ORB Interoperability Architecture 11

Contents

This chapter contains tHellowing sections.

Section Title Page
“Overview” 11-1
“ORBs and ORB Services” 11-3
“Domains” 11-5
“Interoperability Between ORBS” 11-7
“Object Addressing” 11-11
“An Information Model for Object References” 11-14
“Code Set Conversion” 11-22
“Example of Generic Environment Mapping” 11-34
“Relevant OSFM Registry Interfaces” 11-35

11.1 Overview

The original Request for Proposal on Interoperab{ifiG Document 93-9-15)
defines interoperability as the ability for a client on ORB A tmke an OMG IDL-
defined operation on an object on ORB B, where ORB A and ORB B are
independently developed. It furthiglentifies general requirements including in
particular:

® Ability for two vendors’ ORBs to interoperate withquior knowledge of each
other’s implementation.

® Support of all ORB factionality.

CORBA V2.2 ebruary 1998 11-1

11

® Preservation of content and seniesibf ORB-specifianformation across ORB
boundaries (for example, security).

In effect, the requirement is for invocations between client and server objects to be
independent of whether they are on the same or different ORBs, and not to mandate
fundamental modifications to existing ORB products.

11.1.1 Domains

The CORBA ject Model identifies various distribution transparencies that must be
supported within a single ORB environment, such as location transparency. Elements
of ORB functionality often corregmddirectly to such transparencies. Interoperability
can be viewed as extending transparencies to span multiple ORBs.

In this architecture domainis a distinctscope, within which certain common
characteristics are exhibited and common rules are observedwvbigér adistribution
transparency is preserved. Thus, interoperability is fundamentally involved with
transparently crossing such domain bouretar

Domains tend to be either administrative or temlbgical in nature, and need not
correspond to the boundaries of an OiRBtallation. Administrative domains include
naming domains, trust groups, resource managenwnaiisand othef‘run-time”
characteristics of a system. Technology domaiesitiiy common protocols, syntaxes
andsimilar “build-time” characteristics. In many cases, the need for technology
domains derives from basic requirements of administrative domains.

Within a single ORBmost domains are likely to have similar scope to that of the ORB
itself: common object referencaswtwork addresses, security mechanisms, and more.
However, it is possible for there to baultiple donains of the same type supported by
a given ORB: internal representation on different machypes, or security domains.
Conversely, a domain may span several ORBwrilar network addresses may be used
by different ORBs, typeidentifiers may be shared.

11.1.2 Bridging Domains

The abstract architecture describes ORB interoperabilitgims ofthe translation
required when an object request traverses domain boundariee@aally, a mapping
or bridging mechanismesides at the boundary between the domé&iassforming
requests expressed terms ofone dmain’s model into the model of the destination
domain.

The concretarchitecture identifies two approachesrtter-ORB bridging:
® At application level, allowingléxibility and portabdity

®* At ORB level, built into the ORB self

11-2 CORBAV2.2 February 1998

11

11.2 ORBs and ORB Services

The ORB Core is that part tiie ORB which provides the basic representation of
objects and the communication of requests. The ORB Core therefore supports the
minimum functionality to enable a client to invoke an operation on a server object,
with (some of) thelistribution transparencies required G@RBA

An object request may have implicit attributeki@h affect the way in which it is
communicated - though not threay in which aclient makes the request. These

attributes include security, transactional capabilities, recovery, and replication. These
features are provided by “ORB Services,” which will in some ORBs be layered as
internal services over the core, or in other cases be incorporated directly into an ORB’s
core. It is an aim of this spdiciation to allow fornew ORB ®rvices to be defined in

the future, without the need to modify or enhatite architecture.

Within asingle ORB, ORB services required to communicate a request will be
implemented and (implicitly) woked in a private manner. For interoperability between
ORBs, the ORB services used in the B3Randthe correspondence between them,
must be identified.

