
Reference Manual

Section 1 —

B E A T u x e d o 6 . 5 f o r W L E 5 . 1
D o c u m e n t E d i t i o n 6 . 5

M a y 2 0 0 0

Commands

BEA Tuxedo

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Jolt, BEA Manager, BEA MessageQ, BEA Tuxedo, BEA TOP END, BEA WebLogic,
and ObjectBroker are registered trademarks of BEA Systems, Inc. BEA eLink, BEA eSolutions, BEA TAP, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic
Personalization Server, BEA WebLogic Server, Java Enterprise Tuxedo, and WebLogic Enterprise Connectivity
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

BEA Tuxedo Reference Manual

Document Edition Date Software Version

6.5 May 2000 BEA Tuxedo 6.5 for WLE 5.1

Contents

Section 1 — Commands
introduction to BEA Tuxedo Commands..2

bldc_dce(1)..3

blds_dce(1)..4

build_dgw(1) ...5

buildclient(1) ...8

buildclt(1)..12

buildserver(1) ..16

buildtms(1) ..22

buildwsh(1) ...24

cobcc(1)...26

dmadmin(1) ...28

dmloadcf(1) ...45

dmunloadcf(1) ...48

gencat(1)..49

loadfiles(1) ..52

mio(1)..53

mkfldhdr, mkfldhdr32(1) ..57

mklanginfo(1)..59

pic_uform(1) ...62

qmadmin(1) ...64

rex(1) ...77

tidl(1)...79

tlisten(1) ..86

tmadmin(1)..90

tmboot(1)...108
BEA Tuxedo Reference Manual iii

tmconfig(1)... 115

tmloadcf(1) ... 125

tmshutdown(1) ... 128

tmunloadcf(1) ... 132

tpacladd(1).. 133

tpaclcvt(1)... 134

tpacldel(1)... 135

tpaclmod(1) .. 136

tpadduser .. 137

tpdelusr(1) .. 139

tpgrpadd(1) ... 140

tpgrpdel(1) .. 141

tpgrpmod(1).. 142

tpmodusr(1) .. 143

tpusradd(1) ... 144

tpusrdel(1) .. 146

tpusrmod(1) .. 147

tuxadm(1) ... 149

TuxShell(1)... 150

tuxwsvr(1) .. 152

txrpt(1).. 157

ud(1) ... 159

udfk_test(1) .. 164

uuidgen(1) .. 165

viewc(1).. 167

viewdis(1)... 170

wlisten(1).. 171
iv BEA Tuxedo Reference Manual

e

ce
About This Document

The BEA Tuxedo Reference Manual for WebLogic Enterprise 5.1 includes the
following components:

n “Section 1 — Commands” provides information about shell-level commands
included with Tuxedo and WebLogic Enterprise (WLE) software.

n “Section 3C — C Functions” describes C language functions that comprise th
Application-Transaction Monitor Interface (ATMI). ATMI provides routines to
open and close resources, manage transactions, manage typed buffers, and
invoke request/response and conversational service calls.

n “Section 3CBL — COBOL Functions” describes the COBOL bindings for the
ATMI interface.

n “Section 3FML — FML Commands” describes C language functions for
defining and manipulating Field Manipulation Language (FML) storage
structures.

n “Section 5 — File Formats and Data Descriptions” describes various files and
tables. This includes the configuration files, UBBCONFIG and TUXCONFIG, and the
Tuxedo Management Information Base (TMIB) classes that provide an interfa
for managing WebLogic Enterprise or Tuxedo systems.

Who Should Use This Document

This document is intended for system administrators and programmers who are
interested in creating, configuring, or managing BEA Tuxedo® or WebLogic
Enterprise™ applications.
BEA Tuxedo Reference Manual v

e at

sing

tion
ent
rise

 you

rom

do,
va
e-docs Web Site

The BEA WebLogic Enterprise product documentation is available on the BEA
Systems, Inc. corporate Web site. From the BEA Home page, click the Product
Documentation button or go directly to the “e-docs” Product Documentation pag
http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by u
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documenta
CD). You can open the PDF in Adobe Acrobat Reader and print the entire docum
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterp
documentation Home page, click the PDF Files button, and select the document
want to print.

If you do not have Adobe Acrobat Reader installed, you can download it for free f
the Adobe Web site at http://www.adobe.com/.

Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA Tuxe
distributed object computing, transaction processing, C++ programming, and Ja
programming, see the WebLogic Enterprise Bibliography in the WebLogic Enterprise
online documentation.
vi BEA Tuxedo Reference Manual

Documentation Conventions
Contact Us!

Your feedback on the BEA WebLogic Enterprise documentation is important to us.
Send us e-mail at docsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Enterprise 5.1 release.

If you have any questions about this version of BEA WebLogic Enterprise, or if you
have problems installing and running BEA WebLogic Enterprise, contact BEA
Customer Support through BEA WebSUPPORT at www.bea.com. You can also
contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.
BEA Tuxedo Reference Manual vii

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

Convention Item
viii BEA Tuxedo Reference Manual

Documentation Conventions
| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
BEA Tuxedo Reference Manual ix

x BEA Tuxedo Reference Manual

Section 1 — Commands
BEA Tuxedo Reference Manual 1

 introduction to BEA Tuxedo Commands

 by

d of

dard
introduction to BEA Tuxedo Commands

Description The BEA Tuxedo Command Reference describes, in alphabetic order, shell-level
commands delivered with the BEA Tuxedo software.

Reference Page
Command

Syntax

Unless otherwise noted, commands described in the Synopsis section of a reference
page accept options and other arguments according to the following syntax and should
be interpreted as explained below.

name [-option. . .] [cmdarg . . .
Where name is the name of an executable file, option is a string of one of
the following two types: noargletter . . . or argletter optarg [,
. . .] (An option is always preceded by a “-”.)

noargletter
Is a single letter representing an option that requires no option-argument.
More than one noargletter can be grouped after a “-”

optarg
Is a character string that satisfies a preceding argletter. Multiple optargs
following a single argletter must be separated by commas, or separated
white space and enclosed in quotes.

cmdarg
 Is a pathname (or other command argument) that represents an operan
the command.

-
(dash) By itself means that additional arguments are provided in the stan
input.

--
(two dashes) Means that what follows are arguments for a subordinate
program.

[]
Surrounding an option or cmdarg, mean that the option or argument is not
required.

{ }
Surrounding cmdargs that are separated by an or sign, mean that one of the
choices must be selected if the associated option is used.

. . .
Means that multiple occurrences of the option or cmdarg are permitted.
2 BEA Tuxedo Reference Manual

bldc_dce(1)

with

trol

with
is

he

do
bldc_dce(1)

Name bldc_dce—builds a BEA Tuxedo system client that can be called via OSF/DCE

Synopsis bldc_dce [-o output_file] [-i idl_options] [-f firstfiles]
[-l lastfiles] [idl_file . . .]

Description bldc_dce parses any input IDL and related ACF source files and combines them
C source and object files and the OSF/DCE libraries to generate a BEA Tuxedo system
client that can be called via DCE RPC (it is a DCE RPC client).

The command-line arguments include the input IDL source file and options to con
the actions of the IDL compiler. The options are as follows:

-o output_file
The default filename is a.out.

-i idl_options
Specifies options to be passed to the IDL compiler. Options associated
the C compilation system are automatically provided by this program. Th
option can be used to provide the "-no_mepv" option such that the application
can provide a Manager Entry Point Vector.

-f firstfiles
Specifies compiler options, C source and object files to be included on t
compilation before the BEA Tuxedo system and OSF/DCE libraries.

-l lastfiles
Specifies C libraries to be included on the compilation after the BEA Tuxe
system and OSF/DCE libraries.

See Also tidl(1)
BEA Tuxedo Reference Manual 3

 blds_dce(1)

with

a

trol

with
is

he

do
blds_dce(1)

Name blds_dce—build a BEA Tuxedo system server that calls OSF/DCE

Synopsis blds_dce [-o output_file] [-i idl_options] [-f firstfiles]
[-l lastfiles] [-s service] [idl_file . . .]

Description blds_dce parses any input IDL and related ACF source files and combines them
C source and object files and the OSF/DCE libraries to generate a BEA Tuxedo system
server that can make DCE RPC calls. The primary use of this command is to make
BEA Tuxedo system-to-OSF/DCE gateway process.

The command-line arguments include the input IDL source file and options to con
the actions of the IDL compiler. The options are as follows:

-o output_file
The default filename is a.out.

-i idl_options
Specifies options to be passed to the IDL compiler. Options associated
the C compilation system are automatically provided by this program. Th
option can be used to provide the "-no_mepv" option such that the application
can provide a Manager Entry Point Vector.

-f firstfiles
Specifies compiler options, C source and object files to be included on t
compilation before the BEA Tuxedo system and OSF/DCE libraries.

-l lastfiles
Specifies C libraries to be included on the compilation after the BEA Tuxe
system and OSF/DCE libraries.

-s service[,service . . .]
Specifies the services to be advertised by the server.

See Also tidl(1)
4 BEA Tuxedo Reference Manual

build_dgw(1)

ule.
itch
y the

oad

ule

 will

es a
rs

build_dgw(1)

Name build_dgw—build customized domain gateway process

Synopsis build_dgw [-c dmtype] [-o name] [-v]

Description build_dgw is used to construct a customized BEA Tuxedo domain gateway mod
The files included by the caller should include only the application buffer type sw
and any required supporting routines. The command combines the files supplied b
-c option with the standard BEA Tuxedo libraries necessary to form a gateway l
module. The load module is built by the cc(1) command described in UNIX system
reference manuals which build_dgw invokes. The options to build_dgw have the
following meaning:

-c dmtype
Specifies a domain type that characterizes communications access mod
domain gateway. The value of dmtype must appear in the domain type table
located in $TUXDIR/udataobj/DMTYPE. Each line in this file has the form:

dmtype:access_module_lib:comm_libs:tm_typesw_lib:gw_typesw_lib

Using the dmtype value, build_dgw retrieves the corresponding entry from
$TUXDIR/udataobj/DMTYPE. The access_module_lib specifies the
libraries used by a this particular type of domain instantiation. The
comm_libs parameter contains a list of the networking communications
libraries used by the access module. The tm_typesw_lib parameter defines
a list of libraries or object modules with the definition of the typed buffers
used by the local application. If this parameter is not defined, the gateway
be linked with the default typed buffer definitions. The gw_typesw_lib

parameter applies only to a gateway of type OSITP (see below) and defin
list of libraries or object modules used by the gateway to transform buffe
into the protocol required by the remote domain. There should be a
one-to-one mapping between the buffer types defined in the tm_typesw array
(see typesw(5) and tuxtypes(5)) and the gw_typesw array. If this parameter
is not defined, the gateway will be linked with the default typed buffer
definitions provided with the OSITP instantiation.

Currently, dmtype may be set to one of the following values:

TDOMAIN
Builds a gateway for communications with another BEA Tuxedo
domain. The build_dgw command will use the standard BEA
Tuxedo libnws.a networking library. This is the default option.
BEA Tuxedo Reference Manual 5

 build_dgw(1)

fore
OSITP
Builds a gateway for communications with an OSI TP domain. The
OSITP access module uses the XAP-TP interface. The pathname for
the library containing the XAP-TP primitives is provider dependent
and should be set according to the provider’s specifications.

-o name
Specifies the name of the file the output gateway load module is to have. If
not supplied, the load module is named GWTDOMAIN for the TDOMAIN type and
GWOSITP for the OSITP type. Note that the name selected for the load module
must also be the name used for the definition of the gateway in the *SERVERS
section of the TUXCONFIG file.

-v
Specifies that build_dgw should work in verbose mode. In particular, it
writes the cc command to its standard output.

build_dgw normally uses the cc command to produce the a.out. In order to allow for
the specification of an alternate compiler, build_dgw checks for the existence of a
shell variable named CC. If CC does not exist in the build_dgw command’s
environment, or if it is the string "", build_dgw will use cc as the compiler. If CC does
exist in the environment, its value is taken to be the name of the compiler to be
executed. Likewise, the shell variable CFLAGS is taken to contain a set of parameters
to be passed to the compiler.

Portability build_dgw is supported as a BEA Tuxedo-supplied compilation tool on UNIX
operating systems only.

Examples The following example shows how to build a domain gateway of type TDOMAIN.

CC=ncc CFLAGS="-I $TUXDIR/include"; export CC CFLAGS build_dgw -o DGW

The following example shows use of build_dgw for an OSI TP instantiation:

build_dgw -c OSITP -o OTPGW

For the /TDOMAIN and /OSITP instantiations, the DMTYPE file will contain the
following entries:

TDOMAIN:$TUXDIR/lib/libgwt.a:$TUXDIR/lib/libnwi.a
$TUXDIR/lib/libnws.a::
OSITP:$TUXDIR/lib/libgwo.a:-l xaptp -l ositp::

The paths for the libxaptp.a and libositp.a libraries are installation and provider
dependent. The application administrator must specify the correct pathnames be
building an OSITP gateway instantiation.
6 BEA Tuxedo Reference Manual

build_dgw(1)
See Also cc(1), ld(1) in UNIX system reference manuals, tuxtypes(5), typesw(5)
BEA Tuxedo Reference Manual 7

 buildclient(1)

. The

de

alue

rce
t

d
buildclient(1)

Name buildclient—construct a BEA Tuxedo client module

Synopsis buildclient [-C] [-v] [{-r rmname | -w }] [-o name]
[-f firstfiles] [-l lastfiles]

Description buildclient is used to construct a BEA Tuxedo client module. The command
combines the files supplied by the -f and -l options with the standard BEA Tuxedo
libraries to form a load module. The load module is built by buildclient using the
default C language compilation command defined for the operating system in use
default C language compilation command for the UNIX system is the cc(1) command
described in UNIX system reference manuals.

-v
Specifies that buildclient should work in verbose mode. In particular, it
writes the compilation command to its standard output.

-w
Specifies that the client is to be built using the workstation libraries. The
default is to build a native client if both native mode and workstation mo
libraries are available. This option cannot be used with the -r option.

-r rmname
Specifies the resource manager associated with this client. The value rmname
must appear in the resource manager table located in
$TUXDIR/udataobj/RM. Each line in this file is of the form:

rmname:rmstructure_name:library_names

(See buildtms(1) for further details.) Using the rmname value, the entry in
$TUXDIR/udataobj/RM is used to include the associated libraries for the
resource manager automatically and to set up the interface between the
transaction manager and resource manager properly. The value TUXEDO/D
includes the libraries for the Tuxedo System/D resource manager. The v
TUXEDO/SQL includes the libraries for the Tuxedo System/SQL resource
manager. Other values can be specified as they are added to the resou
manager table. If the -r option is not specified, the default is that the clien
is not associated with a resource manager. Refer to the ubbconfig(5)
reference page.

-o
Specifies the filename of the output load module. If not supplied, the loa
module is named a.out.
8 BEA Tuxedo Reference Manual

buildclient(1)
-f
Specifies one or more user files to be included in the compilation and link edit
phases of buildclient first, before the BEA Tuxedo libraries. If more than
one file is specified, filenames must be separated by white space and the
entire list must be enclosed in quotation marks. This option may be specified
multiple times. The CFLAGS and ALTCFLAGS environment variables,
described below, should be used to include any compiler options and their
arguments.

-l
Specifies one or more user files to be included in the compilation and link edit
phases of buildclient last, after the BEA Tuxedo libraries. If more than one
file is specified, filenames must be separated by white space and the entire list
must be enclosed in quotation marks. This option may be specified multiple
times.

-C
Specifies COBOL compilation.

Environment
Variables

TUXDIR
buildclient uses the environment variable TUXDIR to find the System/T
libraries and include files to use during compilation of the client process.

CC
buildclient normally uses the default C language compilation command to
produce the client executable. The default C language compilation command
is defined for each supported operating system platform and is defined as
cc(1) for UNIX system. In order to allow for the specification of an alternate
compiler, buildclient checks for the existence of an environment variable
named CC. If CC does not exist in buildclient’s environment, or if it is the
string "", buildclient will use the default C language compiler. If CC does
exist in the environment, its value is taken to be the name of the compiler to
be executed.

CFLAGS
The environment variable CFLAGS is taken to contain a set of arguments to be
passed as part of the compiler command line. This is in addition to the
command-line option "-I${TUXDIR}/include" passed automatically by
buildclient. If CFLAGS does not exist in buildclient’s environment, or if
it is the string "", no compiler command-line arguments are added by
buildclient.

ALTCC
When the -C option is specified for COBOL compilation, buildclient
normally uses the BEA Tuxedo shell cobcc which in turn calls cob to
BEA Tuxedo Reference Manual 9

 buildclient(1)

piler

hen

f

sed

nd

 the
ent
produce the client executable. In order to allow for the specification of an
alternate compiler, buildclient checks for the existence of an environment
variable named ALTCC. If ALTCC does not exist in buildclient command’s
environment, or if it is the string "", buildclient will use cobcc. If ALTCC
does exist in the environment, its value is taken to be the name of the com
command to be executed.

ALTCFLAGS
The environment variable ALTCFLAGS is taken to contain a set of additional
arguments to be passed as part of the COBOL compiler command line w
the -C option is specified. This is in addition to the command-line option

 "-I${TUXDIR}/include"

passed automatically by buildclient. When the -C option is used, putting
compiler options and their arguments in the buildclient -f option will
generate errors; they must be put in ALTCFLAGS. If not set, then the value is
set to the same value used for CFLAGS, as specified above.

COBOPT
The environment variable COBOPT is taken to contain a set of additional
arguments to be used by the COBOL compiler, when the -C option is
specified.

COBCPY
The environment variable COBCPY indicates which directories contain a set o
COBOL copy files to be used by the COBOL compiler, when the -C option
is specified.

LD_LIBRARY_PATH
The environment variable LD_LIBRARY_PATH (for Solaris and Compaq
UNIX systems) indicates which directories contain shared objects to be u
by the COBOL compiler, in addition to the BEA Tuxedo system shared
objects. On HP UX systems the corresponding environment variable is
SHLIB_PATH. For AIX systems the environment variable is LIBPATH. And on
Windows NT the corresponding environment variable is LIB.

Portability buildclient is supported as a BEA Tuxedo-supplied compilation tool on UNIX a
MS-DOS operating systems. However, due to file naming restrictions, only the
buildclt alias is supported on MS-DOS. Note that filenames supplied as part of
buildclient command line must conform to the syntax and semantics of the resid
operating system.
10 BEA Tuxedo Reference Manual

buildclient(1)
The MS-DOS version of buildclt has significant differences from the UNIX system
version. These differences warrant a separate man page for the MS-DOS version of the
command. Therefore, a separate buildclt(1) reference page is also included to
describe the command for the MS-DOS environment.

Examples CC=ncc CFLAGS="-I /APPDIR/include"; export CC CFLAGS
buildclient -o empclient -f emp.c -f "userlib1.a userlib2.a"

COBCPY=$TUXDIR/cobinclude
COBOPT="-C ANS85 -C ALIGN=8 -C NOIBMCOMP -C TRUNC=ANSI -C OSEXT=cbl"
COBDIR=/usr/lib/cobol LD_LIBRARY_PATH=$COBDIR/coblib:$TUXDIR/lib
export COBOPT COBCPY COBDIR LD_LIBRARY_PATH
buildclient -C -o empclient -f name.cbl -f "userlib1.a userlib2.a"

See Also buildclt(1), buildserver(1), buildtms(1), compilation(5),
cc(1), ld(1) in a UNIX system reference manual
BEA Tuxedo Reference Manual 11

 buildclt(1)

n

tions

s

 is

e
re
d the
be

e
d,

le

e
,

le
buildclt(1)

Name buildclt—construct a BEA Tuxedo Workstation client program for MS-DOS,
Windows, Windows NT, and OS/2

Synopsis buildclt [-C] [-v] [-m {m | l}] [-c {m | b | i}]
[-o name] [-f firstfiles] [-F Firstlibs] [-l libfiles]
[-W] [-O] [-P] [-d deffile]

Description buildclt is used to construct a BEA Tuxedo Workstation client program for
MS-DOS, Windows, Windows NT, and OS/2. The command combines the files
supplied by the -f and -l options with the standard BEA Tuxedo libraries to form a
executable program. The load module is built by buildclt using the C and COBOL
language compilation commands defined for the operating system in use. The op
to buildclt have the following meaning:

-v
Specifies that buildclt should work in verbose mode. In particular, it write
the compilation command to its standard output.

-o name
Specifies the filename of the output program. If not supplied, the program
named client.exe.

-f firstfiles
Specifies one or more user files (or options to the compiler or linker) to b
included on the command line first, before the BEA Tuxedo libraries. If mo
than one file is specified, filenames must be separated by white space an
entire list must be enclosed in double quotation marks. This option may
specified multiple times.

-F Firstlibs
Specifies one or more standard or import (not dynamic-link) libraries to b
included before the BEA Tuxedo libraries. If more than one file is specifie
filenames must be separated by white space and the entire list must be
enclosed in double quotation marks. This option may be specified multip
times.

-l libfiles
Specifies one or more standard or import (not dynamic-link) libraries to b
included after the BEA Tuxedo libraries. If more than one file is specified
filenames must be separated by white space and the entire list must be
enclosed in double quotation marks. This option may be specified multip
times.
12 BEA Tuxedo Reference Manual

buildclt(1)
-d deffile
Specifies a module definition file used for linking an MS Windows, Windows
NT or OS/2 program.

-m {m | l}
Specifies the memory model to be used for compilation and linking of a
client. The values for this option are m and l for the medium and large
memory models, respectively. The large memory model is the default value
for this option. The medium memory model is no longer supported for DOS.
The memory model needs only to be specified for Windows and OS/2 16-bit
compilation.

-c {m | i}
Specifies the compilation system to be used. The supported values for this
option are m or i for the Microsoft C/C++ compiler, or the IBM CSET2
compiler, respectively. The Microsoft C compiler is the default value for this
option. The IBM CSET2 compiler can only be used for OS/2 32-bit
compilation.

-W
Compile and link an Microsoft Windows or Windows NT client.

-O
Compile and link an OS/2 character-mode client.

-P
Compile and link an OS/2 Presentation Manager client.

-C
Specifies COBOL compilation.

The following environment variables must be set for the COBOL environment.

COBCPY
The environment variable COBCPY indicates which directories contain a set of
COBOL copy files to be used by the COBOL compiler.

Microsoft C
Compilation

The buildclt command assumes that directories for needed libraries are specified in
the environment variables INCLUDE and LIB. They might look like the following:

INCLUDE=C:\TUXEDO\INCLUDE;C:\NET\TOOLKIT\INCLUDE;C:MSVC\INCLUDE
LIB=C:\NET\TOOLKIT\LIB;C:\WINDEV\LIB;C:\MSVC\LIB;C:\TUXEDO\LIB;

Note that in the above example, C:MSVC is the directory where Microsoft Visual C++
resides; earlier versions such as C600 or C700 can be used. Note that in the above
example, C:NET is the directory where Novell LAN Workplace resides; earlier
versions resided in C:XLN and can be used.
BEA Tuxedo Reference Manual 13

 buildclt(1)
Note that COBOL source files that reference ATMI calls must be compiled with the
LITLINK option.

The names of all libraries used for linking the client followed by the files specified in
the -l option are put into a temporary response file and linking is done using the
command line:

LINK firstfiles, outname @tmpfile

are the filenames specified with the -f option, outname is the output filename (default
client.exe), and tmpfile is the temporary response filename. The -f option should
be used to include any necessary options to be passed to LINK (for example,
/ST:10000 to set the default stack size to 10000 bytes). The -l option should be used
to include any necessary network provider libraries (for example, mlibsock.lib). To
create an executable that can be debugged using Codeview (assuming that the object
files have been compiled with the -Zi option), use -f /CO.

Examples MS-DOS C Compilation:

buildclt -cm -ml -o emp.exe -f "/CO/ST:10000/SE:200" -f emp.obj -l
llibsock.lib

WINDOWS C Compilation:

buildclt -W -cm -mm -o emp.exe -f “/CO emp.obj” -d emp.def rc -k
emp.res emp.exe

OS2 16-Bit:

buildclt -O -cm -ml -o emp.exe -f “/NOI/ST:15000/CO emp.obj” -d
emp.def

OS2 32-Bit IBM:

buildclt -O -ci -f “/NOI/ST:25000 /CO emp.obj” -o emp.exe

Windows NT:

!include <ntwin32.mak>
rc -r emp.rc
buildclt -W -f “emp.obj emp.res” -l “$(winlibs)” -oemp.exe

DOS/WINDOWS/OS2 COBOL Compilation:

COBCPY=C:\TUXEDO\COBINC
COBDIR=C:\COBOL\LBR;C:\COBOL\EXEDLL
PATH=C:\C700BIN\;C:COBOLEXEDLL;...
TUXDIR=C:\TUXEDO
14 BEA Tuxedo Reference Manual

buildclt(1)
INCLUDE=C:\TUXEDO\INCLUDE;C:\XLN\TOOLKIT\INCLUDE;C:\C700\INCLUDE
LIB=C:\XLN\TOOLKIT\LIB;C:\C700\LIB;C:\TUXEDO\LIB;C:\COBOL\LIB

COBOL EMP.CBL OMF"OBJ" LITLINK

DOS:

BUILDCLT -C -o EMP.EXE -f EMP+MFC7INTF+C7DOSIF+C7DOSLB \
-f “/NOD/NOE/SE:300/CO/ST:10000” -l LLIBSOCK

WINDOWS:

BUILDCLT -C -W -o EMP.EXE -f EMP -d EMP.DEF -f “/NOD/NOE/CO/SE:300”

OS2:

BUILDCLT -C -P -o EMP.EXE -f EMP+MFC6INTF+C6OS2IF+C6OS2LB -d
EMP.DEF \ -f “/NOD/NOE/SE:300/CO”

See Also Microsoft C/C++ Programming Techniques, Microsoft Corporation. Micro Focus
COBOL/2 Operating Guide, Micro Focus Ltd. Micro Focus COBOL/2 Workbench for
DOS and OS2, Micro Focus Ltd.
BEA Tuxedo Reference Manual 15

 buildserver(1)

and

y
un

edit

e
ified

eir

edit
e
e list
iple
buildserver(1)

Name buildserver—construct a BEA Tuxedo server load module

Synopsis buildserver [-C] [-s { @filename | service[,service...][:func] |
:func }] [-n maxdynam] [-v] [-o outfile] [-f firstfiles]
[-l lastfiles] [{-r|-g} rmname] [-k]

Description buildserver is used to construct a BEA Tuxedo server load module. The comm
combines the files supplied by the -f and -l options with the standard server main
routine and the standard BEA Tuxedo libraries to form a load module. The load
module is built by the cc(1) command, which buildserver invokes. (See cc(1) in
any UNIX system reference manual.) The options to buildserver have the following
meaning:

-v
Specifies that buildserver should work in verbose mode. In particular, it
writes the compilation command to its standard output.

-o outfile
Specifies the name of the file the output load module is to have. If not
supplied, the load module is named SERVER.

-n maxdynam
Specifies the maximum number of dynamic services the user can specif
when the server is run. A dynamic service allows the user to specify at r
time the function within the server that is to process the service. If -n is not
specified, the maximum number of such services is set to 25.

-ffirstfiles
Specifies one or more user files to be included in the compilation and link
phases of buildserver first, before the BEA Tuxedo libraries. If more than
one file is specified, filenames must be separated by white space and th
entire list must be enclosed in quotation marks. This option may be spec
multiple times. The CFLAGS and ALTCFLAGS environment variables,
described below, should be used to include any compiler options and th
arguments.

-llastfiles
Specifies one or more user files to be included in the compilation and link
phases of buildserver last, after the BEA Tuxedo libraries. If more than on
file is specified, filenames must be separated by white space and the entir
must be enclosed in quotation marks. This option may be specified mult
times.
16 BEA Tuxedo Reference Manual

buildserver(1)
-r rmname
Specifies the resource manager associated with this server. The value rmname
must appear in the resource manager table located in
$TUXDIR/udataobj/RM. Each line in this file is of the form:

rmname:rmstructure_name:library_names

(See buildtms(1) for further details.) Using the rmname value, the entry in
$TUXDIR/udataobj/RM is used to include the associated libraries for the
resource manager automatically and to set up the interface between the
transaction manager and resource manager properly. The value TUXEDO/D
includes the libraries for the BEA Tuxedo System/D resource manager. The
value TUXEDO/SQL includes the libraries for the BEA Tuxedo System/SQL
resource manager. Other values can be specified as they are added to the
resource manager table. If the -r option is not specified, the default is to use
the null resource manager. Refer to the ubbconfig(5) reference page.

-s { @filename | service[,service...][:func] | :func }]
Specifies the names of services that can be advertised when the server is
booted. Service names (and implicit function names) must be less than or
equal to 15 characters in length. An explicit function name (that is, a name
specified after a colon) can be up to 128 characters in length. Names longer
than these limits are truncated with a warning message. When retrieved by
tmadmin(1) or TM_MIB(5), only the first 15 characters of a name are
displayed. (See servopts(5).) All functions that can be associated with a
service must be specified with this option. In the most common case, a service
is performed by a function that carries the same name; that is, the x service is
performed by function x. For example, the specification

 -s x,y,z

will build the associated server with services x, y, and z, each to be processed
by a function of the same name. In other cases, a service (or several services)
may be performed by a function of a different name. The specification

 -s x,y,z:abc

builds the associated server with services x, y, and z, each to be processed by
the function abc. Spaces are not allowed between commas. Function name is
preceded by a colon. In another case, the service name may not be known
until runtime. Any function that can have a service associated with it must be
specified to buildserver. To specify a function that can have a service name
mapped to it, put a colon in front of the function name. For example, the
specification
BEA Tuxedo Reference Manual 17

 buildserver(1)

o

iler.

 that
e

;
his

.

 to
and
s
-s :pqr

builds the server with a function pqr, which can have a service association.
tpadvertise(3c) could be used to map a service name to the pqr function.

A filename can be specified with the -s option by prefacing the filename with
the ’@’ character. Each line of this file is treated as an argument to the -s
option. You may put comments in this file. All comments must start with the
’#’ character. This file can be used to specify all the functions in the server that
may have services mapped to them.

The -s option may appear several times. Note that services beginning with
the ‘_’ or '.' character are reserved for system use, and buildserver will fail
if the -s option is used to include such a service in the server.

-C
Specifies COBOL compilation.

buildserver normally uses the cc command to produce the a.out. In order
to allow for the specification of an alternate compiler, buildserver checks
for the existence of a shell variable named CC. If CC does not exist in
buildserver's environment, or if it is the string "", buildserver will use
cc as the compiler. If CC does exist in the environment, its value is taken t
be the name of the compiler to be executed. Likewise, the shell variable
CFLAGS is taken to contain a set of parameters to be passed to the comp

-k
Keeps the server main stub. buildserver generates a main stub with data
structures such as the service table and a main() function. This is normally
compiled and then removed when the server is built. This option indicates
the source file should be kept (to see what the source filename is, use th-v

option).

Note: The generated contents of this file may change from release to releaseDO
NOT count on the data structures and interfaces exposed in this file. T
option is provided to aid in debugging of build problems.

Environment
Variables

TUXDIR
buildserver uses the environment variable TUXDIR to find the BEA Tuxedo
libraries and include files to use during compilation of the server process

CC
buildserver normally uses the default C language compilation command
produce the server executable. The default C language compilation comm
is defined for each supported operating system platform and is defined a
18 BEA Tuxedo Reference Manual

buildserver(1)
cc(1) for the UNIX system. In order to allow for the specification of an
alternate compiler, buildserver checks for the existence of an environment
variable named CC. If CC does not exist in buildserver’s environment, or if
it is the string "", buildserver will use the default C language compiler. If
CC does exist in the environment, its value is taken to be the name of the
compiler to be used.

CFLAGS
The environment variable CFLAGS is taken to contain a set of arguments to be
passed as part of the compiler command line. This is in addition to the
command-line option "-I${TUXDIR}/include" passed automatically by
buildserver. If CFLAGS does not exist in buildserver’s environment, or if
it is the string "", no compiler command-line arguments are added by
buildserver.

ALTCC
When the -C option is specified for COBOL compilation, buildserver
normally uses the BEA Tuxedo shell cobcc(1) which in turn calls cob to
produce the server executable. In order to allow for the specification of an
alternate compiler, buildserver checks for the existence of an environment
variable named ALTCC. If ALTCC does not exist in buildserver’s
environment, or if it is the string "", buildserver will use cobcc. If ALTCC
does exist in the environment, its value is taken to be the name of the compiler
command to be executed.

ALTCFLAGS
The environment variable ALTCFLAGS is taken to contain a set of additional
arguments to be passed as part of the COBOL compiler command line when
the -C option is specified. This is in addition to the command-line option
"-I${TUXDIR}/include" passed automatically by buildserver. When the
-C option is used, putting compiler options and their arguments in the
buildserver -f option will generate errors; they must be put in
ALTCFLAGS. If not set, then the value is set to the same value used for CFLAGS,
as specified above.

COBOPT
The environment variable COBOPT is taken to contain a set of additional
arguments to be used by the COBOL compiler, when the -C option is
specified.
BEA Tuxedo Reference Manual 19

 buildserver(1)
COBCPY
The environment variable COBCPY indicates which directories contain a set of
COBOL copy files to be used by the COBOL compiler, when the -C option
is specified.

LD_LIBRARY_PATH
The environment variable LD_LIBRARY_PATH indicates which directories
contain shared objects to be used by the COBOL compiler, in addition to the
BEA Tuxedo shared objects.

Compatibility In earlier releases, the -g option was allowed to specify a genoption of sql or
database. For upward compatibility, this option is a synonym for the -r option. The
genoption database is equivalent to TUXEDO/D, and the genoption sql is equivalent
to TUXEDO/SQL.

Portability The buildserver compilation tool is supported on any platform on which the BEA
Tuxedo server environment is supported.

Notices Some compilation systems may require some code to be executed within the main().
For example, this could be used to initialize constructors in C++ or initialize the library
for COBOL. A general mechanism is available for including application code in the
server main() immediately after any variable declarations and before any executable
statements. This will allow for the application to declare variables and execute
statements in one block of code. The application exit is defined as follows. #ifdef
TMMAINEXIT #include "mainexit.h" #endif. To use this feature, the application
should include "-DTMMAINEXIT" in the ALTCFLAGS (for COBOL) or CFLAGS (for C)
environment variables and provide a mainexit.h in the current directory (or use the
-I include option to include it from another directory).

For example, Micro Focus Cobol V3.2.x with a PRN number with the last digits
greater than 11.03 requires that cobinit() be called in main before any COBOL
routines, if using shared libraries. This can be accomplished by creating a mainexit.h
file with a call to cobinit() (possibly preceded by a function prototype) and
following the procedure above.

