
BEA TUXEDO
Application Development Guide

B E A T UX E DO R e l e a s e 6 . 5
D o c um e n t E d i t i o n 6 . 5

F e b r u a r y 1 9 99

Copyright

Copyright © 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, TUXEDO, and WebLogic are registered trademarks of BEA Systems, Inc. BEA
Builder, BEA Connect, BEA Manager, BEA MessageQ, Jolt and M3 are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

BEA TUXEDO Application Development Guide

Document Edition Date Software Release

Version 6.5 February 1999 BEA TUXEDO Version 6.5

.. 1-1

. 1-1

.. 1-2

.. 1-2

.. 1-3

.. 1-3

.. 1-4

.. 1-4

.. 1-5

.. 1-7

.. 1-8

.. 1-8

.. 1-8

1-10

1-10

1-11

-11

1-12

1-13

1-13

1-13

1-14

. 1-14

1-14

1-15
Contents

1. A Simple Application

About This Guide ..

Organization of the Guide ...

Assumptions ...

Documentation Roadmap...

About This Chapter ...

Some Preliminaries ..

The simpapp Tutorial ..

Step 1: Copy the simpapp Files..

Step 2: Examine the Client Program ..

References...

Step 3: Compile the Client ...

References...

Step 4: Examine the Server ..

References...

Step 5: Compile the Server...

References...

Step 6: Edit the Configuration File .. 1

References...

Step 7: Load the Configuration File...

References...

Step 8: Boot the Application ..

References...

Step 9: Enter a Request ...

Step 10: Using tmadmin...

References...
BEA TUXEDO Application Development Guide iii

-15

1-16

.1-17

.. 2-1

... 2-2

. 2-6

-10

.. 3-1

.. 3-2

.. 3-3

. 3-4

. 3-5

. 3-5

.. 3-5

.. 3-6

. 3-7

.. 3-8

3-8

. 3-8

... 3-9

... 4-1

.... 4-2

.. 4-3

. 4-3

. 4-4

-10

4-10

4-10

4-11

-12
Step 11: Shut Down the Application .. 1

References ...

Summary...

2. bankapp Files

Directory Structure for bankapp ..

Files ..

Edit bankvar to Set Environment Variables ..

Additional PATH Component for SunOS... 2

3. bankapp Client Programs

A Look at bankapp Client Programs ...

System Client Programs ...

Mask Source Code ..

Using mio(1) ..

Buffer Types...

Using ud(1)...

audit.c: A Request/Response Client ...

audit.c Source Code...

auditcon.c: A Conversational Client..

auditcon.c Source Code...

bankmgr.c: A Client that Monitors Events...

Building Client Programs..

References ...

4. bankapp Servers

A Look at bankapp Servers ..

Request/response Servers ...

A Conversational Server...

Service Definitions ..

Service Algorithms..

Utilities Incorporated into Servers..4

Building Servers ...

Using the buildserver Command in the bankapp

The ACCT Server..

The BAL Server .. 4
iv BEA TUXEDO Application Development Guide

-13

4-13

4-14

-14

4-15

. 4-15

. 5-1

. 5-1

5-1

. 5-2

5-2

.. 5-3

.. 5-3

... 6-1

... 6-1

.. 6-2

... 6-2

. 6-2

6-3

... 6-3

... 6-3

.. 6-4

... 6-4

. 6-5

6-6

... 6-6

... 6-7

... 6-7

... 6-8

. 6-8

.. 6-8
The BTADD Server .. 4

The TLR Server ..

The XFER Server..

Servers Built in bankapp.mk... 4

Alternative Way to Code Services ...

References ...

5. The bankapp Makefile

A Look at the bankapp Makefile ..

Editing bankapp.mk ..

TUXDIR..

APPDIR ...

NATIVE and Other /Host Parameters ..

Resource Manager...

Running bankapp.mk ...

6. Databases for bankapp

Resource Manager Options for bankapp ..

The System/D RM and bankapp...

Create Database in SHM Mode..

Create the Database in MP Mode..

Failure with a semget Error..

Using an XA-compliant RM with bankapp...

Changes to bankvar ...

Changes to the bankapp Services ..

Change to bankapp.mk...

Changes to crbank and crbankdb ..

Changes to the Configuration File ..

Using a non-XA Compliant RM with bankapp...

Changes to bankvar ...

Changes to the bankapp Clients and Services...

Changes to bankapp.mk ..

Changes to crbank and crbankdb ..

Changes to the Configuration File ..

Changes to the Driver Scripts...
BEA TUXEDO Application Development Guide v

.. 7-1

. 7-3

... 7-4

. 8-1

. 8-1

.. 8-2

.. 8-3

. 8-3

. 8-4

... 8-5

... 9-1

... 9-1

.. 9-3

9-3

.. 9-4

... 9-4

10-1

10-1

10-2

10-2

10-3

10-3

10-3

. 10-4
7. Edit bankapp Configuration Files

Configuration Files for bankapp..

Notes to Listing 7-1 ...

References ...

8. Create tuxconfig, tlog; Start tlisten

Creating tuxconfig, tlog tlisten ...

Loading the Configuration File ...

Creating the TLOG...

Starting tlisten...

Stopping tlisten...

Error Messages from tlisten Problems ...

References ...

9. Boot the Application; Populate the Database

tmboot and populate ...

Checking IPC Resources ...

Executing tmboot..

The Userlog: ULOG..

Running the populate Script ...

References ...

10. Run bankapp

Run the Application...

The bankapp run Script ..

Running the audit Client Program..

Running auditcon..

Using the driver Program ...

Using tmadmin ...

Shutting Down bankapp ...

References ...
vi BEA TUXEDO Application Development Guide

CHAPTER

ibe

1 A Simple Application

About This Guide

This is the BEA TUXEDO Application Development Guide. Its purpose is to descr
how to put together a working BEA TUXEDO application so you can more easily
develop applications of your own. The sample applications simpapp and bankapp
come with the software. simpapp is described in Chapter 1 and bankapp is used as an
example throughout the remainder of the guide.

Organization of the Guide

The BEA TUXEDO Application Development Guide consists of the following ten
chapters:

� Chapter 1 as noted above, tells how to install and run simpapp on your system.

� Chapter 2 lists the files that are delivered with bankapp and tells how to set the
environment

� Chapter 3 describes the client programs of bankapp

� Chapter 4 describes the service subroutines of bankapp

� Chapter 5 describes how to edit the file bankapp.mk and make bankapp

� Chapter 6 describes how to create the database that bankapp was written for and
how to integrate other resource managers with the system

� Chapter 7 tells how to edit the bankapp configuration file for your installation
BEA TUXEDO Application Development Guide 1-1

1 A Simple Application

log,

nce in
e

 we
hat
here
think
hen
se
� Chapter 8 describes how to load the configuration file, create the transaction
and start the BEA TUXEDO network listener process

� Chapter 9 tells how to boot the application and populate the database

� Chapter 10 tells how to run the application

Assumptions

We assume that readers of this guide are UNIX system users with some experie
application development, administration, or programming. We also assume som
familiarity with the nature of BEA TUXEDO software, at least as much as can be
gained by reading the BEA TUXEDO Product Overview.

An SDK license is required to build BEA TUXEDO applications.

Documentation Roadmap

In addition to describing how to bring up and run a sample application, in this book
hope to familiarize you with the rest of the BEA TUXEDO documentation set. To t
end, most chapters in this book close with a section that refers to other guides w
the topics of that chapter are dealt with in more detail. In most cases, we do not
you will have to refer to other documents to bring up bankapp successfully, but w
you do run into topics on which you would like more information, you can follow tho
pointers.
1-2 BEA TUXEDO Application Development Guide

About This Chapter

that

lt

About This Chapter

This chapter contains a tutorial that describes a simple one-client, one-server
application called simpapp . An interactive form of this application is distributed with
the BEA TUXEDO software.

If you follow the ten steps of the tutorial you will do the following:

� Learn how a BEA TUXEDO application is organized

� See how clients and servers are written and compiled

� Understand how an application is described in the configuration file

� Actually create an executable version of simpapp

� Boot, run, and shut down the application

Some Preliminaries

Before you can run this tutorial the BEA TUXEDO software must be installed so
the files and commands referred to in this chapter are available.

If you are personally responsible for installing the BEA TUXEDO software, consu
the BEA TUXEDO Installation Guide for information about how to install the BEA
TUXEDO system.

If the installation has already been done by someone else, you need to know the
pathname of the directory of the installed software (TUXDIR). You also need to have
read and execute permissions on the directories and files in the BEA TUXEDO
directory structure so you can copy simpapp files and execute BEA TUXEDO
commands.
BEA TUXEDO Application Development Guide 1-3

1 A Simple Application

er.
s the

ring

 steps.

d

 On
The simpapp Tutorial

simpapp is a very basic BEA TUXEDO application. It has one client and one serv
The server performs only one service: it accepts a string from the client and return
same string in upper case.

The tutorial consists of ten steps designed to introduce you to the BEA TUXEDO
system by showing how an application is developed and by encouraging you to b
the application up and run it. Each of the ten steps includes one or more smaller

Step 1: Copy the simpapp Files

1. Make a directory for simpapp and cd to it.

mkdir simpdir
cd simpdir

This is suggested so you will be able to see clearly the simpapp files you have
at the start and the additional files you create along the way. Use the standar
shell (/bin/sh) or the Korn shell; not csh .

2. Set and export environment variables.

TUXDIR=<pathname of the BEA TUXEDO system root directory >
TUXCONFIG=<pathname of your present working directory >/tuxconfig
PATH=$PATH:$TUXDIR/bin
LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$TUXDIR/lib
 export TUXDIR TUXCONFIG PATH LD_LIBRARY_PATH

You need TUXDIR and PATH to be able to access files in the BEA TUXEDO
system directory structure and to execute BEA TUXEDO system commands.
SunOS, /usr/5bin must be the first directory in your PATH. With AIX on the
RS6000, use LIBPATH instead of LD_LIBRARY_PATH. On HPUX on the HP9000,
use SHLIB_PATH instead of LD_LIBRARY_PATH.

You need to set TUXCONFIG to be able to load the configuration file, which is
described in “Step 7: Load the Configuration File.”
1-4 BEA TUXEDO Application Development Guide

The simpapp Tutorial

it is
ith

3. Copy the simpapp files.

cp $TUXDIR/apps/simpapp/*.

Note: Later on you will edit some of the files and make them executable, so
best to begin with a copy of the files rather than the originals delivered w
the software.

4. List the files.

$ ls
README env simpapp.nt ubbmp wsimpcl
README.as400 setenv.cmd simpcl.c ubbsimple
README.nt simpapp.mk simpserv.c ubbws
$

The three files that are central to the application are:

� simpcl.c —the source code for the client program

� simpserv.c —the source code for the server program

� ubbsimple —the ASCII form of the configuration file for the application

Except for the README files, the other files are variations of these for non-UNIX
system platforms. The README files provide explanations of the other files.

Step 2: Examine the Client Program

1. Page through the client program source code.

$ more simpcl.c

The output is shown in Listing 1-1.

Listing 1-1 Source Code of simpcl.c

1 #include <stdio.h> /* UNIX */
2 #include "atmi.h" /* TUXEDO */
3
4
5
6
7 #ifdef __STDC__
8 main(int argc, char *argv[])
BEA TUXEDO Application Development Guide 1-5

1 A Simple Application
9
10 #else
11
12 main(argc, argv)
13 int argc;
14 char *argv[];
15 #endif
16
17 {
18
19 char *sendbuf, *rcvbuf;
20 int sendlen, rcvlen;
21 int ret;
22
23 if(argc != 2) {
24 fprintf(stderr, "Usage: simpcl string\n");
25 exit(1);
26 }
27 /* Attach to System/T as a Client Process */
28 if (tpinit((TPINIT *) NULL) == -1) {
29 fprintf(stderr, "Tpinit failed\n");
30 exit(1);
31 }
32 sendlen = strlen(argv[1]);
33 if((sendbuf = (char *)tpalloc("STRING", NULL, sendlen+1))== NULL) {
34 fprintf(stderr,"Error allocating send buffer\n");
35 tpterm();
36 exit(1);
37 }
38 if((rcvbuf = (char *)tpalloc("STRING", NULL, sendlen+1))== NULL) {
39 fprintf(stderr,"Error allocating receive buffer\n");
40 tpfree(sendbuf);
41 tpterm();
42 exit(1);
43 }
44 strcpy(sendbuf, argv[1]);
45 ret = tpcall("TOUPPER", sendbuf, NULL, &rcvbuf, &rcvlen, 0);
46 if(ret == -1) {
47 fprintf(stderr, "Can't send request to service TOUPPER\n");
48 fprintf(stderr, "Tperrno = %d, %s\n", tperrno,
49 tmemsgs[tperrno]);
50 tpfree(sendbuf);
51 tpfree(rcvbuf);
52 tpterm();
53 exit(1);
54 }
55 printf("Returned string is: %s\n", rcvbuf);
56
57 /* Free Buffers & Detach from System/T */
1-6 BEA TUXEDO Application Development Guide

The simpapp Tutorial

nd
.

58 tpfree(sendbuf);
59 tpfree(rcvbuf);
60 tpterm();
61 }

Here are eight important things to see in this file.

References

The ATMI calls cited above are documented in Section 3c of the BEA TUXEDO
Reference Manual.

line 2 atmi.h Header file needed whenever BEA TUXEDO ATMI calls are used

line 28 tpinit() The ATMI call used by a client program to join an application

line 33 tpalloc() The ATMI call used to allocate a typed buffer. STRING is one of the four basic
BEA TUXEDO buffer types; NULL indicates there is no sub-type argument. The
remaining argument, sendlen + 1 , specifies the length of the buffer plus 1 for
the null character that ends the string.

line 38 tpalloc() Allocates another buffer for the return message

line 45 tpcall() Sends the message buffer to the service specified in the first argument. Also
includes the address of the return buffer. tpcall waits for a return message.

lines 35,
41, 52, 60

tpterm() The ATMI call used to leave an application. A call to tpterm() is used to leave
the application prior to taking an exit due to an error condition (lines 36, 42, a
53). The final tpterm() (line 60) comes after the message has been printed

lines 40,
50, 51, 58,
59

tpfree() The counterpart of tpalloc() to free allocated buffers.

line 55 printf() This is the successful conclusion of the program. It prints out the message
returned from the server.
BEA TUXEDO Application Development Guide 1-7

1 A Simple Application
Step 3: Compile the Client

1. Run buildclient to compile the client program.

buildclient -o simpcl -f simpcl.c

where the output file is simpcl , and the input source file is simpcl.c.