11.2.1 The Nature of ORB Services

ORB Services are invokathplicitly in the course of application-level interactions.

ORB Services range from fundamental mechanisms such as reference reswldtion
message encoding to advanced features such as support for security, transactions, or
replication.

An ORB Service is often related to a particular transparency. For example, message
encoding — the marshaling and unmarshaling of the components of a request into and
out of message buffers — provides transparency of the representation of the request.
Similarly, reference resolution supports location transparency. Some transparencies,
such as security, are supported by a combination of ORB Services and Object Services
while others, such agplication, may inolve interactions between ORB Services
themselves.

ORB Servicedliffer from Object Services in th#ttey are positioned below the
applicationand are invoked traparently to the application code. However, many ORB
Services include components which correspond to conventional Olgjedt&s in that
they are invoked explity by the application.

Security is an example of service with both ORB Servicerardhal Object Service
components, the ORB components being those associated with transparently
authenticating messages and controlling access to objects while the necessary
administration and management functions resemble conventional Object Services.

11.2.2 ORB Services and Object Requests

Interoperabilitybetween ORBs extends the scope striiution transparencies and
other request &tbutes tospan multiple ORBs. This requires the establishment of
relationships between supporting ORB Services in the different ORBs.

CORBAV2.2 ORBs and OB®&rvices February 1998 11-3

11

11-4

In order to discuss how threlationships between ORB Services are established, it is
necessary to describe an abstract vielwaaf an operation invocation @mmunicated
from client to server object.

® The client generates an operation request, using a reference to the server object,
explicit parametersand an imgtit invocation context. This iprocessed by certain
ORB Services on the client path.

®* On the server side, corresponding ORB Services process the incoming request,
transforming it into a form directly suitable for irking the operation on the server
object.

®* The server object performs the requested operation.

®* Any result of the operation is returned to the client simalar manner.

The correspondence betwedient-side and server-side ORB Services need not be
one-to-one and in some circumstances may be far more complex. For example, if a
client application requests an operation on a replicated server, there may be multiple
server-side ORB service instances, possibly interacting with each other.

In other cases, such as securifient-side or server-side ORB Services may interact
with Object Services such as authentication servers.

11.2.3 Selection of ORB Services

The ORB Services useaare determined by:

® Static properties of both clieand server bjects; for example, whether a server is
replicated.

®* Dynamic attributes determined by a particular invocation context; for example,
whether a request is transactional.

® Administrative policieqe.g., security).

Within asingle ORB, private mechanisms (amgtimizations)can be used to establish
which ORB Services are required amolw they are provided. Service selection might

in general require negotiation to select protocols or protocol options. The same is true
between different ORBSs: it is necessary to agree which ORB Services are used, and
how each trasforms the request. Ultimately, these choices become manifest as one or
more protocols between the ORBs ortr@smsformations of requests.

In principle, agreement on the use of each ORB Service can be independent of the
others and, in appropriately constructed ORBSs, services could be layered in any order
or in any grouping. Thisgtentially allows applications to specify selective
transparencies according to their requirements, adthatthis time CORBAprovides

no way to penetrate its transparencies.

A client ORB must be able to determine which ORB Servinast beused in order to
invoke operations on a&erver object. Correspondingly, where a client requiresohic
attributes to be associated with specific invocationgdoninistrative policies dictate,

it must be possible to cause the appropriate ORB Services to be used on client and

CORBAV2.2 February 1998

11

11.3 Domains

server sides of the invocatigrath. Where this is not possible - because, for example,
one ORB does not support thel set of services required - either the interaction
cannot proceed or it can only do so with redufzelities or transparencies.

From a computational viewpoint, the OMG Object Model identifies various
distribution transparencieshich ensure thatlient and server objects are presented
with a uniform view of a heterogeneodsstributed system. From an engineering
viewpoint, however, the system is not wholly uniform. There may be distinctions of
locationand possibly many others such as processor architecture, networking
mechanisms and data representati@ven when a single ORB ingrhentation is used
throughout the system, local instances may represent distinct, possibly optimized
scopes for some aspects of ORB functionality.