Examples The following example shows how to specify the resource manager (-r TUXEDO/SQL)
libraries on the buildserver command line:

buildserver -r TUXEDO/SQL -s OPEN_ACCT -s CLOSE_ACCT -o ACCT
-f ACCT.o -f appinit.o -f util.o
20 BEA Tuxedo Reference Manual

buildserver(1)
The following example shows how buildserver can be supplied CC and CFLAGS
variables and how -f can be used to supply a -lm option to the CC line to link in the
math library:

CFLAGS=-g CC=/bin/cc buildserver -r TUXEDO/SQL -s DEPOSIT
-s WITHDRAWAL -s INQUIRY -o TLR -f TLR.o -f util.o -f -lm

The following example shows use of the buildserver command with no resource
manager specified:

buildserver -s PRINTER -o PRINTER -f PRINTER.o

The following example shows COBOL compilation:

COBCPY=$TUXDIR/cobinclude COBOPT="-C ANS85 -C ALIGN=8 -C NOIBMCOMP
-C TRUNC=ANSI -C OSEXT=cbl" COBDIR=/usr/lib/cobol
LD_LIBRARY_PATH=$COBDIR/coblib export COBOPT COBCPY COBDIR
LD_LIBRARY_PATH buildserver -C -r TUXEDO/SQL -s OPEN_ACCT
-s CLOSE_ACCT -o ACCT -f ACCT.o -f appinit.o -f util.o

See Also buildtms(1), ubbconfig(5), servopts(5), cc(1), ld(1) in a UNIX system reference
manual
BEA Tuxedo Reference Manual 21

 buildtms(1)

rs
The

ure of
ng
ons;

 XA
d to

the

s
buildtms(1)

Name buildtms(1)—construct a transaction manager server load module

Synopsis buildtms [-v] -o name -r rm_name

Description buildtms is used to construct a transaction manager server load module.

While several TM servers are provided with BEA Tuxedo, new resource manage
may be provided to work with BEA Tuxedo for distributed transaction processing.
resource manager must conform to the X/OPEN XA interface. The following four
items must be published by the resource manager vendor: the name of the struct
type xa_switch_t that contains the name of the resource manager, flags indicati
capabilities of the resource manager, and function pointers for the actual XA functi
the name of the resource manager that is contained in the name element of the
xa_switch_t structure; the name of the object files that provide the services of the
interface and supporting software; and the format of the information string supplie
the OPENINFO and CLOSEINFO parameters in the UBBCONFIG configuration file. See
ubbconfig(5).

When integrating a new resource manager into the BEA Tuxedo system, the file
$TUXDIR/udataobj/RM must be updated to include the information about the
resource manager. The format of this file is

rm_name:rm_structure_name:library_names

where rm_name is the resource manager name, rm_structure_name is the name of the
xa_switch_t structure, and library_names is the list of object files for the resource
manager. White space (tabs and/or spaces) is allowed before and after each of
values and may be embedded within the library_names. The colon (:) character may
not be embedded within any of the values. Lines beginning with a pound sign (#) are
treated as comments and are ignored.

A transaction manager server for the new resource manager must be built using
buildtms and installed in $TUXDIR/bin. buildtms uses the buildserver(1)
command to build the resulting a.out. The options to buildtms have the following
meaning:

-v
Specifies that buildtms should work in verbose mode. In particular, it write
the buildserver command to its standard output and specifies the -v

option to buildserver.

-o name
Specifies the name of the file the output load module is to have.
22 BEA Tuxedo Reference Manual

buildtms(1)
-r rm_name
Specifies the resource manager associated with this server. The value
rm_name must appear in the resource manager table located in
$TUXDIR/udataobj/RM. The entry associated with the rm_name value is
used to include the correct libraries for the resource manager automatically
and properly to set up the interface between the transaction manager and
resource manager (using the xa_switch_t structure).

buildtms uses the buildserver command to produce the a.out. buildserver
uses the CC and CFLAGS environment variables, if set, for the compiler and compiler
flags, respectively. See buildserver(1) for further details.

Portability buildtms is supported as a BEA Tuxedo system-supplied compilation tool for UNIX
and Windows NT systems.

Examples buildtms -o $TUXDIR/bin/TMS_D -r TUXEDO/D # standard System/D TMS
buildtms -o $TUXDIR/bin/TMS_XYZ -r XYZ/SQL # TMS for XYZ resource
manager

See Also buildserver(1), ubbconfig(5)
BEA Tuxedo Reference Manual 23

 buildwsh(1)

ype

m

s

he

link

t

efore
ust
tation

l

sed
buildwsh(1)

Name buildwsh—build customized Workstation Handler process

Synopsis buildwsh [-v] [-o name] [-f files]

Description buildwsh is used to construct a customized BEA Tuxedo Workstation Handler
module. The files included by the caller should include only the application buffer t
switch and any required supporting routines. The command combines the files
supplied by the -f option with the standard BEA Tuxedo libraries necessary to for
a Workstation Handler load module. The load module is built by the cc(1) command
described in UNIX system reference manuals, which buildwsh invokes. The options
to buildwsh have the following meaning:

-v
Specifies that buildwsh should work in verbose mode. In particular, it write
the cc command to its standard output.

-o name
Specifies the filename of the output Workstation Handler load module. T
name specified here must also be specified with the -w WSHname option of
the WSL(5) server in the SERVER section of the configuration file. If not
supplied, the load module is named WSH.

-f firstfiles
Specifies one or more user files to be included in the compilation and/or
edit phases of buildwsh. Source files are compiled using the either the cc
command or the compilation command specified through the CC environment
variable. Object files resulting from compilation of source files and objec
files specified directly as arguments to the -f option are included after all
object files necessary to build a base Workstation Handler process and b
the BEA Tuxedo libraries. If more than one file is specified, filenames m
be separated by white space and the entire list must be enclosed in quo
marks. This option can be specified multiple times.

buildwsh normally uses the cc command to produce the a.out. In order to allow for
the specification of an alternate compiler, buildwsh checks for the existence of a shel
variable named CC. If CC does not exist in the buildwsh command’s environment, or
if it is the string "", buildwsh will use cc as the compiler. If CC does exist in the
environment, its value is taken to be the name of the compiler to be executed.
Likewise, the shell variable CFLAGS is taken to contain a set of parameters to be pas
to the compiler.
24 BEA Tuxedo Reference Manual

buildwsh(1)
If your application uses shared libraries, it is not necessary to go through this compile
and link process. See the description in the “Buffer Types” chapter of the BEA
WebLogic Enterprise Administration Guide.

Portability buildwsh is supported as a BEA Tuxedo-supplied compilation tool on UNIX
operating systems only.

Examples ncc CFLAGS=”-I $TUXDIR/include”; export CC CFLAGS buildwsh
-o APPWSH -f apptypsw.o

See Also buildclient (1), wsl (5) cc(1), ld (1) in UNIX system reference manuals
BEA Tuxedo Reference Manual 25

 cobcc(1)

ult,

t

.

d.

r

r

ut

er,

er.
cobcc(1)

Name cobcc—COBOL compilation interface

Synopsis cobcc [option...] filename...

Description cobcc is used as an interface shell to the COBOL compiler. It is invoked, by defa
when buildclient(1) or buildserver(1) is executed with the -C (COBOL) option.
This can be overridden by specifying the ALTCC environment variable.

The following list indicates the options recognized by cobcc. To use these options, se
the environment variable ALTCFLAGS to the string of options to be recognized by
cobcc when running buildclient or buildserver. Consult your documentation for
the COBOL and C compilers to see what effect the various options have.

Note that for cobcc, unlike cc and cob, all options must come before any filenames

-c
This option specifies that the link phase should be suppressed. That is,
compilation will be done but an executable program will not be generate

-p -g -r -O
These option are passed directly to the COBOL compiler.

-l argument
This option and its argument are passed directly to the COBOL compile
(with no white space separating them).

-L argument
This option and its argument are passed directly to the COBOL compile
(with one space separating them).

-o output_file
This option is used to specify the name of the executable file that is outp
from the link stage.

-E -P -S
These options are passed through the COBOL compiler to the C compil
and also cause suppression of the link phase.

-A -C -H -f -G
These options are passed through the COBOL compiler to the C compil
26 BEA Tuxedo Reference Manual

cobcc(1)
-w
This option causes warnings to be suppressed from both the COBOL and C
compilers.

-D argument
This option and its argument are passed through the COBOL compiler to the
C compiler. It is used to define macros in C.

{-T -Y -U -I -B -X -F -q} argument
Each of these options takes an argument.The option and its argument are
passed through the COBOL compiler to the C compiler.

-V -v
Each of these options is passed both to the COBOL compiler and the C
compiler.

-a -s
Each of these options is passed to the loader.

-u argument
This option and its argument are passed to the loader.

-W argument
The argument may consist of up to three comma-separated fields. If the first
part of the argument is -p or -0, it is passed to the C compiler. If it starts with
-a, it is passed to the assembler. If it starts with -l, it is passed to the loader.
If it starts with -C, it is passed to the COBOL compiler. Otherwise, it is passed
through to the C compiler.

The options and their arguments and the filenames are passed to the COBOL compiler
with the correct options so that the right information is processed by the COBOL
compiler, the C compiler, or the loader. The COBOL compiler name is assumed to be
cob and already in the PATH.

See Also buildclient(1), buildserver(1), cc reference page, Micro Focus COBOL/2
Operating Guide, Micro Focus Ltd.
BEA Tuxedo Reference Manual 27

 dmadmin(1)

ain

s)
n or
tors

main

ed.

by
lue
asts
dmadmin(1)

Name dmadmin—BEA Tuxedo Domain Administration Command Interpreter

Synopsis dmadmin [-c]

Description dmadmin is an interactive command interpreter used for the administration of dom
gateway groups defined for a particular BEA Tuxedo application. dmadmin can
operate in two modes: administration mode and configuration mode.

dmadmin enters administration mode when called with no parameters. This is the
default. In this mode, dmadmin can be run on any active node (excluding workstation
within an active application. Application administrators can use this mode to obtai
change parameters on any active domain gateway group. Application administra
may also use this mode to create, destroy, or reinitialize the DMTLOG for a particular
local domain. In this case, the domain gateway group associated with that local do
must not be active, and dmadmin must be run on the machine assigned to the
corresponding gateway group.

dmadmin enters configuration mode when it is invoked with the -c option or when the
config subcommand is invoked. Application administrators can use this mode to
update or add new configuration information to the binary version of the domain
configuration file (BDMCONFIG).

dmadmin requires the use of the DOMAIN administrative server (DMADM) for the
administration of the BDMCONFIG file and the gateway administrative server (GWADM)
for the reconfiguration of active DOMAIN gateway groups (there is one GWADM per
gateway group).

Administration
Mode

Commands

Once dmadmin has been invoked, commands may be entered at the prompt (“>”)
according to the following syntax:

command [arguments]

Several commonly occurring arguments can be given defaults via the default
command. Commands that accept parameters set via the default command check
default to see if a value has been set. If one hasn't, an error message is return

Once set, a default remains in effect until the session is ended, unless changed
another default command. Defaults may be overridden by entering an explicit va
on the command line, or unset by entering the value “*”. The effect of an override l
for a single instance of the command.
28 BEA Tuxedo Reference Manual

dmadmin(1)

r in

tion
 a
y
ll

rent

y
Output from dmadmin commands is paginated according to the pagination command
in use (see the paginate subcommand below).

Commands may be entered either by their full name or their abbreviation (shown in
parentheses) followed by any appropriate arguments. Arguments appearing in square
brackets, [], are optional; those in curly braces, {}, indicate a selection from mutually
exclusive options. Note that for many commands local_domain_name is a required
argument, but note also that it can be set with the default command.

The following commands are available in administration mode:

advertise (adv) -d local_domain_name [{ | service}]
Advertise all remote services provided by the named local domain or the
specified remote service.

audit (audit) -d local_domain_name [{off | on}]
Activate (on) or deactivate (off) the audit trace for the named local domain.
If no option is given, then the current setting will be toggled between the
values on and off, and the new setting will be printed. The initial setting is off.

chbktime (chbt) -d local_domain_name -t bktime
Change the blocking timeout for a particular local domain.

config (config)
Enter configuration mode. Commands issued in this mode follow the
conventions defined in the section “Configuration Mode Commands” late
this reference page.

connect (co) -d local_domain_name [-R remote_domain_name]
Connect the local domain gateway to the remote gateway. If the connec
attempt fails and you have configured the local domain gateway to retry
connection, repeated attempts to connect (via automatic connection retr
processing) is made. (If -R is not specified, then the command applies to a
remote domains configured for this local gateway.)

crdmlog (crdlog)[-d local_domain_name]
Create the domain transaction log for the named local domain on the cur
machine (that is, the machine where dmadmin is running). The command uses
the parameters specified in the DMCONFIG file. This command fails if the
named local domain is active on the current machine or if the log alread
exists.
BEA Tuxedo Reference Manual 29

 dmadmin(1)
default (d) [-d local_domain_name]
Set the corresponding argument to be the default local domain. Defaults may
be unset by specifying "*" as an argument. If the default command is entered
with no arguments, the current defaults are printed.

disconnect (dco) -d local_domain_name [-R remote_domain_name]
Break the connection between the local domain gateway and the remote
gateway and do not initiate connection retry processing. If no connection is
active, but automatic connection retry processing is in effect, then stop the
automatic retry processing. (If -R is not specified, then the command applies
to all remote domains configured for this local gateway.)

dsdmlog (dsdlg) -d local_domain_name [-y]
Destroy the domain transaction log for the named local domain on the current
machine (that is, the machine where dmadmin is running). An error is
returned if a DMTLOG is not defined for this local domain, if the local domain
is active, or if outstanding transaction records exist in the log. The term
outstanding transactions means that a global transaction has been committed
but an end-of-transaction has not yet been written. This command prompts for
confirmation before proceeding unless the -y option is specified.

echo (e) [{off | on}]
Echo input command lines when set to on. If no option is given, then the
current setting is toggled, and the new setting is printed. The initial setting is
off.

forgettrans (ft) -d local_domain_name [-t tran_id]
Forget one or all heuristic log records for the named local domain. If the
transaction identifier tran_id is specified, then only the heuristic log record
for that transaction will be forgotten. The transaction identifier tran_id can
be obtained from the printtrans command or from the ULOG file.

help (h) [command]
Print help messages. If command is specified, the abbreviation, arguments,
and description for that command are printed. Omitting all arguments causes
the syntax of all commands to be displayed.

indmlog (indlg) -d local_domain_name [-y]
Reinitialize the domain transaction log for the named local domain on the
current machine (that is, the machine where dmadmin is running). An error is
returned if a DMTLOG is not defined for this local domain, if the local domain
is active, or if outstanding transaction records exist in the log. The term
outstanding transactions means that a global transaction has been committed
30 BEA Tuxedo Reference Manual

dmadmin(1)
but an end-of-transaction has not yet been written. The command prompts for
confirmation before proceeding unless the -y option is specified.

paginate (page) [{off | on}]
Paginate output. If no option is given, then the current setting will be toggled,
and the new setting is printed. The initial setting is on, unless either standard
input or standard output is a non-tty device. Pagination may only be turned on
when both standard input and standard output are tty devices.The shell
environment variable PAGER may be used to override the default command
used for paging output. The default paging command is the indigenous one to
the native operating system environment, for example, the command pg is the
default on UNIX system operating environments.

passwd (passwd) [-r] local_domain_name remote_domain_name
Prompt the administrator for new passwords for the specified local and
remote domains. The -r option specifies that existing passwords and new
passwords should be encrypted using a new key generated by the system. The
password is limited to at most 30 characters.

printdomain (pd) -d local_domain_name
Print information about the named local domain. Information printed includes
a list of connected remote domains, a list of remote domains being retried (if
any), global information shared by the gateway processes, and additional
information that is dependent on the domain type instantiation.

printstats (pstats) -d local_domain_name
Print statistical and performance information gathered by the named local
domain. The information printed is dependent on the domain gateway type.

printtrans (pt) -d local_domain_name
Print transaction information for the named local domain.

quit (q)
Terminate the session.

resume (res) -d local_domain_name [{ -all | service}]
Resume processing of either the specified service or all remote services
handled by the named local domain.

stats (stats) -d local_domain_name [{ off | on | reset }]
Activate (on), deactivate (off), or reset (reset) statistics gathering for the
named local domain. If no option is given, then the current setting will be
toggled between the values on and off, and the new setting will be printed.
The initial setting is off.
BEA Tuxedo Reference Manual 31

 dmadmin(1)
suspend (susp) -d local_domain_name [{ -all | service}]
Suspend one or all remote services for the named local domain.

unadvertise (unadv) -d local_domain_name [{ -all | service}]
Unadvertise one or all remote services for the named local domain.

verbose (v) [{off | on}]
Produce output in verbose mode. If no option is given, then the current setting
will be toggled, and the new setting is printed. The initial setting is off.

! shellcommand
Escape to shell and execute shellcommand.

!!
Repeat previous shell command.

[text]
Lines beginning with "#" are comment lines and are ignored.

<CR>
Repeat the last command.

Configuration
Mode

Commands

The dmadmin command enters configuration mode when executed with the -c option
or when the config subcommand is used. In this mode, dmadmin allows run-time
updates to the BDMCONFIG file. dmadmin manages a buffer that contains input field
values to be added or retrieved, and displays output field values and status after each
operation completes. The user can update the input buffer using any available text
editor.

dmadmin first prompts for the desired section followed by a prompt for the desired
operation.

The prompt for the section is as follows:

Section:
 1) RESOURCES 2) LOCAL_DOMAINS
 3) REMOTE_DOMAINS 4) LOCAL_SERVICES
 5) REMOTE_SERVICES 6) ROUTING
 7) ACCESS_CONTROL 8) PASSWORDS
 9) TDOMAINS 10) OSITPS
 11) SNADOMS 12) LOCAL_REMOTE_USER
 13) REMOTE_USERS 14) SNACRMS
 15) SNASTACKS 16) SNALINKS
 17) QUIT
Enter Section [1]:
32 BEA Tuxedo Reference Manual

dmadmin(1)

d

n.
lue

The number of the default section appears in square brackets at the end of the prompt.
You can accept the default by pressing RETURN or ENTER. To select another section
enter its number, then press RETURN or ENTER.

dmadmin then prompts for the desired operation.

Operations:
 1) FIRST 2) NEXT
 3) RETRIEVE 4) ADD
 5) UPDATE 6) DELETE
 7) NEW_SECTION 8) QUIT
Enter Operation [1]:

The number of the default operation is printed in square brackets at the end of the
prompt. Pressing RETURN or ENTER selects this option. To select another operation
enter its number, then press RETURN or ENTER.

The currently supported operations are:

1. FIRST—Retrieve the first record from the specified section. No key fields are
needed (they are ignored if in the input buffer).

2. NEXT—Retrieve the next record from the specified section, based on the key
fields in the input buffer.

3. RETRIEVE—Retrieve the indicated record from the specified section by key
field(s) (see fields description below).

4. ADD—Add the indicated record in the specified section. Any fields not specifie
(unless required) take their defaults as specified in dmconfig(5). The current
value for all fields is returned in the output buffer. This operation can only be
done by the BEA Tuxedo administrator.

5. UPDATE—Update the record specified in the input buffer in the selected sectio
Any fields not specified in the input buffer remain unchanged. The current va
for all fields is returned in the input buffer. This operation can only be done by
the BEA Tuxedo administrator.

6. DELETE—Delete the record specified in the input buffer from the selected
section. This operation can only be done by the System/T administrator.

7. NEW SECTION—Clear the input buffer (all fields are deleted). After this
operation, dmadmin immediately prompts for the section again.

8. QUIT—Exit the program gracefully (dmadmin is terminated). A value of q for any
prompt also exits the program.
BEA Tuxedo Reference Manual 33

 dmadmin(1)

es,

r
ored.

ess

e,

).
For configuration operations, the effective user identifier must match the BEA Tuxedo
administrator user identifier (UID) for the machine on which this program is executed.
When a record is updated or added, all defaults and validations used by dmloadcf(1)
are enforced.

dmadmin then prompts whether or not to edit the input buffer: Enter editor to
add/modify fields [n]? Entering a value of y will put the input buffer into a
temporary file and execute the text editor. The environment variable EDITOR is used to
determine which editor is to be used; the default is “ed”. The input format is in field
name/field value pairs and is described in the “ CONFIGURATION INPUT FORMAT”
section below. The field names associated with each DMCONFIG section are listed in
tables in the subsections below. The semantics of the fields and associated rang
defaults, restrictions, etc., are described in dmconfig(5). In most cases, the field name
is the same as the KEYWORD in the DMCONFIG file, prefixed with "TA_". When the user
completes editing the input buffer, dmadmin reads it. If more than one line occurs fo
a particular field name, the first occurrence is used and other occurrences are ign
If any errors occur, a syntax error will be printed and dmadmin prompts whether or not
to correct the problem. Enter editor to correct?

If the problem is not corrected (response n), then the input buffer will contain no fields.
Otherwise, the editor is executed again.

Finally, dmadmin asks if the operation should be done. Perform operation [y]?

When the operation completes, dmadmin prints the return value as in Return value

TAOK followed by the output buffer fields. The process then begins again with a
prompt for the section. All output buffer fields are available in the input buffer unl
the buffer is cleared.

Entering break at any time restarts the interaction at the prompt for the section.

When "QUIT" is selected, dmadmin prompts for authorization to create a backup
ASCII version of the configuration: Unload BDMCONFIG file into ASCII backup
[y]? If a backup is selected, dmadmin prompts for the filename: Backup filename
[DMCONFIG]. On success, dmadmin indicates that a backup was created; otherwis
an error is printed.

Configuration
Input Format

Input packets consist of lines formatted as follows:

fldname fldval

The field name is separated from the field value by one or more tabs (or spaces
34 BEA Tuxedo Reference Manual

dmadmin(1)

 the
Lengthy field values can be continued on the next line by having the continuation line
begin with one or more tabs (which are dropped when read back into dmadmin).

Empty lines consisting of a single newline character are ignored.

To enter an unprintable character in the field value or to start a field value with a tab,
use a backslash followed by the two-character hexadecimal representation of the
desired character (see ASCII(5) in a UNIX reference manual). A space, for example,
can be entered in the input data as \20. A backslash can be entered using two backslash
characters. dmadmin recognizes all input in this format, but its greatest usefulness is
for non-printing characters.

Configuration
Limitations

The following are general limitations of the dynamic domain reconfiguration
capability:

n Values for key fields (as indicated in the following sections) may not be
modified. Key fields can be modified, when the system is down, by reloading
the configuration file.

n Dynamic deletions cannot be applied when local domains are active (the
corresponding gateway group is running).

Restrictions for
Configuration

Field Identifiers/
Updates

The following sections describe, for each DMCONFIG section, what the field identifiers
are associated with each DMCONFIG field, what the field type of the identifier is, and
when the field can be updated. All applicable field values are returned with the
retrieval operations. Fields that are allowed and/or required for adding a record are
described in dmconfig(5). Fields indicated below as key are key fields that are used to
uniquely identify a record within section These key fields are required to be in the input
buffer when updates are done and are not allowed to be updated dynamically. The
Update column indicates when a field can be updated. The possible values are:

n Yes—Can be updated at any time.

n NoGW—Cannot be updated dynamically while the gateway group representing
local domain is running.

n No—Cannot be updated dynamically while at least one gateway group is
running.

Configuring the
dm_local_doma

ins section

The following table lists the fields in the *DM_LOCAL_DOMAINS section.
BEA Tuxedo Reference Manual 35

 dmadmin(1)
Configuring the
dm_remote_do

mains section

The following table lists the fields in the *DM_REMOTE_DOMAINS section.

Table 0-1 DM_LOCAL_DOMAINS SECTION

Field Identifier Type Update Notes

TA_LDOM string NoGW key

TA_AUDITLOG string NoGW

TA_BLOCKTIME numeric NoGW

TA_CONNECTION_POLICY string NoGW

TA_DOMAINID string NoGW

TA_DMTLOGDEV string NoGW

TA_DMTLOGNAME string NoGW

TA_DMTLOGSIZE numeric NoGW

TA_GWGRP string NoGW

TA_MAXRDOM numeric NoGW

TA_MAXRDTRAN numeric NoGW

TA_MAXRETRY numeric NoGW

TA_MAXTRAN numeric NoGW

TA_RETRY_INTERVAL numeric NoGW

TA_SECURITY string NoGW format: {NONE |
APP_PW | DM_PW}

TA_TYPE string NoGW format:{TDOMAIN |
OSITP}

Table 0-2 *DM_REMOTE_DOMAINS SECTION

Field Identifier Type Update Notes

TA_RDOM string No key

TA_DOMAINID string No

TA_TYPE string No format: {TDOMAIN | OSITP}
36 BEA Tuxedo Reference Manual

dmadmin(1)
Configuring the
dm_tdomain

section

The *DM_TDOMAIN section contains the network addressing parameters required by
TDOMAIN type domains. The following lists the fields in this section:

If the domain identifier (TA_LDOM) is a local domain identifier, then the TA_NWADDR
and TA_NWDEVICE fields can be updated if the gateway group representing that local
domain is not running.

Configuring the
dm_ositp

section

The *DM_OSITP section contains the network addressing parameters required by
OSITP type domains. The following lists the fields in this section:

If the domain identifier (TA_LDOM) is a local domain identifier, then the other fields in
this table can be updated if the gateway group representing that local domain is not
running.

Configuring the
dm_local_servi

ces Section

The following table lists the fields in the *DM_LOCAL_SERVICES section.

Table 0-3 *DM_TDOMAIN SECTION

Field Identifier Type Update Notes

TA_LDOM or TA_RDOM string No/NoGW key

TA_NWADDR string No/NoGW ASCII format

(no embedded NULL characters)

TA_NWDEVICE string No/NoGW

Table 0-4 *DM_OSITP SECTION

Field Identifier Type Update Notes

TA_LDOM or TA_RDOM string No/NoGW key

TA_APT string No/NoGW

TA_AEQ string No/NoGW

TA_AET string No/NoGW

TA_ACN string No/NoGW

TA_APID string No/NoGW

TA_AEID string No/NoGW

TA_PROFILE string No/NoGW
BEA Tuxedo Reference Manual 37

 dmadmin(1)
 Configuring the
dm_remote_ser

vices Section

The following table lists the fields in the *DM_REMOTE_SERVICES section.

Configuring the
dm_routing

Section

The following table lists the fields in the *DM_ROUTING section.

Table 0-5 *DM_LOCAL_SERVICES SECTION

Field Identifier Type Update Notes

TA_SERVICENAME string No key

TA_LDOM string Yes

TA_RNAME string Yes

TA_ACLNAME string Yes

TA_BUFTYPE string Yes

TA_BUFSTYPE string Yes

TA_OBUFTYPE string Yes

TA_OBUFSTYPE string Yes

Table 0-6 *DM_REMOTE_SERVICES SECTION

Field Identifier Type Update Notes

TA_SERVICENAME string No key

TA_RDOM string No key

TA_LDOM string No key

TA_RNAME string Yes

TA_CONV string NoGW format: { Y | N }

TA_BUFTYPE string Yes

TA_BUFSTYPE string Yes

TA_OBUFTYPE string Yes

TA_OBUFSTYPE string Yes

TA_ROUTINGNAME string Yes

TA_TRANTIME numeric Yes
38 BEA Tuxedo Reference Manual

dmadmin(1)
Configuring the
dm_access_con

trol Section

The following table lists the fields in the *DM_ACCESS_CONTROL section.

 Configuring the
dm_passwords

Section

The following table lists the fields in the *DM_PASSWORDS section.

The TA_LPWD and TA_RPWD show the existence of a defined password for the local
and/or the remote domain. Passwords are not displayed. If an UPDATE operation is
selected, the value of the corresponding field must be set to U. The program will then
prompt with echo turned off for the corresponding passwords.

Diagnostics in
Configuration

Mode

dmadmin fails if it cannot allocate an FML typed buffer, if it cannot determine the
/etc/passwd entry for the user, or if it cannot reset the environment variables
FIELDTBLS or FLDTBLDIR.

The return value printed by dmadmin after each operation completes indicates the
status of the requested operation. There are three classes of return values.

Table 0-7 *DM_ROUTING SECTION

Field Identifier Type Update Notes

TA_ROUTINGNAME string No key

TA_FIELD string Yes

TA_RANGE string Yes

TA_BUFTYPE string Yes

Table 0-8 *DM_ACCESS_CONTROL SECTION

Field Identifier Type Update Notes

TA_ACLNAME string No key

TA_RDOM string Yes

Table 0-9 *DM_PASSWORDS SECTION

Field Identifier Type Update Notes

TA_LDOM string No key

TA_RDOM string No key

TA_LPWD string Yes format: { Y | N | U }

TA_RPWD string Yes format: { Y | N | U }
BEA Tuxedo Reference Manual 39

 dmadmin(1)
The following return values indicate a problem with permissions or a BEA Tuxedo
communications error. They indicate that the operation did not complete successfully.

[TAEPERM]
The calling process specified an ADD, UPDATE, or DELETE operation but it is
not running as the BEA Tuxedo administrator. Update operations must be run
by the administrator (that is, the user specified in the UID attribute of the
RESOURCES section of the TUXCONFIG file).

[TAESYSTEM]
A BEA Tuxedo error has occurred. The exact nature of the error is written to
userlog(3).

[TAEOS]
An operating system error has occurred.

[TAETIME]
A blocking timeout occurred. The input buffer is not updated so no
information is returned for retrieval operations. The status of update
operations can be checked by doing a retrieval on the record that was being
updated.

The following return values indicate a problem in doing the operation itself and
generally are semantic problems with the application data in the input buffer. The
string field TA_STATUS will be set in the output buffer and will contain short text
describing the problem. The string field TA_BADFLDNAME will be set to the field name
for the field containing the value that caused the problem (assuming the error can be
attributed to a single field).

[TAECONFIG]
An error occurred while reading the BDMCONFIG file.

[TAEDUPLICATE]
The operation attempted to add a duplicate record.

[TAEINCONSIS]
A field value or set of field values are inconsistently specified.

[TAENOTFOUND]
The record specified for the operation was not found.

[TAENOSPACE]
The operation attempted to do an update but there was not enough space in
the BDMCONFIG file.
40 BEA Tuxedo Reference Manual

dmadmin(1)
[TAERANGE]
A field value is out of range or is invalid.

[TAEREQUIRED]
A field value is required but not present.

[TAESIZE]
A field value for a string field is too long.

[TAEUPDATE]
The operation attempted to do an update that is not allowed.

The following return values indicate that the operation was successful.

[TAOK]
The operation succeeded. No updates were done to the BDMCONFIG file.

[TAUPDATED]
The operation succeeded. Updates were made to the BDMCONFIG file.

When using dmunloadcf to print entries in the configuration, optional field values are
not printed if they are not set (for strings) or 0 (for integers). These fields will always
appear in the output buffer when using dmadmin. In this way, it makes it easier for the
administrator to retrieve an entry and update a field that previously was not set. The
entry will have the field name followed by a tab but no field value.

Configuration
Example

In the following example, dmadmin is used to add a new remote domain. For
illustration purposes, ed(1) is used for the editor.

$ EDITOR=ed dmadmin
> config
Sections:
 1) RESOURCES 2) LOCAL_DOMAINS
 3) REMOTE_DOMAINS 4) LOCAL_SERVICES
 5) REMOTE_SERVICES 6) ROUTING
 7) ACCESS_CONTROL 8) PASSWORDS
 9) TDOMAINS 10) OSITPS
 11) SNADOMS 12) LOCAL_REMOTE_USER
 13) REMOTE_USERS 14) SNACRMS
 15) SNASTACKS 16) SNALINKS
 17) QUIT
Enter Section [1]: 2
Operations:
 1) FIRST 2) NEXT
 3) RETRIEVE 4) ADD
 5) UPDATE 6) DELETE
 7) NEW_SECTION 8) QUIT
BEA Tuxedo Reference Manual 41

 dmadmin(1)
Enter Operation [1]: 4
Enter editor to add/modify fields [n]? y
a
TA_RDOM B05
TA_DOMAINID BA.BANK05
TA_TYPE TDOMAIN
w
53
q
Perform operation [y]? <return>
Return value TAUPDATED
Buffer contents:
TA_OPERATION 4
TA_SECTION 2
TA_DOMAINID BA.BANK05
TA_RDOM B05
TA_TYPE TDOMAIN
TA_STATUS Update completed successfully
Operations:
 1) FIRST 2) NEXT
 3) RETRIEVE 4) ADD
 5) UPDATE 6) DELETE
 7) NEW_SECTION 8) QUIT
Enter Operation [4]: 7
Sections:
 1) LOCAL_DOMAINS 2) REMOTE_DOMAINS
 3) LOCAL_SERVICES 4) REMOTE_SERVICES
 5) ROUTING 6) ACCESS_CONTROL
 7) PASSWORDS 8) TDOMAIN
 9) OSITP 10) QUIT
Enter Section [1]: 8
Operations:
 1) FIRST 2) NEXT
 3) RETRIEVE 4) ADD
 5) UPDATE 6) DELETE
 7) NEW_SECTION 8) QUIT
Enter Operation [6]: 4
Enter editor to add/modify fields [n]? y
a
TA_RDOM B05
TA_NWADDR 0x00020401c0066d05
TA_NWDEVICE /dev/tcp
w
55
q
Perform operation [y]? <return>
Return value TAUPDATED
Buffer contents:
TA_OPERATION 4
42 BEA Tuxedo Reference Manual

dmadmin(1)
TA_SECTION 8
TA_RDOM B05
TA_NWADDR 0x00020401c0066d05
TA_NWDEVICE /dev/tcp
TA_STATUS Update completed successfully
Operations:
 1) FIRST 2) NEXT
 3) RETRIEVE 4) ADD
 5) UPDATE 6) DELETE
 7) NEW_SECTION 8) QUIT
Enter Operation [4]: 8
> quit

The dmadmin program ends.

Security If dmadmin is run with the application administrator’s UID, it assumes a trusted user
and Security is bypassed. If dmadmin is run with another user ID, and if the security
option is enabled in the TUXCONFIG file, then the corresponding application password
is required to start the dmadmin program. If standard input is a terminal, then dmadmin
will prompt the user for the password with echo turned off. If standard input is not a
terminal, the password is retrieved from the environment variable, APP_PW. If this
environment variable is not specified and an application password is required, then
dmadmin will fail to start.

When running with another user ID (other than the UID of the administrator) only a
limited set of commands is available.

Environment
Variables

dmadmin resets the FIELDTBLS and FLDTBLDIR environment variables to pick up the
${TUXDIR}/udataobj/dmadmin field table. Hence, the TUXDIR environment
variable should be set correctly.

If the application requires security and the standard input to dmadmin is not from a
terminal, then the APP_PW environment variable must be set to the corresponding
application password.

The TUXCONFIG environment variable should be set to the pathname of the BEA
Tuxedo configuration file.

General
Diagnostics

If the dmadmin command is entered before the system has been booted, the following
message is displayed:

No bulletin board exists. Only logging commands are available.

dmadmin then prompts for the corresponding commands.
BEA Tuxedo Reference Manual 43

 dmadmin(1)
If an incorrect application password is entered or is not available to a shell script
through the environment, then a log message is generated, the following message is
displayed, and the command terminates: Invalid password entered.

Interoperability dmadmin must be installed on BEA Tuxedo Release 5.0 or later. Other nodes in the
same domain with an Release 5.0 gateway may be BEA Tuxedo Release 4.1 or later.

Portability dmadmin is supported as a BEA Tuxedo-supplied administrative tool on UNIX
operating systems only.