2. Check the results.

$ ls -l
total 97
-rwxr-x--x 1 usrid grpid 313091 May 28 15:41 simpcl
-rw-r----- 1 usrid grpid 1064 May 28 07:51 simpcl.c
-rw-r----- 1 usrid grpid 275 May 28 08:57 simpserv.c
-rw-r----- 1 usrid grpid 392 May 28 07:51 ubbsimple

As can be seen, we now have an executable module called simpcl . The size of
simpcl may vary.

References

buildclient is documented in buildclient (1).

Step 4: Examine the Server

1. Page through the server program source code.

$ more simpserv.c

Listing 1-2 Source Code of simpserv.c

#include <stdio.h>
 #include <ctype.h>
 #include <atmi.h> /* TUXEDO Header File */
 #include <userlog.h> /* TUXEDO Header File */
 /* tpsvrinit is executed when a server is booted, before it begins
 processing requests. It is not necessary to have this function.
 Also available is tpsvrdone (not used in this example), which is
 called at server shutdown time.
 */
 #if defined(__STDC__) || defined(__cplusplus)
1-8 BEA TUXEDO Application Development Guide

The simpapp Tutorial
 Note 1. tpsvrinit(int argc, char *argv[])
 #else
 tpsvrinit(argc, argv)
 int argc;
 char **argv;
 #endif
 {
 /* Some compilers warn if argc and argv aren't used. */
 argc = argc;
 argv = argv;
 /* userlog writes to the central TUXEDO message log */
 userlog("Welcome to the simple server");
 return(0);
 }
 /* This function performs the actual service requested by the client.
 Its argument is a structure containing among other things a pointer
 to the data buffer, and the length of the data buffer.
 */
 #ifdef __cplusplus
 extern "C"
 #endif
 void
 #if defined(__STDC__) || defined(__cplusplus)
 Note 2. TOUPPER(TPSVCINFO *rqst)
 #else
 TOUPPER(rqst)
 TPSVCINFO *rqst;
 #endif
 {
 int i;
 Note 3. for(i = 0; i < rqst->len-1; i++)
 rqst->data[i] = toupper(rqst->data[i]);
 /* Return the transformed buffer to the requester. /

 Note 4. tpreturn(TPSUCCESS, 0, rqst->data, 0L, 0);
 }
 #include stdio.h>
 }
BEA TUXEDO Application Development Guide 1-9

1 A Simple Application

m)

ed
Here are five important things to see in this file.

References

The ATMI calls and structure cited above are documented in Section 3c of the BEA
TUXEDO Reference Manual.

Step 5: Compile the Server

1. Run buildserver to compile the server program:

buildserver -o simpserv -f simpserv.c -s TOUPPER

where the executable file to be created is named simpserv , and simpserv.c is
the input source file. The -s TOUPPER option specifies the service to be
advertised when the server is booted.

2. Check the results.

$ ls -l
total 97
-rwxr-x--x 1 usrid grpid 313091 May 28 15:41 simpcl
-rw-r----- 1 usrid grpid 1064 May 28 07:51 simpcl.c
-rwxr-x--x 1 usrid grpid 358369 May 29 09:00 simpserv
-rw-r----- 1 usrid grpid 275 May 28 08:57 simpserv.c
-rw-r----- 1 usrid grpid 392 May 28 07:51 ubbsimple

whole file Notice that a BEA TUXEDO server does not contain a main() . The main() is
provided by the BEA TUXEDO system when the server is built.

Note 1 tpsvrinit() This subroutine is called during server initialization, before the server begins
processing service requests. A default (provided by the BEA TUXEDO syste
writes a message to userlog indicating that the server has been booted.
userlog (3c) is a log that is used by the BEA TUXEDO system and can be us
by applications. We will see the format in Step 10.

Note 2 TOUPPER The declaration of a service (the only one offered by simpserv). The sole
argument expected by the service is a pointer to a TPSVCINFO structure, which
contains the data string to be converted to uppercase.

Note 3 for loop Converts the input to uppercase by repeated calls to toupper .

Note 4 tpreturn Returns the converted string to the client with the TPSUCCESS flag set.
1-10 BEA TUXEDO Application Development Guide

The simpapp Tutorial
As can be seen, we now have an executable module called simpserv .

References

buildserver is documented in buildserver (1).

Step 6: Edit the Configuration File

1. Edit the file.

Listing 1-3 The simpapp Configuration File

$ vi ubbsimple

#Skeleton UBBCONFIG file for the BEA TUXEDO Simple Application.
#Replace the <bracketed> items with the appropriate values.

*RESOURCES
IPCKEY <Replace with valid IPC Key greater than 32,768>

#Example:
#IPCKEY 62345

MASTER simple
MAXACCESSERS 5
MAXSERVERS 5
MAXSERVICES 10
MODEL SHM
LDBAL N

*MACHINES

DEFAULT:
 APPDIR="<Replace with the current pathname>"
 TUXCONFIG="<Replace with TUXCONFIG Pathname>"
 TUXDIR="<Root directory of TUXEDO (not /)>"
#Example:
APPDIR="/usr/me/simpdir"
TUXCONFIG="/usr/me/simpdir/tuxconfig"
TUXDIR="/usr/tuxedo"

<Machine-name> LMID=simple
BEA TUXEDO Application Development Guide 1-11

1 A Simple Application

d
ables

#Example:
#tuxmach LMID=simple

*GROUPS
GROUP1
 LMID=simple GRPNO=1 OPENINFO=NONE

*SERVERS
DEFAULT:
 CLOPT="-A"

simpserv SRVGRP=GROUP1 SRVID=1

*SERVICES
TOUPPER

2. Change values enclosed in angle brackets to your own local values:

3. The pathnames for TUXCONFIG and TUXDIR must be identical to those you set an
exported in Step 1.2. The strings must be the actual values; environment vari
(like $TUXCONFIG, for example) are not acceptable.

Note: Do not forget to remove the angle brackets.

References

The configuration file is documented in ubbconfig (5).

IPCKEY Use a value that will not conflict with any other users

TUXCONFIG Provide the full pathname of the binary tuxconfig file to be created
in Step 7

TUXDIR Provide the full pathname of your BEA TUXEDO root directory

APPDIR Provide the full pathname of the directory where you intend to boot the
application; in this case, the current directory

machine-name Provide the machine name as returned by uname -n
1-12 BEA TUXEDO Application Development Guide

The simpapp Tutorial
Step 7: Load the Configuration File

1. Run tmloadcf to load the configuration file.

$ tmloadcf ubbsimple
Initialize TUXCONFIG file: /usr/me/simpdir/tuxconfig [y, q] ? y
$

2. Check the results.

$ ls -l
total 216
-rwxr-x--x 1 usrid grpid 313091 May 28 15:41 simpcl
-rw-r----- 1 usrid grpid 1064 May 28 07:51 simpcl.c
-rwxr-x--x 1 usrid grpid 358369 May 29 09:00 simpserv
-rw-r----- 1 usrid grpid 275 May 28 08:57 simpserv.c
-rw-r----- 1 usrid grpid 106496 May 29 09:27 tuxconfig
-rw-r----- 1 usrid grpid 382 May 29 09:26 ubbsimple

We see that we now have a file called tuxconfig . The tuxconfig file is a new
file system under the control of the BEA TUXEDO system.

References

tmloadcf is documented in tmloadcf (1).

Step 8: Boot the Application

1. Execute tmboot to bring up the application.

$ tmboot
Boot all admin and server processes? (y/n): y
Booting all admin and server processes in
/usr/me/simpdir/tuxconfig

Booting all admin processes ...

exec BBL -A:
 process id=24223 ... Started.

Booting server processes ...

exec simpserv -A :
 process id=24257 ... Started.
2 processes started.
$

BBL is the administrative process that monitors the application shared memory
structures. simpserv is our server that runs continuously awaiting requests.
BEA TUXEDO Application Development Guide 1-13

1 A Simple Application
References

tmboot is documented in tmboot (1).

Step 9: Enter a Request

1. Run the client program to submit a request.

$ simpcl "hello, world"
Returned string is: HELLO, WORLD

We are successful!

Step 10: Using tmadmin

tmadmin is an interactive program that an administrator can use to check an
application and make dynamic changes. It requires the TUXCONFIG variable to be set.
We will show you just two of the many tmadmin commands.

1. Enter the following command.

$ tmadmin

You will see the following lines.

tmadmin - Copyright (c) 1998 BEA Systems, Inc. All rights
reserved.

>

The greater-than sign (>) is the tmadmin prompt.

2. Enter the printserver(psr) command to display information about the
servers.

> psr
a.out Name Queue Name Grp Name ID RqDone Load Done Current Service
---------- ---------- -------- -- ------ --------- ---------------
BBL 531993 simple 0 0 0 (IDLE)
simpserv 00001.00001 GROUP1 1 0 0 (IDLE)
>

1-14 BEA TUXEDO Application Development Guide

The simpapp Tutorial
3. Enter the printservice(psc) command to display information about the
services:

> psc
Service Name Routine Name a.out Name Grp Name ID Machine # Done Status
------------ ------------ ---------- -------- -- ------- ------ ------
TOUPPER TOUPPER simpserv GROUP1 1 simple - AVAIL
>

4. Leave tmadmin by entering a q at the prompt. You can boot and shut down the
application from within tmadmin . We have done those functions with shell
commands in Step 8 and Step 11, respectively.

References

tmadmin is documented in tmadmin (1).

Step 11: Shut Down the Application

1. Run tmshutdown to bring the application down.

$ tmshutdown
Shutdown all admin and server processes? (y/n): y
Shutting down all admin and server processes in
/usr/me/simpdir/tuxconfig

Shutting down server processes ...

 Server Id = 1 Group Id = GROUP1 Machine = simple: shutdown
succeeded.

Shutting down admin processes ...

 Server Id = 0 Group Id = simple Machine = simple: shutdown
succeeded.
2 processes stopped.
$

BEA TUXEDO Application Development Guide 1-15

1 A Simple Application
2. Check the ULOG.

$ cat ULOG*
$
113837.tuxmach!tmloadcf.10261: CMDTUX_CAT:879:
 A new file system has been created. (size = 32 4096-byte blocks)
113842.tuxmach!tmloadcf.10261: CMDTUX_CAT:871:
 TUXCONFIG file /usr/me/simpdir/tuxconfig has been created
113908.tuxmach!BBL.10768: LIBTUX_CAT:262: std main starting
113913.tuxmach!simpserv.10925: LIBTUX_CAT:262: std main starting
113913.tuxmach!simpserv.10925: Welcome to the simple server
114009.tuxmach!simpserv.10925: LIBTUX_CAT:522:
 Default tpsvrdone() function used.
114012.tuxmach!BBL.10768: CMDTUX_CAT:26: Exiting system

Each line of the ULOG for this session contains something of interest. Most are
self-explanatory, but we want to add some explanation for a couple of them.
First let’s look at the format of a ULOG line.

time (hhmmss).machine_uname!process_name.process_id: log message

Now let’s look at some individual lines.

113913.Message from tpsvrinit() in simpserv
114009.When simpserv is shutdown the BEA TUXEDO main sends this message

References

tmshutdown is documented in tmshutdown (1).

The userlog is documented in userlog (3c).
1-16 BEA TUXEDO Application Development Guide

Summary

ht
 and

 have
Summary

If you have reached this point, you have successfully brought up, run, and broug
down a BEA TUXEDO system application. You have seen what a client program
a server look like. You have edited a configuration file to refer to your own
environment. You have invoked tmadmin to check on the activity of your application.
In all the applications you may work on in the future the basic elements of client
processes, server processes, and a configuration file will be present, and you will
all of the BEA TUXEDO shell commands at your fingertips.

Good luck!
BEA TUXEDO Application Development Guide 1-17

1 A Simple Application
1-18 BEA TUXEDO Application Development Guide

CHAPTER

ll

2 bankapp Files

Directory Structure for bankapp

This chapter describes the directory structure under the apps directory, which is
subordinate to the root directory for your BEA TUXEDO system software. We wi
also take a look at the files in the bankapp directory. The directory structure is shown
in Figure 2-1.

Figure 2-1 Directory Structure under apps/

simpapp is described in Chapter 1, “A Simple Application.” hostapp is not
distributed except under special arrangements.
BEA TUXEDO Application Development Guide 2-1

2 bankapp Files

les

m

r

Files

Table 2-1 lists the files of the banking application. The left hand column lists the
source files delivered with the BEA TUXEDO software. The center column lists fi
that are generated when the bankapp.mk is run. The right hand column gives a brief
summary of the purpose of the file.

Table 2-1 Banking Application Files

Source Generated Purpose

ACCT.ec ACCT.c , ACCT.o,
ACCT

Contains OPEN_ACCT and CLOSE_ACCT services to open and close
accounts.

ACCTMGR.c ACCTMGR A server that subscribes to events and logs notifications. Contains
WATCHDOG and Q_OPENACCT_LOG services.

AUDITC.c AUDITC Contains a conversational server that handles service requests fro
the client auditcon

BAL.ec BAL.c , BAL.o ,
BAL

Contains ABAL, TBAL, ABAL_BID and TBAL_BID services to allow
the audit client to obtain bank-wide or branch-wide account or telle
balances.

BALC.ec BALC.c BALC.o
BALC

Contains ABALC_BID, and TBALC_BID. These services are the same
as TBAL_BID and ABAL_BID above, except that TPSUCCESS is
returned when a branch id is not found. This allows auditcon to
continue.

