Interoperability Overview 10

ORB interoperability specifies a comprehensive, flexég@roach to supporting

networks of objects that are distributed across and managed by multiple, heterogeneous
CORBA-compliant ORBs. The approach to “interOaHity” is universal,becauseéts
elements can be combined in many ways to satisfy a very brogd od needs.

Contents

This chapter contains tHellowing sections.

Section Title Page
“Elements of Interoperability” 10-1
“Relationship to Previous Versions of CORBA” 10-4
“Examples of Interoperability Solutions” 10-5
“Motivating Factors” 10-8
“Interoperability Design Goals” 10-9

10.1 Elements of Interopaiility

The elements of interoperability are as follows:

®* ORB interoperability architecture

® Inter-ORB bridge suport

® General andnternet inter-ORB Protocol&GIOPs and IIOPs)

In addition, the architecture accommodatesironment-specific inter-ORB
protocols (ESIOPs)that are optimized for particular environmesish as DCE.

CORBA V2.2 Febloag/ 10-1



10

10.1.1 ORB Interoperability Architecture

The ORB Interperability Architecture provides a conceptual framework for defining
the elements of interoperabilignd for icentifying its compliance points. It also
characterizemew meclanismsand spedies conventions necessary to achieve
interoperability beteen indepenehntly produced ORBSs.

Specifically, the architecture introduces the conceptmafediateand mediated

bridging of ORB domains. The Internet inter-ORB Protocol (Il@&)ms thecommon

basis for broad-scope mediated bridging. The inter-ORB bridge support can be used to
implement both immediate bridges and to buhdlf-bridges” to mediated bridge
domains.

By use of bridging techniques, ORBs can interoperate without knowingetayls of
that ORB’s implementation, such as wipatticular IPC or protocols (such as ESIOPS)
are used to implement tH@ORBAspecification.

The 1IOPmay be used in bridging two or more ORBs by implementing “half bridges”
which communicate using the 11OP. This approach works both for stand-aloBe, OR
and for networked ones which use an ESIOP.

The 1IOP mayalso be used to implement an ORB’s internal messaging, if desired.
Since ORBs are not required to use the IIOP internally, the goal of not requiring prior
knowledge of each othershplementation is fully sétfied.

10.1.2 Inter-ORB Bridge Support

The intergerability architecture clearly identifies the role of differkimds of
domains for ORB-specific informationugh domainscan include object reference
domains, type domains, security domajag., the scope of Rrincipal identifier), a
transaction domain, and more.

Where two ORBs are in the same domain, they can communicate directly. In many
cases, this is the preferable approach. This is not alwayshtueyver, since
organizations often need to establish local contoohdins.

Wheninformation in an invocation must leave its domdlre invocatiormust traverse
a bridge. The role of a bridge is to ensure that contensam@ntics are mapped from
the form appropriate tone ORB to that of another, so that users of any given ORB
only see their appropriate content and semantics.

The inter-ORB bridge supporterhent specifies ORB APBnd conventions to enable
the easy construction of interopel@bibridges ketween ORB domains. Such bridge
products could be developed by ORB vendors, Sieves, systegrators or other
third-parties.

Because the extensions required to support Inter-ORB Bridges are largely general in
nature, do not impact other ORB operation, aad be used for many other purposes
besides building bridges, they are appropriateafoORBs tosupport. Other

applications include debugging, interposing bjexts, implementing objects with
interpreters and scripting langges and dynamically generating implementations.

10-2 CORBAV2.2 February 1998



10

The inter-ORB bridge syport can also be used to provide interopditgbivith non-
CORBA systems, such as Microsoft's Component Object Model (CONS.ease of

doing this will depend on the extent that those systems conform to the CORBA Object
Model.

10.1.3 General Inter-ORB Ratocol (GIOP)

The Germral Iner-ORB Protocol (GIOP) elemespecifies a standard transfer syntax
(low-level data representation) and a set of message formats for communications
between ORBs. The GIOP specifically built for ORB to ORB interactiorend is
designed to work directly over any connection-oriented transport protocol that meets a
minimal set of assumptions. It does not require or rely on the use of higher level RPC
mechanisms. The protocol is simple (as simple as possible, but not simpler), scalable
and rdatively easy to implement. It is designed to allow portable implementations with
small memory footprints and reasonable performance, with mininpendiencies on
supporting software other than the underlying transport layer.