Representation Representation

Reference Reference

Networking

Security

Figure 11-1 Different Kinds of Domains can Coexist.

Interoperability, by definition, introduces further distinctions, notdidgween the
scopes associated with each ORB. Tealibe both the requirements for
interoperability and some of the solutions, this architecture introducesticept of
domainsto describe the scopasdtheir implications.

Informally, a domain is a set of objects sharing a common characteristic or abiding by
common rules. It is a powerful modelling concept which can simplify the analysis and
description of complex systems. There may be many types of domaijns (e.
management domains, naming domainsgleage domains, and technology domains).

11.3.1 Definition of a Domain

Domains allowpartitioning of systems into collections of components wihiahe

some characteristic in common. In this architecture a domain is a scope in which a
collection of objects, said to be members of the domain, is associated with some
common characteristic; any object for which the association doesxisbt or is

undefined, is not a member of the domain. A domain can be modelled as an object and
may be itself a member of other domains.

It is the scopes themselves and the object associations or bindings defined within them
which characterize a domain. This information is disjoint leefwvdmains. However,

an object may be a member of several domains, of similar kinds as well as of different
kinds, and so the sets of members of domains may overlap.

CORBAV2.2 Domains February 1998 11-5

11

11-6

The concept of a domain boundandisfined as theirhit of the scope in which a
particular characteristic is valid or meaningfhen acharacteristic irone domain is
translated to an equivalent in another domain, it is convenient to consider it as
traversing the boundary between the two domains.

Domains are generally either administrative or technological in nature. Examples of
domains related to ORB interoperability issues are:

®* Referencing domain — the scope of an object reference

®* Representation domain — the scope of a message transfer syntax and protocol
®* Network addressing domain — the scope of a network address

®* Network connectivity domain — the potential scope ofetiwvork message

® Secuity domain — the extent of a particular security policy

®* Type domain — thescope of a particular type identifier

® Transaction domain — the scope of a given transaction service

Domains can be related in two ways: containment, where a domain is contained within
another domain, anfiéderation, where two domains are joined in a manner ageed
set up by their administrators.

11.3.2 Mapping Between Domains: Bridging

Interoperabilitybetween domains is only possible if there isalxdeined mapping
between the behaviors of the domains being joined. Conceptually, a mapping
mechanism or bridge resides at the boundary between the domains, transforming
requests expressed tiarms ofone dmain’s model into the model of the destination
domain. Note that the use of ttexm “bridge” in this context isonceptual and refers
only to the functionality which performs the required mappingfsveen ditinct
domains. There are several implementation options for such bridges and these are
discussed elsewhere.

For full interoperability, it is essential that all the concepgsd in one dmain are
transformable into concepts in other domainghwhich interoperability is required,

or that if the bridge mechanism filters such a concept out, nothing is lost as far as the
supported objects are concerned. In other words, one domain may support a superior
service to others, but such a superior functionality will not be available to an
application system spanning thosenthins.

A special case of this requirement is that the object models ofvthdomains need to
be compatible. This specification assumes that both domairstriatey compliant

with the CORBA Object Model and tl@ RBAspecifications. This includes the use of
OMG IDL whendefining interfaces, thase of the CORBA Core Interfag@epogory,
and othemodifications that were made @ORBA Variances from this model could
easily compromise some aspects of interoperability.

CORBAV2.2 February 1998

11

11.4 Interoperability Between ORBs

An ORB “provides the mechanisms by which objects transparently avakeeceive
requests and responses. In so doing, the ORB provides interoperability between
applications on different machines in heterogeneabsisibuted environments...” ORB
interoperability extends this definition to cases in which client and server objects on
different ORBs “transparently make and receive requests...”

