified server applications, or removes
interfaces from a configuration file.

tmunloadcf Unloads the configuration file.
2-4 Getting Started

Overview of the WebLogic Enterprise CORBA Programming Features

nd
e
ed
Figure 2-1 Administration Console Main Window

In addition, a set of utilities called the AdminAPI is provided for directly accessing a
manipulating system settings in the Management Information Bases (MIBs) for th
WebLogic Enterprise product. The advantage of the AdminAPI is that it can be us
to automate administrative tasks, such as monitoring log files and dynamically
reconfiguring an application, thus eliminating the need for manual intervention.

For information about the Administration commands, seeCommands, Server
Processes, and MIB ReferenceandAdministrationin the WebLogic Enterprise online
documentation.
Getting Started 2-5

2 The WebLogic Enterprise CORBA Programming Environment

elp

ws
For a description of the Administration Console and how it works, see the online h
that is integrated into the Administration Console graphical user interface (GUI).

For information about the Admin API, seeBEA Tuxedo Referencein the WebLogic
Enterprise online documentation.

ActiveX Application Builder

The ActiveX Application Builder is a development tool that you use with a client
development tool (such as Visual Basic) to select which CORBA interfaces in a
WebLogic Enterprise domain you want your ActiveX client application to interact
with. In addition, you use the ActiveX Application Builder to create Automation
bindings for CORBA interfaces, and to create packages for deploying ActiveX vie
of CORBA objects to client machines.

Figure 2-2 shows the ActiveX Application Builder main window.
2-6 Getting Started

Overview of the WebLogic Enterprise CORBA Programming Features

e
e

Figure 2-2 ActiveX Application Builder Main Window

For a description of the ActiveX Application Builder and how it works, see the onlin
help that is integrated into the ActiveX Application Builder graphical user interfac
(GUI). For information about creating ActiveX client applications, see the PDF
version of theWebLogic Enterprise ActiveX Client Developer’s Guidein the
WebLogic Enterprise online documentation.
Getting Started 2-7

2 The WebLogic Enterprise CORBA Programming Environment

vide
the
s in a

e

ic

ity

t

e

WebLogic Enterprise CORBA Object Services

The WebLogic Enterprise product includes a set of environmental objects that pro
object services to client applications in a WebLogic Enterprise domain. You access
environmental objects through a bootstrapping process that accesses the service
particular WebLogic Enterprise domain.

The following services are provided:

� Object Life Cycle service

The Object Life Cycle service is provided through the FactoryFinder
environmental object. The FactoryFinder object is a CORBA object that can b
used to locate a factory, which in turn can create object references for CORBA
objects. Factories and FactoryFinder objects are implementations of the
CORBAservices Life Cycle Service. WebLogic Enterprise applications use the
Object Life Cycle service to find object references.

For information about using the Object Life Cycle Service, see “How WebLog
Enterprise CORBA Client and Server Applications Interact” on page 2-16.

� Security service

The Security service is accessed through the SecurityCurrent environmental
object. The SecurityCurrent object is used to authenticate a client application
into a WebLogic Enterprise domain with the proper security. The WebLogic
Enterprise software provides an implementation of the CORBAservices Secur
Service.

For information about using security, seeUsing Securityin the WebLogic
Enterprise online documentation.

� Transaction service

The Transaction service is accessed through either the TransactionCurrent
environmental object or the UserTransaction object. The TransactionCurrent
object allows a client application to participate in a transaction. The WebLogic
Enterprise software provides an implementation of the CORBAservices Objec
Transaction Service (OTS). In addition, the UserTransaction object provides
access to the Sun Microsystems, Inc. Java Transaction API (JTA) defined in th
javax.transaction package.
2-8 Getting Started

WebLogic Enterprise Architectural Components

ce

ng

the
For information about using transactions, seeUsing Transactionsin the
WebLogic Enterprise online documentation.

� Interface Repository service

The Interface Repository service is accessed through the IntefaceRepository
object. The InterfaceRepository object is a CORBA object that contains interfa
definitions for all the available CORBA interfaces and the factories used to
create object references to the CORBA interfaces. The Interface Repository
object is used with client applications that use DII.

For information about using DII, seeCreating CORBA Client Applications.

The WebLogic Enterprise software provides environmental objects for the followi
programming environments:

� C++

� Java

� Automation (used by ActiveX client applications)

WebLogic Enterprise Architectural
Components

This section provides an introduction to the following architectural components of
WebLogic Enterprise system:

� Bootstrap Object

� IIOP Listener/Handler

� ORB

� TP Framework

Figure 2-3 illustrates the components in a WebLogic Enterprise application.
Getting Started 2-9

2 The WebLogic Enterprise CORBA Programming Environment
Figure 2-3 Components in a WebLogic Enterprise Application

WLE Domain

Server Machine(s)

Client Machine

Client Application

Object Request Broker

IIOP

IIOP Listener/
Handler

FactoryFinder
Object

SecurityCurrent
Object

InterfaceRepository
Object

Server Application

Bootstrap
Object

TP
Framework

Portable
Object

Adapter

FactoryTransactionCurrent
Object

Bootstrap
Object

TransactionCurrent
Object

TransactionCurrent
Object Reference

TransactionCurrent
Object

SecurityCurrent
Object Reference
2-10 Getting Started

WebLogic Enterprise Architectural Components

d a

least

ts.

e

jects

de
Bootstrap Object

The Bootstrap object establishes communication between a client application an
WebLogic Enterprise domain. A domain is simply a way of grouping objects and
services together as a management entity. A WebLogic Enterprise domain has at
one IIOP Listener/Handler and is identified by a name. One client application can
connect to multiple WebLogic Enterprise domains using different Bootstrap objec

One of the first things that client applications do after startup is create a Bootstrap
object by supplying the host and port of the IIOP Listener/Handler using one of th
following URL address formats:

� //host:port

� corbaloc://host:port

� corbalocs://host:port

For more information about the Bootstrap URL address formats, seeUsing Securityin
the WebLogic Enterprise online documentation.

The client application then uses the Bootstrap object to obtain references to the ob
in a WebLogic Enterprise domain. Once the Bootstrap object is instantiated, the
resolve_initial_references() method is invoked by the client application,
passing in astring id , to obtain a reference to the objects in the domain that provi
CORBA services. The valid values forstring id are FactoryFinder,
TransactionCurrent, SecurityCurrent, and InterfaceRepository.

Figure 2-4 illustrates how the Bootstrap object works in a WebLogic Enterprise
domain.
Getting Started 2-11

2 The WebLogic Enterprise CORBA Programming Environment

ent
OP

the
P

Figure 2-4 How the Bootstrap Object Works in a WebLogic Enterprise Domain

IIOP Listener/Handler

The IIOP Listener/Handler is a process that receives the client request, which is s
using IIOP, and delivers that request to the appropriate server application. The II
Listener/Handler serves as a communication concentrator, providing a critical
scalability feature. The IIOP Listener/Handler removes from the server application
burden of maintaining client connections. For information about configuring the IIO
Listener/Handler, seeAdminstrationand the description of the ISL command in the
Commands, Server Processes, and MIB Referencein the WebLogic Enterprise online
documentation.

Client
Application

WLE Domain

IIOP
Listener/Handler

Bootstrap
Object

FactoryFinder
Object Reference

TransactionCurrent
Object Reference

SecurityCurrent
Object Reference

InterfaceRepository
Object Reference

FactoryFinder
Object

TransactionCurrent
Object

SecurityCurrent
Object

InterfaceRepository
Object

resolve_initial_references()
2-12 Getting Started

WebLogic Enterprise Architectural Components

erver
tain
ired

p the
n of

rver
ORB

The ORB serves as an intermediary for requests that client applications send to s
applications, so that client applications and server applications do not need to con
information about each other. The ORB is responsible for all the mechanisms requ
to find the implementation that can satisfy the request, to prepare an object's
implementation to receive the request, and to communicate the data that makes u
request. The WebLogic Enterprise product provides a C++ ORB and a BEA versio
the Java IDL ORB provided with the Java Development Kit (JDK) from Sun
Microsystems, Inc.

Figure 2-5 shows the relationship between an ORB, a client application, and a se
application.

Figure 2-5 The ORB in a Client/Server Environment

When the client application uses IIOP to send a request to the domain, the ORB
performs the following functions:

� Validates each request and its arguments to ensure that the client application
supplied all the required arguments.

Client
Application

Server
Application

Requests
Service

Object Request Broker

Directs
Response
to Client

Directs
Request
to Server

Returns
Response
Getting Started 2-13

2 The WebLogic Enterprise CORBA Programming Environment

the

ive

h
nto

,
e

the
gic
here

an

t

P

� Manages the mechanisms required to find the CORBA object that can satisfy
client application’s request. To do this, the ORB interacts with the Portable
Object Adapter (POA). The POA prepares an object's implementation to rece
the request and communicates the data in the request.

� Marshals data. The ORB on the client machine writes the data associated wit
the request into a standard form. The ORB receives this data and converts it i
the format appropriate for the machine on which the server application is
running. When the server application sends data back to the client application
the ORB marshals the data back into its standard form and sends it back to th
ORB on the client machine.

TP Framework

The TP Framework provides a programming model that achieves high levels of
performance while shielding the application programmer from the complexities of
CORBA interfaces. The TP Framework supports the rapid construction of WebLo
Enterprise applications, which makes it easier for application programmers to ad
to design patterns associated with successful TP applications.

The TP Framework interacts with the Portable Object Adapter (POA) and the
WebLogic Enterprise application, thus eliminating the need for direct POA calls in
application. In addition, the TP Framework integrates transactions and state
management into the WebLogic Enterprise application.

The application programmer uses an application programming interface (API) tha
automates many of the functions required in a standard CORBA application. The
application programmer is responsible only for writing the business logic of the
WebLogic Enterprise application and overriding default actions provided by the T
Framework.

The TP Framework API provides routines that perform the following functions
required by a CORBA application:

� Initializing the server application and executing startup and shutdown routines

� Creating object references

� Registering and unregistering object factories

� Managing objects and object state
2-14 Getting Started

WebLogic Enterprise Architectural Components

es
rect
es by

ork
gic
� Tying the server application to WebLogic Enterprise system resources

� Getting and initializing the ORB

� Performing object housekeeping

The TP Framework ensures that the execution of a client request takes place in a
coordinated, predictable manner. The TP Framework calls the objects and servic
available in the WebLogic Enterprise application at the appropriate time, in the cor
sequence. In addition, the TP Framework maximizes the reuse of system resourc
objects. Figure 2-6 illustrates the TP Framework.

Figure 2-6 The TP Framework

The TP Framework is not a single object, but is rather a collection of objects that w
together to manage the CORBA objects that contain and implement your WebLo
Enterprise application’s data and business logic.

Server Application

5555

4444

Server Machine

TP Framework
Server Object

TP Object

CORBA
Object

Implementations

Factory

Portable Object
Adapter

WLE Domain
Getting Started 2-15

2 The WebLogic Enterprise CORBA Programming Environment

h as
d in
t

y in
t are

e

ons
One of the TP Framework objects is the Server object. The Server object is a
user-written programming entity that implements operations that perform tasks suc
initializing and releasing the server application; for server applications implemente
C++, the TP Framework instantiates the CORBA objects needed to satisfy a clien
request.

If a client request that requires an object that is not currently active and in memor
the server application arrives, the TP Framework coordinates all the operations tha
required to instantiate the object. This includes coordinating with the ORB and th
POA to get the client request to the appropriate object implementation code.

How WebLogic Enterprise CORBA Client and
Server Applications Interact

The interaction between WebLogic Enterprise CORBA client and server applicati
includes the following steps:

1. The server application is initialized.

2. The client application is initialized.

3. The client application authenticates itself to the WebLogic Enterprise domain.

4. The client application obtains a reference to the object needed to execute its
business logic.

5. The client application invokes an operation on the CORBA object.

The following topics describe what happens during each step.
2-16 Getting Started

How WebLogic Enterprise CORBA Client and Server Applications Interact
Step 1: The Server Application Is Initialized

The system administrator enters thetmboot command on a machine in the WebLogic
Enterprise domain to start the WebLogic Enterprise server application. The TP
Framework invokes theinitialize() operation in the Server object to initialize the
server application.

During the initialization process, the Server object does the following:

1. Gets the Bootstrap object and a reference to the FactoryFinder object.

2. Typically registers any factories with the FactoryFinder object.

3. Optionally gets an object reference to the ORB.

4. Performs any process-wide initialization.

WLE Server Application

TP Framework

Server Object

Initialize server {
Register factories;

}

Getting Started 2-17

2 The WebLogic Enterprise CORBA Programming Environment

to

gic

it
Step 2: The Client Application Is Initialized

During initialization, the client application uses the Bootstrap object in the domain
obtain initial references to the environmental objects available in the domain.

The Bootstrap object returns references to the FactoryFinder, SecurityCurrent,
TransactionCurrent, NameService, and InterfaceRepository objects in the WebLo
Enterprise domain.

Step 3: The Client Application Authenticates Itself to the
WebLogic Enterprise Domain

If the WebLogic Enterprise domain has a security model in effect, the client
application needs to authenticate itself to the WebLogic Enterprise domain before
can invoke any operations in the server application. To authenticate itself to the
WebLogic Enterprise domain using Tuxedo authentication, the client application:

1. Uses the Bootstrap object to obtain a reference to the SecurityCurrent object.

2. Invokes thelogon() operation of thePrincipalAuthenticator object, which
is retrieved from the SecurityCurrent object.

Note: For information about using certificate-based authentication, seeUsing
Securityin the WebLogic Enterprise online documentation.

WLE Client Application

Instantiate the Bootstrap object;
Resolve initial references;

Bootstrap
Object
2-18 Getting Started

How WebLogic Enterprise CORBA Client and Server Applications Interact
Step 4: The Client Application Obtains a Reference to the
Object Needed to Execute Its Business Logic

The client application needs to perform the following steps:

1. Obtain a reference to the factory for the object it needs.

For example, the client application needs a reference to theSimpleFactory

object. The client application obtains this factory reference from the
FactoryFinder object, shown in the following figure.

2. Invoke theSimpleFactory object to get a reference to theSimple object.

If the SimpleFactory object is not active, what happens next depends on the
programming language in which the server application is implemented:

� In Java, the WebLogic Enterprise system instantiates theSimpleFactory

object dynamically.

� In C++, the TP Framework instantiates theSimpleFactory object by
invoking theServer::create_servant() method on the Server object,
shown in the following figure.

WLE Client Application

Instantiate the Bootstrap object;
Resolve initial references;
Log on;
Find one factory

WLE Server Application

TP Framework
Server Object

Initialize server {
Register factories;

}

SecurityCurrent
Object

FactoryFinder
Object
Getting Started 2-19

2 The WebLogic Enterprise CORBA Programming Environment
3. The TP Framework invokes theactivate_object() andfind_simple()

operations on theSimpleFactory object to get a reference to theSimple object,
shown in the following figure.

TheSimpleFactory object then returns the object reference to theSimple object to
the client application.

WLE Server Application

TP Framework

SimpleFactory

Server Object

Initialize server {
Register factories;

}
Server::create_servant() {
}

WLE Client Application

Instantiate the Bootstrap object;
Resolve initial references;
Log on;
Find a factory by ID;

WLE Server Application

TP Framework

SimpleFactory

Server Object

Initialize server {
Register factories;

}
WLE Client Application

Instantiate the Bootstrap object;
Resolve initial references;
Log on;
Find a factory by ID;
Find_simple;

Simple
2-20 Getting Started

How WebLogic Enterprise CORBA Client and Server Applications Interact

ple

nt
e,
Note: Because the TP Framework activates objects by default, the Simpapp sam
application does not implicitly use theactivate_object() operation for the
SimpleFactory object.

Step 5: The Client Application Invokes an Operation on
the CORBA Object

Using the reference to the CORBA object that the factory has returned to the clie
application, the client application invokes an operation on the object. For exampl
now that the client application has an object reference to theSimple object, the client
application can invoke theto_upper() operation on it. The instance of the Simple
object required for the client request is created as shown in the following figure.

If the server application were implemented in Java, theSimple object required for the
client request is instantiated dynamically by the WebLogic Enterprise system.

WLE Server Application
TP Framework

Simple

Server Object

Initialize server {
Register factories;

}
Server::create_servant() {
}WLE Client Application

Instantiate the Bootstrap object;
Resolve initial references;
Log on;
Find a factory by ID;
Find_simple;
to_upper();

SimpleFactory
Getting Started 2-21

2 The WebLogic Enterprise CORBA Programming Environment

k
the
The TP Framework invokes theactivate_object() operation on theSimple object
and theSimpleFactory object to allow the object to initialize any object state
necessary, shown in the following figure.

Object state initialization often involves reading durable state information from dis
for that object. The TP Framework invokes the operation on the object, returning
response to the client application.

WLE Server Application
TP Framework

SimpleFactory

Server Object

Initialize server {
Register factories;

}
Server::create_servant() {
}

Client Application

Instantiate the Bootstrap object;
Resolve initial references;
Log on;
Find a factory by ID;
Find_registrar;
to_upper();

SimpleFactory

Activate object {...}
to_upper() {...}
2-22 Getting Started

CHAPTER
3 The WebLogic
Enterprise JavaBeans
(EJB) Programming
Environment

This topic includes the following sections:

� Overview of the WebLogic Enterprise EJB Programming Environment

� Types of Beans Supported in WebLogic Enterprise

� EJBs and Persistence

� Roles of People Who Develop, Build, Deploy, and Administer EJBs

� Items You Create for an EJB Application

� Tools and Facilities Provided for Building and Deploying EJBs

� EJBs and Failover in the WebLogic Enterprise Environment
Getting Started 3-1

3 The WebLogic Enterprise JavaBeans (EJB) Programming Environment

.,
s

ent,

s the
the

be

nts
nto a
cess
or

JB
lar

or
Overview of the WebLogic Enterprise EJB
Programming Environment

The Enterprise JavaBeans Specification 1.1, published by Sun Microsystems, Inc
defines a component architecture for building distributed, object-oriented busines
applications in Java. The EJB architecture addresses the development, deploym
and run-time aspects of an enterprise application's lifecycle.

An EJB encapsulates business logic inside a component framework that manage
details of security, transaction, and state management. Low-level details, such as
following, are handled by the EJB container:

� Multithreading

� Resource pooling

� Scaling

� Distributed naming

� Automatic persistence

� Remote invocation

� Transaction boundary management

� Distributed transaction management

This built-in, low-level support allows the EJB to focus on the business problem to
solved.

With the WebLogic Enterprise EJB model, you can write or buy business compone
(such as invoices, bank accounts, and shipping routes) and, during deployment i
certain project, specify how the component should be used -- which users have ac
to which methods, whether the container should automatically start a transaction
whether it should inherit the caller's transaction, and so on. In this scenario, an E
contains the business logic (methods) and the customization needed for a particu
application (deployment descriptor), and the EJB will run within any standard
implementation of the EJB container. An EJB is, in essence, a distributed object f
which transactions and security can be specified declaratively in deployment
descriptors.
3-2 Getting Started

Types of Beans Supported in WebLogic Enterprise

JB
hat
urity
ut of
itly).

le
in

l state
d
f
o

on

r

The spirit of "write once, run anywhere" carries through into EJB: any vendors's E
container (that conforms to the EJB Specification) can run any third-party EJBs (t
also conform to the EJB Specification) to create an application. Nuances of the sec
mechanisms and specific distributed transaction monitors are entirely abstracted o
the application code (unless the Bean Provider chooses to make such calls explic

Types of Beans Supported in WebLogic
Enterprise

With the WebLogic Enterprise system, you can build and deploy standard, portab
EJBs. The EJB Specification defines three types of beans as listed and described
Table 3-1.

Table 3-1 Bean Types Specified by the EJB Specification

Bean Type Description

Stateless session bean An instance of a stateless session bean has no conversationa
for the client that created the instance. This instance is not assigne
permanently to the client. The EJB container can maintain a pool o
instances and allocate method invocations coming from any client t
any available instance (that is, not processing a request for a
particular client). Therefore, any instance can receive method
invocations from any client, and these requests can be processed
behalf of different transactions and security contexts.

The EJB container decides the life of an instance; that is, the
container can destroy an instance when resources are required o
according to other policies. However, the client decides the life of
the reference to the bean. The reference obtained from the bean’s
home interface is valid until the client destroys it.

Note that stateless session beans cannot use the
SessionSynchronization interface to synchronize with the
starting and stopping of a transaction.
Getting Started 3-3

3 The WebLogic Enterprise JavaBeans (EJB) Programming Environment

al
of

JB
in
he

e
its

e
er

e
in

e

ge
Stateful session bean An instance of a stateful session bean maintains a conversation
state for the client that created the instance. Therefore, instances
a stateful session bean are assigned to a particular client and are
destroyed only when the client decides to remove the EJB object.
Instances of stateful session beans do not survive a crash of the E
container (which in WebLogic Enterprise spans all the processes
the same group where the bean is deployed) or a redeployment of t
bean.

The EJB container can passivate inactive instances to maximize th
use of the system resources -- that is, to deactivate the bean with
state saved to be restored at a later time during the bean’s
reactivation. Stateful session beans can use the
SessionSynchronization interface to synchronize with the
starting and stopping of a transaction.

Entity bean An instance of an entity bean has a unique identity called the
primary key . Object references to an entity bean should be usabl
for a long time and clients should be able to reuse them across serv
crash or restart. The reference becomes invalid when a client
application removes the EJB or when the EJB is reconfigured.

Note: If a server group crashes, and the System Administrator
restarts that group using the same group ID and persistenc
store, the EJB container can process requests for beans
that group again. The EJB container for stateless session
beans spans the entire domain in which the beans are
deployed.

Multiple client applications can access an entity bean instance; th
EJB container is responsible for synchronizing the access to the
instance.

Typically, an entity bean has a persistent state, and application
designers can choose between managing the persistence directly
from the bean (bean-managed) or letting the EJB container mana
the persistence (container-managed). In either case, the EJB
container determineswhenan entity bean instance can be passivated
(which also triggers the persistent storage of the state of the
instance). An entity bean cannot use the
SessionSynchronization interface to synchronize with the
starting and stopping of a transaction.

Table 3-1 Bean Types Specified by the EJB Specification (Continued)

Bean Type Description
3-4 Getting Started

EJBs and Persistence

t
s
t

rred

bean

ards

en
EJBs and Persistence

An entity EJB can save its state in any transactional or nontransactional persisten
storage, or it can ask the EJB container to save its nontransient instance variable
automatically. The WebLogic Enterprise system allows both choices. An EJB tha
manages its own persistence is referred to as havingbean-managed persistence; an
EJB that delegates to the EJB container the saving and restoring of its state is refe
to as havingcontainer-managed persistence.

You control the persistence characteristics of a bean, such as where its data is
maintained in durable storage, in its deployment descriptor; in the case of
bean-managed persistence, you implement the specific method invocations in the
that load and store state.

For more information about development and deployment considerations with reg
to persistence, see the following topics:

� Chapter 7, “Developing WebLogic Enterprise EJB Applications.”

� “Development Considerations for EJBs and Persistence” on page 8-11.

Roles of People Who Develop, Build, Deploy,
and Administer EJBs

The Enterprise JavaBeans Specification describes the six roles regarding who
develops, builds, deploys, and administers an EJB application. These roles are
summarized in Table 3-2 to help clarify what needs to be done, by whom, and wh
during the entire life cycle of an EJB in a way that is consistent with the EJB
Specification.
Getting Started 3-5

3 The WebLogic Enterprise JavaBeans (EJB) Programming Environment

e

n

al
s

e
g

s

s

Table 3-2 EJB Roles

Role Description

Enterprise Bean Provider The Enterprise Bean Providers (or Bean Providers) produc
enterprise beans. Their output is an EJB Java ARchive (EJB
JAR) file that contains one or more enterprise beans. The Bea
Provider is responsible for:

� The Java classes that implement the enterprise bean’s
business methods

� The definition of the bean’s remote and home interfaces

� The bean’s deployment descriptor

The deployment descriptor includes the structural information
(for example, the name of the enterprise bean class) of the
enterprise bean and declares all the enterprise bean’s extern
dependencies (for example, the names and types of resource
that the enterprise bean uses).

Application Assembler The Application Assembler combines enterprise beans into
larger deployable application units. The input to the
Application Assembler is one or more EJB JAR files produced
by the Bean Providers. The Application Assembler outputs on
or more EJB JAR files that contain the enterprise beans alon
with their application assembly instructions. The Application
Assembler has inserted the application assembly instruction
into the deployment descriptors.