While versions of the GIOP running on different transports would not be directly
interoperable, their commonality would allow easy and efficient bridging between such
networking domains.

10.1.4 Internet Inter-ORB Protocol (IIOP)

The Internet Inter-ORB Protoc@llOP) element specifies how GIOP messages are
exchanged using TCP/IP connections. The IIOP spedi standardized
interoperability protocol for the Internet, providing “out of the box” interoperation
with other compatible ORBs based on the most popular productvearatbr-neutral
transport layer. It can also be used as the protoewveen half-bridges (see below).

The protocol is designed to Isaitableand appropriate for use by any ORB to
interoperate in Internet Protocol domains unless an alternative protocol is necessitated
by the specific design center or intended operating environment of the ORB. In that
sense it represents the basic inter-ORB protocol for TCP/IP environments, a most
pervasive transport layer.

The IIOP’srelationship to the GIOP similar to that of a specifianguage mapping

to OMG IDL; the GIOP may be mapped onto a number & int transportsand
specifies the protocol elements that are common to all such mappings. The GIOP by
itself, however, does not provide completeeroperability, just as IDIcannot be used

to built complete programs. THEDP, and other siitar mappings to different

transports, are concrete realizations of the abstract GIOP definitioslspwn in

Figure 10-1 on page 10-4.

CORBAV2.2 [Ements of Interoperability February 1998 10-3



10

Mandatory for CORBA CORBA/IDL

N

other GIOP
mappings...

ESIOPs

Figure 10-1 Inter-ORB Protocol Relationships.

10.1.5 Environment-Specific Inter-ORB Protocols (ESIOPS)

This specification also makes provision for an open ended set of Emérd-Specific
Inter-ORB Protocols (ESIOPs). Such protocols would be f@etbut of the box”
interoperation at user sites where a particular networkirdjstributingcomputing
infrastructure is aéady in general use.

Because of the opportunity teverageand build orfacilities provided by the specific
environmentESIOPsmight support specialized caphtiés such as thoseelating to
securityand administration.

While ESIOPsmay be optimizedor particular environments, aiSIOPspecifications
will be expected to conform to the general ORB interopétalarchitecture
conventions to enable easy bridging. Tier-ORB bridge support enables bridges to
be built between ORB domains that use ik and ORB domains that use a
particularESIOP.

10.2 Relaibnship to Previous Versions of CORBA

The ORB Interperability Architecture builds on Common Object Request Broker
Architecture by adding the notion of ORB Services, and their domains. (ORB Services
are described in “ORBs and ORB Services” on page 11-3). The architecture defines the
problem of ORB interoperability in terms of bridgibgtween those domains, and

defines several ways in which those bridges can betaocted: the bridges can be
internal (in-line) and external (request-level) to ORBs.

APls included in the interoperability specifications include compatible extensions to
previous versions c€ORBAto support request level bridging:

® A Dynamic Skeleton Interface (DSI) is the basic support needed for building
request level bridges; it is the server side analogue of the Dynamic Invocation
Interface,and in the same way it has geneapplicability beyond bridging. For
information about the Dyamic Skeleton Interface, refer to the Dynamic Skeleton
Interface chapter in thisook.

10-4 CORBAV2.2 February 1998



10

* APIs for managing object references have been defined, building on the support
identified for the Relationship Service. The APIs are defined in Object Reference
Operations in the ORB Interfackapter of thivook. The Relationship Service is
described iINCORBAservices: Common Object Service Specificatiefisr to the
CosObjectldentity Module section.

10.3 Examples of Interoperability Solutions

The elements of interoperabilitynter-ORB Bridges, General aridternet Inter-ORB
Protocols, Environment-Specific B1tORB Protocols) can be combined imaaiety of

ways tosatsfy particularproduct and customer needs. Théction provides some
examples.

10.3.1 Example 1

ORB product A is designed to support objecsributedacross a network and provide
“out of the box” interoprability with compatible ORBs from othgendors. In

addition it allows for bridges to be bubetween it and other ORBs that use
environment-specific or proprietary protocols. To accomplish this, ORB A uses the
[IOP and provides inter-ORB bridge support.