BALANCE.m BALANCE.M Mask for balance inquiry data entry.

bankmgr.c bankmgr A client program that subscribes to events of special interest.

BTADD.ec BTADD.c,
BTADD.o, BTADD

Contains BR_ADD and TLR_ADD services to allow addition of
branches or tellers to the database.

CBALANCE.m CBALANCE.M Mask for confirmation of a balance inquiry.

CCLOSE.m CCLOSE.M Mask for confirmation of an account closing.

CDEPOSIT.m CDEPOSIT.M Mask for confirmation of a deposit.

CLOSE.m CLOSE.M Mask for account closing data entry.

COPEN.m COPEN.M Mask for confirmation of an account opening.
2-2 BEA TUXEDO Application Development Guide

Files

,
s.

res

eue.
cracl.sh — A shell script that creates Access Control Lists to demonstrate the
Access Control security level.

crqueue.sh — A shell script that creates application queues for use in event
notification.

crusers.sh — A shell script that creates groups and users to demonstrate the
authentication security level.

CTRANSFER.m CTRANSFER.M Mask for confirmation of a transfer.

CWITHDRAW.m CWITHDRAW.M Mask for confirmation of a withdrawal.

DEPOSIT.m DEPOSIT.M Mask for deposit data entry.

event.flds — A field table file used in the event feature.

FILES — Descriptive list of all the files in bankapp .

HELP.m HELP.M Mask that explains mio keystrokes.

MENU.m MENU.M Mask that offers ring menu to choose deposit, withdrawal, transfer
balance inquiry, open account, or close account data entry screen

OPEN.m OPEN.M Mask for open account data entry.

README — Installation and boot procedures.

README.nt — Installation and boot procedures for the NT platform.

README2 — Documentation of additions to bankapp that demonstrate new
features. The file is located in the apps/bankapp directory.

README2.nt — Documentation of additions to bankapp that demonstrate new featu
for the NT platform. The file is located in the apps/bankapp
directory.

RUNME.sh — Interactive script to build, configure, boot, shutdown application.

showq.sh! — A shell script that displays the status and contents of a message qu

TLR.ec TLR.c , TLR.o ,
TLR

Contains WITHDRAWAL, DEPOSIT and INQUIRY services.

TRANSFER.m TRANSFER.M Mask for transfer data entry.

usrevtf.sh — Creates an ENVFILE for the BEA TUXEDO server TMUSREVT.

Table 2-1 Banking Application Files

Source Generated Purpose
BEA TUXEDO Application Development Guide 2-3

2 bankapp Files

the

le
WITHDRAW.m WITHDRAW.M Mask for withdrawal data entry.

XFER.c XFER.o , XFER Contains TRANSFER service.

aud.v aud.V , aud.h FML view used to define structure passed between audit client and
BAL server.

appinit.c appinit.o Contains tpsvrinit() and tpsvrdone() for all servers other
than TLR.

audit.c audit.o , audit Client that obtains bank-wide or branch-wide account and teller
balances via the ABAL, TBAL, ABAL_BID and TBAL_BID services.

auditcon.c auditcon interactive version of audit that uses conversations and services
ABAL, TBAL, ABALC_BID, TBALC_BID.

bankapp.mk — Application makefile.

bankapp.nt — Application makefile for NT.

bank.flds bank.flds.h Field table file containing bank database fields and auxiliary FML
fields used by masks and servers.

bank.h — Contains data definitions pertinent to more than just one C program
within the application.

bankvar — Contains variable settings, except for those within ENVFILE.
Because it sets ENVFILE itself, setting bankvar will set the entire
environment.

crbank.sh crbank Creates databases for all banks when using SHM mode. See Chapter 1,
“A Simple Application,” for guidelines on use.

crbankdb.sh crbankdb Creates a database for one server group. See Chapter 1, “A Simp
Application,” for guidelines on use.

crtlog.sh crtlog , TLOG Creates a UDL and a TLOG on the master site. Creates a UDL on the
non-master sites. tmboot creates a TLOG on the non-master sites.

driver.sh driver Drives the application by piping FML buffers with transaction
requests through ud(1).

envfile.sh envfile ,
ENVFILE

Creates ENVFILE for use by tmloadcf .

Table 2-1 Banking Application Files

Source Generated Purpose
2-4 BEA TUXEDO Application Development Guide

Files

QL

n,
the

ple

nd

nd
Of the forty odd files in the directory:

� 14 are .m files that create data entry masks managed by the system client
program, mio (1).

� 5 are .ec files that are source files for service subroutines using embedded S
statements.

� 8 are .c files; audit.c is a client program; auditcon.c is a conversational
client that connects to AUDITC.c , which is a conversational server; three others
are servers or associated with servers, two are there to generate data or
transactions for the application.

The remaining files have various roles; some are files you need in any applicatio
others are make files for various add-ons, still others are present simply to facilitate
use of bankapp as an example. In subsequent chapters we will closely examine a
number of the files, and give a more complete explanation of their role in the sam
application. For now we just want to discuss the bankvar file.

gendata.c gendata Generates ud-readable requests to add ten branches, thirty tellers a
two hundred accounts.

gentran.c gentran Generates ud-readable transaction requests from among DEPOSIT,
WITHDRAWAL, TRANSFER and INQUIRY.

populate.sh populate Populates the database by piping FML buffers with branch, teller a
account add requests through ud(1).

run.sh run Invokes mio with MENU mask.

ubbmp tuxconfig Sample UBBCONFIG file for use in a MP mode configuration.

ubbshm tuxconfig Sample UBBCONFIG file for use in a SHM mode configuration.

util.c util.o Contains a function commonly used among all services, namely
getstr() .

Table 2-1 Banking Application Files

Source Generated Purpose
BEA TUXEDO Application Development Guide 2-5

2 bankapp Files

ly a

e,

. If
 under

 use of
be

n
tion.
 all

 time
Edit bankvar to Set Environment Variables

bankvar is a file of environment variables needed by bankapp . The file bankvar is
approximately 185 lines due largely to the extensive comments, but there are on
few that you should be concerned about immediately.

The first key line checks to see if TUXDIR is set. If it is not, execution of the file fails
with the message:

TUXDIR: parameter null or not set

So, set TUXDIR to the root directory of your BEA TUXEDO system directory structur
and export it.

Another line in bankvar sets APPDIR to the directory ${TUXDIR}/apps/bankapp ,
which is the directory where bankapp source files are located. APPDIR is a directory
where BEA TUXEDO looks for your application-specific files. You might prefer to
copy the bankapp files to a different directory to safeguard the original source files
you do, then the directory you use should be entered here. It does not have to be
TUXDIR.

Another important line sets a value for DIPCKEY. This is an IPCKEY for a BEA
TUXEDO system database. There is a discussion of databases in Chapter 6; the
this key is described there. For now, all you need to know about it is that it must
different from the value of the BEA TUXEDO IPCKEY specified in the UBBCONFIG file
(Chapter 7).

The other variables specified in bankvar play various roles in the sample applicatio
and you will need to be aware of them when you are developing your own applica
They will all be mentioned at appropriate places later in this guide. Grouping them
in bankvar is done to show you an example that you may want to adapt at a later
for use with a real application.

When you have made all the changes to bankvar that you need to, execute bankvar
as follows:

. ./bankvar
2-6 BEA TUXEDO Application Development Guide

Files
Listing 2-1 bankvar: Environment Variables for bankapp

#Copyright (c) 1997, 1996 BEA Systems, Inc.
#Copyright (c) 1995, 1994 Novell, Inc.
#Copyright (c) 1993, 1992, 1991, 1990 Unix System Laboratories, Inc.
#All rights reserved
#
This file sets all the environment variables needed by the BEA TUXEDO software
to run the bankapp
#
This directory contains all the BEA TUXEDO software
System administrator must set this variable
#
if [-z "${TUXDIR}"] ; then
if [! -z "${ROOTDIR}"] ; then
TUXDIR=$ROOTDIR
export TUXDIR
fi
fi
TUXDIR=${TUXDIR:?}
#
This directory contains all the user written code
#
Contains the full path name of the directory that the application
generator should place the files it creates
#
APPDIR=${TUXDIR}/apps/bankapp
#
This path contains the shared objects that are dynamically linked at
runtime in certain environments, e.g., SVR4.
#
LD_LIBRARY_PATH=${TUXDIR}/lib:${LD_LIBRARY_PATH}
#
Logical block size; Database Administrator must set this variable
#
BLKSIZE=512
#
Set default name of the database to be used by database utilities
and database creation scripts
#
DBNAME=bankdb
#
Indicate whether database is to be opened in share or private mode
#
DBPRIVATE=no
#
Set Ipc Key for the database; this MUST differ from the UBBCONFIG
*RESOURCES IPCKEY parameter
BEA TUXEDO Application Development Guide 2-7

2 bankapp Files
#
DIPCKEY=80953
#
Environment file to be used by tmloadcf
#
ENVFILE=${APPDIR}/ENVFILE
#
List of field table files to be used by mc, viewc, tmloadcf, etc.
#
FIELDTBLS=Usysflds,bank.flds,credit.flds,event.flds
#
FIELDTBLS32=Usysfl32,evt_mib,tpadm
#
List of directories to search to find field table files
#
FLDTBLDIR=${TUXDIR}/udataobj:${APPDIR}
#
FLDTBLDIR32=${TUXDIR}/udataobj:${APPDIR}
#
Universal Device List for database
#
FSCONFIG=${APPDIR}/bankdl1
#
List of directories to search to find mask files for mio
#
MASKPATH=${APPDIR}
#
Network address, used in MENU script
#
NADDR=
#
Network device name
#
NDEVICE=
#
Network listener address, used in MENU script
#
NLSADDR=
#
List of services permitted to the current invoker of mio
#
OKXACTS=ALL
#
Make sure TERM is set for mio
#
TERM=${TERM:?}
#
Set device for the transaction log; this should match the TLOGDEVICE
parameter under this site's LMID in the *MACHINES section of the
2-8 BEA TUXEDO Application Development Guide

Files
UBBCONFIG file
#
TLOGDEVICE=${APPDIR}/TLOG
#
Device for binary file that gives /T all its information
#
TUXCONFIG=${APPDIR}/tuxconfig
#
Set the prefix of the file which is to contain the central user log;
this should match the ULOGPFX parameter under this site's LMID in the
*MACHINES section of the UBBCONFIG file
#
ULOGPFX=${APPDIR}/ULOG
#
System name, used by RUNME.sh
#
UNAME=
#
List of view files to be used by viewc, tmloadcf, etc.
#
VIEWFILES=aud.V
#
VIEWFILES32=mib_views,tmib_views
#
List of directories to search to find view files
#
VIEWDIR=${TUXDIR}/udataobj:${APPDIR}
#
VIEWDIR32=${TUXDIR}/udataobj:${APPDIR}
#
Specify the Q device (if events included in demo)
#
QMCONFIG=${APPDIR}/qdevice
#
Export all variables just set
#
export TUXDIR APPDIR BLKSIZE DBNAME DBPRIVATE DIPCKEY ENVFILE
export LD_LIBRARY_PATH
export FIELDTBLS FLDTBLDIR FSCONFIG MASKPATH OKXACTS TERM
export FIELDTBLS32 FLDTBLDIR32
export TLOGDEVICE TUXCONFIG ULOGPFX
export VIEWDIR VIEWFILES
export VIEWDIR32 VIEWFILES32
export QMCONFIG
#
Add TUXDIR/bin to PATH if not already there
#
a="`echo $PATH | grep ${TUXDIR}/bin`"
if [x"$a" = x]
BEA TUXEDO Application Development Guide 2-9

2 bankapp Files
then
PATH=${TUXDIR}/bin:${PATH}
export PATH
fi
#
Add APPDIR to PATH if not already there
#
a="`echo $PATH | grep ${APPDIR}`"
if [x"$a" = x]
then
PATH=${PATH}:${APPDIR}
export PATH
fi
#
Check for other machine types bin directories
#
for DIR in /usr/5bin /usr/ccs/bin /opt/SUNWspro/bin
do
if [-d ${DIR}] ; then
PATH="${DIR}:${PATH}"
fi
done

Additional PATH Component for SunOS

If your operating system is SunOS, you need to put /usr/5bin at the front of your
PATH. The following command can be used:

PATH=/usr/5bin:$PATH;export PATH

Another requirement for SunOS users: use /bin/sh rather than csh for your shell.
2-10 BEA TUXEDO Application Development Guide

CHAPTER

n the

 BEA
, that
orage
but
to the
3 bankapp Client

Programs

A Look at bankapp Client Programs

This chapter is devoted to the client side of the bankapp sample application.

In the client-server architecture of BEA TUXEDO there are two modes of
communication:

� Request/response mode, which is characterized by the sending of a single
request for a service to be performed by the server and getting back a single
response.

� Conversational mode; in this mode a dedicated connection is established
between a client (or a server acting like a client) and a server. The connection
remains active until terminated. While the connection is active, messages
containing service requests and responses can be sent and received betwee
two participating processes.

Variations of the two modes above can be constructed by taking advantage of the
TUXEDO features that allow requests to be forwarded from one server to another
permit requests to be chained and that permit requests to be queued in stable st
for later processing. bankapp is not set up to demonstrate any of these variations,
once you have the application running you might want to try these as extensions
example.
BEA TUXEDO Application Development Guide 3-1

3 bankapp Client Programs

rms
d by

archy

s in the
of
the
System Client Programs

One form of client access to bankapp is through the resources of the BEA TUXEDO
Data Entry System (DES), a character-oriented interface. With DES, data entry fo
(also called masks or screens) are created to provide a template that can be use
application users to formulate requests. The masks can be organized into a hier
by means of MENU statements of the form definition language, UFORM. They are
managed by the system client, mio (1).