Bean providers cooperate with the Application Assembler to
combine EJBs into larger deployable units. In the WebLogic
Enterprise environment, creating these larger deployable unit
is more efficient if the Application Assembler takes into
account the scalability and resource management capabilitie
provided by the WebLogic Enterprise environment. For
example, EJBs that access the same resources should be
packaged together. The Application Assembler also specifies
the security required by the application by associating client
role names with the methods of the different beans.
3-6 Getting Started

Roles of People Who Develop, Build, Deploy, and Administer EJBs

or

er

y

m,
Deployer The Deployer uses the EJB container tools to customize one
more EJB JAR files produced by a Bean Provider or
Application Assembler so that the beans can run in the
corresponding EJB environment. These tools generate the
additional classes required to manage the beans. The Deploy
is primarily focused on the individual EJBs.

In the WebLogic Enterprise environment, the Deployer uses
theejbc command or the WebLogic EJB Deployer for this
purpose. These tools can also be used by the Application
Assembler to construct an EJB package, which is the EJB JAR
file containing all the bean implementations and the assembl
instructions. The Deployer also ensures that the security role
names defined by the Application Assembler map to existing
user groups and accounts that exist in the EJB environment.

The Deployer must resolve all the external dependencies
declared by the Bean Provider (for example, Deployers must
ensure that all resources used by the enterprise beans are
present in the operational environment, and they must bind
them to the resource manager connection factory references
declared in the deployment descriptor), and must follow the
application assembly instructions defined by the Application
Assembler.

EJB Server Provider The EJB Server Provider (in the WebLogic Enterprise syste
this is BEA) is a specialist in the area of distributed transaction
management, distributed objects, and other lower-level,
system-level services.

Table 3-2 EJB Roles (Continued)

Role Description
Getting Started 3-7

3 The WebLogic Enterprise JavaBeans (EJB) Programming Environment

a

re

n

r

to
EJB Container Provider The EJB Container Provider (in the WebLogic Enterprise
system, this is BEA) provides:

� The deployment tools necessary for the deployment of
enterprise beans

� The run-time support for the deployed enterprise beans’
instances

From the perspective of the enterprise beans, the container is
part of the target operational environment. The container run
time provides the deployed enterprise beans with transaction
and security management, network distribution of clients,
scalable management of resources, and other services that a
generally required as part of a manageable server platform.

System Administrator The System Administrator is responsible for the configuratio
and administration of the enterprise’s computing and
networking infrastructure, which includes the EJB server and
container. The System Administrator is also responsible for
overseeing the well-being of the deployed enterprise bean
applications at run time.

The System Administrator cooperates with the Deployer to
define the environment needed by the application. The System
Administrator configures the WebLogic Enterprise domain by
defining the different machines, server groups, and other
resources needed by the application (for example, JDBC
connection pools and XA resource managers).

The System Administrator also needs to add any security
information needed by the application (for example, new use
groups). The administrator is also responsible for monitoring
the application and performing any run-time changes needed
adapt the operational environment to failures or other
conditions.

Table 3-2 EJB Roles (Continued)

Role Description
3-8 Getting Started

Items You Create for an EJB Application

runs
ing,
Items You Create for an EJB Application

Table 3-3 summarizes all the items you need to create for an EJB application that
in the WebLogic Enterprise environment, regardless of which role you are assum
and explains where you can find more information about creating the item.

Table 3-3 Items You Create for an EJB Application

Item Description Where to Find More Information

One or more EJBs The basic beans containing your
application’s business logic.

“Step 1: Create the EJB” on page 7-8

Deployment descriptor An XML file, created by one of the
following methods, that specifies basic
configuration and run-time information
relevant to the deployment of the EJBs:

� DDGenerator command

� WebLogic EJB Deployer

� Manually, using a common text
editor

“Step 3: Create the Deployment
Descriptor” on page 7-14 and “Step 6:
Modify the Deployment Descriptor” on
page 7-26

EJB JAR file A Java ARchive (JAR) file that contains
all the Java class files for the EJBs in the
application. This file is created initially
by the Bean Provider, and is then
modified by the Bean Deployer and
Application Assembler.

“Step 4: Create a Standard EJB JAR File”
on page 7-19 and “Step 7: Package the
Components Into a Deployable EJB JAR
File” on page 7-28

WebLogic EJB
extensions to the
deployment descriptor
DTD

An XML file, specifying configuration
information pertinent to the WebLogic
Enterprise environment.

“Step 5: Create the WebLogic EJB
Extensions to the Deployment Descriptor
DTD” on page 7-21

Module initializer object A Java object specifying the module
initializer class. This entity is optional.

“Step 2: Create the Module Initializer
Object” on page 7-13
Getting Started 3-9

3 The WebLogic Enterprise JavaBeans (EJB) Programming Environment

ls

d

e

Tools and Facilities Provided for Building
and Deploying EJBs

To help application programmers and deployers build EJBs that fully leverage the
WebLogic Enterprise system, the WebLogic Enterprise software provides the too
and facilities listed in Table 3-4.

Table 3-4 Resources for Building and Deploying EJBs

Tool or Facility Description

ejbc command Used by application programmers, Application Assemblers, an
deployers as a command-line alternative to the WebLogic EJB
Deployer to construct a deployable EJB JAR file.

DDGenerator
command

Used by the Bean Provider to create the initial deployment
descriptor file.

WebLogic EJB
Deployer

Used by the Bean Provider, Bean Deployer, and Application
Assembler to configure and deploy EJBs for use with your
WebLogic Enterprise server. You can use the WebLogic EJB
Deployer to:

� Examine an existing EJB and the configurable properties in
its deployment descriptor.

� Modify the properties and save the changes to a file (.xml or
.jar format).

� Generate EJB interface classes for a particular WebLogic
environment.

� Generate deployment classes for the beans.

The WebLogic EJB Deployer is documented in the online help
available from that tool’s Help menu.

UBBCONFIGfile Used for configuring the EJB container and the Java server in
which the EJB container is run and which loads the JVM and
other modules needed by the EJB application. (You can also us
the TMIB in place of theUBBCONFIGfile.)
3-10 Getting Started

EJBs and Failover in the WebLogic Enterprise Environment

rise

f

the
rise
For more information about deploying and administering EJB applications in the
WebLogic Enterprise environment, see Chapter 7, “Developing WebLogic Enterp
EJB Applications.”

EJBs and Failover in the WebLogic
Enterprise Environment

The WebLogic Enterprise system provides the following failover characteristics o
EJB applications deployed in a WebLogic Enterprise domain. Note that client
applications cannot control where EJBs are instantiated. Figure 3-1 shows how, in
instance of a machine crash, failover is managed wholly by the WebLogic Enterp
system.
Getting Started 3-11

3 The WebLogic Enterprise JavaBeans (EJB) Programming Environment

the
er or
able

hen

e
ther
ient
Figure 3-1 EJB Failover Capabilities in WebLogic Enterprise

Stateless session beans. If the server process hosting a stateless session bean fails,
bean is automatically instantiated in a different server process (on the same serv
on another group within the domain), provided that the server process that is cap
of supporting the session bean is available.

Entity beans. If one group that hosts one or more entity beans fails and in cases w
the client application receives aRemoteException , the client application can invoke
thefindByPrimaryKey method to find the home interface for the entity bean, with th
specified unique key, on another group in the domain. This works as long as the o
group is configured to support that entity bean. Application developers can write cl
application code within a loop that begins by invoking thefindByPrimaryKey

method; this way, if a group fails, the client application retries the invocation on a
different group.

EJB

Deployment Environment
on Machine 1

Deployment Environment
on Machine 2

Workstation

Server Process

EJB Container

Server Process

EJB Container

Server Process

EJB Container

Server Process

EJB Container

IIOP Listener/
Handler

WorkstationWorkstation

RMI Web/Java

WebLogic RMI on IIOP
3-12 Getting Started

EJBs and Failover in the WebLogic Enterprise Environment

des on
e).

or
nce

s long

sed
Note that, for bean-managed persistence, the Bean Provider must implement this
method explicitly; for container-managed persistence, this method is generated
automatically.

Stateful session beans. If one group fails, the administrator must dynamically
configure the group on a different machine. For more information, see the
Administration Guidein the WebLogic Enterprise online documentation.

For file-based persistence, recovery depends on whether persistence storage resi
a file system that is still network accessible (for example, an NFS-mounted volum
Because thepersistence-store-directory-root element in the WebLogic
Enterprise EJB extensions to the deployment descriptor DTD specifies the path f
persistent storage, the bean's state can be recovered. (Note that this file persiste
mechanism is internal to the WebLogic Enterprise system.)

For JDBC-based persistence, the application simply reconnects to the database, a
as the DBMS node is running and the network is accessible to the new node.

Note: In general, you should use JDBC-based persistence for production
applications because it is more robust than file-based persistence. File-ba
persistence is typically appropriate only for development and prototyping
purposes.
Getting Started 3-13

3 The WebLogic Enterprise JavaBeans (EJB) Programming Environment
3-14 Getting Started

Part II Developing
WebLogic
Enterprise
CORBA
Applications
Chapter 4. Developing WebLogic Enterprise CORBA

Applications

Chapter 5. Using Security

Chapter 6. Using Transactions

CHAPTER
4 Developing WebLogic
Enterprise CORBA
Applications

This topic includes the following sections:

� Overview of the Development Process for WebLogic Enterprise CORBA
Applications

� The Simpapp Sample Application

� Step 1: Write the OMG IDL Code

� Step 2: Generate Client Stubs and Skeletons

� Step 3: Write the Server Application

� Step 4: Write the Client Application

� Step 5: Create an XA Resource Manager

� Step 6: Create a Configuration File

� Step 7: Create the TUXCONFIG File

� Step 8: Compile the Server Application

� Step 9: Compile the Client Application

� Step 10: Start the WebLogic Enterprise CORBA Application

� Additional WebLogic Enterprise CORBA Sample Applications
Getting Started 4-1

4 Developing WebLogic Enterprise CORBA Applications

ver
For an in-depth discussion of creating WebLogic Enterprise CORBA client and ser
applications, see the following in the WebLogic Enterprise online documentation:

� Creating CORBA Client Applications

� Creating CORBA C++ Server Applications

� Creating CORBA Java Server Applications

Overview of the Development Process for
WebLogic Enterprise CORBA Applications

Table 4-1 outlines the development process for WebLogic Enterprise CORBA
applications.

Table 4-1 Development Process for WebLogic Enterprise CORBA Applications

Step Description

1 Write the Object Management Group (OMG) Interface Definition
Language (IDL) code for each CORBA interface you want to use in
your WebLogic Enterprise application.

2 Generate the client stubs and the skeletons.

3 Write the server application.

4 Write the client application.

5 Create an XA resource manager.

6 Create a configuration file.

7 Create aTUXCONFIGfile.

8 Compile the server application.

9 Compile the client application.

10 Start the WebLogic Enterprise CORBA application.
4-2 Getting Started

Overview of the Development Process for WebLogic Enterprise CORBA Applications
The steps in the development process are described in the following sections.

Figure 4-1 illustrates the process for developing WebLogic Enterprise CORBA
applications.

Figure 4-1 Development Process for WebLogic Enterprise CORBA Applications

Interface Specifications
in OMG IDL

m3idltojava
or idl

Command

Client Stubs Skeletons

Write Client
Application Code

Write Method
Implementations

Client
Stubs

Client Application

Running
Client
Code

Write Server Object

Compile Client
Application Code

Compile Server
Application Code

Skeleton
Method

Implementations

Server
Java Archive

File*
+++

Server Application

Object Request Broker

Server Description
File or

Implementation
Configuration File

UBBCONFIG

* For CORBA Java server applications only
Getting Started 4-3

4 Developing WebLogic Enterprise CORBA Applications

e
re

tion

ts
The Simpapp Sample Application

Throughout this topic, the Simpapp sample application is used to demonstrate th
development steps. C++ and Java versions of the Simpapp sample application a
available.

The server application in the Simpapp sample application provides an implementa
of a CORBA object that has the following two methods:

� Theupper() method accepts a string from the client application and
converts the string to uppercase letters.

� The lower () method accepts a string from the client application and conver
the string to lowercase letters.

Figure 4-2 illustrates how the Simpapp sample application works.

Figure 4-2 Simpapp Sample Application

Client
Application

Server
Application

SimpleFactory
find_simple()

Simple
to_upper()
to_lower()
4-4 Getting Started

Step 1: Write the OMG IDL Code

are

ing

ns,

rver
t

)

no
The source files for the C++ and Java versions of the Simpapp sample application
located in the\samples\corba\simpapp and \samples\corba\simpap_java

directories of the WebLogic Enterprise software. Instructions for building and runn
the Simpapp sample applications are in theReadme.txt files in the directories. For
instructions for building and running the C++ and Java Simpapp sample applicatio
seeSamplesin the WebLogic Enterprise online documentation.

Note: The Simpapp sample applications demonstrate building C++ client and se
applications and Java client and server applications. For information abou
building a simple ActiveX client application, see theBasic sample application
in the WebLogic Enterprise online documentation.

The WebLogic Enterprise product offers a suite of sample applications that
demonstrate and aid in the development of WebLogic Enterprise CORBA
applications. For an overview of the available sample applications, seeSamplesin the
WebLogic Enterprise online documentation.

Step 1: Write the OMG IDL Code

The first step in writing a WebLogic Enterprise application is to specify all of the
CORBA interfaces and their methods using the Object Management Group (OMG
Interface Definition Language (IDL). An interface definition written in OMG IDL
completely defines the CORBA interface and fully specifies each operation’s
arguments. OMG IDL is a purely declarative language. This means that it contains
implementation details. Operations specified in OMG IDL can be written in and
invoked from any language that provides CORBA bindings.

The Simpapp sample application implements the CORBA interfaces listed in
Table 4-2.

Table 4-2 CORBA Interfaces for the Simpapp Sample Application

Interface Description Operation

SimpleFactory Creates object references to the
Simple object

find_simple()
Getting Started 4-5

4 Developing WebLogic Enterprise CORBA Applications

d

tion.
u
at
Listing 4-1 shows thesimple.idl file that defines the CORBA interfaces in the
Simpapp sample application. The same OMG IDL file is used by both the C++ an
Java Simpapp sample applications.

Listing 4-1 OMG IDL Code for the Simpapp Sample Application

#pragma prefix "beasys.com"

interface Simple
{

//Convert a string to lower case (return a new string)
string to_lower(in string val);

//Convert a string to upper case (in place)
void to_upper(inout string val);

};

interface SimpleFactory
{

Simple find_simple();
};

Step 2: Generate Client Stubs and Skeletons

The interface specification defined in OMG IDL is used by the IDL compiler to
generate client stubs for the client application, and skeletons for the server applica
The client stubs are used by the client application for all operation invocations. Yo
use the skeleton, along with the code you write, to create the server application th
implements the CORBA objects.

Simple Converts the case of a string to_upper()

to_lower()

Table 4-2 CORBA Interfaces for the Simpapp Sample Application (Continued)

Interface Description Operation
4-6 Getting Started

Step 2: Generate Client Stubs and Skeletons

the
nt
During the development process, use one of the following commands to compile
OMG IDL file and produce client stubs and skeletons for WebLogic Enterprise clie
and server applications:

� If you are creating C++ client and server applications, use theidl command.
For a description of theidl command, seeCommands, System Processes, and
MIB Referencein the WebLogic Enterprise online documentation.

� If you are creating Java client and server applications, use them3idltojava

command. For a description of them3idltojava command, seeCommands,
System Processes, and MIB Referencein the WebLogic Enterprise online
documentation.

Table 4-3 lists the files that are created by theidl command.

Table 4-3 Files Created By the idl Command

File Default Name Description

Client stub file application _c.cpp Contains generated code for sending a request.

Client stub header file application _c.h Contains class definitions for each interface and
type specified in the OMG IDL file.

Skeleton file application _s.cpp Contains skeletons for each interface specified in
the OMG IDL file. During run time, the skeleton
maps client requests to the appropriate operation
in the server application.

Skeleton header file application _s.h Contains the skeleton class definitions.

Implementation file application _i.cpp Contains signatures for the methods that
implement the operations on the interfaces
specified in the OMG IDL file.

Implementation header file application _i.h Contains the initial class definitions for each
interface specified in the OMG IDL file.
Getting Started 4-7

4 Developing WebLogic Enterprise CORBA Applications

he

.

Table 4-4 lists the files that are created by them3idltojava command.

Step 3: Write the Server Application

The WebLogic Enterprise software supports C++ and Java server applications. T
steps for creating server applications are:

1. Write the methods that implement each interface’s operations.

2. Create the server object.

Table 4-4 Files Created By the m3idltojava Command

File Default Name Description

Base interface class file interface .java Contains an implementation of the interface,
written in Java.

Copy this file to create a new file, and add your
business logic to the new file. By convention in
the samples and in this document, this file is
namedinterface Impl.java . Substitute
the actual name of the interface in the filename.
This new file is called anobject implementation
file.

Client stub file _interface Stub.java Contains generated code for sending a request

Server skeleton file _interface ImplBase
.java

Contains Java skeletons for each interface
specified in the OMG IDL file. During run time,
the skeleton maps client requests to the
appropriate operation in the Java server
application during run time.

Holder class file interface Holder.java Contains the implementation of the Holder
class. The Holder class provides operations for
out andinout arguments, which CORBA
has, but which do not map exactly to Java.

Helper class file interface Helper.java Contains the implementation of the Helper
class. The Helper class provides auxiliary
functionality, notably thenarrow method.
4-8 Getting Started

Step 3: Write the Server Application

e
g:

al)

ng

tion
3. Define object activation policies.

4. Create and register a factory.

5. Release the server application.

Writing the Methods That Implement Each Interface’s
Operations

After you compile the OMG IDL file, you need to write methods that implement th
operations for each interface in the file. An implementation file contains the followin

� Method declarations for each operation specified in the OMG IDL file

� Your application’s business logic

� Constructors for each interface implementation (implementing these is option

� Theactivate_object() anddeactivate_object() methods (optional)

Within theactivate_object () anddeactivate_object() methods, you
write code that performs any particular steps related to activating or deactivati
the object. For more information, seeCreating CORBA C++ Server
ApplicationsandCreating CORBA Java Server Applicationsin the WebLogic
Enterprise online documentation.

You can write the implementation file by hand. However, both theidl and
m3idltojava commands have an option that generates a template for implementa
files.

Listing 4-2 includes the C++ implementation of the Simple and SimpleFactory
interfaces in the Simpapp sample application.

Listing 4-2 C++ Implementation of the Simple and SimpleFactory Interfaces

// Implementation of the Simple_i::to_lower method which converts
// a string to lower case.

char* Simple_i::to_lower(const char* value)
{

CORBA::String_var var_lower = CORBA::string_dup(value);
Getting Started 4-9

4 Developing WebLogic Enterprise CORBA Applications

app
for (char* ptr = v_lower; ptr && *ptr; ptr++) {
*ptr = tolower(*ptr);

}
return var_lower._retn();

}

// Implementation of the Simple_i::to_upper method which converts
// a string to upper case.

void Simple_i::to_upper(char*& valuel)
{

CORBA::String_var var_upper = value;
var_upper = CORBA::string_dup(var_upper.in());
for (char* ptr = var_upper; ptr && *ptr; ptr++) {

*ptr = toupper(*ptr);
}
value = var_upper._retn();

}
// Implementation of the SimpleFactory_i::find_simple method which
// creates an object reference to a Simple object.

Simple_ptr SimpleFactory_i::find_simple()
{

CORBA::Object_var var_simple_oref =
TP::create_object_reference(

_tc_Simple->id(),
"simple",
CORBA::NVList::_nil()

);
}

Listing 4-3 includes the Java implementation of the Simple interface from the Simp
sample application.

Listing 4-3 Java Implementation of the Simple Interface

import com.beasys.Tobj.TP;

/**
*The SimpleImpl class implements the to_upper and to_lower
*methods.
*/

public class SimpleImpl extends _SimpleImplBase
{
/*Converts a string to upper case.*/
4-10 Getting Started

Step 3: Write the Server Application

the
public void to_upper(org.omg.CORBA.StringHolder data)
{

if (data.value == null)
return;

data.value = data.value.toUpperCase();
return;

}
/*Converts a string to lower case.*/

public String to_lower(String data)
{

if (data == null)
return null;

return data.toLowerCase();
}

}

Listing 4-4 includes the Java implementation of the SimpleFactory interface from
Simpapp sample application.

Listing 4-4 Java Implementation of the SimpleFactory Interface

import com.beasys.Tobj.TP;

/**
*The SimpleFactoryImpl class provides code to create the Simple
*object.
*/

public class SimpleFactoryImpl extends _SimpleFactoryImplBase
{
/*Create an object reference to a Simple object*/

public Simple find_simple()
{

org.omg.CORBA.Object simple_oref =
TP.create_object_reference(

SimpleHelper.id(), //Repository ID
“simple”, //object id
null //routing criteria
);

//Send back the narrowed reference
return SimpleHelper.narrow(simple_oref);

};
};

};
Getting Started 4-11

4 Developing WebLogic Enterprise CORBA Applications

nt

r file
se

rver
Creating the Server Object

The Server object performs the following tasks:

� Initializes the server application, including registering factories, allocating
resources needed by the server application, and, if necessary, opening an XA
resource manager.

� Performs server application shutdown and cleanup procedures.

� In C++ server applications, instantiates CORBA objects needed to satisfy clie
requests.

In C++ server applications, the Server object is already instantiated and a heade
for the Server object is available. You implement methods that initialize and relea
the server application, and, if desired, create servant objects.

Listing 4-5 includes the C++ code from the Simpapp sample application for the Se
object.

Listing 4-5 C++ Server Object

static CORBA::Object_var static_var_factory_reference;

// Method to start up the server

CORBA::Boolean Server::initialize(int argc, char* argv[])
{

// Create the Factory Object Reference

static_var_factory_reference =
TP::create_object_reference(

_tc_SimpleFactory->id(),
"simple_factory",
CORBA::NVList::_nil()

);
// Register the factory reference with the FactoryFinder

TP::register_factory(
static_var_factory_reference.in(),

_tc_SimpleFactory->id()
);
return CORBA_TRUE;
4-12 Getting Started

Step 3: Write the Server Application

lass

o
r
ile.

e
s are
va
eve
red

n

}
// Method to shutdown the server

void Server::release()
{
// Unregister the factory.

try {
TP::unregister_factory(

static_var_factory_reference.in(),
_tc_SimpleFactory->id()

);
}
catch (...) {

TP::userlog("Couldn't unregister the SimpleFactory");
}

}
// Method to create servants

Tobj_Servant Server::create_servant(const char*
interface_repository_id)

{
if (!strcmp(interface_repository_id,
_tc_SimpleFactory->id())) {

return new SimpleFactory_i();
}
if (!strcmp(interface_repository_id,
_tc_Simple->id())) {

return new Simple_i();
}
return 0;

}

In Java server applications, you implement the Server object by creating a new c
that derives from thecom.beasys.Tobj.Server class and overrides the
initialize() andrelease() methods. In the server application code, you can als
write a public default constructor for the Server object. When creating Java serve
applications, you identify the name of the Server object in the Server Description F

Thecreate_servant() method, used in the C++ programming environment of th
WebLogic Enterprise product, is not used in the Java environment. In Java, object
created dynamically, without prior knowledge of the classes being used. In the Ja
environment of the WebLogic Enterprise product, a servant factory is used to retri
an implementation class, given the interface repository ID. This information is sto
in a server descriptor file. When a method request is received, and no servant is
available for the interface, the servant factory looks up the interface and creates a
object of the appropriate implementation class.
Getting Started 4-13

4 Developing WebLogic Enterprise CORBA Applications

tive

bject

s

e

rver
This collection of the object's implementation and data compose the run-time, ac
instance of the CORBA object.

When your Java server application starts, the TP Framework creates the Server o
specified in the XML file. Then, the TP Framework invokes theinitialize()

method. If the method returnstrue , the server application starts. If the method throw
thecom.beasys.TobjS.InitializeFailed exception, or returnsfalse , the server
application does not start.

When the server application shuts down, the TP Framework invokes the release
method on the Server object.

Any command-line options specified in theCLOPTparameter for your specific server
application in theSERVERSsection of the WebLogic Enterprise domain'sUBBCONFIG

file are passed to the publicboolean initialize(string[] args) method as
args . For more information about passing arguments to the server application, se
Administration Guidein the WebLogic Enterprise online documentation.

Within the initialize() method, you can include code that does the following, if
applicable:

� Creates and registers factories

� Allocates any machine resources

� Initializes any global variables needed by the server application

� Opens the databases used by the server application

� Opens the XA resource manager

Listing 4-6 includes the Java code from the Simpapp sample application for the Se
object.