See Also dmloadcf(1), dmconfig(5), DMADM(5), tmadmin(1) BEA Tuxedo Domain Guide
44 BEA Tuxedo Reference Manual

dmloadcf(1)

not
r

ad,

ber
 the
dmloadcf(1)

Name dmloadcf—parse a DMCONFIG file and load binary BDMCONFIG configuration file

Synopsis dmloadcf [-c] [-n] [-y] [-b blocks] {dmconfig_file | - }

Description dmloadcf reads a file or the standard input that is in DMCONFIG syntax, checks the
syntax, and optionally loads a binary BDMCONFIG configuration file. The BDMCONFIG
environment variable points to the path name of the BDMCONFIG file where the
information should be stored.

dmloadcf prints an error message if it finds any required section of the DMCONFIG file
missing. If a syntax error is found while parsing the input file, dmloadcf exits without
performing any updates to the BDMCONFIG file.

dmloadcf requires the existence of the $TUXDIR/udataobj/DMTYPE file. This file
defines the valid domain types. If this file does not exist, dmloadcf exits without
performing any updates to the BDMCONFIG file.

The effective user identifier of the person running dmloadcf must match the UID in
the RESOURCES section of the TUXCONFIG file.

The -c option to dmloadcf causes the program to print minimum IPC resources
needed for each local domain (gateway group) in this configuration. The BDMCONFIG
file is not updated.

The -n option to dmloadcf causes the program to do only syntax checking of the
ASCII DMCONFIG file without actually updating the BDMCONFIG file.

After syntax checking, dmloadcf checks to see if the file pointed to by BDMCONFIG
exists, is a valid BEA Tuxedo file system, and contains BDMCONFIG tables. If these
conditions are not true, the user is prompted to create and initialize the file with
Initialize BDMCONFIG file: path [y, q]? where path is the complete filename
of the BDMCONFIG file. Prompting is suppressed if the standard input or output are
terminals, or if the -y option is specified on the command line. Any response othe
than “y” or “Y” will cause dmloadcf to exit without creating the configuration file.

If the BDMCONFIG file is not properly initialized, and the user has given the go-ahe
dmloadcf creates the BEA Tuxedo file system and then creates the BDMCONFIG tables.
If the -b option is specified on the command line, its argument is used as the num
of blocks for the device when creating the BEA Tuxedo file system. If the value of
-b option is large enough to hold the new BDMCONFIG tables, dmloadcf will use the
specified value to create the new file system; otherwise, dmloadcf will print an error
message and exit. If the -b option is not specified, dmloadcf will create a new file
BEA Tuxedo Reference Manual 45

 dmloadcf(1)

t

system large enough to hold the BDMCONFIG tables. The -b option is ignored if the file
system already exists. The -b option is highly recommended if BDMCONFIG is a raw
device (that has not been initialized) and should be set to the number of blocks on the
raw device. The -b option is not recommended if BDMCONFIG is a regular UNIX file.

If the BDMCONFIG file is found to have been initialized already, dmloadcf ensures that
the local domain described by that BDMCONFIG file is not running. If a local domain is
running, dmloadcf prints an error message and exits. Otherwise, dmloadcf, to
confirm that the file should be overwritten, prompts the user with:

“Really overwrite BDMCONFIG file [y, q]?”

Prompting is suppressed if the standard input or output are not a terminal or if the -y
option is specified on the command line. Any response other than “y” or “Y” will cause
dmloadcf to exit without overwriting the file.

If the SECURITY parameter is specified in the RESOURCES section of the TUXCONFIG
file, then dmloadcf will flush the standard input, turn off terminal echo and promp
the user for an application password as follows: Enter Application Password?

The password is limited to 30 characters. The option to load the ASCII DMCONFIG file
via the standard input (rather than a file) cannot be used when this SECURITY parameter
is turned on. If the standard input is not a terminal, that is, if the user cannot be
prompted for a password (as with a here file, for example), then the environment
variable APP_PW is accessed to set the application password. If the environment
variable APP_PW is not set with the standard input not a terminal, then dmloadcf will
print an error message, generate a log message and fail to load the BDMCONFIG file.

Assuming no errors, and if all checks have passed, dmloadcf loads the DMCONFIG file
into the BDMCONFIG file. It will overwrite all existing information found in the
BDMCONFIG tables.

Portability dmloadcf is supported as a BEA Tuxedo-supplied administrative tool on UNIX
operating systems only.

Environment
Variables

The environment variable APP_PW must be set for applications that require security
(the SECURITY parameter in the TUXCONFIG file is set to APP_PW) and dmloadcf is run
with something other than a terminal as the standard input.

The BDMCONFIG environment variable should point to the BDMCONFIG file.
46 BEA Tuxedo Reference Manual

dmloadcf(1)
Examples The following example shows how a binary configuration file is loaded from the
bank.dmconfig ASCII file. The BDMCONFIG device is created (or reinitialized) with
2000 blocks:

dmloadcf -b 2000 bank.dmconfig

Diagnostics If an error is detected in the input, the offending line is printed to standard error along
with a message indicating the problem. If a syntax error is found in the DMCONFIG file
or the system is currently running, no information is updated in the BDMCONFIG file and
dmloadcf exits with exit code 1.

If dmloadcf is run on an active node, the following error message is displayed:

*** dmloadcf cannot run on an active node ***

If dmloadcf is run by a person whose effective user identifier doesn’t match the UID
specified in the TUXCONFIG file, the following error message is displayed:

*** UID is not effective user ID ***

Upon successful completion, dmloadcf exits with exit code 0. If the BDMCONFIG file
is updated, a userlog message is generated to record this event.

See Also dmunloadcf(1), dmconfig(5), ubbconfig(5), BEA Tuxedo Domains Guide, BEA
WebLogic Enterprise Administration Guide
BEA Tuxedo Reference Manual 47

 dmunloadcf(1)

copy

r
dmunloadcf(1)

Name dmunloadcf—unload binary BDMCONFIG domain configuration file

Synopsis dmunloadcf

Description dmunloadcf translates the BDMCONFIG configuration file from the binary
representation into ASCII. This translation is useful for transporting the file in a
compact way between machines with different byte orderings and backing up a
of the file in a compact form for reliability. The ASCII format is the same as is
described in dmconfig(5).

dmunloadcf reads values from the BDMCONFIG file pointed to by the BDMCONFIG
environment variable and writes them to its standard output.

Portability dmunloadcf is supported as a BEA Tuxedo-supplied administrative tool on UNIX
operating systems only.

Examples To unload the configuration in /usr/TUXEDO/BDMCONFIG into the file
bdmconfig.backup: BDMCONFIG=/usr/TUXEDO/BDMCONFIG dmunloadcf >
bdmconfig.backup

Diagnostics dmunloadcf checks that the file pointed to by the BDMCONFIG environment variable
exists, is a valid BEA Tuxedo file system, and contains BDMCONFIG tables. If any of
these conditions is not met, dmunloadcf prints an error message and exits with erro
code 1. Upon successful completion, dmunloadcf exits with exit code 0.

See Also dmloadcf(1), dmconfig(5) BEA Tuxedo Domain Guide
48 BEA Tuxedo Reference Manual

gencat(1)
gencat(1)

Name gencat-generate a formatted message catalog

Synopsis gencat [-m] catfile msgfile . . .

Description The gencat utility merges the message text source file(s) msgfile into a formatted
message database catfile. The database catfile will be created if it does not
already exist. If catfile does exist its messages will be included in the new catfile.
If set and message numbers collide, the new message-text defined in msgfile will
replace the old message text currently contained in catfile. The message text source
file (or set of files) input to gencat can contain either set and message numbers or
simply message numbers, in which case the set NL_SETD([see nl_types(5)]) is
assumed.

The format of a message text source file is defined in the list below. Note that the fields
of a message text source line are separated by a single ASCII space or tab character.
Any other ASCII spaces or tabs are considered to be part of the subsequent field.

$set n comment
Where n specifies the set identifier of the following messages until the next
$set, $delset or end-of-file appears. n must be a number in the range
(1-{NL_SETMAX}). Set identifiers within a single source file need not be
contiguous. Any string following the set identifier is treated as a comment. If
no $set directive is specified in a message text source file, all messages will
be located in the default message set. NL_SETD.

$delset n comment
Deletes message set n from an existing message catalogue. Any string
following the set number is treated as a comment. (Note: if n is not a valid set
it is ignored.)

$ comment
A line beginning with a dollar symbol $ followed by an ASCII space or tab
character is treated as a comment.

m message-text
The m denotes the message identifier, which is a number in the range
(1-{NL_MSGMAX}). (Do not confuse this message text syntax with the -m
command-line option described under NOTES.) The message-text is stored in
the message catalogue with the set identifier specified by the last $set
directive, and with message identifier m. If the message-text is empty, and an
ASCII space or tab field separator is present, an empty string is stored in the
message catalog. If a message source line has a message number, but neither
BEA Tuxedo Reference Manual 49

 gencat(1)
a field separator nor message-text, the existing message with that number (if
any) is deleted from the catalog. Message identifiers need not be contiguous.
The length of message-text must be in the range (0-{NL_TEXTMAX}).

$quote c
This line specifies an optional quote character c, which can be used to
surround message-text so that trailing spaces or null (empty) messages are
visible in a message source line. By default, or if an empty $quote directive
is supplied, no quoting of message-text will be recognized. Empty lines in a
message text source file are ignored. Text strings can contain the special
characters and escape sequences defined in the following table:

The escape sequence \ddd consists of backslash followed by 1, 2 or 3 octal digits,
which are taken to specify the value of the desired character. If the character following
a backslash is not one of those specified, the backslash is ignored.

Backslash followed by an ASCII newline character is also used to continue a string on
the following line. Thus, the following two lines describe a single message string:

1 This line continues \
to the next line

which is equivalent to:

1 This line continues to the next line

Description Symbol Escape Sequence

newline NL(LF) \n

horizontal tab HT \t

vertical tab VT \v

backspace BS \b

carriage return CR \r

form feed FF \f

backslash \ \\

bit pattern ddd \ddd
50 BEA Tuxedo Reference Manual

gencat(1)
Portability gencat is supported as a BEA Tuxedo-supplied tool on UNIX and MS-DOS operating
systems.

Notices This version of gencat produces a catalog that at runtime is read into malloc’ed space.
Shared catalogs available with some versions of gencat are not available. On some
systems, generation of malloc’ed catalogs requires that the -m option be specified.
This option can be specified on the command line, but has no effect. malloc’ed
catalogs are the default; the -m option is supported for compatibility only.

The catalog file generated by this command is limited in size to 64K. Larger catalog
files will result in an error being reported by this command and no catalog file being
generated.

See Also nl_types(5)
BEA Tuxedo Reference Manual 51

 loadfiles(1)

n the
 cache
ache
f

the
loadfiles(1)

Name loadfiles—load files into shared memory cache

Synopsis loadfiles -k key [files] [--]

Description Loads the files specified in the command line or the standard input into a shared
memory cache associated with key. If a shared memory cache exists for key then a
directory of files in that cache is printed, and no files are added to the cache. Whe
cache is created its permissions are set to 0666. This permission means that the
is readable and writable by everyone on the system. Files to be loaded into the c
are taken from the standard input if—is specified on the command line instead o
files.

ipcrm(1) destroys the shared memory cache created by loadfiles.

Examples The command:

loadfiles -k${MSKIPCKEY} file1 file2

loads file1 and file2 into a shared memory cache associated with the value of
shell variable MSKIPCKEY.

Notices Only the last part of a filename is stored in the cache's directory. For example,
/etc/motd would be stored as motd. Therefore, one cannot have both /etc/motd and
/tmp/motd in the cache at the same time.

See Also ipcrm(1) in a UNIX system reference manual
52 BEA Tuxedo Reference Manual

mio(1)

iler
are
rs.
mio(1)

Name mio, wmio—mask input/output program

Synopsis mio [-B] [-n] [-e] [-F] [-t] [-i fname] [-m fname]
[-r rname] [-p rname] [-s service] [-b usrname] [-u file]
wmio [options]

Description Note: For BEA Tuxedo Sample Application only. mio is the Data Entry System
mask input/output handler. It reads mask object files created by the comp
and displays user-defined forms on the standard output. Once the forms
filled out, their contents are shipped to a server in the form of fielded buffe
If the form has been created with the parameter TRANMODE set to TRAN, mio is
invoked in transaction mode. See the BEA Tuxedo Programmer’s Guide for a
detailed explanation.

wmio is a version of mio build using the workstation libraries. On sites supporting just
BEA Tuxedo workstation, only the wmio command will be present.

The following command-line options are available:

-B
Synchronous (blocking) calls are made. mio will block on send calls and wait
if there is a blocking condition.

-e
Allow shell escapes. Escape to the shell is via an esc !.

-F
Print packets sent to and received from the server on the standard error. When
this option is used, the standard error should be directed away from the
terminal on which mio is run.

-n
Do not allow mio to be terminated from a terminal. Presumably, it will be
terminated by a signal.

-b
Use usrname for this process in the Bulletin Board. usrname can include
printf(3) notation to append the process ID. For example, teller%d will
append the process ID to the string teller to make the usrname unique.
nnnnn is the mio command’s process ID.

-s
Override destination services specified on all masks and always send mio
output to service.
BEA Tuxedo Reference Manual 53

 mio(1)

as

-t
Run mio in test mode. Useful for testing recently compiled masks.

-r
Record mio session into disk file rname. The session can be played back with
the -p option.

-p
Playback mio session, using rname as the input file instead of user terminal
input. In the standard case, rname was created by a previous run of mio with
the -r option.

-i
fname is displayed instead of the initial mask. Exiting fname terminates mio.

-m
fname is an alternate initial mask.

-u
This option is used to redefine the character sequences that constitute mio’s
function keys. file contains a list of character sequences and keywords
described in udfk(5).

By default, the following function keys are defined by mio. These can be changed with
the -u option.

CTRL-a
Display help message for the current field

CTRL-n
Display error message for the current field

CTRL-b
Go back a page

CTRL-f
Go forward a page

TAB (CTRL-i)
Go forward a field

CTRL-o
Go back a field

CTRL-j or down arrow
Go down a line

CTRL-k or up arrow
Go up a line
54 BEA Tuxedo Reference Manual

mio(1)
BACKSPACE (CTRL-h) or left arrow
Go back one space

CTRL-l or right arrow
Go forward one space

CTRL-u
Delete a character

CTRL-c
Insert a character

CTRL-d
Quit this form and return to previous level

CTRL-t
Go to home field

ESC 0
Transmit form to server

ESC 1
Transmit form to server

ESC 2
Transmit form to server

ESC 3
Transmit form to server

ESC 4
Transmit form to server

ESC 5
Transmit form to server

ESC 6
Transmit form to server

ESC 7
Transmit form to server

ESC 8
Transmit form to server

ESC 9
Transmit form to server

CTRL-v
Transmit form to server
BEA Tuxedo Reference Manual 55

 mio(1)
CTRL-w
Display defaults cyclically

CR (CTRL-m)
Move to the left and down a line

CTRL-x
Clear the form

CTRL-y
Print the form

CTRL-p
Refresh the form

ESC !
Escape to a shell

Notices The terminfo(4) database must exist for mio to run, and the TERMINFO shell variable
must point to the correct directory.

Portability mio and/or wmio are supported as BEA Tuxedo-supplied clients on UNIX operating
systems only.

Environment
Variables

TERMINFO, TERM, TUXDIR, LOGNAME, UBBCONFIG, NGXACTS, OKXACTS, FLDTBLDIR,
FIELDTBLS, SRVID, SRVGRP, MSKIPCKEY, MASKPATH.

APP_PW must be set to the application password in a security application if standard
input is not from a terminal. WSNADDR, WSDEVICE, and optionally, WSTYPE, must be set
if access is from a workstation. See compilation(5) for more details on setting
environment variables for client processes.

See Also udfk(5), the BEA WebLogic Enterprise Administration Guide, and terminfo(4) in a
UNIX system reference manual
56 BEA Tuxedo Reference Manual

mkfldhdr, mkfldhdr32(1)

r

ed to

s the

s.

,

ame
ch for

 in a

e
mkfldhdr, mkfldhdr32(1)

Name mkfldhdr, mkfldhdr—create header files from field-tables

Synopsis mkfldhdr [-d outdir] [field_table...]
mkfldhdr32 [-d outdir] [field_table...]

Description mkfldhdr translates each field table file to a corresponding header file suitable fo
inclusion in C programs. The resulting header files provide #define macros for
converting from field names to field IDs. Header filenames are formed by
concatenating a .h to the simple filename for each file to be converted.

The field table names may be specified on the command line; each file is convert
a corresponding header file.

If the field table names are not given on the command line, then the program use
FIELDTBLS environment variable as the list of field tables to be converted, and
FLDTBLDIR environment variable as a list of directories to be searched for the file
FIELDTBLS specifies a comma-separated list of field table filenames. If FIELDTBLS
has no value, fld.tbl is used as the name of the (only) field table file (in this case
the resulting header file will be (fld.tbl.h). The FLDTBLDIR environment variable
is a colon-separated list of directories in which to look for each field table whose n
is not an absolute pathname; the search for field tables is very similar to the sear
executable commands using the UNIX system PATH variable. If FLDTBLDIR is not
defined, only the current directory is searched. Thus, if no field table names are
specified on the command line and FIELDTBLS and FLDTBLDIR are not set, mkfldhdr
will convert the field table fld.tbl in the current directory into the header file
fld.tbl.h.

The -d option is available to specify that the output header files are to be created
directory other than the present working directory.

mkfldhdr32 is used for 32-bit FML. It uses the FIELDTBLS32 and FLDTBLDIR32
environment variables.

Errors Error messages are printed if the field table load fails or if an output file cannot b
created.

Examples FLDTBLDIR=/project/fldtbls

FIELDTBLS=maskftbl,DBftbl,miscftbl,

export FLDTBLDIR FIELDTBLS
BEA Tuxedo Reference Manual 57

 mkfldhdr, mkfldhdr32(1)
mkfldhdr produces the #include files maskftbl.h, DBftbl.h, and miscftbl.h in
the current directory by processing the files maskftbl, DBftbl, and miscftbl in
directory /project/fldtbls.

With environment variables set as in the example above, the command mkfldhdr
-d$FLDTBLDIRprocesses the same input field-table files, and produces the same
output files, but places them in the directory given by the value of the environment
variable FLDTBLDIR.

The command mkfldhdr myfieldsprocesses the input file myfields and produces
myfields.h in the current directory.

See Also Fintro(3fml), field_tables(5)
58 BEA Tuxedo Reference Manual

mklanginfo(1)

 a file

e

lue
mklanginfo(1)

Name mklanginfo—compile language information constants for a locale

Synopsis mklanginfo [fname]

Description This program takes the file specified as an argument, and converts the input into
suitable for placement in $TUXDIR/locale/xx/LANGINFO where xx is a specific
locale. The standard input is used if a file argument is not specified. The languag
values are used by setlocale(3c), strftime(3c) and nl_langinfo(3c).

mklanginfo reads input lines, ignoring lines that begin with white space or '#'. Va
input lines must be of the form

<token> = “value”

(the characters between the token and the double-quoted value can be anything but a
double quote as long as white space appears after the token). If value is the null string,
the line is ignored. Otherwise, token must either be a integer between 1 and 48,
inclusive, or a string as follows:

Integer String Value 1

DAY_1 Day 1 of the week, e.g., Sunday 2
DAY_2 Day 2 of the week, e.g., Monday 3
DAY_3 Day 3 of the week, e.g., Tuesday 4
DAY_4 Day 4 of the week, e.g., Wednesday 5
DAY_5 Day 5 of the week, e.g., Thursday 6
DAY_6 Day 6 of the week, e.g., Friday 7
DAY_7 Day 7 of the week, e.g., Saturday 8
ABDAY_1 Abbreviated day 1 of the week, e.g., Sun 9
ABDAY_2 Abbreviated day 2 of the week, e.g., Mon 10
ABDAY_3 Abbreviated day 3 of the week, e.g., Tue 11
ABDAY_4 Abbreviated day 4 of the week, e.g., Wed 12
ABDAY_5 Abbreviated day 5 of the week, e.g., Thu 13
ABDAY_6 Abbreviated day 6 of the week, e.g., Fri 14
ABDAY_7 Abbreviated day 7 of the week, e.g., Sat 15
MON_1 Month 1 of the year, e.g., January 16
MON_2 Month 2 of the year, e.g., February 17
MON_3 Month 3 of the year, e.g., March 18
MON_4 Month 4 of the year, e.g., April 19
MON_5 Month 5 of the year, e.g., May 20
MON_6 Month 6 of the year, e.g., June 21
MON_7 Month 7 of the year, e.g., July 22
MON_8 Month 8 of the year, e.g., August 23
MON_9 Month 9 of the year, e.g., September 24
MON_10 Month 10 of the year, e.g., October 25
BEA Tuxedo Reference Manual 59

 mklanginfo(1)
MON_11 Month 11 of the year, e.g., November 26
MON_12 Month 12 of the year, e.g., December 27
ABMON_1 Abbreviated month 1 of the year, e.g., Jan 28
ABMON_2 Abbreviated month 2 of the year, e.g., Feb 29
ABMON_3 Abbreviated month 3 of the year, e.g., Mar 30
ABMON_4 Abbreviated month 4 of the year, e.g., Apr 31
ABMON_5 Abbreviated month 5 of the year, e.g., May 32
ABMON_6 Abbreviated month 6 of the year, e.g., Jun 33
ABMON_7 Abbreviated month 7 of the year, e.g., Jul 34
ABMON_8 Abbreviated month 8 of the year, e.g., Aug 35
ABMON_9 Abbreviated month 9 of the year, e.g., Sep 36
ABMON_10 Abbreviated month 10 of the year, e.g., Oct 37
ABMON_11 Abbreviated month 11 of the year, e.g., Nov 38
ABMON_12 Abbreviated month 12 of the year, e.g., Dec 39
RADIXCHAR Radix character, e.g., ’.’ 40
THOUSEP Separator for thousands 41
YESSTR Affirmative response string, e.g., yes 42
NOSTR Negative response string, e.g., no 43
CRNCYSTR Currency symbol 44
D_T_FMT string for formatting date and time, e.g., “%a%b%d%H:%M:0Y” 45
D_FMT string for formatting date, e.g., “%m/%d/%y” 46
T_FMT string for formatting time, e.g., “H:%M:%S” 47
AM_FMT Ante Meridian affix, e.g., AM 48
PM_FMT Post Meridian affix, e.g., PM

The input lines may appear in any order (if an input line appears more than once for
the same value, the last line for that value is used).

After processing the file, mklanginfo prints the string name and string value for each
language information constant listed above to the standard error in the order specified
above. The null string is used as a value for any language information constant not
specified; nl_langinfo will use the default value for the C locale (U.S. English
values) for these unset constants.

If a filename is specified on the command name, mklanginfo writes the compiled
output to fname.out ; otherwise, the output is written to the standard output. The
format is a list of all of the null-terminated string values (without newlines).

Diagnostic If an error occurs in reading the file or in the syntax, an error message is printed to the
standard error and the program exits with exit code 1. On success, the program exits
with exit code 0.

Examples The defaults for the BEA Tuxedo system (locale C) are located in
$TUXDIR/locale/C/lang.text . To provide French values, an administrator might
do the following: mkdir $TUXDIR/locale/french cd $TUXDIR/locale/french
cp $TUXDIR/locale/C/lang.text. ed lang.text... convert to French
values w q mklanginfo lang.text > LANGINFO
60 BEA Tuxedo Reference Manual

mklanginfo(1)
Files $TUXDIR/locale/C/lang.text - the default values for the C locale
$TUXDIR/locale/C/LANGINFO - the “compiled” file for the C locale
$TUXDIR/locale/xx/LANGINFO - the “compiled” file for the “xx”
locale

Notices The mklanginfo command and the resulting LANGINFO file are needed only if the
BEA Tuxedo system compatibility functions for setlocale (), strftime (), or
nl_langinfo () are used. The functions provided with the UNIX system use a
different set and format of files.

See Also setlocale (3c), strftime (3c), nl_langinfo (3c), langinfo (5)
BEA Tuxedo Reference Manual 61

 pic_uform(1)

t row
pic_uform(1)

Name pic_uform—picture to UFORM conversion program

Synopsis pic_uform [-l lastchar] [-f firstchar] [-s fillchar] [-r rows]
infile outfile

Description pic_uform is a tool used to create a skeleton UFORM source definition (outfile) from
an edit file image of a form (infile). The placement of fields and literals on the form
is identical to their placement in the edit file.

No differentiation is made between protected and unprotected fields. Fields are
designated as follows:

The last line of all fields begins with lastchar. By default this is + but it can be reset
with the -l option. All other lines of fields begin with firstchar. By default this is
= but it can be reset with the -f option. All other positions in fields contain fillchar.
fillchar defaults to a _, but may be reset with the -s option. The tab character, (\t),
or the space character, (" "), can not be used as substitutes for the defaults.

A new page is indicated by a form feed (CTRL-L). New pages are automatically
generated when the number of rows on a page exceeds the rows argument on the
command line. By default the maximum number of rows on a page is 24. The las
on a page is always reserved for the status line so only rows-1 rows are available on
each page.

All text (other than fields) is assumed to be literals.

Examples The input:

 THIS IS A TEST MASK
+___________ +___________ +___________
+___________ +___________ +___________

^L
 PAGE TWO
=____________
=____________
+____________
62 BEA Tuxedo Reference Manual

pic_uform(1)
The output:

#SERVICE NAME=NULL
#FORM STATUSLINE=24 FLAGS="-"
#PAGE FLAGS="-" STATUSLINE=24
*ROW COL MIN LINES WIDTH FLAGS VALUE
1 25 0 1 19 L "THIS IS A TEST MASK"
+2 1 0 1 12 U
- 33 0 1 12 U
- 65 0 1 12 U
+1 1 0 1 12 U
- 33 0 1 12 U
- 65 0 1 12 U
#PAGE FLAGS="-" STATUSLINE=24
*ROW COL MIN LINES WIDTH FLAGS VALUE
+1 25 0 1 8 L "PAGE TWO"
+2 1 0 3 13 U

Notices Whenever the form edit image changes and a new UFORM skeleton is produced, all
modifications made to the old skeleton, such as validations, help messages, etc., must
be made to the new skeleton.

See Also BEA Tuxedo Data Entry System Guide
BEA Tuxedo Reference Manual 63

 qmadmin(1)

ersal
 a

t

 by

ed
e
tains

 A
ent is

d

that

nd

d

d
qmadmin(1)

Name qmadmin—Queue manager administration program

Synopsis [QMCONFIG=<device>] qmadmin [<device>]

Description With the commands listed below, qmadmin provides for creation, inspection and
modification of message queues. The name of the device (file) on which the univ
device list resides (or will reside) for the queue space may either be specified as
command line argument or via the environment variable QMCONFIG. If both are
specified, the command option is used.

As a system-provided server, qmadmin does not go through normal initialization, so i
does not pick up the value of ULOGPFX. As a result, any log entries generated by
qmadmin commands are written to the current working directory. This is corrected
setting and exporting the ULOGPFX environment variable to the pathname of the
directory where the userlog is located.

qmadmin uses the greater than sign, >, as a prompt. Arguments are entered separat
by white space (tabs and/or spaces). Arguments that contain white space may b
enclosed within double quotes; if an argument enclosed within double quotes con
a double quote, the internal double quote must be escaped with a backslash.
Commands will prompt for the information if it is not given on the command line.
warning message is displayed and the prompt shown again, if a required argum
not entered.

The user can exit the program by entering q or CTRL-d> when prompted for a
command. Output from a command may be terminated by hitting BREAK; the program
then prompts for the next command. Hitting return when prompted for a comman
repeats the previously executed command, except after a break.

Note that there is no way to effectively cancel a command once you press RETURN;
hitting BREAK only terminates output from the command, if any. Therefore, be sure
you type a command exactly as you intended before pressing RETURN.

Output from qmadmin commands is paginated according to the pagination comma
in use (see the paginate subcommand below).

When first entering qmadmin, no queue space is opened. A queue space is create
using qspacecreate and is opened using qopen. The qaborttrans, qclose,
qchangeprio, qchangequeue, qchangetime, qcommittrans, qchange, qcreate,
qdeletemsg, qinfo, qlist, qprinttrans and qset commands can only be execute
when a queue space is open.
64 BEA Tuxedo Reference Manual

qmadmin(1)
qmadmin
Commands

Commands may be entered either by their full name or their abbreviation (if available,
the abbreviation is listed below in parentheses following the full name), followed by
any appropriate arguments. Arguments appearing in square brackets, [], are optional;
those in curly braces, {}, indicate a selection from mutually exclusive options.

chdl [dlindex [newdevice]]

Change the name for a universal device list entry. The first argument is the index of
the device on the universal device list that is to be changed (device indexes are returned
by lidl). The program will prompt for it if not provided on the command line. The
second argument is the new device name. If not provided on the command line, the
program prints the current device name and then prompts for a new one. The name is
limited to 64 characters in length. Files or data will no longer be accessible via the old
name after the device name is changed so this command must be used cautiously. A
more detailed description of the Universal Device List and Volume Table of Contents
are provided in the BEA WebLogic Enterprise Administration Guide.

crdl [device [offset [size]]]
Create an entry in the universal device list. Note: The first entry in the device
list must correspond to the device that is pointed to by QMCONFIG and must
have an offset of 0. If arguments are not provided on the command line, the
program will prompt for them. The arguments are the device name, the block
number at which space may begin to be allocated, and the number of physical
pages (disk sectors) to be allocated. More than one extent can be allocated to
a given file (for example, allocate /Dave/waifs 0 500 and then allocate
/Dave/waifs 1000 500 for a total of 1000 blocks allocated but blocks 500
through 999 are unused). Several blocks from the first device entry are used
by the device list and table of contents. Up to 25 entries may be created on the
device list.

dsdl [-y] [dlindex]
Destroy an entry found in the universal device list. The dlindex argument is
the index on the universal device list of the device that is to be removed from
the device list. If not provided on the command line, the program will prompt
for it. Entry 0 cannot be removed until all VTOC files and other device list
entries are destroyed first (since entry 0 contains the device which holds the
device list and table of contents, destroying it also destroys these two tables).
VTOC files can be removed only by removing the associated entities (for
example, by destroying a queue space that resides on the device). The
program prompts for confirmation unless -y is specified.
BEA Tuxedo Reference Manual 65

 qmadmin(1)
echo (e) [{off | on}]
Echo input command lines when set to on. If no option is given, then the
current setting is toggled, and the new setting is printed. The initial setting is
off.

help (h) [{command | all}]
Print help messages. If command is specified, the abbreviation, arguments,
and description for that command are printed. all causes a description of all
commands to be displayed. Omitting all arguments causes the syntax of all
commands to be displayed.

ipcrm [-f] [-y] [queue_space_name]
ipcrm removes the IPC data structures used for the specified queue space. If
not provided on the command line, the program prompts for the queue space
name. If the specified queue space is open in qmadmin, it will be closed.
ipcrm knows all IPC resources used by the queue space and is the only way
that the IPC resources should be removed. qmadmin ensures that no other
processes are attached to the queue space before removing the IPC resources.
The -f option can be specified to force removal of IPC resources even if the
other processes are attached. This command prompts for confirmation before
execution if the -f option is specified, unless the -y option is specified.

ipcs [queue_space_name]
ipcs lists the IPC data structures used for a queue space, if any (none may be
used if the queue space is not opened by any process). If not provided on the
command line, the program prompts for the queue space name.

lidl [dlindex]
Print the universal device list. For each device the following is listed: the
index, the name, the starting block, and the number of blocks on the device.
In verbose mode, a map is printed that shows free space (starting address and
size of free space). If dlindex is specified, then only the information for that
device list entry is printed.

livtoc
Print information for all VTOC table entries. The information printed for each
entry includes the name of the VTOC table, the device on which it is found, the
offset of the VTOC table from the beginning of the device and the number of
pages allocated for that table. There are a maximum of 100 entries in the
VTOC.
66 BEA Tuxedo Reference Manual

qmadmin(1)
paginate (page) [{off|on}]
Paginate output. If no option is given, then the current setting will be toggled,
and the new setting is printed. The initial setting is on, unless either standard
input or standard output is a non-terminal device. Pagination may only be
turned on when both standard input and standard output are terminal devices.
The shell environment variable PAGER may be used to override the default
command used for paging output. The default paging command is the pager
indigenous to the native operating system environment, for example, the
command pg is the default on UNIX system operating environments.

qaborttrans (qabort) [-y] [tranindex]
Heuristically abort the precommitted transaction associated with the specified
transaction index, tranindex. The program will prompt for the transaction
index if not specified on the command line. If the transaction is known to be
decided and the decision was to commit, qaborttrans will fail. The index is
taken from the previous execution of the qprinttrans command.
Confirmation is requested unless the -y option is specified. This command
should be used with care.

qaddext [queue_space_name [pages]]
Add an extent to the queue space. The queue space must not be active (no
processes can be attached to the queue space). If not specified on the
command line, the program prompts for the queue space name and the
number of additional physical pages to allocate for the queue space. If the
specified queue space is open in qmadmin, it will be closed. The number of
pages will be rounded down to the nearest multiple of bits-per-byte divided
by 2 (normally 4). Space will be allocated from extents defined in the UDL
associated with the QMCONFIG device. Each new queue space extent uses an
additional entry in the VTOC (a maximum of 100 entries are available). The
queue manager names the extents such that they can be quickly identified and
associated with the queue space.

qchange [queue_name [out-of-order [retries [delay [high [low [cmd]]]]]]]
Modify a queue in the currently open queue space. The arguments may be
given on the command line or the program will prompt for them: the queue
name, whether out-of-order enqueuing is allowed (not allowed, top of queue,
before a specified msgid); the number of retries and delay time in seconds
between retries; and the high and low limits for execution of a threshold
command and the threshold command itself. The out-of-order values are
none, top, or msgid. Both top and msgid may be specified separated by a
comma. The threshold values are used to allow for automatic execution of a
command when a threshold is reached. The high limit specifies when the
BEA Tuxedo Reference Manual 67

 qmadmin(1)
command is executed. The low limit must be reached before the command
will be executed again when the high limit is reached. For example, if the
limits are 100 and 50 messages, the command will be executed when 100
messages are on the queue, and will not be executed again until the queue has
been drained down to 50 messages and has filled again to 100 messages. The
queue capacity can be specified in bytes or blocks used by the queue (number
followed by a "b" or "B" suffix), percentage of the queue space used by the
queue (number followed by a "%"), or total number of messages on the queue
(number followed by an "m"). The threshold type for the high and low
threshold values must be the same. It is optional whether or not the type is
specified on the low value, but if specified, it must match the high value type.
When specified on the command line, the threshold command should be
enclosed in double quotation marks if it contains white space. The retry count
indicates how many times a message can be dequeued and the transaction
rolled back, causing the message to be put back on the queue. A delay
between retries can also be specified. When the retry count is reached, the
message is moved to the error queue defined for the queue space. If it does
not exist, the message is dropped. The queue ordering values for the queue
cannot be changed.

