
Interoperability Overview 10
neous

ORB interoperability specifies a comprehensive, flexible approach to supporting
networks of objects that are distributed across and managed by multiple, heteroge
CORBA-compliant ORBs. The approach to “interORBability” is universal, because its
elements can be combined in many ways to satisfy a very broad range of needs.

Contents

This chapter contains the following sections.

10.1 Elements of Interoperability

The elements of interoperability are as follows:

• ORB interoperability architecture

• Inter-ORB bridge support

• General and Internet inter-ORB Protocols (GIOPs and IIOPs)

In addition, the architecture accommodates environment-specific inter-ORB
protocols (ESIOPs) that are optimized for particular environments such as DCE.

Section Title Page

“Elements of Interoperability” 10-1

“Relationship to Previous Versions of CORBA” 10-4

“Examples of Interoperability Solutions” 10-5

“Motivating Factors” 10-8

“Interoperability Design Goals” 10-9
 CORBA V2.2 February 1998 10-1

10

g

ed to

)

s”

.
rior

y

l in
s
10.1.1 ORB Interoperability Architecture

The ORB Interoperability Architecture provides a conceptual framework for definin
the elements of interoperability and for identifying its compliance points. It also
characterizes new mechanisms and specifies conventions necessary to achieve
interoperability between independently produced ORBs.

Specifically, the architecture introduces the concepts of immediate and mediated
bridging of ORB domains. The Internet inter-ORB Protocol (IIOP) forms the common
basis for broad-scope mediated bridging. The inter-ORB bridge support can be us
implement both immediate bridges and to build “half-bridges” to mediated bridge
domains.

By use of bridging techniques, ORBs can interoperate without knowing any details of
that ORB’s implementation, such as what particular IPC or protocols (such as ESIOPs
are used to implement the CORBA specification.

The IIOP may be used in bridging two or more ORBs by implementing “half bridge
which communicate using the IIOP. This approach works both for stand-alone ORBs,
and for networked ones which use an ESIOP.

The IIOP may also be used to implement an ORB’s internal messaging, if desired
Since ORBs are not required to use the IIOP internally, the goal of not requiring p
knowledge of each others’ implementation is fully satisfied.

10.1.2 Inter-ORB Bridge Support

The interoperability architecture clearly identifies the role of different kinds of
domains for ORB-specific information. Such domains can include object reference
domains, type domains, security domains (e.g., the scope of a Principal identifier), a
transaction domain, and more.

Where two ORBs are in the same domain, they can communicate directly. In man
cases, this is the preferable approach. This is not always true, however, since
organizations often need to establish local control domains.

When information in an invocation must leave its domain, the invocation must traverse
a bridge. The role of a bridge is to ensure that content and semantics are mapped from
the form appropriate to one ORB to that of another, so that users of any given ORB
only see their appropriate content and semantics.

The inter-ORB bridge support element specifies ORB APIs and conventions to enable
the easy construction of interoperability bridges between ORB domains. Such bridge
products could be developed by ORB vendors, Sieves, system integrators or other
third-parties.

Because the extensions required to support Inter-ORB Bridges are largely genera
nature, do not impact other ORB operation, and can be used for many other purpose
besides building bridges, they are appropriate for all ORBs to support. Other
applications include debugging, interposing of objects, implementing objects with
interpreters and scripting languages and dynamically generating implementations.
10-2 CORBA V2.2 February 1998

10

bject

ets a
RPC
lable
ith

uch

itated
at
t

 by
The inter-ORB bridge support can also be used to provide interoperability with non-
CORBA systems, such as Microsoft’s Component Object Model (COM). The ease of
doing this will depend on the extent that those systems conform to the CORBA O
Model.

10.1.3 General Inter-ORB Protocol (GIOP)

The General Inter-ORB Protocol (GIOP) element specifies a standard transfer syntax
(low-level data representation) and a set of message formats for communications
between ORBs. The GIOP is specifically built for ORB to ORB interactions and is
designed to work directly over any connection-oriented transport protocol that me
minimal set of assumptions. It does not require or rely on the use of higher level
mechanisms. The protocol is simple (as simple as possible, but not simpler), sca
and relatively easy to implement. It is designed to allow portable implementations w
small memory footprints and reasonable performance, with minimal dependencies on
supporting software other than the underlying transport layer.

