
BEA TUXEDO

Workstation Guide

B E A T UX E DO R e l e a s e 6 . 5
D o c um e n t E d i t i o n 6 . 5

F e b r u a r y 1 9 9 9

Copyright

Copyright © 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA Builder, BEA Connect, BEA Jolt, BEA Manager, and BEA MessageQ are trademarks of
BEA Systems, Inc. BEA ObjectBroker is a registered trademark of BEA Systems, Inc. TUXEDO is a registered
trademark in the United States and other countries.

All other company names may be trademarks of the respective companies with which they are associated.

BEA TUXEDO Workstation Guide

Document Edition Date Software Version

6.5 February 1999 BEA TUXEDO Release 6.5

1-1

1-1

1-4

... 1-5

1-5

1-5

. 1-6

.. 2-1

2-2

2-2

-2

.. 2-3

.. 2-3

. 2-4

. 2-5

2-5

2-6

2-6

2-7

2-8

2-8

2-9

. 2-9

2-13
Contents

1. Overview of BEA TUXEDO Workstation

Overview of the BEA TUXEDO Workstation Product

Product Perspective of BEA TUXEDO Workstation

Features of BEA TUXEDO Workstation...

What Goes Where?..

For the Administrative Domain ..

For the Workstation Client Development Environment

For the Workstations ..

2. BEA TUXEDO System Workstation Administration

What This Chapter Is About..

Configuring BEA TUXEDO Workstation ..

RESOURCES Section and MACHINES Section

MAXWSCLIENTS... 2

GROUPS Section ...

SERVERS Section ...

Workstation Client Timeout ...

The Keep-alive Option ..

How Keep-alive Works...

Limitations ..

How to Use Keep-alive ...

The Network Timeout Option ..

How Network Timeout Works..

Limitations ..

How to Use Network Timeout ..

The WSL CLOPT Parameter ..

Example..
BEA TUXEDO Workstation Guide iii

.. 3-1

. 3-2

... 3-2

. 3-2

... 3-3

3-3

-4

3-4

.. 3-4

. 3-7

.. 3-8

.. 4-1

.... 4-2

. 4-2

4-3

... 4-3

. 4-3

. 4-3

-4

. 4-5

.. 4-5

4-5

4-6

. 4-6

.. 4-6

.. 5-1

5-2

.... 5-3

.. 5-3

.. 5-3
3. BEA TUXEDO Workstation for UNIX System Workstations

What This Chapter Is About ..

Coding and Building Clients ..

References to Other Guides...

Building Clients...

System-delivered Clients ..

Application Password when Running from a Script

Running BEA TUXEDO System Clients on a UNIX Workstation 3

Directory Structure to Support Workstation Clients

Environment Variables...

Environment File ...

Using tuxreadenv..

4. BEA TUXEDO Workstation for MS-DOS Workstations

What This Chapter Is About ..

Prerequisites...

Coding and Building Clients ..

Buffer Size Limitation..

References to Other Guides...

Building Clients...

buildclt syntax ..

Microsoft Compilation Environment .. 4

buildclt Examples...

System-delivered Client ..

Application Password when Running from a Script

Running BEA TUXEDO System Clients on a Workstation

Directory Structure to Support /WS Clients..

Environment Variables...

5. BEA TUXEDO Workstation for WINDOWS

What This Chapter Is About ..

Definitions of Terms, Acronyms, and Abbreviations

Prerequisites...

Hardware ..

Software..
iv BEA TUXEDO Workstation Guide

5-4

. 5-4

.. 5-6

-10

5-11

-11

-12

5-12

-12

.. 6-1

6-2

6-2

... 6-3

.. 6-3

.. 6-3

.. 6-4

. 6-4

.. 6-4

. 6-5

. 6-5

. 6-6

.. 7-1

... 7-2

.. 7-2

.. 7-2

. 7-3

. 7-3

.. 7-4

7-6

. 7-7

. 7-8
Programming Considerations with the Windows DLL.....................................

Writing Client Programs ...

Using bankapp as an Example ..

Blocking Network Behavior ... 5

Restoring the Environment ...

Building Client Programs... 5

Using views in 16-bit Windows.. 5

Runtime...

Limitations .. 5

6. BEA TUXEDO Workstation for OS/2

What This Chapter Is About..

Definitions of Terms, Acronyms, and Abbreviations

Windows Emulation Mode ...

Prerequisites ...

Hardware ..

Software ...

Programming Considerations with OS/2 Clients ..

Writing Client Programs ...

OS/2 Character Mode...

Building Client Programs..

Runtime..

Limitations ..

7. BEA TUXEDO Workstation for Macintosh

What This Chapter Is About..

Prerequisites ...

Hardware ..

Software ...

Programming Considerations with the Macintosh Libraries............................

Writing Client Programs ...

Using bankapp as an Example ..

Blocking Network Behavior ...

Building Client Programs..

Runtime..
BEA TUXEDO Workstation Guide v

. 7-8

.. 8-1

.... 8-2

.. 8-2

.. 8-2

.. 8-3

. 8-3

.. 8-3

-6

8-6

. 8-7

.. 9-1

. 9-1

... 9-2

... 9-2

... 9-3

. 9-3

. 9-3

. 9-4

.. 9-4

... 9-5

.. 9-5

9-6

.. 9-6

.. 9-6

.. 9-7

. 9-7
Limitations...

8. BEA TUXEDO Workstation for OpenVMS

What This Chapter Is About ..

Prerequisites...

Hardware ..

Software..

Building and Running a Sample Client Program ..

Writing Client Programs..

Using simpapp as an Example ..

Building BEA TUXEDO Workstation Client Programs............................ 8

Setting the Environment for Running Client Programs

Limitations...

9. Bringing Up Bankapp on Workstations

What This Chapter Is About ..

Characteristics of a Workstation Application...

Overview of the Enhanced bankapp ...

The Process Diagrammed..

Changes on the Native Site..

New Configuration File Parameters ..

Load and Boot the Configuration ..

bankapp on a UNIX Workstation ...

Install the Files ...

Set bankapp Variables ...

Build the bankapp Clients ..

Run the bankapp UNIX Workstation Clients...

bankapp on an MS-DOS Workstation ...

Install the Files ...

Build the bankapp Clients ..

Run the bankapp DOS Workstation Clients..
vi BEA TUXEDO Workstation Guide

CHAPTER

em,

rs,
that
DO
as
1 Overview of BEA

TUXEDO Workstation

Overview of the BEA TUXEDO Workstation

Product

This chapter lists the features of the BEA TUXEDO Workstation product. It also
shows how Workstation alters the existing boundaries of the BEA TUXEDO syst
its added features, and the location of Workstation components.

Product Perspective of BEA TUXEDO Workstation

In prior releases, BEA TUXEDO system applications were capable of distributing
services across networks of UNIX-based processors. However, all the processo
servers, services, and transactions of the application, and the bridge processes
connect the nodes had to be defined in a configuration file used by the BEA TUXE
boot process to start the application. Such an application might be diagrammed
shown in Figure 1-1.
BEA TUXEDO Workstation Guide 1-1

1 Overview of BEA TUXEDO Workstation

gged

he

e
re,

tion.
ces of

Figure 1-1 BEA TUXEDO Application without the Workstation Feature

Client processes (shown as Native Clients in Figure 1-1) are invoked by users lo
in directly on a node where a bulletin board for their application exists under the
control of a BBL. They are considered to be within the administrative domain of t
application.

Workstation extends the availability of a native BEA TUXEDO application, like th
one shown above, to clients resident on workstations. With the Workstation featu
workstations are not required to be within the administrative domain of the applica
The Workstation instead, defines an environment where clients can access servi
an application through a surrogate handler process. A BEA TUXEDO application
using Workstation might be diagrammed as shown in Figure 1-2.
1-2 BEA TUXEDO Workstation Guide

Overview of the BEA TUXEDO Workstation Product

 the
sed

ility
es of
Figure 1-2 BEA TUXEDO Application with the Workstation Feature

On the workstation, the programming environment is one that works under the
operating system of the machine. A Local Area Network provides connectivity to
administrative domain of the application. Therefore, workstations can be UNIX-ba
as well as non-UNIX based (MS Windows, for example). This gives greater flexib
in the choices of hardware and software platforms on which to deliver the servic
your BEA TUXEDO system applications.
BEA TUXEDO Workstation Guide 1-3

1 Overview of BEA TUXEDO Workstation

) for

ites

.
 as

. The

er

an

r

Features of BEA TUXEDO Workstation

The function of Workstation is to provide access to BEA TUXEDO system
applications from a network of workstations. The BEA TUXEDO system
accomplishes this by providing the same application programming interface (API
Workstation clients that is available for native-site clients.

Note: Existing native-site client programs can usually be moved to Workstation s
without modification beyond a recompile.

A potential benefit of Workstation is an increase in an application's performance
Before the Workstation feature, the native processor executed all the client code
well as the server and BEA TUXEDO code. With Workstation, the CPU cycles
formerly needed by clients are now available to servers and the BEA TUXEDO
system. The client CPU cycles are now furnished by the Workstation processors
following features are being introduced as part of Workstation:

� Customization of the workstation handler so applications can define new buff
types

� A client development environment that includes compilation tools so clients c
be compiled and link edited for specific types of workstations

In addition, Workstation clients can be written to take advantage of other BEA
TUXEDO system features such as client naming. Client naming enables:

� Unsolicited notification—clients can receive out-of-band messages from othe
clients or from servers.

� Authentication—password protection for an application or client-by-client
authentication can be implemented.

� Client statistics—tmadmin (1) can monitor statistics of the work load and status
of clients.

These features are described in the BEA TUXEDO Programmer's Guide and
Administering the BEA M3 System, as well as in Section 1 of the BEA TUXEDO
Reference Manual.
1-4 BEA TUXEDO Workstation Guide

Overview of the BEA TUXEDO Workstation Product

BEA
ent,
nts.

BEA
o
t
ndler
e.

A
e

re.

g to
r
What Goes Where?

Formerly, all of the BEA TUXEDO system software was installed on all of the
machines of an application. Now we need to distinguish between software for the
TUXEDO system administrative domain, software for the development environm
and platform-specific software needed only at runtime for specific Workstation clie

For the Administrative Domain

The complete release must be installed on the principal server machine. Newer
TUXEDO system releases include changes to existing commands and libraries t
support the client naming and authentication features. Also included in the recen
releases are the workstation listener and workstation handler. The listener and ha
must be installed on the machine running the highest level BEA TUXEDO releas

The Workstation can be installed as a step in the installation of the complete BE
TUXEDO system or it can be added at a later time. If you install everything at on
time, consult the procedures in the BEA TUXEDO Installation Guide. If you install it
separately, refer to the installation instructions in the box containing your softwa

For the Workstation Client Development Environment

The exact nature of the Workstation client development software differs accordin
the platform for which it is intended, but in all cases the directory structure (unde
$TUXDIR, the root BEA TUXEDO system directory) is as follows.

include

Application-visible include files such as atmi.h .

bin

BEA TUXEDO system commands, for example, buildclt (1).

locale/C

Default message catalog directory (English version).

lib

Libraries necessary for building clients.
BEA TUXEDO Workstation Guide 1-5

1 Overview of BEA TUXEDO Workstation

 on

 you
o the

ult
The location of this software also depends on the characteristics of the machines
which your BEA TUXEDO system application runs. In general, you will probably
choose to do client development work on a limited number of machines of the type
expect to use for workstations. Executable client programs can then be moved t
machines where they will be used.

For the Workstations

To use BEA TUXEDO Workstation, install the package from the CD-ROM. Cons
Appendix A of the BEA TUXEDO Installation Guide for specific information about
installing BEA TUXEDO on your platform(s).
1-6 BEA TUXEDO Workstation Guide

CHAPTER

DO
 are

efer
2 BEA TUXEDO System

Workstation
Administration

What This Chapter Is About

This chapter describes the administration issues for BEA TUXEDO system
applications that use the Workstation feature. The administration of Workstation
clients, Workstation handlers, and the listener are all performed in the BEA TUXE
system administrative domain, not at the workstation. The issues discussed here
Workstation specific; they do not include topics such as client naming and
authentication that apply to native clients as well as Workstation clients. For a
complete discussion of BEA TUXEDO system application administration, please r
to Administering the BEA TUXEDO System.

Issues covered here include:

� Configuring BEA TUXEDO Workstation

� Workstation Client Timeout

� The Keep-alive Option

� The Network Timeout Option
BEA TUXEDO Workstation Guide 2-1

2 BEA TUXEDO System Workstation Administration

er in

tion

s,
rocess

s only
. By
n

u
Configuring BEA TUXEDO Workstation

The UBBCONFIG file contains important Workstation parameters in the RESOURCES and
MACHINES sections. The Workstation listener is defined as a system-supplied serv
the SERVERS section, with a reference to an entry in the GROUPS section. We will
examine the pertinent sections in the order in which they appear in the configura
file.

RESOURCES Section and MACHINES Section

The MAXWSCLIENTS parameter can be specified in the MACHINES section of the
configuration file to apply to specific machines. MAXWSCLIENTS is the only parameter
that has special significance for Workstation. If MAXWSCLIENTS is not specified, the
default is 0.