qchangeprio (qcp) [-y] [newpriority]
This command can be used to change the message priority for messages on a
queue that allows priority as an ordering criteria. The queue that is affected is
set using the qset command and the selection criteria for limiting the
messages to be updated are set using the qscan command. If no selection
criteria are set, then all messages on the queue will be changed: confirmation
is requested before this is done unless the -y option is specified. It is
recommended that the qlist command be executed to see what messages
will be modified (this reduces typographical errors). The newpriority value
specifies the new priority which will be used when the message(s) are
forwarded for processing. It must be in the range 1 to 100, inclusive. If not
provided on the command line, the program will prompt for it.

qchangequeue (qcq) [-y] [newqueue]
This command can be used to move messages to a different queue within the
same queue space. The queue from which messages are moved is set using
the qset command and the selection criteria for limiting the messages to be
moved are set using the qscan command. If no selection criteria are set, then
all messages on the queue will be moved: confirmation is requested before
this is done unless the -y option is specified. It is recommended that the
qlist command be executed to see what messages will be moved (this
68 BEA Tuxedo Reference Manual

qmadmin(1)
reduces typographical errors). The newqueue value specifies the new queue
name to which the message(s) will be moved. If not provided on the
command line, the program will prompt for it.

qchangetime (qct) [-y] [newtime]
This command can be used to change the execution time for messages on a
queue that allows time as an ordering criteria. The queue that is affected is set
using the qset command and the selection criteria for limiting the messages
to be updated are set using the qscan command. If no selection criteria are
set, then all messages on the queue will be changed: confirmation is requested
before this is done unless the -y option is specified. It is recommended that
the qlist command be executed to see what messages will be modified (this
reduces typographical errors). The newtime value can be either relative to the
current time or an absolute value. If not provided on the command line, the
program will prompt for it. The format of a relative onetime is +seconds>
where seconds> is the number of seconds from now that the message is to be
executed (0 implies immediately). The format of an absolute newtime is
YY[MM[DD[HH[MM[SS]]]]] which is described in qscan.

qclose
Close the currently open queue space.

qcommittrans (qcommit) [-y] [tranindex]
Heuristically commit the precommitted transaction associated with the
specified transaction index tranindex. The program will prompt for the
transaction index if not specified on the command line. If the transaction is
known to be decided and the decision was to abort, qcommittrans will fail.
The index is taken from the previous execution of the qprinttrans
command. Confirmation is requested unless the -y option is specified. This
command should be used with care.

qcreate (qcr) [queue_name [qorder [out-of-order [retries [delay
 [high [low [cmd]]]]]]]]

Create a queue in the currently open queue space. The arguments may be
given on the command line or the program will prompt for them: the queue
name, the queue ordering (fifo or lifo, by priority, by time); whether
out-of-order enqueuing is allowed (not allowed, top of queue, before a
specified msgid); the number of retries and delay time in seconds between
retries; and the high and low limits for execution of a threshold command and
the threshold command itself. The queue ordering values are fifo, lifo,
priority and time. When specifying the queue ordering, the most
significant sort value must be specified first, followed by the next most
BEA Tuxedo Reference Manual 69

 qmadmin(1)
significant sort value, etc.; fifo or lifo can only be specified as the least
significant (or only) sort value. If neither fifo or lifo is specified, then the
default is fifo within whatever other sort criteria are specified. Multiple sort
values may be specified separated by commas. The out-of-order values are
none, top or msgid. Both top and msgid may be specified separated by a
comma. The threshold values are used to allow for automatic execution of a
command when a threshold is reached. The high limit specifies when the
command is executed. The low limit must be reached before the command
will be executed again when the high limit is reached. For example, if the
limits are 100 and 50 messages, the command will be executed when 100
messages are on the queue, and will not be executed again until the queue has
been drained below 50 messages and has filled again to 100 messages. The
queue capacity can be specified in bytes or blocks used by the queue (number
followed by a "b" or "B" suffix), percentage of the queue space used by the
queue (number followed by a "%"), or total number of messages on the queue
(number followed by an "m"). The threshold type for the high and low
threshold values must be the same. It is optional whether or not the type is
specified on the low value, but if specified, it must match the high value type.
When specified on the command line, the threshold command should be
enclosed in double quotation marks if it contains white space. The retry count
indicates how many times a message can be dequeued and the transaction
rolled back, causing the message to be put back on the queue. A delay
between retries can also be specified. When the retry count is reached, the
message is moved to the error queue defined for the queue space. If it does
not exist, the message is dropped.

qdeletemsg (qdltm) [-y]
This command can be used to delete messages from a queue. The queue that
is affected is set using the qset command and the selection criteria for
limiting the messages to be deleted are set using the qscan command. If no
selection criteria are set, then all messages on the queue will be deleted:
confirmation is requested before this is done. It is recommended that the
qlist command be executed to see what messages will be deleted (this
reduces typographical errors). This command prompts for confirmation
unless the -y option is specified.

qdestroy (qds) [{ -p | -f }] [-y] [queue_name]
Destroy the named queue. By default, an error is returned if requests exist on
the queue or a process is attached to the queue space. The -p option can be
specified to "purge" any messages from the queue and destroy it, if no
processes are attached to the queue space. The -f option can be specified to
70 BEA Tuxedo Reference Manual

qmadmin(1)
"force" deletion of a queue, even if messages or processes are attached to the
queue space; if a message is currently involved in a transaction the command
fails and an error is written to userlog. This command prompts for
confirmation before proceeding unless the -y option is specified.

qinfo [queue_name]
List information for associated queue or for all queues. This command lists
the number of messages on the specified queue or all queues if no argument
is given, and the amount of space used by the messages associated with the
queue. In verbose mode, this command also lists the queue creation
parameters for each queue.

qlist (ql)

This command lists messages on a queue. The queue that is affected is set
using the qset command and the selection criteria for limiting the messages
to be listed are set using the qscan command. If no selection criteria are set,
then all messages on the queue will be listed. For each message selected, the
message identifier is printed. The scheduled processing time is printed if
execution time is among the sort criteria for the queue, and for messages that
have a scheduled retry time (due to rollback of a transaction). The correlation
identifier is printed if present and if verbose mode is on.

qopen [queue_space_name]
Open and initialize the internal structures for the specified queue space. If not
provided on the command line, the program will prompt for it. If a queue
space is already opened in qmadmin, it is closed.

qprinttrans (qpt)
Print transaction table information for currently outstanding transactions. The
transaction identifier, an index used for aborting or committing transactions
with qaborttrans or qcommittrans, and transaction status are printed.

qscan [{ [-t time1[-time2]] [-p priority1[-priority2]] [-m msgid]
[-i corrid] | none }]

This command sets the selection criteria used for the qchangeprio,
qchangequeue, qchangetime, qdeletemsg, and qlist commands. An
argument of none indicates no selection criteria; all messages on the queue
will be affected. Executing this command with no argument prints the current
selection criteria values. When command-line options give a value range (for
example, -t or -p) then the value range may not contain white space. The -t
option can be used to indicate a time value or a time range. The format of
time1 and time2 is: YY[MM[DD[HH[MM[SS]]]]] specifying the year,
month, day, hour, minute, and second. Units omitted from the date-time value
BEA Tuxedo Reference Manual 71

 qmadmin(1)
default to their minimum possible values. For example, 7502 is equivalent to
750201000000. The years 00-37 are treated as 2000-2037, 70-99 are treated
as 1970-1999 and 38-69 are invalid. The -p option can be used to indicate a
priority value or a priority range. Priority values are in the range 1 to 100,
inclusive. The -m option can be used to indicate a message identifier value,
assigned to a message by the system when it is enqueued. The message
identifier is unique within a queue and its value may be up to 32 characters in
length. Values that are shorter than 32 characters are padded on the right with
nulls (0x0). Backslash and non-printable characters (including white space
characters like space, newline, and tab) must be entered with a backslash
followed by a two-character hexadecimal value for the character (for
example, space is 20, as in hello20world). The -i option can be used to
indicate an correlation identifier value associated with a message. The
identifier value is assigned by the application, stored with the enqueued
message, and passed on to be stored with any reply or error message response
such that the application can identify responses to particular requests. The
value may be up to 32 characters in length. Values that are shorter than 32
characters are padded on the right with nulls (0x0). Backslash and
non-printable characters (including white space characters like space,
newline, and tab) must be entered with a backslash followed by a
two-character hexadecimal value for the character (for example, space is 20,
as in "my20id20value").

set [queue_name]
This command sets the queue name that is used for the qchangeprio,
qchangequeue, qchangetime, qdeletemsg, and qlist commands.
Executing this command with no argument prints the current queue name.

qsize [pages [queues [transactions [processes [messages]]]]]
Compute the size of shared memory needed for a queue space with the
specified size in pages, queues, concurrent transactions, processes,
and queued messages. If the values are not provided on the command line,
the program will prompt for them. The number of system semaphores needed
will also be printed.

qspacechange (qspch) [queue_space_name [ipckey [trans [procs
[messages [errorq [inityn [blocking]]]]]]

Change the parameters for a queue space. The queue space must not be active
(no processes can be attached to the queue space). If not provided on the
command line, the program will prompt for the information. The values are
described in qspacecreate. If the specified queue space is open in qmadmin,
72 BEA Tuxedo Reference Manual

qmadmin(1)

r a
r
n

ial
r
hen
g
tions
ing

he

d to
ee the

y
mand
it will be closed. To add new extents, qaddext must be used. The number of
queues cannot be modified.

qspacecreate (qspc) [queue_space_name [ipckey [pages [queues [trans
[procs [messages [errorq [inityn [blocking]]]]]]]]

Create a queue space for queued messages. If not provided on the command
line, the program will prompt for the information: the queue space name, the
ipckey for the shared memory segment and semaphore; number of physical
pages to allocate for the queue space; the number of queues; the number of
concurrent transactions; the number of processes concurrently attached to the
queue space; the number of messages that may be queued at one time; the
name of an error queue for the queue space; whether or not to initialize pages
on new extents for the queue space; and the blocking factor for doing queue
space initialization and warm start disk input/output. The number of physical
pages will be rounded down to the nearest multiple of bits-per-byte divided
by 2 (normally 4). The error queue is used to hold messages that have reached
the maximum number of retries (they are moved from their original queue to
the error queue). The system administrator is responsible for ensuring that
this queue is drained. The number of physical pages allocated must be large
enough to hold the overhead for the queue space (one page plus one page per
queue). If the initialization option is specified as “y” or “y”, then the space
used to hold the queue space is initialized and this command may run fo
while. In verbose mode, a period (.) is printed to the standard output afte
completing initialization of each 5% of the queue space. If the initializatio
option is not turned on but the underlying device is not a character spec
device, then the file will be initialized if it not already the size specified fo
the extent (that is, the file will be grown to allocate the specified space). W
reading and writing blocks during creation of the queue space and durin
warm start (restart of the queue space), the size of input and output opera
will be done as a multiple of the disk page size as specified by the block
factor.

qspacedestroy (qspds) [-f] [-y] [queue_space_name]
Destroy the named queue space. If not provided on the command line, t
program will prompt for it. If the specified queue space is open in qmadmin,
it will be closed. By default, an error is returned if processes are attache
the queue space or if requests exist on any queues in the queue space. S
qdestroy command for destroying queues that contain requests. The -f
option can be specified to "force" deletion of all queues, even if they ma
have messages or processes are attached to the queue space. This com
prompts for confirmation before proceeding unless the -y option is specified.
BEA Tuxedo Reference Manual 73

 qmadmin(1)
qspacelist (qspl) [queue_space_name]
List the creation parameters for the queue space. If not specified on the
command line, the program will prompt for it. If a queue space name is not
entered, then the parameters for the currently open queue space are printed
(an error occurs if a queue space is not open and a value is not entered). In
addition to printing the values for the queue space (as set either when creating
the queue space with qspacecreate or as they were last changed with
qspacechange), the sizes for all queue space extents are printed.

quit (q)
Terminate the session.

verbose (v) [{off | on}]
Produce output in verbose mode. If no option is given, then the current setting
will be toggled, and the new setting is printed. The initial setting is off.

! shellcommand
Escape to shell and execute shellcommand.

!!
Repeat previous shell command.

[text]
Lines beginning with "#" are comment lines and are ignored.

<CR>
Repeat the last command.

Example The following sequence shows how to set up a queue.

$ QMCONFIG=/dev/rawfs qmadmin
qmadmin - Copyright (c) 1987 ATT; 1991 USL. All rights reserved.
QMCONFIG=/dev/rawfs
create the list of devices on which the queue space
can exist; specify two devices, 80000 and 600
blocks, respectively
NOTE: the first one will actually contain the device list

create first device on a raw slice

> crdl /dev/rawfs 0 80000
Created device /dev/rawfs, offset 0, size 80000 on /dev/rawfs

create another device on a UNIX file

> crdl /home/queues/FS 0 600
74 BEA Tuxedo Reference Manual

qmadmin(1)
Created device /home/queues/FS, offset 0, size 600 on /dev/rawfs

if you want a list of the device list

> v Verbose mode is now on

> lidl
universal device index. 0:
 name: /dev/rawfs
 start: 0
 size: 20000
 free space map(1 entry used 47 available):
 size[1]: 79974 addr[1]: 26
universal device index. 1:
 name: /home/queues/FS
 start: 0
 size: 600
 free space map(1 entry used 47 available):
 size[1]: 600 addr[1]: 0

create a queue space

> qspacecreate
Queue space name: myqueuespace
IPC Key for queue space: 42000
Size of queue space in disk pages: 50000
Number of queues in queue space: 30
Number of concurrent transactions in queue space: 20
Number of concurrent processes in queue space: 30
Number of messages in queue space: 20000
Error queue name: ERRORQ
Initialize extents (y, n [default=n]): y
Blocking factor [default=16]: 16

open queue space

> qopen myqueuespace

use queue space defaults for queue
> qcreate
Queue name: service1
queue order (priority, time, fifo, lifo): fifo
out-of-ordering enqueuing (top, msgid, [default=none]): top,msgid
retries [default=0]: 1
retry delay in seconds [default=0]: 30
High limit for queue capacity warning (b for bytes used, B for blocks used,
 % for percent used, m for messages [default=100%]): 100m
Reset (low) limit for queue capacity warning [default=0m]: 50
BEA Tuxedo Reference Manual 75

 qmadmin(1)
queue capacity command: /usr/app/bin/mailadmin myqueuespace service1

get out of the program

> q

Security The system administrator for the queue must be the same as the BEA Tuxedo
administrator. The device on which the queue resides must be owned by the
administrator and qmadmin can only be run as the administrator for the queue. All IPC
resources allocated for the queue will be owned by the queue administrator and will be
created with mode 0600.

Portability qmadmin is supported as a BEA Tuxedo-supplied administrative tool on UNIX
operating systems only. It cannot be run from a workstation.

See Also BEA WebLogic Enterprise Administration Guide.
76 BEA Tuxedo Reference Manual

rex(1)

 and

 a
ded.
rex(1)

Name rex—off-line regular expression compiler and tester

Synopsis Compiling:

rex pattern-file C-file

Testing:

rex pattern [file...]

Description When invoked without arguments, rex reads regular expressions from the standard
input and writes initialized character arrays to the standard output. Normally, the
output would be included in a C program to preclude the need for calling recomp(3c).
This saves on both execution time and program size. The command rex compiles the
regular expressions on the standard input (normally redirected from an input file)
writes the output to the standard output (normally redirected to an output file).

The input file may contain several patterns, each of the form: name string
[string...]

where name is the C name to be used for the output array and string is the regular
expression enclosed with double quotes. Where more than one string follows a name
they are concatenated into one string. (Multiple strings are strictly a formatting
convenience.) If double quotes occur in the pattern they need to be preceded by
backslash. The output may be included in a C program or compiled and later loa
In the C program that uses the rex output, rematch(abc,line,0) will apply the
regular expression named abc to line.

Sample input file:

<cname “[a-zA-Z_][a-(3c)-Z0-9_]*”

tn “\\\\(([0-9]{3})$0\\\\)”
 “([0-9]{3})$1”
 “-”
 “([0-9]{4})$2”

Corresponding output:

/* pattern: “[a-aA-Z_][a-zA-Z0-9_]*" */
char cname[] = {
040,0,0206,012,0,0210,0141,0172,0210,0101,0132,0137,
... };

/* pattern: "\\\\(([0-9]{3})$0\\\\)([0-9]{3})$1-([0-9]{4})$2" */
BEA Tuxedo Reference Manual 77

 rex(1)
char tn[] = {
063,0,050,0202,0225,013,0,03,0206,06,0,0210,060,071,
... };

rex can be used to try patterns against test data by invoking it with one or more
arguments. The first argument is taken as a pattern (regular expression) to be applied
to each line of the files whose names are mentioned in the remaining arguments. If no
filename arguments are given the standard input is used. The special filename, -, may
be used as an argument to refer to the standard input.

When matching text is found, the line containing the match is printed and the matching
portion of the line is underlined. In addition, any text extracted for specified
subpatterns is printed on separate line(s).

For example, the command

rex ’(^|)([0-9]+)$0(|$)’

with input

... or 200 programmers in one week.
This sentence has 3 erors.
I need 12 bad men.

produces

... or 200 programmers in one week.

$0 = ‘200’

This sentence has 3 errors.

$0 = ‘3’

I need 12 bad men.

$0 = ‘12’

Diagnostics rex prints the associated error messages for errors returned from recomp() or
rematch() (see recomp(3c)). Other errors include file open errors, argument errors,
etc. and are self-explanatory.

See Also recomp(3c)
78 BEA Tuxedo Reference Manual

tidl(1)

a
 code

trol

t

e

ot
tidl(1)

Name tidl—Interface Definition Language compiler

Synopsis tidl [option] ... filename [option]...

Description tidl parses the input IDL and related ACF source file, and optionally generates
header file, and client and server stubs and auxiliary files. The generated source
can be compiled using compilers for Classic C, ANSI C, or C++.

The command-line arguments include the input IDL source file and options to con
the actions of the IDL compiler. The options are as follows:

-client type
This option specifies the client-side files to be generated. The values for type
are as follows:

all
Generates client stub and auxiliary files. This is the default if the
-client option is not specified.

stub
Generates client stub file only.

aux
Generates client auxiliary file only. Currently, auxiliary files are no
generated so this option has no effect.

none
Generates no client files.

-server type
This option specifies the server-side files to be generated. The values fortype
are as follows:

all
Generates server stub and auxiliary files. This is the default if th
-server option is not specified.

stub
Generates server stub file only.

aux
Generates server auxiliary file only. Currently, auxiliary files are n
generated so this option has no effect.

none
Generates no server files.
BEA Tuxedo Reference Manual 79

 tidl(1)
-cstub filename
Specifies the filename for the client stub file. If the filename does not have a
.c extension, the IDL compiler will add it. The default client stub name (if
-cstub is not specified) is the base name of the IDL source file (the simple
filename without any directory prefix, or any suffix following a period) with
_cstub.c appended. The associated client stub object file is the name of the
client stub file with .c changed to .o.

-sstub filename
Specifies the filename for the server stub file. If the filename does not have a
.c extension, the IDL compiler will add it. The default server stub name (if
-sstub is not specified) is the base name of the IDL source file (the simple
filename without any directory prefix, or any suffix following a period) with
_sstub.c appended. The associated server stub object file is the name of the
server stub file with .c changed to .o.

-caux filename
Specifies the filename for the client auxiliary file. If the filename does not
have a .c extension, the IDL compiler will add it. The default client auxiliary
name (if -caux is not specified) is the base name of the IDL source file (the
simple filename without any directory prefix, or any suffix following a
period) with _caux.c appended. The associated client auxiliary object file is
the name of the client auxiliary file with .c changed to .o.

-saux filename
Specifies the filename for the server auxiliary file. If the filename does not
have a .c extension, the IDL compiler will add it. The default server auxiliary
name (if -saux is not specified) is the base name of the IDL source file (the
simple filename without any directory prefix, or any suffix following a
period) with _saux.c appended. The associated server auxiliary object file is
the name of the server auxiliary file with .c changed to .o.

-header filename
Specifies the filename for the generated header file. The default header
filename (if -header is not specified) is the base name of the IDL source file
(the simple filename without any directory prefix, or any suffix following a
period) with .h appended.

-out directory
Specifies the directory in which output files are created. The default (if -out
is not specified) is to put the files in the present working directory.
80 BEA Tuxedo Reference Manual

tidl(1)
-keep type
Specifies which file types to retain. By default, the IDL compiler creates a C
source file (for example, a client stub), uses the C compiler to produce an
object file, and deletes the C source file. The file types that can be retained
are as follows:

none
Does not create any files or invoke the C compiler.

c_source
Saves only the C source files and does not invoke the C compiler.

object
Saves only the object files, deleting the C source files (this is the default).

all
Saves both the C source and object files.

-I directory
Specifies a directory in which to search for imported IDL files and include
files. White space following the -I is optional. The -I option can be specified
multiple times to list multiple directories. The default behavior is to search the
present working directory, then the directories specified with the -I option in
the order specified, and then the system IDL directory ($TUXDIR/include).
This order is also used to pass include directories to the C preprocessor and C
compiler. If a file exists in more than one directory, the first one that is found
in the search order is used.

-no_def_idir
When used with no -I options, specifies that only the present working
directory be searched for import and include files. When used with one or
more -I options, specifies that only the -I directories be searched (not the
present working directory or the system IDL directory).

-cpp_cmd "cmd"
Specifies the C preprocessor command to invoke for expanding source files.
By default, the C preprocessor is not invoked on DOS and OS/2, and defaults
to /lib/cpp, /usr/ccs/lib/cpp, or /usr/lib/cpp (in that order)
otherwise.

-no_cpp
Specifies that the C preprocessor not be invoked to expand source files. This
implies that the source files cannot have preprocessor directives (such as
macro replacements and #include).
BEA Tuxedo Reference Manual 81

 tidl(1)
-cpp_opt "opt"
Specifies additional options to be passed to the C preprocessor. The default is
the null string. The IDL compiler invokes a command line composed of the
values for -cpp_cmd, -cpp_opt, -D and -U arguments (in the order
specified), -I arguments (in the order specified), and the source filename (the
IDL or ACF filename).

-D name[=def]
Defines a name and optionally a value that is passed to the C preprocessor.
More than one symbol can be defined by specifying the -D option more than
once. White space following the -D is optional.

-U name
Undefines a name for C preprocessor. More than one symbol can be
undefined by specifying the -U option more than once. White space following
the -U is optional.

-cc_cmd "cmd"
Specifies the C compiler command for creating object files. The default (if
-cc_cmd is not specified) is "cc -c".

-cc_opt "opt"
Specifies additional C compiler options. The default (if -cc_opt is not
specified) is the null string. The IDL compiler invokes a command line
composed of the values for -cc_cmd, -cc_opt, -I arguments (in the order
specified), and the source filename (the stub or auxiliary filename).

-syntax_check
Specifies that the input source file be checked for syntax errors without
generating any output files.

-no_warn
Specifies that warning messages from the compiler are not to be printed.

-confirm
Displays IDL compiler options chosen (either explicitly or implicitly)
without compilation of the source file. When used with the -v option, it
indicates what actions would be taken without the -confirm option without
executing them (for example, messages are printed for parsing input files,
creating and compiling output files).

-v
Specifies verbose mode. Messages are printed to the standard error output
indicating actions being taken (for example, parsing input files, creating and
compiling output files).
82 BEA Tuxedo Reference Manual

tidl(1)
-version
Displays the version of the IDL compiler.

-stdin
Takes the IDL source input from standard input instead of a file. Default
filenames are generated as if the input IDL source file is named "a.idl" (for
example, the default client stub file will be named "a_cstub.c").

-cepv
Generates a Client Entry Point Vector (CEPV). By default, functions in the
client stub module are named the same as the operation names in the interface
definition. However, this will not allow for multiple versions of the interface,
interfaces with the same operation names, or both local and remote versions
of the same functions to be linked into the same client program (the operation
names will be multiply defined). When the -cepv option is specified, the
function names will be declared local to the client stub and a Client Entry
Point Vector (array of function pointers) will be defined (globally) in the
client stub with the name interface_vmajor_minor_c_epv, where
interface is the interface name, major is the major version number, and
minor is the minor version number. The interface operations must be called
indirectly using the addresses in the CEPV.

-no_mepv
Does not generate a Manager (server) Entry Point Vector (MEPV). By
default, it is assumed that the application functions in the server are named
the same as the operation names in the interface definition. However, this will
not allow for multiple versions of the interface, interfaces with the same
operation names, or both local and remote versions of the same functions to
be linked into the same server program (the operation names will be multiply
defined). Normally, a Manager Entry Point Vector (array of function
pointers) is defined (globally) in the server stub with the name
interface_vmajor_minor_s_epv, where interface is the interface
name, major is the major version number, and minor is the minor version
number, and initialized with the operation names. It is used to call the
application service functions. When the -no_mepv option is specified, the
MEPV is not generated in the server stub and the application is responsible
for setting up the structure. In this way, the application can set the entry point
names to whatever is used by the application instead of names based on the
operations.

-error all
Specifies additional error checking. By default, the IDL compiler quits after
50 errors are detected.
BEA Tuxedo Reference Manual 83

 tidl(1)
-port level
Specifies the level of portability checking. The following levels are
supported:

case
Specifies that warnings messages are to be printed if two identifiers differ
only in case.

none
Specifies no additional portability checking is to be done. This is the default.

-no_enum_lit
Specifies that enumeration literals are not to be generated in the stub files. By
default, enumeration literals are generated.

-use_const
Specifies that ANSI C const declarations are to be used for constant values
instead of #define definitions.

For the IDL source file and any imported IDL files, the compiler searches for a related
ACF with a .acf suffix added to the base name of the IDL source file. The directories
that are searched are the same directories specified for the C preprocessor (see -I and
-no_def_idir above), plus ACF files are searched for in the directory specified in the
IDL source filename.

Notices The IDL filename tbase.idl is reserved for use by the IDL compiler.

Examples Here is an example IDL source file, math1.idl.

[uuid(2048A080-0B0F-14F8-26E0-930269220000)]
interface math1
{
import "math2.idl";

long add_op([in] long first1, [in] long second);
long sub_op([in] long first1, [in] long second);
}

Here is a sample ACF source file, math1.acf.

[auto_handle]
interface math1
{
 include "stdio";
 [code] add_op([fault_status,comm_status] result);
}

84 BEA Tuxedo Reference Manual

tidl(1)
The following command line will compile math1.idl generating client side only files
out/math1_cs.c and out/math1_cs.o (no auxiliary files are needed), along with
out/math1.h. The IDL compiler will look for math2.idl (which might have the
division and multiplication operations) in the current directory, in the app
subdirectory, and in $TUXDIR/include.

tidl math1.idl -Iapp -client all -server none -keep all
-cstub math1_cs -out app

See Also uuidgen(1)
BEA Tuxedo Reference Manual 85

 tlisten(1)

other

ses

olve
e

fied in
ter

e
cified
tlisten(1)

Name tlisten—generic listener process

Synopsis tlisten [-d device] -l nlsaddr [-u {uid-# | uid-name}] [-z bits] \
[-Z bits]

Description tlisten is a network independent listener process that runs as a daemon process on
BEA Tuxedo application processors and provides remote service connections for
BEA Tuxedo processes, for example, tmboot(1). The following command-line
options are used by tlisten:

-d device
Full pathname of the network device. This parameter is optional. For relea
prior to version 6.4, it should be used if the underlying network provider
requires it.

-l nlsaddr
Network address at which the process listens for connections.

TCP/IP addresses may be specified in the following forms:
"//hostname:port_number" "//#.#.#.#:port_number"

In the first format, tlisten finds an address for hostname using the local
name resolution facilities (usually DNS). hostname must be the local
machine, and the local name resolution facilities must unambiguously res
hostname to the address of the local machine. In the second example, th
“#.#.#.#" is in dotted decimal format. In dotted decimal format, each # should
be a number from 0 to 255. This dotted decimal number represents the IP
address of the local machine. In both of the above formats, port_number is
the TCP port number at which the tlisten process will listen for incoming
requests. port_number can either be a number between 0 and 65535 or a
name. If port_number is a name, then it must be found in the network
services database on your local machine. The address can also be speci
hexadecimal format when preceded by the characters “0x”. Each charac
after the initial “0x” is a number between 0 and 9 or a letter between A and F
(case insensitive). The hexadecimal format is useful for arbitrary binary
network addresses such as IPX/SPX or TCP/IP. The address can also b
specified as an arbitrary string.The value should be the same as that spe
for the NLSADDR parameter in the NETWORK section of the configuration file.
86 BEA Tuxedo Reference Manual

tlisten(1)
-u {uid-#| uid-name}
tlisten will run as the indicated user. This option supports the startup of
tlisten as part of system initialization by root. This option is required if
the user running tlisten is root. The tlisten process can therefore be
started by root, but will not run as root. Non-root users of the tlisten
command do not need to use the -u option. Non-root users can set the -u
option, but it can only be set to their own user ID and is effectively a no-op.
Each instantiation of a tlisten process on a processor is capable of
supporting all BEA Tuxedo applications that use the same application
administrator user ID.

-z [0|40|128]
When establishing a network link between a BEA Tuxedo administrative
process and tlisten, require at least this minimum level of encryption. 0
means no encryption, while 40 and 128 specify the length (in bits) of the
encryption key. If this minimum level of encryption cannot be met, link
establishment will fail. The default value is 0.

-Z [0|40|128]
When establishing a network link between a BEA Tuxedo administrative
process and tlisten, allow encryption up to this level. 0 means no
encryption, while 40 and 128 specify the length (in bits) of the encryption
key. The default value is 128. The -z or -Z options are available only if either
the International or Domestic BEA Tuxedo system Security Add-on Package
is installed.

The tlisten process authenticates most service requests. tlisten reads a file with a
list of passwords, and any process requesting a service must present at least one of the
passwords found in the file. If the APPDIR environment variable is set, passwords will
be obtained from a file named APPDIR/.adm/tlisten.pw. If this file is not found, the
system will look for TUXDIR/udataobj/tlisten.pw, which is created when the
BEA Tuxedo system is installed. A zero-length or missing password file disables
password checking. When running in this insecure mode, the tlisten and any process
connecting to tlisten will generate a userlog warning message.

Processes which request services from tlisten such as tmboot find the passwords to
be used during authentication in files on their own machines. They use the same
methods as the tlisten to find their password files.

Environment
Variables

n TUXDIR must be set and exported before the tlisten command is invoked.

n LD_LIBRARY_PATH must be set for SVR4 applications that use shared objects. It
must be set to TUXDIR/lib prior to starting the tlisten process.
BEA Tuxedo Reference Manual 87

 tlisten(1)
n APPDIR to provide the location of the tlisten password file.

n ULOGPFX can be used to direct the file in which log messages are placed.

Note: During the installation process, an administrative password file is created.
When necessary BEA Tuxedo searches for this file in the following
directories (in the order shown):

 - APPDIR/.adm.tlisten.pw

 - TUXDIR/udataobj/tlisten.pw
To ensure that your administrative password file will be found, make
sure you have set the APPDIR and/or the TUXDIR environment
variables.

Link-level
Encryption

If the link-level encryption feature is in operation between tlisten and a requesting
process such as tmboot, then link-level encryption will be negotiated and activated
before authentication occurs.

Termination The only way to stop a tlisten process with normal termination is by sending it a
SIGTERM signal.

Recommended
Use

We recommend that you start one tlisten process for each application upon system
startup. Remember to set the TUXDIR and APPDIR environment variables before
invoking tlisten.

One alternative method for starting the tlisten process is to start it manually. The -u
option can be omitted if the tlisten process is started by the application
administrator. Duplicate tlisten command invocations using the same network
address will terminate automatically and gracefully log an appropriate message.

Network
Addresses

Suppose the local machine on which the tlisten is being run is using TCP/IP
addressing and is named backus.company.com, with address 155.2.193.18.
Further suppose that the port number at which the tlisten should accept requests is
2334. Assume that port number 2334 has been added to the network services database
under the name bankapp-nlsaddr. The address specified by the -l option could be
represented in the following ways:

//155.2.193.18:bankapp-nlsaddr
//155.2.193.18:2334
//backus.company.com:bankapp-nlsaddr
//backus.company.com:2334
0x0002091E9B02C112
88 BEA Tuxedo Reference Manual

tlisten(1)
The last of these representations is hexadecimal format. The 0002 is the first part of a
TCP/IP address. The 091E is the port number 2334 translated into a hexadecimal
number. After that each element of the IP address 155.2.193.12 is translated into a
hexadecimal number. Thus the 155 becomes 9B, 2 becomes 02 and so on.

For a STARLAN network, a recommended address of uname.tlisten will usually yield
a unique name.

Windows NT
Control Panel

Applet

Administrative privileges on a remote Microsoft Windows NT machine are required
in order to start a tlisten process on that machine through the Control Panel Applet.

See Also ubbconfig(5)
BEA Tuxedo Reference Manual 89

 tmadmin(1)

r, or

 has

e
e the
t

.

e

 it
nly

e for

s
tmadmin(1)

Name tmadmin—BEA Tuxedo Bulletin Board command interpreter

Synopsis tmadmin [-r] [-c] [-v]

Description With the commands listed below, tmadmin provides for inspection and modification
of Bulletin Boards and associated entities in either a uniprocessor, multiprocesso
networked environment. The TUXCONFIG and TUXOFFSET environment variables are
used to determine the location and offset where the BEA Tuxedo configuration file
been loaded.

If tmadmin is invoked with the -c option, it enters configuration mode. The only valid
commands are default, echo, help, quit, verbose, livtoc, crdl, lidl,
dsdl, indl, and dumptlog. tmadmin may be invoked in this mode on any node,
including inactive nodes. A node is considered active if tmadmin can join the
application as an administrative process or client (via a running BBL).

The -r option instructs tmadmin to enter the Bulletin Board as a client instead of th
administrator and provides read-only access. This is useful if it is desired to leav
administrator slot unoccupied. Only one tmadmin process can be the administrator a
a time. When the -r option is specified by a user other than the BEA Tuxedo
administrator and security is turned on, the user will be prompted for a password

The -v option causes tmadmin to display the BEA Tuxedo version number and licens
number. After printing out the information, tmadmin exits. If the -v option is entered
with either of the other two options, the others are ignored; only the information
requested by the -v option is displayed.

Normally, tmadmin may be run on any active node within an active application. If
is run on an active node that is partitioned, then commands are limited to read o
access to the local Bulletin Board. These command include bbls, bbparms, bbstat,
default, dump, dumptlog, echo, help, interfaceparms, printactiveobject,
printclient, printinterface, printfactory, printjdbcconnpool, printnet,
printqueue, printroute, printserver, printservice, printtrans,
printgroup, reconnect, quit, serverparms, serviceparms, and verbose, in
addition to the configuration commands. If the partitioned node is the backup nod
the MASTER (specified as the second entry on the MASTER parameter in the RESOURCES
section of the configuration file), the master command is also available to make thi
node the MASTER for this part of the partitioned application.
90 BEA Tuxedo Reference Manual

tmadmin(1)
If the application is inactive, tmadmin can only be run on the MASTER processor. In this
mode, all of the configuration mode commands are available plus the TLOG commands
(crlog, dslog, and inlog) and boot.

Once tmadmin has been invoked, commands may be entered at the prompt (">")
according to the following syntax: command [arguments].

Several commonly occurring arguments can be given defaults via the default
command. Commands that accept parameters set via the default command check
default to see if a value has been set. If one has not, an error message is returned.