Listing 4-6 Java Server Object

import com.beasys.Tobj.TP;

public class ServerImpl
extends com.beasys.Tobj.Server

{
static org.omg.CORBA.Object factory_reference;
4-14 Getting Started

Step 3: Write the Server Application
/**Method to start up the server*/

public boolean initialize(String[] args)
{

try {
// Create the factory object reference.

factory_reference = TP.create_object_reference(
SimpleFactoryHelper.id(),
"simple_factory",
null
);

// Register the factory reference with the FactoryFinder

TP.register_factory(
factory_reference,
SimpleFactoryHelper.id()
);

return true;

} catch (Exception e){
TP.userlog("Couldn't initialize server: " +
e.getMessage());
e.printStackTrace();
return false;

}
}

/** Method to shutdown the server*/

public void release()
{

try {
TP.unregister_factory(

factory_reference,
SimpleFactoryHelper.id()

);
} catch (Exception e){

TP.userlog("Couldn't unregister the
SimpleFactory: " + e.getMessage());
e.printStackTrace();

}
}

}

Getting Started 4-15

4 Developing WebLogic Enterprise CORBA Applications

s.

4-5.
Defining an Object’s Activation Policies

As part of server development, you determine what events cause an object to be
activated and deactivated by assigning object activation policies, as follows:

� For C++ server applications, specify object activation policies in the
Implementation Configuration File (ICF). A template ICF file is created by the
genicf command.

� For Java server applications, specify object activation policies in the Server
Description File, written in Extensible Markup Language (XML).

Note: You also define transaction policies in the ICF and Server Description File
For information about using transactions in your WebLogic Enterprise
CORBA application, seeUsing Transactionsin the WebLogic Enterprise
online documentation.

The WebLogic Enterprise software supports the activation policies listed in Table

Table 4-5 Activation Policies

Activation Policy Description

method Causes the object to be active only for the duration of the
invocation on one of the object’s operations. This is the default
activation policy.

transaction Causes the object to be activated when an operation is invoked
on it. If the object is activated within the scope of a transaction,
the object remains active until the transaction is either
committed or rolled back.

process Causes the object to be activated when an operation is invoked
on it, and to be deactivated only when one of the following
occurs:

� The process in which the server application exists is shut
down.

� The methodTP::deactivateEnable() (C++) or
com.beasys.Tobj.TP.deactivateEnable()
(Java) has been invoked on the object.
4-16 Getting Started

Step 3: Write the Server Application

d

able

u do

tes
The Simple interface in the Simpapp sample application is assigned the default
activation policy of method. For more information about managing object state an
defining object activation policies, seeCreating CORBA C++ Server Applicationsand
Creating CORBA Java Server Applicationsin the WebLogic Enterprise online
documentation.

Creating and Registering a Factory

If your server application manages a factory that you want client applications to be
to locate easily, you need to write the code that registers that factory with the
FactoryFinder object.

To write the code that registers a factory managed by your server application, yo
the following:

1. Create an object reference to the factory.

You include an invocation to thecreate_object_reference() method,
specifying the Interface Repository ID of the factory’s OMG IDL interface or
the object ID (OID) in string format. In addition, you can specify routing
criteria.

2. Register the factory with the WebLogic Enterprise domain.

Use theregister_factory() method to register the factory with the
FactoryFinder object in the WebLogic Enterprise domain. The
register_factory() method requires the object reference for the factory and
a string identifier.

Listing 4-7 includes the code from the C++ Simpapp sample application that crea
and registers a factory.

Listing 4-7 C++ Example of Creating and Registering a Factory

...
CORBA::Object_var v_reg_oref =

TP:create_object_reference(
_tc.SimpleFactory->id(), //Factory Interface ID
“simplefactory”, //Object ID
CORBA::NVList::_nil() //Routing Criteria

);
Getting Started 4-17

4 Developing WebLogic Enterprise CORBA Applications

me

tes
TP::register_factory(
CORBA::Object_var v_reg_oref.in(),
_tc_SimpleFactory->id(),

);
...

In Listing 4-7, notice the following:

� tc.SimpleFactory->id() specifies the SimpleFactory object's Interface
Repository ID by extracting it from its typecode.

� CORBA::NVList::_nil() specifies that no routing criteria are used, with the
result that an object reference created for the Simple object is routed to the sa
group as the SimpleFactory object that created the object reference.

Listing 4-8 includes the code from the Java Simpapp sample application that crea
and registers a factory.

Listing 4-8 Java Example of Creating and Registering a Factory

...

// Save the Simple factory name.
SimpleFName = new String(args[0]);

org.omg.CORBA.Object simple_oref =
TP.create_object_reference(
SimpApp.SimpleHelper.id(), // Repository ID
SimpleFName, // Object ID
null // Routing Criteria
);

// Register the factory reference with the factory finder.

TP.register_factory(
fact_oref, // factory object referenc
SimpleFName // factory name
);

...
4-18 Getting Started

Step 3: Write the Server Application

n of

are

can
e
e
ss

n's

g

the
Releasing the Server Application

You need to include code in your server application to perform a graceful shutdow
the server application. Therelease() method is provided for that purpose. Within the
release() method, you may perform any application-specific cleanup tasks that
specific to the server application, such as:

� Unregistering object factories managed by the server application

� Deallocating resources

� Closing any databases

� Closing an XA resource manager

Once a server application receives a request to shut down, the server application
no longer receive requests from other remote objects. This has implications on th
order in which server applications should be shut down, which is an administrativ
task. For example, do not shut down one server process if a second server proce
contains an invocation in itsrelease() method to the first server process.

During server shutdown, you may want to unregister each of the server applicatio
factories. The invocation of theunregister_factory() method should be one of the
first actions in therelease() implementation. Theunregister_factory() method
unregisters the server application's factories. This operation requires the followin
input arguments:

� The object reference for the factory

� A string identifier, based on the factory object's interface typecode, used to
identify the Interface Repository ID of the object's OMG IDL interface

Listing 4-9 includes C++ code that releases a server application and unregistered
factories in the server application.

Listing 4-9 C++ Example of Releasing a WebLogic Enterprise Server
Application

...
public void release()
{

TP::unregister_factory(
Getting Started 4-19

4 Developing WebLogic Enterprise CORBA Applications

d the
factory_reference.in(),
SimpleFactoryHelper->id
);

}

...

Listing 4-10 includes Java code that releases a server application and unregistere
factories in the server application.

Listing 4-10 Java Example of Releasing a WebLogic Enterprise Server
Application

...
/**
* Method to shutdown the server.
*/
public void release)()
{

//This method will only be called if Server.initialize()
//succeeded, therefore, we know that the factory has been
//registered with the factory finder.

//Unregister the factory.
//Use a try block since cleanup code should not throw
//exceptions.

try{
TP.unregister_factory(

fact_ref, //factory object reference
SimpleFactoryHelper.id() //factory repository id
);

}catch (Exception e){
//Some exception occurred. The call to TP.userlog()
//will put the message in the ULOG file.

TP.userlog("Couldn’t unregister the SimpleFactory:"
+e.getMessage());

e.printStackTrace();
}
}
...
4-20 Getting Started

Step 4: Write the Client Application

ns:

h

ple
Step 4: Write the Client Application

The WebLogic Enterprise software supports the following types of client applicatio

� CORBA C++

� CORBA Java

� CORBA Java applets

� ActiveX

The steps for creating client applications are as follows:

1. Initialize the ORB.

2. Use the Bootstrap environmental object to establish communication with the
WebLogic Enterprise domain.

3. Resolve initial references to the FactoryFinder environmental object.

4. Use a factory to get an object reference for the desiredCORBA object.

5. Invoke methods on the CORBA object.

Note: For information about creating an ActiveX client application, seeWebLogic
Enterprise ActiveX Client Developer’s Guidein the WebLogic Enterprise
online documentation.

The client development steps are illustrated in Listing 4-11 and Listing 4-12, whic
include code from the Simpapp sample application. In the Simpapp sample
application, the client application uses a factory to get an object reference to the Sim
object and then invokes theto_upper() andto_lower() methods on the Simple
object.
Getting Started 4-21

4 Developing WebLogic Enterprise CORBA Applications
Listing 4-11 C++ Client Application From the Simpapp Sample Application

int main(int argc, char* argv[])
{

try {
// Initialize the ORB
CORBA::ORB_var var_orb = CORBA::ORB_init(argc, argv, "");

// Create the Bootstrap object
Tobj_Bootstrap bootstrap(var_orb.in(), "");

// Use the Bootstrap object to find the FactoryFinder
CORBA::Object_var var_factory_finder_oref =

bootstrap.resolve_initial_references("FactoryFinder");

// Narrow the FactoryFinder
Tobj::FactoryFinder_var var_factory_finder_reference =

Tobj::FactoryFinder::_narrow
(var_factory_finder_oref.in());

// Use the factory finder to find the Simple factory
CORBA::Object_var var_simple_factory_oref =
var_factory_finder_reference->find_one_factory_by_id(
_tc_SimpleFactory->id()
);

// Narrow the Simple factory
SimpleFactory_var var_simple_factory_reference =

SimpleFactory::_narrow(
var_simple_factory_reference.in());

// Find the Simple object
Simple_var var_simple =

var_simple_factory_reference->find_simple();

// Get a string from the user
cout << "String?";
char mixed[256];
cin >> mixed;

// Convert the string to upper case :
CORBA::String_var var_upper = CORBA::string_dup(mixed);
var_simple->to_upper(var_upper.inout());
cout << var_upper.in() << endl;

// Convert the string to lower case
CORBA::String_var var_lower = var_simple->to_lower(mixed);
cout << var_lower.in() << endl;
4-22 Getting Started

Step 4: Write the Client Application
return 0;
}

}

Listing 4-12 Java Client Application From the Simpapp Sample Application

public class SimpleClient
{

public static void main(String args[])

// Initialize the ORB.
ORB orb = ORB.init(args, null);

// Create the Bootstrap object
Tobj_Bootstrap bootstrap = new Tobj_Bootstrap(orb, "");

// Use the Bootstrap object to locate the FactoryFinder
org.omg.CORBA.Object factory_finder_reference =
bootstrap.resolve_initial_references("FactoryFinder");

// Narrow the FactoryFinder
FactoryFinder factory_finder_reference =
FactoryFinderHelper.narrow(factory_finder_reference);

// Use the FactoryFinder to find the Simple factory.
org.omg.CORBA.Object simple_factory_reference =
factory_finder_reference.find_one_factory_by_id
(SimpleFactoryHelper.id());

// Narrow the Simple factory
SimpleFactory simple_factory_reference =
SimpleFactoryHelper.narrow(simple_factory_reference);

// Find the Simple object.
Simple simple = simple_factory_reference.find_simple();

// Get a string from the user.
System.out.println("String?");
String mixed = in.readLine();

// Convert the string to upper case.
org.omg.CORBA.StringHolder buf = new
org.omg.CORBA.StringHolder(mixed);

simple.to_upper(buf);
System.out.println(buf.value);
Getting Started 4-23

4 Developing WebLogic Enterprise CORBA Applications

to
behalf
ust

em,

XA
the

er,
e
y be
// Convert the string to lower case.
String lower = simple.to_lower(mixed);
System.out.println(lower);

}
}

Step 5: Create an XA Resource Manager

When using transactions in a WebLogic Enterprise CORBA application, you need
create a server process for the resource manager that interacts with a database on
of the WebLogic Enterprise CORBA application. The resource manager you use m
conform to the X/OPEN XA specification and you need the following information
about the resource manager:

� The name of the structure of typexa_switch_t that contains the name of the
XA resource manager.

� Flags indicating the capabilities of the XA resource manager and function
pointers for the actual XA functions.

� The name of the object files that provide the services of the XA interface.

� The commands needed to open and close the XA resource manager. This
information is specified in theOPENINFOandCLOSEINFOparameters in the
UBBCONFIGconfiguration file.

When integrating a new XA resource manager into the WebLogic Enterprise syst
the file$TUXDIR/udataobj/RM must be updated to include information about the XA
resource manager. The information is used to include the correct libraries for the
resource manager and to automatically and properly set up the interface between
transaction manager and the XA resource manager. The format of this file is as
follows:

rm_name: rm_structure_name : library_names

whererm_name is the name of the XA resource manager,rm_structure_name is the
name of thexa_switch_t structure that defines the name of the XA resource manag
andlibrary_names is the list of the object files for the XA resource manager. Whit
space (tabs and/or spaces) is allowed before and after each of the values and ma
4-24 Getting Started

Step 6: Create a Configuration File

d

er.

ns

ing
client

file
tions,

ing
embedded within thelibrary_names . The colon (:) character may not be embedde
within any of the values. Lines beginning with a pound sign (#) are treated as
comments and are ignored.

Use thebuildtms command to build a server process for the XA resource manag
The files that result from thebuildtms command need to be installed in the
$TUXDIR/bin directory.

For more information about thebuildtms command, seeCommands, System
Processes, and MIB Referencein the WebLogic Enterprise online documentation.

Step 6: Create a Configuration File

Because the WebLogic Enterprise software offers great flexibility and many optio
to application designers and programmers, no two applications are alike. An
application, for example, may be small and simple (a single client and server runn
on one machine) or complex enough to handle transactions among thousands of
and server applications. For this reason, for every WebLogic Enterprise CORBA
application being managed, the system administrator must provide a configuration
that defines and manages the components (for example, domains, server applica
client applications, and interfaces) of that application.

When system administrators create a configuration file, they are describing the
WebLogic Enterprise application using a set of parameters that the WebLogic
Enterprise software interprets to create a runnable version of the application. Dur
the setup phase of administration, the system administrator’s job is to create a
configuration file. The configuration file contains the sections listed in Table 4-6.

Table 4-6 Sections in the Configuration File for WebLogic Enterprise CORBA
Applications

Sections in the
Configuration File

Description

RESOURCES Defines defaults (for example, user access and the main
administration machine) for the WebLogic Enterprise CORBA
application.
Getting Started 4-25

4 Developing WebLogic Enterprise CORBA Applications
Listing 4-13 shows the configuration file for the Simpapp sample application.

Listing 4-13 Configuration File for Simpapp Sample Application

*RESOURCES
IPCKEY 55432
DOMAINID simpapp
MASTER SITE1
MODEL SHM
LDBAL N

*MACHINES
"PCWIZ"
LMID = SITE1
APPDIR = "C:\WLEDIR\MY_SIM~1"
TUXCONFIG = "C:\WLEDIR\MY_SIM~1\results\tuxconfig"

MACHINES Defines hardware-specific information about each machine
running in the WebLogic Enterprise CORBA application.

GROUPS Defines logical groupings of server applications or CORBA
interfaces.

SERVERS Defines the server application processes (for example, the
Transaction Manager) used in the WebLogic Enterprise
CORBA application.

SERVICES Defines parameters for services provided by the WebLogic
Enterprise application.

INTERFACES Defines information about the CORBA interfaces in the
WebLogic Enterprise CORBA application.

JDBCONNPOOLS Describes the pooling of JDBC connections for Java servers.

ROUTING Defines routing criteria for the WebLogic Enterprise CORBA
application.

Table 4-6 Sections in the Configuration File for WebLogic Enterprise CORBA
Applications (Continued)

Sections in the
Configuration File

Description
4-26 Getting Started

Step 6: Create a Configuration File
TUXDIR = "C:\WLEDIR"
MAXWSCLIENTS = 10

*GROUPS
SYS_GRP
LMID = SITE1
GRPNO = 1
APP_GRP
LMID = SITE1
GRPNO = 2

*SERVERS
DEFAULT:

RESTART = Y
MAXGEN = 5

TMSYSEVT
SRVGRP = SYS_GRP
SRVID = 1

TMFFNAME
SRVGRP = SYS_GRP
SRVID = 2
CLOPT = "-A -- -N -M"

TMFFNAME
SRVGRP = SYS_GRP
SRVID = 3
CLOPT = "-A -- -N"

TMFFNAME
SRVGRP = SYS_GRP
SRVID = 4
CLOPT = "-A -- -F"

simple_server
SRVGRP = APP_GRP
SRVID = 1
RESTART = N

ISL
SRVGRP = SYS_GRP
SRVID = 5
CLOPT = "-A -- -n //PCWIZ:2468"

*SERVICES

When creating Java server applications, include theJavaServer parameter in the
UBBCONFIGfile to start the Java server application. For example:

*SERVERS
.
.
.

JavaServer
Getting Started 4-27

4 Developing WebLogic Enterprise CORBA Applications

ied

n

SRVTYPE = JAVA
MODULES = Bankapp.jar
SRVGRP = APP_GRP
SRVID = 2
SYSTEM_ACCESS = FASTPATH
CLOPT = “-A -- -M 10 TellerFactory_1”
RESTART = N

If you are using an XA resource manager, use theJavaServerXA parameter in place
of theJavaServer parameter to associate the XA resource manager with a specif
server group. You need to include the information to open and close the resource
manager in theOPENINFOandCLOSEINFOparameters in theGROUPSsection of the
UBBCONFIGfile. The information needed to open and close the resource manager
should be provided by the manufacturer of the resource manager.

Step 7: Create the TUXCONFIG File

There are two forms of the configuration file:

� An ASCII version of the file, created and modified with any editor. Throughout
the WebLogic Enterprise documentation, the ASCII version of the configuratio
file is referred to as theUBBCONFIGfile. The configuration file may, in fact, be
given any filename.

� TheTUXCONFIGfile, a binary version of theUBBCONFIGfile created using the
tmloadcf command. When thetmloadcf command is executed, the
environment variableTUXCONFIGmust be set to the name and directory location
of theTUXCONFIGfile. The tmloadcf command converts the configuration file
to binary form and writes it to the location specified in the command.

For more information about thetmloadcf command, seeCommands, System
Processes, and MIB Referencein the WebLogic Enterprise online documentation.
4-28 Getting Started

Step 8: Compile the Server Application

.

ou

ory
can
Step 8: Compile the Server Application

You use thebuildobjserver command to compile and link C++ server applications
Thebuildobjserver command has the following format:

buildobjserver [-o servername] [options]

In thebuildobjserver command syntax:

� -o servername represents the name of the server application to be generated
by this command.

� options represents the command-line options to thebuildobjserver

command.

When creating Java server applications, use thejavac compiler to create the
bytecodes for all the class files that comprise your WebLogic Enterprise CORBA
application. This set of files includes the*.java source files generated by the
m3idltojava compiler, plus the object implementation files and server class files y
created.

You use thebuildjavaserver command to build a Java ARchive (JAR) file and link
the Java server applications. Thebuildjavaserver command has the following
format:

buildjavaserver [-s searchpath] input_file .xml

In thebuildjavaserver command syntax:

� -s searchpath is used to locate the classes and packages when building the
archive. If this optional value is not specified, it defaults to the value of the
CLASSPATHenvironment variable.

� input_file is the name of the XML Server Description File.

You then need to specify in theAPPDIR system environment variable the location of
the JAR file for your Java server application. On Windows NT systems, this direct
must be on a local drive (not a networked drive). On Solaris systems, the directory
be local or remote.
Getting Started 4-29

4 Developing WebLogic Enterprise CORBA Applications

he
ink

ated

tion

ise
ed
Step 9: Compile the Client Application

The final step in the development of the CORBA client application is to produce t
executable client application. To do this, you need to compile the code and then l
against the client stub.

When creating CORBA C++ client applications, use thebuildobjclient command
to construct a WebLogic Enterprise client application executable. The command
combines the client stubs for interfaces that use static invocation, and the associ
header files, with the standard WebLogic Enterprise libraries to form a client
executable. For the syntax of thebuildobjclient command, seeCommands,
System Processes, and MIB Referencein the WebLogic Enterprise online
documentation.

When creating CORBA Java client applications, see your Java ORB’s documenta
for information about building client executables. You need to include the
wledir\udataobj\java\jdk\m3envobj.jar file in your CLASSPATHwhen you
compile the CORBA Java client application. Them3envobj.jar file contains the Java
classes for the WebLogic Enterprise environmental objects.

Step 10: Start the WebLogic Enterprise
CORBA Application

Use the tmboot command to start the server processes in your WebLogic Enterpr
CORBA application. The WebLogic Enterprise CORBA application is usually boot
from the machine designated as theMASTERin theRESOURCESsection of the
UBBCONFIGfile.

For thetmboot command to find executables, the WebLogic Enterprise system
processes must be located in$TUXDIR/bin . Server applications should be inAPPDIR,

as specified in the configuration file.
4-30 Getting Started

Additional WebLogic Enterprise CORBA Sample Applications

nt
on.
the
ps.

ons.

a

When booting server applications, thetmboot command uses theCLOPT, SEQUENCE,
SRVGRP, SRVID, andMIN parameters from the configuration file. Server applications
are booted in the order in which they appear in the configuration file.

For more information about using thetmboot command, seeCommands, System
Processes, and MIB Referencein the WebLogic Enterprise online documentation.

Additional WebLogic Enterprise CORBA
Sample Applications

Sample applications demonstrate the tasks involved in developing a WebLogic
Enterprise CORBA application, and provide sample code that can be used by clie
and server programmers to build their own WebLogic Enterprise CORBA applicati
Code from the sample applications are used throughout the information topics in
WebLogic Enterprise product to illustrate the development and administrative ste
For information about building and running the sample applications, seeSamplesin
the WebLogic Enterprise online documentation.

Table 4-7 describes the additional WebLogic Enterprise CORBA sample applicati

Table 4-7 The WebLogic Enterprise CORBA Sample Applications

WebLogic Enterprise
CORBA
Sample Application

Description

Simpapp Provides a C++ client application and a C++ server
application. The C++ server application contains two
operations that manipulate strings received from the C++
client application.

Java Simpapp Provides a Java client application and a Java server
application. The Java server application contains two
operations that manipulate strings received from the Jav
client application.
Getting Started 4-31

4 Developing WebLogic Enterprise CORBA Applications

d

n

o

g

a

Basic Describes how to develop WebLogic Enterprise client an
server applications and configure the WebLogic
Enterprise application. Building C++ server applications
and CORBA C++, CORBA Java, and ActiveX client
applications are demonstrated.

Security Demonstrates adding Tuxedo authentication to a
WebLogic Enterprise application. For information about
building and running the Security sample application, see
Using Securityin the WebLogic Enterprise online
documentation.

Transactions Adds transactional objects to the C++ server applicatio
and client applications in the Basic sample application.
The Transactions sample application demonstrates how t
use the Implementation Configuration File (ICF) to define
transaction policies for CORBA objects. For information
about building and running the Transactions sample
application, seeUsing Transactionsin the WebLogic
Enterprise online documentation.

Wrapper Demonstrates how to wrap an existing BEA Tuxedo
application as a CORBA object.

Production Demonstrates replicating server applications, creating
stateless objects, and implementing factory-based routin
in server applications.

JDBC Bankapp Implements an automatic teller machine (ATM) interface
and uses Java Database Connectivity (JDBC) to access
database that stores account and customer information.
For information about building and running the JDBC
Bankapp sample application, seeUsing Transactionsin
the WebLogic Enterprise online documentation.

Table 4-7 The WebLogic Enterprise CORBA Sample Applications (Continued)

WebLogic Enterprise
CORBA
Sample Application

Description
4-32 Getting Started

Additional WebLogic Enterprise CORBA Sample Applications

e

n
+

s

a

XA Bankapp Implements the same ATM interface as JDBC Bankapp;
however, XA Bankapp uses a database XA library to
demonstrate using the Transaction Manager to coordinat
transactions. For information about building and running
the XA Bankapp sample application, seeUsing
Transactionsin the WebLogic Enterprise online
documentation.

Secure Simpapp Implements the necessary development and
administrative changes to the Simpapp sample applicatio
to support certificate-based authentication. Java and C+
versions are provided. For information about building and
running the Secure Simpapp sample application, see
Using Securityin the WebLogic Enterprise online
documentation.

Introductory Events Demonstrates how to use joint client/server application
and callback objects to implement events in a WebLogic
Enterprise CORBA application. The C++ version uses the
BEA Simple Events API and the Java version uses the
CosNotification API. For information about building and
running the Introductory Events sample application, see
Using the Notification Servicein the WebLogic Enterprise
online documentation.

Advanced Events Provides a more complex implementation of events in
WebLogic Enterprise CORBA application with transient
and persistent subscriptions and data filtering. The C++
version uses the BEA Simple Events API and the Java
version uses the CosNotification API. For information
about building and running the Advanced Events sample
application, seeUsing the Notification Servicein the
WebLogic Enterprise online documentation.

Table 4-7 The WebLogic Enterprise CORBA Sample Applications (Continued)

WebLogic Enterprise
CORBA
Sample Application

Description
Getting Started 4-33

4 Developing WebLogic Enterprise CORBA Applications
4-34 Getting Started

CHAPTER

see

n is
t to
rise
5 Using Security

This topic includes the following sections:

� Overview of the Security Service

� How Security Works

� The Security Sample Application

� Development Steps

Note: This chapter describes using username/password authentication. For a
complete description of all the security features available in the WebLogic
Enterprise product and instructions for implementing the security features,
Using Securityin the WebLogic Enterprise online documentation.

Overview of the Security Service

The WebLogic Enterprise product offers a security model based on the
CORBAservices Security Service. The WebLogic Enterprise security model
implements the authentication portion of the CORBAservices Security Service.