Note that a direct consequence of this transparency requirement is that bridging must
be bidirectional: that is, it mustork as efectively for object references passed as
parameters as for the target of an object invocation. Were bridging unidirectional (e.g.
if one ORB could only be elient to another) then transpareneguld not have been
provided, because objeferences passed as parameters would not work correctly:
ones passed as “callback objects,” for example, could not be used.

Without loss of generality, most of this specification focuses on bridging incrdy
direction. This is purely to simplify discussions, arad not imply that midirectional
connedivity satisfiesbasic interoperability requirements.

11.4.1 ORB Services and Domains

In this architecture, different aspects of ORB functionality - ORB Services - can be
considered independently and associated with different domain types. The architecture
does not, however, prescribay paticular decompsiton of ORB functionalityand
interoperability into ORB Services and corresponding domain types. There is a range
of possibilities forsuch a decomposition:

1. The simplest model, for interoperability, is to treat all objectgpetted by one
ORB (or, alternatively, all ORBs of avgin type) as comprising one domain.
Interoperability betweeany pair of different domains (or domain types) is then
achieved by a specific all-encompassing bridge between the domains. (This is all
CORBAiImplies.)

2. More detailed decompositions would identify particular domain types - such as
referencing, representation, security, and networking. A core set of domain types
would be pre-determined and allowance made for additional domain types to be
defined as future requirements dictateg(efor new ORB Services).

11.4.2 ORBs and Domains

In many respects, issues of interoperability between ORBsimikar to those which
can arise with a single type of ORB (e.g., a product). For example:

* Two installations othe ORB may be installed in different secudigmains, with
different Principal identifiers. Requests crossing those security domain boundaries
will need to establish locally meaningful Principals for the catlentity, and for
any Principals passed parameters.

* Different installations mighassign different type identifiers for equivalent types,
and so requests crossing type dontzonindaries would need to esiabllocally
meaningful type identifieréand perhaps more).

CORBA V2.2 Interoperability Between ORBs February 1998 11-7

11

11-8

Conversely, noall of these problemseed to appear when connecting two ORBs of a
different type (eg., two diferent products). Examples include:

®* They could be administered to share wdsible naming domains, so that naming
domains do not need bridging.

®* They might reuse the same networking infrastructure, so that messages could be
sent without needing to bridge different coningtgt domains.

Additional problems can arise with ORBs of different types. Ini@adar, they may

support diferentconcepts or models, between which there are no direct or natural
mappings. CORBA only specifies the applicatiendl view of object interactions, and
requires that distribution transparencies conceal a whole range of lower level issues. It
follows thatwithin any particular ORB, the mechanisms for supporting transparencies
are not visible at the application level and are entirely a mattienglémentaibn

choice. So there is no guarantee that any two ORBs support similar internal models or
that there is necessarily a straightforward mapping between those models.

These observations suggest that the concept of an ORB (instance) is too coarse or
superficial to allow detailed analysis of interoperability issoetsveen ORBs. Indeed,

it becomes clear that an ORB instance is an elusive notion: it can perhaps best be
characterized as the intersection or coincidence of ORB Service domains.

11.4.3 Interoperability Approaches

When aninteraction takes place across a domzonndary, a mapping mechanism, or
bridge, is required to transformalevant elements of the interactiontlasy traverse the
boundary. There aressentiallytwo approaches to achievitlgis: mediated bridging
andimmediate bridgingThese approaches are described inféllewing subsections.

Domain Domain Domain Domain
'D nerop |
Mediated Bridging Immediate Bridging

Figure 11-2 Two bridging technigues, different uses of an intermediate form agreed on between
the two domains.

Mediated Bridging

With mediated bridging, elements of the interaction relevant to the domain are
transformed, at the boundary of each domain, between the internal form of that domain
and an agreed, common form.

Observations on mediated bridging are as follows:

®* The scope of agreement of a common form can range from a private agreement
between twaarticular ORB/domain implementations to a universal standard.