MAXWSCLIENTS

The MAXWSCLIENTS parameter tells the BEA TUXEDO system, at boot time, how
many accesser slots to reserve exclusively for workstation clients. For native client
each accesser slot requires one semaphore. However, the Workstation handler p
(executing on the native platform on behalf of workstation clients) multiplexes
Workstation client accesses through a single accesser slot, and therefore require
one semaphore. This points out an additional benefit of the Workstation extension
putting more clients out on workstations and off the native platform, an applicatio
reduces its IPC resource requirements. To repeat, although MAXWSCLIENTS is optional,
if not specified, the default is 0.

MAXWSCLIENTS takes its specified number of accesser slots from the total set in
MAXACCESSERS. This is important to remember when specifying MAXWSCLIENTS;
enough slots must be left to accommodate native clients as well as servers. If yo
specify a value for MAXWSCLIENTS greater than MAXACCESSERS, native clients and
servers will fail at tpinit() time.
2-2 BEA TUXEDO Workstation Guide

Configuring BEA TUXEDO Workstation

er;

each

g all

sense

r.

int
ork

te

GROUPS Section

A GROUPS section entry is required for the group that includes the Workstation listen
the listener need not be the only member of the group. The GROUPNAME is a name
selected by the application. The following two parameters must be specified for
entry:

LMID = identifier [, identifier]

The identifier(s) given as the value of the LMID parameter must be
among those specified in the MACHINES section.

GRPNO = number
The value is a number between 1 and 30,000 and must be unique amon
entries in the GROUPS section.

No other parameters of the GROUPS section need be specified for the group that
includes the Workstation listener; in fact, none of the other parameters make any
for the listener. If you choose, you can specify other servers in the group, but we
recommend that you do not include any that expect to open a resource manage

SERVERS Section

Workstation clients access your application through the services of:

� A Workstation listener process

� One or more Workstation handler processes

The Workstation listener (WSL) and Workstation handler (WSH) are specified in one
entry as a BEA TUXEDO system-supplied server, although they are separate
processes. The WSL can support multiple Workstation clients. It acts as the single po
of contact for all the Workstation clients that connect to your application at the netw
address specified on the WSL command line. The listener schedules work for one or
more Workstation handler processes. A Workstation handler process acts as a
surrogate within the administrative domain of your application for clients on remo
workstations. The WSH uses a multiplexing scheme to support multiple Workstation
clients concurrently.

The tag, or AOUT, value for a Workstation listener entry in the SERVERS section is WSL.
BEA TUXEDO Workstation Guide 2-3

2 BEA TUXEDO System Workstation Administration

p.

 it
ed

Each entry must have the following parameters:

SRVGRP = groupname
this will be the previously defined GROUPNAME value from the GROUPS
section.

SRVID = number
is a number between 1 and 30,000 that identifies a server within its grou

CLOPT = options
are the command line options for the WSL. They are described in the section
that follows and also on the WSL(5) reference page in the BEA TUXEDO
Reference Manual.

Other SERVERS section parameters that are useful for WSL entries are:

SEQUENCE = number

gives control over the order in which servers are booted (also used by
tmshutdown).

RESTART = {Y|N}

should be specified as Y to permit restarts.

GRACE = number
should be specified as 0 to permit an infinite number of restarts.

Other optional SERVERS parameters are described in ubbconfig (5).

Workstation Client Timeout

In earlier releases (prior to v6.4), the loss of a network connection (because of a
problem in the network, the WSH, or the server) caused another problem from which
was hard to recover: the application would hang indefinitely, while the client wait
for a response from the WSH. This problem was not limited to API calls that received
data, such as tpgetreply (3c) or tprecv (3c). It occurred in all API calls to the WSH
except tpbegin (3c), and in function calls for buffer allocation.

The current release provides two administrative options to WSL that enable you to avoid
this problem. Specifically, these options allow you to:

� Check client connections periodically (the keep-alive option)
2-4 BEA TUXEDO Workstation Guide

Workstation Client Timeout

ork
t

 the

el.

 is

e
k is

e

ot
� Limit the amount of time that a client waits for a response from a WSH before
dropping the connection to that WSH (the network timeout option)

With these features, you can ensure that the WSH client no longer hangs indefinitely
when a network connection is lost.

This section describes these features and provides instructions for using them.

The Keep-alive Option

Keep-alive is a networking operation that periodically checks the viability of a netw
connection between WSH and a workstation client if no traffic has occurred over tha
connection within a period of time specified by the operating system.

How Keep-alive Works

You can request the keep-alive operation through a new administrative option to
WSL: -K . This option improves the speed and reliability of detection of a network
failure, by actively testing the state of an idle connection at the protocol stack lev
The -K option can be set to client , handler , both , or none .

� If the -K client option is used, keep-alive messages are generated from the
client machines. If the keep-alive message is not acknowledged, the network
considered down by the client machine. Subsequent ATMI calls fail with a
tperrno of TPESYSTEM.

� If the -K handler option is used, keep-alive messages are generated from th
handler machine. If the keep-alive message is not acknowledged, the networ
considered down by the handler machine. The handler can then clean up the
entry associated with the client that does not respond. This reduces the
possibility that the handler will exhaust its mpx factor (as specified by -x) with
stale clients.

� If the -K both option is used, keep-alive messages are generated from both th
client and handler machines.The availability and timeout thresholds for this
feature are determined by tunable parameters in the operating system.

� The none option can be specified explicitly. Doing so has the same effect as n
specifying -K at all.
BEA TUXEDO Workstation Guide 2-5

2 BEA TUXEDO System Workstation Administration

DO

 you
ny
tion
once
Limitations

The keep-alive operation is supported only on platforms on which the BEA TUXE
system uses sockets:

� AIX

� AS/400

� Digital UNIX

� HP/UX

� MVS/OE

� Sequent

� Windows

You cannot use this option on any other platform. The BEA TUXEDO system lets
specify the -K option for any server machine, but it will not execute it properly on a
platform other than those previously listed. If you try to perform a keep-alive opera
on any other platform, your attempt fails and a message is written to the userlog (
per process for the WSH). Processing continues normally:

� The -K option is ignored by pre-6.4 clients.

� The keep-alive operation works only for TCP/IP communications.

� WSL command-line options cannot be updated through the WSL form in the WEB
GUI, but they can be updated through the CLOPT option on the server form of
the GUI.

How to Use Keep-alive

To use the keep-alive operation in your BEA TUXEDO application, edit the
UBBCONFIG file as follows.

1. Open your UBBCONFIG file.

2. Go to the SERVERS section.

3. Find your entry for WSL.
2-6 BEA TUXEDO Workstation Guide

Workstation Client Timeout

ber

 for
elled

 the
4. To the CLOPT argument, add the -K option, followed by one of four valid
arguments: client , handler , both , or none (the default).

Your entry in the UBBCONFIG file should look like the following.

WSL SRVGRP="WSLGRP" SRVID=1000 RESTART=Y GRACE=0
CLOPT="-A -- -n 0x0002ffffaaaaaaaa -d /dev/tcp -K both"

In the example, -K turns on the KEEPALIVE checking on both the Workstation client
and the server side.

For details about the format of a WSL entry in UBBCONFIG, see WSL(5) in the BEA
TUXEDO Reference Manual.

Note: Any timeout period that you specify applies to the entire system. Remem
that if, with one application in mind, you later change the amount of time
specified, any other application that uses keep-alive is also affected.

The Network Timeout Option

Network timeout is an option that lets you decide how long you are willing to wait
an operation in a Workstation client before your request for that operation is canc
(times out) on a network.

You can request the network timeout function through an administrative option to
WSL: -N . The -N option uses a network timeout to receive data in the Workstation
client.

To Activate Keep-alive for Select

 The Workstation client client

The Workstation Handler handler

Both the client and the handler both

Neither the client nor the handler none (the default)
BEA TUXEDO Workstation Guide 2-7

2 BEA TUXEDO System Workstation Administration

A
. If
e

ut,
on

ot be
inate

O

e is

n

How Network Timeout Works

The network timeout option establishes a waiting period (in seconds) for any BE
TUXEDO operation in the Workstation client that receives data from the network
the period is exceeded, the operation fails and the client is disconnected from th
application. A value of 0 (the default) indicates no timeout.

Note: Setting this value too low may cause too many disconnects.

Each ATMI call returns an error whenever a timeout occurs. When a link times o
the application is notified. An existing error code is used. (Additional error detail
the specific error can be retrieved by a call to tperrordetail (3c)). Once a network
timeout occurs, the status of outstanding operations is in doubt: transactions cann
completed; incoming replies can be lost, and so on. The only safe action is to term
the connection to the application by doing the equivalent of a tpterm (3c) without
communicating with the WSH.

By the time the operation returns, the client is no longer part of the BEA TUXED
application. The application can rejoin the application in either of two ways:

� By calling tpinit (3c)

� By using an implicit connection (if security is not configured)

Limitations

� The -N option for Workstation client network timeout is supported on all
platforms except Mac. Mac Workstation clients are disconnected if this featur
enabled. To support both non-Mac clients with this option and Mac clients
without this option, it is necessary to configure more than one WSL.

� The -N option is ignored by pre-6.4 clients.

� Network timeout does not handle network send operations.

� Timeout periods override any existing blocking or transaction timeout that is i
effect.

� Network timeout disconnects the Workstation client after timeout even though
the connection may still be viable.
2-8 BEA TUXEDO Workstation Guide

Workstation Client Timeout

n
� WSL command-line options cannot be updated through the WSL form in the
WEB GUI, but they can be updated through the CLOPT option on the server form
of the GUI.

How to Use Network Timeout

To use the network timeout function in your BEA TUXEDO application, edit the
UBBCONFIG file as follows.

1. Open your UBBCONFIG file.

2. Go to the SERVERS section.

3. Find your entry for WSL.

4. To the WSL CLOPT argument, add the -N option.

The WSL CLOPT Parameter

The command-line options specified via the CLOPT parameter tell the system:

� What services the server will offer. This must be specified as -A.

� The network address where Workstation clients connect to the listener

� What network device Workstation listener uses (for example, /dev/tcp or
/dev/starlan).

� The name of the Workstation handler process

� How many Workstation handlers to start (minimum and maximum)

� How many Workstation clients are to be multiplexed through each Workstatio
handler

� Timeout factor for slow network delays

� Keep-alive option for Workstation clients or WSH

� Timeout for inactive client processes
BEA TUXEDO Workstation Guide 2-9

2 BEA TUXEDO System Workstation Administration

rt
Figure 2-1 illustrates the relationship between Workstation clients and the suppo
processes on the machine serving as the administrative domain. The words in
parentheses are substitutables in the command line options of the WSL or server entry
parameters.

Figure 2-1 BEA TUXEDO Workstation Feature: Support Processes

The format of the CLOPT parameter is as follows:

CLOPT="[-A] [servopts options] - - -n netaddr [-d device] \
 [-w WSHname] [-t timeout-factor] [-T client-timeout] \
 [-m minh] [-M maxh] [-x mpx-factor] \
 [-p minwshport] [-P maxwshport] \
 [-I init-timeout] [-c compression-threshold] [-k compression-threshold] \
 [-z bits] [-Z bits] [-H external_netaddr] [-K {client|handler|both|none}]"
2-10 BEA TUXEDO Workstation Guide

Workstation Client Timeout

ction
ted

 listen

 the
. As

ion

 the

ome
As noted above, the -A value indicates that the WSL is to be booted offering all its
services. This is a default, but it is shown in the example to emphasize the distin
between system-supplied servers and application servers. The latter may be boo
offering only a subset of their available services.

The -- syntax marks the beginning of parameters that are passed to the WSL after it has
been booted.

The -n netaddr Option

This is required. netaddr is the network address used by Workstation clients to
connect to your application. The Workstation listener process uses this address to
for clients attempting to connect at this address.

The -d device Option

The value of device is the device name used by the Workstation listener to access
network. In the past this option was required if the transport provider was TCP/IP
of BEA TUXEDO Release 6.4, this option is no longer required.

The -w WSHname Option

WSHname is the name of the Workstation handler process started by the Workstat
listener. You should specify the name of the executable created by buildwsh (1). The
default name assumed for that a.out is WSH, the Workstation handler that is delivered
with Workstation. That name is used if the -w option is omitted. If you customize a
Workstation handler, make certain that it resides in either $APPDIR or $TUXDIR/bin .
If your customized Workstation handler is used by only one application, we
recommend putting the handler in the directory specified by the APPDIR environment
variable. If the handler is used by many applications, we recommend putting it in
bin directory under $TUXDIR.

The -t timeout-factor Option

When a large number of workstation clients attempt to connect simultaneously, s
of the requests may time out due to a blocking condition. The -t timeout-factor is
provided to guard against this possibility. The value of timeout-factor is a number
that, when multiplied by SCANUNIT, specifies the amount of time in seconds that
BEA TUXEDO Workstation Guide 2-11

2 BEA TUXEDO System Workstation Administration

y

rted

 this

r

should be allowed for a workstation client to complete initialization processing
through the WSH before being timed out by the WSL. The default for this parameter is 3
in a non-security application, and 6 in a security application.

The -T client-timeout Option

Client-timeout is the amount of time (in minutes) that a client is allowed to sta
idle. If a client does not make any requests within this time period, the WSH disconnects
the client. If this argument is not given or is set to 0, then the timeout is infinite.

The -m minh Option

The minh value is the minimum number of Workstation handler processes to be sta
by this Workstation listener when the listener is booted. If specified, the -m option
takes a value from 0 to 255. The default is 0.