In a networked or multiprocessor environment, a single Bulletin Board can be accessed
by setting a default machine (the logical machine id (LMID) as listed in the
MACHINES section of the UBBCONFIG file). If the default machine is set to all, all
Bulletin Boards are accessed. If machine is set to DBBL, the distinguished Bulletin
Board is addressed. The default machine is shown as part of the prompt, as in:
MASTER>.

If machine is not set via the default command, the DBBL is addressed (the local BBL
is used in a SHM configuration).

The machine value for a command can generally be obtained from the default
setting (printserver is an example). A caution is required here, however, because
some commands (the TLOG commands, for example) act on devices found through
TUXCONFIG; a default setting of DBBL or all results in an error. There are some
commands where the machine value must be provided on the command line
(logstart is an example); the value does not appear as an argument to the -m option.

After being set, a default remains in effect until the session is ended, unless changed
by another default command. Defaults may be overridden by entering an explicit
value on the command line, or unset by entering the value *. The effect of an override
lasts for a single instance of the command.

Output from tmadmin commands is paginated according to the pagination command
in use (see the paginate subcommand below).

There are some commands that have either verbose or terse output. The verbose
command can be used to set the default output level. However, each command (except
boot, shutdown and config) takes a -v or -t option to turn verbose or terse output
on for that command only. When output is printed in terse mode, some of the
information (for example, LMID or GROUP name, service or server name) may be
BEA Tuxedo Reference Manual 91

 tmadmin(1)

e
al

nse

truncated. Truncation may be at either the left or right end of the value. The more
important end of the value is not truncated. Truncation is indicated by a plus sign (+).
The entire value may be seen by re-entering the command in verbose mode.

tmadmin
Commands

Commands may be entered either by their full name or their abbreviation (as given in
parentheses), followed by any appropriate arguments. Arguments appearing in square
brackets, [], are optional; those in curly braces, {}, indicate a selection from mutually
exclusive options. Note that command-line options that do not appear in square
brackets need not appear on the command line (that is, they are optional) if the
corresponding default has been set via the default command. Ellipses following a
group of options in curly brackets, {}..., indicate that more than one of the options may
appear on the command line (at least one must appear).

aborttrans (abort) [-yes] [-g groupname] tranindex
If groupname is specified (on the command line or by default), abort the
transaction associated with the specified transaction index tranindex at the
specified server group. Otherwise, notify the coordinator of the transaction to
abort the global transaction. If the transaction is known to be decided and the
decision was to commit, aborttrans will fail. The index is taken from the
previous execution of the printtrans command. To completely get rid of a
transaction, printtrans and aborttrans must be executed for all groups
that are participants in the transaction. This command should be used with
care.

addmodule (amod) -g groupname -i srvid
 -n module_name -j main_jar
 [-C local_classpath] [-A initialization_args]

Deploys the specified module. The groupname, srvid, module’s logical
name (module_name) and the implementing main_jar file must be
specified. The groupname and srvid parameters are used to limit the scop
of the request. The two optional parameters can be used to specify a loc
class path and initialization arguments. The local_classpath parameter
can be used to specify additional classes that may be required by the
main_jar file. For example, this parameter could be used for third-party
classes, business libraries, etc. It follows the standard Java class path
semantics and is searched after the system/server class path and the
main_jar file are searched. Only JAR or ZIP files may be specified.

This command is used to deploy modules dynamically, that is, while the
server is running, also referred to as hot (run-time) deployment. In respo
to this command, the JavaServer deploys the new module and makes it
92 BEA Tuxedo Reference Manual

tmadmin(1)

e the

e

 also
 last

um

es
available to its clients. If an error occurs during the deployment attempt, it is
logged to the userlog and displayed to the tmadmin user at the console.

Note: If the JavaServer specified in this command does not have hot deployment
enabled, the request fails and no change is made. For information on
enabling hot deployment, see the description of the Dwle.dynamic option
in the “Using Server Command-Line Options” section in “Chapter 3” of
the in the BEA WebLogic Enterprise Administration Guide..

advertise (adv) {-q qaddress [-g groupname]
[-i srvid] | -g groupname -i srvid} service[:func]

Creates an entry in the service table for the indicated service. service may
be mapped onto a function func. If qaddress is not specified, then both
groupname and srvid are required to uniquely identify a server. If this
service is to be added to an MSSQ set, all servers in the set will advertis
service. If all servers in an MSSQ set cannot advertise the service, the
advertisement is disallowed. Services beginning with the character '_' ar
reserved for use by system servers and will fail to be advertised for
application servers.

bbclean (bbc) machine
Checks the integrity of all accessers of the Bulletin Board residing on
machine machine, and the DBBL as well. bbclean will gracefully remove
dead servers and will restart them if they are marked as restartable. It will
remove those resources no longer associated with any processes. As its
step, bbclean causes the DBBL to check the status of each BBL. If any BBL
does not respond within SCANUNIT seconds, it is marked as partitioned. To
clean only the Distinguished Bulletin Board, machine should be specified as
DBBL. In SHM mode, bbclean restarts the BBL, if it has failed; the machine
parameter is optional.

bbparms (bbp)
Prints a summary of the Bulletin Board's parameters, such as the maxim
number of servers, objects, interfaces, and services.

bbsread (bbls) machine
Lists the IPC resources for the Bulletin Board on machine machine. In SHM
mode, the machine parameter is optional. Information from remote machin
is not available.

bbstats (bbs)
Prints a summary of Bulletin Board statistics. (See also shmstats)
BEA Tuxedo Reference Manual 93

 tmadmin(1)

e

 path

rched

e
onse
ilable
ed
boot (b) [options]
This command is identical to the tmboot(1) command. See tmboot(1) for an
explanation of options and restrictions on use.

broadcast (bcst) [-m machine] [-u usrname] [-c cltname] [text]
Broadcasts an unsolicited notification message to all selected clients. The
message sent is a typed buffer of the type STRING with the data being text. text
may be no more than 80 characters in length. If text is to contain multiple
words, then it must be enclosed in quotation marks ("text text"). If any
parameter is not set (and does not have a default), then it is taken to be the
wildcard value for that identifier.

changeload (chl) [-m machine] {-q qaddress [-g groupname]
[-i srvid] -s service | -g groupname -i srvid -s service | -I interface
[-g groupname]} newload

Changes the load associated with the specified service or interface to
newload. If qaddress is not specified, then both groupname and srvid
must be specified. For BEA WebLogic Enterprise, interface may be
specified. If machine is set to all or is not set, the change is made on all
machines; otherwise, a local change is made on the specified machine. Local
changes are over-ridden by any subsequent global (or local) changes.

changemodule (cmod) -g groupname -i srvid
 -n module_name -j main_jar
 [-C local_classpath] [-A initialization_args]

Redeploys the specified module. The groupname, srvid, module’s logical
name (module_name) and the implementing main_jar file must be
specified. The groupname and srvid parameters are used to limit the scop
of the request. The module_name parameter identifies the module to be
updated. The two optional parameters can be used to specify a local class
and initialization arguments. The local_classpath parameter can be used
to specify additional classes that may be required by the main_jar file. For
example, this parameter could be used for third-party classes, business
libraries, etc. It follows the standard Java class path semantics and is sea
after the system/server class path and the main_jar file are searched. Only
JAR or ZIP files may be specified.

This command is used to redeploy modules dynamically, that is, while th
server is running, also referred to as hot (run-time) redeployment. In resp
to this command, the JavaServer redeploys the module and makes it ava
to its clients. If an error occurs during the redeployment attempt, it is logg
to the userlog and displayed to the tmadmin user at the console.
94 BEA Tuxedo Reference Manual

tmadmin(1)

t be

ed;
 the

ified

ent

to

ses

nts
Note: Using the changemodule command to redeploy a module is a shortcut for
requesting undeployment, immediately followed by deployment—a
process that requires that all the parameters necessary for deploymen
specified again. The main_jar file that is specified must be different from
the JAR file that was specified when the module was originally deploy
this is because the Java run-time environment will usually still be using
previous JAR and will have it locked. The -C and the -A options, if
specified, do not necessarily have to match the values that were spec
when the module was originally deployed.

Note: If the JavaServer specified in this command does not have hot deploym
enabled, the request fails and no change is made. For information on
enabling hot deployment, see the description of the Dwle.dynamic option
in the “Using Server Command-Line Options” section in “Chapter 3” of
the BEA WebLogic Enterprise Administration Guide..

changepriority (chp) [-m machine] { -q qaddress [-g groupname]
[-i srvid] -s service | -g groupname -i srvid -s service | -I interface [-g
groupname]} newpri

Changes the dequeuing priority associated with the specified service or
interface to newpri. If qaddress is not specified, then both groupname and
srvid must be specified. For BEA WebLogic Enterprise, interface may be
specified. If machine is set to all or is not set, the change is made on all
machines; otherwise, a local change is made on the specified machine. Local
changes are over-ridden by any subsequent global (or local) changes.

changetrace (chtr) [-m machine] [-g groupname] [-i srvid] newspec
Changes the runtime tracing behavior of currently executing processes
newspec. (See tmtrace(5) for the syntax of newspec.) To change the trace
specification of a specific currently-running server process, supply the -g and
-i options. To change the configuration of currently-running server
processes in a specific group, supply the -g option without the -i option. To
change the configuration of all currently-running client and server proces
on a particular machine, specify the -m option. If none of the -g, -i, and -m
options is supplied, then all non-administrative processes on the default
machine are affected. This command does not affect the behavior of clie
or servers that are not currently executing, nor /WS clients.
BEA Tuxedo Reference Manual 95

 tmadmin(1)
changetrantime (chtt) [-m machine] {-q qaddress [-g groupname] -
[-i srvid] -s service | -g groupname -i srvid -s service | -I interface
[-g groupname]} newtlim

Changes the transaction timeout value associated with the specified service
or interface to newtlim. If qaddress is not specified, then both groupname
and srvid must be specified. For BEA WebLogic Enterprise, interface
may be specified. If machine is set to all or is not set, the change is made on
all machines; otherwise, a local change is made on the specified machine.
Local changes are over-ridden by any subsequent global (or local) changes.

committrans (commit) [-yes] -g groupname tranindex
Commits the transaction associated with the specified transaction index
tranindex at the specified server group. committrans will fail if the
transaction has not been pre-committed at the specified server group or if the
transaction is known to be abort-only. The index is taken from the previous
execution of the printtrans command. This command prompts for
confirmation before proceeding unless the -yes option is used. This
command should be used with care.

config (conf)
This command is identical to the tmconfig(1) command. See tmconfig(1)
for an explanation of its use.

crdl -b blocks -z config -o configoffset [-O newdefoffset] [newdevice]
Creates an entry in the universal device list. blocks specifies the number of
physical blocks to be allocated on the device. The default blocks value is
initialized to 1000 blocks. configoffset specifies the block number at
which space may begin to be allocated. If the -o option is not given and a
default has not been set, the value of the environment variable FSOFFSET is
used. If FSOFFSET is not set, the default is 0. config points to the first device
(which contains the device list); it must be an absolute pathname (starting
with /). If the -z option is not given and a default has not been set, the path
named by the FSCONFIG environment variable is used. The newdevice
argument to the crdl command, if specified, points to the device being
created; it must be an absolute pathname (starting with /). If this parameter is
not given, the newdevice defaults to the config device. newdefoffset
specified an offset to the beginning of newdevice. If not specified with the
-O (capital O) option of default, the default is 0 (zero).

crlog (crlg) -m machine
Creates the DTP transaction log for the named or default machine (it cannot
be "DBBL" or "all"). An error is returned if a TLOG is not defined for the
96 BEA Tuxedo Reference Manual

tmadmin(1)
machine on the configuration. This command references the TUXCONFIG file
to determine the BEA Tuxedo file system containing the TLOG, the name of
the TLOG in that file system, the offset, and the size (see ubbconfig(5)).

default (d) [-g groupname] [-i srvid] [-m machine] [-u usrname] [-c cltname]
[-q qaddress] [-s service] [-b blocks] [-o offset] [-z config] [-a { 0|1|2}]
[-I interface] [-B objectid] [-r routingname] [-p jdbcconnpool]

Sets the corresponding argument to be the default group name, server ID,
machine, username, client name, queue address, service name, device blocks,
device offset, or UDL configuration device path, which must be an absolute
pathname starting with /. See printservice for information on the -a
option. For BEA WebLogic Enterprise systems, you can also set
corresponding arguments to be the default object interface name, object ID,
factory-based routing name, or JDBC connection pool. When the object ID
parameter is specified (with -B), the machine argument (-m) must also be
specified. All defaults may be unset by specifying * as an argument. If
machine has been set to a machine identifier, and later retrievals are to be
done from the Distinguished Bulletin Board, machine should be set to DBBL.
Unsetting the machine (-m *) is equivalent to setting it to DBBL. If the
default command is entered with no arguments, the current defaults are
printed.

dsdl [-yes] -z config [-o offset] dlindex
Destroys an entry found in the universal device list. The dlindex argument
is the index on the universal device list of the device that is to be removed
from the device list. Entry 0 cannot be removed until all VTOC files and other
device list entries are destroyed first (because entry 0 contains the device
which holds the device list and table of contents, destroying it also destroys
these two tables). config points to the device containing the universal device
list; it must be an absolute pathname (starting with /). If the -z option is not
given and a default has not been set, the path named by the FSCONFIG
environment variable is used. offset specifies an offset into config. If the
-o option is not given and a default has not been set, the value of the
environment variable FSOFFSET is used. If FSOFFSET is not set, the default is
0. This command prompts for confirmation before proceeding unless the
-yes option is used.

dslog (dslg) [-yes] -m machine
Destroys the DTP transaction log for the named or default machine (it cannot
be "DBBL" or "all"). An error is returned if a TLOG is not defined for the
machine, if the application is not inactive, or if outstanding transaction
records exist on the log. The term outstanding transactions means that a
BEA Tuxedo Reference Manual 97

 tmadmin(1)
global transaction has been committed but an end-of-transaction has not yet
been written. This command references the TUXCONFIG file to determine the
BEA Tuxedo file system containing the TLOG and name of the TLOG in that
file system. This command prompts for confirmation before proceeding
unless the -yes option is specified.

dump (du) filename
Dumps the current Bulletin Board into the file filename.

dumptlog (dl) -z config [-o offset] [-n name] [-g groupname] filename
Dumps an ASCII version of the TLOG into the specified filename. The TLOG
is located on the specified config and offset, and has the specified name. If the
-n option is not given and a default has not been set, the name "TLOG" is
used. config points to the device containing the universal device list; it must
be an absolute pathname (starting with /). If the -z option is not given and a
default has not been set, the path named by the FSCONFIG environment
variable is used. The -o offset option can be used to specify an offset into
config. If the -o option is not given and a default has not been set, the value
of the environment variable FSOFFSET is used. If FSOFFSET is not set, the
default is 0. If groupname is specified, then only log records for transactions
where that group is the coordinator will be dumped.

echo (e) [{off | on}]
Echoes input command lines when set to on. If no option is given, then the
current setting is toggled, and the new setting is printed. The initial setting is
off.

help (h) [{command | all}]
Prints help messages. If command is specified, the abbreviation, arguments,
and description for that command are printed. all causes a description of all
commands to be displayed. Omitting all arguments causes the syntax of all
commands to be displayed.

initdl (indl) [-yes] -z config [-o offset] dlindex
Reinitializes a device on the device list. The argument dlindex is the index of
the device on the universal device list of the device that is to be reinitialized.
All space on the specified device is freed; this means that any files, etc., stored
on the device may be overwritten in the future so this command must be used
cautiously. This command prompts for confirmation before proceeding
unless the -yes option is used. config points to the device containing the
universal device list; it must be an absolute pathname (starting with /). If the
-z option is not given and a default has not been set, the path named by the
FSCONFIG environment variable is used. The -o offset option can be used
98 BEA Tuxedo Reference Manual

tmadmin(1)
to specify an offset into config. If the -o option is not given and a default has
not been set, the value of the environment variable FSOFFSET is used. If
FSOFFSET is not set, the default is 0.

inlog [-yes] -m machine
Reinitializes the DTP transaction log for the named or default machine (it
cannot be "DBBL" or "all"). An error is returned if a TLOG is not defined for
the machine or if the application is not inactive. If outstanding transactions
exist on the TLOG, data may be inconsistent across resource managers acting
as participants in these transactions since the resource managers may abort
the local transaction instead of correctly committing the transaction. This
command references the TUXCONFIG file to determine the BEA Tuxedo file
system containing the TLOG and name of the TLOG in that file system. This
command prompts for confirmation before proceeding unless the -yes option
is specified.

interfaceparms (ifp) -g groupname -I interface
Prints information about a specific object interface, including the name of the
interface, and the load, priority, timeout, and transaction timeout value
associated with it. The groupname and interface arguments must be
unique.

lidl -z config [-o offset] [dlindex]
Prints the universal device list. For each device the following is listed: the
name, the starting block, and the number of blocks on the device. In verbose
mode, a map is printed which shows free space (starting address and size of
free space). If dlindex is specified, then only the information for that device
list entry is printed. config points to the device containing the universal device
list; it must be an absolute pathname (starting with /). If the -z option is not
given and a default has not been set, the path named by the FSCONFIG
environment variable is used. The -o offset option can be used to specify an
offset into config. If the -o option is not given and a default has not been set,
the value of the environment variable FSOFFSET is used. If FSOFFSET is not
set, the default is 0.

livtoc -z config [-o offset]
Prints information for all VTOC table entries. The information printed for each
entry includes the name of the VTOC table, the device on which it is found, the
offset of the VTOC table from the beginning of the device and the number of
pages allocated for that table. config points to the device containing the
universal device list; it must be an absolute pathname (starting with /). If the
-z option is not given and a default has not been set, the path named by the
BEA Tuxedo Reference Manual 99

 tmadmin(1)
FSCONFIG environment variable is used. The -o offset option can be used
to specify an offset into config. If the -o option is not specified, the value of
the environment variable FSOFFSET is used. If FSOFFSET is not set, the
default is 0.

loadtlog -m machine filename
Reads the ASCII version of a TLOG from the specified filename (produced by
dumptlog) into the existing TLOG for the named or default machine (it
cannot be "DBBL" or "all").

logstart machine
Forces a warm start for the TLOG information on the specified machine. This
should normally be done following a loadtlog and after disk relocation
during server group migration.

master (m) [-yes]
If run on the backup node when partitioned, the backup node takes over as the
acting master node and a DBBL is booted to take over administrative
processing. If run on the master node when the backup node is acting as the
master, the DBBL is migrated to the master node, and the backup node is no
longer the acting master node. This command prompts for confirmation
before proceeding unless the -yes option is specified.

migrategroup (migg) [-cancel] group_name
The migrategroup command takes the name of a server group. If the
configuration file specifies the MIGRATE option and an alternate location for
the group, all servers in group_name are migrated to the alternate location.
Servers must be shutdown for migration with the command: shutdown -R
-g groupname. The -R option retains server names in the Bulletin Board so
that migration can be done. The migration can be canceled after the
shutdown -R by the command: migrategroup -cancel groupname. The
-cancel option deletes the server names from the Bulletin Board.

migratemach (migm) [-cancel] machine
All servers running on the specified machine are migrated to their alternate
location. Servers must be shutdown for migration with the command:
shutdown -R -l machine When the migratemachine command is used,
all server groups located on machine must have the same alternate location
(otherwise migrategroup must be used). Migration of an LMID (that is,
machine) that contains /Host gateway servers implies the migration of these
gateway servers to the alternate LMID. Specifying the -cancel option causes
the cancellation of an in progress migration. In progress means that the
100 BEA Tuxedo Reference Manual

tmadmin(1)
servers have been shutdown with the -R option on tmshutdown but have not
yet been migrated.

paginate (page) [{off | on}]
Paginates output. If no option is given, then the current setting will be
toggled, and the new setting is printed. he initial setting is on, unless either
standard input or standard output is a non-tty device. Pagination may only
be turned on when both standard input and standard output are tty
devices.The shell environment variable PAGER may be used to override the
default command used for paging output. The default paging command is
indigenous to the native operating system environment, for example, the
command pg is the default in a UNIX system operating environment.

passwd
Prompts the administrator for a new application password in an application
requiring security.

pclean (pcl) machine
pclean first forces a bbclean on the specified machine to restart or cleanup
any servers that may require it. If machine is partitioned, entries for processes
and services identified as running on machine are removed from all
non-partitioned Bulletin Boards. If machine is not partitioned, any processes
or services that can not be restarted or cleaned up are removed.

printclient (pclt) [-m machine] [-u usrname] [-c cltname]
Prints information for the specified set of client processes. If no arguments or
defaults are set, then information on all clients is printed. The -m, -u, and
-c options or defaults can be used to restrict the information to any
combination of machine, username, or client name.

printconn (pc) [-m machine]
Prints information about conversational connections. The -m option or default
can be used to restrict the information to connections to or from the specified
machine. A machine value of "all" or "DBBL" will print information from all
machines.

printactiveobject (pao) [-B objectid] [-m machine]
Prints information about objects that are active in the domain. The
information includes the object ID, interface name, service name, program
name, group ID, process ID, reference count, and type. The command accepts
an object ID and a machine ID as optional parameters. If no object ID is
specified, information for all active objects is printed. If no machine ID is
specified, information is provided for all active objects on the machine where
BEA Tuxedo Reference Manual 101

 tmadmin(1)
the command is issued. Any object ID that contains over 128 characters is
displayed as a 40-character, alphanumeric, hash value. Types are either
CORBA or JAVA.

printfactory (pf)
Prints information about object factories registered with the factory finder.
The information includes the name of the interface, its factory identifier, and
attributes of the current factory status. This command takes no arguments.

printgroup (pg) [-m machine] [-g groupname]
Prints server group table information. The default is to print information for
all groups. The -g and -m options or defaults can be used to restrict the
information to a combination of group or machine. The information printed
includes the server group name, the server group number, primary and
alternate LMIDs, and the current location.

printinterface (pif) [-m machine] [-g groupname] [-I interface]
Prints information about specified object interfaces, including the interface
name, queue name, group ID, machine ID, routing name, and the number of
requests done by the interface. The command accepts a machine name, group
name, and interface name as optional parameters. If a machine name is
specified, the number of active objects for the interface is printed. Otherwise,
a hyphen (-) indicates that the information about active objects is unavailable.

printjdbcconnpool (pjcp) [-g groupname] [-i srvid]
[-p jconnpoolname]

Prints information about JDBC connection pools. The default prints
information about all connection pools configured in the domain. The display
can be restricted by group, server, or connection pool using the -g, -i, and
-p options. High-water mark of connections, clients currently waiting, and
other details are displayed in verbose mode. For more information, see the
BEA WebLogic Enterprise Administration Guide..

printmodule (pmod) [-g groupname] [-i srvid]
Displays information about all the modules installed in the domain (such as
EJB or CORBA Java archive files).

printnet (pnw) [mach_list]
Prints network connection information. The default is to print information for
all machines. The printnet command optionally takes a comma separated list
of machines (LMIDs) as arguments. If specified, information is restricted to
network connections involving the specified machines. For each machine, an
indication is given if the machine is partitioned. If not partitioned,
102 BEA Tuxedo Reference Manual

tmadmin(1)
information is printed indicating the machines to which it is connected and
counts of messages in and out.

printqueue (pq) [qaddress]
Prints queue information for all application and administrative servers. The
default is to print information about all queues. The qaddress command line
or default can be used to restrict information to a specific queue. Output
includes the server name and the name of the machine on which the queues
reside.

printroute (pr) [-r routingname]
Prints information about factory-based routing definitions, including routing
name, type, field, and ranges. If routingname is not specified, all existing
routes are displayed. This commands prints routes for both BEA Tuxedo data
dependent routing and BEA WebLogic Enterprise factory-based routing. The
type field in the output displays FACTORY for factory-based routing entries
and SERVER for data-dependent routing entries. When information for
data-dependent routing entries has been requested in verbose mode, the
output includes buffer type and field type.

printserver (psr) [-m machine] [-g groupname] [-i srvid] [-q qaddress]
Prints information for application and administrative servers. The -q, -m, -g
and -i options can be used to restrict the information to any combination of
queue, machine, group or server. Information specific to JavaServers is
printed only in verbose mode.

printservice (psc) [-m machine] [-g groupname] [-i srvid] [-a { 0|1|2 }]
[-q qaddress] [-s service]

Prints information for application and administrative services. The -q, -m, -g,
-i and -s options can be used to restrict the information to any combination
of queue address, machine, group, server or service. The -a option allows you
to select the class of service; -a0 limits the display to application services,
-a1 selects application services plus system services callable by an
application, -a2 selects both of those plus system services callable by BEA
Tuxedo.

printtrans (pt) [-g groupname] [-m machine]
Prints global transaction table information for either the specified or the
default machine. If machine is "all" or "DBBL," then information will be
merged together from transaction tables at all non-partitioned machines in the
application. The command line or default groupname value can be used to
restrict the information to transactions where the group is a participant
(including the coordinator) in the transaction. When printed in terse mode, the
BEA Tuxedo Reference Manual 103

 tmadmin(1)
transaction identifier, an index used for aborting or committing transactions
with aborttrans or committrans, transaction status, and count of
participants is printed. In verbose mode, transaction timeout information and
participant information (for example, server group names and statuses
including who the coordinator is) is also printed.

quit (q)
Terminates the session.

reconnect (rco) non-partitioned_machine1 partitioned_machine2
Initiates a new connection from the non-partitioned machine to the
partitioned machine. reconnect forces a new connection from the
non-partitioned machine to the partitioned machine. If a connection is already
active, it is closed before the reconnect. This may cause in-transit messages
to be lost, resulting in transaction timeouts. It is possible for a machine or
network connection to be down, but the network interface driver will continue
to accept and buffer requests without any error indication to the BRIDGE. In
this case, reconnect will fail, forcing the BRIDGE to recognize that the
remote machine cannot be reached. Note that in most cases, after network
problems are resolved, the BRIDGE reconnects automatically, making manual
intervention (with reconnect) unnecessary.

removemodule (rmod) -g groupname -i srvid -n module_name
Undeploys the specified module. The groupname and srvid parameters are
used to limit the scope of the request. The module_name parameter identifies
the module to be removed.

This command is used to undeploy modules dynamically, that is, while the
server is running, also referred to as hot (run-time) undeployment. In response
to this command, the JavaServer undeploys the module and it is no longer
available to clients. If an error occurs during the undeployment attempt, it is
logged to the userlog and displayed to the tmadmin user at the console.

Note: If the JavaServer specified in this command does not have hot deployment
enabled, the request fails and no change is made. For information on
enabling hot deployment, see the description of the Dwle.dynamic option
in the “Using Server Command-Line Options” section in “Chapter 3” of
the BEA WebLogic Enterprise Administration Guide..
104 BEA Tuxedo Reference Manual

tmadmin(1)
resume (res) {-q qaddress | -g groupname | -i srvid | -s service | -I
interface} . . .

Resumes (unsuspend) services. The -q, -g, -s, -I, and -i options can be
used to restrict the resumed services to any combination of queue, group,
service, interface, and server. (At least one of these options must be specified
or have a default.) Thus > resume -q servq8 is a shorthand way of
unsuspending all services advertised on the queue with the address servq8.
Once a suspended service is resumed, the offering server will be selected as
a candidate server for that service, as well as for other (unsuspended) services
it may offer. If multiple servers are reading from a single queue, the status of
a particular service is reflected in all servers reading from that queue.

serverparms (srp) -g groupname -i srvid
Prints the parameters associated with the server specified by groupname and
srvid for a group.

serviceparms (scp) -g groupname -i srvid -s service
Prints the parameters associated with the service specified by groupname,
srvid and service.

shmstats (sstats) [ex | app]
If MODEL SHM is specified in the configuration file, shmstats can be used to
assure more accurate statistics. When entered with no argument, shmstats
returns the present setting of the TMACCSTATS flag of the bbparms.options
member of the Bulletin Board structure. This tells you whether statistics
presently being gathered are exact or approximate. If the command is entered
with ex specified, shmstats turns on the TMACCSTATS flag, locks the
Bulletin Board and zeroes out the counters for server table, queue table and
service table entries.

shutdown (stop) [options]
This command is identical to the tmshutdown(1) command. tmshutdown
options can be used to select servers to be stopped. See tmshutdown(1) for
an explanation of options and restrictions on use.

suspend (susp) {-q qaddress | -g groupname | -i srvid | -s service | -I
interface} . . .

Suspends services. The -q, -g, -s, -I, and -i options can be used to restrict
the suspended services to any combination of queue, group, service, interface,
and server (At least one of these options must be specified or have a default.)
Thus > suspend -q servq8 is a shorthand way of suspending all services
advertised on the queue with the address servq8. When a service is
BEA Tuxedo Reference Manual 105

 tmadmin(1)
suspended, the offering server will no longer be selected as a candidate server
for that service, although it will continue to be selected to process other
services it may offer. Queued requests for the suspended service are
processed until the queue is drained. If multiple servers are reading from a
single queue, the status of a particular service is reflected in all servers
reading from that queue.

unadvertise (unadv)
{-q qaddress [-g groupname] [-i srvid] | -g groupname -i srvid}
service
Removes an entry in the service table for the indicated service. If qaddress
is not specified, then both groupname and srvid are required to uniquely
identify a server. Specifying either a queue or a particular server on that queue
achieve the same results. If this service is to be removed from a multiple
server, single queue (MSSQ) set, then the advertisement for service will be
removed from all servers reading from that queue.

verbose (v) [{off | on}]
Produces output in verbose mode. If no option is given, then the current
setting will be toggled, and the new setting is printed. The initial setting is
off. The -v (verbose) and -t (terse) options on individual commands can be
used to temporarily override the current setting.

! shellcommand
Escapes to shell and execute shellcommand.

!!
Repeats previous shell command.

[text]
Lines beginning with "#" are comment lines and are ignored.

CR>
Repeats the last command.

Security When tmadmin runs as the administrator, it does not pass through security since it is
already checked to be the application administrator’s login ID.

The only time that tmadmin may run as someone other than the application
administrator is if the -r option is used to access the application as a client. If such a
user invokes tmadmin with the -r option, and if security is turned on for the
application, then the application password is required to access application data. If
standard input is a terminal, then tmadmin will prompt the user for the password with
106 BEA Tuxedo Reference Manual

tmadmin(1)
echo turned off on the reply. If standard input is not a terminal, the password is
retrieved from the environment variable, APP_PW. If this environment variable is not
specified and an application password is required, then tmadmin will fail.

Environment
Variables

tmadmin acts as an application client if the -r option is used or if it cannot register as
the application administrator. If this is the case, then the APP_PW environment variable
must be set to the application password in a security application if standard input is not
from a terminal.

Diagnostics If the tmadmin command is entered before the system has been booted, the following
message is displayed:

No bulletin board exists. Entering boot mode

>

tmadmin then waits for a boot command to be entered.

If the tmadmin command is entered, without the -c option, on an inactive node that is
not the MASTER, the following message is displayed and the command terminates:

Cannot enter boot mode on non-master node.

If an incorrect application password is entered or is not available to a shell script
through the environment, then a log message is generated, the following message is
displayed and the command terminates:

Invalid password entered.

Interoperability tmadmin may be run on any node within an active interoperating application.
However, the commands and command-line arguments available are restricted to those
available via tmadmin in the release corresponding to the node where tmadmin is
running. For example, the commands broadcast, passwd and printclient are not
available on Release 4.1 nodes.

Portability tmadmin is supported as a BEA Tuxedo-supplied administrative tool on UNIX
operating systems only.

Notices The machine option has no effect in a non-networked uniprocessor environment.

See Also tmloadcf(1), tmboot(1), tmshutdown(1), compilation(5), ubbconfig(5), BEA
WebLogic Enterprise Administration Guide.
BEA Tuxedo Reference Manual 107

 tmboot(1)

aving

d in
,

rvices

rs are

e
tmboot(1)

Name tmboot—bring up a BEA Tuxedo configuration

Synopsis tmboot [-l lmid] [-g grpname] [-i srvid] [-s aout] [-o sequence]
[-S] [-A] [-b] [-B lmid] [-T grpname] [-e command] [-w] [-y] [-q]
[-n] [-c] [-M] [-d1]

Description tmboot brings up a BEA Tuxedo application in whole or in part depending on the
options specified. tmboot can be invoked only by the administrator of the Bulletin
Board (as indicated by the UID parameter in the configuration file) or by root. tmboot
can be invoked only on the machine identified as MASTER in the RESOURCES section of
the configuration file, or the backup acting as the MASTER, that is, with the DBBL
already running (via the master command in tmadmin(1)). Except, if the -b option is
used; in that case, the system can be booted from the backup machine without it h
been designated as the MASTER.

With no options, tmboot executes all administrative processes and all servers liste
the SERVERS section of the configuration file named by the environment variables
TUXCONFIG and TUXOFFSET. If the MODEL is MP, a DBBL administrative server is started
on the machine indicated by the MASTER parameter in the RESOURCES section. An
administrative server (BBL) is started on every machine listed in the MACHINES section.
For each group in the GROUPS section, TMS servers are started based on the TMSNAME
and TMSCOUNT parameters for each entry. All administrative servers are started
followed by servers in the SERVERS sections. Any TMS or gateway servers for a group
are booted before the first application server in the group is booted. The TUXCONFIG
file is propagated to remote machines as necessary. tmboot normally waits for a
booted process to complete its initialization (that is, tpsvrinit()) before booting the
next process.

Booting a gateway server implies that the gateway advertises its administrative
service, and also advertises the application services representing the foreign se
based on the CLOPT parameter for the gateway (-A will cause all services defined when
the gateway is built with buildgateway(1) to be advertised; -s can be used to give a
list of services). If the instantiation has the concept of foreign servers, these serve
booted by the gateway at this time.

Booting an LMID is equivalent to booting all groups on that LMID.

Application servers are booted in the order specified by the SEQUENCE parameter, or in
the order of server entries in the configuration file (see description in ubbconfig(5)).
If two or more servers in the SERVERS section of the configuration file have the sam
SEQUENCE parameter, then tmboot may boot these servers in parallel and will not
108 BEA Tuxedo Reference Manual

tmboot(1)

r

ssful,

nce
eters.

d for

 in

r the

,
continue until they all complete initialization. Each entry in the SERVERS section can
have a MIN and MAX parameter. tmboot boots MIN application servers (the default is 1
if MIN is not specified for the server entry) unless the -i option is specified; using the
-i option causes individual servers to be booted up to MAX occurrences.

If a server can not be started, a diagnostic is written on the central event log (and to the
standard output, unless -q is specified), and tmboot continues—except that if the
failing process is a BBL, servers that depend on that BBL are silently ignored; if the
failing process is a DBBL, tmboot ignores the rest of the configuration file. If a serve
is configured with an alternate LMID and fails to start on its primary machine, tmboot
automatically attempts to start the server on the alternate machine and, if succe
sends a message to the DBBL to update the server group section of TUXCONFIG.

For servers in the SERVERS section, only CLOPT, SEQUENCE, SRVGRP and SRVID are
used by tmboot. Collectively, these are known as the server's boot parameters. O
the server has been booted, it reads the configuration file to find its runtime param
(See ubbconfig(5) for a description of all parameters.)