While versions of the GIOP running on different transports would not be directly
interoperable, their commonality would allow easy and efficient bridging between s
networking domains.

10.1.4 Internet Inter-ORB Protocol (IIOP)

The Internet Inter-ORB Protocol (IIOP) element specifies how GIOP messages are
exchanged using TCP/IP connections. The IIOP specifies a standardized
interoperability protocol for the Internet, providing “out of the box” interoperation
with other compatible ORBs based on the most popular product- and vendor-neutral
transport layer. It can also be used as the protocol between half-bridges (see below).

The protocol is designed to be suitable and appropriate for use by any ORB to
interoperate in Internet Protocol domains unless an alternative protocol is necess
by the specific design center or intended operating environment of the ORB. In th
sense it represents the basic inter-ORB protocol for TCP/IP environments, a mos
pervasive transport layer.

The IIOP’s relationship to the GIOP is similar to that of a specific language mapping
to OMG IDL; the GIOP may be mapped onto a number of different transports, and
specifies the protocol elements that are common to all such mappings. The GIOP
itself, however, does not provide complete interoperability, just as IDL cannot be used
to built complete programs. The IIOP, and other similar mappings to different
transports, are concrete realizations of the abstract GIOP definitions, as shown in
Figure 10-1 on page 10-4.
CORBA V2.2 Elements of Interoperability February 1998 10-3

10

o

ices
s the

to

Figure 10-1 Inter-ORB Protocol Relationships.

10.1.5 Environment-Specific Inter-ORB Protocols (ESIOPs)

This specification also makes provision for an open ended set of Environment-Specific
Inter-ORB Protocols (ESIOPs). Such protocols would be used for “out of the box”
interoperation at user sites where a particular networking or distributing computing
infrastructure is already in general use.

Because of the opportunity to leverage and build on facilities provided by the specific
environment, ESIOPs might support specialized capabilities such as those relating to
security and administration.

While ESIOPs may be optimized for particular environments, all ESIOP specifications
will be expected to conform to the general ORB interoperability architecture
conventions to enable easy bridging. The inter-ORB bridge support enables bridges t
be built between ORB domains that use the IIOP and ORB domains that use a
particular ESIOP.

10.2 Relationship to Previous Versions of CORBA

The ORB Interoperability Architecture builds on Common Object Request Broker
Architecture by adding the notion of ORB Services, and their domains. (ORB Serv
are described in “ORBs and ORB Services” on page 11-3). The architecture define
problem of ORB interoperability in terms of bridging between those domains, and
defines several ways in which those bridges can be constructed: the bridges can be
internal (in-line) and external (request-level) to ORBs.

APIs included in the interoperability specifications include compatible extensions
previous versions of CORBA to support request level bridging:

• A Dynamic Skeleton Interface (DSI) is the basic support needed for building
request level bridges; it is the server side analogue of the Dynamic Invocation
Interface, and in the same way it has general applicability beyond bridging. For
information about the Dynamic Skeleton Interface, refer to the Dynamic Skeleton
Interface chapter in this book.

GIOP

IIOP

CORBA/IDL

ESIOPs

other GIOP
mappings...

Mandatory for CORBA
10-4 CORBA V2.2 February 1998

10

rt
ce

e

for
 GUI
 will
to

ed to
B C
• APIs for managing object references have been defined, building on the suppo
identified for the Relationship Service. The APIs are defined in Object Referen
Operations in the ORB Interface chapter of this book. The Relationship Service is
described in CORBAservices: Common Object Service Specifications; refer to the
CosObjectIdentity Module section.

10.3 Examples of Interoperability Solutions

The elements of interoperability (Inter-ORB Bridges, General and Internet Inter-ORB
Protocols, Environment-Specific Inter-ORB Protocols) can be combined in a variety of
ways to satisfy particular product and customer needs. This section provides some
examples.

10.3.1 Example 1

ORB product A is designed to support objects distributed across a network and provide
“out of the box” interoperability with compatible ORBs from other vendors. In
addition it allows for bridges to be built between it and other ORBs that use
environment-specific or proprietary protocols. To accomplish this, ORB A uses th
IIOP and provides inter-ORB bridge support.