The -M maxh Option

maxh is the maximum number of Workstation handler processes to be started by
Workstation listener. If specified, the -M option takes a value from 1 to 32,767. The
default is MAXWSCLIENTS for the machine divided by the multiplexing factor MPX. Fo
example, let’s say you specify MAXWSCLIENTS=100 in the MACHINES section and -x 10
for the CLOPT of the listener. The default for -M maxh is 100/10 or 10. maxh must be
greater than or equal to minh .

The -x mpx-factor Option

The mpx-factor value specifies the number of Workstation clients you want each
Workstation handler to support simultaneously. If specified, the -x option takes a
value from 1 to 32,767. The default is 10.

The -K { client | handler | both | none } Option

Use -K to turn on the network keep-alive operation for the client , the handler , or
both . You can turn off this option for both the client and handler by specifying none .
2-12 BEA TUXEDO Workstation Guide

Workstation Client Timeout
Example

The entries related to Workstation as specified in the configuration file for the
bankapp application are shown in Listing 2-1.

Listing 2-1 Excerpts from bankapp configuration file

#
ubbconfig file for Workstation example, SHM mode
#
"mach1" LMID="SITE1"
 TUXCONFIG="/tuxroot/tuxapp/tuxconfig"
 TUXDIR="/tuxroot"
 APPDIR="/tuxroot/tuxapp"
 TLOGDEVICE="/tuxroot/tuxapp/TLOG"
 TLOGNAME="TLOG"
 TLOGSIZE=100
 MAXACCESSERS=100
 MAXWSCLIENTS=50
#
*GROUPS
"GRP1" LMID="SITE1" GRPNO=4
#
*SERVERS
 "WSL" SRVGRP="GRP1" SRVID=2
 CLOPT=" — -n //wsl.beasys.com:3107 -d /dev/tcp"
 RQPERM=0660 REPLYQ=Y RPPERM=0660
 MIN=1 MAX=1 CONV=N
 SYSTEM_ACCESS=FASTPATH
 MAXGEN=5 GRACE=86400 RESTART=Y
#

BEA TUXEDO Workstation Guide 2-13

2 BEA TUXEDO System Workstation Administration
2-14 BEA TUXEDO Workstation Guide

CHAPTER

ial is
3 BEA TUXEDO

Workstation for UNIX
System Workstations

What This Chapter Is About

This chapter covers the use of the Workstation on UNIX workstations. The mater
organized under the following section headings:

� Coding and building clients

� System-delivered clients

� wmio(1)

� wud(1)

� Running BEA TUXEDO system clients on a UNIX workstation

� Directory structure to support Workstation clients

� Environment variables for Workstation clients
BEA TUXEDO Workstation Guide 3-1

3 BEA TUXEDOWorkstation for UNIX System Workstations

 that
 is,
he

and

on

e
e the
nt
 not

.

Coding and Building Clients

The source code for client programs running on UNIX workstations is the same as
for client programs within the BEA TUXEDO system administrative domain (that
native clients). You have available all of the ATMI functions, FML functions, and t
BEA TUXEDO system data entry system for defining and managing forms.

References to Other Guides

The BEA TUXEDO Programmer’s Guide covers the use of the ATMI calls in
considerable detail. There is a separate chapter dealing with client programs.

The BEA TUXEDO FML Programmer’s Guide and the BEA TUXEDO Data Entry
System Guide are useful for information on those two special subjects. Sections 1
3c of the BEA TUXEDO Reference Manual are the final authority for all BEA
TUXEDO system commands and functions.

Building Clients

Workstation client programs are compiled and linked with the buildclient(1)
command. If you are building a Workstation client on a native node (that is, one
which the complete BEA TUXEDO system is installed), use the -w option. This
specifies that the client should be built using the workstation libraries. On a nativ
node, where both native and workstation libraries are present, the default is to us
native libraries. The -w option ensures that the correct libraries for a workstation clie
are used. On a workstation, where only the workstation libraries are present, it is
necessary to use the -w .

Listing 3-1 shows an example of the buildclient (1) command line on a native node

Listing 3-1 buildclient Command Line

TUXDIR=/var/opt/tuxedo CC=ncc; export TUXDIR CC
buildclient -w -o wsclt -f wsclt.c -f “userlib1.a userlib2.a”
3-2 BEA TUXEDO Workstation Guide

System-delivered Clients

ith

dard
e,

e
The -o option provides a name for your executable file. Input files are specified w
a -f firstfiles option in Listing 3-1 to indicate that they are called in ahead of
system libraries. buildclient needs TUXDIR to locate system libraries. CC defaults to
cc , but can be set to another compiler as in the example.

System-delivered Clients

Two system-delivered clients are available on UNIX workstations. These are stan
BEA TUXEDO system clients that have been slightly modified for workstation us
which is shown by the w prefix.

wmio(1)
manages mask input and output for Workstation clients on a UNIX
workstation

wud(1)
the BEA TUXEDO system driver program that sends FML buffers to BEA
TUXEDO system servers

Application Password when Running from a Script

If the BEA TUXEDO system second-level security has been specified for an
application, the system clients prompt the user for the application password. If th
client program is being run from a script, which is a common occurrence with wud, the
password is read from the APP_PW environment variable. Do not confuse the
environment variable with the similar configuration file parameter, SECURITY, for
which the value APP_PW enables the security feature.
BEA TUXEDO Workstation Guide 3-3

3 BEA TUXEDOWorkstation for UNIX System Workstations

o the

e

nt’s

h
Running BEA TUXEDO System Clients on a

UNIX Workstation

After the client programs have been developed and tested, they can be moved t
workstations where they will be available to users.

Directory Structure to Support Workstation Clients

APPDIR

client executables are commonly kept in the directory from which the
application is run

$TUXDIR/include

BEA TUXEDO system header files such as atmi.h

$TUXDIR/bin

BEA TUXEDO system commands and system clients such as wmio and wud

$TUXDIR/locale/C

default message catalog directory

$TUXDIR/lib

runtime libraries if your application uses shared objects

Environment Variables

Workstation clients make use of several environment variables. The following ar
checked by tpinit () when the workstation client attempts to join the application:

WSENVFILE

names a file containing environment variable settings to be set in the clie
environment. The format of this file is described in further detail below.

WSNADDR

Specifies the network address of the workstation listener process throug
which clients gain access to the application.
3-4 BEA TUXEDO Workstation Guide

Running BEA TUXEDO System Clients on a UNIX Workstation

,

olve

al

hine.

d by

l
 or

ld be

d list
is
zed

tener
 off
TCP/IP addresses may be specified in the following forms:

“ //host.name:port_number ”
“ //#.#.#.#:port_number ”

Note: If you are specifying TCP/IP addresses for a Windows NT workstation
omit the quotation marks.

In the first format, the domain finds an address for hostname using the local
name resolution facilities (usually DNS). hostname must be the local
machine, and the local name resolution facilities must unambiguously res
hostname to the address of the local machine.

In the second example, the “#.#.#.# ” is in dotted decimal format. In dotted
decimal format, each # should be a number from 0 to 255. This dotted decim
number represents the IP address of the local machine.

In both of the above formats, port_number is the TCP port number at which
the domain process will listen for incoming requests. port_number can be
either a number between 0 and 65535 or a name. If port_number is a name,
then it must be found in the network services database on your local mac

The address can also be specified in hexadecimal format when precede
the characters “0x ”. Each character after the initial “0x ” is a number between
0 and 9 or a letter between A and F (case insensitive). The hexadecima
format is useful for arbitrary binary network addresses such as IPX/SPX
TCP/IP.

The address can also be specified as an arbitrary string. The value shou
the same as that specified for the -n netaddr option of the wsl (5).

You can specify more than one address by including a comma-separate
of pathnames for WSNADDR. Addresses are tried in order until a connection
established. You can specify any item in an address list as a parenthesi
grouping of pipe-separated network addresses. For example,

WSNADDR=”(//m1.acme.com:3050|//m2.acme.com:3050), //m3.acme.com:3050”

The BEA TUXEDO system randomly selects one of the parenthesized
addresses. This strategy distributes the load randomly across a set of lis
processes. If this is being specified for a Windows NT workstation, leave
the quotation marks. Addresses are tried in order until a connection is
established.
BEA TUXEDO Workstation Guide 3-5

3 BEA TUXEDOWorkstation for UNIX System Workstations

he
.4

 The
 the

I
isk.

more
for
ctor

The
WSDEVICE

names the device that accesses the network and is only required when t
BEA TUXEDO system is using the TLI networking interface. In Release 6
(or higher), this variable is never required. In prior releases, it is required
while using the SPX protocol under DOS or Windows. It should be set to
/dev/tcp for TCP/IP and to /dev/nspx for the SPX networking protocol.

WSTYPE

is used within tpinit () when invoked by a workstation client to negotiate
encode/decode responsibilities with the native site. An unspecified WSTYPE
always causes encoding, even if it is also unspecified on the native site.
only way to ensure that encode/decode is turned off is to explicitly specify
same WSTYPE value for both sites.

WSRPLYMAX

is used by tpinit () to set the maximum amount of core memory that ATM
functions use for buffering application replies before they are dumped to d
Replies that are not being waited for (using tpgetrply ()), and unsolicited
messages are buffered in this area. When this area gets filled with one or
messages, the overflow is written to a disk file. The system default limit
this is 32,000 bytes. The available memory on your machine is the key fa
in deciding whether you should use WSRPLYMAX to set a lower limit. Writing
replies to disk causes a substantial reduction in performance.

Other environment variables may be needed by Workstation clients on a UNIX
workstation depending on what BEA TUXEDO system features are being used.
compilation (5) reference page recaps which variables are needed under what
circumstances.
3-6 BEA TUXEDO Workstation Guide

Running BEA TUXEDO System Clients on a UNIX Workstation

 a

ue

Environment File

When tpinit () is called, an environment file is read if it exists. Listing 3-2 shows
sample file that could be used for two different applications.

Listing 3-2 Environment File

TUXDIR=/opt/tuxedo
[application1]
;this is a comment
/* this is a comment */
#this is a comment
//this is a comment
set FIELDTBLS=app1_flds
set FLDTBLDIR=/opt/app1/udataobj
[application2]
FIELDTBLS=app2_flds
FLDTBLDIR=/opt/app2/udataobj

The format of the file is as follows:

� Any leading space and tab characters on each line are ignored and are not
considered in the following points.

� Lines containing variables to be put into the environment are of the following
form:

variable=value
or
set variable=value

where variable must begin with an alphabetic or underscore character and
contain only alphanumeric or underscore characters, and value may contain any
character except newline.

� Within the value , strings of the form ${env } are expanded using variables
already in the environment. Forward referencing is not supported and if a val
is not set, the variable is replaced with the empty string. Backslash (\) may be
used to escape the dollar sign and itself. All other shell quoting and escape
mechanisms are ignored and the expanded value is placed into the environment.
BEA TUXEDO Workstation Guide 3-7

3 BEA TUXEDOWorkstation for UNIX System Workstations

ides
ore

 if

lar

us

� Lines beginning with slash (/), pound sign (#), or exclamation point (!) are
treated as comments and ignored. Lines beginning with other characters bes
these comment characters, a left square bracket, or an alphabetic or undersc
character are reserved for future use; their use is undefined.

� The file is partitioned into sections by lines of the form

[label]

where label is the name of the section and follows the same rules for variable
above. The label is silently truncated if longer than 31 characters.

� Variable lines between the top of the file and the first label are put into the
environment for all applications; this is the global section. A label of [] also
indicates the global section. Other variables are put into the environment only
the label matches the application label specified for the application.

Using tuxreadenv

The function tuxreadenv (3c) can be used to read the environment file for a particu
label:

void tuxreadenv(char *file, char *label)

If file is NULL, then a default file name is used. The default file names for vario
platforms are as follows:

DOS, Windows, OS/2, Windows NT
C:\TUXEDO\TUXEDO.ENV

Macintosh
TUXEDO.ENV in the system directory

NETWARE
SYS:SYSTEM\TUXEDO.ENV

POSIX
/usr/tuxedo/TUXEDO.ENV or /var/opt/tuxedo/TUXEDO.ENV

If the value of label is NULL, then only variables in the global section are put into
the environment. For other values of label , the global section variables plus any
variables in a section matching the label are put into the environment.
3-8 BEA TUXEDO Workstation Guide

Running BEA TUXEDO System Clients on a UNIX Workstation

l file

L is

t file;

a)

em
An error message is printed to the userlog if there is a memory failure, if a non-nul
name does not exist, or if a non-null label does not exist.

Each time tpinit () is called (either explicitly or implicitly by calling another ATMI
function), tuxreadenv () is called automatically in Workstation clients. If WSENVFILE
is set in the environment, then it designates the environment file; otherwise, NUL
passed to tuxreadenv () for the file name so that the default file is used. If WSAPP is
set in the environment, then it is to be used as the section label in the environmen
otherwise, NULL is passed to tuxreadenv () for the label name. Application clients
may also call tuxreadenv () explicitly.

The environment is implemented and available in different ways on different
platforms. A uniform interface to the environment is provided via the existing
tuxgetenv(3c) and tuxputenv(3c) functions. These functions provide access to (
all variables from the specified WSENVFILE file for the specified WSAPP label (or the
defaults if not specified), and (b) the environment variables in the operating syst
environment.
BEA TUXEDO Workstation Guide 3-9

3 BEA TUXEDOWorkstation for UNIX System Workstations
3-10 BEA TUXEDO Workstation Guide

CHAPTER

S
4 BEA TUXEDO

Workstation for
MS-DOS Workstations

What This Chapter Is About

This chapter covers the use of the BEA TUXEDO Workstation feature on MS-DO
workstations. The material is organized under the following section headings:

� Coding and building clients

� System-delivered clients

� wud(1)

� Running BEA TUXEDO clients on an MS-DOS workstation

� Directory structure to support Workstation clients

� Environment variables for Workstation clients
BEA TUXEDO Workstation Guide 4-1

4 BEA TUXEDOWorkstation for MS-DOS Workstations

ing

tion
 for
4.1

 the

 the

he
Prerequisites

The BEA TUXEDO System/Workstation for MS-DOS requires a workstation runn
MS-DOS 3.21 or later and a minimum of 1M of RAM.