Security information is defined on a domain basis. The security level for the domai
defined in the configuration file. Client applications use the SecurityCurrent objec
provide the necessary authentication information to log on to the WebLogic Enterp
domain.
Getting Started 5-1

5 Using Security

,

n

n
me

ials
The following levels of authentication are provided:

� TOBJ_NOAUTH

No authentication is needed; however, the client application may still
authenticate itself, and may specify a username and a client application name
but no password.

� TOBJ_SYSAUTH

The client application must authenticate itself to the WebLogic Enterprise
domain and must specify a username, client application name, and applicatio
password.

� TOBJ_APPAUTH

In addition to the TOBJ_SYSAUTH information, the client application must
provide application-specific information. If the default WebLogic Enterprise
authentication service is used in the application configuration, the client
application must provide a user password; otherwise, the client application
provides authentication data that is interpreted by the custom authentication
service in the application.

Note: If a client application is not authenticated and the security level is
TOBJ_NOAUTH, the IIOP Listener/Handler of the WebLogic Enterprise domai
registers the client application with the username and client application na
sent to the IIOP Listener/Handler.

In the WebLogic Enterprise software, only the PrincipalAuthenticator and Credent
properties on the SecurityCurrent object are supported. For a description of the
SecurityLevel1::Current and SecurityLevel2::Current interfaces, see the
C++ and Java topics inCommands, System Processes, and MIB Referencein the
WebLogic Enterprise online documentation.

How Security Works

Figure 5-1 illustrates how security works in a WebLogic Enterprise domain.
5-2 Getting Started

How Security Works

the
Figure 5-1 How Security Works in a WebLogic Enterprise Domain

The steps are as follows:

1. The client application uses the Bootstrap object to return an object reference to
SecurityCurrent object for the WebLogic Enterprise domain.

2. The client application obtains the PrincipalAuthenticator.

3. The client application uses the
Tobj::PrincipalAuthenticator::get_auth_type() method to get the
authentication level for the WebLogic Enterprise domain.

4. The proper authentication level is returned to the client application.

5. The client application uses theTobj::PrincipalAuthenticator::logon()

method to log on to the WebLogic Enterprise domain with the proper
authentication information.

Client
Application

WLE Domain

Bootstrap Object
Tobj_Bootstrap

(orb,//sling.com,2143)

or
Tobj_Bootstrap

(orb,corblocs://sling.com, 2143)

logon(username ,
application_name ,
passwor d);

SecurityCurrent Object
PrincipalAuthenticator

get_auth_type();

Object Reference for
SecurityCurrent

Object

Authentication Level
for WLE Domain

IIOP
Listener/
Handler
Getting Started 5-3

5 Using Security

. The
n ID

e

The Security Sample Application

The Security sample application demonstrates username/password authentication
Security sample application requires each student using the application to have a
and a password. The Security sample application works in the following manner:

� The client application has alogon() operation. This operation invokes
operations on the PrincipalAuthenticator object, which is obtained as part of th
process of logging on to access the domain.

� The server application implements aget_student_details() operation on the
Registrar object to return information about a student. After the user is
authenticated, logon is complete and theget_student_details() operation
accesses the student information in the database to obtain the student
information needed by the client logon operation.

� The database in the Security sample application contains course and student
information.

Figure 5-2 illustrates the Security sample application.
5-4 Getting Started

The Security Sample Application
Figure 5-2 Security Sample Application

The source files for the Security sample application are located in the
\samples\corba\university directory in the WebLogic Enterprise software. For
information about building and running the Security sample application, seeUsing
Securityin the WebLogic Enterprise online documentation.

CORBA Java
Client

Application

CORBA C++
Client

Application

ActiveX Client
Application

Database

logon()

Security Required

Server
Application

Registrar Object

get_student_details()

browse_courses()

get_course_details()

CORBA
Getting Started 5-5

5 Using Security
Development Steps

Table 5-1 lists the development steps for writing a WebLogic Enterprise CORBA
application that has username/password authentication security.

Table 5-1 Development Steps for WebLogic Enterprise CORBA Applications
That Have Security

Step 1: Define the Security Level in the Configuration File

The security level for a WebLogic Enterprise domain is defined by setting the
SECURITYparameter in theRESOURSESsection of the configuration file to the desired
security level. Table 5-2 lists the options for theSECURITYparameter.

Table 5-2 Options for the SECURITY Parameter

Step Description

1 Define the security level in the configuration file.

2 Write the CORBA client application.

Option Definition

NONE No security is implemented in the domain. This option is the
default. This option maps to the TOBJ_NOAUTH level of
authentication.

APP_PW Requires that client applications provide an application
password during initialization. Thetmloadcf command
prompts for an application password. This option maps to the
TOBJ_APPAUTH level of authentication.

USER_AUTH Requires an application password and performs a per-user
authentication during the initialization of the client application.
This option maps to the TOBJ_SYSAUTH level of
authentication.
5-6 Getting Started

Development Steps

r the

.

va
nt
In the Security sample application, theSECURITYparameter is set toAPP_PWfor
application-level security. For information about adding security to a WebLogic
Enterprise CORBA application, seeUsing Securityin the WebLogic Enterprise online
documentation.

Step 2: Write the CORBA Client Application

Write client application code that does the following:

1. Uses the Bootstrap object to obtain a reference to the SecurityCurrent object fo
specific WebLogic Enterprise domain.

2. Gets the PrincipalAuthenticator object from the SecurityCurrent object.

3. Uses theget_auth_type() operation of the PrincipalAuthenticator object to
return the type of authentication expected by the WebLogic Enterprise domain

Listing 5-1 and Listing 5-2 include the portions of the CORBA C++ and CORBA Ja
client applications in the Security sample application that illustrate the developme
steps for security.

Listing 5-1 Example of Security in a CORBA C++ Client Application

CORBA::Object_var var_security_current_oref =
bootstrap.resolve_initial_references(“SecurityCurrent”);

SecurityLevel2::Current_var var_security_current_ref =
SecurityLevel2::Current::_narrow(var_security_current_oref.in());

//Get the PrincipalAuthenticator
SecurityLevel2::PrincipalAuthenticator_var var_principal_authenticator_oref =

var_security_current_ref->principal_authenticator();
//Narrow the PrincipalAuthenticator
Tobj::PrincipalAuthenticator_var var_bea_principal_authenticator =

Tobj::PrincipalAuthenticator::_narrow
var_principal_authenticator_oref.in());

//Determine the security level
Tobj::AuthType auth_type = var_bea_principal_authenticator->get_auth_type();
Security::AuthenticationStatus status = var_bea_principalauthenticator->logon(

user_name,
client_name,
Getting Started 5-7

5 Using Security
system_password,
user_password,
0);

Listing 5-2 Example of Security in a CORBA Java Client Application

org.omg.CORBA.Object SecurityCurrentObj =
gBootstrapObjRef.resolve_initial_references(“SecurityCurrent”);

org.omg.SecurityLevel2.Current secCur =
org.omg.SecurityLevel2.CurrentHelper.narrow(secCurObj);

//Get the PrincipalAuthenticator
org.omg.SecurityLevel2.PrincipalAuthenticator authlevel2 =

secCur.principal_authenticator();
//Narrow the PrincipalAuthenticator
com.beasys.Tobj.PrincipalAuthenticatorObjRef gPrinAuthObjRef =

(com.beasys.Tobj.PrincipalAuthenticator)
org.omg.SecurityLevel2.PrincipalAuthenticatorHelper.narrow(authlevel2);

//Determine the security level
com.beasys.Tobj.Authtype authType = gPrinAuthObjRef.get_auth_type();

org.omg.Security.AuthenticationStatus status = gPrinAuthObjRef.logon
(gUserName, ClientName, gSystemPassword, gUserPassword,0);
5-8 Getting Started

CHAPTER

t
res

n.
6 Using Transactions

This topic includes the following sections:

� Overview of the Transaction Service

� What Happens During a Transaction

� Transactions Sample Application

� Development Steps

Note: This topic describes using the C++ interface to the CORBAservices Objec
Transaction service. For a complete description of all the transaction featu
available in the WebLogic Enterprise product and instructions for
implementing the transaction features, seeUsing Transactionsin the
WebLogic Enterprise online documentation.

Overview of the Transaction Service

One of the most fundamental features of the WebLogic Enterprise product is
transaction management. Transactions are a means to guarantee that database
transactions are completed accurately and that they take on all theACID properties
(atomicity, consistency, isolation, and durability) of a high-performance transactio
The WebLogic Enterprise system protects the integrity of your transactions by
providing a complete infrastructure for ensuring that database updates are done
accurately, even across a variety of resource managers.
Getting Started 6-1

6 Using Transactions

tion

d
or

nc.

ions:

n
it.

ey
The WebLogic Enterprise system includes the following:

� The CORBAservices Object Transaction Service (OTS) and the Java Transac
Service (JTS)

The WebLogic Enterprise product provides a C++ interface to the OTS and a
Java interface to the OTS via the JTS. The JTS is the Sun Microsystems, Inc.
Java interface for transaction services, and is based on the OTS. The OTS an
the JTS are accessed through the TransactionCurrent environmental object. F
information about using the TransactionCurrent environmental object, see
CORBA C++ Programming Referenceor CORBA Java Programming Reference
in the WebLogic Enterprise online documentation.

� The Sun Microsystems, Inc. Java Transaction API (JTA)

Only the application-level demarcation interface
(javax.transaction.UserTransaction) is supported. For information about
JTA, refer to the following:

� The javax.transaction package description in theAPI Javadoc.

� The Java Transaction API specification, published by Sun Microsystems, I
and available from the Sun Microsystems, Inc. Web site.

OTS, JTS, and JTA each provide the following support for your business transact

� Creates a global transaction identifier when a client application initiates a
transaction.

� Works with the TP Framework to track objects that are involved in a transactio
and, therefore, need to be coordinated when the transaction is ready to comm

� Notifies the resource managers—which are, most often, databases—when th
are accessed on behalf of a transaction. Resource managers then lock the
accessed records until the end of the transaction.

� Orchestrates the two-phase commit when the transaction completes, which
ensures that all the participants in the transaction commit their updates
simultaneously. It coordinates the commit with any databases that are being
updated using The Open Group XA protocol. Almost all relational databases
support this standard.

� Executes the rollback procedure when the transaction must be stopped.
6-2 Getting Started

What Happens During a Transaction
� Executes a recovery procedure when failures occur. It determines which
transactions were active in the machine at the time of the crash, and then
determines whether the transaction should be rolled back or committed.

What Happens During a Transaction

Figure 6-1 illustrates how transactions work in a WebLogic Enterprise CORBA
application.

Figure 6-1 How Transactions Work in a WebLogic Enterprise CORBA
Application

Client
Application

WLE Domain

Bootstrap Object
Object Reference for
TransactionCurrent

Object

Transaction Manager

TP Framework

activate_object()
register_for_courses()

deactivate_object()

begin()
register_for_courses()

commit()

Database

TransactionCurrent
Object
Getting Started 6-3

6 Using Transactions

the

s

n

ee

the
a

A basic transaction works in the following way:

1. The client application uses the Bootstrap object to return an object reference to
TransactionCurrent object for the WebLogic Enterprise domain.

2. A client application begins a transaction using the
Tobj::TransactionCurrent::begin() method, and issues a request to the
CORBA interface through the TP Framework. All operations on the CORBA
interface execute within the scope of a transaction.

� If a call to any of these operations raises an exception (either explicitly or a
a result of a communication failure), the exception can be caught and the
transaction can be rolled back.

� If no exceptions occur, the client application commits the current transactio
using theTobj::TransactionCurrent::commit() method. This method
ends the transaction and starts the processing of the operation. The
transaction is committed only if all of the participants in the transaction agr
to commit.

3. TheTobj::TransactionCurrent:commit() method causes the TP Framework
to call the Transaction Manager to complete the transaction.

4. The Transaction Manager updates the database.

Transactions Sample Application

In the Transactions sample application, the operation of registering for courses is
executed within the scope of a transaction. The transaction model used in the
Transactions sample application is a combination of the conversational model and
model in which a single client invocation invokes multiple individual operations on
database.

The Transactions sample application works in the following way:

1. Students submit a list of courses for which they want to be registered.

2. For each course in the list, the server application checks whether:

� The course is in the database
6-4 Getting Started

Transactions Sample Application

ent

r

e,

t

� The student is already registered for a course

� The student exceeds the maximum number of credits the student can take

3. One of the following occurs:

� If the course meets all the criteria, the server application registers the stud
for the course.

� If the course is not in the database or if the student is already registered fo
the course, the server application adds the course to a list of courses for
which the student could not be registered. After processing all the
registration requests, the server application returns the list of courses for
which registration failed. The client application can then choose to either
commit the transaction (thereby registering the student for the courses for
which registration request succeeded) or to roll back the transaction (thus,
not registering the student for any of the courses).

� If the student exceeds the maximum number of credits the student can tak
the server application returns aTooManyCredits user exception to the client
application. The client application provides a brief message explaining tha
the request was rejected. The client application then rolls back the
transaction.

Figure 6-2 illustrates how the Transactions sample application works.
Getting Started 6-5

6 Using Transactions

be

er

tes
l

pp
Figure 6-2 Transactions Sample Application

The Transactions sample application shows two ways in which a transaction can
rolled back:

� Nonfatal. If the registration for a course fails because the course is not in the
database, or because the student is already registered for the course, the serv
application returns the numbers of those courses to the client application. The
decision to roll back the transaction lies with the user of the client application.

� Fatal. If the registration for a course fails because the student exceeds the
maximum number of credits he or she can take, the server application genera
a CORBA exception and returns it to the client application. The decision to rol
back the transaction also lies with the client application.

Note: For information about how transactions are implemented in WebLogic
Enterprise CORBA Java applications, see the description of the XA Banka
sample application inUsing Transactionsin the WebLogic Enterprise online
documentation.

CORBA Java
Client

Application

CORBA C++
Client

Application

ActiveX Client
Application

browse_courses()

get_course_details()

Server
Application

Database

register_for_courses()

T

T Part of a Transaction

get_student_details()

CORBA
T

6-6 Getting Started

Development Steps

eps.

steps.

r

va

A

Development Steps

This topic describes the development steps for writing a WebLogic Enterprise
CORBA application that includes transactions. Table 6-1 lists the development st

Table 6-1 Development Steps for WebLogic Enterprise CORBA Applications
That Have Transactions

The Transactions sample application is used to demonstrate these development
The source files for the Transactions sample application are located in the
\samples\corba\university directory of the WebLogic Enterprise software. Fo
information about building and running the Transactions sample application, see
Samplesin the WebLogic Enterprise online documentation.

The XA Bankapp sample application demonstrates how to use transactions in Ja
WebLogic Enterprise CORBA applications. The source files for the XA Bankapp
sample application are located in the\samples\corba\bankapp_java directory of
the WebLogic Enterprise software. For information about building and running the X
Bankapp sample application, seeSamplesin the WebLogic Enterprise online
documentation.

Step Description

1 Write the OMG IDL code for the transactional CORBA
interface.

2 Define the transaction policies for the CORBA interface in the
Implementation Configuration file (ICF) for C++ WebLogic
Enterprise CORBA applications, or in the Server Description
File for Java WebLogic Enterprise CORBA client applications.

3 Write the client application.

4 Write the server application.

5 Create a configuration file.
Getting Started 6-7

6 Using Transactions

oup

he

e

Step 1: Write the OMG IDL Code

You need to specify interfaces involved in transactions in Object Management Gr
(OMG) Interface Definition Language (IDL) just as you would any other CORBA
interface. You must also specify any user exceptions that may occur from using t
interface.

For the Transactions sample application, you would define in OMG IDL the
Registrar interface and theregister_for_courses() operation. The
register_for_courses() operation has a parameter,NotRegisteredList, which
returns to the client application the list of courses for which registration failed. If th
value ofNotRegisteredList is empty, the client application commits the
transaction. You also need to define theTooManyCredits user exception.

Listing 6-1 includes the OMG IDL code for the Transactions sample application.

Listing 6-1 OMG IDL Code for the Transactions Sample Application

#pragma prefix "beasys.com"
module UniversityT

{
typedef unsigned long CourseNumber;
typedef sequence<CourseNumber> CourseNumberList;

struct CourseSynopsis
{

CourseNumber course_number;
string title;

};
typedef sequence<CourseSynopsis> CourseSynopsisList;

interface CourseSynopsisEnumerator
{
//Returns a list of length 0 if there are no more entries
CourseSynopsisList get_next_n(

in unsigned long number_to_get, // 0 = return all
out unsigned long number_remaining

);

void destroy();
};
6-8 Getting Started

Step 1: Write the OMG IDL Code
typedef unsigned short Days;
const Days MONDAY = 1;
const Days TUESDAY = 2;
const Days WEDNESDAY = 4;
const Days THURSDAY = 8;
const Days FRIDAY = 16;

//Classes restricted to same time block on all scheduled days,
//starting on the hour

struct ClassSchedule
{

Days class_days; // bitmask of days
unsigned short start_hour; // whole hours in military time
unsigned short duration; // minutes

};

struct CourseDetails
{

CourseNumber course_number;
double cost;
unsigned short number_of_credits;
ClassSchedule class_schedule;
unsigned short number_of_seats;
string title;
string professor;
string description;

};
typedef sequence<CourseDetails> CourseDetailsList;
typedef unsigned long StudentId;

struct StudentDetails
{

StudentId student_id;
string name;
CourseDetailsList registered_courses;

};

enum NotRegisteredReason
{

AlreadyRegistered,
NoSuchCourse

};

struct NotRegistered
{

CourseNumber course_number;
NotRegisteredReason not_registered_reason;

};
typedef sequence<NotRegistered> NotRegisteredList;
Getting Started 6-9

6 Using Transactions

d
s.
exception TooManyCredits
{

unsigned short maximum_credits;
};

//The Registrar interface is the main interface that allows
//students to access the database.
interface Registrar
{

CourseSynopsisList
get_courses_synopsis(

in string search_criteria,
in unsigned long number_to_get,
out unsigned long number_remaining,
out CourseSynopsisEnumerator rest

);

CourseDetailsList get_courses_details(in CourseNumberList
courses);

StudentDetails get_student_details(in StudentId student);
NotRegisteredList register_for_courses(

in StudentId student,
in CourseNumberList courses

) raises (
TooManyCredits

);

};

// The RegistrarFactory interface finds Registrar interfaces.

interface RegistrarFactory
{

Registrar find_registrar(
);

};

Step 2: Define Transaction Policies for the Interfaces

Transaction policies are used on a per-interface basis. During design, it is decide
which interfaces within a WebLogic Enterprise application will handle transaction
The transaction policies are:
6-10 Getting Started

Step 1: Write the OMG IDL Code

ct.

a
y

During development, you decide which interfaces will execute in a transaction by
assigning transaction policies, as follows:

� For C++ server applications, you specify transaction policies in the
Implementation Configuration File (ICF). A template ICF file is created by the
genicf command.

� For Java server applications, you specify transaction policies in the Server
Description File, written in Extensible Markup Language (XML).

In the Transactions sample application, the transaction policy of theRegistrar

interface is set toalways .

Step 3: Write the CORBA Client Application

The CORBA client application needs code that performs the following tasks:

1. Obtains a reference to the TransactionCurrent object from the Bootstrap obje

Transaction Policy Description

always The interface must always be part of a transaction. If the
interface is not part of a transaction, a transaction will be
automatically started by the TP Framework.

ignore The interface is not transactional; however, requests made to
this interface within a scope of a transaction are allowed. The
AUTOTRANparameter, specified in theUBBCONFIGfile for this
interface, is ignored.

never The interface is not transactional. Objects created for this
interface can never be involved in a transaction. The WebLogic
Enterprise system generates an exception
(INVALID_TRANSACTION) if an interface with this policy is
involved in a transaction.

optional The interface may be transactional. Objects can be involved in
transaction if the request is transactional. This transaction polic
is the default.
Getting Started 6-11

6 Using Transactions

tions.

e XA
2. Begins a transaction by invoking theTobj::TransactionCurrent::begin()

operation on the TransactionCurrent object.

3. Invokes operations on the object. In the Transactions sample application, the
client application invokes theregister_for_courses() operation on the
Registrar object, passing a list of courses.

Listing 6-2 illustrates the portion of the CORBA C++ client applications in the
Transactions sample application that illustrates the development steps for transac

For an example of a CORBA Java client application that uses transactions, see th
Bankapp sample application inGuide to the Java Sample Applicationsin the
WebLogic Enterprise online documentation.

Listing 6-2 Transactions Code for CORBA C++ Client Applications

CORBA::Object_var var_transaction_current_oref =
Bootstrap.resolve_initial_references(“TransactionCurrent”);

CosTransactions::Current_var transaction_current_oref=
CosTransactions::Current::_narrow(var_transaction_current_oref.in());

//Begin the transaction
var_transaction_current_oref->begin();
try {
//Perform the operation inside the transaction

pointer_Registar_ref->register_for_courses(student_id, course_number_list);
...

//If operation executes with no errors, commit the transaction:
CORBA::Boolean report_heuristics = CORBA_TRUE;
var_transaction_current_ref->commit(report_heuristics);

}
catch (...) {
//If the operation has problems executing, rollback the
//transaction. Then throw the original exception again.
//If the rollback fails,ignore the exception and throw the
//original exception again.
try {

var_transaction_current_ref->rollback();
}

catch (...) {
TP::userlog("rollback failed");
}

throw;
}

6-12 Getting Started

Step 1: Write the OMG IDL Code

ude
hese

, see
Step 4: Write the Server Application

When using transactions in server applications, you need to write methods that
implement the interface’s operations. In the Transactions sample application, you
would write a method implementation for theregister_for_courses() operation.

If your WebLogic Enterprise CORBA application uses a database, you need to incl
code in the server application that opens and closes an XA resource manager. T
operations are included in theServer::initialize() andServer::release()

operations of the Server object.

Listing 6-3 shows the portion of the code for the Server object in the Transactions
sample application that opens and closes the XA resource manager.

Note: For a complete example of a C++ server application that implements
transactions, see the Transactions sample application inUsing Transactionsin
the WebLogic Enterprise online documentation.

For an example of a Java server application that implements transactions
the description of the XA Bankapp sample application inUsing Transactions
in the WebLogic Enterprise online documentation.

Listing 6-3 C++ Server Object in Transactions Sample Application

CORBA::Boolean Server::initialize(int argc, char* argv[])
{

TRACE_METHOD("Server::initialize");
try {

open_database();
begin_transactional();
register_fact();
return CORBA_TRUE;

}
catch (CORBA::Exception& e) {

LOG(“CORBA exception : “ <<e);
}
catch (SamplesDBException& e) {

LOG(“Can’t connect to database”);
}
catch (...) {

LOG(“Unexpected exception”);
}
cleanup();
Getting Started 6-13

6 Using Transactions

al
return CORBA_FALSE;
}

void Server::release()
{

TRACE_METHOD(“Server::release”);
cleanup();

}

static void cleanup()
{

unregister_factory();
end_transactional();
close_database();

}
//Utilities to manage transaction resource manager

CORBA::Boolean s_became_transactional = CORBA_FALSE;
static void begin_transactional()
{

TP::open_xa_rm();
s_became_transactional = CORBA_TRUE;

}
static void end_transactional()
{

if(!s_became_transactional){
return//cleanup not necessary

}
try {

TP::close_xa_rm ();
}

catch (CORBA::Exception& e) {
LOG(“CORBA Exception : “ << e);

}
catch (...) {

LOG(“unexpected exception”);
}

s_became_transactional = CORBA_FALSE;
}

Step 5: Create a Configuration File

You need to add the following information to the configuration file for a transaction
WebLogic Enterprise CORBA application.
6-14 Getting Started

Step 1: Write the OMG IDL Code

s

te

n

� In theSERVERSsection:

� Define a server group that includes both the server application that include
the interface and the server application that manages the database. This
server group needs to be specified as transactional.

� ReplaceJavaServer with JavaServerXA to associate the XA resource
manager with a specified server group. (JavaServer uses the null RM.)

� In theOPENINFOandCLOSEINFO parameters of theGROUPSsection, include
information to open and close the XA resource manager for the database. You
obtain this information from the product documentation for your database. No
that the default version of thecom.beasys.Tobj.Server.initialize()

operation automatically opens the resource manager.

� Include the pathname to the transaction log (TLOG) in theTLOGDEVICE

parameter. For more information about the transaction log, seeAdministrationin
the WebLogic Enterprise online documentation.

Listing 6-4 includes the portions of the configuration file that define this informatio
for the Transactions sample application.