10.3.2 Example 2

ORB product B is designed to provide highly optimized, very high speed support
objects located on a single machine; for example, to support thousands of Fresco
objects operated on at near function-call speeds. In addition, some of the objects
need to be accessible from other machines and objects on other machines will need
be infrequently accessed. To accomplish this, ORB A provides a half-bridge to support
the Internet IOP for communication with other “distributed” ORBs.

10.3.3 Example 3

ORB product C is optimized to work in a particular operating environment. It uses a
particular environment-specific protocol based on distributed computing services that
are commonly available at the target customer sites. In addition, ORB C is expect
interoperate with arbitrary other ORBs from other vendors. To accomplish this, OR
provides inter-ORB bridge support and a companion half-bridge product (supplied by
the ORB vendor or some third-party) provides the connection to other ORBs. The half-
bridge uses the IIOP to enable interoperability with other compatible ORBs.

10.3.4 Interoperability Compliance

An ORB is considered to be interoperability-compliant when it meets the following
requirements:
CORBA V2.2 Examples of Interoperability Solutions February 1998 10-5

10

n

d
ry

er

 IIOP

ere

, the
ther
tion

dge
ay
• In the CORBA Core part of this specification, standard APIs are provided by a
ORB to enable the construction of request level inter-ORB bridges. APIs are
defined by the Dynamic Invocation Interface, the Dynamic Skeleton Interface, an
by the object identity operations, which are described in the Interface Reposito
chapter in this book.

• An Internet Inter-ORB Protocol (IIOP) (explained in Chapter 12) defines a transf
syntax and message formats (described independently as the General Inter-ORB
Protocol), and defines how to transfer messages via TCP/IP connections. The
can be supported natively or via a half-bridge.

Support for additional ESIOPs and other proprietary protocols is optional in an
interoperability-compliant system. However, any implementation that chooses to use
the other protocols defined by the CORBA interoperability specifications must adh
to those specifications to be compliant with CORBA interoperability.

Figure 10-2 on page 10-7 shows examples of interoperable ORB domains that are
CORBA-compliant.

These compliance points support a range of interoperability solutions. For example
standard APIs may be used to construct “half bridges” to the IIOP, relying on ano
“half bridge” to connect to another ORB. The standard APIs also support construc
of “full bridges,” without using the Internet IOP to mediate between separated bri
components. ORBs may also use the Internet IOP internally. In addition, ORBs m
use GIOP messages to communicate over other network protocol families (such as
Novell or OSI), and provide transport-level bridges to the IIOP.

The GIOP is described separately from the IIOP to allow future specifications to treat
it as an independent compliance point.
10-6 CORBA V2.2 February 1998

10
Figure 10-2 Examples of CORBA Interoperability Compliance

ORB Domains ORB Domains

IIOP

DCE-CIOP

*e.g. Proprietary protocol or
GIOP OSI mapping

IIOP

IIOP Other
Protocol*

CORBA V2.0 Interoperable

CORBA V2.0 Interoperable

CORBA V2.0 Interoperable

Half
Bridge

Half
Bridge
CORBA V2.2 Examples of Interoperability Solutions February 1998 10-7

10

everal

 on a

 to

ake

ts

.

al to

er a

d

10.4 Motivating Factors

This section explains the factors that motivated the creation of interoperability
specifications.

10.4.1 ORB Implementation Diversity

Today, there are many different ORB products that address a variety of user needs. A
large diversity of implementation techniques is evident. For example, the time for a
request ranges over at least 5 orders of magnitude, from a few microseconds to s
seconds. The scope ranges from a single application to enterprise networks. Some
ORBs have high levels of security, others are more open. Some ORBs are layered
particular widely used protocol, others use highly optimized, proprietary protocols.

The market for object systems and applications that use them will grow as object
systems are able to be applied to more kinds of computing. From application
integration to process control, from loosely coupled operating systems to the
information superhighway, CORBA-based object systems can be the common
infrastructure.

10.4.2 ORB Boundaries

Even when it is not required by implementation differences, there are other reasons
partition an environment into different ORBs.