The software to support network communications must be installed. The Worksta
has been tested with the Sockets interface provided in the Novell LAN Workplace
DOS version 4.2 and compiled using the LAN Workplace Toolkit for DOS version
over TCP/IP. The toolkit is only required while developing applications and not
needed for a runtime system.

The SPX software has been tested using the NetWare client and compiled using
NetWare client SDK version 1.0. The NetWare client SDK is only required while
developing applications and not needed for a runtime system.

The libraries are compiled using the Microsoft C++ Version 1.5, using the Large
memory model. The Medium memory model is no longer supported.

Coding and Building Clients

Client programs for MS-DOS workstations are the same as client programs within
BEA TUXEDO system administrative domain, with one exception:

� The BEA TUXEDO system data entry system and the form handler mio (1) are
not available

You do have available all of the ATMI functions. You have all FML functions with t
following exceptions (and their VIEW counterparts):

Fboolco() Fboolev() Fboolpr() Ffloatev()

The FML function Ffindocc is present but is not able to search for regular
expressions. The external variable Ferror is redefined to FMLerror .
4-2 BEA TUXEDO Workstation Guide

Coding and Building Clients

less

s

ses
Buffer Size Limitation

On DOS and WINDOWS workstations, message buffer sizes are limited to 64K
the size of the message header (currently under 400 bytes).

References to Other Guides

The BEA TUXEDO Programmer’s Guide covers the use of the ATMI calls in
considerable detail. There is a separate chapter dealing with client programs.

The BEA TUXEDO FML Programmer’s Guide is useful for information on the Field
Manipulation Language. Reference pages in the BEA TUXEDO Reference Manual are
the final authority for all BEA TUXEDO system commands and functions.

Building Clients

Workstation client object files are link edited with the buildclt (1) command. While
the syntax of the command is straightforward, the usage varies according to the
compilation system used.

buildclt syntax

buildclt has the following options:

-o name

specifies the file name of the executable file being created. The default i
client.exe .

-c {m | i}

specifies the compilation system to be used. m stands for Microsoft
compilation system. i stands for the IBM OS/2 Cset2 compiler and is only
used on OS/2 32 bit. Microsoft is the default. The system specified impo
other requirements discussed below.

-m {m | l}

specifies the medium or l arge memory model. The default is l . The medium
memory model is not supported under DOS.
BEA TUXEDO Workstation Guide 4-3

4 BEA TUXEDOWorkstation for MS-DOS Workstations

O
er.
te

. If
space

be

-f firstfiles

indicates one or more object files to be included before the BEA TUXED
system libraries. -f can also be used to pass options to the compiler or link
If more than one file name is specified, the names are separated by whi
space and the list is enclosed in quotation marks. The -f option can appear
more than once.

-l libfiles

specifies libraries to be included after the BEA TUXEDO system libraries
more than one file name is specified, the names are separated by white
and the list is enclosed in quotation marks. The -l option can appear more
than once.

-d deffile

specifies a module definition file used for linking a Windows program.

-W

indicates a Windows or Windows NT client is being built.

-O

indicates an OS/2 client is being built.

Microsoft Compilation Environment

The Microsoft C environment expects to find library directory names in the
environment variables INCLUDE and LIB . They might be set as follows:

INCLUDE=C:\C600\INCLUDE;C:\TUXEDO\INCLUDE
LIB=C:\NET\TOOLKIT\LIB;C:\C600\LIB;C:\TUXEDO\LIB

The C:\NET directory is the location of the LAN Workplace Toolkit.

buildclt can be used to link edit the executable. The client source files should
compiled separately using the CL command. The -f option is used to pass options to
the LINK command, as well as to name the input object files.

Examples of possible options are:

-f /SE:200 # to set the number of segments used to 200
-f /ST:10000 # to set default stack size to 10000 bytes
-f /CO # to create a file that can be debugged by Codeview
 # (assumes the file was compiled with the -Zi option)
4-4 BEA TUXEDO Workstation Guide

System-delivered Client

rd

 is

buildclt Examples

Listing 4-1 shows some sample buildclt command lines. All of the examples show
an executable named emp.exe being built.

Listing 4-1 Example of buildclt(1) command lines

DOS:
buildclt -cm -ml -o emp.exe -f "/CO/ST:10000/SE:200" -f emp.obj -l llibsock.lib
WINDOWS:
buildclt -W -cb -mm -o emp.exe -f "-v emp.obj" -l twlbsock.lib -d emp.def
buildclt -W -cm -mm -o emp.exe -f "/CO emp.obj" -l wlibsock.lib -d emp.def

System-delivered Client

A system-delivered client is available on MS-DOS workstations. This is a standa
BEA TUXEDO system client that has been slightly modified for workstation use,
which is shown by the w prefix.

wud(1)
The BEA TUXEDO driver program that sends FML buffers to BEA TUXEDO
system servers

Application Password when Running from a Script

If BEA TUXEDO second-level security has been specified for an application, the
system clients prompt the user for the application password. If the client program
being run from a script, which is a common occurrence with wud, the password is read
from the APP_PW environment variable.
BEA TUXEDO Workstation Guide 4-5

4 BEA TUXEDOWorkstation for MS-DOS Workstations

o the

ries

e

nt’s

 in

h
Running BEA TUXEDO System Clients on a

Workstation

After the client programs have been developed and tested, they can be moved t
MS-DOS workstations where they will be available to users.

Directory Structure to Support /WS Clients

The following directories should be present under the directory designated as TUXDIR.

bin

BEA TUXEDO system commands and system clients, for example, wud

locale/C

international message directory (English version). Other language directo
may be present under locale .

Environment Variables

Workstation clients make use of several environment variables. The following ar
checked by tpinit() when the client attempts to join the application:

WSENVFILE

Names a file containing environment variable settings to be set in the clie
environment. All of the other environment variables needed by client
programs can be contained in this file. The format of this file is described
further detail below.

WSNADDR

Specifies the network address of the workstation listener process throug
which clients gain access to the application.

TCP/IP addresses may be specified in the following forms:

“//host.name:port_number”
“//#.#.#.#:port_number”
4-6 BEA TUXEDO Workstation Guide

Running BEA TUXEDO System Clients on a Workstation

mit

olve

al

cal

d by

l
 or

ld be

ses.

tener
.

Note: If you are specifying TCP/IP addresses for a Windows NT workstation, o
the quotation marks.

In the first format, the domain finds an address for hostname using the local
name resolution facilities (usually DNS). hostname must be the local
machine, and the local name resolution facilities must unambiguously res
hostname to the address of the local machine.

In the second example, the “#.#.#.#” is in dotted decimal format. In dotted
decimal format, each # should be a number from 0 to 255. This dotted decim
number represents the IP address of the local machine.

In both of the above formats, port_number is the TCP port number at which
the domain process will listen for incoming requests. port_number can
either be a number between 0 and 65535 or a name. If port_number is a
name, then it must be found in the network services database on your lo
machine.

The address can also be specified in hexadecimal format when precede
the characters “0x ”. Each character after the initial “0x ” is a number between
0 and 9 or a letter between A and F (case insensitive). The hexadecima
format is useful for arbitrary binary network addresses such as IPX/SPX
TCP/IP.

The address can also be specified as an arbitrary string. The value shou
the same as that specified for the NLSADDR parameter in the NETWORK
section of the configuration file.

More than one address can be specified if desired by specifying a
comma-separated list of pathnames for WSNADDR. Addresses are tried in order
until a connection is established. Any member of an address list can be
specified as a parenthesized grouping of pipe-separated network addres
For example,

WSNADDR=”(//m1.acme.com:3050|//m2.acme.com:3050), //m3.acme.com:3050”

The BEA TUXEDO system randomly selects one of the parenthesized
addresses. This strategy distributes the load randomly across a set of lis
processes. Addresses are tried in order until a connection is established
BEA TUXEDO Workstation Guide 4-7

4 BEA TUXEDOWorkstation for MS-DOS Workstations

 The
e

 it is
 be

I
isk.

more
for
ctor

OS
Two

.

s

t
WSTYPE

is used within tpinit() when invoked by a workstation client to negotiate
encode/decode responsibilities with the native site. An unspecified WSTYPE
always causes encoding, even if it is also unspecified on the native site.
only way to ensure that encode/decode is turned off is to specify the sam
WSTYPE value for both sites.

WSDEVICE

In Release 6.4 or higher, this variable is never required. In prior releases,
required while using the SPX protocol under DOS or Windows. It should
set to /dev/nspx for the SPX networking protocol.

WSRPLYMAX

is used by tpinit() to set the maximum amount of core memory that ATM
functions use for buffering application replies before they are dumped to d
Replies that are not being waited for (using tpgetrply()), and unsolicited
messages are buffered in this area. When this area gets filled with one or
messages, the overflow is written to a disk file. The system default limit
this is 32,000 bytes. The available memory on your machine is the key fa
in deciding whether you should use WSRPLYMAX to set a lower limit. Writing
replies to disk causes a substantial reduction in performance.

Other environment variables may be needed by Workstation clients on an MS-D
workstation depending on what BEA TUXEDO system features are being used.
MS-DOS conditions apply:

� Environment variables that take directory lists, for example, FLDTBLDIR and
VIEWDIR, must observe MS-DOS conventions.

� Directory names are separated by semicolons rather than colons.

� Pathname components are separated by backslashes rather than slashes

� The default field table file looked for by mkfldhdr (1) is fld.tbl in the
UNIX environment. The default output file is fld.tbl.h , which is an illegal
file name under MS-DOS. In the MS-DOS environment, the default name
are fldtbl and fldtbl.h .

� Binary view description file names are given a.vv suffix rather than the single
.V of the case-sensitive UNIX environment.

The compilation (5) manual page recaps which variables are needed under wha
circumstances.
4-8 BEA TUXEDO Workstation Guide

Running BEA TUXEDO System Clients on a Workstation

e
e

ides
ore
When tpinit() is called, an environment file will be read if it exists. Here is an
example file that could be used for two different applications.

TUXDIR=C:\TUXEDO
[application1]
;this is a comment
/* this is a comment */
#this is a comment
//this is a comment
SET FIELDTBLS=APP1_FLDS
set FLDTBLDIR=C:\APP1\UDATAOBJ
[application2]
FIELDTBLS=APP2_FLDS
FLDTBLDIR=C:\APP2\UDATAOBJ

The format of the file contents is as follows:

� Any leading space and tab characters on each line are ignored and are not
considered in the following points.

� Lines containing variables to be put into the environment are of the form

variable =value
or
set variable =value

where variable must begin with an alphabetic or underscore character and
contain only alphanumeric or underscore characters, and value may contain any
character except newline.

� Within the value , strings of the form ${env } are expanded using variables
already in the environment (forward referencing is not supported and if a valu
is not set, the variable is replaced with the empty string). Backslash (\) may b
used to escape the dollar sign and itself. All other shell quoting and escape
mechanisms are ignored and the expanded value is placed into the environment.

� Lines beginning with slash (/), pound sign (#), or exclamation point (!) are
treated as comments and ignored. Lines beginning with other characters bes
these comment characters, a left square bracket, or an alphabetic or undersc
character are reserved for future use; their use is undefined.

� The file is partitioned into sections by lines of the form

[label]

where label is the name of the section and follows the same rules for
variable above. The label will be silently truncated if longer than 31
characters.
BEA TUXEDO Workstation Guide 4-9

4 BEA TUXEDOWorkstation for MS-DOS Workstations

bel.

us

s

l file

d

 A

h

nt, if
� Variable lines between the top of the file and the first label are put into the
environment for all applications; this is the global section. A label of [] will
also indicate the global section. Other variables are put into the environment
only if the label matches the application label specified for the application.

The following function can be used to read the environment file for a particular la

void tuxreadenv(char * file , char * label)

If file is NULL, then a default file name is used. The default file names for vario
platforms are as follows:

DOS, Windows, OS/2
C:\TUXEDO\TUXEDO.ENV

Macintosh
TUXEDO.ENV in the system preferences directory

NETWARE
SYS:SYSTEM\TUXEDO.ENV

POSIX
/usr/tuxedo/TUXEDO.ENV or /var/opt/tuxedo/TUXEDO.ENV

If label is NULL, then only variables in the global section are put into the
environment. For other values of label , the global section variables plus any variable
in a section matching the label are put into the environment.

An error message is printed to the userlog if there is a memory failure, if a non-nul
name does not exist, or if a non-null label does not exist.

Each time tpinit() is called (either explicitly or implicitly by calling another ATMI
function), tuxreadenv() will be called automatically in Workstation clients. If
WSENVFILE is set in the environment, then it will be used as the name of the
environment file; otherwise, NULL will be passed to tuxreadenv() for the file name
such that the default file is used. If WSAPP is set in the environment, then it will be use
as the section label in environment file; otherwise, NULL will be passed to
tuxreadenv() for the label name. Application clients may also call tuxreadenv()
explicitly.