Figure 3-1 shows the hierarchy of masks for bankapp . The top-level mask is a menu
that leads the user to select one of the six service request masks. The oval shape
illustration represent application services. The six rectangles across the bottom
Figure 3-1 represent confirmation masks that give feedback about the results of
service request.
3-2 BEA TUXEDO Application Development Guide

A Look at bankapp Client Programs

rce

r the
Figure 3-1 The bankapp Input/Output Mask Hierarchy

Mask Source Code

Taking one of the shorter masks for illustration, in Listing 3-1 we show how the sou
code of a mask looks in the UFORM syntax. This mask (indicated as number 6 in
Figure 3-1) is used to close an account. It calls the CLOSE_ACCT service and has a
single variable field for the number of the account to be closed.

Once a mask has been created, it is converted into binary form and is used unde
control of mio .
BEA TUXEDO Application Development Guide 3-3

3 bankapp Client Programs

r to a

the
e
tion is

 the
Listing 3-1 Source Code for the CLOSE.m Mask

#
#
#SERVICE NAME=CLOSE_ACCT
#FORM FLAGS=Umrv TRANMODE=TRAN TRANTIME=30
#PAGE STATUSLINE=24 FLAGS=Pmrv
*ROW COL MIN LINES WIDTH FLAGS VALUE
*--- --- --- ----- ----- ----- -----
2 C - 1 - L "TUXEDO (R) System"
+1 C - 1 - L "Banking Services"
+2 C - 1 - L "Close Account"
+6 25 - 1 - L "Account Number To Close:"
- 51 5 1 7 UmN7IHrv ACCOUNT_ID
HELP="Enter account number"
ERR="Account number must be 7 digit number"
VAL=IR:[1-9999999]
FORMEXIT F0=FC:HELP,F11=S:CLOSE_ACCT
+3 24 - 1 - L "Hit CTRL-v to complete trans."
+1 C - 1 - L "or ESC 0 for keystroke help"

Using mio(1)

mio (1) is a forms handling program supplied by the BEA TUXEDO system that
gathers the data from a binary data entry mask into a buffer and sends the buffe
service. bankapp has a set of masks (shown above in Figure 3-1) that mio uses for
calling the OPEN_ACCT, CLOSE_ACCT, WITHDRAWAL, DEPOSIT , INQUIRY , and
TRANSFER services. mio joins the application as a client and when the user enters
key sequence to transmit the mask, the BEA TUXEDO software adds the servic
request to the queue of a server that advertises the desired service. If the applica
using an application password, mio prompts the user to enter the password before
allowing any of the service request screens to be used.

If mio is invoked with no arguments, it presents a generic initial mask that prompts
user to name the mask to bring up. In bankapp , the shell script named run invokes mio
with the initial menu for bankapp . If you look at run.sh , you will see that it contains
one command line:

mio -i MENU

Of course, you can also get into the mask system by invoking mio directly rather than
through run .
3-4 BEA TUXEDO Application Development Guide

A Look at bankapp Client Programs

al part
fer

 to a

ES.

:

y of

y of

e
Buffer Types

It was mentioned in the preceding section that mio gathers the data from a data entry
mask into a buffer before sending it to a service. Message buffers are an essenti
of BEA TUXEDO, as is the concept of typed buffers. In BEA TUXEDO a typed buf
is a buffer designed to hold a specific data type. Nine types are defined: FML, FML32,
VIEW, VIEW32, STRING and CARRAY plus three versions for X/OPEN compatibility.
Applications have the ability to define additional types. An FML buffer is a fielded
buffer in which each field carries its own identifying information. mio and other BEA
TUXEDO client programs use FML buffers.

Using ud(1)

Another system client program used by bankapp is ud(1). ud is supplied by the BEA
TUXEDO System to allow fielded buffers to be read from standard input and sent
service. In the sample application, ud is used by both the populate and driver
programs. In populate , a program called gendata passes service requests to ud with
customer account information to be entered in the bankapp database; in driver , the
data flow is similar, but the program is gentran and the purpose is to throw
transactions at the application to simulate an active system.

audit.c: A Request/Response Client

audit.c is an example of a client program that does not use the BEA TUXEDO D
It makes branch-wide or bank-wide balance inquiries that call on the services ABAL,
TBAL, ABAL_BID and TBAL_BID. As an executable, it is invoked in one of two ways

audit [-a | -t]

Prints the bank-wide total value of all accounts, or bank-wide cash suppl
all tellers. Option -a or -t must be specified to control whether account
balances or teller balances are to be tallied.

audit [-a | -t} branch_ID
Prints branch-wide total value of all accounts, or branch-wide cash suppl
all tellers, for branch denoted by branch_ID . Option -a or -t must be
specified to control whether account balances or teller balances are to b
tallied.

The algorithm for the program is shown in Listing 3-2.
BEA TUXEDO Application Development Guide 3-5

3 bankapp Client Programs

Listing 3-2 Audit Algorithm

main()
{
 Parse command line options with getopt();
 Join application with tpinit();
 Begin global transaction with tpbegin();
 If (branch_id specified) {
 Allocate buffer for service requests with tpalloc();
 Place branch_id into the aud structure;
 Do tpcall() to "ABAL_BID" or "TBAL_BID";
 Print balance for branch_id;
 Free buffer with tpfree();
 }
 else /* branch_id not specified */
 call subroutine sum_bal();
 Commit global transaction with tpcommit();
 Leave application with tpterm();
}
sum_bal()
}
 Allocate buffer for service requests with tpalloc();
 For (each of several representative branch_id's,
 one for each site)
 Do tpacall() to "ABAL" or "TBAL";
 For (each representative branch_id) {
 Do tpgetrply() wtith TPGETANY flag set
 to retrieve replies;
 Add balance to total;
 Print total balance;
 }
 Free buffer with tpfree();
}

audit.c Source Code

Because of space constraints we are not going to print the entire source code of
audit.c , but we want to call your attention to the following sections.

In the program’s main():

/* Join application */
/* Start global transaction */
/* Create buffer and set data pointer */
/* Do tpcall */
3-6 BEA TUXEDO Application Development Guide

A Look at bankapp Client Programs

/* Commit global transaction */
/* Leave application /*

In the subroutine sum_bal:

/* Create buffer and set data pointer */
/* Do tpacall */
/* Do tpgetrplys to retrieve answers to questions */

The indicated sections contain all of the places in audit.c where BEA TUXEDO
ATMI calls are used. Note also that audit.c is an example of a program that uses a
VIEW typed buffer and a structure that is defined in the aud.h header file. The source
code for the structure can be found in the view description file, aud.v .

auditcon.c: A Conversational Client

auditcon.c is the source code for a conversational version of audit.c . After the
client is built, the program is started when a user enters auditcon .

The algorithm for the program is shown in Listing 3-3.

Listing 3-3 Algorithm for Conversational Audit

main()
{
 Join the application
 Begin a transaction
 Open a connection to conversational service AUDITC
 Do until user says to quit: {
 Query user for input
 Send service request
 Receive response
 Print response on user's terminal
 Prompt for further input
 }
 Commit transaction
 Leave the application
}

BEA TUXEDO Application Development Guide 3-7

3 bankapp Client Programs

 to
h as

d

hese
auditcon.c Source Code

The source code for auditcon uses the ATMI calls for conversational
communication: tpconnect() , to establish the connection between the client and
service, tpsend() , to send a message, and tprecv() to receive a message.

bankmgr.c: A Client that Monitors Events

bankmgr.c is included with bankapp as a demonstration of a client that is designed
run constantly. It subscribes to application-defined events of special interest suc
the opening of a new account or a withdrawal above $10,000.

Building Client Programs

DES masks must be compiled before they can be used by mio . If the mask is created
using vuform (1), the BEA TUXEDO visual form editor, it is automatically converte
to binary format (indicated by an .M suffix). If it is created by editing a file of UFORM
statements, the file must be run through the BEA TUXEDO mask compiler, mc(1),
which also creates an .M file. Masks created with vuform should be unloaded to ASCII
.m files for backup. This was formerly done with mcdis (1).

View description files, of which aud.v is an example, are processed by the view
compiler. viewc (1). viewc has two output files: a binary view description file, aud.V ,
and a header file, aud.h .

The client programs, audit.c and audconv.c are processed by buildclient (1) to
compile them and/or link edit them with the necessary BEA TUXEDO libraries.

You can use any of these commands individually, if you choose, but rules for all t
steps are included in bankapp.mk .
3-8 BEA TUXEDO Application Development Guide

A Look at bankapp Client Programs
References

The use of ATMI calls in client programs is covered in the BEA TUXEDO
Programmer's Guide.

The creation of masks, the operation of mio and a tutorial on vuform are all included
in the BEA TUXEDO Data Entry System Guide.

The subject of typed buffers is covered in both the BEA TUXEDO Programmer's
Guide and the Administering the BEA TUXEDO System.

All commands and ATMI calls are described in Sections 1 and 3c of the BEA TUXEDO
Reference Manual. The bankmgr.c client is more fully described in the README2 file
of bankapp and in the bankmgr.c code itself. The Event Broker/Monitor feature,
which is what bankmgr.c demonstrates, is described in Administering the BEA
TUXEDO System.
BEA TUXEDO Application Development Guide 3-9

3 bankapp Client Programs
3-10 BEA TUXEDO Application Development Guide

CHAPTER

 into

EDO

e code
ager

ept

e
4 bankapp Servers

A Look at bankapp Servers

This chapter describes the servers delivered with bankapp , identifies the services
coded for the banking application and describes how the services are link edited
servers.

Servers are executable processes that offer one or more services. In the BEA TUX
system, they continually accept requests (from processes acting as clients) and
dispatch them to the appropriate services. Services are subroutines of C languag
written specifically for an application. It is the services accessing a resource man
that provide the functionality for which your BEA TUXEDO system transaction
processing application is being developed. Service routines are one part of the
application that must be written by the BEA TUXEDO system programmer
(user-defined clients being another part).

All the services in bankapp are coded in the C language with embedded SQL exc
for the TRANSFER service, which does not directly interact with the database. The
TRANSFER service is offered by the XFER server and is a C program (that is, its sourc
file is a .c file rather than a .ec file).

All the services of bankapp use functions provided in the Application Transaction
Management Interface (ATMI). These functions allow the services:

� To manage typed buffers

� To communicate synchronously or asynchronously with other services

� To define global transactions

� To generically access a resource manager

� To send replies back to clients
BEA TUXEDO Application Development Guide 4-1

4 bankapp Servers

n

O

se
in

r

 any

ng of

This chapter provides the following:

� A description of each server and service that is part of the banking applicatio

� The pseudo-code for each service that is either accessed by the BEA TUXED
system predefined client, mio , or the application client, audit

� The relationships between the bankapp services and servers

� The buildserver (1) command options used to compile and build each server
with the BEA TUXEDO system predefined main()

� An alternative way to structure the same servers

Request/response Servers

Five of the bankapp servers operate in request/response mode. Four of the five u
embedded SQL statements to access the resource manager; in the source files
TUXDIR/apps/bankapp they are the files with a .ec suffix. The fifth server, XFER, for
transfer, makes no calls to the resource manager itself; it calls the WITHDRAWAL and
DEPOSIT services (which are offered by the TLR server) to transfer funds between
accounts. The source file for XFER is a .c file, since XFER makes no resource manage
calls and contains no embedded SQL statements.

BTADD.ec

Allows branch and teller records to be added to the proper database from
site.

ACCT.ec

Provides customer representative services, namely the opening and closi
accounts (OPEN_ACCT and CLOSE_ACCT).

TLR.ec

Provides teller services, namely WITHDRAWAL, DEPOSIT, and INQUIRY. Each
TLR process identifies itself as an actual teller in the TELLER file, via the
user-defined -T option on the server’s command line.

XFER.c

Provides fund transfers for accounts anywhere in the database.

BAL.ec

Sums teller or account balances for all branches of the database or for a
specific branch identifier.
4-2 BEA TUXEDO Application Development Guide

A Look at bankapp Servers

nal
ns to

ce;
A Conversational Server

The server AUDITC.c is an example of a conversational server. It has one service,
which is also called AUDITC. The conversational client, auditcon , establishes a
connection to AUDITC and sends it requests for audit information. AUDITC evaluates the
requests and calls an appropriate service (ABAL, TBAL, ABAL_BID, or TBAL_BID) to get
the information. When a reply is received from the service called, AUDITC sends it back
to auditcon . An important point to observe here is that a service in a conversatio
server can make calls to request/response services. It can also initiate connectio
other conversational servers, but that is not part of this example.

Service Definitions

There are 12 request/response services in bankapp . Each bankapp service matches a
C function name in the source code of a server, as shown in the following list.

BR_ADD
Adds a new branch record; offered by the BTADD server; accepts an FML buffer
as input.

TLR_ADD
Adds a new teller record; offered by BTADD; accepts an FML buffer as input.

OPEN_ACCT
Inserts a record into the ACCOUNT file and calls DEPOSIT to add the initial
balance; offered by ACCT; accepts an FML buffer as input; chooses
ACCOUNT_ID for a new account based on BRANCH_ID of the teller involved.

CLOSE_ACCT
Deletes an ACCOUNT record; offered by ACCT; accepts an FML buffer as input;
validates ACCOUNT_ID, calls WITHDRAWAL to remove the final balance.

WITHDRAWAL

Subtracts an amount from the specified branch, teller and account balan
offered by TLR; accepts an FML buffer as input; validates the ACCOUNT_ID and
SAMOUNT fields; checks that funds are available from account and teller.
BEA TUXEDO Application Development Guide 4-3

4 bankapp Servers

d by

e
DEPOSIT

Adds an amount to specified branch, teller and account balances; offere
TLR; accepts an FML buffer as input, validates the ACCOUNT_ID and SAMOUNT
fields.

INQUIRY

Retrieves an account balance; offered by TLR; accepts an FML buffer as input,
validates ACCOUNT_ID.

TRANSFER

Issues a tpcall() requesting WITHDRAWAL followed by one requesting
DEPOSIT; offered by XFER; accepts an FML buffer as input.

ABAL

Sums account balances for all branches on a given site; offered by BAL;
accepts the VIEW buffer of aud.v as input.