Listing 6-4 Configuration File for Transactions Sample Application

*RESOURCES
IPCKEY 55432
DOMAINID university
MASTER SITE1
MODEL SHM
LDBAL N
SECURITY APP_PW

*MACHINES
BLOTTO
LMID = SITE1
APPDIR = C:\TRANSACTION_SAMPLE
TUXCONFIG=C:\TRANSACTION_SAMPLE\tuxconfig
TLOGDEVICE=C:\APP_DIR\TLOG
TLOGNAME=TLOG
TUXDIR="C:\WLEdir"
MAXWSCLIENTS=10

*GROUPS
SYS_GRP

LMID = SITE1
Getting Started 6-15

6 Using Transactions
GRPNO = 1
ORA_GRP

LMID = SITE1
GRPNO = 2

OPENINFO = "ORACLE_XA:Oracle_XA+SqlNet=ORCL+Acc=P
/scott/tiger+SesTm=100+LogDir=.+MaxCur=5"
OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/tiger
+SesTm=100+LogDir=.+MaxCur=5"
CLOSEINFO = ""
TMSNAME = "TMS_ORA"

*SERVERS
DEFAULT:
RESTART = Y
MAXGEN = 5

TMSYSEVT
SRVGRP = SYS_GRP
SRVID = 1

TMFFNAME
SRVGRP = SYS_GRP
SRVID = 2
CLOPT = "-A -- -N -M"

TMFFNAME
SRVGRP = SYS_GRP
SRVID = 3
CLOPT = "-A -- -N"

TMFFNAME
SRVGRP = SYS_GRP
SRVID = 4
CLOPT = "-A -- -F"

TMIFRSVR
SRVGRP = SYS_GRP
SRVID = 5

UNIVT_SERVER
SRVGRP = ORA_GRP
SRVID = 1
RESTART = N

ISL
SRVGRP = SYS_GRP
SRVID = 6
CLOPT = -A -- -n //MACHINENAME:2500
6-16 Getting Started

Step 1: Write the OMG IDL Code

tion
*SERVICES

For information about the transaction log and defining parameters in the Configura
file, seeCreating a Configuration Filein the WebLogic Enterprise online
documentation.
Getting Started 6-17

6 Using Transactions
6-18 Getting Started

ise
Part III Developing
WebLogic Enterprise
EJB Applications
Chapter 7. Developing WebLogic Enterprise EJB Applications

Chapter 8. Designing Enterprise JavaBeans for the WebLogic Enterpr
System

CHAPTER

he
7 Developing WebLogic
Enterprise EJB
Applications

This chapter provides a step-by-step tutorial that explains how to create an EJB
application that you can build and run in the WebLogic Enterprise environment. T
steps described in this chapter use thestatefulSession EJB sample application
provided with the WebLogic Enterprise software. ThestatefulSession example
exists in the following location on your system:

Windows NT

$TUXDIR\samples\j2ee\ejb\basic\statefulSession

UNIX

$TUXDIR/samples/j2ee/ejb/basic/statefulSession

This topic includes the following sections:

� Overview of the Development Process for WebLogic Enterprise EJB
Applications

� The statefulSession EJB Sample Application

� Developing EJB Applications

� Building and Deploying EJB Applications

� WebLogic Enterprise EJB Sample Applications
Getting Started 7-1

7 Developing WebLogic Enterprise EJB Applications

t

s
r 8,

the
Note the following about using this chapter:

� The steps in this chapter lead you through the process of creating an EJB tha
can be deployed in the WebLogic Enterprise environment, also known as a
deployable EJB. To create a standard EJB -- that is, a portable bean that lack
the extensions specific to the WebLogic Enterprise environment -- see Chapte
“Designing Enterprise JavaBeans for the WebLogic Enterprise System.”

� For a more thorough understanding of Enterprise JavaBeans, especially with
regards to background information and programming considerations, refer to
following resources:

� Valesky, T. 1999.Enterprise JavaBeans: Developing Component-Based
Distributed Applications. Addison-Wesley.

� Sun Microsystems, Inc. Enterprise JavaBeans Specification 1.1.
7-2 Getting Started

Overview of the Development Process for WebLogic Enterprise EJB Applications

ate.
Overview of the Development Process for
WebLogic Enterprise EJB Applications

Table 7-1 outlines the development process for WebLogic Enterprise EJB
applications.

Figure 7-1 illustrates the process for developing WebLogic Enterprise EJB
applications. In this figure, the shaded objects represent entities you need to cre

Table 7-1 EJB Application Development Process in WebLogic Enterprise

Step Description

1 Create the EJB.

2 Create the module initializer class.

3 Create the deployment descriptor.

4 Create a standard EJB JAR file.

5 Create the WebLogic extensions to the deployment descriptor DTD.

6 Modify the Deployment Descriptor.

7 Package the components into a deployable EJB JAR file.

8 Configure the EJB application.

9 Create the client application.

10 Start and run the WebLogic Enterprise EJB application.

11 Dynamically manage the EJB deployment.
Getting Started 7-3

7 Developing WebLogic Enterprise EJB Applications
Figure 7-1 Process for Developing WebLogic Enterprise EJB Applications

EJB
Implementation

class File

EJB Remote
Interface

class File

EJB Home
Interface

class File

Deployment
Descriptor

jar Command

Standard EJB
JAR File

WebLogic
Extensions to

the Deployment
Descriptor DTD

ejbc Command

UBBCONFIG File
Module Initializer

Object
Deployable EJB

JAR File

WLE EJB
Application
7-4 Getting Started

The statefulSession EJB Sample Application

ing
ash
ll

g
data

ient

.

The statefulSession EJB Sample Application

ThestatefulSession sample application shows how repeated calls to the same
session bean have a persistent state -- the change in the cash account -- that is
maintained across all the calls. Notice that neither the client nor the EJB do anyth
to maintain that state: the container handles it transparently. All the logic for the c
account is encapsulated in the bean, unlike the stateless session sample where a
persistence is provided by the client.

The EJB in this sample provides basic trading methods such as buying and sellin
stocks. Since there are no persistent stores involved in this sample, all the stock
are set in the deployment descriptor of the EJB as environment properties. The
container supplies the data to the EJB through the JNDI lookup operation.

This sample provides two types of clients: one is a simple, single-threaded RMI cl
application, and the other is a multithreaded RMI client application. The
statefulSession bean sample application implements the classes listed and
described in Table 7-2.

Table 7-2 Classes Implemented in the Stateful Session Bean Example

Class Description

Client This class:

� Creates anInitialContext class.

� Creates a trader, and performs repeated buying and selling of
shares.

� Shows persistence of state between calls to theTraderBean ;
the client does not do anything to maintain state between calls

� Searches the JNDI tree for an appropriate container.
Getting Started 7-5

7 Developing WebLogic Enterprise EJB Applications

”

Figure 7-2 shows how the stateful session bean example works.

MultiClient This class:

� Creates anInitialContext class.

� Creates a trader, and performs repeated buying and selling of
shares.

� Shows calling a stateful session bean using multiple colocated
clients: each thread is a trader, and performs repeated buying
and selling of shares.

� Shows persistence of state between calls to theTraderBean
bean.

Like the single-threadedClient bean, theMultiClient bean
does not do anything to maintain state between calls.

TraderBean This bean does not manage any persistence of state between
invocations on it. Creating the business methods on this bean is
described in the section “Create the Bean’s Implementation Class
on page 7-11.

TradeResult This bean contains the results of a buy/sell transaction.

Table 7-2 Classes Implemented in the Stateful Session Bean Example

Class Description
7-6 Getting Started

Developing EJB Applications

e

Figure 7-2 Stateful Session Bean Sample Application

Developing EJB Applications

This section describes the following steps for developing an EJB application in th
WebLogic Enterprise system:

� Step 1: Create the EJB

� Step 2: Create the Module Initializer Object

� Step 3: Create the Deployment Descriptor

Trader Bean

buy()
sell()
getBalance()
getTraderName()

Trader Home
Interface

Trader Remote
Interface

RMI Client Application

newInitialContext();
ctx.lookup("statefulSession.Tra
derHome");

.

.

.
trader.getTraderName();
trader.buy();
trader.sell();
trader.getBalance();

WebLogic Enterprise Domain

WLE EJB Container

IIOP
Server

Listener/
Handler

RMI/IIOP
Getting Started 7-7

7 Developing WebLogic Enterprise EJB Applications

the
u

ver
,
oup.

the
ts.

eful
� Step 4: Create a Standard EJB JAR File

Step 1: Create the EJB

The EJB Specification 1.1, published by Sun Microsystems, Inc., describes the
different requirements of the EJB writer and the EJB framework; EJBs created for
WebLogic Enterprise environment must conform to those requirements. When yo
write EJBs, pay close attention to these requirements.

When writing an EJB, you must implement the following:

� The bean’s home interface

� The bean’s remote interface

� The bean’s implementation class, which includes:

� The business methods for the bean

� TheejbCreate , ejbPostCreate , andejbRemove callback methods

� For session beans, the callbacks defined by theSessionBean interface and,
optionally, the callbacks on theSessionSynchronization interface

� For entity beans, the callbacks defined on theEntityBean interface, and the
primary key classes

� For bean-managed persistence, theejbLoad andejbStore callbacks

Notes: The direct use of threads by Bean Providers is discouraged by the EJB
Specification 1.1. This constraint also applies to WebLogic Enterprise ser
applications -- bean and RMI implementers should not attempt to manage
change properties, start, stop, suspend, or resume a thread or a thread gr

Theejbc command, which is provided with the WebLogic Enterprise
development software, includes a compliance checker utility that examines
packaged EJBs and determines if the EJBs conform to these requiremen

The subsections that follow provide details on implementing an EJB, using the stat
session EJB sample application as an example.
7-8 Getting Started

Developing EJB Applications

le, to
e

find

the
tion
nt
s that
Create the Bean’s Home Interface

Each EJB has a home interface that creates instances of the bean. EJB client
applications use the home interface as a means of obtaining a reference, or a hand
the EJB. The home interface is analogous to a factory object in CORBA. The hom
interface defines the methods used by client applications to create, remove, and
objects of the corresponding EJB type.

The home interface for thestatefulSession EJB contains thecreate method,
which corresponds to theejbCreate method on the EJB itself. The following code
example shows the home interface for theTraderBean EJB:

package samples.j2ee.ejb.basic.statefulSession;

import java.rmi.RemoteException;
import javax.ejb.*;

/**
* This interface is the home interface for the TraderBean.java
*/
public interface TraderHome extends EJBHome {
Trader create(String traderName) throws CreateException, RemoteException;
}

Create the Bean’s Remote Interface

Each EJB has a well-defined remote interface that defines the EJB callbacks and
business methods that can be invoked by a client. As stated in the EJB Specifica
1.1, a client application never directly accesses instances of a bean’s class. A clie
always uses the bean’s remote interface to access that bean’s instance. The clas
implements the bean’s remote interface is provided by the EJB container.

The EJB’s remote interface does the following:

� Defines the business logic methods of the EJB.

� Supports the methods of thejavax.ejb.EJBObject interface. These methods
allow the client to:

� Get the EJB’s home interface

� Get the EJB’s handle

� Test if the EJB is identical with another EJB
Getting Started 7-9

7 Developing WebLogic Enterprise EJB Applications
� Remove the EJB

The following business methods are also defined on the remote interface of the
TraderBean EJB:

� buy()

� sell()

� getBalance()

� getTraderName()

Listing 7-1 shows the remote interface for theTraderBean EJB.

Listing 7-1 TraderBean Remote Interface

package samples.j2ee.ejb.basic.statefulSession;

import java.rmi.RemoteException;
import javax.ejb.*;

/**
* The methods in this interface are the public face of TraderBean.
* The signatures of the methods are identical to those of the EJBean, except
* that these methods throw a java.rmi.RemoteException.

*/

public interface Trader extends EJBObject {

public TradeResult buy(String customerName, String stockSymbol, int shares)
throws ProcessingErrorException, RemoteException;

public TradeResult sell(String customerName, String stockSymbol, int shares)
throws ProcessingErrorException, RemoteException;

public double getBalance()
throws RemoteException;

public String getTraderName()
throws RemoteException;

}

7-10 Getting Started

Developing EJB Applications

e

at
the

r all
Create the Bean’s Implementation Class

The bean’s implementation class includes the following:

� A declaration of the type of bean being implemented (session or entity).

� The business methods on the bean.

� A specific set of callback methods. The set you implement depends on the typ
of bean you are creating.

Declaring the Bean Type

After you declare your bean’s package name and import classes, you declare wh
interface your bean implements: session or entity. The following line declares that
TraderBean class implements theSessionBean interface:

public class TraderBean implements SessionBean

Implementing the Business Methods on the Bean

TheTraderBean EJB implements the following business methods:

� buy()

Buys shares of a stock for a named customer.

� sell()

Sells shares of a stock for a named customer.

� getBalance()

Returns the current balance of a trading session.

� getTraderName()

Returns the name of the current Trader class.

Implementing the Callback Methods on the Bean

You need to implement the following methods on the bean, which are standard fo
beans. These are commonly referred to as callback methods.
Getting Started 7-11

7 Developing WebLogic Enterprise EJB Applications

s

s

le.
� ejbCreate()

Corresponds to thecreate method in the home interfaceTraderHome.java .
The parameter sets of theejbCreate andcreate methods are identical. When
the client calls thecreate method on the bean’s home interface, the EJB
container allocates an instance of theTraderBean EJB and then calls the
ejbCreate method on the EJB.

� ejbRemove()

This method is automatically invoked by the EJB container before it ends the
life of the session bean. Invoking this method occurs as a result of a client
application invoking theremove method on the bean’s remote object, or when
the EJB container decides to terminate the session object after a timeout. Thi
method is required by the EJB Specification.

� ejbPassivate()

This method is invoked by the EJB container before a bean is moved into a
passive state, causing any resources used by the bean to be released. This
method is required by the EJB Specification, but is not used by the
statefulSession bean example.

� ejbActivate()

This method is invoked by the EJB container when a bean is activated from a
passive state, causing any resources required by the bean to be restored. Thi
method is required by the EJB Specification, but is not used by the
statefulSession bean example.

� setSessionContext()

This method sets the associated session context. The WebLogic Enterprise
container invokes this method after the EJB has been instantiated. The EJB
instance should store the reference to the context object in an instance variab

ejbCreate Callback Example

The following code example shows theejbCreate method on theTraderBean EJB:

public void ejbCreate(String traderName) throws CreateException {
printTrace("ejbCreate (" + traderName + ")");
this.traderName = traderName;
this.tradingBalance = 0.0;
7-12 Getting Started

Developing EJB Applications

ic
JB

s,

e
ng

r

el

e

at
setSessionContext Callback Example

The following code example shows thesetSessionContext method on the
TraderBean EJB, storing the context in the variablectx :

public void setSessionContext(SessionContext ctx) {
printTrace("setSessionContext called");
this.ctx = ctx;
}

Step 2: Create the Module Initializer Object

The module initializer object is optional for EJB applications that run in the WebLog
Enterprise environment. You use it for specifying special requirements for your E
application, such as custom operations; for example:

� Performing basic module initialization (or EJB JAR file deployment) operation
which may include allocating resources needed by the EJB JAR file.

� Performing basic server application initialization operations, which may includ
registering homes or factories managed by the server application and allocati
resources needed by the server application.

� Performing server process shutdown and cleanup procedures when the serve
application has finished servicing requests.

Notes: For EJBs, the scope of the module initializer object is at the EJB JAR file lev
and not of the entire server application, as with the Server object and
WebLogic Enterprise CORBA applications.

ThestatefulSession EJB sample application does not include a module
initializer object.

If you have enabled hot redeployment for the modules in your EJB application, th
module initializer object is automatically invoked at appropriate times when the
module is deployed or undeployed.

You implement this module initializer object by creating a module initializer class th
derives fromcom.beasys.Tobj.Server and by implementing the following two
methods on that class:
Getting Started 7-13

7 Developing WebLogic Enterprise EJB Applications

s.

lt
xt

ogic

at

le is
its

ot

he
t the

n the
� initialize

The initialize method is invoked when the EJB JAR file is loaded (generally
when the WebLogic Enterprise server process is booted).

� release

The release method is invoked when the WebLogic Enterprise server process
is shut down or when the EJB JAR file is redeployed to another server proces

In the module initializer object application code, you can also write a public defau
constructor. You create the module initializer object class from scratch using a te
editor.

If you have created a module initializer object, the EJB container parses the WebL
EJB extensions to the deployment descriptor DTD in each deployed EJB JAR file
(specified in theUBBCONFIGfile) during startup.

Themodule-initializer-class-name element in the WebLogic EJB extensions to
the deployment descriptor DTD identifies the module initializer object to be used
server initialization and shutdown or, if you are using hot redeployment, when a
module is deployed or undeployed. When the server process is booted or a modu
deployed, the EJB container instantiates this module initializer object and invokes
initialize method, passing in any startup arguments specified in theUBBCONFIG

file. When the server process is shut down or a module is undeployed, the EJB
container invokes the module initializer object’srelease method.

For information about thecom.beasys.Tobj.Server base class, see theAPI Javadoc
in the WebLogic Enterprise online documentation. For more information about h
redeployment, see“Step 11: Dynamically Manage the EJB Deployment (Hot
Redeployment)” on page 7-37.

Step 3: Create the Deployment Descriptor

The deployment descriptor is an XML file that specifies structural information (for
example, the name of the enterprise bean class) about the EJB and declares all t
EJB's external dependencies (for example, the names and types of resources tha
enterprise bean uses). For complete details on all the elements you can specify i
deployment descriptor, see theEJB XML Referencein the WebLogic Enterprise online
documentation.
7-14 Getting Started

Developing EJB Applications

, and
use
un

t

e

g

ss
The deployment descriptor also ties together the different classes and interfaces
is used by theejbc command to build the code-generated class files. You can also
the deployment descriptor to specify critical aspects of the EJB's deployment at r
time.

You create the deployment descriptor using one of the following methods:

� Using the WebLogic EJB Deployer

� Using theDDGenerator command

� Manually, using a text editor

Note that theDDGenerator command is an unsupported tool. For information abou
using theDDGenerator command, see theRelease Notes.

The deployment descriptor you create must:

� Be valid with respect to the Document Type Definition (DTD) documented in
the EJB Specification 1.1

� Conform to the semantics rules specified in the DTD comments and elsewher
in the EJB Specification 1.1

� If you are creating the deployment descriptor from scratch, include the followin
reference to the deployment descriptor DTD at the beginning of the file:

<!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_2.dtd">

The sections that follow describe the elements you must specify in a deployment
descriptor for a given type of EJB, using thestatefulSession as an example, and
show the EJB Deployer.

Required Elements for Session Beans

The elements that you need to specify in the deployment descriptor for the statele
session EJB is listed and described in Table 7-3.
Getting Started 7-15

7 Developing WebLogic Enterprise EJB Applications

ich

e

o

s.

n
e

Listing 7-2 shows the deployment descriptor for thestatefulSession EJB. Line
numbers are added to help with the discussion of this deployment descriptor, wh
follows.

Listing 7-2 Stateful Session Bean Deployment Descriptor

1 <!DOCTYPE ejb-jar PUBLIC "-//Sun Microsystems, Inc.//DTD Enterprise
2 JavaBeans 1.1//EN" "http://java.sun.com/j2ee/dtds/ejb-jar_1_2.dtd">
3
4 <ejb-jar>
5 <enterprise-beans>
6 <session>
7 <ejb-name>

Table 7-3 Required Elements for Session Beans

Element Description Purpose

ejb-name EJB’s name Specifies the logical name you assign to each EJB in th
EJB JAR file. There is no architected relationship between
this name and the JNDI name that the Deployer assigns t
the EJB.

ejb-class EJB’s class Specifies the fully qualified name of the Java class that
implements the EJB’s business methods.

home EJB’s home interface Specifies the fully qualified name of the EJB’s home
interface.

remote EJB’s remote interfaces Specifies the fully qualified name of the EJB’s remote
interface.

session | entity EJB’s type The EJB types aresession andentity . Use the
appropriatesession or entity element to declare the
EJB’s structural information.

session-type Session bean’s state
management type

Declares whether the session bean is stateful or stateles

transaction-type Session bean’s
transaction demarcation
type

If the EJB is a session bean, declares whether transactio
demarcation is performed by the enterprise bean or by th
container.
7-16 Getting Started

Developing EJB Applications
8 statefulSession
9 </ejb-name>
10 <home>
11 samples.j2ee.ejb.basic.statefulSession.TraderHome
12 </home>
13 <remote>
14 samples.j2ee.ejb.basic.statefulSession.Trader
15 </remote>
16 <ejb-class>
17 samples.j2ee.ejb.basic.statefulSession.TraderBean
18 </ejb-class>
19 <!-- Session bean state management type declaration -->
20 <session-type>
21 Stateful
22 </session-type>
23 <!-- Transaction demarcation type declararion -->
24 <transaction-type>
25 Container
26 </transaction-type>
27
28 <!-- Environment entries: Stock symbols, and prices -->
29 <env-entry>
30 <env-entry-name>
31 BEAS
32 </env-entry-name>
33 <env-entry-type>
34 java.lang.Double
35 </env-entry-type>
36 <env-entry-value>
37 10.0
38 </env-entry-value>
39 </env-entry>
40 .
41 .
42 .
43 </session>
44 </enterprise-beans>
45
46 <!-- Assembly description -->
47 <assembly-descriptor>
48
49 <!-- Container transaction attributes -->
50 <container-transaction>
51 <method>
52 <ejb-name>
53 statefulSession
54 </ejb-name>
55
56 <!-- Apply to all the methods (*) of the ejb -->
Getting Started 7-17

7 Developing WebLogic Enterprise EJB Applications

.

the
57 <method-name>
58 *
59 </method-name>
60 </method>
61
62 <!-- Transaction attributes for the methods -->
63 <trans-attribute>
64 NotSupported
65 </trans-attribute>
66 </container-transaction>
67 </assembly-descriptor>
68 </ejb-jar>

In the preceding deployment descriptor, note the following:

� Lines 7-9 identifystatefulSession as the EJB name.

� Lines 10-15 identify the home and remote interfaces.

� Lines 20-22 identify that thestatefulSession EJB is stateful.

� Lines 28-42 identify a number of environment entries specific to the
statefulSession EJB.

� Lines 46-67 identify assembly descriptor information for transaction attributes
For information about EJBs and transactions, seeUsing Transactionsin the
WebLogic Enterprise online documentation.

Using the WebLogic EJB Deployer to Create the Deployment Descriptor

You can use the WebLogic EJB Deployer to create the deployment descriptor for
EJB. Figure 7-3 shows the EJB Deployer main window.
7-18 Getting Started

Developing EJB Applications

an
ific

hat
ms
Figure 7-3 WebLogic EJB Deployer Main Window

For information about how to start and use the EJB Deployer, seeUsing the WebLogic
Enterprise EJB Deployerin the WebLogic Enterprise online documentation.

Step 4: Create a Standard EJB JAR File

In this step, you create a standard EJB JAR file. A standard EJB JAR file contains
EJB that has been built, but lacks the specific deployment information on any spec
system. You typically build a standard EJB with the goal of being able to distribute t
EJB to a variety of deployment environments. Typically, the Bean Provider perfor
Getting Started 7-19

7 Developing WebLogic Enterprise EJB Applications

des a
yer,

nd
steps 1 through 4, as described in the chapter, and a standard EJB JAR file provi
convenient package that can be handed off to the Application Assembler or Deplo
who may perform steps 5 through 9.

The input to the standard EJB JAR file is typically:

� Compiled class files for the EJB’s implementation class, the home interface, a
remote interface

� The deployment descriptor

You can create a standard EJB JAR file using thejar command.

Building and Deploying EJB Applications

This section describes the steps to develop an EJB application for the WebLogic
Enterprise system:

� Step 5: Create the WebLogic EJB Extensions to the Deployment Descriptor
DTD

� Step 6: Modify the Deployment Descriptor

� Step 7: Package the Components Into a Deployable EJB JAR File

� Step 8: Configure the EJB Application

� Step 9: Create the Client Application

� Step 10: Start and Run the WebLogic Enterprise EJB Application
7-20 Getting Started

Building and Deploying EJB Applications

you

nt

TD

rise
for

e

Step 5: Create the WebLogic EJB Extensions to the
Deployment Descriptor DTD

For an EJB application to be deployable in the WebLogic Enterprise environment,
need to create a file containing the WebLogic EJB extensions to the deployment
descriptor DTD. This file specifies the following run time and configuration
information for the EJB application:

� Custom application startup and shutdown properties

� Registration of the application’s home interfaces

� Persistence information

For complete details on all the elements you can specify in the WebLogic EJB
extensions to the deployment descriptor DTD, see theEJB XML Referencein the
WebLogic Enterprise online documentation.

Creating the WebLogic EJB Extensions to the Deployment Descriptor DTD

You can create the file containing the WebLogic EJB extensions to the deployme
descriptor DTD using one of the following methods:

� Using the WebLogic EJB Deployer

� By hand, in a common text editor

Specifying the WebLogic EJB Extensions DTD

The file that includes the WebLogic EJB extensions to the deployment descriptor D
must specify the following DTD reference at the beginning of the file:

<!DOCTYPE weblogic-ejb-extensions SYSTEM "weblogic-ejb-extensions.dtd" >

Registering Names for the EJB Home Classes

A name for the EJB home class must be registered in the global WebLogic Enterp
JNDI namespace. This allows Java clients to perform a lookup on the JNDI name
the EJB home, even across WebLogic Enterprise domains, and gain access to th
object. The name for the EJB home class can be different than the<ejb-name>
Getting Started 7-21

7 Developing WebLogic Enterprise EJB Applications

ame
r
BA

ean

te
element specified in the standard EJB XML. The<ejb-name> in the standard
deployment descriptor must be unique only among the names of the EJBs in the s
EJB JAR file. However, the JNDI name must be unique among all global home o
factory names in a WebLogic Enterprise domain; this includes EJB homes, COR
factories, and RMI-named objects.