The environment is implemented and available differently on different platforms.
uniform interface to the environment is provided via the existing tuxgetenv (3c) and
tuxputenv (3c) functions. These functions provide access to all variables set bot
from the specified WSENVFILE file for the specified WSAPP label (or the defaults if not
specified) and the environment variables set via the operating system environme
supported (in the case of MS Windows, the DOS environment is available).
4-10 BEA TUXEDO Workstation Guide

CHAPTER

ch

5 BEA TUXEDO

Workstation for
WINDOWS

What This Chapter Is About

This chapter describes the use of the BEA TUXEDO Workstation for Microsoft
Windows, Version 3.0 and later.

This instantiation offers significant benefits to the application developers:

� More memory is available to Windows applications, as compared to MS-DOS
applications which normally cannot access memory above 640K.

� Executable text is shared among applications, saving memory.

� BEA TUXEDO Workstation upgrades are possible without relinking or
modifying an application program's executable file.

� Dynamic linking permits interpretive graphical application generator tools (su
as Visual Basic, ObjectVision and SQLWindows) to call BEA TUXEDO system
services.

The major sections in this chapter cover:

� Software prerequisites

� BEA TUXEDO client programs and the Windows DLL.
BEA TUXEDO Workstation Guide 5-1

5 BEA TUXEDOWorkstation for WINDOWS

 a

re

 by

s)

ime.

ich
Definitions of Terms, Acronyms, and Abbreviations

BEA TUXEDO system terms are defined in the BEA TUXEDO Glossary, but we have
extracted terms specific to this feature:

Dynamic Link Libraries (DLL)
A DLL is a collection of functions grouped into a load module that is
dynamically linked with an executable program at run time. It is similar to
shared object under the UNIX operating system. The Microsoft Windows
operating environment makes extensive use of this feature. Most softwa
products for Windows provide a DLL interface.

Ordinal Export Numbers
An ordinal export number is a number assigned in a module definition file,
which a function in a DLL may be referenced. Some software packages
reference DLL functions by name, while others (for example, SQLWindow
reference DLL function entry points by numbers only.

Import libraries
An import library is a collection of stub function names associated with a
DLL. To link edit an application object calling a DLL routine, the linker
needs a stub that defines where the subroutine exists.

Module Definition File
This file defines the characteristics of an executable and is used at link t
For a DLL this file details the exported functions along with their import
numbers that can be called from the DLL and other imported functions wh
the DLL will call.
5-2 BEA TUXEDO Workstation Guide

Prerequisites

d

ote

an
for

ide
Prerequisites

This section lists the hardware and software prerequisites.

Hardware

The BEA TUXEDO Workstation for Windows runs on Intel 80286 processors an
above.

The machine on which the BEA TUXEDO Workstation is installed runs as a rem
machine to a UNIX server.

Software

Workstation for Windows runs under the Windows Version 3.0 or later operating
system.

In Windows while using TCP/IP any Windows Sockets Compliant TCP/IP stack c
be used. The Windows DLL has been tested with the NOVELL LAN WorkPlace
MS-DOS using the Windows Sockets interface.

In Windows 95 the native TCP/IP stack is used.

The UNIX server machine must have the BEA TUXEDO system and the native-s
BEA TUXEDO Workstation installed.
BEA TUXEDO Workstation Guide 5-3

5 BEA TUXEDOWorkstation for WINDOWS

ssion
n

s

hey
Programming Considerations with the

Windows DLL

This section covers items specific to writing and building BEA TUXEDO client
programs to run under Microsoft Windows. They are intended to supplement the
material presented in the BEA TUXEDO Programmer's Guide.

For information on defining application-specific buffers types for the Windows
environment, please see Administering the BEA M3 System and tuxtypes (5) in the
BEA TUXEDO Reference Manual.

Our assumption is that readers of this section either have experience in writing
Windows programs or have access to tutorial material on that subject. Our discu
is limited to a description of how you go about putting BEA TUXEDO Workstatio
functions into Windows modules.

Writing Client Programs

The ATMI and FML calls used in Windows client programs are much the same a
described in the BEA TUXEDO Programmer's Guide. They must, however, be
incorporated into Windows modules. The following things work slightly differently
than they do in the UNIX environment.

Global Variables
The error global variables are not available in the way they normally are; t
are defined as macros in the .h files. To make them available in client
programs:

for tperrno or tpurcode -- #include "atmi.h"
for Ferror -- #include "fml.h"
for Uunixerr -- #include "Uunix.h"
for proc_name -- #include "userlog.h"

See Listing 5-2 for an example.
5-4 BEA TUXEDO Workstation Guide

Programming Considerations with the Windows DLL

 to

 of

tpsetunsol

Use MakeProcInstance() to create a “thunk” pointer. Both the .DEF file
and the .C file must include the definition. This step is required under
Windows 3.x.

See Listing 5-4 for an example.

Buffer Size
On DOS and WINDOWS workstations, message buffer sizes are limited
64K less the size of the message header (currently under 400 bytes).

Environment
Once set, the environment in MS Windows cannot be changed. Because
this the environment will be handled locally within the DLL. The functions
tuxgetenv (3) and tuxputenv (3) have been created for this purpose. An
example is given in Listing 5-1; the reference pages are in the BEA TUXEDO
Reference Manual.

Listing 5-1 Handling the Environment

LPSTR szRplyMax;
long wCurrRplyMax = 0; /* Current value of BEA TUXEDO Reply buffer
 * in memory
 */
....
if(szRplyMax = tuxgetenv((LPSTR)"WSRPLYMAX") == NULL)
 wCurrRplyMax = 0L;
else
 wCurrRplyMax = atol(szRplyMax);
if(wCurrRplyMax 10240L) {
 if(tuxputenv("WSRPLYMAX=16384") == 0)
 wCurrRplyMax = 16384L;
}

BEA TUXEDO Workstation Guide 5-5

5 BEA TUXEDOWorkstation for WINDOWS

te
Using bankapp as an Example

Among the files in the directory $TUXDIR/apps/ws you will find the following.

BALANCE.DLG - dialog resource for BANKAPPW BALANCE window
BANKAPPW.C - Windows application
BANKAPPW.DEF - Windows definition file for BANKAPPW
BANKAPPW.RC - Windows resource file for BANKAPPW
BANKAPP.H - BANKAPPW window field identifiers
BANKFLDS - FML buffer field identifiers
NT.MAK - Microsoft C makefile

These are the files needed to produce a bankapp client for Windows.

Take a look through the application file, BANKAPPW.C; we want to call your attention
to a few items. Listing 5-2 shows the #include files you should include.

Listing 5-2 bankapp for Windows: #include Files

15 #include stdio.h>
16 #undef NULL
17 #include windows.h>
18 #include stdlib.h>
19 #include string.h>
20 #include ctype.h>
21 #include atmi.h>
22 #include Usysflds.h>
23 #include fml.h>
24 #include userlog.h>
25 #include "bankapp.h"
26 #include "bankflds.h"

The #undef NULL at line 16 is there to prevent a compiler warning caused by NULL
being defined in both stdio.h and windows.h .

At line 45, as Listing 5-3 shows, you declare your FBFR as a FAR pointer. In Windows
NT FAR and PASCAL are defined to be nothing. Listing 5-3 also shows that you wri
your client program as a WinMain() module.
5-6 BEA TUXEDO Workstation Guide

Programming Considerations with the Windows DLL

o pick
Listing 5-3 bankapp for Windows: WinMain Declaration

44 static HANDLE hInst;
45 static FBFR FAR *fbfr;
46
47 int PASCAL
48 WinMain(hInstance, hPrevInstance, lpCmdLine, nCmdShow)
49 HANDLE hInstance;
50 HANDLE hPrevInstance;
51 LPSTR lpCmdLine;
52 int nCmdShow;

In Listing 5-4 there are examples of the statements needed to declare a routine t
up unsolicited messages. The statement must be in both the .C file and the .DEF file.
The example also shows a call to tpsetunsol .

Listing 5-4 bankapp for Windows: Declaring Unsolicited Message Routine

In BANKAPPW.C

 40 BOOL FAR PASCAL CloseDlg(HWND, WORD, WORD, LONG);
 41 BOOL FAR PASCAL OpenDlg(HWND, WORD, WORD, LONG);
 42 void FAR PASCAL UnsolProc(char FAR *, long, long);
.
.
.
 167 lpfnCloseDlg = MakeProcInstance(CloseDlg,hInst);
 168 lpfnOpenDlg = MakeProcInstance(OpenDlg,hInst);
 169 lpfnUnsolptr=MakeProcInstance((FARPROC)UnsolProc,hInst);
 170
 171 if(tpsetunsol((void FAR*)lpfnUnsolptr) == TPUNSOLERR)
 172 userlog("tpsetunsol failed");

In BANKAPPW.DEF
 16 EXPORTS WndProc
 17 TransferDlg
 18 BalanceDlg
 19 DepositDlg
 20 WithdrawDlg
 21 CloseDlg
 22 OpenDlg
 23 UnsolProc
BEA TUXEDO Workstation Guide 5-7

5 BEA TUXEDOWorkstation for WINDOWS

y of
 (in
screen

bing
Lines 183 to 325 are Field Validation Routines: five routines that check the validit
the input typed in by the user. We will not show this code except for an example
Listing 5-5) of how syntax errors cause a message to be displayed on the user's
by means of a call to MessageBox .

Listing 5-5 bankapp for Windows: Displaying a Syntax Error

203 if (i 5 || i > 6 || account[i] != '\0') {
204 /*SetDlgItemText (hDlg, item, ""); */
205 MessageBox (hDlg,
206 "Account number must be 5 or 6 digits",
207 "BANKAPP", MB_OK);
208 SetFocus(GetDlgItem(hDlg, item));
209 return(-1);

The actual work of the application begins at with the comments at line 354 descri
six dialog boxes. Listing 5-6 shows the beginning of this section of the code.

Listing 5-6 bankapp for Windows: Dialog Boxes

354 /*
355 * Routines to handle dialog boxes for Services
356 * BalanceDlg(hDlg, message, wParam, lParam)
357 * CloseDlg(hDlg, message, wParam, lParam)
358 * DepositDlg(hDlg, message, wParam, lParam)
359 * OpenDlg(hDlg, message, wParam, lParam)
360 * TransferDlg(hDlg, message, wParam, lParam)
361 * WithdrawDlg(hDlg, message, wParam, lParam)
362 */
363 BOOL FAR PASCAL
364 BalanceDlg(hDlg, message, wParam, lParam)
365 HWND hDlg;
366 WORD message;
367 WORD wParam;
368 LONG lParam;
5-8 BEA TUXEDO Workstation Guide

Programming Considerations with the Windows DLL

, start
e
ws

e is
uffer
The dialog boxes, which take up the rest of the code, accept input from the user
a transaction (assuming -Dtran is specified when the client is built), make a call to th
requested service and return information to the user. The code in Listing 5-7 sho
how errors might be handled. In lines 391-392, for example, the call to tpbegin fails,
a message is sent to userlog (3c) and also to the user's screen via the string account1 .
In lines 397-403, if the service call fails and the buffer is not NULL, the status lin
picked up and returned to the user. If the failure is due to another reason or if the b
is NULL, a hard-coded error message is returned.

Lines 416-417 show the service request being successfully performed and the
requested balance being displayed on the user's screen.

Listing 5-7 bankapp for Windows: Error Handling

390 #ifdef tran
391 if (tpbegin(30, 0) == -1) {
392 (void) userlog("failed to begin transaction\n");
393 lstrcpy(account1, "Transaction failed");
394 }
395 else
396 #endif
397 if (tpcall("INQUIRY", (char FAR *)fbfr, 0,
 (char FAR *FAR *)&fbfr, &len, 0) == -1) {
398 if(tperrno== TPESVCFAIL && fbfr != NULL &&
399 (s=Ffind(fbfr,STATLIN,0,0)) != 0) {
400 lstrcpy(account1, s);
401 }
402 else
403 lstrcpy(account1,"Inquiry failed");
404 #ifdef tran
405 (void) tpabort(0);
406 #endif
407 }
408 else {
409 #ifdef tran
410 if(tpcommit(0) < 0) {
411 lstrcpy(account1, "Inquiry failed");
412 }
413 else
414 #endif
415
416 wsprintf(account1, "Account Balance: %s",
417 (LPSTR) Ffind(fbfr, SBALANCE, 0, 0));
418 }
BEA TUXEDO Workstation Guide 5-9

5 BEA TUXEDOWorkstation for WINDOWS

 call

e

 one
 the

ot
 and
sor to
tion.
sult

s in
ll.

r

e
mple,
,

a

t the

TMI
Blocking Network Behavior

When an ATMI function is called the Windows DLL could block on the network
waiting for a reply from the server on the UNIX machine. This can happen on any
that initiates a network message to the UNIX machine, for example, tpcall() ,
tpinit() , tpgetrply() and so on. These functions may take an arbitrary long tim
to complete; a good example is tpcall() , which may block until the server has
completed the processing required.

Windows 3.x is not a preemptive multitasking operating system and there is only
system wide Windows input queue. Because of this if a client program blocks on
network, the entire Windows interface “freezes” until the network call returns.

With the BEA TUXEDO Workstation for Windows a blocking operation that cann
be completed immediately is handled as follows. The DLL initiates the operation
enters a loop in which it dispatches any windows messages (yielding the proces
another thread if necessary) and then checks for the completion of the ATMI func
If the ATMI call is complete the blocking call is completed and the appropriate re
is returned to the caller. If not complete the DLL continues to dispatch Windows
messages. For a complete description of this behavior see AEWsetblockinghook (3c)
in the BEA TUXEDO Reference Manual.