All administrative and application servers are booted with APPDIR as their current
working directory. The value of APPDIR is specified in the configuration file in the
MACHINES section for the machine on which the server is being booted.

The search path for the server executables is APPDIR, followed by TUXDIR/bin,
followed by /bin and /usr/bin, followed by any PATH specified in the ENVFILE for
the MACHINE. The search path is only used if an absolute path name is not specifie
the server. Values placed in the server's ENVFILE are not used for the search path.

When a server is booted, the variables TUXDIR, TUXCONFIG, TUXOFFSET, and
APPDIR, with values specified in the configuration file for that machine, are placed
the environment. The environment variable LD_LIBRARY_PATH is also placed in the
environment of all servers. Its value defaults to
$APPDIR:$TUXDIR/lib:/lib:/usr/lib:lib> where lib> is the value of the first
LD_LIBRARY_PATH= line appearing in the machine ENVFILE. See ubbconfig(5) for
a description of the syntax and use of the ENVFILE.

The ULOGPFX for the server is also set up at boot time based on the parameter fo
machine in the configuration file. If not specified, it defaults to $APPDIR/ULOG.

All of these operations are performed before the application initialization function
tpsvrinit(), is called.
BEA Tuxedo Reference Manual 109

 tmboot(1)
Many of the command-line options of tmboot serve to limit the way in which the
system is booted and can be used to boot a partial system. The following options are
supported:

-l lmid
For each group whose associated LMID parameter is lmid, all TMS and gateway
servers associated with the group are booted and all servers in the SERVERS
section associated with those groups are executed.

-g grpname
All TMS and gateway servers for the group whose SRVGRP parameter is
grpname are started followed by all servers in the SERVERS section associated
with that group. TMS servers are started based on the TMSNAME and TMSCOUNT
parameters for the group entry.

-i srvid
All servers in the SERVERS section whose SRVID parameter is srvid are
executed.

-s aout
All servers in the SERVERS section with name aout are executed. This option
can also be used to boot TMS and gateway servers; normally this option
would be used in this way in conjunction with the -g option.

-o sequence
All servers in the SERVERS section with SEQUENCE parameter sequence are
executed.

-S
All servers in the SERVERS section are executed.

-A
All administrative servers for machines in the MACHINES section are
executed. Use this option to guarantee that the DBBL and all BBL and BRIDGE
processes are brought up in the correct order (see also the -M option).

-b
Boots the system from the BACKUP machine, (without having to make it the
MASTER).

-B lmid
A BBL is started on a processor with logical name lmid.

-M
This option starts administrative servers on the master machine. If the MODEL
is MP, a DBBL administrative server is started on the machine indicated by the
110 BEA Tuxedo Reference Manual

tmboot(1)
MASTER parameter in the RESOURCES section. A BBL is started on the MASTER
machine, and a BRIDGE is started if the LAN option and a NETWORK entry are
specified in the configuration file.

-d1
Causes command-line options to be printed on the standard output. Useful
when preparing to use sdb to debug application services.

-T grpname
All TMS servers for the group whose SRVGRP parameter is grpname are started
(based on the TMSNAME and TMSCOUNT parameters associated with the group
entry). This option is the same as booting based on the TMS server name (-s
option) and the group name (-g).

-e command
Causes command to be executed if any process fails to boot successfully.
command can be any program, script, or sequence of commands understood
by the command interpreter specified in the SHELL environment variable.
This allows an opportunity to bail out of the boot procedure. If command
contains white space, the entire string must be enclosed in quotes. This
command is executed on the machine on which tmboot is being run, not on
the machine where the server is being booted.

-w
Informs tmboot not to wait for servers to complete initialization before
booting another server. This option should be used with caution. BBLs depend
on the presence of a valid DBBL, ordinary servers require a running BBL on the
processor on which they are placed. These conditions cannot be guaranteed if
servers are not started in a synchronized manner. This option overrides the
waiting that is normally done when servers have sequence numbers.

-y
Assumes a yes answer to a prompt that asks if all administrative and server
processes should be booted. (The prompt appears only when the command is
entered with none of the limiting options.)

-q
Suppresses the printing of the execution sequence on the standard output. It
implies -y.

-n
The execution sequence is printed, but not performed.

-c
Minimum IPC resources needed for this configuration are printed.
BEA Tuxedo Reference Manual 111

 tmboot(1)
When the -l, -g, -i, -o, and -s options are used in combination, only servers that
satisfy all qualifications specified will be booted. The -l, -g, -s, and -T options cause
TMS servers to be booted; the -l, -g, and -s options cause gateway servers to be
booted; the -l, -g, -i, -o, -s, and -S options apply to application servers. Options that
boot application servers will fail if a BBL is not available on the machine.The -A, -M,
and -B options apply only to administrative processes.

The standard input, standard output, and standard error file descriptors will be closed
for all booted servers.

Interoperability tmboot must run on the master node, which in an interoperating application must be
the highest release available. tmboot detects and reports configuration file conditions
that would lead to the booting of administrative servers such as workstation listeners
on sites that cannot support them.

Portability tmboot is supported as a BEA Tuxedo-supplied administrative tool on UNIX
operating systems only.

Environment
Variables

During the installation process, an administrative password file is created. When
necessary, BEA Tuxedo searches for this file in the following directories (in the order
shown): APPDIR/.adm/tlisten.pw TUXDIR/udataobj/tlisten.pw. To ensure
that your password file will be found, make sure you have set the APPDIR and/or
TUXDIR environment variables.

Link-Level
Encryption

If the link-level encryption feature is in operation between tmboot and tlisten,
link-level encryption will be negotiated and activated first to protect the process by
which messages are authenticated.

Diagnostics If TUXCONFIG is set to a non-existent file, two fatal error messages are displayed:
error processing configuration file configuration file not found.

If tmboot fails to boot a server, it will exit with exit code 1 and the user log should be
examined for further details; otherwise it will exit with exit code 0.

If tmboot is run on an inactive non-master node, a fatal error message is displayed:
tmboot cannot run on a non-master node.

If tmboot is run on an active node that is not the acting master node, a fatal error
message is displayed: tmboot cannot run on a non acting-master node in
an active application.

If the same IPCKEY is used in more than one TUXCONFIG file, tmboot fails with the
following message: Configuration file parameter has been changed since
last tmboot.
112 BEA Tuxedo Reference Manual

tmboot(1)
If there are multiple node names in the MACHINES section in a non-LAN configuration,
a fatal error message is displayed: Multiple nodes not allowed in MACHINES
for non-LAN application.

If tlisten is not running on the MASTER machine in a LAN application, a warning
message will be printed. In this case, tmadmin(1) will not be able to run in
administrator mode on remote machines; it will be limited to read-only operations.
This also means that the backup site will be unable to reboot the master site after
failure.

Examples To start only those servers located on the machines logically named CS0 and CS1:
tmboot -l CS0 -l CS1. To start only those servers named CREDEB and belonging to
group DBG1: tmboot -g DBG1 -s CREDEB1. To boot a BBL on the machine logically
named PE8, as well as all those servers whose location is specified as PE8: tmboot -B
PE8 -l PE8.

To view minimum IPC resources needed for the configuration: tmboot -c.

The following is an example of the output produced by the -c option:

Ipc sizing (minimum /T values only) ...
 Fixed Minimums Per Processor
SHMMIN: 1
SHMALL: 1
SEMMAP: SEMMNI
 Variable Minimums Per Processor
 SEMUME, A SHMMAX
 SEMMNU, * *
Node SEMMNS SEMMSL SEMMSL SEMMNI MSGMNI MSGMAP SHMSEG
------ ------ ------ ------ ------ ------ ------ ------
sfpup 60 1 60 A + 1 10 20 76K
sfsup 63 5 63 A + 1 11 22 76K
where 1 = A = 8.

The number of expected application clients per processor should be added to each
MSGMNI value. MSGMAP should be twice MSGMNI. SHMMIN should always be set to 1.

The minimum IPC requirements can be compared to the parameters set for your
machine. See the System Administrator’s Guide for your machine for information
about how to change these parameters. If the -y option is used, the display will differ
slightly from the above example.
BEA Tuxedo Reference Manual 113

 tmboot(1)
Notices The tmboot command ignores the hangup signal (SIGHUP). If a signal is detected
during boot, the process continues.

Minimum IPC resources displayed with the -c option apply only to the configuration
described in the configuration file specified; IPC resources required for a resource
manager, for a mask cache, or for other BEA Tuxedo configurations are not considered
in the calculation.

See Also tmadmin(1), tmshutdown(1), tmloadcf(1), ubbconfig(5), BEA WebLogic
Enterprise Administration Guide.
114 BEA Tuxedo Reference Manual

tmconfig(1)

d and
 can

.

d

ring
r and
tmconfig(1)

Name tmconfig—dynamically update and retrieve information about the BEA Tuxedo
configuration for a running system

Synopsis tmconfig

Description tmconfig is an interactive program that can be used to update some of the
configuration file parameters, or MIB attributes, and add records to some of the
TUXCONFIG sections while the BEA Tuxedo application is running. tmconfig
manages a buffer that contains input field values to be added, updated, or retrieve
displays output field values and status after each operation completes. The user
update the input buffer using any available text editor.

tmconfig is a BEA Tuxedo system client. (It will show up as tmconfig with the
username being the login name in the tmadmin printclient command.) If the
application is using the SECURITY feature, it will prompt for the application password

tmconfig first prompts for the desired section followed by a prompt for the desire
operation.

The prompt for the section is as follows.

Section:1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS 5)SERVICES
6) NETWORK 7) ROUTING q) QUIT 9) WSL 10) NETGROUPS 11) NETMAP [1]:

The default section appears in square brackets at the end of the prompt.

tmconfig then prompts for the desired operation.

Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
6) CLEAR BUFFER 7) QUIT [1]:

The default operation is printed in square brackets at the end of the prompt. Ente
return will select this option. The other options are selected by entering the numbe
RETURN.

The currently supported operations are:

n FIRST—Retrieve the first record from the specified section. No key fields are
needed (they are ignored if in the input buffer).

n NEXT—Retrieve the next record from the specified section, based on the key
fields in the input buffer.
BEA Tuxedo Reference Manual 115

 tmconfig(1)

d

n.
lue

edo

 used

alues,

ar
errors

n RETRIEVE—Retrieve the indicated record from the specified section by key
field(s).

n ADD—Add the indicated record in the specified section. Any fields not specifie
(unless required) take their default values as specified in ubbconfig(5). The
current value for all fields is returned in the output buffer. This operation can
only be done by the System/T administrator.

n UPDATE—Update the record specified in the input buffer in the selected sectio
Any fields not specified in the input buffer remain unchanged. The current va
for all fields is returned in the input buffer. This operation can only be done by
the BEA Tuxedo administrator.

n CLEAR BUFFER—Clear the input buffer (all fields are deleted). After this
operation, tmconfig immediately prompts for the section again

n QUIT—Exit the program gracefully (the client is terminated). A value of q for
any prompt also exits the program.

For administrator operations, the effective user identifier must match the BEA Tux
Administrator User Identifier (UID) for the machine on which this program is
executed. When a record is updated or added, all default values and validations
by tmloadcf(1) are enforced.

tmconfig then prompts whether or not to edit the input buffer. Enter editor to

add/modify fields [n]? Entering a value of y will put the input buffer into a
temporary file and execute the text editor. The environment variable EDITOR is used to
determine which editor to be used and the default is ed. The input format is in
fieldname/field value pairs and is described in the INPUT FORMAT section below. The
field names associated with each UBBCONFIG section are listed in tables in the
subsections below. The semantics of the fields and associated ranges, default v
restrictions, etc. are described in ubbconfig(5). Note that permissions values are
specified in decimal, not octal. In most cases, the field name is the same as the
KEYWORD in the UBBCONFIG file, prefixed with “TA_”. When the user completes
editing the input buffer, tmconfig reads it. If more than one line occurs for a particul
field name, the first occurrence is used and other occurrences are ignored. If any
occur, a syntax error will be printed and tmconfig prompts whether or not to correct
the problem. Enter editor to correct?

If the problem is not corrected (response n), then the input buffer will contain no fields.
Otherwise, the editor is executed again.

Finally, tmconfig asks if the operation should be done. Perform operation [y]?
116 BEA Tuxedo Reference Manual

tmconfig(1)
When the operation completes, tmconfig prints the return value as in Return value
TAOK followed by the output buffer fields. The process then begins again with a prompt
for the section. All output buffer fields are available in the input buffer unless the
buffer is cleared.

Entering break at any time restarts the interaction at the prompt for the section.

When QUIT is selected, tmconfig prompts for creating a backup ASCII version of the
configuration: Unload TUXCONFIG file into ASCII backup [y]? If a backup is
selected, tmconfig prompts for the filename. Backup filename [UBBCONFIG]? On
success, tmconfig indicates that a backup was created; otherwise an error is printed.

Input Format Input packets consist of lines formatted as follows:

fldname fldval

The field name is separated from the field value by one or more tabs.

Lengthy field values can be continued on the next line by having the continuation line
begin with one or more tabs (which are dropped when read back into tmconfig).

Empty lines consisting of a single newline character are ignored.

To enter an unprintable character in the field value or to start a field value with a tab,
use a backslash followed by the two-character hexadecimal representation of the
desired character (see ascii(5) in a UNIX reference manual). A space, for example,
can be entered in the input data as \20. A backslash can be entered using two backslash
characters. tmconfig recognizes all input in this format, but the greatest usefulness of
the hexadecimal format is for non-printing characters.

Limitations The following are general limitations of the dynamic reconfiguration capability:

n Values for key fields (as indicated in the following sections) may not be
modified. If the key fields are modified in the editor buffer and the operation is
done, then a different record will be modified based on the new values of the
key fields. Key fields can be modified, when the system is down, by reloading
the configuration file.

n Fields at the LMID level cannot be modified while the LMID is booted; similarly
fields at the GROUP level cannot be modified while the GROUP is booted.

n Many of the RESOURCES parameters cannot be updated on a running system.

n Dynamic deletions are not be supported. Deletions must be done off-line.
BEA Tuxedo Reference Manual 117

 tmconfig(1)
n When you attempt to update a parameter in the wrong section (for example,
updating the MACHINES parameter ENVFILE while in the RESOURCES section), the
operation will appear to succeed (that is, tmconfig will return TAOK) but the
change will not appear in your unloaded UBBCONFIG file.

Relationship
between

tmconfig,
ubbconfig and

MIBs

In what are now ancient releases of BEA Tuxedo all application configuration was
accomplished by editing an ASCII file, the UBBCONFIG file, that contained all the
configuration parameters for an application. A later version compiled that file into a
binary format known as TUXCONFIG, by using tmloadcf(1).Yet another release
introduced tmconfig, which enabled dynamic updates (that is, updates while the
system was active) of a number of TUXCONFIG parameters. A more recent development
was the introduction of BEA Tuxedo Management Information Bases (MIBs) which
redefined BEA Tuxedo resources into classes and attributes. With the advent of MIBs,
the BEA Tuxedo system also provided an admin API that enables an administrator (or
a user) to access and change the attributes of an application programmatically. To keep
documentation from getting out of synch, BEA Tuxedo documentation will no longer
maintain section tables in this reference page for tmconfig, except for the table for the
Network Section. Instead, you will be referred to the appropriate MIB class where the
attributes can be found.

When Attributes
(Fields) Can Be

Updated and
Who Can Do It

One feature of the former tmconfig tables was a column that told when a field can be
updated.That information is carried in the MIB reference pages, but in a form that
requires a little more digging on your part. See the description of Permissions in
MIB(5). The Permissions columns in MIB tables look like typical read, write and
execute permissions that you may familiar with for files, but they carry more weight
than that. For example, by using additional letters they can indicate whether or not the
field can be changed when the system is active.

Study the description in MIB(5) before you attempt to use tmconfig.

RESOURCES
Section

For attributes in this section, please see the T_DOMAIN class in the TM_MIB(5) reference
page.

Notes The ADD operation is not valid for this section. Since there is only one record in this
section, the RETRIEVE operation is the same as the FIRST operation (no key field is
required). The NEXT operation will always return record not found.

Changes to TA_LDBAL, TA_CMTRET, and TA_SYSTEM_ACCESS only affect new clients
and servers that are subsequently booted. TA_SYSTEM_ACCESS cannot be changed if
NO_OVERRIDE is specified and any server entries exist that don’t match the specified
access type (PROTECTED or FASTPATH). Changes to TA_NOTIFY and TA_AUTHSVC only
affect new clients that are subsequently started.
118 BEA Tuxedo Reference Manual

tmconfig(1)
Updates to parameters other than those listed above will not appear in your unloaded
ASCII backup file.

MACHINES
Section

For attributes in this section, please see the T_MACHINE class in the TM_MIB(5)
reference page.

Notes A machine cannot be added unless LAN appears in the OPTIONS in the RESOURCES
section.

Updates to parameters other than those listed above will not appear in your unloaded
ASCII backup file.

GROUPS
Section

For attributes in this section, please see the T_GROUP class in the TM_MIB(5) reference
page.

SERVERS
Section

For attributes in this section, please see the T_SERVER class in the TM_MIB(5) reference
page.

Notes Parameter changes in the SERVERS section take effect the next time that an associated
server is booted (and not restarted) If multiple servers are defined in an MSSQ set (using
TA_RQADDR), they must have the same services booted (that is, changes to TA_CLOPT
or ENVFILE must not affect the services that are booted such that they don’t match
currently booted servers). If TA_MAX is changed, automatic spawning of conversational
servers for the new server identifiers will not happen until one or more servers in the
server set are booted.

Services Section For attributes in this section, please see the T_SERVICE class and the T_SVCGRP class
in the TM_MIB(5) reference page.

Notes Parameter changes in the SERVICES section take effect the next time a server offering
the service is booted (and not restarted). Updates to TA_ROUTINGNAME are allowed
only with a missing or NULL valued TA_SRVGRP field. In this case, all matching
*SERVICES entries will have their TA_ROUTINGNAME updated simultaneously. The
TA_ROUTINGNAME corresponds to the ROUTING field in the *SERVICES section.

Updates to parameters other than those listed above will not appear in your unloaded
ASCII backup file.

NETWORK
Section

The following table lists the fields in the NETWORK section.
BEA Tuxedo Reference Manual 119

 tmconfig(1)
Notes A record cannot be added while the associated LMID is booted.

No operations can be done on the NETWORKS section unless LAN appears in the
OPTIONS in the RESOURCES section.

Updates to parameters other than those listed above will not appear in your unloaded
ASCII backup file.

ROUTING
Section

For attributes in this section, please see the T_ROUTING class in the TM_MIB(5)
reference page.

Notes The ROUTING section cannot be updated while the system is running. New ROUTING
section entries may be added provided the Bulletin Board sizing parameters MAXDRT,
MAXRFT and MAXRTDATA in the RESOURCES section were set to allow for growth.

WSL Section For attributes in this section, please see the T_WSL class in the TM_MIB(5) reference
page.

Notes The T_WSL class should be used to update the CLOPT for WSL servers, even though this
is available via the SERVER section.

NETGROUPS
Section

For attributes in this section, please see the T_WSL Class in the TM_MIB(5) reference
page.

NETMAP
Section

For attributes in this section, please see the T_NETMAP Class in the TM_MIB(5) reference
page.

Security If tmconfig is run in a secure application, it requires an application password to access
the application. If the standard input is a terminal, tmconfig prompts the user for the
password with echo turned off on the reply. If the standard input is not a terminal, the

NETWORK Section

Field Identifier Field Type Update Notes

TA_LMID string No key

TA_NADDR string Sys ASCII format (no embedded NULL
characters)

TA_BRIDGE string Sys

TA_NLSADDR string Sys ASCII format (no embedded NULL
characters)
120 BEA Tuxedo Reference Manual

tmconfig(1)
password is retrieved from the environment variable, APP_PW. If this environment
variable is not specified and an application password is required, then tmconfig will
fail.

Workstation
Client

As a Workstation client, the command is named wtmconf on DOS and wtmconfig
otherwise. The UPDATE and ADD commands are not supported (TAEPERM is returned).

Environment
Variables

tmconfig resets the FIELDTBLS and FLDTBLDIR environment variables to pick up the
${TUXDIR}/udataobj/tpadmin field table. TUXDIR must be set correctly.

APP_PW must be set to the application password in a secure application if standard
input is not from a terminal.

TUXCONFIG (for non-workstation clients) and WSADDR and possibly WSDEVICE and
WSTYPE (for Workstation clients) must be set correctly such that the program can
register as a client.

Diagnostics tmconfig fails if it cannot allocate a typed buffer, if it cannot determine the
/etc/passwd entry for the user, if it cannot become a client process, if it cannot create
a temporary file in /tmp for the input buffer editing, or if it cannot reset the
environment variables FIELDTBLS or FLDTBLDIR.

The return value printed by tmconfig after each operation completes indicates the
status of the requested operation. There are three classes of return values.

The following return values indicate a problem with permissions or a BEA Tuxedo
communications error. They indicate that the operation did not complete successfully.

[TAEPERM]
The calling process specified a TA_UPDATE or TA_ADD opcode but is not
running as the BEA Tuxedo administrator.

[TAESYSTEM]
A BEA Tuxedo error has occurred. The exact nature of the error is written to
userlog(3).

[TAEOS]
An operating system error has occurred.

[TAETIME]
A blocking timeout occurred. The input buffer is not updated so no
information is returned for retrieval operations. The status of update
operations can be checked by doing a retrieval on the record that was being
updated.
BEA Tuxedo Reference Manual 121

 tmconfig(1)
The following return values indicate a problem in doing the operation itself and
generally are semantic problems with the application data in the input buffer. The
string field TA_STATUS will be set in the output buffer indicating the problem. The
string field TA_BADFLDNAME will be set to the field name for the field containing the
value that caused the problem (assuming the error can be attributed to a single field).

[TAERANGE]
A field value out of range or is invalid.

[TAEINCONSIS]
A field value or set of field values are inconsistently specified (that is,
specifying an existing RQADDR value for a different SRVGRP and
SERVERNAME).

[TAECONFIG]
An error occurred while reading the TUXCONFIG file.

[TAEDUPLICATE]
The operation attempted to add a duplicate record.

[TAENOTFOUND]
The record specified for the operation was not found.

[TAEREQUIRED]
A field value is required but not present.

[TAESIZE]
A field value for a string field is too long.

[TAEUPDATE]
The operation attempted to do an update that is not allowed.

[TAENOSPACE]
The operation attempted to do an update but there was not enough space in
the TUXCONFIG file and/or the Bulletin Board.

The following return values indicate that the operation was successful, at least at the
MASTER site.

[TAOK]
The operation succeeded. No updates were done to the TUXCONFIG file or the
Bulletin Board.
122 BEA Tuxedo Reference Manual

tmconfig(1)
[TAUPDATED]
The operation succeeded. Updates were made to the TUXCONFIG file and/or
the Bulletin Board.

[TAPARTIAL]
The operation succeeded at the MASTER site but failed at one or more
non-MASTER sites. The non-MASTER sites will be marked as invalid or
partitioned. See the administrator’s guide for further information.

Interoperability The UPDATE and ADD operations are not allowed if a BEA Tuxedo 4.0 or 4.1 node is
booted. These nodes must be shutdown before doing these operations. When
re-booted, they will pick up the changes.

tmunloadcf
Compatibility

When using tmunloadcf(1) to print entries in the configuration, certain field values
are not printed if they are not set (for strings) or 0 (for integers), or if they match the
default value for the field. These fields will always appear in the output buffer when
using tmconfig. In this way, it makes it easier for the administrator to retrieve an entry
and update a field that previously was not set. The entry will have the field name
followed by a tab but no field value.

Example In the following example, tmconfig is used to correct the network address specified
on a Workstation Listener server. It happens to be the first entry in the servers section.
For illustration purposes, ed(1) is used for the editor.

$ EDITOR=ed tmconfig

Section:1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS 5)SERVICES
6) NETWORK 7) ROUTING q) QUIT 9) WSL 10) NETGROUPS 11) NETMAP [1]: 4

Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
6) CLEAR BUFFER 7) QUIT [1]: 1
Enter editor to add/modify fields [n]? <return>
Perform operation [y]? <return>
Return value TAOK
Buffer contents:
TA_OPERATION 4
TA_SECTION 3
TA_SRVID 2
TA_MIN 1
TA_MAX 1
TA_RQPERM 432
TA_RPPERM 432
TA_MAXGEN 1
TA_GRACE 86400
TA_STATUS Operation completed successfully
TA_SRVGRP WDBG
BEA Tuxedo Reference Manual 123

 tmconfig(1)
TA_SERVERNAME WSL
TA_CLOPT -A -- -d/dev/tcp -M4 -m2 -x5 -n0x0002fe19c00b6d6b
TA_CONV N
TA_REPLYQ N
TA_RESTART N
Section:1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS 5)SERVICES
6) NETWORK 7) ROUTING q) QUIT 9) WSL [4]10) NETGROUPS 11) NETMAP [4]: <return>
Operation: 1) FIRST 2) NEXT 3) RETRIEVE 4) ADD 5) UPDATE
6) CLEAR BUFFER 7) QUIT [1]: 5
Enter editor to add/modify fields [n]? y
240
/CLOPT/s/6d6b/690E/p
TA_CLOPT -A -- -d/dev/tcp -M4 -m2 -x5 -n0x0002fe19c00b690E
w
240
q
Perform operation [y]? <return>
Return value TAUPDATED
Buffer contents:
TA_OPERATION 1
TA_SECTION 3
TA_SRVID 2
TA_MIN 1
TA_MAX 1
TA_RQPERM 432
TA_RPPERM 432
TA_MAXGEN 1
TA_GRACE 86400
TA_STATUS Update completed successfully
TA_SRVGRP WDBG
TA_SERVERNAME WSL
TA_CLOPT -A -- -d/dev/tcp -M4 -m2 -x5 -n0x0002fe19c00b690E
TA_CONV N
TA_REPLYQ N
TA_RESTART N
Section:1) RESOURCES, 2) MACHINES, 3) GROUPS 4) SERVERS 5)SERVICES
6) NETWORK 7) ROUTING q) QUIT 9) WSL [1] 10) NETGROUPS 11) NETMAP {1}: q
Unload TUXCONFIG file into ASCII backup [y]? <return>
Backup filename [UBBCONFIG]? <return>
Configuration backed up in UBBCONFIG
$ # boot the changed server
$ tmboot -s WSL -i 2

See Also tmloadcf(1), tmboot(1), userlog(3c), ubbconfig(5), TM_MIB(5).
124 BEA Tuxedo Reference Manual

tmloadcf(1)

or

tains
 if

re
er

ad,

the
. If
tmloadcf(1)

Name tmloadcf—parse a UBBCONFIG file and load binary TUXCONFIG configuration file

Synopsis tmloadcf [-n] [-y] [-c] [-b blocks] {ubbconfig_file | -}

Description tmloadcf reads a file or the standard input that is in UBBCONFIG syntax, checks the
syntax, and optionally loads a binary TUXCONFIG configuration file. The TUXCONFIG
and (optionally) TUXOFFSET environment variables point to the TUXCONFIG file and
(optional) offset where the information should be stored. tmloadcf can only be run on
the MASTER machine, as defined in the RESOURCES section of the UBBCONFIG file,
unless the -c or -n option is specified.

tmloadcf prints a warning message if it finds any section of the UBBCONFIG file
missing, other than a missing NETWORK section in a configuration where the LAN
OPTION is not specified (see ubbconfig(5)) or a missing ROUTING section. If a syntax
error is found while parsing the input file, tmloadcf exits without performing any
updates to the TUXCONFIG file.

The effective user identifier of the person running tmloadcf must match the UID, if
specified, in the RESOURCES section of the UBBCONFIG file.

The -c option to tmloadcf causes the program to print minimum IPC resources
needed for this configuration. Resource requirements that vary on a per-process
basis are printed for each processor in the configuration. The TUXCONFIG file is not
updated.

The -n option to tmloadcf causes the program to do only syntax checking of the
ASCII UBBCONFIG file without actually updating the TUXCONFIG file.

After syntax checking, tmloadcf checks to see if the file pointed to by TUXCONFIG
exists, is a valid WebLogic Enterprise or BEA Tuxedo system file system, and con
TUXCONFIG tables. If these conditions are not true, the user is prompted to decide
they want tmloadcf to create and initialize the file with Initialize TUXCONFIG

file: path [y, q]?. Prompting is suppressed if the standard input or output a
not terminals, or if the -y option is specified on the command line. Any response oth
than “y” or “Y” will cause tmloadcf to exit without creating the configuration file.

If the TUXCONFIG file is not properly initialized, and the user has given the go-ahe
tmloadcf creates the BEA Tuxedo system file system and then creates the TUXCONFIG
tables. If the -b option is specified on the command line, its argument is used as
number of blocks for the device when creating the BEA Tuxedo system file system
the value of the -b option is large enough to hold the new TUXCONFIG tables,
BEA Tuxedo Reference Manual 125

 tmloadcf(1)

ser

y are
tmloadcf will use the specified value to create the new file system; otherwise,
tmloadcf will print an error message and exit. If the -b option is not specified,
tmloadcf will create a new file system large enough to hold the TUXCONFIG tables.
The -b option is ignored if the file system already exists.

The -b option is highly recommended if TUXCONFIG is a raw device (that has not been
initialized) and should be set to the number of blocks on the raw device. The -b option
is not recommended if TUXCONFIG is a regular UNIX file.

If the TUXCONFIG file is determined to already have been initialized, tmloadcf ensures
that the system described by that TUXCONFIG file is not running. If the system is
running, tmloadcf prints an error message and exits.

If the system is not running and TUXCONFIG file already exists, tmloadcf will prompt
the user to confirm that the file should be overwritten with

Really overwrite TUXCONFIG file [y, q]?

Prompting is suppressed if the standard input or output are not a terminal or if the -y
option is specified on the command line. Any response other than “y” or “Y” will cause
tmloadcf to exit without overwriting the file.

If the SECURITY parameter is specified in the RESOURCES section of the configuration,
then tmloadcf will flush the standard input, turn off terminal echo and prompt the u
for an application password as follows:

Enter Application Password?
Reenter Application Password?

The password is limited to 30 characters. The option to load the ASCII UBBCONFIG file
via the standard input (rather than a file) cannot be used when the SECURITY parameter
is turned on. If the standard input is not a terminal, that is, if the user cannot be
prompted for a password (as with a here file, for example), then the environment
variable APP_PW is accessed to set the application password. If the environment
variable APP_PW is not set with the standard input not a terminal, then tmloadcf will
print an error message, generate a log message and fail to load the TUXCONFIG file.

Assuming no errors, and if all checks have passed, tmloadcf loads the UBBCONFIG file
into the TUXCONFIG file. It will overwrite all existing information found in the
TUXCONFIG tables.

Note that some values are rounded during the load and may not match when the
unloaded. These include but are not limited to MAXRFT and MAXRTDATA.
126 BEA Tuxedo Reference Manual

tmloadcf(1)
When tmloadcf encounters a continuous string of five or more asterisks (*) in a
UBBCONFIG file, it treats this as a placeholder for a password and prompts the user to
create the password. The password is then stored in TUXCONFIG in encrypted form.
This feature applies to the OPENINFO statement in the GROUPS section or a DBPASSWORD
or PROPS statement in the JDBCCONNPOOLS section of the UBBCONFIG file. The
tmunloadcf utility can be used to store the encrypted password in the UBBCONFIG file,
using the double at sign (@@) as delimiters. See the BEA WebLogic Enterprise
Administration Guide. for more information about encrypting passwords.

Interoperability tmloadcf must run on the master node, which must be the latest release available in
an interoperating application.

Environment
Variables

The environment variable APP_PW must be set for applications that have the SECURITY
parameter specified and must run tmloadcf with something other than a terminal as
the standard input.

Examples To load a configuration file from UBBCONFIG file BB.shm, initialized the device with
2000 blocks: tmloadcf -b2000 -y BB.shm.

Diagnostics If an error is detected in the input, the offending line is printed to standard error along
with a message indicating the problem. If a syntax error is found in the UBBCONFIG file
or the system is currently running, no information is updated in the TUXCONFIG file and
tmloadcf exits with exit code 1.

If tmloadcf is run by a person whose effective user identifier does not match the UID
specified in the UBBCONFIG file, the following error message is displayed:

*** UID is not effective user ID ***

If tmloadcf is run on a non-master node, the following error message is displayed:

tmloadcf cannot run on a non-master node.

If tmloadcf is run on an active node, the following error message is displayed:

tmloadcf cannot run on an active node.

Upon successful completion, tmloadcf exits with exit code 0. If the TUXCONFIG file
is updated, a userlog message is generated to record this event.

See Also tmunloadcf(1), ubbconfig(5), BEA WebLogic Enterprise Administration Guide.
BEA Tuxedo Reference Manual 127

 tmshutdown(1)

ts of
in

or

er

e

n

s
ut
tmshutdown(1)

Name tmshutdown—shutdown a set of BEA Tuxedo servers

Synopsis tmshutdown [options]

Description tmshutdown stops the execution of a set of servers or removes the advertisemen
a set of services listed in a configuration file. Only the administrator of the Bullet
Board (as indicated by the UID parameter in the configuration file) or root can invoke
the tmshutdown command. tmshutdown can be invoked only on the machine
identified as MASTER in the RESOURCES section of the configuration file, or the backup
acting as the MASTER, that is, with the DBBL already running (via the master command
in tmadmin(1)). An exception to this is the -P option which is used on partitioned
processors (see below).

With no options, tmshutdown stops all administrative, TMS, and gateway servers, and
servers listed in the SERVERS section of the configuration file named by the
TUXCONFIG environment variable and removes their associated IPC resources. F
each group, all servers in the SERVERS section, if any, are shut down followed by any
associated gateway servers (for foreign groups) and TMS servers. Administrative
servers are shut down last.

Application servers without SEQUENCE parameters are shut down first in reverse ord
of the server entries in the configuration file, followed by servers with SEQUENCE
parameters that are shut down from high to low sequence number. If two or mor
servers in the SERVERS Section of the configuration file have the same SEQUENCE
parameter, then tmshutdown may shut down these servers in parallel. Each entry i
the SERVERS Section may have an optional MIN and MAX parameter. tmshutdown shuts
down all occurrences of a server (up to MAX occurrences) for each server entry, unles
the -i option is specified; using the -i option causes individual occurrences to be sh
down.

If it is not possible to shut down a server, or remove a service advertisement, a
diagnostic is written on the central event log (see userlog(3c)). The following is a
description of all options:

-l lmid

For each group whose associated LMID parameter is lmid, all servers in the SERVERS
section associated with the group are shut down, followed by any TMS and gateway
servers associated with the group.
128 BEA Tuxedo Reference Manual

tmshutdown(1)
-g grpname

All servers in the SERVERS section associated with the specified group (that is, whose
SRVGRP parameter is grpname) are shut down, followed by all TMS and gateway servers
for the group. TMS servers are shut down based on the TMSNAME and TMSCOUNT
parameters for the group entry. For a foreign group, the gateway servers for the
associated entry in the HOST section are shut down based on GATENAME and
GATECOUNT. Shutting down a gateway implies its administrative service and all
advertised foreign services are unadvertised, in addition to stopping the process.