TBAL

Sums the teller balances for all branches on a given site; offered by BAL;
accepts the VIEW buffer of aud.v as input.

ABAL_BID

Sums the account balances for a specific BRANCH_ID; offered by BAL; accepts
the VIEW buffer of aud.v as input.

TBAL_BID

Sums the teller balances for a specific BRANCH_ID; offered by BAL; accepts
the VIEW buffer of aud.v as input.

Service Algorithms

The twelve figures that follow illustrate in pseudo-code the algorithms used in th
BR_ADD, TLR_ADD, OPEN_ACCT, CLOSE_ACCT, WITHDRAWAL, DEPOSIT, INQUIRY,
TRANSFER, ABAL, TBAL, ABAL_BID, and TBAL_BID services. You can use them as
roadmaps through the source code that can be found in servers in
TUXDIR/apps/bankapp .
4-4 BEA TUXEDO Application Development Guide

A Look at bankapp Servers
Listing 4-1 The BR_ADD Algorithm

void BR_ADD (TPSVCINFO *transb)
{
 set pointer to TPSVCINFO data buffer;
 get all values for service request from field buffer;
 insert record into BRANCH;
 tpreturn() with success;
}

Listing 4-2 The TLR_ADD Algorithm

void TLR_ADD (TPSVCINFO *transb)
{
 set pointer to TPSVCINFO data buffer;
 get all values for service request from fielded buffer;
 get TELLER_ID by reading branch's LAST_ACCT;
 insert teller record;
 update BRANCH with new LAST_TELLER;
 tpreturn() with success;
}

Listing 4-3 The OPEN_ACCT Algorithm

void OPEN_ACCT(TPSVCINFO *transb)
{
 Extract all values for service request from fielded buffer using Fget() and
Fvall();
 Check that initial deposit is positive amount and tpreturn() with failure if
not;
 Check that branch id is a legal value and tpreturn() with failure if it is not;
 Set transaction consistency level to read/write;
 Retrieve BRANCH record to choose new account based on branch's LAST_ACCT field;
 Insert new account record into ACCOUNT file;
 Update BRANCH record with new value for LAST_ACCT;
 Create deposit request buffer with tpalloc(); initialize it for FML with
Finit();
 Fill deposit buffer with values for DEPOSIT service request;
 Increase priority of coming DEPOSIT request since call is from a service;
 Do tpcall() to DEPOSIT service to add amount of initial balance;
 Prepare return buffer with necessary information;
BEA TUXEDO Application Development Guide 4-5

4 bankapp Servers
 Free deposit request buffer with tpfree();
 tpreturn() with success;
}

Listing 4-4 The CLOSE_ACCT Algorithm

void CLOSE_ACCT(TPSVCINFO *transb)
{
 Extract account id from fielded buffer using Fvall();
 Check that account id is a legal value and tpreturn() with failure if it is not;
 Set transaction consistency level to read/write;
 Retrieve ACCOUNT record to determine amount of final withdrawal;
 Create withdrawal request buffer with tpalloc(); initialize it for FML with
Finit();
 Fill withdrawal buffer with values for WITHDRAWAL service request;
 Increase priority of coming WITHDRAWAL request since call is from a service;
 Do tpcall() to WITHDRAWAL service to withdraw balance of account;
 Delete ACCOUNT record;
 Prepare return buffer with necessary information;
 Free withdrawal request buffer with tpfree();
 tpreturn with success;
}

Listing 4-5 The WITHDRAWAL Algorithm

void WITHDRAWAL(TPSVCINFO *transb)
{
 Extract account id and amount from fielded buffer using Fvall() and Fget();
 Check that account id is a legal value and tpreturn() with failure if not;
 Check that withdraw amount (amt) is positive and tpreturn() with failure if not;
 Set transaction consistency level to read/write;
 Retrieve ACCOUNT record to get account balance;
 Check that amount of withdrawal does not exceed ACCOUNT balance;
 Retrieve TELLER record to get teller's balance and branch id;
 Check that amount of withdrawal does not exceed TELLER balance;
 Retrieve BRANCH record to get branch balance;
 Check that amount of withdrawal does not exceed BRANCH balance;
 Subtract amt to obtain new account balance;
 Update ACCOUNT record with new account balance;
 Subtract amt to obtain new teller balance;
 Update TELLER record with new teller balance;
 Subtract amt to obtain new branch balance;
4-6 BEA TUXEDO Application Development Guide

A Look at bankapp Servers
 Update BRANCH record with new branch balance;
 Insert new HISTORY record with transaction information;
 Prepare return buffer with necessary information;
 tpreturn with success;
}

Listing 4-6 The DEPOSIT Algorithm

void DEPOSIT(TPSVCINFO *transb)
{
 Extract account id and amount from fielded buffer using Fvall() and Fget();
 Check that account id is a legal value and tpreturn() with failure if not;
 Check that deposit amount (amt) is positive and tpreturn() with failure if not;
 Set transaction consistency level to read/write;
 Retrieve ACCOUNT record to get account balance;
 Retrieve TELLER record to get teller's balance and branch id;
 Retrieve BRANCH record to get branch balance;
 Add amt to obtain new account balance;
 Update ACCOUNT record with new account balance;
 Add amt to obtain new teller balance;
 Update TELLER record with new teller balance;
 Add amt to obtain new branch balance;
 Update BRANCH record with new branch balance;
 Insert new HISTORY record with transaction information;
 Prepare return buffer with necessary information;
 tpreturn() with success;
}

Listing 4-7 The INQUIRY Algorithm

void INQUIRY(TPSVCINFO *transb)
{
 Extract account id from fielded buffer using Fvall();
 Check that account id is a legal value and tpreturn() with failure if not;
 Set transaction consistency level to read only;
 Retrieve ACCOUNT record to get account balance;
 Prepare return buffer with necessary information;
 tpreturn() with success;
}

BEA TUXEDO Application Development Guide 4-7

4 bankapp Servers
Listing 4-8 The TRANSFER Algorithm

void TRANSFER(TPSVCINFO *transb)
{
 Extract account id's and amount from fielded buffer using Fvall() and Fget();
 Check that both account ids are legal values and tpreturn() with failure if not;
 Check that transfer amount is positive and tpreturn() with failure if it is not;
 Create withdrawal request buffer with tpalloc(); initialize it for FML with
Finit();
 Fill withdrawal request buffer with values for WITHDRAWAL service request;
 Increase priority of coming WITHDRAWAL request since call is from a service;
 Do tpcall() to WITHDRAWAL service;
 Get information from returned request buffer;
 Reinitialize withdrawal request buffer for use as deposit request buffer with
Finit();
 Fill deposit request buffer with values for DEPOSIT service request;
 Increase priority of coming DEPOSIT request;
 Do tpcall() to DEPOSIT service;
 Prepare return buffer with necessary information;
 Free withdrawal/deposit request buffer with tpfree();
 tpreturn() with success;
}

Listing 4-9 The ABAL Algorithm

void ABAL(TPSVCINFO *transb)
{
 Set transaction consistency level to read only;
 Retrieve sum of all ACCOUNT file BALANCE values for the
 database of this server group (A single ESQL
 statement is sufficient);
 Place sum into return buffer data structure;
 tpreturn() with success;
}

4-8 BEA TUXEDO Application Development Guide

A Look at bankapp Servers
Listing 4-10 The TBAL Algorithm

void TBAL(TPSVCINFO *transb)
{
 Set transaction consistency level to read only;
 Retrieve sum of all TELLER file BALANCE values for the
 database of this server group (A single ESQL
 statement is sufficient);
 Place sum into return buffer data structure;
 tpreturn() with success;
}

Listing 4-11 The ABAL_BID Algorithm

void ABAL_BID(TPSVCINFO *transb)
{
 Set transaction consistency level to read only;
 Set branch_id based on transb buffer;
 Retrieve sum of all ACCOUNT file BALANCE values for records
 having BRANCH_ID = branch_id (A single ESQL
 statement is sufficient);
 Place sum into return buffer data structure;
 tpreturn() with success;
}

Listing 4-12 The TBAL_BID Algorithm

void TBAL_BID(TPSVCINFO *transb)
{
 Set transaction consistency level to read only;
 Set branch_id based on transb buffer;
 Retrieve sum of all TELLER file BALANCE values for records
 having BRANCH_ID = branch_id (A single ESQL
 statement is sufficient);
 Place sum into return buffer data structure;
 tpreturn() with success;
}

BEA TUXEDO Application Development Guide 4-9

4 bankapp Servers

e

t

A

le and
Utilities Incorporated into Servers

There are two C language subroutines included among the source files of bankapp :
appinit.c and util.c .

appinit.c contains application-specific versions of tpsvrinit() and tpsvrdone()
subroutines. tpsvrinit() and tpsvrdone() are subroutines that are included in th
standard BEA TUXEDO system main() . The default version of tpsvrinit() calls
tpopen() to open the resource manager and userlog() to post a message that the
server has started. The default version of tpsvrdone() calls tpclose() to close the
resource manager and userlog() to post a message that the server is about to shu
down. Any application subroutines named tpsvrinit() and tpsvrdone() are used
in place of the defaults, thus enabling the application to provide initialization and
pre-shutdown procedures of its own.

util.c contains a subroutine called getstr() , which is used in bankapp to process
SQL error messages.

Building Servers

buildserver (1) is used to put together an executable server built on the BEA
TUXEDO system’s main() . Options identify the names of the output file, the input
files provided by the application, and various libraries that permit you to run a BE
TUXEDO system application in a variety of ways.

buildserver invokes the cc command. The environment variables CC and CFLAGS
can be set to name an alternative compile command and to set flags for the compi
link edit phases. The key buildserver command line options are illustrated in the
examples that follow.

Using the buildserver Command in the bankapp

This section provides the buildserver command used in bankapp.mk to compile
and build each server in the banking application. Refer to the BEA TUXEDO
Programmer's Guide and the buildserver (1) reference page in the BEA TUXEDO
Reference Manual for complete details.
4-10 BEA TUXEDO Application Development Guide

A Look at bankapp Servers

s

ith

y

o
The ACCT Server

The ACCT server is derived from an ACCT.ec file that contains the code for the
OPEN_ACCT and CLOSE_ACCT functions. The ACCT.ec is first compiled to an ACCT.o
file before supplying it to the buildserver command so that any compile-time error
can be clearly identified and dealt with before this step. The ACCT.o file is created in
the following two steps (done for you in bankapp.mk).

1. The .c file is generated as follows.

esql ACCT.ec

2. The .o file is generated as follows.

cc -I $TUXDIR/include -c ACCT.c

The ACCT server was created by running the following buildserver command
line.

buildserver -r TUXEDO/SQL \
 -s OPEN_ACCT -s CLOSE_ACCT \
 -o ACCT \
 -f ACCT.o -f appinit.o -f util.o

The explanation of the command line options is as follows:

� The -r option is used to specify which resource manager access libraries
should be link edited with the executable server. The choice is specified w
the strings TUXEDO/D or TUXEDO/SQL. Only one string can be specified.

� The -s option is used to specify the service names in the server that are
available to be advertised when the server is booted. If the name of the
function that performs a service is different from the service name, the
function name becomes part of the argument of the -s option. In the
bankapp , the function name is the same as the name of the service so onl
the service names themselves need to be specified. It is our convention to
specify all uppercase for the service name. For example, the OPEN_ACCT
service would be processed by function OPEN_ACCT(). However, the -s
option of buildserver does allow you to specify an arbitrary name for the
processing function for a service within a server. Refer to the
buildserver (1) reference page for details. It is also possible for the
administrator to specify that only a subset of the services that were used t
create the server with the buildserver command is to be available when
the server is booted. Refer to the Administering the BEA TUXEDO System.

� The -o option is used to assign a name to the executable output file. If no
name is provided, the file is named SERVER.
BEA TUXEDO Application Development Guide 4-11

4 bankapp Servers

ead

d.

� The -f option specifies the files that are used in the link edit phase. Also
refer to the description of the -l option on the buildserver (1) reference
page. The BEA TUXEDO Programmer's Guide describes both of these
options in some detail as well. The order in which the files are listed is
significant. The order is dependent on function references and in what
libraries the references are resolved. Source modules should be listed ah
of libraries that might be used to resolve their references. If these are .c
files, they are first compiled. (In the example above, appinit.o and util.o
have been compiled previously.) Object files can be either separate .o files
or groups of files in archive (.a) files. If more than a single file name is
given as an argument to a -f option, the syntax calls for a list enclosed in
double quotes. You can use as many -f options as you need.

As you can see in the previous example, the -r option was used to specify the BEA
TUXEDO system SQL resource manager. The -s option names the OPEN_ACCT and
CLOSE_ACCT services (which are defined by functions of the same name in the
ACCT.ec file) to be the services that make up the ACCT server. The -o option assigns
the name ACCT to the executable output file and the -f option specifies that the
ACCT.o, appinit.o , and util.o files are to be used in the link edit phase of the buil
Note that the appinit.c file contains the system supplied tpsvrinit() and
tpsvrdone() . Refer to the BEA TUXEDO Programmer's Guide and the
tpservice (3c) reference page in the BEA TUXEDO Reference Manual for an
explanation of how these routines are used. The util.c file contains a few other
commonly used routines.

The BAL Server

The BAL server is derived from a BAL.ec file that contains the code for the ABAL, TBAL,
ABAL_BID, and TBAL_BID functions. As with the ACCT.ec , the BAL.ec is first
compiled to a BAL.o file before being supplied to the buildserver command for the
same reasons already stated. The buildserver command that was used to build the
BAL server follows:

buildserver -r TUXEDO/SQL \
 -s ABAL -s TBAL -s ABAL_BID -s TBAL_BID\
 -o BAL \
 -f BAL.o -f appinit.o

The -r option specifies the BEA TUXEDO system SQL resource manager, the -s
option names the services that make up the BAL server (as before, the functions in the
BAL.ec file that define these services have identical names), the -o option assigns the
name BAL to the executable server, and the -f option specifies that the BAL.o and the
appinit.o files are to be used in the link edit phase.
4-12 BEA TUXEDO Application Development Guide

A Look at bankapp Servers

l

math
The BTADD Server

The BTADD server is derived from a BTADD.ec file that contains the code for the
BR_ADD and TLR_ADD functions. The BTADD.ec is also compiled to a BTADD.o file
before being supplied to the buildserver command. The buildserver command
that was used to build the BTADD server follows:

buildserver -r TUXEDO/SQL \
 -s BR_ADD -s TLR_ADD \
 -o BTADD \
 -f BTADD.o -f appinit.o

The -r option specifies the BEA TUXEDO system SQL resource manager, the -s
option names the services (BR_ADD and TLR_ADD) that make up the BTADD server (the
functions in the BTADD.ec file that define these services have identical names), the-o
option assigns the name BTADD to the executable server, and the -f option specifies
that the BTADD.o and the appinit.o files are to be used in the link edit phase.