If a Windows message is received for a process for which a blocking operation i
progress, there is a risk that the application will attempt to issue another ATMI ca
Such application behavior is not supported by ATMI calls. AEWisblocked (3c) can be
called at any time to detect if there is a blocking ATMI call outstanding. Any othe
ATMI call made while this condition exists will fail and set tperrno to TPEPROTO.

Although this mechanism is sufficient for simple applications, it cannot support th
complex message dispatch requirements of more advanced applications (for exa
those using the MDI (Multiple Document Interface) model). For such applications
ATMI includes AEWsetblockinghook (3c), which allows the programmer to define
special routine that will be called instead of the default routine.

If an application invokes a blocking operation like tpcall() and provides a typed
buffer to it as an argument, it is the responsibility of the application to ensure tha
buffer is available to ATMI until the operation is completed.

FML functions will continue to work even if there is a blocking call in progress,
therefore it is the responsibility of the application to not use FML buffers that are
passed in as an argument to an ATMI call that is currently in progress until the A
call completes.
5-10 BEA TUXEDO Workstation Guide

Programming Considerations with the Windows DLL

ach

d.

ows.
Restoring the Environment

As Workstation for Windows 3.x starts up it copies the environment from the
Windows area to a local buffer and maintains a distinct environment space for e
client. The local space is destroyed when tpterm() is called. It is the responsibility of
the application to reinstate the environment and other information installed using
tpsetunsol() and AEWsetblockinghook() after tpterm() is called.

Building Client Programs

For Windows any compiler that can read Microsoft C import libraries can be use

When compiling BEA TUXEDO client programs for Windows 3.x, use the C
preprocessor flag

-D_TM_WIN

When link editing your client programs, use buildclt (1) with the -W flag.

BEA TUXEDO clients can be built without using the buildclt (1) utility. If the
Microsoft Visual C++ projects are used then set the Preprocessor options as foll

� For Windows 3.x
-D_TM_WIN

� For Windows 95
-DWIN32

� In the linker options:

� For Windows 3.x, add WTUXWS.LIB to the input libraries.

� For Windows 95, add WTUXWS32.LIB MSVCRT.LIB to the input libraries.

In addition to this set the INCLUDE, LIB , and PATH search directories appropriately.
BEA TUXEDO Workstation Guide 5-11

5 BEA TUXEDOWorkstation for WINDOWS

ng”

e

le the

EA

es

er
 all
Using views in 16-bit Windows

Windows Version 3.x (16 bit) recommends that C programs use “structure packi
on a one byte boundary. With the Microsoft C compiler this is enabled using the /Zp
option. The view compiler viewc uses the Microsoft C compiler to calculate the
offsets of the C structures. In order for viewc to use the structure packing and get th
correct offsets, set the CFLAGS variable to /Zp before running viewc . As an example
if the client C program uses structure packing on a one byte boundary then compi
C code as follows.

CL /Zp -D_TM_WIN CLIENT.C
and before compiling the views
set CFLAGS=/Zp
VIEWC.EXE CLVIEW.V

Runtime

When you run client programs, your PATH must include %TUXDIR%/bin .

Limitations

The following is a list of limitations that apply to Release 5.0 (and higher) of the B
TUXEDO system Windows DLL:

� Microsoft Windows “real” mode is not supported under Windows 3.X.

� Multiplexed network connections are not available; each client process requir
a separate network connection.

� The BEA TUXEDO libraries (DLLs) are not thread-safe. This means that eith
applications should not use threads, or threaded access is serialized through
BEA TUXEDO calls (such as ATMI, FML, userlog() , and so on).
5-12 BEA TUXEDO Workstation Guide

Programming Considerations with the Windows DLL
BEA TUXEDO Workstation Guide 5-13

CHAPTER

on

ch
6 BEA TUXEDO

Workstation for OS/2

What This Chapter Is About

This chapter describes the BEA TUXEDO Workstation under the OS/2 operating
system.

This instantiation offers significant benefits to application developers:

� More memory is available to OS/2 applications, as compared to MS-DOS
applications which normally cannot access memory above 640K.

� Executable text is shared among applications, saving memory.

� Workstation upgrades are possible without relinking or modifying an applicati
program’s executable file.

� Dynamic linking permits interpretive graphical application generator tools (su
as ObjectVision) to call BEA TUXEDO system services.

The major sections in this chapter cover:

� Software prerequisites

� BEA TUXEDO client programs and the OS/2 environments
BEA TUXEDO Workstation Guide 6-1

What This Chapter Is About

 a
g
s for

, by

s)

e

ime.
the

Definitions of Terms, Acronyms, and Abbreviations

BEA TUXEDO system terms are defined in the BEA TUXEDO Glossary, but we have
extracted terms specific to this feature.

Dynamic Link Libraries (DLL)
A DLL is a collection of functions grouped into a load module that is
dynamically linked with an executable program at run time. It is similar to
shared object under the UNIX operating system. The IBM OS/2 operatin
environment makes extensive use of this feature. Most software product
OS/2 provide a DLL interface.

Ordinal Export Numbers
An ordinal export number is a number assigned in a module definition file
which a function in a DLL may be referenced. Some software packages
reference DLL functions by name, while others (for example, SQLWindow
reference DLL function entry points by numbers.

Import Libraries
An import library is a collection of stub function names associated with a
DLL. To link edit an application object calling a DLL routine, the linker
needs a stub that defines where the subroutine exists.

OS/2 Character Mode
OS/2 Character mode is the character-based non-graphical user interfac
under OS/2.

Module Definition File
This file defines the characteristics of an executable and is used at link t
For a DLL this file details the exported functions that can be called from
DLL and other imported functions which the DLL will call.

Windows Emulation Mode

It is possible for OS/2 version 2.0 to execute Windows applications, which in turn
could call the BEA TUXEDO system’s Windows DLL. LAN WorkPlace for OS/2
permits BEA TUXEDO system’s Windows DLL to execute in this environment.
BEA TUXEDO Workstation Guide 6-2

6 BEA TUXEDOWorkstation for OS/2

r

n is

was
er.

Prerequisites

This section lists the hardware and software prerequisites.

Hardware

The BEA TUXEDO Workstation DLL for OS/2 runs on Intel 80386 and above
processors.

The machine on which the DLL is installed runs as a remote machine to a BEA
TUXEDO system machine.

Software

The OS/2 DLL runs under the IBM OS/2 2.0 operating system for OS/2 characte
mode applications.

The BEA TUXEDO Workstation provides a 32-bit DLL for OS/2 that supports the
OS/2 2.x version of the operating system. The networking software for this versio
IBM TCP/IP. For developing applications a 32-bit compiler can be used. The DLL
compiled using the IBM Cset 2 C++ compiler, which is also the reference compil

The BEA TUXEDO system server machine must have the BEA TUXEDO system
Release 4.2 (or higher) and the BEA TUXEDO Workstation installed.
6-3 BEA TUXEDO Workstation Guide

Programming Considerations with OS/2 Clients

l

n

hey

s that
u
Programming Considerations with OS/2

Clients

This section covers items specific to writing and building BEA TUXEDO client
programs to run under OS/2. This material is intended to supplement the materia
presented in the BEA TUXEDO Programmer’s Guide.

Writing Client Programs

The ATMI and FML calls used in OS/2 client programs are much the same as
described in the BEA TUXEDO Programmer’s Guide. They must, however, be
incorporated into OS/2 modules. The following things work slightly differently tha
they do in the UNIX environment.

Global Variables
The error global variables are not available in the way they normally are; t
are defined as macros in the .h files. To make them available in client
programs.

for tperrno or tpurcode — #include “atmi.h”
for Ferror — #include “fml.h”
for Uunixerr — #include “Uunix.h”
for proc_name — #include “userlog.h”

OS/2 Character Mode

There is very little difference between writing C code for BEA TUXEDO client
programs in this environment and writing them in the UNIX environment. For
information on the ATMI calls, please refer to the BEA TUXEDO Programmer’s
Guide.

The special aspect of both MS-DOS and OS/2 character mode client programs i
you probably have to provide an application-specific form and menu handler. Yo
might find it useful to look through the first two-thirds of the sample program,
BEA TUXEDO Workstation Guide 6-4

6 BEA TUXEDOWorkstation for OS/2

e

apt

e

r
BANKAPP.C, provided with the BEA TUXEDO system. This program serves as the
client program for both environments (the .MAK files copy BANKAPP.C to BANKAPPO.C
for OS/2, and it is built with a -O flag and different libraries). This part of the sampl
program is an MS-DOS/OS/2 form and menu handler. If you don’t already have
similar (or more sophisticated) interfaces at your installation, you may want to ad
this for your application.

The final third of BANKAPP.C (beginning at line 805) is the bankapp application client.

Building Client Programs

For the 32 bit platform the IBM Cset 2 C++ compiler is supported.

When compiling BEA TUXEDO client programs, use the C preprocessor flag

-D_TM_OS2

When link editing your client programs, use buildclt(1) with the -O flag for OS/2
character mode clients.

The buildclt(1) utility also supports the Microsoft C and the IBM compiler. Use th
-c option to specify the compiler type: “m” for microsoft and “i ” for IBM.

If you want to use the C compiler instead of buildclt(1) then use the C preprocesso
flag

-D_TM_OS2

and while linking specify OTUXWS.LIB as an input library for OS/2.

Runtime

When you run client programs, your PATH and LIBPATH must include $TUXDIR/bin .
6-5 BEA TUXEDO Workstation Guide

Programming Considerations with OS/2 Clients

es
Limitations

The following is a list of limitations that apply to the present release of the BEA
TUXEDO system OS/2 DLL.

� Multiplexed network connections are not available; each client process requir
a separate network connection.

� The BEA TUXEDO Workstation DLL does not support threads.
BEA TUXEDO Workstation Guide 6-6

6 BEA TUXEDOWorkstation for OS/2
6-7 BEA TUXEDO Workstation Guide

CHAPTER

 for

e
7 BEA TUXEDO

Workstation for
Macintosh

What This Chapter Is About

This chapter describes the installation and use of the BEA TUXEDO Workstation
Apple Macintosh, System 7.1.

This instantiation offers developers the ability to write application clients using th
Macintosh user interface.

The major sections in this chapter cover:

� Software prerequisites

� BEA TUXEDO client programs and the Macintosh
BEA TUXEDO Workstation Guide 7-1

7 BEA TUXEDOWorkstation for Macintosh

nd

ote

:

)

e
Prerequisites

This section lists the hardware and software prerequisites.

Hardware

The BEA TUXEDO Workstation for Macintosh runs on Motorola 68020, 68030 a
68040 processors.

The machine on which the BEA TUXEDO Workstation is installed runs as a rem
machine to a UNIX server.

Software

� Macintosh System 7.1 or later

� Macintosh TCP/IP Version 2.0.6 or later

� If you are using the Symantec Think C Development Environment (68K only)
Symantec Think C Version 7.0 or later

� If you are using the MetroWerks Code Warrior Development Environment
(PowerPC only):

� MetroWerks Code Warrior Version 9.0 or later

� Macintosh Programmer’s Workshop tools (included on the MetroWerks CD

The BEA TUXEDO server machine must have the BEA TUXEDO system and th
native-side BEA TUXEDO Workstation installed.
7-2 BEA TUXEDO Workstation Guide

Programming Considerations with the Macintosh Libraries

on
 the

ssion
to

 as
Programming Considerations with the
Macintosh Libraries

This section covers items specific to writing and building BEA TUXEDO Workstati
client programs to run under Macintosh. This material is intended to supplement
material presented in the BEA TUXEDO Programmer’s Guide.

Our assumption is that readers of this section either have experience in writing
Macintosh programs or have access to tutorial material on that subject. Our discu
is limited to a description of how you go about putting BEA TUXEDO functions in
Macintosh programs.

Writing Client Programs

The ATMI and FML calls used in Macintosh client programs are much the same
described in the BEA TUXEDO Programmer’s Guide. An example of tuxputenv (3c)
is given in Listing 7-1.

Listing 7-1 Handling the Environment

void
main()
{
 TPINIT *tpinfop;
 FILE *fp;
 char aline[MAXLINE];
 char *loc_env[MAXENV];
....
 if((loc_env[top_one]=(char *) malloc(strlen(aline) + 1)) == NULL) {
 userlog("Error mallocing space for the environment.");
 continue;
 }
 strcpy(loc_env[top_one], aline);
 if(tuxputenv(loc_env[top_one]) != 0) {
 userlog("Error adding %s to the environment.",
 loc_env[top_one]);
 free(loc_env[top_one]);
 continue;
 }
BEA TUXEDO Workstation Guide 7-3

7 BEA TUXEDOWorkstation for Macintosh

the

 the

n the
Using bankapp as an Example

After the BEA TUXEDO system is installed on the Macintosh, among the files in
directory $TUXDIR/apps/bankapp you will find the following:

bankapp.r - dialog resource for BANKAPPM windows
BANKAPPM.C - Macintosh application source file
BANKAPPM.h - Macintosh application header file
MACDialog.c - Macintosh application source file
MACDialog.h - Macintosh application header file
bank.flds - FML buffer field identifiers
mkbankhdr.tsh - TuxShell script to create headers

These are the files needed to produce a bankapp client for Macintosh. Notice there is
a TuxShell (1) script, mkbankhdr.tsh , which needs to be modified for your
instantiation and run with the TuxShell (1) program before compilation.