-i srvid
All servers in the SERVERS section whose SRVID parameter is srvid are shut
down. Do not enter a SRVID greater than 30,000; this indicates system
processes (that is, TMSs or gateway servers) that should only be shut down via
the -l or -g options.

-s aout
All servers in the SERVERS section with name aout are shut down. This option
can also be used to shut down TMS and gateway servers.

-o sequence
All servers in the SERVERS section with SEQUENCE parameter sequence are
shut down.

-S
All servers in the SERVERS section are shut down.

-A
All administrative servers are shut down.

-M
This option shuts down administrative servers on the master machine. The
BBL is shut down on the MASTER machine, and the BRIDGE is shut down if the
LAN option and a NETWORK entry are specified in the configuration file. If the
MODEL is MP, the DBBL administrative server is shut down.

-B lmid
The BBL on the processor with logical name lmid is shut down.

-T grpname
All TMS servers for the server group whose SRVGRP parameter is grpname are
shut down (based on the TMSNAME and TMSCOUNT parameters associated with
the server group entry).

-w delay
Tells tmshutdown to suspend all selected servers immediately and waits for
shutdown confirmation for only delay seconds before forcing the server to
shut down by sending a SIGTERM and then a SIGKILL signal to the server.
BEA Tuxedo Reference Manual 129

 tmshutdown(1)
Note: servers to which the -w option may be applied should not catch the
UNIX signal SIGTERM.

-k {TERM|KILL}
tmshutdown suspends all selected servers immediately and forces them to
shut down in an orderly fashion (TERM) or preemptively (KILL). Note: This
option maps to the UNIX signals SIGTERM and SIGKILL on platforms which
support them. By default, a SIGTERM initiates orderly shutdown in a BEA
Tuxedo server. Application resetting of SIGTERM could cause to be unable to
shut down the server.

-y
Assumes a yes answer to a prompt that asks if all administrative and server
processes should be shut down. (The prompt appears only when the command
is entered with none of the limiting options.)

-q
Suppresses the printing of the execution sequence on the standard output. It
implies -y.

-n
The execution sequence is printed, but not performed.

-R
For migration operations only, shuts down a server on the original processor
without deleting its Bulletin Board entry in preparation for migration to
another processor. The -R option must be used with either the -l or -g option
(for example, tmshutdown -l lmid -R). The MIGRATE option must be
specified in the RESOURCES section of the configuration file.

-c
Shuts down BBLs even if clients are still attached.

-H lmid
On a uniprocessor, all administrative and applications servers on the node
associated with the specified lmid are shut down. On a multiprocessor (for
example, 3B4000), all PEs are shut down, even if only one PE is specified.

-P lmid
With this option, tmshutdown attaches to the Bulletin Board on the specified
lmid, ensures that this lmid is partitioned from the rest of the application (that
is, does not have access to the DBBL), and shuts down all administrative and
application servers. It must be run on the processor associated with the lmid
in the MACHINES section of the configuration file.
130 BEA Tuxedo Reference Manual

tmshutdown(1)
The -l, -g, -s, and -T options cause TMS servers to be shut down; the -l, -g, and -s
options cause gateway servers to be shut down; the -l, -g, -i, -s, -o, and -S options
apply to application servers; the -A, -M, and -B options apply only to administrative
processes. When the -l, -g, -i, -o, and -s options are used in combination, only
servers that satisfy all qualifications specified will be shut down.

If the distributed transaction processing feature is being used such that global
transactions are in progress when servers are shut down, transactions that have not yet
reached the point where commit is logged after precommit will be aborted;
transactions that have reached the commit point will be completed when the servers
(for example, TMS) are booted again.

Interoperability tmshutdown must run on the master node, which in an interoperating application must
be the highest release available.

Diagnostics If tmshutdown fails to shut down a server or a fatal error occurs, it will exit with exit
code 1 and the user log should be examined for further details; otherwise it will exit
with exit code 0.

If tmshutdown is run on an active node that is not the acting master node, a fatal error
message is displayed: tmshutdown cannot run on a non acting-master node
in an active application.

If shutting down a process would partition active processes from the DBBL, a fatal error
message is displayed: cannot shutdown, causes partitioning.

If a server has died, the following somewhat ambiguous message is produced:
CMDTUX_CAT:947 Cannot shutdown server GRPID

Examples To shut down the entire system and remove all BEA Tuxedo IPC resources (force it if
confirmation not received in 30 seconds): tmshutdown -w 30. To shut down only
those servers located on the machine with lmid of CS1. Since the -l option restricts
the action to servers listed in the SERVERS section, the BBL on CS1 is not shut down:
tmshutdown -l CS1

Notices The tmshutdown command ignores the hangup signal (SIGHUP). If a signal is detected
during shutdown, the process continues.

See Also tmadmin(1), tmboot(1), ubbconfig(5), BEA WebLogic Enterprise Administration
Guide.
BEA Tuxedo Reference Manual 131

 tmunloadcf(1)

copy

s set

h
tmunloadcf(1)

Name tmunloadcf—unload binary TUXCONFIG configuration file

Synopsis tmunloadcf

Description tmunloadcf translates the TUXCONFIG configuration file from the binary
representation into ASCII. This translation is useful for transporting the file in a
compact way between machines with different byte orderings and backing up a
of the file in a compact form for reliability. The ASCII format is the same as is
described in ubbconfig(5).

tmunloadcf reads values from the TUXCONFIG file pointed to by the TUXCONFIG and
TUXOFFSET environment variables and writes them to its standard output.

Note that some values are rounded during configuration and may not match value
during tmloadcf or via the TMIB interface. These include but are not limited to MAXRFT
and MAXRTDATA.

When a TUXCONFIG contains a password that was encrypted using tmloadcf,
tmunloadcf stores that password in encrypted form in the UBBCONFIG file using the
double at sign (@@) as delimiters. For example:

OPENINFO="Oracle_XA: Oracle_XA+Acc=P/Scott/@@A0986F7733D4@@+SesTm=30+LogDit=/tmp"

Portability For BEA Tuxedo applications, tmunloadcf is supported only on non-workstation
sites running BEA Tuxedo system Release 6.0 or later.

Examples To unload the configuration in /usr/TUXEDO/tuxconfig into the file
tconfig.backup run:

tmunloadcf > tconfig.backup

Diagnostics tmunloadcf checks that the file pointed to by the TUXCONFIG environment variable
exists, is a valid BEA Tuxedo system file system, and contains TUXCONFIG tables. If
any of these conditions is not met, tmunloadcf prints an error message and exits wit
error code 1. Upon successful completion, tmunloadcf exits with exit code 0.

See Also tmloadcf(1), ubbconfig(5), BEA WebLogic Enterprise Administration Guide.
132 BEA Tuxedo Reference Manual

tpacladd(1)

ity
ents,

d

g
ect. If

ce,

e

tive
tpacladd(1)

Name tpacladd—add a new Access Control List on the system

TUXCONFIG=tuxconfig tpacladd [-g gid[,gid...]] [-t type] name

Description Invoking tpacladd adds a new Access Control List entry to the BEA Tuxedo secur
data files. This information is used for BEA Tuxedo access control to services, ev
and application queues. A BEA Tuxedo configuration with SECURITY set to
USER_AUTH, ACL, or MANDATORY_ACL must be created before running this comman
successfully.

The following options are available:

-g gid,...
A list of one or more existing group's integer identifiers or character-strin
names. This option indicates what groups have access to the named obj
not specified, an entry is added with no groups.

-t type
The type of the object. It can be one of ENQ, DEQ, SERVICE, or POSTEVENT.
The default is SERVICE.

name
A unique string of printable characters that specifies the name of a servi
event, or application queue for which access is to be granted. It may not
contain a colon (:), pound sign (#), or a newline (\n).

Before running this command, the application must be configured using either th
graphical user interface or tmloadcf(1). tpacladd must be run on the configuration
MASTER if the application is not active; if active, this command can run on any ac
node.

Portability This command is available only on non-workstation sites running BEA Tuxedo
Release 6.0 or later.

Diagnostics The tpacladd command exits with a return code of 0 upon successful completion.

See Also tpacldel(1), tpaclmod(1), tpgrpadd(1), tpgrpdel(1), tpgrpmod(1), AUTHSVR(5),
BEA WebLogic Enterprise Administration Guide.
BEA Tuxedo Reference Manual 133

 tpaclcvt(1)

tem
up

t

p

e

tpaclcvt(1)

Name tpaclcvt—convert BEA Tuxedo security data files

Synopsis TUXCONFIG=tuxconfig tpaclcvt [-u userfile] [-g groupfile]

Description tpaclcvt checks and converts the existing user file used by the BEA Tuxedo sys
5 AUTHSVR into the format used for BEA Tuxedo system 6. It will also generate a gro
file based on /etc/group or a similar file. The following options are available:

-u userfile
The name of the BEA Tuxedo user file. If not specified, the user file is no
converted.

 -g groupfile
The name of the group file, normally /etc/group. If not specified, the grou
file is not converted.

Before running this command, the application must be configured using either th
graphical user interface or tmloadcf(1). tpaclcvt must be run on the configuration
MASTER when the application is not active.

Portability This command is available only on non-workstation sites running BEA Tuxedo
Release 6.0 or later.

See Also tpgrpadd(1), tpusradd(1), AUTHSVR(5), BEA WebLogic Enterprise Administration
Guide.
134 BEA Tuxedo Reference Manual

tpacldel(1)

d

e

tive
tpacldel(1)

Name tpacldel—delete an Access Control List

Synopsis TUXCONFIG=tuxconfig tpacldel [-t type] name

Description Invoking tpacldel deletes an existing Access Control List entry from the BEA
Tuxedo security data files. A BEA Tuxedo configuration with SECURITY set to
USER_AUTH, ACL, or MANDATORY_ACL must be created before running this comman
successfully.

The following options are available:

-t type
The type of the object. It can be one of ENQ, DEQ, SERVICE, or POSTEVENT. If
not specified, the default type is SERVICE.

name
Identifies the existing ACL entry to be deleted.

Before running this command, the application must be configured using either th
graphical user interface or tmloadcf(1). tpacldel must be run on the configuration
MASTER if the application is not active; if active, this command can run on any ac
node.

Portability This command is available only on non-workstation sites running BEA Tuxedo
Release 6.0 or later.

Diagnostics The tpacldel command exits with a return code of 0 upon successful completion.

See Also tpacladd(1), tpaclmod(1), AUTHSVR(5), BEA WebLogic Enterprise Administration
Guide.
BEA Tuxedo Reference Manual 135

 tpaclmod(1)

ity
do

g
ct. If

e

tive
tpaclmod(1)

Name tpaclmod—modify an Access Control List on the system

Synopsis TUXCONFIG=tuxconfig tpaclmod [-g gid[,gid...]] [-t type] name

Description Invoking tpaclmod modifies an Access Control List entry in the BEA Tuxedo secur
data files, replacing the group identifier list. This information is used for BEA Tuxe
access control to services, events, and application queues. A BEA Tuxedo
configuration with SECURITY set to USER_AUTH, ACL, or MANDATORY_ACL must be
created before running this command successfully.

The following options are available:

-g gid,...
A list of one or more existing group's integer identifiers or character-strin
names. This option indicates what groups have access to the named obje
not specified, the entry is modified to have no groups.

-t type
The type of the object. It can be one of ENQ, DEQ, SERVICE, or POSTEVENT.
The default is SERVICE.

name
An existing ACL name.

Before running this command, the application must be configured using either th
graphical user interface or tmloadcf(1). tpaclmod must be run on the configuration
MASTER if the application is not active; if active, this command can run on any ac
node.

Portability This command is available only on non-workstation sites running BEA Tuxedo
Release 6.0 or later.

Diagnostics The tpaclmod command exits with a return code of 0 upon successful completion.

See Also tpacladd(1), tpacldel(1), AUTHSVR(5), BEA WebLogic Enterprise Administration
Guide.
136 BEA Tuxedo Reference Manual

tpadduser

ser.

ries

ase

ple
tpadduser

Name tpaddusr—create a BEA Tuxedo password file

Synopsis tpaddusr usrname file [cltname [uid]]

Description This command allows an application administrator to create a UNIX system style
password file suitable for use with the BEA Tuxedo AUTHSVR(5) server. tpaddusr
adds the user usrname to the password file file (the file cannot be /etc/passwd).
The administrator is prompted for an initial password to be associated with the u
file will be created if necessary with permissions 0600. cltname, if specified,
indicates a further qualifier on the password entry. usrname and/or cltname may be
specified as the character '*' which is considered a wildcard by AUTHSVR(5). uid, if
specified, indicates the numeric user identifier to be returned with a successful
authentication of the user. cltname and uid default to '*' and -1 respectively if not
specified.

Notices The cltname values tpsysadm and tpsysop are treated specially by AUTHSVR(5)
when processing authentication requests. These cltname values will not be matched
against wildcard cltname specifications in the password file.

Additionally, regardless of the order of addition to the password file, wildcard ent
are considered after explicitly specified values. An authentication request is
authenticated against only the first matching password file entry.

Portability This command is available only on UNIX system sites running BEA Tuxedo Rele
5.0 or later.

Compatibility This command is used to configure users for SECURITY USER_AUTH. For compatibility
with SECURITY ACL or MANDATORY_ACL (including the ability to migrate to these
security levels), the following restrictions should be applied.

1. Usernames should be unique and not use the wildcard.

2. User identifiers should be greater than 0, less than 128K, and unique.

3. The filename should be $APPDIR/tpusr.

These restrictions are enforced by the tpusradd(1) command.

Examples The following sequence of command invocations shows the construction of a sim
password file.

$ # 1. Add usrname foo with wildcard cltname and no uid
$ tpaddusr foo /home/tuxapp/pwfile
BEA Tuxedo Reference Manual 137

 tpadduser
$ # 2. Add usrname foo with cltname bar and uid 100
$ tpaddusr foo /home/tuxapp/pwfile bar 100
$ # 3. Add usrname foo with tpsysadm cltname and no uid
$ tpaddusr foo /home/tuxapp/pwfile tpsysadm
$ # 4. Add wildcard usrname with tpsysop cltname and no uid
$ tpaddusr ’*’ /home/tuxapp/pwfile tpsysop
$ # 5. Add wildcard usrname with wildcard cltname and no uid
$ tpaddusr ’*’ /home/tuxapp/pwfile ’*’

The following table shows the password file entry (indicated by numbers shown
above) used to authenticate various requests for access to the application. N/A
indicates that the request is disallowed because no password file entry exists to be
matched against.

Usrname Cltname Password Entry
------ ------- --------------
“foo” "bar" 2
"foo" "" 1
"foo" "tpsysadm" 3
"foo" "tpsysop" 4
"guest" "tpsysop" 4
"guest" "bar" 5
"guest" "tpsysadm" N/A

Lastly, following is an example SERVERS section entry for an instance of AUTHSVR that
works with the password file generated above.

AUTHSVR SRVGRP=G SRVID=1 RESTART=Y GRACE=0 MAXGEN=2 CLOPT=”-A -- -f
/home/tuxapp/pwfile”

See Also tpdelusr (1), tpmodusr (1), tpusradd (1), tpusrdel (1), tpusrmod (1), AUTHSVR(5)
138 BEA Tuxedo Reference Manual

tpdelusr(1)

yle

t

ries

ase
tpdelusr(1)

Name tpdelusr—Delete a user from a BEA Tuxedo password file

Synopsis tpdelusr usrname file [cltname]

Description This command allows an application administrator to maintain a UNIX system st
password file suitable for use with the BEA Tuxedo AUTHSVR(5) server. depletes is
used to delete the password file entry for the indicated surname/cattlemen
combination (the file cannot be /etc./passed). cattlemen defaults to '*' if not
specified. Wildcards specified for usrname and/or cltname match only the
corresponding wildcard entry in the password file, they are not expanded to all
matching entries.

Notices The cltname values tpsysadm and tpsysop are treated specially by AUTHSVR(5) when
processing authentication requests. These cltname values will not be matched agains
wildcard cltname specifications in the password file.

Additionally, regardless of the order of addition to the password file, wildcard ent
are considered after explicitly specified values. An authentication request is
authenticated against only the first matching password file entry.

Portability This command is available only on UNIX system sites running BEA Tuxedo Rele
5.0 or later.

Compatibility This command is used to configure users for SECURITY USER_AUTH. For compatibility
with SECURITY ACL or MANDATORY_ACL (including the ability to migrate to these
security levels), the following restrictions should be applied.

1. Usernames should be unique and not use the wildcard.

2. User identifiers should be greater than 0, less than 128K, and unique.

3. The filename should be $APPDIR/tpusr.

These restrictions are enforced by the tpusrdel(1) command.

See Also tpaddusr(1), tpmodusr(1), tpusradd(1), tpusrdel(1), tpusrmod(1), AUTHSVR(5),
BEA WebLogic Enterprise Administration Guide.
BEA Tuxedo Reference Manual 139

 tpgrpadd(1)

 the
 for
.

. It

e

tive

tem
tpgrpadd(1)

name tpgrpadd—add a new group on the system

Synopsis TUXCONFIG=tuxconfig tpgrpadd [-g gid] grpname

Description The tpgrpadd command creates a new group definition on the system by adding
appropriate entry to the BEA Tuxedo security data files. This information is used
BEA Tuxedo system authentication with the AUTHSVR(5) server and for access control
A BEA Tuxedo configuration with SECURITY set to USER_AUTH, ACL, or
MANDATORY_ACL must be created before running this command successfully.

The following options are available:

-g gid
The group identifier for the new group. This group identifier must be a
non-negative decimal integer below 16K. gid defaults to the next available
(unique) identifier greater than 0. Group identifier 0 is reserved for the
“other” group.

grpname
A string of printable characters that specifies the name of the new group
may not include a pound sign (#), comma (,), colon (:) or a newline (n).

Before running this command, the application must be configured using either th
graphical user interface or tmloadcf(1). tpgrpadd must be run on the configuration
MASTER if the application is not active; if active, this command can run on any ac
node.

Portability This command is available only on non-workstation sites running BEA Tuxedo sys
Release 6.0 or later.

Diagnostics The tpgrpadd command exits with a return code of 0 upon successful completion.

See Also tpgrpdel(1), tpgrpmod(1), tpusradd(1), tpusrdel(1), tpusrmod(1), AUTHSVR(5),
BEA WebLogic Enterprise Administration Guide.
140 BEA Tuxedo Reference Manual

tpgrpdel(1)

the

ith

e

tive

tem
tpgrpdel(1)

Name tpgrpdel—delete a group from the system

Synopsis TUXCONFIG=tuxconfig tpgrpdel grpname

Description The tpgrpdel command removes a group definition from the system by deleting
entry for the relevant group from the BEA Tuxedo security data files. It does not,
however, remove the group ID from the user file. A BEA Tuxedo configuration w
SECURITY set to USER_AUTH, ACL, or MANDATORY_ACL must be created
before running this command successfully.

The following options are available:

grpname
The name of an existing group to be deleted.

Before running this command, the application must be configured using either th
graphical user interface or tmloadcf(1). tpgrpdel must be run on the configuration
MASTER if the application is not active; if active, this command can run on any ac
node.

Portability This command is available only on non-workstation sites running BEA Tuxedo sys
Release 6.0 or later.

Diagnostics The tpgrpdel command exits with a return code of 0 upon successful completion.

See Also tpgrpadd(1), tpgrpmod(1), tpusradd(1), tpusrdel(1), tpusrmod(1), AUTHSVR(5),
BEA WebLogic Enterprise Administration Guide.
BEA Tuxedo Reference Manual 141

 tpgrpmod(1)

ion

or

. It

e

tive

tem
tpgrpmod(1)

Name tpgrpmod—modify a group on the system

Synopsis TUXCONFIG=tuxconfig tpgrpmod [-g gid] [-n name] grpname

Description The tpgrpmod modifies the definition of the specified group by modifying the
appropriate entry to the BEA Tuxedo security data files. A BEA Tuxedo configurat
with SECURITY set to USER_AUTH, ACL, or MANDATORY_ACL must be
created before running this command successfully.

The following options are available:

-g gid
The new group identifier for the group. This group identifier must be a
non-negative decimal integer below 16K. Group identifier 0 is reserved f
the “other” group.

-n name
A string of printable characters that specifies the new name of the group
may not include a comma (,), colon (:) or a newline (n).

grpname
The current name of the group to be modified.

Before running this command, the application must be configured using either th
graphical user interface or tmloadcf(1). tpgrpmod must be run on the configuration
MASTER if the application is not active; if active, this command can run on any ac
node.

Portability This command is available only on non-workstation sites running BEA Tuxedo sys
Release 6.0 or later.

Diagnostics The tpgrpmod command exits with a return code of 0 upon successful completion.

See Also tpgrpadd(1), tpgrpdel(1), tpusradd(1), tpusrdel(1), tpusrmod(1), AUTHSVR(5),
BEA WebLogic Enterprise Administration Guide.
142 BEA Tuxedo Reference Manual

tpmodusr(1)

yle

.

file

.

ries

em
tpmodusr(1)

Name tpmodusr—maintain a BEA Tuxedo system password file

Synopsis tpmodusr usrname file [cltname]

Description This command allows an application administrator to maintain a UNIX system st
password file suitable for use with the BEA Tuxedo system AUTHSVR(5) server. A BEA
Tuxedo configuration with SECURITY set to USER_AUTH, ACL, or
MANDATORY_ACL must be created before running this command successfully

tpmodusr is used to modify the password for the indicated user in the password
file (the file cannot be /etc/passwd). The administrator is prompted for a new
password to be associated with the user. cltname defaults to '*' if not specified.
Wildcards specified for usrname and/or cltname match only the corresponding
wildcard entry in the password file, they are not expanded to all matching entries

Notices The cltname values tpsysadm and tpsysop are treated specially by AUTHSVR(5)
when processing authentication requests. These cltname values will not be matched
against wildcard cltname specifications in the password file.

Additionally, regardless of the order of addition to the password file, wildcard ent
are considered after explicitly specified values. An authentication request is
authenticated against only the first matching password file entry.

Portability This command is available only on UNIX system sites running BEA Tuxedo syst
Release 5.0 or later.

Compatibility This command is used to configure users for SECURITY USER_AUTH. For compatibility
with SECURITY ACL or MANDATORY_ACL (including the ability to migrate to these
security levels), the following restrictions should be applied.

1. Usernames should be unique and not use the wildcard.

2. User identifiers should be greater than 0, less than 128K, and unique.

3. The filename should be $APPDIR/tpusr.

These restrictions are enforced by the tpusrmod(1) command.

See Also tpaddusr(1), tpdelusr(1), tpusradd(1), tpusrdel(1), tpusrmod(1), AUTHSVR(5),
BEA WebLogic Enterprise Administration Guide.
BEA Tuxedo Reference Manual 143

 tpusradd(1)

o

d

 per

an

n

with
, and
(

ser.

ser.
tpusradd(1)

Name tpusradd—add a new principal on the system

Synopsis TUXCONFIG=tuxconfig tpusradd [-u uid] [-g gid] [-c client_name]
usrname

Description Invoking tpusradd adds a new principal (user or domain) entry to the BEA Tuxed
security data files. This information is used for per-user authentication with the
AUTHSVR(5) server. A BEA Tuxedo system configuration with SECURITY set to
USER_AUTH, ACL, or MANDATORY_ACL must be created before running this comman
successfully.

The system file entries created with this command have a limit of 512 characters
line. Specifying long arguments to several options may exceed this limit.

The following options are available:

-u uid
The user identification number. uid must be a positive decimal integer below
128K. uid must be unique within the list of existing identifiers for the
application. uid defaults to the next available (unique) identifier greater th
0.

-g gid
An existing group's integer identifier or character-string name. This optio
defines the new user's group membership It defaults to the “other” group
(identifier 0).

-c client_name
A string of printable characters that specifies the client name associated
the user. If specified, it generally describes the role of the associated user
provides a further qualifier on the user entry. It may not contain a colon :)
or a newline (n). If not specified, the default is the wildcard '*' which will
authenticate successfully for any client name specified.

usrname
A string of printable characters that specifies the new login name of the u
It may not contain a colon (:), pound sign (#), or a newline (n). The username
must be unique within the list of existing users for the application.

The administrator is prompted for an initial password to be associated with the u
144 BEA Tuxedo Reference Manual

tpusradd(1)
Before running this command, the application must be configured using either the
graphical user interface or tmloadcf(1). tpusradd must be run on the configuration
MASTER if the application is not active; if active, this command can run on any active
node.

See AUTHSVR(5) for further information about per-user authentication and configuring
administrator permissions.

Portability This command is available only on non-workstation sites running BEA Tuxedo system
Release 6.0 or later.

Diagnostics The tpusradd command exits with a return code of 0 upon successful completion.

Examples The following sequence of command invocations shows the construction of a simple
user file.

$ # 1. Add usrname foo with wildcard cltname and no uid
$ tpusradd -c ’*’ foo
$ # 2. Add usrname foo with cltname bar and uid 100
$ tpusradd -u 100 -c bar foo
$ # 3. Add usrname foo with tpsysadm cltname and no uid
$ tpusradd -c tpsysadm foo

The following table shows the user entry (indicated by numbers shown above) used to
authenticate various requests for access to the application and the associated Uid/Gid.
N/A indicates that the request is disallowed because no user file entry exists to be
matched against.

 Usrname Cltname Password Entry Uid Gid
------- ------- -------------- --- ---
"foo" "bar" 2 100 0
"foo" "" 1 1 0
"foo" "tpsysadm" 3 0 8192
"guest" "tpsysadm" N/A N/A N/A

Lastly, following is an example SERVERS section entry for an instance of AUTHSVR
that works with the user file generated above.

AUTHSVR SRVGRP=G SRVID=1 RESTART=Y GRACE=0 MAXGEN=2 CLOPT=”-A”

See Also tpgrpadd (1), tpgrpdel (1), tpgrpmod (1), tpusrdel (1), tpusrmod (1), AUTHSVR(5),
BEA WebLogic Enterprise Administration Guide.
BEA Tuxedo Reference Manual 145

 tpusrdel(1)

 the
ion

e

ive

tem
tpusrdel(1)

Name tpusrdel—delete a user from the system

Synopsis TUXCONFIG=tuxconfig tpusrdel usrname

Description The tpusrdel command deletes a principal (user or domain name) definition from
system. It removes the definition of the specified user. A BEA Tuxedo configurat
with SECURITY set to USER_AUTH, ACL, or MANDATORY_ACL must be created before
running this command successfully.

usrname specifies an existing username to be deleted.

Before running this command, the application must be configured using either th
graphical user interface or tmloadcf(1). tpusradd must be run on the configuration
MASTER if the application is not active; if active, this command can run on any act
node.

Portability This command is available only on non-workstation sites running BEA Tuxedo sys
Release 6.0 or later.

Diagnostics The tpusrdel command exits with a return code of 0 upon successful completion.

See Also tpgrpadd(1), tpgrpdel(1), tpgrpmod(1), tpusradd(1), tpusrmod(1).
146 BEA Tuxedo Reference Manual

tpusrmod(1)

n

d

 per

e

s

ser.

ser.

ion

or

r to
tpusrmod(1)

Name tpusrmod—modify user information on the system

Synopsis TUXCONFIG=tuxconfig tpusrmod [-u uid] [-g gid] [-c client_name]
[-l new_login] [-p] usrname

Description Invoking tpusrmod modifies a principal (user or domain) entry to the BEA Tuxedo
security data files. This information is used for BEA Tuxedo system authenticatio
with the AUTHSVR(5) server. A BEA Tuxedo system configuration with SECURITY set
to USER_AUTH, ACL, or MANDATORY_ACL must be created before running this comman
successfully.

The system file entries created with this command have a limit of 512 characters
line. Specifying long arguments to several options may exceed this limit.

The following options are available:

-u uid
The new user identification number. uid must be a positive decimal integer
below 128K. uid must be unique within the list of existing identifiers for th
application.

-g gid
An existing group's integer identifier or character-string name. It redefine
the user's group membership.

-c client_name
A string of printable characters that specifies the new client name for the u
It may not contain a colon (:) or a newline (n).

-l new_login
A string of printable characters that specifies the new login name of the u
It may not contain a colon (:), pound sign (#), or a newline (n). The username
must be unique within the list of existing users for the application. This opt
also implies the -p option to re-set the password.

-p
tpusrmod will modify the password for the indicated user. The administrat
is prompted for a new password to be associated with the user.

usrname
A string of printable characters that specifies the name of an existing use
be modified.
BEA Tuxedo Reference Manual 147

 tpusrmod(1)
Before running this command, the application must be configured using either the
graphical user interface or tmloadcf(1). tpusradd must be run on the configuration
MASTER if the application is not active; if active, this command can run on any active
node.

See AUTHSVR(5) for further information about per-user authentication and configuring
administrator permissions.

Portability This command is available only on non-workstation sites running BEA Tuxedo system
Release 6.0 or later.

Diagnostics The tpusrmod command exits with a return code of 0 upon successful completion.

See Also tpgrpadd(1), tpgrpdel(1), tpgrpmod(1), tpusradd(1), tpusrdel(1), AUTHSVR(5),
BEA WebLogic Enterprise Administration Guide.
148 BEA Tuxedo Reference Manual

tuxadm(1)

GUI
 a

ation
sed to

ds
the

eters

stance

.
 code
tuxadm(1)

Name tuxadm—BEA Tuxedo Web GUI CGI gateway

Synopsis http://cgi-bin/tuxadm[TUXDIR=TUXEDO_directory |
INIFILE=initialization_file][other_parameters]

Description tuxadm is a common gateway interface (CGI) process used to initialize the Web
from a browser. As shown in the synopsis above, this program is usable only as
location, or URL from a Web browser; it would not normally be executed from a
standard command-line prompt. It uses the QUERY_STRING environment variable to
parse its argument list, as is normal for CGI programs.

tuxadm parses its arguments and finds a Web GUI initialization file. If the TUXDIR
parameter is present, the initialization file is taken to be
$TUXDIR/udataobj/webgui/webgui.ini by default. If the INIFILE option is
present, then the value of that parameter is taken to be the full path to the initializ
file. Other parameters may also be present. Any additional parameters can be u
override values in the initialization file. See the wlisten reference page for a complete
list of initialization file parameters. (Note that the ENCRYPTBITS parameter may not be
overridden by the tuxadm process unless the override is consistent with the values
allowed in the actual initialization file.)

The normal action of tuxadm is to generate, to its standard output, HTML comman
that build a Web page that launches the Web GUI applet. The general format of
Web page is controlled by the TEMPLATE parameter of the initialization file, which
contains arbitrary HTML commands, with the special string %APPLET% on a line by
itself in the place where the Web GUI applet should appear. By using other param
from the initialization file (such as CODEBASE, WIDTH, HEIGHT, and so on) a correct
APPLET tag is generated that contains all the parameters necessary to create an in
of the Web GUI.

Errors tuxadm generates HTML code that contains an error message if a failure occurs
Because of the way CGI programs operate, there is no reason to return an error
of any kind from tuxadm.

See Also wlisten(1), tuxwsvr(1)
BEA Tuxedo Reference Manual 149

 TuxShell(1)

ord
t in

er,

e

W
TuxShell(1)

Name TuxShell—shell interface to BEA Tuxedo system utilities for Macintosh

Synopsis TuxShell

Description This Macintosh executable runs BEA Tuxedo system utilities. The user, using a w
processor, creates a script of the utilities to be run, making sure to save the scrip
text-only format. The user then runs this script using the RUN command under the FILE
menu. The user can also specify certain environment variables with the ENVIRONMENT
command, located under the FILE menu. Under the UTILITIES menu can be found
wud(1) and wud32(1). The only other option under the FILE menu is QUIT, which quits
the TuxShell.

TuxShell runs a user defined script. The script accepts the BEA Tuxedo system
commands gencat(1), mklanginfo(1), mkfldhdr(1), mkfldhdr32(1), bkenq(1),
viewc(1), viewc32(1), viewdis(1) and viewdis32(1). Environment variables can be
set and unset with the Set and Unset commands. Set and Unset have the following
format:

Set Name Value
Unset Name

Command-line options for any of the utilities may be specified in the script. Howev
no utility can read from stdin, so any attempt to do so will log an error.

If either the viewc(1) or viewc32(1) utility is to be run with the MPW compiler or the
Metrowerks compiler, then the ToolServer program (available from Apple) must be
running, with the TUXDIR and Commands environment variables set properly. If th
THINK C compiler is to be used then the VIEWC_DNR.prj project must be located in
the {TUXDIR}:lib directory. If the Metrowerks compiler is being used, then:

l The MPW tools that are delivered with the Metrowerks compiler must be
installed.

l The mwscript script (found in $TUXDIR/bin) is executed by the viewc and
viewc32 compilers.

Portability TuxShell was designed to run on Macintosh systems.

Environment
Variables

If the viewc(1) or viewc32(1) is to be run, then the CC variable must be set to THINK_C
if the THINK C compiler is to be used. If these utilities are to be used with the MP
compiler, then the CC variable must be set to applec. If viewc(1) or viewc32(1) is to
150 BEA Tuxedo Reference Manual

TuxShell(1)
be run with the Metrowerks compiler, then the CC variable must be set to mwerks and
the MWERKS_MPW variable must be set to the directory containing the MPW tools that
come with the Metrowerks compiler.

Diagnostics The {TUXDIR}:bin directory will contain stdout and stderr files resulting from the
run of the script. Other messages may be logged in the ULOG file.

Note that view files compiled for THINK C are not compatible with view files
compiled for the Metrowerks compiler.

See Also gencat(1), mkfldhdr(1), mkfldhdr32(1), mklanginfo(1), viewc(1), viewc32(1),
viewdis(1), viewdis32(1), bkenq(1), wud(1), wud32(1)
BEA Tuxedo Reference Manual 151

 tuxwsvr(1)

A

s

I,

an

t

olve
e

es

ter
tuxwsvr(1)

Name tuxwsvr—Mini Web server for use with BEA Tuxedo Web GUI

Synopsis tuxwsvr -l nlsaddr [-d device] [-L logfile] [-F]
-i initialization_file

Description tuxwsvr is a World Wide Web server process that can be used to support the BE
Tuxedo Web GUI by customers who do not have a commercial Web server or a
public-domain Web server on the machine where the BEA Tuxedo Web GUI
processes are running. tuxwsvr places itself in the background when invoked unles
otherwise specified, and continues running until the machine shuts down or the
tuxwsvr process is killed using an operating system command.

tuxwsvr contains all functionality necessary to support the BEA Tuxedo Web GU
but does not include many features present in commercial Web servers, such as
preforked processes, server-side HTML includes (.shtml files), default directory
indexes, and https connections. (Note, however, that the BEA Tuxedo Web GUI c
be run in secure mode without an https connection since it implements its own
encryption protocol.) For performance reasons, the generic Web server does no
perform reverse DNS lookups for received requests.