The TLR Server

The TLR server is derived from a TLR.ec file that contains the code for the DEPOSIT,
WITHDRAWAL, and INQUIRY functions. The TLR.ec is also compiled to a TLR.o file
before being supplied to the buildserver command. The buildserver command
that was used to build the TLR server follows:

buildserver -r TUXEDO/SQL \
 -s DEPOSIT -s WITHDRAWAL -s INQUIRY \
 -o TLR \
 -f TLR.o -f util.o -f -lm

The -r option specifies the BEA TUXEDO system SQL resource manager, the -s
option names DEPOSIT, WITHDRAWAL, and INQUIRY as the services that make up the
TLR server (the functions in the TLR.ec file that define these services have identica
names), the -o option assigns the name TLR to the executable server, and the -f option
specifies that the TLR.o and the util.o files are to be used in the link edit phase.

Note the special use of the -f option in the previous example. In this example the -f
option is also used to pass an option (-lm) to the cc command line. As stated earlier,
buildserver invokes the cc command. By supplying the -lm string to the -f option,
it is passed to the cc command and is then interpreted as the option that causes the
libraries to be linked in during the compilation process. Refer to the cc (1) reference
page in the UNIX System V User's Reference Manual for a complete list of
compile-time options.
BEA TUXEDO Application Development Guide 4-13

4 bankapp Servers

,

e.

ay it
p
The XFER Server

The XFER server is derived from an XFER.c file that contains the code for the
TRANSFER function. The XFER.c is also compiled to an XFER.o file before being
supplied to the buildserver command. The buildserver command that was used
to build the XFER server follows:

buildserver -r TUXEDO/SQL \
 -s TRANSFER \
 -o XFER \
 -f XFER.o -f appinit.o

The -r option specifies the BEA TUXEDO system SQL resource manager, the -s
option names TRANSFER as the only service that makes up the XFER server (the
function in the XFER.c file that defines the TRANSFER service has the identical name)
the -o option assigns the name XFER to the executable server, and the -f option
specifies that the XFER.o and the appinit.o files are to be used in the link edit phas

Servers Built in bankapp.mk

The preceding sections on building the bankapp servers were included because it is
important that you understand how the buildserver command is specified. However,
in actual practice you are apt to incorporate the build into a makefile; that is the w
is done in bankapp . The bankapp makefile is discussed in Chapter 5, “The bankap
Makefile.”
4-14 BEA TUXEDO Application Development Guide

A Look at bankapp Servers

ers.

ep

ate

ns in
ave an
s and

s.

e
Alternative Way to Code Services

You may have noticed that in the bankapp source files all the services were
incorporated into files that we have been referring to as the source code for serv
These files do indeed have the same names as the bankapp servers, but they are not
really servers. Why? Because they do not contain a main() section. A standard
main() is provided by the BEA TUXEDO system at buildserver time.

An alternative organization for a BEA TUXEDO system application might be to ke
each service subroutine in its individual file. We will use the TLR.ec file as an
example. TLR.ec contains three services that could have been in their own separ
.ec files called, for example, INQUIRY.ec , WITHDRAW.ec, and DEPOSIT.ec . The
.ec s for each service would be compiled to their corresponding .o s and the
buildserver command line would look like the following:

buildserver -r TUXEDO/SQL \
 -s DEPOSIT -s WITHDRAWAL -s INQUIRY \
 -o TLR \
 -f DEPOSIT.o -f WITHDRAW.o -f INQUIRY.o \
 -f util.o -f -lm

As the preceding example illustrates, there is no need to code the service functio
one source file that represents the server. That is, the server does not need to h
existence as a source program file at all. It can be derived from various source file
come into existence as a server executable through the files specified on the
buildserver command line. This may permit greater flexibility in building server

References

The writing of service subroutines using ATMI functions is the main subject of th
BEA TUXEDO Programmer's Guide.

Examples of buildserver (1) command lines can also be found in the BEA TUXEDO
Programmer's Guide and, of course, in Section 1 of the BEA TUXEDO Reference
Manual.
BEA TUXEDO Application Development Guide 4-15

4 bankapp Servers
4-16 BEA TUXEDO Application Development Guide

CHAPTER

ry
oes
ers. It

e

ry of
5 The bankapp Makefile

A Look at the bankapp Makefile

bankapp includes a makefile that makes all scripts executable, converts data ent
masks to binary format, converts the view description file to binary format, and d
all the necessary precompiles, compiles and builds to create the application serv
can also be used to clean up when you want to make a fresh start.

Editing bankapp.mk

As bankapp.mk is delivered there are a few fields you may want to edit, and som
others that may benefit from a little explanation.

TUXDIR

If you look at bankapp.mk , about 40 lines into the file you come to the following
comment and to the TUXDIR parameter:

#
Root directory of TUXEDO System. This file must either be edited to set
this value correctly, or the correct value must be passed via "make -f
bankapp.mk TUXDIR=/correct/tuxdir", or the build of bankapp will fail.
#
TUXDIR=../..

The TUXDIR parameter should be set to the absolute pathname of the root directo
your BEA TUXEDO system installation.
BEA TUXEDO Application Development Guide 5-1

5 The bankapp Makefile

les.

t
 null.
APPDIR

You may want to give some thought to the setting of the APPDIR parameter. As
bankapp is delivered, APPDIR is set to the directory where the bankapp files are
located, relative to TUXDIR. The section in bankapp.mk is as follows:

#
Directory where the bankapp application source and executables live.
This file must either be edited to set this value correctly, or the
correct value must be passed via "make -f bankapp.mk
APPDIR=/correct/appdir", or the build of bankapp will fail.
#
APPDIR=$(TUXDIR)/apps/bankapp
#

If you have copied the files to another directory, as is suggested in the README file, you
should set this parameter to the name of the directory to which you copied the fi
When you run the makefile, the application will be built in this directory.

NATIVE and Other /Host Parameters

There are some parameters in bankapp.mk that apply to /Host. If you do not have tha
add-on, you should make sure the parameters are commented out or leave them

Directory where the native side source files for CICS host live.
This file must either be edited to set this value correctly, or the
correct value must be passed via "make -f bankapp.mk
NATIVE=/correct/native", or the build of bankapp will fail.
#
NATIVE=$(TUXDIR)/apps/hostapp/cics/native
 •
 •
 •
#
HOST - set to -DHOST if host credit card processing is desired
#HOST=-DHOST
HOST=
#

5-2 BEA TUXEDO Application Development Guide

A Look at the bankapp Makefile

our

Resource Manager

As bankapp is delivered, it expects to use TUXEDO/SQL as the database resource
manager. This assumes that you have the BEA TUXEDO system database on y
system. If this is not the case, you should set the RM parameter to the name of your
resource manager as listed in TUXDIR/udataobj/RM . There is more on this subject in
Chapter 6, “Databases for bankapp.”

#
Resource Manager
#
RM=TUXEDO/SQL
#

Running bankapp.mk

When you have completed the changes you wish to make to bankapp.mk , run it with
the following command line:

nohup make -f bankapp.mk &

Check the nohup.out file to make sure the process completed successfully.
BEA TUXEDO Application Development Guide 5-3

5 The bankapp Makefile
5-4 BEA TUXEDO Application Development Guide

CHAPTER

ly,

the

one
6 Databases for bankapp

Resource Manager Options for bankapp

This chapter covers the subject of the interface between bankapp and a resource
manager, typically a database management system. As was mentioned previous
bankapp is written to use the BEA TUXEDO/SQL facilities of the BEA TUXEDO
system database, which is an XA-compliant resource manager. The first part of
chapter describes how you create the database for bankapp.

If you do not have BEA TUXEDO/SQL on your system, you have two options:

� You can integrate an XA-compliant resource manager with the BEA TUXEDO
system and bring up bankapp with only a few, relatively minor changes.

� You can integrate a non-XA compliant resource manager with bankapp , but the
required changes are somewhat more extensive.

These two options are discussed in the two later sections of the chapter.

The System/D RM and bankapp

How you create the bankapp database depends on whether you are bringing the
application up on a single processor (SHM mode) or on a network of more than
processor (MP mode).
BEA TUXEDO Application Development Guide 6-1

6 Databases for bankapp

d

 on a
t of

ce
Create Database in SHM Mode

This is a 2-step procedure.

1. Set the environment by typing the following.

. ./bankvar

(If you are bringing up bankapp in one continuous series of steps, you should
have done this earlier. bankvar sets a number of parameters that are reference
when bankapp.mk is run.)

2. Execute crbank . crbank calls crbankdb three times, changing some
environment variables each time, so that you end up with three database files
single machine. That means you can simulate the multi-machine environmen
the BEA TUXEDO system without a network of machines.

Create the Database in MP Mode

This procedure is quite similar to the one for SHM mode:

1. Set the environment by typing the following.

. ./bankvar

As noted above, you may already have done this step.

2. Run crbankdb to create the database for this site.

3. On each additional machine in your BEA TUXEDO system network, edit
bankvar to provide the pathname for the FSCONFIG variable that is used for that
site in the configuration file, ubbmp. Then repeat Step 1 and Step 2.

Failure with a semget Error

If crbankdb fails with a semget error, it is saying that it cannot get enough
semaphores. Each NPROC requires two semaphores, but you should be able to redu
the number of processes and still run bankapp . Try reducing NPROCTBL=20 in the
create database statement in crbankdb.sh to NPROCTBL=10.
6-2 BEA TUXEDO Application Development Guide

Using an XA-compliant RM with bankapp

 to

em

or the

r
 that
Using an XA-compliant RM with bankapp

The procedure for integrating an XA-compliant resource manager with the BEA
TUXEDO system is provided elsewhere in the BEA TUXEDO documentation; we
will not repeat it here. What is described here are changes that need to be made
bankapp files to enable you to run with an alternate resource manager.

Changes to bankvar

The following environment variables are used in creating the BEA TUXEDO syst
database.

BLKSIZE=512
DBNAME=bankdb
DBPRIVATE=no
DIPCKEY=80953
FSCONFIG=${APPDIR}/bankdl1

It is unlikely that these correspond to variables needed in creating the database f
alternate resource manager.

Changes to the bankapp Services

Since all database access in bankapp is done with embedded SQL statements, if you
new resource manager supports SQL, you should have no trouble. Bear in mind
the utility appinit.c includes calls to tpopen() and tpclose() . tpopen() checks
the configuration file to learn how to open the application database.
BEA TUXEDO Application Development Guide 6-3

6 Databases for bankapp

.

 not
e

r. Its

f the
er.
Change to bankapp.mk

You must edit the RM parameter in bankapp.mk to name the new resource manager

Also, the name of the SQL compiler and its options may be different (for example,
esqlc). The file suffix may not be .ec and the include directory needed to compile th
resulting .c file may be different.

Changes to crbank and crbankdb

crbank might well be ignored and not used with your alternate resource manage
only function is to re-set variables and run crbankdb three times. crbankdb , on the
other hand, requires close attention. In Listing 6-1 we reproduce the beginning o
crbankdb script to point out things that won’t work with a different resource manag

Listing 6-1 An Excerpt from the crbankdb Script

#Copyright (c) BEA Systems, Inc.
#All rights reserved

#
Create device list
#
dbadmin<<!
echo
crdl
Replace the following line with your device zero entry
${FSCONFIG} 0 2560
!
#
Create database files, fields, and secondary indices
#
sql<<!
echo
create database ${DBNAME} with (DEVNAME='${FSCONFIG}',
 IPCKEY=${DIPCKEY}, LOGBLOCKING=0, MAXDEV=1,
 NBLKTBL=200, NBLOCKS=2048, NBUF=70, NFIELDS=80,
 NFILES=20, NFLDNAMES=60, NFREEPART=40, NLCKTBL=200,
 NLINKS=80, NPREDS=10, NPROCTBL=20, NSKEYS=20,
 NSWAP=50, NTABLES=20, NTRANTBL=20, PERM='0666',
6-4 BEA TUXEDO Application Development Guide

Using an XA-compliant RM with bankapp

what

.
ay

L

ents.

ssed
e
 STATISTICS='n'
)

create table BRANCH (
 BRANCH_ID integer not null,
 BALANCE real,
 LAST_ACCT integer,
 LAST_TELLER integer,
 PHONE char(14),
 ADDRESS char(60),
 primary key(BRANCH_ID)
) with (
 FILETYPE='hash', ICF='PI', FIELDED='FML',
 BLOCKLEN=${BLKSIZE}, DBLKS=8, OVBLKS=2
)
!

These first forty or so lines will give you an idea of what needs to be changed and
may be salvageable. As you can see, crbankdb is made up of two here documents that
provide input to the dbadmin and sql shell commands. The first here file is passed to
the BEA TUXEDO system command dbadmin to create a device list for the database
Obviously, this will not work with another resource manager. Other commands m
be needed to create table spaces and/or grant the correct privileges.

The second here file is passed to System/D’s interactive SQL. BEA TUXEDO/SQ
conforms closely to the standard SQL, but the with clauses of the create database
and create table statements are specific to System/D.