Take a look through the application file, BANKAPPM.c; we want to call your attention
to a few items. Listing 7-2 shows a partial list of the #include files you should use.

Listing 7-2 bankapp for Macintosh: #include Files

41 #include <Quickdraw.h>
42 #include <Resources.h>
43 #include <Fonts.h>
44 #include <OSEvents.h>
45 #include <Desk.h>
46 #include “MACDialog.h”
47 #include “BANKAPPM.h”
48 #include “bank.flds.h”
49 #include <string.h>
50 #include <Uunix.h>
51 #include <atmi.h>
52 #include <fml.h>
53 #include <Usysflds.h>
54 #include <userlog.h>

Lines 93 to 410 (not shown) are Field Validation Routines: five routines that check
validity of the input typed in by the user. We will not show this code except for an
example (in Listing 7-3) of how syntax errors cause a message to be displayed o
user’s screen by means of a call to NoteAlert .
7-4 BEA TUXEDO Workstation Guide

Programming Considerations with the Macintosh Libraries

wn).

, start
user.
r

ser.
Listing 7-3 bankapp for Macintosh: Displaying a Syntax Error

151 for (i=0; amount[i] != 0 & i 10; i++) {
152 if (amount[i] == '.') { 153 if (decimal)
154 break;
155 decimal++;
156 continue;
157 }
158 if (!isdigit(amount[i]))
159 break;
160 if (decimal) {
161 decimal++;
162 if (decimal > 3)
163 break;
164 }
165 }
166 if (i == 0 || (3 - decimal) + i > 10) {
167 (void) NoteAlert(amounCAUT, NULL);
168 return(FALSE);
169 }

The actual work of the application begins with the comments at line 412 (not sho
Each of the dialog boxes has a set of routines which are used to implement its
functionality.

The dialog boxes, which take up the rest of the code, accept input from the user
a transaction, make a call to the requested service and return information to the
The code in Listing 7-4 shows how errors might be handled. In lines 594-599, fo
example, if the call to tpbegin (3c) fails, a message is sent to userlog(3c) and also
to the user’s screen via the ParamText function. In lines 600-605, if the service call
fails and the buffer is not NULL, the status line is picked up and returned to the u

Lines 625-630 show the service request being successfully performed and the
requested balance being displayed on the user’s screen.
BEA TUXEDO Workstation Guide 7-5

7 BEA TUXEDOWorkstation for Macintosh

ng

ot
ation

not
Listing 7-4 bankapp for Macintosh: Error Handling

594 if (tpbegin(30, 0) == -1) {
595 (void) userlog(“failed to begin transaction”);
596 NumToString(tperrno, tpStr);
597 ParamText("\pOpen Account Failed", "\p",
598 "\ptperrno = ", tpStr);
599 }
600 else if (tpcall("OPEN_ACCT", (char *) *fbfr, 0, (char *) *fbfr,
 &len, 0) == -1) {
601 if((tperrno == TPESVCFAIL) & (*fbfr != NULL) &
602 ((s = Ffind(*fbfr,STATLIN,0,0)) != 0)) {
603 BlockMove(s, account1[1], (Size) (account1[0] =
 (unsigned char) strlen(s)));
604 ParamText((unsigned char *) account1, "\p", "\p", "\p");
605 }
606 else {
607 NumToString(tperrno, tpStr);
608 ParamText("\pTransfer Failed", "\p", "\ptperrno = ", tpStr);
609 }
625 Fget(*fbfr, ACCOUNT_ID, 0, (char *) acc_num, 0);
626 s = Ffind(*fbfr, SBALANCE, 0, 0);
627 NumToString(acc_num, tpStr);
628 BlockMove(s, account1[1], (Size) (account1[0] =
 (unsigned char) strlen(s)));
629 ParamText("\pAccount Number: ", tpStr,
630 "\pAccount Balance: ", (unsigned char *) account1);

Blocking Network Behavior

When an ATMI function is called the Macintosh could block on the network waiti
for a reply from the server. This can happen on any call that initiates a network
message to the UNIX machine, for example, tpcall (3c), tpinit (3c),
tpgetrply (3c) and so on. These functions may take an arbitrarily long time to
complete; a good example is tpcall(3c) , which may block until the server has
completed the processing required.

With the BEA TUXEDO Workstation for Macintosh a blocking operation that cann
be completed immediately is handled as follows. The Macintosh initiates the oper
and enters a loop in which it calls WaitNextEvent while retrieving only NULL events
(yielding the processor to another process if necessary). It then checks for the
completion of the ATMI function. If the ATMI call is complete the blocking call is
completed and the appropriate result is returned to the caller. If the ATMI call is
complete the Macintosh continues to dispatch WaitNextEvent messages. For a
complete description of this behavior see AEMsetblockinghook (3c) in the BEA
TUXEDO Reference Manual.
7-6 BEA TUXEDO Workstation Guide

Programming Considerations with the Macintosh Libraries

e
ch

t

o
lls.
all
t

t the

TMI

ary

see
Although this mechanism is sufficient for simple applications, it cannot support th
complex message dispatch requirements of more advanced applications. For su
applications, ATMI includes AEMsetblockinghook (3c), which allows the
programmer to define a special routine which will be called instead of the defaul
routine.

By using AEMsetblockinghook (3c), there is a risk that the application will attempt t
issue another ATMI call. Such application behavior is not supported by ATMI ca
AEMisblocked (3c) can be called at any time to detect if there is a blocking ATMI c
outstanding. Any other ATMI call made while this condition exists will fail and se
tperrno to TPEPROTO.

If an application invokes a blocking operation like tpcall() and provides a typed
buffer to it as an argument, it is the responsibility of the application to ensure tha
buffer is available to ATMI until the operation is completed.

FML functions will continue to work even if there is a blocking call in progress,
therefore it is the responsibility of the application to not use FML buffers that are
passed in as an argument to an ATMI call that is currently in progress until the A
call completes.

Building Client Programs

Any compiler that can read MPW C libraries can be used to compile application
programs.

When compiling with MPW, be sure to use the -model far , -m, and -mc68020
options.

When using THINK C, use the same compiler options as specified above for libr
generation.

A Macintosh executable, TuxShell (1), is provided to run BEA TUXEDO utilities.
TuxShell (1) takes as input a script containing utility command lines. For details,
TuxShell (1) in the BEA TUXEDO Reference Manual.
BEA TUXEDO Workstation Guide 7-7

7 BEA TUXEDOWorkstation for Macintosh

y

A

es
Runtime

When you run client programs, the TUXDIR environment variable must be set properl
before tpinit (3c) or tpalloc (3c) is called. In order to use the BEA TUXEDO
catalogs properly, the locale:C directory must be below the {TUXDIR} directory.
You may want to put the locale:C directory into the System Folder, since the
application can always find that filesystem.

Limitations

The following is a list of limitations that apply to Release 5.0 (or higher) of the BE
TUXEDO system Macintosh libraries.

� The THINK C, version 7.1, compiler is required for building the TuxShell (1)
program.

� Multiplexed network connections are not available; each client process requir
a separate network connection.
7-8 BEA TUXEDO Workstation Guide

CHAPTER

 on

8 BEA TUXEDO

Workstation for
OpenVMS

What This Chapter Is About

This chapter describes the installation and use of the BEA TUXEDO Workstation
a DEC Alpha configured with OpenVMS 6.2. This platform offers developers the
ability to write application clients using OpenVMS.

The major sections in this chapter cover:

� Software prerequisites

� BEA TUXEDO system client programs and OpenVMS
BEA TUXEDO Workstation Guide 8-1

8 BEA TUXEDOWorkstation for OpenVMS

t

e
Prerequisites

This section lists the hardware and software prerequisites.

Hardware

� The BEA TUXEDO OpenVMS /WS can be installed successfully on any DEC
Alpha platform that is supported by OpenVMS 6.2.

� For an acceptable level of performance, the machine should have 64MB of
RAM.

� The machine on which the BEA TUXEDO Workstation for OpenVMS is
installed runs as a remote machine to a UNIX server.

Software

� OpenVMS 6.2 must be installed and configured before the BEA TUXEDO
Workstation is installed.

� If you intend to install the BEA TUXEDO online documentation, it is your
responsibility to make sure a Web browser is available. The online
documentation has been tested with Netscape 2.0, 3.0, and MicroSoft Interne
Explorer 3.0.

� Digital TXP/IP Services V4.1 for OpenVMS (UCX 4.1)

� DEC C and/or DEC COBOL compilers

The BEA TUXEDO server machine must have the BEA TUXEDO system and th
native-side BEA TUXEDO Workstation installed.
8-2 BEA TUXEDO Workstation Guide

Building and Running a Sample Client Program

ted

ed in

s
Building and Running a Sample Client

Program

This section covers items specific to building and running a BEA TUXEDO
Workstation for OpenVM client program. It is intended to illustrate material presen
in the BEA TUXEDO Programmer’s Guide and in the BEA TUXEDO COBOL Guide.
Our assumption is that readers of this section either have experience in writing
OpenVMS programs or have access to tutorial material on that subject. Our
presentation is limited to showing you a very simple client, simpcl (from a sample
application known as simpapp). In the code you will see BEA TUXEDO ATMI calls
used.

Writing Client Programs

The ATMI calls used in OpenVMS client programs are the same as those describ
the chapter entitled “Writing Client Programs” in the BEA TUXEDO Programmer’s
Guide.

Using simpapp as an Example

After the BEA TUXEDO Workstation software is installed, among the files in the
directory $TUXDIR/apps/simpapp are those shown in Listing 8-1. These are the file
needed to produce the simpapp client for OpenVMS.

Listing 8-1 simpapp Files for OpenVMS

README
simpapp.mk
simpcl.c
simpserv.c
ubbmp
ubbsimple
ubbws
BEA TUXEDO Workstation Guide 8-3

8 BEA TUXEDOWorkstation for OpenVMS

 for
You may find you have additional files; if so, they are extraneous files appropriate
other platforms.

Listing 8-2 shows the source code for simpcl.c .

Listing 8-2 simpapp for OpenVMS: Client Program

/* #ident "@(#)apps:simpapp/simpcl.c 60.3" */
#include
#include "atmi.h" /* TUXEDO Header File */

#if defined(__STDC__) || defined(__cplusplus)
main(int argc, char *argv[])
#else
main(argc, argv)
int argc;
char *argv[];
#endif
{
 char *sendbuf, *rcvbuf;
 long sendlen, rcvlen;
 int ret;
 if(argc != 2) {
 (void) fprintf(stderr, "Usage: simpcl string\n");
 exit(1);
 }
 /* Attach to System/T as a Client Process */
 if (tpinit((TPINIT *) NULL) == -1) {
 (void) fprintf(stderr, "Tpinit failed\n");
 exit(1);
 }

 sendlen = strlen(argv[1]);
 /* Allocate STRING buffers for the request and the reply */
 if((sendbuf = (char *) tpalloc("STRING", NULL, sendlen+1)) == NULL) {
 (void) fprintf(stderr,"Error allocating send buffer\n");
 tpterm();
 exit(1);
 }
 if((rcvbuf = (char *) tpalloc("STRING", NULL, sendlen+1)) == NULL) {
 (void) fprintf(stderr,"Error allocating receive buffer\n");
 tpfree(sendbuf);
 tpterm();
 exit(1);
 }
 (void) strcpy(sendbuf, argv[1]);
8-4 BEA TUXEDO Workstation Guide

Building and Running a Sample Client Program

 is

e are

e

 and
 takes
 /* Request the service TOUPPER, waiting for a reply */
 ret = tpcall("TOUPPER", (char *)sendbuf, 0, (char **)&rcvbuf, &rcvlen,\
 (long)0);
 if(ret == -1) {
 (void) fprintf(stderr, "Can't send request to service TOUPPER\n");
 (void) fprintf(stderr, "Tperrno = %d\n", tperrno);
 tpfree(sendbuf); tpfree(rcvbuf);
 tpterm();
 exit(1);
 }
 (void) fprintf(stdout, "Returned string is: %s\n", rcvbuf);
 /* Free Buffers & Detach from System/T */
 tpfree(sendbuf);
 tpfree(rcvbuf);
 tpterm();
 return(0);
}

There are three things to observe in simpcl ; these things illustrate calls you will use a
lot as you move on to code client programs for your own applications.

simpcl calls tpinit () to attach to BEA TUXEDO as a client. In this case, the call
made without allocating and freeing a TPINIT buffer. This practice is allowable if you
are unconcerned about the client authentication process; in this simple example w
not concerned about it. For further details about this ATMI call, see the tpinit (3c)
reference page.

The next items of interest are the two calls to tpalloc to get space for send and receiv
buffers. A full description of tpalloc (3c) can be found on the tpalloc (3c) reference
page. Note that the space is freed at the end of the program by calls to tpfree (3c).

The real work of the program is done in the call to tpcall (3c). tpcall is a BEA
TUXEDO system ATMI function that waits while the server processes its request
sends back the response. An alternative, that may be appropriate if your request
a while to process, is to use tpacall (3c) and tpgetreply (3c). tpacall issues a
service request and checks back later for the reply. More information about tpcall
can be found on the tpcall (3c) reference page.

In those few lines, you have all the components of a real client program.
BEA TUXEDO Workstation Guide 8-5

8 BEA TUXEDOWorkstation for OpenVMS

e

o

et

y

3.

ort

Building BEA TUXEDO Workstation Client Programs

Any compiler that can read DEC C libraries can be used to compile application
programs.