Example

Listing 7-3 is from the fileweblogic-ejb-extensions.xml , which specifies the
WebLogic extensions to the deployment descriptor DTD for the stateful session b
example. Line numbers are used to aid in the brief discussion that follows.

Listing 7-3 Specifying the Name of the EJB Home Class

1 <weblogic-ejb-extensions>
2 <weblogic-version>
3 WebLogic Enterprise Server 5.0
4 </weblogic-version>
5 <weblogic-enterprise-bean>
6 <ejb-name>
7 statefulSession
8 </ejb-name>
9 <weblogic-deployment-params>
10 <jndi-name>
11 statefulSession.TraderHome
12 </jndi-name>
13 .
14 .
15 .
16 </weblogic-deployment-params>
17 </weblogic-ejb-extensions>

In the preceding WebLogic EJB extensions to the deployment descriptor DTD, no
the following lines:

� Lines 9 through 16 contain specific deployment parameters for metrics like the
size of the bean pool and the size of the cache.

� Lines 10 through 12 specify the name of the EJB that is registered with JNDI;
this is the name on which the client application performs alookup invocation.
7-22 Getting Started

Building and Deploying EJB Applications

. The

base

ged

ifies:

an

D

Specifying Persistence Information

The WebLogic Enterprise EJB container provides container-managed persistence
code for implementing the persistence is generated by theejbc command based on the
deployment descriptors. The persistence store can be a flat file or it can be a data
managed with a JDBC connection pool. For the EJB state to fully cooperate in a
WebLogic Enterprise global transaction, configure the EJB to use the JDBC-mana
database store provided in WebLogic Enterprise. Use file-based persistence only
during development and prototyping.

The standard deployment descriptor created by the Bean Provider normally spec

� The fields in the EJB that are to be persistent, via thecmp-field element

� For entity beans, information about the primary key

However, you, as the deployer, need to specify additional information for mapping
EJB to its persistent store via the WebLogic EJB extensions to the deployment
descriptor DTD.

File-based Persistence

Listing 7-4 shows the WebLogic EJB extensions to the deployment descriptor DT
for specifying file-based persistence.

Listing 7-4 File-based Persistence Elements

<!--
Persistence store descriptor. Specifies what type of persistence store
EJB container should use to store state of bean.
-->
<!ELEMENT persistence-store-descriptor (description?,
(persistence-store-file |
persistence-store-jdbc)?)>
<!--
Persistence store using file. Bean is serialized to a file.
Mainly used to store state of Stateful Session Beans.
-->
<!ELEMENT persistence-store-file (description?,
persistence-store-directory-root
?)>
<!--
Root directory on File system for storing files per bean.
Getting Started 7-23

7 Developing WebLogic Enterprise EJB Applications

D

-->
<!ELEMENT persistence-store-directory-root (#PCDATA)>

The information supplied for thepersistence-store-directory-root element is
used by the EJB container to store all instances of the EJB, with theejb-name element
converted to a directory name.

Database-stored Persistence

Listing 7-5 shows the WebLogic EJB extensions to the deployment descriptor DT
for specifying a JDBC connection for database-stored persistence.

Listing 7-5 Database-stored Persistence Elements

<!--
Persistence store is any RDBMS. JDBC driver is used to talk to database.
Required for CMP.
-->
<!ELEMENT persistence-store-jdbc (description?, pool-name, user?, password?,
driver-url?, driver-class-name?, table-name, attribute-map,
finder-descriptor*)>

<!-- Required for CMP -->
<!ELEMENT pool-name (#PCDATA)>

<!-- Ignored in WebLogic Enterprise Server as this is part of connection
pool
setup at startup -->
<!ELEMENT user (#PCDATA)>

<!-- Ignored in WebLogic Enterprise Server as this is part of connection
pool
setup at startup -->
<!ELEMENT password (#PCDATA)>

<!-- Ignored in WebLogic Enterprise Server as this is part of connection
pool
setup at startup -->
<!ELEMENT driver-url (#PCDATA)>

<!-- Ignored in WebLogic Enterprise Server as this is part of connection
pool
setup at startup -->
<!ELEMENT driver-class-name (#PCDATA)>
7-24 Getting Started

Building and Deploying EJB Applications

JDBC

the

n

ean
<!-- Required for CMP -->
<!ELEMENT table-name (#PCDATA)>

<!-- Required for CMP -->
<!ELEMENT attribute-map (description?, attribute-map-entry+)>

<!-- Required for CMP -->
<!ELEMENT attribute-map-entry (bean-field-name, table-column-name)>

<!-- Required for CMP -->
<!ELEMENT bean-field-name (#PCDATA)>

<!-- Required for CMP -->
<!ELEMENT table-column-name (#PCDATA)>

<!-- Required for CMP -->
<!ELEMENT finder-descriptor (description?, method?, query-grammar?)>

<!-- Required for CMP -->
<!ELEMENT query-grammar (#PCDATA)>

The EJB instances are stored in a database that has been previously set up with a
connection pool, which is identified by thepool-name element. Thetable-name and
attribute-map elements map the EJB fields to the appropriate table columns in
database.

Finder descriptors are the WebLogic Enterprise implementation of the EJBfind

methods. Thefinder-descriptor elements are pairs of method signatures and
expressions. You specify a method signature in theEJBHomeinterface, and you specify
the method’s expression in the deployment descriptor via thequery-grammar

element. The finder methods return an enumeration of EJBs. For more informatio
about specifying finder descriptors, see theEJB XML Referencein the WebLogic
Enterprise online documentation.

Example

Listing 7-6 is from the fileweblogic-ejb-extensions.xml , which specifies the
WebLogic extensions to the deployment descriptor DTD for the stateful session b
example to show specifying the persistence information.
Getting Started 7-25

7 Developing WebLogic Enterprise EJB Applications

tep
ss
JB

nt
as
Listing 7-6 Persistence Directory Root

<persistence-store-descriptor>
<persistence-store-file>

<persistence-store-directory-root>
c:\mystore

</persistence-store-directory-root>
</persistence-store-file>

</persistence-store-descriptor>

Specifying the Module Initializer Class

If your EJB application uses a module initializer class, as explained in the section “S
2: Create the Module Initializer Object” on page 7-13, you need to specify that cla
among the XML elements for startup and shutdown procedures in the WebLogic E
extensions to the deployment descriptor DTD. The WebLogic Enterprise EJB
container parses the XML at run time and performs the startup and shutdown
processing.

Note: ThestatefulSession EJB sample application does not include a module
initializer object.

Step 6: Modify the Deployment Descriptor

The Bean Provider specifies some initial deployment information in the deployme
descriptor. The deployer typically needs to add to or modify that information, such
shown in Table 7-4.

Table 7-4 Deployment Descriptor Fields Modified By the Deployer

Field Description

The EJB’s name You may change the enterprise bean’s name defined in the
ejb-name element.

Values of environment
entries

You may change existing values or define new values for the
environment properties.

Description fields You may change existing or create new description elements.
7-26 Getting Started

Building and Deploying EJB Applications
Binding of enterprise
bean references

You may link an enterprise bean reference to another enterprise
bean in the EJB JAR file. You create the link by adding the
ejb-link element to the referencing bean.

Security roles You may define one or more security roles. The security roles
define the recommended security roles for the clients of the
enterprise beans. You define the security roles using the
security-role elements. For more information about EJB
security, seeUsing Securityin the WebLogic Enterprise online
documentation.

Method permissions You may define method permissions, which are binary
relationships between the security roles and the methods of the
remote and home interfaces of the EJBs. You define method
permissions using themethod-permission elements.

Linking of security role
references

If you define security roles in the deployment descriptor, you
must link the security role references declared by the Bean
Provider to the security roles. You define these links using the
role-link element. For more information about EJB security,
seeUsing Securityin the WebLogic Enterprise online
documentation.

Table 7-4 Deployment Descriptor Fields Modified By the Deployer (Continued)

Field Description
Getting Started 7-27

7 Developing WebLogic Enterprise EJB Applications

the
ified
ent

B
can
for

a

n
ds
However, if the Bean Provider, the Application Assembler, and the Deployer are
same person, all the information shown in the preceding table may have been spec
already in the deployment descriptor step described in “Step 3: Create the Deploym
Descriptor” on page 7-14.

Step 7: Package the Components Into a Deployable EJB
JAR File

In this step, you package the deployment descriptor, the compiled files for the EJ
classes, and any additional required classes into a deployable EJB JAR file. You
package multiple beans together, provided that there is a deployment descriptor
each bean.

You can use the WebLogic Enterpriseejbc command to create the deployable EJB
JAR file. Theejbc command performs the following steps:

Changing persistent
storage information, if
necessary

The deployer can change the type of persistent storage used by
bean. If thepersistentStoreType is file , the serialized
files are created in this directory. The default file is
/ pstore / bean_name .dat , where the directorypstore
represents the directory from which the WebLogic Enterprise
application was started, andbean_name is the fully qualified
name of the EJB with underscores (_) replacing the periods (.) in
the name.

If the persistentStoreType is jdbc , the container looks for
additional values to determine the appropriate values for the
JDBC connection. Note that if the bean’s persistence is stored i
a database via a JDBC connection, the system administrator nee
to add this information to theUBBCONFIGfile as well. For more
information, seeUsing the JDBC Driversin the WebLogic
Enterprise online documentation.

Note that persistence information is specified in the WebLogic
EJB extensions to the deployment descriptor DTD file, as
described in the section “Specifying Persistence Information” on
page 7-23.

Table 7-4 Deployment Descriptor Fields Modified By the Deployer (Continued)

Field Description
7-28 Getting Started

Building and Deploying EJB Applications

nded

r

a

the

g

ns

ing
client
1. Parses the standard EJB deployment descriptor and WebLogic Enterprise exte
deployment descriptor XML files.

2. Checks the deployment descriptors for semantic consistency, and writes any
inconsistencies to standard output.

3. Generates the wrapper Java classes and compiles them. This is performed fo
each EJB in the deployment descriptor.

4. Packages the XML deployment descriptors and the generated class files into
deployable EJB JAR file.

If you have multiple bean packages meant to be assembled as a deployable unit,
bean packages must be specified in a single deployment descriptor.

The following command line builds the deployable EJB JAR file for the
statefulSession bean example:

java weblogic.ejbc -validate -i ejb-jar.xml -x weblogic-ejb-extensions
ejb-jar-file

In the preceding command line:

� The -i option specifies the name of the deployment descriptor,ejb-jar.xml .

� The -x option specifies the name of the WebLogic EJB extensions to the
deployment descriptor DTD,weblogic-ejb-extensions .

� The file ejb-jar-file is the name of the EJB JAR file.

For more information about theejbc command, seeCommands, System Processes,
and MIB Referencein the WebLogic Enterprise online documentation. Note that usin
the -validate option is recommended.

Step 8: Configure the EJB Application

Because the WebLogic Enterprise software offers great flexibility and many optio
to application designers and programmers, no two applications are alike. An
application, for example, may be small and simple (a single client and server runn
on one machine) or complex enough to handle transactions among thousands of
and server applications. For this reason, for every WebLogic Enterprise EJB
Getting Started 7-29

7 Developing WebLogic Enterprise EJB Applications

file
tions,

LE
application being managed, the system administrator must provide a configuration
that defines and manages the components (for example, domains, server applica
client applications, and modules) of that application.

When system administrators create a configuration file, they are describing the W
application using a set of parameters that the WLE software interprets to create a
runnable version of the application. During the setup phase of administration, the
system administrator’s job is to create a configuration file. The configuration file
contains the sections listed in Table 7-5.

When creating a configuration file for an EJB application meant to be run in a
WebLogic Enterprise domain, note the following:

� The WebLogic Enterprise EJB container runs in a JavaServer, which you
configure in theSERVERSsection.

� You configure the EJB application server process using theejb keyword in the
MODULESsection. Important: the server group and server ID (specified by the

Table 7-5 Configuration File Sections

Sections in the
Configuration File

Description

RESOURCES Defines defaults (for example, user access and the main
administration machine) for the WebLogic Enterprise CORBA
application.

MACHINES Defines hardware-specific information about each machine
running in the WebLogic Enterprise CORBA application.

GROUPS Defines logical groupings of server applications or CORBA
interfaces.

SERVERS Defines the server application processes (for example, the
Transaction Manager) used in the WebLogic Enterprise CORBA
application.

SERVICES Defines parameters for services provided by the WebLogic
Enterprise application.

MODULES Defines information about the EJB application process.

JDBCONNPOOLS Describes the pooling of JDBC connections for Java servers.
7-30 Getting Started

Building and Deploying EJB Applications

ich
SRVGRPandSRVID keywords, respectively) for the EJB server process must
match the server group and server ID for the JavaServer that runs the EJB
container.

� You use theFILE parameter in the configuration information for your EJB
application to specify the EJB JAR file.

� For complete details about theUBBCONFIGfile, seeCreating a Configuration
File in the WebLogic Enterprise online documentation.

The following section shows an example configuration file used for an EJB
application.

Example Configuration File

Listing 7-7 shows a configuration file for thestatefulSession bean example. Note
in theSERVERSsection how the server group and server ID for the JavaServer, in wh
the EJB container runs, is the same as for the EJB application configured in the
MODULESsection.

Listing 7-7 Sample UBBCONFIG File

#---
D:\BEA\WLE51\test\ejb\basic\statefulSession\ubbconfig.nt
Generated for basic\statefulSession EJB Sample
#---
*RESOURCES

IPCKEY 55432
DOMAINID ejbsample
MASTER SITE1
MODEL SHM
LDBAL N

#---
*MACHINES

"HOWE"
LMID = SITE1
APPDIR = "D:\BEA\WLE51\test\ejb\basic\statefulSession"
TUXCONFIG = "D:\BEA\WLE51\test\ejb\basic\statefulSession\tuxconfig"
TUXDIR = "d:\BEA\WLE51\m3"
MAXWSCLIENTS = 10

#---
*GROUPS

SYS_GRP
LMID = SITE1
Getting Started 7-31

7 Developing WebLogic Enterprise EJB Applications
GRPNO = 1
APP_GRP

LMID = SITE1
GRPNO = 2

#---
*SERVERS

DEFAULT:
RESTART = Y
MAXGEN = 5

TMSYSEVT
SRVGRP = SYS_GRP
SRVID = 1

TMFFNAME
SRVGRP = SYS_GRP
SRVID = 2
CLOPT = "-A -- -N -M"

TMFFNAME
SRVGRP = SYS_GRP
SRVID = 3
CLOPT = "-A -- -N"

TMFFNAME
SRVGRP = SYS_GRP
SRVID = 4
CLOPT = "-A -- -F"

JavaServer
SRVGRP = APP_GRP
SRVID = 5
CLOPT = "-A "
RESTART = N

ISL
SRVGRP = SYS_GRP
SRVID = 6
CLOPT = "-A -- -n //HOWE:7001"

#---
*MODULES

ejb
SRVGRP = APP_GRP
SRVID = 5
FILE =

"D:\BEA\WLE51\test\ejb\basic\statefulSession\ejb_basic_statefulSession.jar"
*SERVICES
7-32 Getting Started

Building and Deploying EJB Applications

n

thod
y of

ching

tion

oes

of
Compiling the Configuration File

There are two forms of the configuration file:

� An ASCII version of the file, created and modified with any editor. Throughout
the WebLogic Enterprise documentation, the ASCII version of the configuratio
file is referred to as theUBBCONFIGfile. The configuration file may, in fact, be
given any file name.

� TheTUXCONFIGfile, a binary version of theUBBCONFIGfile created using the
tmloadcf command. When thetmloadcf command is executed, the
environment variableTUXCONFIGmust be set to the name and directory location
of theTUXCONFIGfile. The tmloadcf command converts the configuration file
to binary form and writes it to the location specified in the command.

For more information about thetmloadcf command, seeCommands, System
Processes, and MIB Referencein the WebLogic Enterprise online documentation.

Bean Passivation Behavior -- the EJB Cache

The WebLogic Enterprise EJB container has the ability to cache beans across me
invocations as well as across transactions. This significantly reduces the frequenc
beans being passivated, thereby providing the performance improvement. EJB ca
is enabled by default for stateful beans.

For more information about EJB caching, see the section “Controlling the Passiva
of Beans -- the EJB Cache” on page 8-9.

Step 9: Create the Client Application

When you create a client application that can invoke methods on a session EJB
deployed in the WebLogic Enterprise environment, you need to include code that d
the following:

� Creates anInitialContext object

� Uses thelookup method on theInitialContext object to obtain a reference to
the the EJB’s home interface

� Invokes thecreate method on the EJB’s home interface to create an instance
the EJB
Getting Started 7-33

7 Developing WebLogic Enterprise EJB Applications

in
ient

e

or of

l

.

ain
� Invokes the business methods on the EJB

� Destroys the instance of the bean

The sections that follow show fragments from thestatefulSession EJB application
to show the basic building blocks of an RMI client application that invokes an EJB
the WebLogic Enterprise environment. For complete details on creating an RMI cl
application, seeUsing RMI in a WebLogic Enterprise Environmentin the WebLogic
Enterprise online documentation.

Creating an InitialContext Object

Each WebLogic Enterprise EJB client application needs to create anInitialContext

object to store information about the EJB application and the WebLogic Enterpris
domain so that the client application can run. TheInitialContext object is typically
created with the following data, which are passed as parameters to the construct
the InitialContext object:

� The address of the entry points to the WebLogic Enterprise environment

� The name of the factory to access the WebLogic Enterprise domain and globa
naming service

� Security information, such as the type of authentication, the security principal
name, credentials, roles, and passwords

� The URL for remote class loading

ThestatefulSession client application implements a method named
newInitialContext , in which theInitialContext object is created as a hash table
This hash table specifiesenv as
com.beasys.com.jndi.WLEInitialContextFactory . After the context is created,
the client application has access to bean homes in the WebLogic Enterprise dom
using WebLogic Enterprise as the name service provider.

ThenewInitialContext method is shown in the following code fragment:

static public Context newInitialContext() throws Exception {
Hashtable env = new Hashtable();

// specify an IIOP Listener/Handler for the desired WLE target domain
env.put(Context.PROVIDER_URL, url);

// Name of the factory to access WLE domain and global naming service.
env.put(Context.INITIAL_CONTEXT_FACTORY,
7-34 Getting Started

Building and Deploying EJB Applications

ut
"com.beasys.jndi.WLEInitialContextFactory");
/* Security style: strong for SSL, simple for Tuxedo, and none

* for no authentication at all. If no value is specified then, Tuxedo
* style authentication is attempted.
*/

env.put(Context.SECURITY_AUTHENTICATION, "simple");
if (user != null) {

printTrace("user: " + user);

/* Specifies the identity of the principal for authenticating the caller
* to the WLE domain
*/

env.put(Context.SECURITY_PRINCIPAL, user);
if (password == null) {

password = "";
}

// A string password is used for Tuxedo style authentication.
env.put(Context.SECURITY_CREDENTIALS, password);

} else {

// User id is null.
env.put(Context.SECURITY_AUTHENTICATION, "none");

}
return new InitialContext(env);

}

The RMI client application in thestatefulSession bean example invokes this
newInitialContext method to create itsInitialContext object, on which the
application can then make the appropriate invocations, as shown in the following
statement:

Context ctx = newInitialContext();

ThenewInitialContext method also creates theInitialContext object with
specific information related to WebLogic Enterprise security. For information abo
the security data in theInitialContext object, and other client application
requirements related to WebLogic Enterprise security, seeUsing Securityin the
WebLogic Enterprise online documentation.
Getting Started 7-35

7 Developing WebLogic Enterprise EJB Applications

ds to
ate

n

to

ise
ted
Obtaining a Reference to the EJB’s Home Interface

The following code fragment, from thestatefulSession client application, shows
the following:

1. Looking up the name of theTraderBean ’s home interface,TraderHome .

2. Using thePortableRemoteObject to narrow the reference to typeTrader .

Object objref = ctx.lookup("statefulSession.TraderHome");
TraderHome brokerage = (TraderHome) PortableRemoteObject.narrow(objref,

TraderHome.class);

Creating an Instance of the EJB

Before a client application can invoke business methods on a bean, the bean nee
be instantiated. EJBs are instantiated when the client application invokes the cre
method on the EJB’s home interface.

The following code fragment, from thestatefulSession bean example, shows
invoking thecreate method on theTraderHome class, which causes the TraderBea
and its remote interface to be instantiated:

Trader trader = brokerage.create("Terry");

Destroying the Instance of the Bean

After a client application is finished with the bean, it is good programming practice
include an invocation to the bean’sremove method, as in the following example:

trader.remove();

Step 10: Start and Run the WebLogic Enterprise EJB
Application

Use the tmboot command to start the server processes in your WebLogic Enterpr
EJB application. The EJB application is usually booted from the machine designa
as theMASTERin theRESOURCESsection of theUBBCONFIGfile.
7-36 Getting Started

Building and Deploying EJB Applications

imes

t of

hat
For thetmboot command to find executables, the WebLogic Enterprise system
processes must be located in$TUXDIR/bin . Server applications should be inAPPDIR,

as specified in the configuration file.

When booting server applications, thetmboot command uses theCLOPT, SEQUENCE,
SRVGRP, SRVID, andMIN parameters from the configuration file. Server applications
are booted in the order in which they appear in the configuration file.

For details about starting and running the statefulSession bean example, seeGuide to
the EJB Sample Applications.

For more information about using thetmboot command, seeCommands, System
Processes, and MIB Referencein the WebLogic Enterprise online documentation.

Step 11: Dynamically Manage the EJB Deployment (Hot
Redeployment)

This step is optional. The WebLogic Enterprise system provides a means, somet
referred to ashot redeployment, to dynamically make the following changes to the
modules in a running EJB application:

� Add new modules

� Remove existing modules

� Update deployed modules

Note: A module in an EJB application is a unit of deployment that is more than
simply the classes in an EJB JAR file. For example, a module can consis
support libraries.

With WebLogic Enterprise hot redeployment:

� You can change modules used in an EJB application without shutting the
application down or starting or restarting JavaServers.

� Clients connected to other EJB modules in the WebLogic Enterprise domain t
are not the target of a hot redeployment have no interruption in service.
Getting Started 7-37

7 Developing WebLogic Enterprise EJB Applications

n

n

� Client applications of a module affected by hot redeployment will experience a
interruption of service, but the hot redeployment does not require the shutting
down or starting of additional server processes.

� Hot redeployment is disabled by default.

To use hot redeployment to add, change, or remove a module in a running EJB
application:

� Make sure that the module’s classes are not present in the defaultCLASSPATH.

� In theUBBCONFIGfile, enable hot deployment for the JavaServer by specifying
the -Dwle.dynamic option in theCLOPTattribute.

� While the EJB application is running, use the followingtmadmin commands to,
respectively, add, remove, or change modules:

� addmodule

� removemodule

� changemodule

Notes: The TMIB T_MODULEclass has been modified to represent modules that ca
and cannot be modified.

If you attempt to redeploy a module in a JavaServer for which hot
redeployment has not been enabled, no change to the module will occur.

For more information about using hot redeployment, see the following:

� For information about specifying the JavaServer in theUBBCONFIGfile, see the
topic “Starting JavaServer” inCreating a Configuration File.

� For information about specifying the-Dwle.dynamic option in theCLOPT

attribute, see the section “Using Server Command-line Options” inCreating a
Configuration File.

� For more information about theaddmodule , removemodule , and
changemodule commands, see thetmadmin command in Section 1 of theBEA
Tuxedo Reference Manual.
7-38 Getting Started

WebLogic Enterprise EJB Sample Applications

ist.
and

any
WebLogic Enterprise EJB Sample
Applications

WebLogic Enterprise provides the sample applications described in the following l
For more information about these samples, how they work, and how you can build
run them, seeGuide to the EJB Sample Applications.

� samples.j2ee.ejb.basic.statelessSession

Shows a stateless session bean in which the client application must maintain
state across invocations to that bean.

� samples.j2ee.ejb.basic.statefulSession

Shows a session bean that uses stateful persistence.

� samples.j2ee.ejb.sequence.jdbc

Shows an entity bean that automatically generates its primary key by calling
directly to a database using a connection pool and JDBC.

� samples.j2ee.ejb.sequence.oracle

Shows an entity bean that automatically generates its primary key by calling
directly to a database using a connection pool and an Oracle database.