10.3.2 Example 2

ORB product B is designed to provide highly optimized, very high speed support for
objects located on a single machine; for example, to support thousands of Fresco GUI
objects operated on at near function-call speeds. In addition, some of the objects will
need to be accessibiem other mahines and objects on other machines will need to

be infrequently accessed. To accomplish this, ORB A provides a half-bridgpgort

the Internet IOP for communication with other “distributed” ORBS.

10.3.3 Example 3

ORB product C is optimized to work ingarticular operating environment. It uses a
particular environment-specific protoclodsed on ditributed computing services that

are commonly available at the target customer sites. In addition, ORB C is expected to
interoperate with arbitrary other ORBs from other vendors. To accomplish this, ORB C
provides inter-ORB bridge support and a conipa half-bridge product (supplied by

the ORB vendor or some third-party) provides the connection to other RBdualf-

bridge uses the IIOP to enable interopergbitith other compatible ORBs.

10.3.4 Interoperability Compliance

An ORB is considered to be interoperability-compliatien it meets théollowing
requirements:

CORBAV2.2 ¥amples of Interoperability Solutions February 1998 10-5



10

10-6

* In the CORBA Core part of this specification, standard APIs are provided by an
ORB to enable the construction of request lentdr-ORB bridgs. APIs are
defined by the DynamimVocation Interface, the Dynamic Skeleton Interface, and
by the object identity operations, which are described in the Interface Repository
chapter in this book.

® An Internet Iner-ORB Rotocol (IIOP) (explained in Chapter 12) defines a transfer
syntax and message foata (described independently as the General Inter-ORB
Protocol), and defines how to transfer messages via TCP/IP connections. The IIOP
can be supportedatively or via a half-bridge.

Supportfor additional ESIOPs and other proprietary protocols is optional in an
interoperability-compliant system.dwever, anymplementation that chooses to use

the other protocols defined by the CORBA interoperability specifications must adhere
to those spefications to be compliant ith CORBA interoperability.

Figure 10-2 on page 10showsexamples of interoperable ORB domains that are
CORBA-compliant.

Thesecompliance points support a range of interoperability solutions. For example, the
standard APIs may be used to construct “half bridges” to the IIOP, relying on another
“half bridge” to connect to another ORB. The standard APIs also support construction
of “full bridges,” without using the Internet IOP to mediate between separated bridge

components. ORBs may also use the Internet IOP internally. In addition, ORBs may

use GIOP messages to communicate over other network préaocities (such as

Novell or OSl), and provide transport-level bridges to the IIOP.

The GIOP is desdyed separately from th#OP to allow future specifications to treat
it as an independent compliance point.

CORBAV2.2 February 1998



10

ORB Domains ORB Domalins

Half
Bridge
[HOP
CORBA V2.0 Interoperable
CORBA V2.0 Interoperable
HOP Other
Protocol*

CORBA V2.0 Interoperable

*e.g. Proprietary protocol or
GIOP OSI mapping

Figure 10-2 Examples of CORBA Interoperability Compliance

CORBAV2.2 ¥amples of Interoperability Solutions February 1998 10-7



10

10.4 Motivatng Factors

10-8

This section eglains the factors thahotivatedthe creation of interoperability
specifications.

10.4.1 ORB Implenm¢ation Diversity

Today, there are many different ORB products that addressedyvaf user needs. A

large diversity of implementation teoiques is evident. For example, tivae for a

request ranges over at least 5 orders of magnitude, from a few microseconds to several
seconds. The scope ranges from a single application to entarptiserks. Some

ORBs have high levels of security, others are more open. Some ORBs are layered on a
particularwidely used protocol, others use higlygtimized, proprietary protocols.

The narket for object systems ang@ications that use them will grow as object
systems are able to be applied to more kinds of computing. From application
integration to process control, from loosely coupled operatingmssto the
information superhighway, CORBA-based objeststems can be the common
infrastructure.

10.4.2 ORB Boundaries

Even when it is not required by plementation differences, there are other reasons to
partition an environment into different ORBs.

For security reasons, it may be important ho that it is not gnerally possible to
access objects in one domain from another. For example, an “internet ORB” may make
public information widely available, but‘@ompany ORB” will want torestrict what
information can get outEven if they used theame ORB implementation, thetseo

ORBs would be separate, so that the company could allow access to public objects
from inside the company without allowing access to private objects from ouUEside.
though individual objects should protect themselves, prudetgrayadministrators

will want to avoid exposing sensitive objects to attacks from outside the company.