Use the CFLAGS environment variable to pass any additional application flags to th
DEC C compiler.

Use the TMLKFLAGS environment variable to pass any additional application flags t
the linker.

Use the buildclient (1) command to build /WS client programs. You should first s
the environment by executing the file tux_env.com . The two commands look like
this:

$ @tux-env.com
$ buildclient -w -o wsimpcl.exe -f simpcl.c

Setting the Environment for Running Client Programs

When you run client programs, the TUXDIR environment variable must be set properl
before tpinit (3c) or tpalloc (3c) is called.

A file of environment variables, tux_env.com , is delivered with BEA TUXEDO
Workstation for OpenVMS. To run the file, use the procedure shown in Listing 8-

Listing 8-3 Setting the Environment and Running wsimpcl

$ set default
$ @[]tux_env.com
$ set default[.appx.simpapp]
$ WSNADDR=<host:port>
$ WSTYPE:=VMS
$ wsimpcl:='f$environment("default")'wsimpcl.exe

Replace the values shown (in Listing 8-3) in angle brackets (< >) with values from
your location. For TUXDIR, substitute the name of the root directory where BEA
TUXEDO OpenVMS /WS is installed. For WSNADDR, enter the TCP/IP address for the
workstation listener process on your BEA TUXEDO system server. Include the p
number if necessary. Check with your system administrator if you need help. For
information on the correct format for network addresses, see WSL(5).
8-6 BEA TUXEDO Workstation Guide

Building and Running a Sample Client Program
Limitations

wmio(1) is not supported.

wtmconfig (1) is not supported.
BEA TUXEDO Workstation Guide 8-7

8 BEA TUXEDOWorkstation for OpenVMS
8-8 BEA TUXEDO Workstation Guide

CHAPTER

tem
9 Bringing Up Bankapp

on Workstations

What This Chapter Is About

This chapter describes the steps to follow in bringing up bankapp , the BEA TUXEDO
system sample application, on a UNIX or MS-DOS workstation.

Characteristics of a Workstation Application

Client processes are moved off the native site. Listener process (WSL) runs with a
well-known network address and starts surrogate workstation handlers (WSH) as
needed. Servers run on one or more UNIX machines within the BEA TUXEDO sys
administrative domain.
BEA TUXEDO Workstation Guide 9-1

9 Bringing Up Bankapp on Workstations

Overview of the Enhanced bankapp

� Existing bankapp client programs, consisting of several data entry masks and
the audit.c client program, are available to run on a UNIX workstation.

� New client programs, or new versions of existing ones, are provided to run on
MS-DOS workstations.

� Existing servers are available to run on the BEA TUXEDO system nodes in
either SHM or MP mode.

The Process Diagrammed

Figure 9-1 shows the steps in the process of bringing up bankapp on workstations, and
also provides an outline of the subjects in this chapter.

Figure 9-1 Steps in bringing up bankapp
9-2 BEA TUXEDO Workstation Guide

Overview of the Enhanced bankapp

is

ned

etting
r,

ou
ting
Changes on the Native Site

Install and build the bankapp software on the native site. The procedure for doing th
is described in the BEA TUXEDO Application Development Guide and in the README
file found in $TUXDIR/apps/bankapp on the master machine where your BEA
TUXEDO system software is installed.

New Configuration File Parameters

You need to edit the configuration file you plan to use (either ubbshm or ubbmp) to
specify the workstation listener server, WSL, in the GROUPS and SERVERS sections and
to specify MAXWSCLIENTS in the MACHINES section. When you edit the GROUPS section,
put the entry for WSGRP ahead of the DEFAULT line or move the specifications for
TMSNAME and TMSCOUNT to the server groups that use them; they should not be assig
to WSGRP. The new specifications should be in the following format.

*MACHINES
 DEFAULT: MAXWSCLIENTS=50

 #
 *GROUPS

 WSGRP GRPNO=<next available group #> LMID=SITE1
 #
 *SERVERS

 WSL SRVGRP=WSGRP SRVID=1
 CLOPT=”-A — -n 0x0002ffffaaaaaaaa -d /dev/tcp -m 1 -M 5 -x 10"

Also, remember to increase the MAXACCESSERS parameter in the RESOURCES or
MACHINES section to cover the new workstation clients.

Load and Boot the Configuration

At some point, before you can start using /WS clients, you need to run tmloadcf to
load the configuration file into its binary form and tmboot to start the application.
These commands do not have to be run immediately; there is work to be done in g
the bankapp clients installed on your workstations and getting them built. Howeve
the application must be running on the BEA TUXEDO system native site when y
attempt to join the application from a workstation. The steps for loading and boo
bankapp on the native site are part of the overall procedure documented in the BEA
TUXEDO Application Development Guide.
BEA TUXEDO Workstation Guide 9-3

9 Bringing Up Bankapp on Workstations

bankapp on a UNIX Workstation

This section covers the installation of bankapp client programs on a UNIX
workstation.

Install the Files

The source files shown in Listing 9-1 are the bankapp files that you need to copy from
TUXDIR/apps/bankapp to the client workstation.

Listing 9-1 Files for UNIX /WS clients

BALANCE.m Mask for balance inquiry data entry.
CBALANCE.m Mask for confirmation of a balance inquiry.
CCLOSE.m Mask for confirmation of an account closing.
CDEPOSIT.m Mask for confirmation of an deposit.
CLOSE.m Mask for account closing data entry.
COPEN.m Mask for confirmation of an account closing.
CTRANSFER.m Mask for confirmation of a transfer.
CWITHDRAW.m Mask for confirmation of a withdrawal.
DEPOSIT.m Mask for deposit data entry.
HELP.m Mask that explains mio keystrokes
MENU.m Initial mask that offer a ring menu
 to choose deposit, withdrawal, transfer, balance inquiry,
 open account, or close account data entry screens.
OPEN.m Mask for open account data entry.
TRANSFER.m Mask for transfer data entry.
WITHDRAW.m Mask for withdrawal data entry.
aud.v FML view used to define structure passed between
 audit client the BAL server.
audit.c Source code for audit client program.
bank.flds Field table file containing bank database fields
 and auxiliary FML fields used by masks and servers.
bank.h Contains data definitions pertinent to more than
 one C program within the application.
bankvar Contains environment variable and sets those contained
 in ENVFILE.
credit.flds Field table file containing credit card fields used by
 masks and servers.
driver.sh Drives the application by piping FML buffers
9-4 BEA TUXEDO Workstation Guide

bankapp on a UNIX Workstation

ed
 with transaction requests through wud(1).
envfile.sh envfile ENVFILE Creates ENVFILE for use by tmloadcf.
gendata.c Generates wud(1) readable transaction request to
 add ten branches, thirty tellers and two hundred accounts.
gentran.c Generates wud(1) readable transaction requests
 from among the DEPOSIT, WITHDRAWAL, INQUIRY, and TRANSFER services.
populate.sh Populates the database by piping FML buffers generated
 by gendata through wud(1).
run.sh Invokes mio with MENU mask.
wsbankapp.mk Application makefile for UNIX workstations.

Set bankapp Variables

Edit a file wsenv to include the following variables (with appropriate settings) need
on the workstation side:

WSNADDR=<WSL advertised address(es) >
WSDEVICE=<device name of /WS network provider >
WSTYPE=<type of /WS machine >

Edit bankvar to point to the correct TUXDIR and APPDIR on the UNIX workstation.
Also add the line

WSENVFILE={$TUXDIR}/wsenv;export WSENVFILE

Execute bankvar with the command:

. ./bankvar

Build the bankapp Clients

Run

make -f wsbankapp.mk

to build the client programs.
BEA TUXEDO Workstation Guide 9-5

9 Bringing Up Bankapp on Workstations

the

9-2.
Run the bankapp UNIX Workstation Clients

Edit the shell script run to change the line.

mio -i MENU

to

wmio -i MENU

Then execute run .

bankapp on an MS-DOS Workstation

This section covers the installation of bankapp client programs on an MS-DOS
workstation.

Install the Files

The source files for BEA TUXEDO Workstation clients for MS-DOS are named in
file ws/dosfiles on the native site. They reside in the directory $TUXDIR\apps\ws
after you have completed the installation procedure. The files are listed in Listing

Listing 9-2 Files for MS-DOS Workstation Clients

BANKAPP.C DOS Client software
BANKAPP.H Header file for DOS client
BANKFLDS FML field definitions
FILES List of files
MSC.MAK Microsoft C makefile
9-6 BEA TUXEDO Workstation Guide

bankapp on an MS-DOS Workstation

ory

ets
n
e set

A

ation
Build the bankapp Clients

The client programs for bankapp are not built when you run gentux , which you use
to build your /WS MS-DOS software. The makefiles assume that the Large mem
model libraries have been installed in TUXDIR\lib for the MS-DOS client,
bankapp.exe . The makefiles also assume that the network provider is Novell sock
(libraries llibsock.lib and wlibsock.lib are referenced). These assumptions ca
be changed by modifying the makefiles described below. The environment must b
up as described in “Building Client Programs” in Chapter 5.

When building with the Microsoft compiler, the msc.mak makefile must be used. To
run the MS-DOS client, the HELVB.FON file is needed (it is normally located in
\c600\src\samples , \c700\lib , or \msvc\lib\font).

nmake -f msc.mak bankapp.exe

Run the bankapp DOS Workstation Clients

To run the clients, set up the environment variables as described in “Running BE
TUXEDO System Clients on a Workstation” in Chapter 4. If bankapp has not already
been booted on the native site, it must be done before you attempt to run Workst
clients. Assuming bankapp is running, execute bankapp to run MS-DOS clients, or
win bankappw to run Windows clients.
BEA TUXEDO Workstation Guide 9-7

9 Bringing Up Bankapp on Workstations
9-8 BEA TUXEDO Workstation Guide

	Copyright
	1 Overview of BEA TUXEDO Workstation
	Overview of the BEA TUXEDO Workstation Product
	Product Perspective of BEA TUXEDO Workstation
	Features of BEA TUXEDO Workstation
	What Goes Where?
	For the Administrative Domain
	For the Workstation Client Development Environment
	For the Workstations

	2 BEA TUXEDO System Workstation Administration
	What This Chapter Is About
	Configuring BEA TUXEDO Workstation
	RESOURCES Section and MACHINES Section
	MAXWSCLIENTS

	GROUPS Section
	SERVERS Section

	Workstation Client Timeout
	The Keep-alive Option
	How Keep-alive Works
	Limitations
	How to Use Keep-alive

	The Network Timeout Option
	How Network Timeout Works
	Limitations
	How to Use Network Timeout

	The WSL CLOPT Parameter
	Example

	3 BEA TUXEDO Workstation for UNIX System Workstations
	What This Chapter Is About
	Coding and Building Clients
	References to Other Guides
	Building Clients

	System-delivered Clients
	Application Password when Running from a Script

	Running BEA TUXEDO System Clients on a UNIX Workstation
	Directory Structure to Support Workstation Clients
	Environment Variables
	Environment File
	Using tuxreadenv

	4 BEA TUXEDO Workstation for MS-DOS Workstations
	What This Chapter Is About
	Prerequisites
	Coding and Building Clients
	Buffer Size Limitation
	References to Other Guides
	Building Clients
	buildclt syntax
	Microsoft Compilation Environment
	buildclt Examples

	System-delivered Client
	Application Password when Running from a Script

	Running BEA TUXEDO System Clients on a Workstation
	Directory Structure to Support /WS Clients
	Environment Variables

	5 BEA TUXEDO Workstation for WINDOWS
	What This Chapter Is About
	Definitions of Terms, Acronyms, and Abbreviations

	Prerequisites
	Hardware
	Software

	Programming Considerations with the Windows DLL
	Writing Client Programs
	Using bankapp as an Example
	Blocking Network Behavior
	Restoring the Environment

	Building Client Programs
	Using views in 16-bit Windows
	Runtime
	Limitations

	6 BEA TUXEDO Workstation for OS/2
	What This Chapter Is About
	Definitions of Terms, Acronyms, and Abbreviations
	Windows Emulation Mode

	Prerequisites
	Hardware
	Software

	Programming Considerations with OS/2 Clients
	Writing Client Programs
	OS/2 Character Mode
	Building Client Programs
	Runtime

	Limitations

	7 BEA TUXEDO Workstation for Macintosh
	What This Chapter Is About
	Prerequisites
	Hardware
	Software

	Programming Considerations with the Macintosh Libraries
	Writing Client Programs
	Using bankapp as an Example
	Blocking Network Behavior

	Building Client Programs
	Runtime

	Limitations

	8 BEA TUXEDO Workstation for OpenVMS
	What This Chapter Is About
	Prerequisites
	Hardware
	Software

	Building and Running a Sample Client Program
	Writing Client Programs
	Using simpapp as an Example

	Building BEA TUXEDO Workstation Client Programs
	Setting the Environment for Running Client Programs

	Limitations

	9 Bringing Up Bankapp on Workstations
	What This Chapter Is About
	Characteristics of a Workstation Application
	Overview of the Enhanced bankapp
	The Process Diagrammed
	Changes on the Native Site
	New Configuration File Parameters
	Load and Boot the Configuration

	bankapp on a UNIX Workstation
	Install the Files
	Set bankapp Variables
	Build the bankapp Clients
	Run the bankapp UNIX Workstation Clients

	bankapp on an MS-DOS Workstation
	Install the Files
	Build the bankapp Clients
	Run the bankapp DOS Workstation Clients