For security reasons, it may be important to know that it is not generally possible to
access objects in one domain from another. For example, an “internet ORB” may m
public information widely available, but a “company ORB” will want to restrict what
information can get out. Even if they used the same ORB implementation, these two
ORBs would be separate, so that the company could allow access to public objec
from inside the company without allowing access to private objects from outside. Even
though individual objects should protect themselves, prudent system administrators
will want to avoid exposing sensitive objects to attacks from outside the company

Supporting multiple ORBs also helps handle the difficult problem of testing and
upgrading the object system. It would be unwise to test new infrastructure without
limiting the set of objects that might be damaged by bugs, and it may be impractic
replace “the ORB” everywhere simultaneously. A new ORB might be tested and
deployed in the same environment, interoperating with the existing ORB until eith
complete switch is made or it incrementally displaces the existing one.

Management issues may also motivate partitioning an ORB. Just as networks are
subdivided into domains to allow decentralized control of databases, configurations,
resources, etc., management of the state in an ORB (object reference location and
translation information, interface repositories, per-object data, etc.) might also be one
by creating sub-ORBs.
10-8 CORBA V2.2 February 1998

10

asons
rs in

e

late
 a
ame
cess
 the

s to

ss

g

 is no

tocol

 not
10.4.3 ORBs Vary in Scope, Distance, and Lifetime

Even in a single computing environment produced by a single vendor, there are re
why some of the objects an application might use would be in one ORB, and othe
another ORB. Some objects and services are accessed over long distances, with more
global visibility, longer delays, and less reliable communication. Other objects are
nearby, are not accessed from elsewhere, and provide higher quality service. By
deciding which ORB to use, an implementer sets expectations for the clients of th
objects.

One ORB might be used to retain links to information that is expected to accumu
over decades, such as a library archives. Another ORB might be used to manage
distributed chess program in which the objects should all be destroyed when the g
is over. Although while it is running, it makes sense for “chess ORB” objects to ac
the “archives ORB,” we would not expect the archives to try to keep a reference to
current board position.

10.5 Interoperability Design Goals

Because of the diversity in ORB implementations, multiple approaches to
interoperability are required. Options identified in previous versions of CORBA
include:

• Protocol Translation, where a gateway residing somewhere in the system maps
requests from the format used by one ORB to that used by another;

• Reference Embedding, where invocation using a native object reference delegate
a special object whose job it is to forward that invocation to another ORB;

• Alternative ORBs, where ORB implementations agree to coexist in the same addre
space so easily that a client or implementation can transparently use any of them,
and pass object references created by one ORB to another ORB without losin
functionality.

In general, there is no single protocol that can meet everyone's needs, and there
single means to interoperate between two different protocols. There are many
environments in which multiple protocols exist, and there are ways to bridge between
environments that share no protocols.

This specification adopts a flexible architecture that allows a wide variety of ORB
implementations to interoperate and that includes both bridging and common pro
elements.

The following goals guided the creation of interoperability specifications:

• The architecture and specifications should allow high performance, small footprint,
lightweight interoperability solutions.

• The design should scale, should not be unduly difficult to implement and should
unnecessarily restrict implementation choices.
CORBA V2.2 Interoperability Design Goals February 1998 10-9

10

e

• Interoperability solutions should be able to work with any vendors’ existing ORB

implementations, with respect to their CORBA compliant core feature set; thos
implementations are diverse.

• All operations implied by the CORBA object model (i.e., the stringify and
destringify operations defined on the CORBA:ORB pseudo-object, and all the
operations on CORBA:Object) as well as type management (e.g., narrowing, as
needed by the C++ mapping) should be supported.

10.5.1 Non-Goals

The following were taken into account, but were not goals:

• Support for security

• Support for future ORB Services
10-10 CORBA V2.2 February 1998

	Interoperability Overview
	10.1 Elements of Interoperability
	10.1.1 ORB Interoperability Architecture
	10.1.2 Inter-ORB Bridge Support
	10.1.3 General Inter-ORB Protocol (GIOP)
	10.1.4 Internet Inter-ORB Protocol (IIOP)
	10.1.5 Environment-Specific Inter-ORB Protocols (ESIOPs)

	10.2 Relationship to Previous Versions of CORBA
	10.3 Examples of Interoperability Solutions
	10.3.1 Example 1
	10.3.2 Example 2
	10.3.3 Example 3
	10.3.4 Interoperability Compliance

	10.4 Motivating Factors
	10.4.1 ORB Implementation Diversity
	10.4.2 ORB Boundaries
	10.4.3 ORBs Vary in Scope, Distance, and Lifetime

	10.5 Interoperability Design Goals
	10.5.1 Non-Goals