� samples.j2ee.ejb.subclass.parent

Shows a stateless session bean calledParentBean that is the parent class for
another bean,ChildBean .

� samples.j2ee.ejb.subclass.child

Shows a stateless session bean calledChildBean that inherits methods from a
ParentBean , and also shows one bean calling another bean.
Getting Started 7-39

7 Developing WebLogic Enterprise EJB Applications
7-40 Getting Started

CHAPTER

se
8 Designing Enterprise
JavaBeans for the
WebLogic Enterprise
System

This topic includes the following sections:

� Designing EJB Applications for the WebLogic Enterprise System

� EJBs and Persistence

The information in this chapter supplements the Sun Microsystems, Inc. Enterpri
JavaBeans Specification 1.1.
Getting Started 8-1

8 Designing Enterprise JavaBeans for the WebLogic Enterprise System

rise

n the

hey
EJB,

of
nt

n

Designing EJB Applications for the
WebLogic Enterprise System

The WebLogic Enterprise software complies with the EJB Specification 1.1.
However, to design EJB applications that take advantage of the WebLogic Enterp
architecture, you need to follow certain design rules and patterns. This section
describes these design considerations with respect to the following perspectives o
WebLogic Enterprise EJB environment:

� The client application programmer’s view

� The bean programmer’s view

The Client Application Programmer’s View

Client application programmers using EJBs have a uniform development model t
can use for beans regardless of whether the beans are local or remote. For each
client programmers have access to the information in Table 8-1.

Table 8-1 EJB Information that Client Programmers Can Access

Information Description

The bean’s home
interface

Each EJB has a home interface (factory) that creates instances
the bean. The home interface defines the methods used by clie
programmers to create, remove, and find objects of the
corresponding EJB type. To find a reference to a particular bea
home interface, client applications should use thelookup
method of theInitialContext object with the
PortableRemoteObject class. In the WebLogic Enterprise
system, home interfaces are available, and can be advertised,
across domains.

The bean’s remote
interface

Each EJB has a well-defined remote interface that defines the
business methods that can be invoked by a client.
8-2 Getting Started

Designing EJB Applications for the WebLogic Enterprise System

n’s
eeds

with

s

gic

lved
B
the

ava

-2.

e
r

an
le
n
re
To access any EJB, a client application needs to obtain a reference from the bea
home interface (factory); however, because the home is also an object, the client n
also to obtain a reference to it. Getting a home reference to the client application
presents a bootstrapping problem. However, when you register home references
a directory service -- namely, JNDI -- client applications have a means to obtain a
reference to the bean’s home, even across WebLogic Enterprise domains. This i
exactly what the WebLogic Enterprise EJB container provides.

From the WebLogic Enterprise EJB container perspective, client applications
(including JSP and servlets acting as clients) are nontrusted entities that require
authentication. They typically require a network connection to access the WebLo
Enterprise EJB container because they run on nontrusted machines.

How to set up this network connection is another bootstrapping problem. This is so
in WebLogic Enterprise by providing a JNDI implementation that runs within the EJ
container trusted environment, and by establishing the network connection when
JNDI initial context is created. The parameters required for the initialization are J
properties (name/value pairs) passed as arguments to the constructor of the
InitialContext object.

A WebLogic Enterprise client application can set the properties shown in Table 8

The object identity Each EJB instance lives in a home and has a unique identity
within its home. The identity of a session bean is generated by th
EJB container and is not exposed to the client. The Bean Provide
generates the identity of an entity bean (the primary key) and a
client can retrieve the primary key from the entity object
reference.

The bean’s metadata
interface

The metadata interface allows clients (typically, application
assembly tools) to discover the metadata information about the
bean.

The object handle The handle identifies the object in a portable way. The handle c
be serialized. Having a serialized handle lets you store the hand
and then use it at a later time, possibly in a different process or i
a different system, or by another bean or object. Handles are mo
useful with entity beans than with session beans.

Table 8-1 EJB Information that Client Programmers Can Access (Continued)

Information Description
Getting Started 8-3

8 Designing Enterprise JavaBeans for the WebLogic Enterprise System
Table 8-2 InitialContext Object Parameters

Property Name Values Description

WLEContext.
INITIAL_CONTEXT_FACTORY

com.beasys.jndi.
WLEInitialContextFactory

Specifies the WebLogic Enterprise JNDI.

WLEContext.PROVIDER_URL corbaloc://<host:port> or
corbalocs://<host:port>

Defines the address of the entry points to the
WebLogic Enterprise environment. The
identifiercorbaloc indicates that the
protocol is WebLogic RMI on IIOP. The
identifier corbalocs indicates that the
protocol is WebLogic RMI on IIOP with
SSL.

WLEContext.
SECURITY_AUTHENTICATION

none | simple | strong Defines the type of authentication:

� none means no authentication (this is the
default).

� simple means WebLogic Enterprise
authentication.

� strong means SSL authentication
(certificate-based).

WLEContext.
SECURITY_PRINCIPAL

<Principal Identifier> Specifies the security principal name. For
more information, seeUsing Securityin the
WebLogic Enterprise online documentation.

WLEContext.
SECURITY_CREDENTIALS

<SSL credentials> or
<User Password>

Specifies the credentials when authentication
is strong , or the user password when
authentication issimple .

WLEContext.CLIENT_NAME <Security role> Specifies the security role name used by
simple authentication. For more
information, seeUsing Securityin the
WebLogic Enterprise online documentation.

WLEContext.
SYSTEM_PASSWORD

<password> Specifies the system password if thesimple
authentication is in effect.

WLEContext.CODEBASE <url> Specifies the URL for remote class loading.
8-4 Getting Started

Designing EJB Applications for the WebLogic Enterprise System

en

t
new

,

n

ng as
B

he

ient
the

n

The client application is implicitly associated with the security context specified wh
the InitialContext object is created. To specify a new security context -- for
example, to invoke objects in a different WebLogic Enterprise domain -- the clien
application needs to close the current context and establish a new context with the
security attributes. To find a reference to a particular bean home interface, client
applications should use thelookup method of theInitialContext object with the
PortableRemoteObject class. Client applications can also use thelookup method
to obtain a reference to the UserTransaction object. WebLogic Enterprise client
applications cannot modify the WebLogic Enterprise JNDI naming context; that is
client applications can perform only lookup operations on this context.

The client can use the bean home interface to find or create session or entity bea
instances. Thecreate method provided by the EJB home interface creates the
requested EJB and returns a reference to it. The client uses the reference for as lo
it needs, and when it finishes, can invalidate the reference (and eventually the EJ
instance) by invoking theejbRemove method on the EJB instance. Between these
method invocations, the client can invoke (optionally within a transaction) any of t
business methods provided by the EJB.

The WebLogic Enterprise system complies with the EJB Specification 1.1, and cl
programmers must be aware of the subtle programming differences provided by
different bean types (refer to the EJB Specification for more details).

Also note that the WebLogic RMI on IIOP protocol is not currently supported for
applets running on a Web browser.

The EJB Programmer’s View

As an EJB programmer, orBean Provider, as identified in the EJB Specification, you
must follow the conventions and programming restrictions established in the EJB
Specification 1.1 for the different EJB types. The following are the principal desig
considerations to take into account when implementing beans with the WebLogic
Enterprise EJB environment:

� Choosing Between Session and Entity Beans

� Server Startup

� Home Interface Registration

� Bean Activation and Passivation
Getting Started 8-5

8 Designing Enterprise JavaBeans for the WebLogic Enterprise System

n

, and

e
e and

JB
and
n
.

nce

t).

nt

l
ies,
in
� EJBs as Client Applications

The sections that follow discuss each of these considerations in detail.

Choosing Between Session and Entity Beans

When to use one bean type or another depends upon the design pattern that bea
programmers want to use. There are a few commonly used rules:

� Stateless session beans provide a capability similar to the service model
provided by the Tuxedo system. They are highly recommended for short
interactions with the business data when there is no need to retain state.
Therefore, they do not need special operations to activate or deactivate their
state. EJB containers can freely pool instances, allocate instances as needed
apply load balancing strategies to distribute the load across different servers.

� Stateful session beans are recommended when it is necessary to retain
in-memory state across multiple method invocations made by the client. Thes
beans are more expensive than stateless session beans because they allocat
exclusively reserve resources during the private conversation with the client
application.

When developing a stateful session bean, you must implement the
ejbPassivate andejbActivate methods in such a way that resources like
JDBC connections and network connections are handled properly. While the E
container is responsible for saving the conversational state in a portable way
for reconstructing that state during activation, some precautions must be take
by the Bean Provider to ensure that the EJB container handles state correctly
(See section 6.4.1 in the EJB Specification 1.1 for more information.) You can
also decide if the bean’s state needs to be synchronized when the bean is
involved in a distributed transaction.

� Entity beans are recommended when it is necessary to associate a bean insta
with a particular application-defined identity, which is similar to the CORBA
model, and the bean’s state must be persistent (that is, the state cannot be los
Entity beans cannot use theSessionSynchronization interface to synchronize
with the starting and stopping of a transaction.

Entity beans can be used in many ways; for example, to implement a persiste
variant of CORBA objects or to provide an object representation of entities
stored in a database. You must be careful when you use entity beans to mode
objects stored in a database, because these beans could introduce inefficienc
such as having most of the business logic on the client application rather than
8-6 Getting Started

Designing EJB Applications for the WebLogic Enterprise System

ct
oads

e
ns,

iptor.

the
gic
om

ivated

bject
tant
come

r

the server application. Moving the business logic to the server application
reduces the number of invocations needed to perform a particular business
transaction.

Server Startup

The WebLogic Enterprise EJB container gives you the flexibility to specify an obje
that is invoked by the EJB container when a WebLogic Enterprise server process l
an EJB JAR file. This object is an instance of a class that implements theServer

interface, and is thus referred to as amodule initializer object. Implementing the
module initializer object is described in the section “Step 2: Create the Module
Initializer Object” on page 7-13.

You can use the module initializer object to perform specialized initialization for som
objects, such as instantiating RMI objects. In WebLogic Enterprise EJB applicatio
you can specify this class in the<module-initializer-class> element in the
WebLogic EJB extensions to the deployment descriptor DTD, which is a special
deployment descriptor that you create along with the standard deployment descr

Home Interface Registration

When an EJB JAR file is deployed, the WebLogic Enterprise container recognizes
EJB home interfaces (factories) and automatically registers them within the WebLo
Enterprise JNDI context. The information about the home interfaces is retrieved fr
the deployment descriptor.

Bean Activation and Passivation

EJB containers have complete control of the passivation of EJBs. This allows the
container to pool instances of a bean and to decide when an instance can be pass
(or removed from the pool) to provide better use of system resources.

As a bean programmer, you cannot make any assumptions about when a bean o
is passivated. This passivation can happen at any time. This is particularly impor
when the bean accesses a database via cursors, because these cursors could be
invalid after the passivation; the EJB container can reactivate the bean in anothe
server process.
Getting Started 8-7

8 Designing Enterprise JavaBeans for the WebLogic Enterprise System

t is

y
ed in

ion,

e

les:

he

e
so

em

rors,

by
eir

p

The WebLogic Enterprise EJB container currently follows a passivation model tha
similar to the model used by the WebLogic Enterprise TP Framework for CORBA
applications. If resources are scarce, the WebLogic Enterprise EJB container ma
passivate an object at any time. When the bean is reactivated, it may be reactivat
the same server process or in another server process in the same group.

If a client application creates or invokes a stateful or entity bean within a transact
the bean will never be passivated while it is participating in the transaction. If the
client invocation is nontransactional, the bean may be passivated at the end of th
method invocation.

For concurrency control, the WebLogic Enterprise system applies the following ru

� For entity beans, for a given primary key, there is only one active instance of t
bean at one time. This constraint is compatible with the activation policy
provided by the WebLogic Enterprise TP Framework.

� Although the client application can issue concurrent invocations on a bean, th
WebLogic Enterprise EJB container queues concurrent invocations on a bean
those invocations are performed one at a time. The WebLogic Enterprise syst
enforces this rule by running each active object on its own thread. This rule is
mandated by the EJB Specification 1.1. Also, note that the EJB Specification
discourages the direct use of threads by EJB programmers.

Note: If a passivated stateful bean is not removed due to application or system er
its passivated state takes up disk space in the location specified by the
<persistence-store-directory-root> element. This passivated state
remains on disk until the temporary files containing that state are deleted
the System Administrator. These files can be identified by the syntax of th
names, which include the following information:

� The server name, which includes the server group name and the grou
ID

� The server generation ID

� The bean name

� A string of several digits
8-8 Getting Started

Designing EJB Applications for the WebLogic Enterprise System

st
can
ate
s

iner

che
ly
ance

riod
e
the

e

ans

EJB
ng

is
The server name and bean name components of the filename are the mo
readily identifiable. To manage the number of unused bean state files that
potentially accumulate over time, System Administrators may choose to cre
scripts that delete those files whenever the WebLogic Enterprise system i
started or shut down.

Controlling the Passivation of Beans -- the EJB Cache

In WebLogic Enterprise 5.0, the EJB container cached stateful beans only for the
duration of a transaction. If such beans were not involved in a transaction, the conta
passivated them after each method invocation on the bean.

In versions of WebLogic Enterprise after 5.0, the EJB container has the ability to ca
beans across method invocations as well as across transactions. This significant
reduces the frequency of beans being passivated, thereby providing the perform
improvement. EJB caching is enabled by default for stateful beans.

When Stateful Beans Are Passivated

A cached stateful bean is normally only stored (passivated) if it is unused for a pe
of time. You can configure an optional cache flush time, if desired. A bean may b
considered unused if other beans are being used more frequently and the bean is
least recently used bean. The bean may also be passivated if the cache flush tim
occurs and the bean is not presently active within a method call or a transaction.

Passivation After Creation

In the WebLogic Enterprise system, the EJB container still passivates stateful be
immediately after theejbCreate method is called. This behavior may change in
future releases, however.

How to Set Up EJB Caching

EJB caching is enabled by default for stateful session beans and entity beans in the
container of theWebLogic Enterprise system, and can be set up using the followi
mechanisms:

� Via the WebLogic EJB extensions to the deployment descriptor DTD. Using th
mechanism allows you to disable caching for individual beans.
Getting Started 8-9

8 Designing Enterprise JavaBeans for the WebLogic Enterprise System

nt
ther
face

cts

and
� Specifying the JavaServer parametersMAXEJBCACHEandEJBCACHE_FLUSH, in
which you can establish two settings for bean caching:

� Maximum number of beans that can be cached at any one time

� A time interval specifying when the bean cache is to be flushed by the
system

For more information about setting up the bean cache, see the section “Starting
JavaServer” in the topicCreating a Configuration File. For information about scaling
and tuning the bean cache, seeScaling, Distributing, and Tuning Applications.

EJBs as Client Applications

A bean may invoke the methods of another bean. When a bean behaves as a clie
application, the client rules still apply: the bean must obtain the reference to the o
bean from that bean’s home interface (factory), and references to the home inter
must be obtained using JNDI.

The main differences with the client environment are the following:

� When the bean creates theInitialContext object, there is no authentication or
connection setup because WebLogic Enterprise Java servers run within the
trusted server base.

� The WebLogic Enterprise EJB container does not support reentrancy, and reje
loopback calls (a bean calling another bean that then calls the first bean) by
throwing an exception (java.rmi.RemoteException) to the client application.

Note: The WebLogic Enterprise EJB container does not propagate the security
transaction context on callbacks to a J2EE client.

Security, Transactions, and JDBC Connections

For additional EJB design considerations, see the following in the WebLogic
Enterprise online documentation:

� Using Security

� Using Transactions

� Using the JDBC Drivers
8-10 Getting Started

EJBs and Persistence

ws
trate

t are

s

e not

ble
d in
at
r

ling

has
EJBs and Persistence

This section provides a general discussion about EJBs and persistence, and sho
sample fragments of EJB implementation code and deployment descriptors to illus
the following:

� Container-managed Entity Beans

� Bean-managed Entity Beans

� Stateful Session Beans

� Stateless Session Beans

The topics described in this section use code from the EJB sample applications tha
installed with the WebLogic Enterprise software.

Note: The code fragments shown in this section are taken from the EJB sample
provided with the WebLogic Enterprise software. These samples include
tracing code, which is turned on by theVERBOSEflag, that helps show what is
happening when the samples are executed. These tracing statements ar
required by the EJB Specification 1.1; they are present for instructional
purposes only.

Development Considerations for EJBs and Persistence

Persistence refers to a bean’s state information, which may be contained in dura
storage when the bean is not active. When the bean is activated, this state is rea
from durable storage. As a Bean Provider, you basically have two choices for wh
kind of broad mechanism you want to use for handling a bean’s persistence: eithe
directly in the bean’s logic, or by delegating to the EJB container the tasks of hand
the bean’s persistence.

A bean that delegates to the container all the logic for handling its persistent data
what is referred to ascontainer-managed persistence. A bean that contains its own
logic for handling its persistence data has what is referred to asbean-managed
persistence. The choice you make for a bean must be specified in the bean’s
deployment descriptor.
Getting Started 8-11

8 Designing Enterprise JavaBeans for the WebLogic Enterprise System

ing:

in
d

on

nce

listed

e

Container-managed Entity Beans

If your entity bean uses container-managed persistence, you need to do the follow

� In the bean’s standard deployment descriptor, define the elements described
the section “Required Deployment Descriptor Elements for Container-manage
Beans” on page 8-12.

� In the bean’s implementation, declare as public the class variables whose
persistence is container-managed, as shown in the code fragment in the secti
“Declaring Container-managed Fields as Public Variables” on page 8-13.

Note: The EJB Specification 1.1 requires that class variables whose persiste
is container-managed have public access.

The subsections that follow also provide code fragments that show the use of the
ejbCreate , ejbStore , andejbRemove methods in such beans.

Required Deployment Descriptor Elements for Container-managed Beans

The required deployment descriptor elements for container-managed beans are
and described in Table 8-3.

Table 8-3 Required Deployment Descriptor Elements for Container-managed
Beans

Deployment Descriptor
Element

Description

cmp-fields This element specifies the container-managed fields.
This is a standard property that lists the public
nontransient instance variables that the EJB expects
will be made automatically persistent. Even if there are
no managed fields, the bean's object reference and th
primary key are remembered by the EJB container.

persistence-type If the EJB is an entity bean, this element declares
whether the persistence management is performed by
the container or by the bean. For container-managed
persistence, this element should specifycontainer .
8-12 Getting Started

EJBs and Persistence

ublic

y
tting

s

t

Declaring Container-managed Fields as Public Variables

The following code fragment shows a container-managed EJB declaring its
container-managed fields as public class variables. These variables need to be p
so that the container can manage them.

// public container managed variables
public String accountId; // also the primary Key
public double balance;
public String type; // "Checking"

The ejbCreate Method

A container-managed entity bean needs to implement theejbCreate method. Note
that theaccountId andinitialBalance parameters in this method are managed b
the container. The following code fragment shows a container-managed bean se
the values of the public class variables shown in the code fragment in the section
“Declaring Container-managed Fields as Public Variables” on page 8-13.

public void ejbCreate(String accountId, double initialBalance,
String type) {

if (VERBOSE)
System.out.println("ejbCreate(id = " + id() +

", initial balance = $" + initialBalance +
", type: " + type + ")");

this.accountId = accountId;
this.balance = initialBalance;
this.type = type;

}

persistence-store-jdbc This element specifies that the type of persistent store i
jdbc . (Note that in WebLogic Enterprise, file-based
persistence for entity beans is not supported.)

primary-key-class The deployment descriptor for any entity bean must se
this element, which identifies the primary key class for
the bean.

Table 8-3 Required Deployment Descriptor Elements for Container-managed
Beans (Continued)

Deployment Descriptor
Element

Description
Getting Started 8-13

8 Designing Enterprise JavaBeans for the WebLogic Enterprise System

ny

s, as

the
ple:

the

well
e.
The ejbStore Method

The EJB Specification 1.1 states that implementing theejbStore method in a
container-managed entity bean is required, even if the method does not provide a
specific functionality. One advantage to having this method in your
container-managed bean is to provide a tracing capability for debugging purpose
in the following example:

public void ejbStore() {
if (VERBOSE)

System.out.println("ejbStore (" + id() + ")");
}

The ejbRemove Method

As with theejbStore method in the preceding section, theejbRemove method is not
a functional component of a container-managed bean implementation; however,
EJB Specification 1.1 requires this method to be present, as in the following exam

public void ejbRemove() throws RemoveException {
if (VERBOSE)

System.out.println("ejbRemove (" + id() + ")");
}

Bean-managed Entity Beans

If you are implementing a bean with bean-managed persistence, you need to do
following:

� Declare the bean’s persistence type in the persistence-type element in the
standard deployment descriptor.

� Implement code in the bean that accesses the JDBC connection pool.

� Implement theejbCreate andejbStore methods to create a database entity
that contains the bean’s persistent data, and store that data.

The code fragments provided in this section illustrate performing these tasks, as
as using theejbRemove method to remove a bean’s persistent data from a databas
8-14 Getting Started

EJBs and Persistence

e

ol.
Accessing the JDBC Pool

The following code example shows a bean-managed entity bean using static
initialization to establish access to the JDBC pool, which is defined in the EJB
application’sUBBCONFIGfile:

static {
try{

Context ctx = new InitialContext();
pool = (DataSource)ctx.lookup("jdbc/pool1");

} catch(Exception e) {
System.out.println("problem with datasource.");

}
}

The ejbCreate Method

A bean-managed entity bean uses theejbCreate method to create the bean and updat
the table in the database that contains the entity bean’s value. Listing 8-1 shows
creating a row in the table in that database, using a JBDC connection from the po

Listing 8-1 Entity Bean Creating a Row in a Database

public AccountPK ejbCreate(String account_id, double initial_balance)
throws CreateException,

{
if (VERBOSE) {

System.out.println("AccountBean.ejbCreate(id = " +
System.identityHashCode(this) + ", PK = " +
account_id + ", " + "initial balance = $ " +
initial_balance + ")");

}
AccountId = account_id;
Balance = initial_balance;

Connection connection = null;
PreparedStatement prep_stmt = null;

try {
connection = pool.getConnection();
prep_stmt = connection.prepareStatement("insert into ejbAccounts "+

"(id, bal) values (?, ?)");
prep_stmt.setString(1, AccountId);
Getting Started 8-15

8 Designing Enterprise JavaBeans for the WebLogic Enterprise System

this

in
prep_stmt.setDouble(2, Balance);
if (prep_stmt.executeUpdate() != 1) {

throw new CreateException ("JDBC did not create any row");
}
AccountPK primary_key = new AccountPK();
primary_key.AccountId = AccountId;
return primary_key;

} catch (CreateException ce) {
throw ce;

} catch (SQLException sqe) {
throw new CreateException (sqe.getMessage());

} finally {
try {

prep_stmt.close();
connection.close();

} catch (Exception e) {
}

} // end of finally
} // end of ejbCreate(..)

Updating the Database

The following code fragment shows updating the database with the values. Since
bean uses bean-managed persistence, updating the database is done manually.
Whereas the code in the previous example created the database rows, the code
Listing 8-2 specifies the values in those rows.

Listing 8-2 Entity Bean Updating the Database

ejbStore()
public void ejbStore() throws EJBException {

if (VERBOSE) {
System.out.println("ejbStore (" + id() + ")");

}
Connection connection = null;
PreparedStatement prep_stmt = null;
try {

connection = pool.getConnection();
prep_stmt = connection.prepareStatement("update ejbAccounts set bal = "+

"? where id = ?");
prep_stmt.setDouble(1, Balance);
prep_stmt.setString(2, AccountId);
int i = prep_stmt.executeUpdate();
if (i == 0) {
8-16 Getting Started

EJBs and Persistence

at
throw new RemoteException ("ejbStore: AccountBean (" + AccountId +
") not updated");

}
} catch (RemoteException re) {

throw re;
} catch (SQLException sqe) {

throw new EJBException (sqe.getMessage());
} finally {

try {
prep_stmt.close();
connection.close();

} catch (Exception e) {
throw new EJBException (e.getMessage());

}
} // end of finally

} // end of ejbStore()

Removing Values From the Database

Listing 8-3 shows using theejbRemove method to remove rows from the database th
were created and set in the preceding code examples.

Listing 8-3 Removing Values From a Database

public void ejbRemove()
throws RemoveException,

{
if (VERBOSE) {

System.out.println("ejbRemove (" + id() + ")");
}
// we need to get the primary key from the context because
// it is possible to do a remove right after a find, and
// ejbLoad may not have been called.