Supportingmultiple ORBsalso helps handle the difficult gstem of testingand

upgrading the object system. It would be unwise tortest infastructure without

limiting the set of objects that might be damaged by bugs, and it may be impractical to
replace “the ORB” everywher@multareously. Anew ORB night be teste@dnd

deployed in the same environment, interoperating with the existing ORB until either a
complete switch is made or it incrementally displaces the existieg

Management issues may alsmtivate partitioning an ORB. Just astworks are
subdivided into domains tallow decentralized control of databases, configurations,
resources, etc., management of sete in an ORB (object reference location and
translation information, interface repositories, per-object data, etc.) might alemée d
by creating sub-ORBs.

CORBAV2.2 February 1998



10

10.4.3 ORBs Vary in Scope, Distance, and Lifetime

Even in a single computing environment produced by a single vendor, there are reasons
why some of the objects an application might use would be in one ORB, and others in
another ORB. Some objects and services are accessed ovelidtanges, with more

global visibility, longerdelays, andess reliable communication. Other objects are
nearby, are not accessed frormes¥here, and provide highgquality service. By

deciding which ORB to use, an implementer sets expectations for the clients of the
objects.

One ORB might be used to retain links to information that is expected to accumulate
over decades, such as a library archives. Another ORB might be used to manage a
distributedchess program in which the objects should all be destroyed when the game
is over. Although while it is running, it makes sense for “chess ORB” objects to access
the “archives ORB,” we would not expect the archives to try to keep a reference to the
current board position.

10.5 Interoperabilitypesign Goals

Because of the dérsity in ORB implementations, multiple approaches to
interoperability are required. Options identified in previous versiorGOiRBA
include:

® Protocol Translationwhere a gateway residing somewhere in the system maps
requests from the format used by one ORB to that used by another;

* Reference Embeddinghere invocation using a native object reference delegates to
a special object whose job it is to forward that invocation to another ORB;

® Alternative ORBswhere ORBmplementations agree to coexist in the same address
space so easily that a client or implementatian transprently useany of them,
and pass object references created by one ORB to another ORB without losing
functionality.

In general, there is no single protocol that can meet everyone's needs, and there is no
single means to interoperate betwéwn differentprotocols. There are many
environments in which mtiple protocols exist, and there anays to bridge between
environments that share no protocols.

This spedication adopts a flexible architecture that allows a widdetsirof ORB
implementations to interoperate and that includes both bridging and common protocol
elements.

The following goals guidethe creation of interoperability specifications:

®* The architecture and specifications should allow high performanad, f@wtprint,
lightweight interoperaltity solutions.

®* The design should scale, should not be unduly difficult to implement and should not
unnecessarily restrict implementation choices.

CORBAV2.2 nteroperability Design Goals February 1998 10-9



10

® Interoperability solutionshould be able to work with any vendoexisting ORB
implementations, with respect to their CORBA compliant core feature set; those
implementations are diverse.

® All operations implied by the CORBA object model (i.e., the stringifig
destringify operations defined on tORBA:ORBseudo-bject, and all the
operations oifCORBA:Object ) as well as type manageméatg., narrowing, as
needed by the C++ mapping) should be supported.

10.5.1 Non-Goals

The following were taken into account, but were not goals:
® Support for security

® Support for future ORB Services

10-10 CORBAV2.2 February 1998



	Interoperability Overview
	10.1 Elements of Interoperability
	10.1.1 ORB Interoperability Architecture
	10.1.2 Inter-ORB Bridge Support
	10.1.3 General Inter-ORB Protocol (GIOP)
	10.1.4 Internet Inter-ORB Protocol (IIOP)
	10.1.5 Environment-Specific Inter-ORB Protocols (ESIOPs)

	10.2 Relationship to Previous Versions of CORBA
	10.3 Examples of Interoperability Solutions
	10.3.1 Example 1
	10.3.2 Example 2
	10.3.3 Example 3
	10.3.4 Interoperability Compliance

	10.4 Motivating Factors
	10.4.1 ORB Implementation Diversity
	10.4.2 ORB Boundaries
	10.4.3 ORBs Vary in Scope, Distance, and Lifetime

	10.5 Interoperability Design Goals
	10.5.1 Non-Goals