Note: In the scripts furnished with bankapp the create table statement shown in
Listing 6-1 is followed by three other create table statements and two
create index statements. The remarks here apply to all of these statem

Changes to the Configuration File

This gets a little ahead of our sequence of chapters (configuration files are discu
in Chapter 7, “Edit bankapp Configuration Files.”), but you will have to change th
*GROUPS section to specify a different TMSNAME parameter and to provide an
OPENINFO parameter that is recognizable by the new resource manager.
BEA TUXEDO Application Development Guide 6-5

6 Databases for bankapp

liant
e of
our
sides
r

S that

 XA

as those

sit in

Using a non-XA Compliant RM with

bankapp

The most significant difference between a resource manager that is not XA-comp
and one that is, is that the non-XA resource manager does not take full advantag
the BEA TUXEDO system Distributed Transaction Processing (DTP) features. Y
resource manager will operate as a local resource on the machine on which it re
and clients within a DTP transaction will not be able to request services from you
resource manager.

For the discussion at hand, we’re going to assume you want to connect an RDBM
doesn’t use the XA 2-phase commit to bankapp . The non-XA resource manager will
be the only resource manager used by the application; the problem of integrating
and non-XA resource managers in bankapp is not covered in this discussion. You
expect to be able to access the database using embedded SQL statements such
delivered with bankapp . The most important change in the functionality of bankapp
that results from this is that the TRANSFER service will no longer be a single, atomic
transaction. If a system error should occur between the withdrawal and the depo
TRANSFER, you run the risk of having a corrupted database.

Changes to bankvar

The following variables can be left null in bankvar because they are parameters for
the BEA TUXEDO system database.

BLKSIZE
DBNAME
DBPRIVATE
DIPCKEY
FSCONFIG

The following variable can be left null in bankvar because a TLOG is needed only for
DTP transactions.

TLOGDEVICE
6-6 BEA TUXEDO Application Development Guide

Using a non-XA Compliant RM with bankapp

ack

can
Changes to the bankapp Clients and Services

In the .m files; that is, the source code for bankapp masks, change the following.

TRANMODE=TRAN

to

TRANMODE=NOTRAN

In audit.c and auditcon.c remove the tpbegin() , tpcommit() , and tpabort()
statements.

All calls to tpopen() and tpclose() must be removed. In each service, a local
transaction must be started at the beginning of the service and a commit or rollb
must be done before each tpreturn() . The service OPEN_ACCT will need to be
re-written since it calls the DEPOSIT service, so that the work of DEPOSIT is done
within the same transaction in the same server. Similarly, CLOSE_ACCT calls
WITHDRAW, and XFER calls DEPOSIT and WITHDRAW. These functions (DEPOSIT,
WITHDRAW) should be re-written as non-service functions with normal returns that
be called from different service functions.

Changes to bankapp.mk

In bankapp.mk , set RM to null. Change all buildserver lines to remove the -r flag
and to include the libraries needed by your resource manager. A typical buildserver
line should look like this.

buildserver -f servicefile .o -o servername -l " rmlibs,... "

The libraries for your resource manager will not be brought in automatically as
happens with XA-compliant resource managers that are listed in
TUXDIR/udataobj/RM , so you have to specify what libraries you need on the
buildserver command line.
BEA TUXEDO Application Development Guide 6-7

6 Databases for bankapp

 as are
Changes to crbank and crbankdb

Do not use crbank .

You may be able to salvage some of the create table statements in crbankdb . At
any rate, you should plan to use the same table and field names in your database
used in bankapp in order to be able to use the existing services.

Changes to the Configuration File

In the *GROUPS section, change the existing entries as follows.

If you are using ubbshm.

*GROUPS
DEFAULT: LMID=SITE1
BANKB1 GRPNO=1
BANKB2 GRPNO=2
BANKB3 GRPNO=3

If you are using ubbmp.

*GROUPS
DEFAULT:
BANKB1 LMID=SITE1 GRPNO=1
BANKB2 LMID=SITE2 GRPNO=2

The above changes do two things: you remove the TMSNAME specification so you
default to the null XA interface, and you remove the OPENINFO statements, which are
not used with the null XA interface.

In addition to these changes, change the DEFAULT entry for the *SERVICE entries to set
AUTOTRAN=N.

Changes to the Driver Scripts

Edit driver.sh and populate.sh to change the ud -t 30 argument to ud -d 30 .
6-8 BEA TUXEDO Application Development Guide

CHAPTER

 the

 in
ertain

t

 that
7 Edit bankapp

Configuration Files

Configuration Files for bankapp

A configuration file brings together all the detail about how an application maps to
machines on which it runs. As bankapp is delivered, there are two configuration files
in the ASCII format described in ubbconfig (5). The file called ubbshm contains the
configuration for an application on a single computer. The file called ubbmp contains
the configuration for a networked application.

The configuration files are delivered with the value of some parameters enclosed
angle brackets (<>). You need to replace these generic values with values that p
to your installation. All of these fields occur within the RESOURCES, MACHINES, and
GROUPS sections in both files. In ubbmp, the NETWORK section also has entries you mus
localize. In Listing 7-1 we show ubbmp through the NETWORK section; this illustration
also covers all the changes you need to make in RESOURCES, MACHINES, and GROUPS
if you are bringing up a single-processor application. An explanation of the values
need to be replaced follows Listing 7-1.

If you want to enable the application password feature, add this line to the RESOURCES
section of ubbshm or ubbmp:

SECURITY APP_PW
BEA TUXEDO Application Development Guide 7-1

7 Edit bankapp Configuration Files
Listing 7-1 Configuration File Fields to Be Replaced

 #Copyright (c) 1997 BEA Systems, Inc.
 #All rights reserved

 *RESOURCES
 IPCKEY 80952
001 UID <user id from id(1)>
002 GID <group id from id(1)>
 PERM 0660
 MAXACCESSERS 40
 MAXSERVERS 35
 MAXSERVICES 75
 MAXCONV 10
 MAXGTT 20
 MASTER SITE1,SITE2
 SCANUNIT 10
 SANITYSCAN 12
 BBLQUERY 180
 BLOCKTIME 30
 DBBLWAIT 6
 OPTIONS LAN,MIGRATE
 MODEL MP
 LDBAL Y
 #
 *MACHINES
003 <SITE1's uname> LMID=SITE1
004 TUXDIR="<TUXDIR>"
005 APPDIR="<APPDIR>"
 ENVFILE="<APPDIR>/ENVFILE"
 TLOGDEVICE="<APPDIR>/TLOG"
 TLOGNAME=TLOG
 TUXCONFIG="<APPDIR>/tuxconfig"
006 TYPE="<machine type>"
 ULOGPFX="<APPDIR>/ULOG"
007 <SITE2's uname> LMID=SITE2
 TUXDIR="<TUXDIR>"
 APPDIR="<APPDIR>"
 ENVFILE="<APPDIR>/ENVFILE"
 TLOGDEVICE="<APPDIR>/TLOG"
 TLOGNAME=TLOG
 TUXCONFIG="<APPDIR>/tuxconfig"
 TYPE="<machine type>"
 ULOGPFX="<APPDIR>/ULOG"
 #
 *GROUPS
 DEFAULT: TMSNAME=TMS_SQL TMSCOUNT=2
 BANKB1 LMID=SITE1 GRPNO=1
7-2 BEA TUXEDO Application Development Guide

Configuration Files for bankapp

d

n
ou
O

.
s.

 a
008 OPENINFO="TUXEDO/SQL:<APPDIR>/bankdl1:bankdb:readwrite"
BANKB2 LMID=SITE2 GRPNO=2
009 OPENINFO="TUXEDO/SQL:<APPDIR>/bankdl2:bankdb:readwrite"
*NETWORK
010 SITE1 NADDR="<network address of SITE1>"
011 BRIDGE="<device of provider>"
012 NLSADDR="<network listener address of SITE1>"
013 SITE2 NADDR="<network address of SITE2>"
014 BRIDGE="<device of provider>"
015 NLSADDR="<network listener address of SITE2>"

Notes to Listing 7-1

The following table describes the values you must provide for the angle-brackete
strings.

Line Value Description

001 UID The effective user ID (UID) for the owner of the bulletin board IPC structures. I
a multiprocessor configuration, the value must be the same on all machines. Y
avoid problems by using the same UID as that of the owner of the BEA TUXED
system software.

002 GID The effective group ID (GID) for the owner of the bulletin board IPC structures
In a multiprocessor configuration, the value must be the same on all machine
Users of the application should share this group ID.

003 SITE1 name The name of the machine. Use the value produced by the UNIX command:

uname -n

004 TUXDIR The absolute pathname of the root directory for the BEA TUXEDO system
software. Make this a global change to put the value in all occurrences of
<TUXDIR> in the file.

005 APPDIR The absolute pathname of the directory where the application runs. Make this
global change to put the value in all occurrences of <APPDIR> in the file.
BEA TUXEDO Application Development Guide 7-3

7 Edit bankapp Configuration Files

es

and:

EA
) to

 be

ill

 be
References

All of the configuration parameters and their values are described in ubbconfig (5) in
the BEA TUXEDO Reference Manual.

As noted above, there are examples of the proper format for network address
parameters in Administering the BEA TUXEDO System.

006 machine type An identifying string. This parameter is important in a networked application
where machines of different types are present. The BEA TUXEDO system
checks for the value on all communication between machines. Only if the valu
are different are the message encode/decode routines called to convert the
data.

007 SITE2 name The name of the second machine. Use the value produced by the UNIX comm

uname -n

on that machine.

008 OPENINFO The statement here and in the following entry are in a format understood by B
TUXEDO system resource managers. They need to be changed (or removed
meet the requirements of other resource managers.

009 Network Address of
SITE1

The full network listening address of the bridge process on this machine. For
example addresses, see Administering the BEA TUXEDO System.

010 Device of provider The full pathname of the device for your network provider. This value should
the same for all entries in the NETWORK section.

011 Network listener
address of SITE1

The value of the network listener address for the tlisten process on this
machine.

012 Network Address of
SITE2

The full network listening address of the bridge process on this machine. This w
be a different value on each machine.

013 Device of provider The full pathname of the device for your network provider. This value should
the same for all entries in the NETWORK section.

014 Network listener
address of SITE2

The value of the network listener address for the tlisten process on this
machine.

Line Value Description
7-4 BEA TUXEDO Application Development Guide

CHAPTER

 a

e in

 to a

 the
8 Create tuxconfig, tlog;

Start tlisten

Creating tuxconfig, tlog tlisten

This chapter describes how to prepare to boot bankapp .

You will find that most of the material applies to a networked application, that is,
configuration with more than one machine. If you are bringing bankapp up in SHM
mode, you do not have to be concerned about the tlisten process or about creating a
TLOG on another machine.

As with all the steps since Chapter 2, “bankapp Files,” of this guide, you should b
the directory in which your bankapp files are located and you must set the
environment by entering.

. ./bankvar

Loading the Configuration File

Once the configuration file has been edited to your satisfaction, it must be loaded
binary file on your MASTER node. The binary configuration file has a file name of
tuxconfig ; its pathname relative to APPDIR is in the environment variable,
TUXCONFIG. The file should be created by a person with the effective user ID and
group ID of the BEA TUXEDO system administrator, which should be the same as
BEA TUXEDO Application Development Guide 8-1

8 Create tuxconfig, tlog; Start tlisten

ou

 the

 if

ry for
lf

d for

h

ction
UID and GID values in your configuration file. If these conditions are not observed, y
may run into permission problems in running bankapp . The command line for creating
tuxconfig is:

tmloadcf ubbmp

There is a -y option to suppress prompts that ask if you really want to install
TUXCONFIG or to overwrite it if it already exists. There is a -c option that calculates
the numbers for IPC resources the configuration requires.

tuxconfig needs to be installed only on the MASTER node; it is propagated to other
nodes by tmboot when the application is booted.

If you have specified SECURITY as an option for the configuration, tmloadcf prompts
you to enter an application password. The password you select can be up to 30
characters long. Client processes joining the application will be required to supply
password.

tmloadcf parses the ASCII configuration file for syntax errors before it loads it, so
there are errors in the file, the job fails.

Creating the TLOG

The TLOG is the transaction log needed by the BEA TUXEDO system in the
management of global transactions. Before an application can be booted an ent
the TLOG must be created on all nodes of the application, and a file for the log itse
must be created on the MASTER node.

Note: In a production environment, the device list may be the same as that use
the database. (See Administering the BEA TUXEDO System.)

There is a script in bankapp called crtlog that creates the device list and the TLOG for
you. The device list is created using the TLOGDEVICE variable from bankvar . On the
MASTER node, enter the command as follows.

crtlog -m

On all other machines, do not specify -m; when the system is booted, the BBL on eac
non-MASTER node creates the log.

If you are using a non-XA resource manager, there is no requirement for a transa
log so you may skip this step.
8-2 BEA TUXEDO Application Development Guide

Creating tuxconfig, tlog tlisten

s

nning
and

e

ing
Starting tlisten

tlisten is the ProductName listener process that provides a remote service
connection between nodes of an application for ProductName processes such a
tmboot . It must be installed on all nodes of your network as defined in the NETWORK
page of the configuration file.

Starting tlisten is described in more detail in the BEA TUXEDO Installation Guide,
as a step in the installation of the ProductName software. For the purposes of ru
bankapp you may prefer to start a separate instance. It can be done with a comm
like this.

tlisten -d /dev/ devname -l nlsaddr

where devname is the device name of your network provider. This is apt to be
/dev/tcp . (If your provider is Sockets , the -d option is not needed.)

The logfile used by tlisten is separate from all other BEA TUXEDO system log
files, but one log can be used by more than one tlisten process. The default filename
is $TUXDIR/udataobj/tlog .

The nlsaddr value must be the same as that specified for the NLSADDR parameter for
this machine in your configuration file. As noted in the previous chapter, this valu
changes from one machine to another; it is important that your tlisten arguments
agree with your configuration file specification.

Note: Detection of an error in this specification is not easy. tmloadcf does not check
for agreement between your configuration file and your tlisten command.
The symptom is most likely to be that the application fails to boot on the
machine where the mismatch in nlsaddr values occurs or where the tlisten
process has not been started.