Connection connection = null;
PreparedStatement prep_stmt = null;
try {

connection = getConnection();
AccountPK pk = (AccountPK) ctx.getPrimaryKey();
prep_stmt = connection.prepareStatement("delete from ejbAccounts where "+

"id = ?");
prep_stmt.setString(1, pk.AccountId);
int i = prep_stmt.executeUpdate();
if (i == 0) {

throw new EJBException ("AccountBean ("
Getting Started 8-17

8 Designing Enterprise JavaBeans for the WebLogic Enterprise System

tate

lable

ote
stem
+ pk.AccountId + " not found");
}

} catch (RemoteException re) {
throw re;

} catch (SQLException sqe) {
throw new RemoteException (sqe.getMessage());

} finally {
try {

prep_stmt.close();
connection.close();

} catch (Exception e) {
throw new EJBException (e.getMessage());

}
} // end of finally

} // end of ejbRemove()

Stateful Session Beans

This section shows the following examples of stateful session beans:

� Required standard deployment descriptor elements

� Code fragments showing two stateful session beans: one in which the client
keeps track of the bean’s state, and one in which the bean keeps track of its s

The code examples shown here are from the EJB Samples directory, which is avai
with the WebLogic Enterprise software.

Example Deployment Descriptor

A deployment descriptor for a stateful session bean can optionally define the
persistentDirectoryRoot element. The default file is
/pstore/ bean_name .dat , where the directorypstore represents the directory from
which the WebLogic Enterprise application was started, andbean_name is the fully
qualified name of the EJB with underscores (_) replacing the periods (.) in the name.

If the persistentStoreType element is defined asjdbc , the container looks for
additional values to determine the appropriate values for the JDBC connection. N
that if the bean’s persistence is stored in a database via a JDBC connection, the Sy
Administrator needs to add this information to theUBBCONFIGfile as well. For more
information, seeUsing the JDBC Driversin the WebLogic Enterprise online
documentation.
8-18 Getting Started

EJBs and Persistence

t

n’s
ping

vides
cannot

sing
The following deployment descriptor fragment shows the location of the persisten
store for a stateful session bean:

<persistence-store-descriptor>
<persistence-store-file>

<persistence-store-directory-root>
c:\mystore

</persistence-store-directory-root>
</persistence-store-file>

</persistence-store-descriptor>

Client Application Maintaining a Bean’s State Information

The following code example shows an EJB client application keeping track of a bea
state information. In stateful session beans, you need to provide a one-to-one map
between the client and the bean in the server, represented by a key. This key pro
the map between the bean’s instance and the client, because the bean instance
be shared with other clients.

Listing 8-4 shows the client application code creating the stateful session bean u
the primary class key.

Listing 8-4 Client Application Using the Primary Class Key

// Give this trader a name
Trader trader = brokerage.create("Terry");
System.out.println("Creating trader " + trader.getTraderName() + "\n");

String stockName;
int numberOfShares;

for (int i = 1 ; i <= 5; i++) {
System.out.println("Start of Transaction " + i + " for " + customerName);

// Buying
stockName = "WEBL";
numberOfShares = 100 * i;
System.out.println("Buying " + numberOfShares + " of " + stockName);
TradeResult tr = trader.buy(customerName, stockName, numberOfShares);
System.out.println("...Bought " + tr.numberTraded + " at $" +

tr.priceSoldAt);
// Selling
stockName = "INTL";
numberOfShares = 100 * (i+1);
Getting Started 8-19

8 Designing Enterprise JavaBeans for the WebLogic Enterprise System

g to
lient.
System.out.println("Selling " + numberOfShares + " of " + stockName);
tr = trader.sell(customerName, stockName, numberOfShares);
System.out.println("...Sold " + tr.numberTraded + " at $" +

tr.priceSoldAt);

// Get change in Cash Account from EJBean
System.out.println("Change in Cash Account: $" + trader.getBalance());

System.out.println("End of Transaction " + i + "\n");
}

System.out.println("Change in Cash Account: $" + trader.getBalance() + "\n");
System.out.println("Removing trader " + trader.getTraderName());
trader.remove();

}
catch (ProcessingErrorException pe) {

System.out.println("Processing Error: " + pe);
pe.printStackTrace();

}
catch (Exception e) {

System.out.println(":::::::::::::: Error :::::::::::::::::");
e.printStackTrace();

}

Bean Keeping Track of Its Own State

Listing 8-5 shows a stateful session bean keeping track of its state, and its mappin
a specific client. For example, the balance is kept on the EJB rather than on the c

Listing 8-5 EJB State Management

// The reason the following attribute is public is to test
// passivation into a persistent store, because the deployment descriptor
// says it should be a stateful session bean.
// This and the ejbCreate method in this file are the differences
// between the examples in the stateful and stateless directories.
public String traderName;
public double tradingBalance;

// ---
.
.
.

public TradeResult buy(String customerName, String stockSymbol,
int shares)
8-20 Getting Started

EJBs and Persistence

a.
throws ProcessingErrorException
{

if (VERBOSE && shares >= 0) {
System.out.println("buy (" + customerName + ", " +

stockSymbol + ", " +
shares + ")");

}
try {

int tradeLimit = getTradeLimit();
if (shares > tradeLimit) // limit for buying

shares = tradeLimit;
else if (shares < -tradeLimit) // limit for selling

shares = -tradeLimit;

double price = getStockPrice(stockSymbol);
tradingBalance = tradingBalance - (shares * price); // subtract purchases

from cash account

if (shares < 0)
shares = -shares;

return new TradeResult(shares, price);
}
catch (Exception e) {

throw new ProcessingErrorException("Trader error: " + e);
}

}

Stateless Session Beans

This section provides the following two code examples:

� An EJB client application keeping track of a stateless session bean’s state

� A stateless bean that keeps track of its own state data

Client Maintaining Bean’s State

Listing 8-6 shows a client application keeping track of thecashBalance variable,
which is manipulated by the stateless bean. This example also shows the client
invoking theejbCreate method without any arguments and without any specific dat
Getting Started 8-21

8 Designing Enterprise JavaBeans for the WebLogic Enterprise System
Listing 8-6 Client State Management

try {
String customerName = "Erin"; // Default name for the customer
Context ctx = null; // To hold JNDI context
Object objref = null; // to hold object reference

String stockName = null; // Name of a stock
int numberOfShares = 0; // No. of shares to trade
double cashBalance = 0.0; // To hold balance between sessions

TraderHome brokerage = null; // To hold home interface
Trader trader = null; // To hold trader object
TradeResult tradeResult = null; // To hold results from a trade

// Create a new initial context based on the url, user, and password
ctx = newInitialContext();

if (ctx == null){
System.out.println("Initial context is null");
exit(-1);

}
// do a JNDI lookup for the EJB;defined in the deployment descriptor
objref = ctx.lookup("statelessSession.TraderHome");
printTrace("Looked up home:");

/* Create a trader object, who'll later help us execute trades
* The lookup has resulted in an Object. We know
* this object is actually a reference of type TraderHome,
* so the reference is narrowed and cast to that type:

*/
brokerage = (TraderHome) PortableRemoteObject.narrow(objref,

TraderHome.class);
printTrace("Narrowed home.");

/* Create the EJB on the WLE server.
* Unlike the statefulSession example,we don't give this trader a key

*/
printTrace("Creating trader.");
trader = brokerage.create();

/* Unlike the statefulSession example,
* we have to keep track of the balance over the
* life of our use of the session bean
*/

for (int i = 1 ; i <= maxTransaction; i++) {
System.out.println("Start of Transaction " + i + " for " +
8-22 Getting Started

EJBs and Persistence
customerName);

/* Buying
* Stock symbol must be found in the deployment descriptor's environment
* properties section. TraderBean EJB will check the validity of the
* symbol, and its price using JNDI lookup on the environment
* properties.
*/

stockName = "BEAS";
numberOfShares = 100 * i;
System.out.println("Buying " + numberOfShares + " of " + stockName);

// buy() is executed on the TraderBean EJB in the WLE Server
tradeResult = trader.buy(customerName, stockName, numberOfShares);
System.out.println("...Bought " + tradeResult.numberTraded + " at $" +

tradeResult.priceSoldAt);

// Keep track of the change in the Cash Account
cashBalance = cashBalance - (tradeResult.numberTraded *

tradeResult.priceSoldAt);

// Selling
stockName = "INTL";
numberOfShares = 100 * (i+1);
System.out.println("Selling " + numberOfShares + " of " + stockName);

// sell() is executed on the TraderBean EJB in the WLE Server
tradeResult = trader.sell(customerName, stockName, numberOfShares);
System.out.println("...Sold " + tradeResult.numberTraded + " at $" +

tradeResult.priceSoldAt);

// Keep track of the change in the Cash Account
cashBalance = cashBalance + (tradeResult.numberTraded *

tradeResult.priceSoldAt);

// Print change in Cash Account
System.out.println("Change in Cash Account: $" + cashBalance);
System.out.println("End of Transaction " + i + "\n");

}
System.out.println("Change in Cash Account: $" + cashBalance + "\n");
System.out.println("Removing trader");

// Remove TraderBean EJB from the WLE server.
trader.remove();

}
catch (ProcessingErrorException pe) {

System.out.println("Processing Error: " + pe);
pe.printStackTrace();
Getting Started 8-23

8 Designing Enterprise JavaBeans for the WebLogic Enterprise System
}
catch (Exception e) {

System.out.println(":::::::::::::: Error :::::::::::::::::");
e.printStackTrace();

}

Stateless Bean Tracking Its Own State

Listing 8-7 shows a business method from theTraderBean example, available in the
EJB Samples directory provided with the WebLogic Enterprise software. In this
example, the bean does not preserve any state. The bean’sbuy method performs simple
calculations on data provided by the client application.

Listing 8-7 Stateless Bean State Management

getStockPrice() and getTradeLimit() methods use DD environment properties to
access constant values using JNDI lookup() - prevents hardcoding data.

public TradeResult buy(String customerName, String stockSymbol,
int shares)

throws ProcessingErrorException
{

if (shares >= 0) {
printTrace("buy (" + customerName + ", " +

stockSymbol + ", " +
shares + ")");

}
try {

int tradeLimit = getTradeLimit();
if (shares > tradeLimit)

shares = tradeLimit;
else if (shares < -tradeLimit) // limit for selling

shares = -tradeLimit;

double price = getStockPrice(stockSymbol);
printTrace("Executing buy...");
if (shares < 0)

shares = -shares;
return new TradeResult(shares, price);

}
catch (Exception e) {

throw new ProcessingErrorException("Trader error: " + e);
}

}

8-24 Getting Started

Index

A
activation 8-7
activation policies

defining in Implementation
Configuration file 4-16

defining in Server Description file 4-16
Simpapp sample application 4-16
Simple interface 4-17
supported 4-16

ActiveX application builder
description 2-6

AdminAPI
description 2-5

administration commands
tmadmin command 2-4
tmboot command 2-4
tmconfig command 2-4
tmloadcf command 2-4
tmshutdown command 2-4
tmunloadcf command 2-4

Administration console
description 2-4

administration tools
AdminAPI 2-5
administration commands 2-4
Administration console 2-4

app 4-26
Application Assembler 3-5
Authenticates 2-18
authentication

client application 2-18

levels 5-2

B
bean-managed persistence 3-5
beans

See EJBs
Bootstrap object

description 2-11
illustrated 2-11
Simpapp sample application 4-21

building
C++ client applications 4-30

buildobjclient command 2-3
C++ server applications

buildobjserver command 2-3
genicf command 2-3

Java client applications 4-30
Java server applications

buildjavaserver command 2-3
buildjavaserver command

building Java server applications 2-3
description 2-3
format 4-29
in the Simpapp sample application 4-29

buildobjclient command
building C++ client applications 2-3
description 2-3
format 4-30
in the Simpapp sample application 4-30

buildobjserver command
Getting Started I-1

building C++ server applications 2-3
description 2-3
format 4-29
in the Simpapp sample application 4-29

buildXAJS command
building an XA resource manager 2-3
description 2-3

C
client 4-30
client applications

authenticating into the WLE domain 2-
18

EJB 8-2
initialization process 2-18
invoking objects 2-21
using transactions 6-4
writing

Security sample application 6-11
Simpapp sample application 4-21
Transactions sample application 6-

11
client stubs

generating 4-6
in Simpapp sample application 4-6

code example
C++ client application for Simpapp

sample application 4-22
C++ implementation of the Simple

interface 4-9
C++ Server object 4-12
C++ server object that supports

transactions 6-13
configuration file for Simpapp sample

application 4-26
Java client application for the Simpapp

sample application 4-23
Java implementation of SimpleFactory

interface 4-11
Java implementation of the Simple

Interface 4-10
Java Server object 4-14
OMG IDL for Simpapp sample

application 4-6
OMG IDL for Transactions sample

application 6-8
security in C++ client applications 5-7
security in Java client applications 5-8
transactions in C++ client application 6-

12
UBBCONFIG file for Transactions

sample application 6-15
compiling

C++ client applications 4-30
C++ server applications 4-29
Java client applications 4-30
Java server applications 4-29

container-managed persistence 3-5
CORBAservices Object Transaction Service

using in WLE applications 6-2
create_servant method 2-19
customer support contact information ix

D
Deployer 3-5
deployment, dynamic

See hot redeployment
development commands

buildjavaserver 2-3
buildobjclient command 2-3
buildobjserver command 2-3
buildXAJS command 2-3
genicf command 2-3
idl2ir command 2-3
ir2idl command 2-3
irdel command 2-3

development process
activation policies 4-16
client applications

Security sample application 5-7
I-2 Getting Started

Simpapp sample application 4-21
Transactions sample application 6-

11
defining object activation policies 4-16
illustrated 4-3
Implementation Configuration file 4-16
OMG IDL

Simpapp sample application 4-5
Transactions sample application 6-8

Security sample application 5-6
server applications

Simpapp sample application 4-8
Transactions sample application 6-

13
Server Description file 4-16
Simpapp sample application 4-4
steps for creating WLE applications 4-2
Transactions sample application 6-7
WLE applications 4-2
writing a configuration file 4-25
writing server application code 4-8
writing the client application code 4-21
writing the OMG IDL 4-5

documentation, where to find it viii
dynamic deployment

See hot redeployment

E
ejbCreate method 8-5
ejbPostCreate method 8-5
ejbRemove method 8-5
EJBs

and persistence 3-5
as clients 8-10
Container Provider 3-5
Deployer 3-5
design considerations 8-5
designing for client applications 8-2
entity 3-3, 8-6
initializing in server 8-7

provider 3-5
Server Provider 3-5
session 8-6
stateful session 3-3
stateless session 3-3

Enterprise Bean Provider 3-5
Enterprise JavaBeans

see EJBs
entity beans 3-3, 8-6
EntityBean interface 8-5
environmental objects

and client initialization 2-18
description 2-8

F
factories

finding 2-19
registering 2-19

FactoryFinder object
description 2-8
example use of 2-19

G
genicf command

creating a ICF file 2-3
description 2-3

H
Home interface 8-2
host

port 8-2
hot redeployment 7-37

and the module initializer object 7-13

I
IDL

See Interface Definition Language 2-2
idl command 2-2
Getting Started I-3

description 2-2
files created by 4-7
generating client stubs 4-7
generating skeletons 4-7

IDL compiler
idl command 2-2
m3idltojava command 2-2
supported 2-2

idl2ir command
description 2-3

idltojava compiler
differences from Sun version 2-2

IIOP Listener/Handler
description 2-12

Implementation Configuration file
defining activation policies 4-16
defining transaction policies 6-10

initialize method
on Server object 8-7
summary 2-16, 2-17

initializing EJB applications 8-7
Interface Repository

creating 2-3
deleting objects from 2-3
displaying the contents 2-3
idl2ir command 2-3
ir2idl command 2-3
irdel command 2-3
loading interface definitions into 2-3

InterfaceRepository object
description 2-9

interfaces
writing methods to implement

operations 4-9
ir2idl command

description 2-3
irdel command

description 2-3

J
Java client applications

required files 4-30
Java Transaction Service

using in WLE applications 6-2

K
key

primary 3-3

M
m3idltojava command 2-2

description 2-2
files created by 4-8
generating client stubs 4-7
generating skeletons 4-7

Management Information Base
see MIB 1-5

managing
WLE applications

tmadmin command 2-4
tmboot command 2-4
tmconfig command 2-4
tmloadcf command 2-4
tmshutdown command 2-4
tmunloadcf command 2-4

method implementations
C++ 4-9
Java 4-10
writing 4-9

MIB
for WLE applications 1-5

O
object handle 8-2
Object Life Cycle service

description 2-8
object request broker
I-4 Getting Started

see ORB 2-13
object services

Interface Repository 2-9
Object Life Cycle service 2-8
Security service 2-8
Transaction service 2-8

objects
invoking 2-21

OMG IDL
compiling 4-6
generating client stubs 4-6
generating skeletons 4-6
Simple interface 4-5, 4-6
SimpleFactory interface 4-5, 4-6
Transactions sample application 6-8

ORB
description 2-13
illustrated 2-13

P
passivation 8-7
persistence

bean-managed 3-5
container-managed 3-5

POA
description 2-14
interaction with TP Framework 2-14

Portable Object Adapter
see POA 2-14

primary key 3-3
PrincipalAuthenticator object

using in client applications 5-4
printing product documentation ix
programming tools 2-2

R
register_factory method

example of 2-19
related information ix

release method
on Server object 8-7

Remote interface 8-2
RemoteException exception 8-10
resolve_initial_references method 2-18

S
security authentication 8-2
security credentials 8-2
security principal 8-2
Security sample application

defining security level 5-6
description 5-4
development process 5-6
illustrated 5-4
location of files 5-5
PrincipalAuthenticator object 5-4
SecurityCurrent object 5-4
using the PrincipalAuthenticator object

5-7
using the SecurityCurrent object 5-7
writing the client application 5-7

Security service
description 2-8
functional description 5-2

SecurityCurrent object
description 2-8
using in client applications 5-4

server applications
defining object activation policies 4-16
Implementation Configuration file 4-16
Server Description file 4-16
writing

Simpapp sample application 4-8
Transactions sample application 6-

13
writing method implementations 4-9
writing the Server object 4-12

Server Description file
defining activation policies 4-16
Getting Started I-5

defining transaction policies 6-11
Server object 6-13, 8-7

description 2-16
Transactions sample application 6-13
writing 4-12

session beans 3-3, 8-6
SessionBean interface 8-5
SessionSynchronization interface 8-5
Simpapp sample application

compiling
C++ client application 4-30
C++ server application 4-29
Java client application 4-30

compiling Java server application 4-29
configuration file 4-25, 7-29
description 4-4
file location 4-5
illustrated 4-4
interfaces defined for 4-5
OMG IDL 4-5
using the Bootstrap object 4-21
using the buildjavaserver command 4-29
using the buildobjserver command 4-29
writing the client application code 4-21

Simple interface
activation policy 4-17
OMG IDL 4-5

Simple Network Management Protocol
see SNMP 1-5

SimpleFactory interface
OMG IDL 4-5

skeletons
generating 4-6
in Simpapp sample application 4-6

SNMP
in the WLE product 1-5

stateful 8-6
stateful session beans 3-3
stateless 8-6
stateless session beans 3-3
support

technical x
supporting databases 6-13
System Administrator 3-5

T
T_MODULE TMIB class 7-37
TLOGDEVICE parameter 6-15
tmadmin command

description 2-4
tmboot command

description 2-4
tmconfig command

description 2-4
tmloadcf command

creating a configuraiton file 4-28, 7-33
description 2-4

tmshutdown command
description 2-4

tmunloadcf command
description 2-4

Tobj_Bootstrap 2-18
TP Framework

description 2-14
illustrated 2-15

transaction policies
defined 6-10

Transaction server application
writing the server application 6-13

Transaction service
description 2-8, 6-1
features 6-2

TransactionCurrent object
description 2-8

transactions
functional overview 6-3
illustrated 6-3
in client applications 6-4
OMG IDL 6-4

Transactions sample application
description 6-4
I-6 Getting Started

file location 6-7
illustrated 6-5
OMG IDL 6-8
starting server application 6-13
transaction policies 6-11
UBBCONFIG file 6-14
writing client applications 6-11
writing server applications 6-13

Transactions sample application
development process 6-7

TUXCONFIG file
description 4-28, 7-33

U
UBBCONFIG file

adding transactions 6-14
description 4-28, 7-33
sections in 4-25
setting the security level 5-6

user exceptions
Transactions sample application 6-5

UserTransaction object
description 2-8

W
WLE applications

defining security levels 5-6
how they work 2-16
managing

tmadmin command 2-4
tmboot command 2-4
tmconfig command 2-4
tmloadcf command 2-4
tmshutdown command 2-4
tmunloadcf command 2-4

using CORBAservices Object
Transaction Service 6-2

using Java Transaction Service 6-2
WLE components

IIOP Listener/Handler 2-12
illustrated 2-10
ORB 2-13
TP Framework 2-14

WLE domain
adding security to 5-4

WLE product
ActiveX application builder 2-6
administration tools 2-4
description of components 2-9
development commands 2-3
features 1-3, 1-4
how client and server applications work

2-16
IDL compilers 2-2
object services 2-8
programming tools 2-1

wle.dynamic 7-37
Getting Started I-7

I-8 Getting Started

	Copyright
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Overview of the WebLogic Enterprise Product
	Product Overview
	J-Engine Features
	T-Engine Features

	2 The WebLogic Enterprise CORBA Programming Environment
	Overview of the WebLogic Enterprise CORBA Programming Features
	IDL Compilers
	Development Commands
	Administration Tools
	ActiveX Application Builder

	WebLogic Enterprise CORBA Object Services
	WebLogic Enterprise Architectural Components
	Bootstrap Object
	IIOP Listener/Handler
	ORB
	TP Framework

	How WebLogic Enterprise CORBA Client and Server Applications Interact
	Step 1: The Server Application Is Initialized
	Step 2: The Client Application Is Initialized
	Step 3: The Client Application Authenticates Itself to the WebLogic Enterprise Domain
	Step 4: The Client Application Obtains a Reference to the Object Needed to Execute Its Business L...
	Step 5: The Client Application Invokes an Operation on the CORBA Object

	3 The WebLogic Enterprise JavaBeans (EJB) Programming Environment
	Overview of the WebLogic Enterprise EJB Programming Environment
	Types of Beans Supported in WebLogic Enterprise
	EJBs and Persistence
	Roles of People Who Develop, Build, Deploy, and Administer EJBs
	Items You Create for an EJB Application
	Tools and Facilities Provided for Building and Deploying EJBs
	EJBs and Failover in the WebLogic Enterprise Environment

	4 Developing WebLogic Enterprise CORBA Applications
	Overview of the Development Process for WebLogic Enterprise CORBA Applications
	The Simpapp Sample Application
	Step 1: Write the OMG IDL Code
	Step 2: Generate Client Stubs and Skeletons
	Step 3: Write the Server Application
	Writing the Methods That Implement Each Interface’s Operations
	Creating the Server Object
	Defining an Object’s Activation Policies
	Creating and Registering a Factory
	Releasing the Server Application

	Step 4: Write the Client Application
	Step 5: Create an XA Resource Manager
	Step 6: Create a Configuration File
	Step 7: Create the TUXCONFIG File
	Step 8: Compile the Server Application
	Step 9: Compile the Client Application
	Step 10: Start the WebLogic Enterprise CORBA Application
	Additional WebLogic Enterprise CORBA Sample Applications

	5 Using Security
	Overview of the Security Service
	How Security Works
	The Security Sample Application
	Development Steps
	Step 1: Define the Security Level in the Configuration File
	Step 2: Write the CORBA Client Application

	6 Using Transactions
	Overview of the Transaction Service
	What Happens During a Transaction
	Transactions Sample Application
	Development Steps
	Step 1: Write the OMG IDL Code
	Step 2: Define Transaction Policies for the Interfaces
	Step 3: Write the CORBA Client Application
	Step 4: Write the Server Application
	Step 5: Create a Configuration File

	7 Developing WebLogic Enterprise EJB Applications
	Overview of the Development Process for WebLogic Enterprise EJB Applications
	The statefulSession EJB Sample Application
	Developing EJB Applications
	Step 1: Create the EJB
	Step 2: Create the Module Initializer Object
	Step 3: Create the Deployment Descriptor
	Step 4: Create a Standard EJB JAR File

	Building and Deploying EJB Applications
	Step 5: Create the WebLogic EJB Extensions to the Deployment Descriptor DTD
	Step 6: Modify the Deployment Descriptor
	Step 7: Package the Components Into a Deployable EJB JAR File
	Step 8: Configure the EJB Application
	Step 9: Create the Client Application
	Step 10: Start and Run the WebLogic Enterprise EJB Application
	Step 11: Dynamically Manage the EJB Deployment (Hot Redeployment)

	WebLogic Enterprise EJB Sample Applications

	8 Designing Enterprise JavaBeans for the WebLogic Enterprise System
	Designing EJB Applications for the WebLogic Enterprise System
	The Client Application Programmer’s View
	The EJB Programmer’s View

	EJBs and Persistence
	Development Considerations for EJBs and Persistence
	Container-managed Entity Beans
	Bean-managed Entity Beans
	Stateful Session Beans
	Stateless Session Beans