The following command-line options are used by tuxwsvr:

-l nlsaddr
Network address at which the process listens for connections. TCP/IP
addresses may be specified in the following forms:

"//hostname:port_number"
"//#.#.#.#:port_number"

In the first format, tuxwsvr finds an address for hostname using the local
name resolution facilities (usually DNS). hostname must be the local
machine, and the local name resolution facilities must unambiguously res
hostname to the address of the local machine. In the second example, th
“#.#.#.#" is in dotted decimal format. In dotted decimal format, each # should
be a number from 0 to 255. This dotted decimal number represents the IP
address of the local machine. In both of the above formats, port_number is
the TCP port number at which the tlisten process will listen for incoming
requests. port_number can either be a number between 0 and 65535 or a
name. If port_number is a name, then it must be found in the network servic
database on your local machine. The address can also be specified in
hexadecimal format when preceded by the characters “0x”. Each charac
after the initial “0x” is a number between 0 and 9 or a letter between A and F
152 BEA Tuxedo Reference Manual

tuxwsvr(1)
(case insensitive). The hexadecimal format is useful for arbitrary binary
network addresses such as IPX/SPX or TCP/IP. The address can also be
specified as an arbitrary string. For example, string addresses are used in
STARLAN networks.

-d device
Full pathname of the network device. For Tuxedo Release 6.4 or higher, this
parameter is optional. For prior releases, it should be used if required by the
underlying network provider (for example, tcp).

-L logfile
Prefix of the name of the file used by tuxwsvr to log Web requests and error
messages. The actual name of the logfile is formed by adding a
seven-character string (.mmddyy) indicating the month, day, and year to this
prefix. If this option is not specified, the Web server log file prefix is WB in
the current directory. The first log message written on each successive day
that the tuxwsvr process runs is written to a new file.

-F
Specifies that tuxwsvr should run in the foreground rather than placing itself
in the background. This option is mainly useful for testing and debugging.
(The tuxwsvr process automatically runs in the background unless otherwise
specified; the trailing ampersand (&) on the command line is not required.)

-i initialization_file
An initialization file must be specified on every tuxwsvr command line. The
command-line option that lets you do so is -i. The following section
describes the format of an initialization file.

Initialization File
Format

An initialization file contains mappings to directories needed by the Web server and,
possibly, some comment lines. (The latter are marked by # signs at the beginning of
the line.) Each non-comment line consists of three fields separated by white space.

Table 0-10 Initialization File Format

 Field Contents

1 Either "HTML" or "CGI," indicating the type of files (HTML files or executable
CGI programs) residing in the directory described in this line.

2 A path prefix. (If a particular request matches more than one prefix, the first
matching prefix mapping in the file is chosen.)
BEA Tuxedo Reference Manual 153

 tuxwsvr(1)
The last non-comment line in the initialization file must have a prefix of ’/’. If any line
prior to the last non-comment line in the initialization file has a prefix of ’/’, a warning
message is generated.

A Note about
Changing the

Initialization File

The initialization file is read once at startup time. Thus, if you make any changes to
this file, you must stop and restart tuxwsvr before your changes will take effect.

Example of a
UNIX system

Initialization File

The following is an example of an initialization file for a UNIX system.

CGI /cgi-bin /home/TUXEDO/udataobj/webgui/cgi-bin
CGI /webgui /home/TUXEDO/udataobj/webgui/cgi-bin
HTML /java /home/TUXEDO/udataobj/webgui/java
HTML /doc /home/TUXEDO/doc
HTML / /home/TUXEDO/udataobj/webgui

Suppose the Web server is running on port 8080 on the following machine:

tuxmach.acme.com

Enter a request to either of the following URLs:

http://tuxmach.acme.com:8080/cgi-bin/tuxadm?TUXDIR=/home/TUXEDO
http://tuxmach.acme.com:8080/webgui/tuxadm?TUXDIR=/home/TUXEDO

Your request will have two effects:

(a) It will invoke the program
 /home/TUXEDO/udataobj/webgui/tuxadm

(b) It will set the environment variable QUERY_STRING
to TUXDIR=/home/TUXEDO in the program,
as stated in the World Wide Web CGI specification.

Note that it is not a good idea to specify $TUXDIR/bin as a value for an initialization
file CGI directory since doing so makes it possible for Web users to invoke any BEA
Tuxedo executable. (Such users would not, however, be able to see the output from
executables other than tuxadm since these other executables are not written as CGI
programs.)

3 The directory or file to which the path prefix (in Field 2) is mapped.

Table 0-10 Initialization File Format

 Field Contents
154 BEA Tuxedo Reference Manual

tuxwsvr(1)
Also, note that in the example above the first HTML line is redundant since the second
HTML line would map subdirectories of /java to the same filepath. Nevertheless, we
have included this line since some users might wish to place their Java class files in a
location other than the one in which they have stored their HTML documents.

Example of a
Windows NT

Initialization File

The following is an example of an initialization file for a Windows NT system.

HTML /TUXEDO/webgui D:\TUXEDO\htmldocs
CGI /cgi-bin C:\cgi-bin
HTML /java D:\TUXEDO\udataobj\webgui\java
HTML / D:\TUXEDO\udataobj\webgui

Suppose the Web server is running on port 80 on machine ntsvr1. Enter the following
URL:

http://ntsvr1/TUXEDO/webgui/page1.html

The following file will be retrieved:

D:\TUXEDO\htmldocs\page1.html

Presumably this file is a customer-created page that will invoke the Web GUI.

Termination There is only one way to achieve a normal termination of a tuxwsvr process: by
sending it a SIGTERM signal.

Recommended
Use

In the current release of BEA Tuxedo System/T, the tuxwsvr process is provided as a
Web server for the BEA Tuxedo administrative GUI for those customers who do not
have a commercial Web server. On UNIX systems, we recommend adding a command
line of the following format to UNIX initialization scripts so that the Web server will
be started automatically:

TUXDIR=tuxdir_pathname $TUXDIR/bin/tuxwsvr \
 -l nlsaddr -i initialization_file

tuxdir_pathname represents the full pathname of the location of the System/T
software for that application. nlsaddr is the network-dependent address to be used by
this tuxwsvr process.

One alternative method for starting the tuxwsvr process is to start it manually using
the command line recommended above. A second alternative is to use cron jobs to
start the tuxwsvr process periodically (daily, or perhaps even more often). Duplicate
tuxwsvr command invocations using the same network address will terminate
automatically and gracefully log an appropriate message.
BEA Tuxedo Reference Manual 155

 tuxwsvr(1)
Network
Addresses

The only restriction on the network address specified for the tuxwsvr process by the
application administrator is that it be a unique address on the specified network. For a
STARLAN network, a recommended address of uname.tuxwsvr will usually yield a
unique name. For TCP/IP, the address is formed from a unique port selected by the
application administrator paired with the node identifier for the local machine, that is,
0x0002ppppnnnnnnnn. Unique port values for a particular machine (pppp) need to be
negotiated among users of that network/machine combination; higher port numbers
tend to be better since lower numbers are frequently used for system related services.
The appropriate value for the node field (nnnnnnnn) can be found in the /etc/hosts file
by using the following steps:

Step 1: Enter uname -n
 Returns node_name

Step 2: Enter grep node_name /etc/hosts
 Returns 182.11.108.107 node_name

You must convert the dot notation into eight hexadecimal digits.

Examples of
Network

Addresses

Suppose the local machine on which the tuxwsvr is being run is using TCP/IP
addressing. The machine is named backus.company.com and its address is
155.2.193.18. Further suppose that the port number at which the tuxwsvr should
accept requests is 2334. Assume that port number 2334 has been added to the network
services database under the name bankapp-tuxwsvr. The address specified by the -l
option could be represented in any of several ways:

//155.2.193.18:bankapp-tuxwsvr
//155.2.193.18:2334
//backus.company.com:bankapp-tuxwsvr
//backus.company.com:2334
0x0002091E9B02C112

The last line shows how to represent the address in hexadecimal format: 0002 is the
first part of a TCP/IP address, 091E is a hexadecimal translation of the port number
2334, and 9B02C112 is the hexadecimal translation of the IP address, 155.2.193.18.
(In the latter translation, 155 becomes 9B, 2 becomes 02, and so on.)

For a STARLAN network, a recommended address of uname.tuxwsvr will usually
yield a unique name.

See Also tuxadm(1), wlisten(1)
156 BEA Tuxedo Reference Manual

txrpt(1)

ide a
er of
riod

e
 for

d
txrpt(1)

Name txrpt—BEA Tuxedo system server/service report program

Synopsis txrpt [-t] [-n names] [-d mm/dd] [-s time] [-e time]

Description txrpt analyzes the standard error output of a BEA Tuxedo system server to prov
summary of service processing time within the server. The report shows the numb
times dispatched and average elapsed time in seconds of each service in the pe
covered. txrpt takes its input from the standard input or from a standard error file
redirected as input. Standard error files are created by servers invoked with the -r
option from the servopts(5) selection; the file can be named by specifying it with th
-e servopts option. Multiple files can be concatenated into a single input stream
txrpt. Options to txrpt have the following meaning:

-t
Orders the output report by total time usage of the services, with those
consuming the most total time printed first. If not specified, the report is
ordered by total number of invocations of a service.

-n names
Restricts the report to those services specified by names. names is a
comma-separated list of service names.

-d mm/dd
Limits the report to service requests on the month, mm, and day, dd, specified.
The default is the current day.

-s time
Restricts the report to invocations starting after the time given by the time
argument. The format for time is hr[:min[:sec]].

-e time
Restricts the report to invocations that finished before the specified time. The
format for time is the same as the -s flag.

The report produced by txrpt covers only a single day. If the input file contains
records from more than one day, the -d option controls the day reported on.

Notices Make sure that the ULOGDEBUG variable is not set to y when a server is collecting
statistics for analysis via txrpt. Debugging messages in the file will be misinterprete
by txrpt.

Examples For the following command line:
BEA Tuxedo Reference Manual 157

 txrpt(1)
txrpt -nSVC1 -d10/15 -s11:01 -e14:18 newr

The report produced looks like this:

START AFTER: Thu Oct 15 11:01:00 1992
END BEFORE: Thu Oct 15 14:18:00 1992
 SERVICE SUMMARY REPORT

SVCNAME 11a-12n 13p-14p 14p-15p TOTALS
 Num/Avg Num/Avg Num/Avg Num/Avg
------ -------- -------- -------- -------
SVC1 2/0.25 3/0.25 1/0.96 6/0.37
------- ------- ------- ------- -------
TOTALS 2/0.25 3/0.25 1/0.96 6/0.37

The above example shows that SVC1 was requested a total of six times within the
specified period and that it took an average of 0.37 seconds to process the request.

See Also servopts(5)
158 BEA Tuxedo Reference Manual

ud(1)

erred
the

se

age

ce,
ud(1)

Name ud, wu—BEA Tuxedo driver program

Synopsis ud [-p] [-ddelay] [-eerror_limit] [-r] [-ssleeptime] [-ttimeout]
 [-n] [-u {n | u | j}] [-Uusrname] [-Ccltname] [-Sbuffersize]
ud32 [options]
wud [options]
wud32 [options]

Description ud reads an input packet from its standard input using Fextread(3fml). The packet
must contain a field identified as the name of a service. The input packet is transf
to an FML fielded buffer (FBFR) and sent to the service. If the service that receives
FBFR is one that adds records to a database, ud provides a method for entering bulk
fielded data into a database known to the BEA Tuxedo system.

By using flags (see INPUT FORMAT) to begin the lines of the input packet, you can u
ud to test BEA Tuxedo services.

By default, after sending the FBFR to the service, ud expects a return FBFR. The sent
and reply FBFRs are printed to ud's standard output; error messages are printed to
standard error.

ud32 uses FML32 buffers of type FBFR32.

wud and wud32 are versions of ud and ud32 built using the workstation libraries. On
sites supporting just workstation, only the wud and wud32 commands will be present.

Options ud supports the following options:

-p
Suppresses printing of the sent and returned fielded buffers.

-d
Expects a delayed reply for every request. delay specifies the maximum
delay time in seconds before time out. If a timeout occurs, an error mess
is printed on stderr. If ud receives reply messages for previous requests
within the delay time, they will be indicated as delayed RTN packets. Hen
it is possible to receive more than one reply packet within a delay time
interval. The -d option is not available for wud on DOS operating systems.

-e error_limit
ud stops processing requests when errors exceed the limit specified in
error_limit. If no limit is specified, the default is 25.
BEA Tuxedo Reference Manual 159

 ud(1)
-r
ud should not expect a reply message from servers.

-s sleeptime
Sleeps between sends of input buffers. sleeptime is the time, in seconds, of
the sleep.

-t timeout
ud should send requests in transaction mode. timeout is the time, in seconds,
before the transaction is timed out. The -d delay and -r (no reply) options
are not allowed in combination with the -t option.

-u {n | u | j}
Specifies how the request buffer is modified before reading each new packet.
The n option indicates that the buffer should be reinitialized (treated as new).
The u option indicates that the buffer should be updated with the reply buffer
using Fupdate(3fml). The j option indicates that the reply buffer should be
joined with the request buffer using Fojoin(3fml).

-n
Reinitializes the buffer before reading each packet (i.e., treat each buffer as a
new buffer). This option is equivalent to -un and is maintained for
compatibility.

-U usrname
Use usrname as the username when joining the application.

-S buffersize
If the default buffer size is not large enough, the -S option can be used to
raise the limit. buffersize can be any number up to MAXLONG.

The -d delay and -r options are mutually exclusive.

Input Format Input packets consist of lines formatted as follows:

[flag]fldname fldval

flag is optional. If flag is not specified, a new occurrence of the field named by
fldname with value fldval is added to the fielded buffer. If flag is specified, it
should be one of:

+
Occurrence 0 of fldname in FBFR should be changed to fldval.

-
Occurrence 0 of fldname should be deleted from FBFR. The tab character is
required; fldval is ignored.
160 BEA Tuxedo Reference Manual

ud(1)
=
The value in fldname should be changed. In this case, fldval specifies the
name of a field whose value should be assigned to the field named by
fldname.

#
The line is treated as a comment and is ignored.

If fldname is the literal value SRVCNM, fldval is the name of the service to which
FBFR is to be passed.

Lengthy field values can be continued on the next line by having the continuation line
begin with a tab.

A line consisting only of the newline character ends the input and sends the packet to
ud.

If an input packet begins with a line consisting of the character n followed by the
newline character, the FBFR is reinitialized. FBFR reinitialization can be specified for
all packets with the -un option on the command line.

To enter an unprintable character in the input packet, use the escaping convention
followed by the hexadecimal representation of the desired character (see ASCII(5) in
a UNIX reference manual). An additional backslash is needed to protect the escape
from the shell. A space, for example, can be entered in the input data as 20. ud
recognizes all input in this format, but its greatest usefulness is for non-printing
characters.

Processing
Model

Initially, ud reads a fielded buffer from its standard input and sends it to the service
whose name is given by the fldval of the line where fldname equals SRVCNM. Unless
the -r option is selected, ud waits for a reply fielded buffer. After obtaining the reply,
ud reads another fielded buffer from the standard input. In so doing, ud retains the
returned buffer as the current buffer. This means that the lines on the standard input
that form the second fielded buffer are taken to be additions to the buffer just returned.
That is, the default action is for ud to maintain a current buffer whose contents are
added to by a set of input lines. The set is delimited by a blank line. ud may be
instructed to discard the current buffer (that is, to reinitialize its FBFR structure) either
by specifying the -un option on the command line, or by including a line whose only
character is the letter n as the first line of an input set. ud may be instructed to merge
the contents of the reply buffer into the request buffer by specifying either the -uu
option (Fupdate is used) or the -uj option (Fojoin is used).
BEA Tuxedo Reference Manual 161

 ud(1)
Security If ud is run in a security application, it requires an application password to access the
application. If standard input is a terminal, ud prompts the user for the password with
echo turned off on the reply. However, since ud accepts bulk input on standard input,
standard input will typically be a file and not a terminal. In this case, the password is
retrieved from the environment variable, APP_PW. If this environment variable is not
specified and an application password is required, then ud will fail.

Portability These commands are supported as BEA Tuxedo-supplied clients on UNIX and
MS-DOS operating systems.

Environment
Variables

FLDTBLDIR and FIELDTBLS must be set and exported. FLDTBLDIR must include
$TUXDIR/udataobj in the list of directories. FIELDTBLS must include Usysflds as
one of the field tables.

APP_PW must be set to the application password in a security application if standard
input is not from a terminal. TPIDATA must be set to the application specific data
necessary to join the application in a security application with an authentication server
if standard input is not from a terminal.

WSNADDR, WSDEVICE and optionally WSTYPE must be set if access is from a
workstation. See compilation(5) for more details on setting environment variables
for client processes.

Diagnostics ud fails if it cannot become a client process, if it cannot create the needed FBFRs, or if
it encounters a UNIX system error. It also fails if it encounters more than 25 errors in
processing a stream of input packets. These can be syntax errors, missing service
names, errors in starting or committing a transaction, timeouts and errors in sending
the input FBFR or in receiving the reply FBFR.

Notices The final fielded buffer in the input stream should be terminated by a blank line.

Examples $ud <EOF>
SRVCNM BUY
CLIENT J. Jones
ADDR 21 Valley Road
STOCK AAA
SHARES 100
<CR>
+SRVCNM SELL
+STOCK XXX
+SHARES 300
STOCK YYY
SHARES 150
<CR>
162 BEA Tuxedo Reference Manual

ud(1)
n
SRVCNM BUY
CLIENT T. Smith
ADDR 1 Main Street
STOCK BBB
SHARES 175
<CR>
+SRVCNM SELL
+STOCK ZZZ
+SHARES 100
<CR>
EOF
$

In this example, ud first sends a fielded buffer to the service BUY with CLIENT field set
to J. Jones, ADDR field set to 21 Valley Road, STOCK field to AAA, and SHARES field set
to 100.

When the fielded buffer is returned from the BUY service, ud uses the next set of lines
to change SRVCNM to SELL, STOCK to XXX, and SHARES to 300. Also, it creates an
additional occurrence of the STOCK field with value YYY and an additional occurrence
of the SHARES field with value 150. This fielded buffer is then sent to the SELL service
(the new value of the SRVCNM field).

When SELL sends back a reply fielded buffer, ud discards it by beginning the next set
of lines with a line containing only the character n. ud then begins building an entirely
new input packet with a SRVCNM of BUY, CLIENT of value T. Smith, and so on.

See Also Fextread(3fml), compilation(5), ascii(5) in a UNIX system reference manual,
BEA Tuxedo Programmer’s Guide, BEA Tuxedo FML Programmer's Guide, BEA
WebLogic Enterprise Administration Guide.
BEA Tuxedo Reference Manual 163

 udfk_test(1)
udfk_test(1)

Name udfk_test—verify user-defined function key file

Synopsis udfk_test [-v] file

Description Reports on errors in the file containing user-defined function keys. The file is normally
passed to mio(1) with the -u option. mio can also detect an incorrectly formatted file,
but its diagnostics are limited, compared to those of udfk_test. When run with the
-v option, udfk_test prints the character sequence associated with each mio
command, based on the contents of file.

See Also mio(1), udfk(5)
164 BEA Tuxedo Reference Manual

uuidgen(1)

ard
at
 by
 and

s.
 not

rsion

.

uuidgen(1)

Name uuidgen—generate a Universal Unique Identifier (UUID)

Synopsis uuidgen [-o filename] [{-i | -n number}] [-v] [-h] [-?]

Description uuidgen, by default, generates a Universal Unique Identifier (UUID) on the stand
output.The UUID is used to uniquely identifier an IDL interface definition. The form
for a UUID string consists of eight hexadecimal digits followed by a dash, followed
three groups of four hexadecimal digits separated by dashes, followed by a dash
twelve hexadecimal digits (see the Examples below).

The following uuidgen(1) options are supported:

-i
Produces an IDL file template, including a UUID string (see Examples for
the file format). This option cannot be specified with the -n option.

-n number
Generates the specified number of UUID strings. This option cannot be
specified with the -i option.

-o filename
Redirects the output to the specified file.

-v
Displays the version number for uuidgen(1) but does not generate a UUID
string.

-h or -?
Displays help information for uuidgen(1).

Network
Address

The generation of the UUID requires the availability of a 48-bit IEEE 802 addres
Since this is not available in all environments and the method of determination is
portable, several methods are available for use with the BEA Tuxedo system ve
of uuidgen.

n If the NADDR environment variable is set to a value of the form

num.num.num.num

then it is taken to be a Internet-style address and converted.

n Otherwise, if the WSNADDR environment variable is set to a value of the form

0xnnnnnnnnnnnnnnnn

then it is taken to be a hexadecimal network address, as used in workstation
BEA Tuxedo Reference Manual 165

 uuidgen(1)
n Otherwise, if not DOS, the uname for the machine is used to look up the
machine entry in /etc/hosts to get the Internet-style address.

n Otherwise, a warning is printed and 00.00.00.00 is used.

Note that in each of these cases, a 32-bit address is formed and the remainder of the
address (for 48-bits) is treated as 00.00.

Diagnostics uuidgen will exit with a non-zero exit code if an invalid command-line option is
specified, or if it cannot open the output file. A warning is printed if an invalid network
address value is given and the value 00.00.00.00 is used.

Examples Generate a UUID string:

uuidgen
23C67E00-71B6-11C9-9DFC-08002B0ECEF1

Generate an IDL template for developing an interface definition:

uuidgen -i
[uuid(B5F8DB80-3CCA-14F8-1E78-930269370000)]
interface INTERFACE
{
}

Generate two UUID strings:

uuidgen -n 2
C0B37080-3CCA-14F8-265F-930269370000
C0B37081-3CCA-14F8-2CDB-930269370000

See Also tidl(1)
166 BEA Tuxedo Reference Manual

viewc(1)

ta

 a

is

 and
viewc(1)

Name viewc, viewc32—view compiler for BEA Tuxedo views

Synopsis viewc [-n] [-d viewdir] [-C] viewfile [viewfile ...]
viewc32 [-n] [-d viewdir] [-C] viewfile [viewfile ...]

Description viewc is a view compiler program. It takes a source viewfile and produces:

n A binary file, which is interpreted at runtime to effect the actual mapping of da
between FML buffers and C structures.

n One or more header files, and

n Optionally COBOL copy files. When viewc is executed a C compiler must be
available.

viewc32 is used for 32-bit FML. It uses the FIELDTBLS32 and FLDTBLDIR32
environment variables.

The viewfile is a file containing source view descriptions. More than one viewfile
can be specified on the viewc command line as long as the same VIEW name is not used
in more than one viewfile.

By default, all views in the viewfile are compiled and two or more files are created:
view object file (suffixed with .V) and a C header file (suffixed with .h). The name of
the object file is viewfile.V in the current directory unless an alternate directory
specified through the -d option. C header files are created in the current directory.

If the -C option is specified, then one COBOL copy file is created for each VIEW
defined in the viewfile. These copy files are created in the current directory.

At viewc compile time, the compiler matches each fieldid and field name specified
in the viewfile with information obtained from the field table file, and stores
mapping information in an object file for later use. Therefore, it is essential to set
export the environment variables FIELDTBLS and FLDTBLDIR to point to the related
field table file. For more information on FIELDTBLS and FLDTBLDIR please refer to the
BEA Tuxedo FML Programmer’s Guide and the BEA Tuxedo Programmer’s Guide.

If the viewc compiler can not match a field name with its fieldid because either the
environment variables are not set properly or the field table file does not contain the
field name, a warning message Field not found is displayed.

With the -n option, it is possible to create a view description file for a C structure that
is not mapped to an FML buffer. The BEA Tuxedo Programmer’s Guide tells how to
create and use such an independent view description file.
BEA Tuxedo Reference Manual 167

 viewc(1)
The following options are interpreted by viewc:

-n
Used when compiling a view description file for a C structure that does not
map to an FML buffer. It informs the view compiler not to look for FML
information.

-d viewdir
Used to specify that the view object file is to be created in a directory other
than the current directory.

-C
Used to specify that COBOL copy files are to be created.

Portability The output view file is a binary file that is machine and compiler dependent. That is, it
will not work to generate a view on one machine with a specific compiler and use it on
another machine type or with a compiler that generates structure offsets differently
(that is, different padding or packing).

When a view file description file is compiled on DOS or OS/2, the name of the object
file has a .VV suffix instead of a .V suffix because the filenames are not case
dependent. The following additional options are recognized.

-m {m | l}
Specifies the memory model to be used for compilation and linking of a
client. The supported values for this option are m and l for the medium and
large memory models, respectively. The large memory model is the default
for this option. The -m option is supported for DOS only.

-c {m | b}
Specifies the C compilation system to be used. The supported value for this
option is m for the Microsoft C compiler. The Microsoft C compiler is the
default for this option. The -c option is supported for DOS and Windows
only.

-1 filename
Specifies that pass 1 should be run, and the resulting batch file should be
called filename.bat should be created. After this file is created, it, should
be executed before running pass 2. Using pass 1 and pass 2 increases the size
of the views that can be compiled.

-2 filename
Specifies that pass 2 should be run to complete processing, using the output
from pass 1.
168 BEA Tuxedo Reference Manual

viewc(1)
See Also Fintro(3), BEA Tuxedo Programmer’s Guide
BEA Tuxedo Reference Manual 169

 viewdis(1)

lays

.
viewdis(1)

Name viewdis, viewdis32—view disassembler for binary viewfiles

Synopsis viewdis viewobjfile ... viewdis32 viewobjfile ...

Description viewdis disassembles a view object file produced by the view compiler and disp
view information in viewfile format. In addition, it displays the offsets of structure
members in the associated structure.

One or more viewobjfiles (suffixed with .V) can be specified on the command line
By default, the viewobjfile in the current directory is disassembled. If this is not
found, an error message is displayed.

Since the information in the viewobjfile was obtained from a match of each
fieldid and field name in the viewfile with information in the field table file, it is
important to set and export the environment variables FIELDTBLS and FLDTBLDIR.

The output of viewdis looks the same as the original view description(s), and is
mainly used to verify the correctness of the compiled object view descriptions.

viewdis32 is used for 32-bit FML. It uses the FIELDTBLS32 and FLDTBLDIR32
environment variables.

See Also viewc(1), BEA Tuxedo FML Programmer’s Guide
170 BEA Tuxedo Reference Manual

wlisten(1)

n.

le
uts

on

 is

n of

A
 GUI
 the
the
see
ed or
wlisten(1)

Name wlisten—BEA Tuxedo Web GUI listener process

Synopsis wlisten [-i initialization_file]

Description wlisten is a listener process that receives incoming connections from Web GUI
applets and starts a Web GUI gateway process (wgated). All wlisten options are
taken from an initialization file that is specified by the -i option. If the -i option is not
given, then $TUXDIR/udataobj/webgui/webgui.ini is used as the default
initialization file. The format and parameters allowed in the initialization file are
described below. A default initialization file is generated during system installatio

wlisten places itself in the background when invoked (unless the initialization fi
contains the FOREGROUND=Y parameter), and continues running until the machine sh
down or the wlisten process is killed through an operating system command.

The following command-line option is used by wlisten:

-i initialization_file
Specifies that wlisten should use the initialization_file specified for
parameters used during Web GUI sessions. The format of the initializati
file is specified below. Most parameters of the initialization file are set to
reasonable values at BEA Tuxedo installation time. If this option is not
specified on the command line, then the default initialization file location
$TUXDIR/udataobj/webgui/webgui.ini.

Initialization File The initialization file specified by the -i option contains parameters that allow the
applet, wlisten process, and gateway process to coordinate certain pieces of
configuration information necessary for the connection and subsequent operatio
the Web GUI.

Most of the parameters contained in the initialization file are configured when BE
Tuxedo is installed. Other parameters may be added automatically when the Web
is being run, in response to user input. For example, if you connect to a domain,
GUI adds a listing for that domain to the initialization file. The next time you use
pull-down Domain menu (above the Power Bar in the main GUI window), you will
the new domain listed. Do not be alarmed if you notice that lines have been add
changed in your initialization file without your having explicitly edited the file.
BEA Tuxedo Reference Manual 171

 wlisten(1)

ame

sed
150,

in
vely.

he

n
The initialization file consists of commentary lines (blank lines or lines beginning with
the # character) and keyword lines. Keyword lines are of the form keyword=value.
The allowed keywords and values are outlined below:

TUXDIR=directory
The directory in which the BEA Tuxedo software is installed. There is no
default for this parameter; you must assign a value. Note that if the -i option
is not given to wlisten, then TUXDIR must be set in the environment (and
normally should be set to the value specified in the initialization file.)

NADDR=network_address
Specifies the network address to be used by wlisten. There is no default for
this parameter; you must assign a value. The format of the network address is
the same as that allowed by tlisten and other BEA Tuxedo commands. (See
“NETWORK ADDRESSES,” below, for a complete description.)

DEVICE=device
Specifies the network device to be used by wlisten. This variable is
optional. For releases prior to BEA Tuxedo 6.4, the default is the empty
string, which means that no network device has been selected. (This is
appropriate for some systems, such as Microsoft Windows NT.) Use the s
value here that you would use for the -d option of tlisten. On some UNIX
systems the value should be /dev/tcp; whether or not you assign this value
depends on the operating system.

FOREGROUND=[Y|N]
Specifies whether wlisten should run in the foreground. The default is N
meaning that wlisten will put itself in the background automatically. The
only reason to use this option is for testing and debugging.

WIDTH=pixels and HEIGHT=pixels
Specifies the width and height, respectively, for the applet. This area is u
for password prompting if security is enabled. The defaults are 400 and
respectively.

FRAMEWIDTH=pixels and FRAMEHEIGHT=pixels
Specifies the width and height, respectively, for the main applet window
which administration takes place. The defaults are 750 and 550, respecti

ENCRYPTBITS=[0|40]
Sets the encryption mode used by the gateway and applet connection. T
default is 0, meaning there is no encryption. If the 40 option is chosen, then
40-bit RC4 encryption will take place. In this case, a tlisten password file
must exist and authentication must occur in order to exchange encryptio
keys.
172 BEA Tuxedo Reference Manual

wlisten(1)
DOCBASE=document_root
Specifies the document base where the BEA Tuxedo Web GUI help files are
found. This parameter is set during BEA Tuxedo installation and, under
normal circumstances, it should not be changed afterward. There is no default
for this parameter; you must assign a value in the initialization file.

CODEBASE=applet_root
Specifies the URL for the code base where BEA Tuxedo Web GUI applet
files are found. This parameter is set during BEA Tuxedo installation and,
under normal circumstances, it should not be changed afterward. There is no
default for this parameter; you must assign a value in the initialization file.

SNAPDIR=snapshot_directory
Specifies the server directory path in which userlog snapshot files and event
log snapshot files are stored. (The value of SNAPDIR is a full pathname rather
than a URL.) It is set during BEA Tuxedo installation and, under normal
circumstances, it should not be changed afterward. There is no default for this
parameter; you must assign a value in the initialization file.

SNAPBASE=http_root
Specifies the URL base in which userlog snapshot files and event log
snapshot files are stored. (The value of SNAPBASE is a URL rather than a full
pathname.) It is set during BEA Tuxedo installation and, under normal
circumstances, it should not be changed afterward. There is no default for this
parameter; you must assign a value in the initialization file.

TEMPLATE=template_path
Specifies the pathname of the template file used to deliver the Web GUI
applet to the user at startup time. The template file must contain the string
%APPLET% on a line by itself, which is the place in the file where the Web GUI
applet will appear. The rest of the file should be a standard HTML format file
that typically contains instructions, a logo, or other information for use by the
Web GUI administrator. The default pathname is:
$TUXDIR/udataobj/webgui/webgui.html

INIFILE=init_file
Specifies the full path for the initialization file to be used by the applet. Under
normal circumstances, the initialization file itself is used, but it is technically
possible for the applet user to use an initialization file other than the one used
by the gateway process. We do not recommend using an alternative
initialization file, however, because if two initialization files are used they
must be kept consistent with each other. For example, the NADDR and
CODEBASE parameters, as well as, various directory parameters, must be set
to identical values, and the value of the ENCRYPTBITS parameter must be
BEA Tuxedo Reference Manual 173

 wlisten(1)
consistent between the two files. Thus an application in which two files are
used is more error prone than an application in which only one is used.

FLDTBLDIR32=field_table_dir and FIELDTBLS32=field_tables
Specifies the field table directories and values, respectively, for use with the
Web GUI. These parameters are set to the proper values by the BEA Tuxedo
installation program; under normal circumstances they should not be changed
later.

Termination The only way to stop a wlisten process with a normal termination is by sending it a
SIGTERM signal.

Recommended
Use

To Ensure Automatic Starting of the Listener

To make sure the Web GUI listener is started automatically, we recommend adding a
command line in the following format to your UNIX system initialization scripts:

$TUXDIR/bin/wlisten -i initialization_file

To start the wlisten process manually, enter the command line shown above after a
system prompt.

To Ensure Administrative Password Will Be Found

During the installation process, an administrative password file is created. When
necessary, BEA Tuxedo searches for this file in the following directories (in the order
shown):

APPDIR/.adm/tlisten.pw; TUXDIR/udataobj/tlisten.pw

To ensure that your administrative password file will be found, make sure you have set
the APPDIR and/or TUXDIR environment variables.

Network
Addresses

Suppose the local machine on which wlisten is being run is using TCP/IP addressing.
The machine is named backus.company.com and its address is 155.2.193.18.

Further suppose that the port number at which wlisten should accept requests is
2334. Assume that port number 2334 has been added to the network services database
under the name bankapp-nlsaddr. The address specified by the -l option may be
represented in any of several ways:

//155.2.193.18:bankapp-nlsaddr
//155.2.193.18:2334
//backus.company.com:bankapp-nlsaddr
//backus.company.com:2334
0x0002091E9B02C112
174 BEA Tuxedo Reference Manual

wlisten(1)
The last line shows how to represent the address in hexadecimal format: 0002 is the
first part of a TCP/IP address, 091E is the hexadecimal translation of the port number
2334, and 9B02CU2 is an element-by-element hexadecimal translation of the IP
address, 155.2.193.18. (In the latter translation, 155 becomes 9B, 2 becomes 02, and
so on.)

For a STARLAN network, a recommended address of uname.wlisten will usually yield
a unique name.

See Also tuxadm(1), tuxwsvr(1)
BEA Tuxedo Reference Manual 175

 wlisten(1)
176 BEA Tuxedo Reference Manual

	Copyright
	Section 1 — Commands
	introduction to BEA Tuxedo Commands
	bldc_dce(1)
	blds_dce(1)
	build_dgw(1)
	buildclient(1)
	buildclt(1)
	buildserver(1)
	buildtms(1)
	buildwsh(1)
	cobcc(1)
	dmadmin(1)
	dmloadcf(1)
	dmunloadcf(1)
	gencat(1)
	loadfiles(1)
	mio(1)
	mkfldhdr, mkfldhdr32(1)
	mklanginfo(1)
	pic_uform(1)
	qmadmin(1)
	rex(1)
	tidl(1)
	tlisten(1)
	tmadmin(1)
	tmboot(1)
	tmconfig(1)
	tmloadcf(1)
	tmshutdown(1)
	tmunloadcf(1)
	tpacladd(1)
	tpaclcvt(1)
	tpacldel(1)
	tpaclmod(1)
	tpadduser
	tpdelusr(1)
	tpgrpadd(1)
	tpgrpdel(1)
	tpgrpmod(1)
	tpmodusr(1)
	tpusradd(1)
	tpusrdel(1)
	tpusrmod(1)
	tuxadm(1)
	TuxShell(1)
	tuxwsvr(1)
	txrpt(1)
	ud(1)
	udfk_test(1)
	uuidgen(1)
	viewc(1)
	viewdis(1)
	wlisten(1)