Stopping tlisten

tlisten is designed to run as a daemon process. The reference page has some
suggestions about incorporating it in startup scripts or running it as a cron job. For
bankapp , you may prefer simply to start it and bring it down as you need it. To br
it down, send it a SIGTERM signal like this.

kill -15 pid
BEA TUXEDO Application Development Guide 8-3

8 Create tuxconfig, tlog; Start tlisten

s
Error Messages from tlisten Problems

If no remote tlisten is running, the boot sequence is displayed on your screen a
follows.

Booting admin processes…

exec DBBL -A :
 on MASTER -> process id=17160…Started.
exec BBL -A :
 on MASTER -> process id=17161…Started.
exec BBL -A :
 on NONMAST2 -> CMDTUX_CAT:814: cannot propagate TUXCONFIG file

tmboot: WARNING: No BBL available on site NONMAST2.
 Will not attempt to boot server processes on that site.

exec BBL -A :
 on NONMAST1 -> CMDTUX_CAT:814: cannot propagate TUXCONFIG file

tmboot: WARNING: No BBL available on site NONMAST1.
 Will not attempt to boot server processes on that site.

2 processes started.

and messages such as these will be in the ULOG:

133757.mach1!DBBL.17160: LIBTUX_CAT:262: std main starting
133800.mach1!BBL.17161: LIBTUX_CAT:262: std main starting
133804.mach1!BRIDGE.17162: LIBTUX_CAT:262: std main starting
133805.mach1!tmboot.17159: LIBTUX_CAT:278: Could not contact NLS on NONMAST2
133805.mach1!tmboot.17159: LIBTUX_CAT:276: No NLS available for remote
 machine NONMAST2
133806.mach1!tmboot.17159: LIBTUX_CAT:276: No NLS available for remote
 machine NONMAST2
133806.mach1!tmboot.17159: CMDTUX_CAT:850: Error sending TUXCONFIG
 propagation request to TAGENT on NONMAST2
133806.mach1!tmboot.17159: WARNING: No BBL available on site NONMAST2.
 Will not attempt to boot server processes on that site.
133806.mach1!tmboot.17159: LIBTUX_CAT:278: Could not contact NLS on NONMAST1
133806.mach1!tmboot.17159: LIBTUX_CAT:276: No NLS available for
 remote machine NONMAST1
133806.mach1!tmboot.17159: LIBTUX_CAT:276: No NLS available for
 remote machine NONMAST1
133806.mach1!tmboot.17159: CMDTUX_CAT:850: Error sending TUXCONFIG
 propagation request to TAGENT on NONMAST1
133806.mach1!tmboot.17159: WARNING: No BBL available on site NONMAST1.
 Will not attempt to boot server processes on that site.
8-4 BEA TUXEDO Application Development Guide

Creating tuxconfig, tlog tlisten

pear
If tlisten is started with the wrong machine address, the following messages ap
in the tlisten log.

Mon Aug 26 10:51:56 1991; 14240; BEA TUXEDO System Listener Process Started
Mon Aug 26 10:51:56 1991; 14240; Could not establish listening endpoint
Mon Aug 26 10:51:56 1991; 14240; Terminating listener process, SIGTERM

References

For more information about tlisten and the TLOG, see Chapter 15, “Monitoring Log
Files,” in Administering the BEA TUXEDO System.

For examples of network addresses, see Chapter 6, “Building Networked
Applications,” in Administering the BEA TUXEDO System.

Installation of tlisten is covered, as noted above, in the BEA TUXEDO Installation
Guide.

The following pages in the BEA TUXEDO Reference Manual are important.

� tlisten (1)

� tmadmin (1) for the crdl and crlog commands

� tmloadcf (1)
BEA TUXEDO Application Development Guide 8-5

8 Create tuxconfig, tlog; Start tlisten
8-6 BEA TUXEDO Application Development Guide

CHAPTER

o

9 Boot the Application;

Populate the Database

tmboot and populate

This chapter covers booting the application and putting enough records into the
database to simulate a real application.

Checking IPC Resources

When your application is defined to the point where you are ready to boot it, you
should first run a check to make sure your machine has enough IPC resources t
support your application. The tmboot command has a -c option that produces a report
like that shown in Listing 9-1.
BEA TUXEDO Application Development Guide 9-1

9 Boot the Application; Populate the Database

ch

 in
d
uide
. If
trol
Listing 9-1 tmboot -c IPC Report

Ipc sizing (minimum /T values only)…

 Fixed Minimums Per Processor

SHMMIN: 1
SHMALL: 1
SEMMAP: SEMMNI

 Variable Minimums Per Processor

 SEMUME, A SHMMAX
 SEMMNU, * *
Node SEMMNS SEMMSL SEMMSL SEMMNI MSGMNI MSGMAP SHMSEG
------ ------ ------ ------ ------ ------ ------ ------
sfpup 60 1 60 A + 1 10 20 76K
sfsup 63 5 63 A + 1 11 22 76K

where 1 <= A <= 8.

The number of expected application clients per processor should be added to ea
MSGMNI value. MSGMAP should be twice MSGMNI.

The minimum IPC requirements can be compared to the parameters set for your
machine. The most likely place to find the settings on a UNIX system machine is
the file /etc/conf/cf.d/mtune , but this can vary from one platform to another an
between versions of the UNIX operating system. See the system administrator’s g
for your machine for information about how to find and change these parameters
you are using the BEA TUXEDO system on a Windows NT platform, there is a con
panel that displays and sets IPC parameters.
9-2 BEA TUXEDO Application Development Guide

tmboot and populate

nds

r

Executing tmboot

As with most procedures in this guide, we start by setting the environment:

../bankvar

The variables particularly needed by tmboot are TUXCONFIG, APPDIR, and TUXDIR.
The command to boot the complete application is the following.

tmboot

Running this command causes the following prompt to be displayed.

Boot all admin and server processes? (y/n): y

When you respond y to the prompt, you get a running report that starts like this.

Booting all admin and server processes in /usr/me/appdir/tuxconfig
Booting all admin processes…
exec BBL -A:
 process id=24223… Started.

The display continues until all servers in the configuration have been started. It e
with a count of the number of servers started.

There are options that can be used to boot only a portion of the configuration. Fo
example, if the -A flag is used, only administrative servers are booted, but with no
options specified, everything is booted.

In addition to the report on servers booted, tmboot also sends messages to the ULOG.

The Userlog: ULOG

We have referred previously to the ULOG, but this is the first time it has actually played
an important role in the process under discussion. It is called ULOG (short for user log)
because that is the default prefix; the actual file name of the log is ULOG followed by
the date in the form: . mmddyy. Log messages can be directed to ULOG from user-written
modules through a call to userlog (3c), but the ULOG is also used heavily by BEA
TUXEDO system processes such as tmboot .
BEA TUXEDO Application Development Guide 9-3

9 Boot the Application; Populate the Database

m

e

Running the populate Script

The populate.sh script is provided with bankapp to put enough records into the
database to work with. populate is a one-line script that pipes records from a progra
called gendata to the system server, ud. The gendata program creates records for 10
branches, 30 tellers, and 200 accounts. A file of the records created is kept in pop.out ,
so you can use values that are in the database when forming your sample servic
requests. The script is run just by entering the following word.

populate

References

For more information about tmboot , see Chapter 4, “Starting and Shutting Down
Applications,” in Administering the BEA TUXEDO System.

Chapter 7, “Error Management,” of the BEA TUXEDO Programmer's Guide contains
background information on the user of the userlog . Throughout that guide there are
examples of messages being sent to the log.

The following pages in the BEA TUXEDO Reference Manual are important:

� tmboot (1)

� ud(1)

� userlog (3c)
9-4 BEA TUXEDO Application Development Guide

CHAPTER

eady
ng

 is
ou to

ta
10Run bankapp

Run the Application

This chapter covers some of the scripts and commands you can use after bankapp has
been booted.

We recognize the probability, since you have a system that is active, that you alr
have set the bankapp environment. However, if that is not the case, if you are loggi
in cold to a running system, you will need to enter the following.

. ./bankvar

to set your environment for bankapp .

The bankapp run Script

A script called run is provided with bankapp . This script brings up the initial menu
with its choice of six services you can request bankapp to perform. run contains a
single command line:

mio -i MENU

where the -i option tells mio to use the MENU mask rather than the default, which
prompts for the name of the mask to use.

You might want to enter the mio command directly, just to see what happens. There
a HELP screen that gives you a summary of a number of keystrokes that enable y
move around in mio masks.

The output file that was created by the populate script, pop.out , can be used to
provide account numbers, branch IDs, and other fields you can specify on the da
entry masks, so your service requests produce some output.
BEA TUXEDO Application Development Guide 10-1

10 Run bankapp

s.”

n is
Running the audit Client Program

The audit.c client program was described in Chapter 3, “bankapp Client Program
To execute the program, enter the command line as follows.

audit {-a | -t} [branch_id]

specifying either -a for account balances or -t for teller balances. If you specify a
branch_id , the report is limited to that branch; if you do not specify a branch_id , the
report is for all branches.

Running auditcon

To start the conversational version of the audit program, enter the command.

auditcon

The program displays the following message on your terminal.

to request a TELLER or ACCOUNT balance for a branch,
type the letter t or a, followed by the branch id,
followed by <return>

for ALL TELLER or ACCOUNT balances, type t or a <return>
q <return> quits the program

When you have typed your request and pressed return, the requested informatio
displayed on your terminal followed by this.

another balance request ??

The program continues to offer you this service until you enter a q.
10-2 BEA TUXEDO Application Development Guide

Run the Application

e
 get

e

O

tive
Using the driver Program

The driver program is a script that generates a series of transactions to simulat
activity on the system. It is included as part of the sample application so you can
realistic-looking statistics with commands of the tmadmin interface. By default, the
driver program generates 300 transactions. You can change that number with th-n
option, as in the following example.

driver -n1000

specifies that the program should run for 1,000 loops.

Using tmadmin

This book is not the place to go into an extensive description of the BEA TUXED
system administrative interface, tmadmin . We encourage you to use it while bankapp
is running to see the kind of information you can produce with tmadmin
subcommands.

Shutting Down bankapp

When you want to bring bankapp down, enter the tmshutdown (1) command with no
arguments, as follows.

tmshutdown

Running this command (or the shutdown command of tmadmin) will cause the
shutting down of all application servers, gateway servers, TMSs, and administra
servers, and the removal of associated IPC resources.

The shutdown command must be issued from the MASTER machine.
BEA TUXEDO Application Development Guide 10-3

10 Run bankapp
References

For more information about using tmadmin , the command-line interface for
administration, see Chapter 14, “Monitoring a Running System,” in Administering the
BEA TUXEDO System.

The following pages of the BEA TUXEDO Reference Manual are important:

� mio (1)

� tmadmin (1)

� tmshutdown (1)
10-4 BEA TUXEDO Application Development Guide

	Copyright
	Contents
	1 A Simple Application
	About This Guide
	Organization of the Guide
	Assumptions
	Documentation Roadmap

	About This Chapter
	Some Preliminaries

	The simpapp Tutorial
	Step 1: Copy the simpapp Files
	Step 2: Examine the Client Program
	References

	Step 3: Compile the Client
	References

	Step 4: Examine the Server
	References

	Step 5: Compile the Server
	References

	Step 6: Edit the Configuration File
	References

	Step 7: Load the Configuration File
	References

	Step 8: Boot the Application
	References

	Step 9: Enter a Request
	Step 10: Using tmadmin
	References

	Step 11: Shut Down the Application
	References

	Summary

	2 bankapp Files
	Directory Structure for bankapp
	Files
	Edit bankvar to Set Environment Variables
	Additional PATH Component for SunOS

	3 bankapp Client Programs
	A Look at bankapp Client Programs
	System Client Programs
	Mask Source Code
	Using mio(1)
	Buffer Types
	Using ud(1)

	audit.c: A Request/Response Client
	audit.c Source Code

	auditcon.c: A Conversational Client
	auditcon.c Source Code

	bankmgr.c: A Client that Monitors Events
	Building Client Programs
	References

	4 bankapp Servers
	A Look at bankapp Servers
	Request/response Servers
	A Conversational Server
	Service Definitions
	Service Algorithms
	Utilities Incorporated into Servers
	Building Servers
	Using the buildserver Command in the bankapp
	The ACCT Server
	The BAL Server
	The BTADD Server
	The TLR Server
	The XFER Server
	Servers Built in bankapp.mk

	Alternative Way to Code Services
	References

	5 The bankapp Makefile
	A Look at the bankapp Makefile
	Editing bankapp.mk
	TUXDIR
	APPDIR
	NATIVE and Other /Host Parameters
	Resource Manager

	Running bankapp.mk

	6 Databases for bankapp
	Resource Manager Options for bankapp
	The System/D RM and bankapp
	Create Database in SHM Mode
	Create the Database in MP Mode
	Failure with a semget Error

	Using an XA-compliant RM with bankapp
	Changes to bankvar
	Changes to the bankapp Services
	Change to bankapp.mk
	Changes to crbank and crbankdb
	Changes to the Configuration File

	Using a non-XA Compliant RM with bankapp
	Changes to bankvar
	Changes to the bankapp Clients and Services
	Changes to bankapp.mk
	Changes to crbank and crbankdb
	Changes to the Configuration File
	Changes to the Driver Scripts

	7 Edit bankapp Configuration Files
	Configuration Files for bankapp
	Notes to Listing�7-1
	References

	8 Create tuxconfig, tlog; Start tlisten
	Creating tuxconfig, tlog tlisten
	Loading the Configuration File
	Creating the TLOG
	Starting tlisten
	Stopping tlisten
	Error Messages from tlisten Problems

	References

	9 Boot the Application; Populate the Database
	tmboot and populate
	Checking IPC Resources
	Executing tmboot
	The Userlog: ULOG

	Running the populate Script
	References

	10 Run bankapp
	Run the Application
	The bankapp run Script
	Running the audit Client Program
	Running auditcon
	Using the driver Program
	Using tmadmin
	Shutting Down bankapp
	References