CORBAV2.2 February 1998

11

® There can be more than one common form, each orienteptionized for a
different purpose.

® If there is more than one possible common form, then selection of which is used can
be static (e.g., administrative policy agreed hestw ORB vendors, or between
system administrators) or dynamic (e.g., established separately for each object, or
on each invocation).

® Engineering of this approach can range from in-line $jgatly compiled (compare
to stubs) or generic library code (such as encryption routines) code, to intermediate
bridges to the common form.

Immediate Bridging

With immediate bridging, elements of the interaction relevant to the domain are
transformed, at the boundary of each domain, directly between the irfftemaif one
domain and the internal form of the other.

Observations on immediate bridging are as follows:

® This approach has the potential to be optimal (in that the interaction is not mediated
via a third partyand can be ®zifically engineered foeach pair of domains) but
sacrifices flexibility and generality of interoperability to amba this.

® This approach is often applicable whempssing domain cundares which are
purely administrative (i.e., there is noasige of technology). For example, when
crossing security administration domalmstweensimilar ORBS, it is not ecessary
to use a common intermediate standard.

As a general observation, the two approaches can bealonost indistinguishable
when private mechanisms ansed between ORB/domaiimplementations.

Location of Inter-Domain Functionality

Logically, an inter-domain bridgleas components in both domains, whether the
mediated or immediate bridging appoh is used. However, domains can span ORB
bourdariesand ORBs can span machine and system boundaries; selyyer machine

may support, or a process may have access to more than one ORB (or domain of a
given type). From an engineering viewpoititis means that the components of an
inter-domain bridge may be dispersed or co-located, with respect to ORBSs or systems.
It also means that the distinction between an ORB and a bridge can beeraahat
perspective: there is a dualihetween viewing inter-system messaging as belonging to
ORBs, or to bridges.

For example, if a single ORB encompasses two security domainsitéinelomain

bridge could be implemented wholly within the ORB and thusbisible as far as
ORB interoperability is cocerned. A snilar situation arisesvhen abridge between

two ORBs or domains is implemented wholly within a process or system which has
access to both. In such cases, the engineering issues of inter-domain bridging are

CORBA V2.2 Interoperability Between ORBs February 1998 11-9

11

11-10

confined, ssibly to a single system or process. If it were practicahfdement all
bridging in this way, then interactions between systems or processes would be solely
within a single domain or ORB.

Bridging Level

As noted at the start of this section, bridges mainfemented bth internally to an
ORB and as layers above it. These are called respectively “indim*request-level”
bridges.

Request level bridges use the CORBA APIs, including the Dynamic Skeleton Interface,
to receive and issue requests. However, there is an emerging clasplioft context”

which may be associated with some invocations, holding ORB Service information
such as transaction and security contefdrimation, which is not at this time exposed
through general purpose public APIs. (Those APIs expose only OMG IDL-defined
operation parameters, not impliohes.) Rither, the precedent set with the Transaction
Service is that special purpose APIs are definealltov bridging ofeach kind of

context. This means that request level bridges must be built tdisalyciunderstand
theimplications of bridging such ORB Service domains, and to make the appropriate
API calls.

11.4.4 Policy-Mediated Bridging

An assumption made through most of this specification is that the existence of domain
bourdariesshould be transparent to requests: that the goal of interoperability is to hide
such boundaries. However, if this wetlevays the goal, then there would be no real
need for those boundaries in thest place.

Realistically, administrative domairobndaries exist because they reflengoing
differences in organizational policies goals. Bridging the domains will in such cases
requirepolicy mediation That is, inter-domain traffic wilheed to be constrained,
controlled, or monitored; fully transparent bridging may be highly undesirable.
Resource managemepolicies mayeven need to be applied, nésting some kinds of
traffic during certain periods.

Security policies are a particularly rich source of examples: a domain eeayto
audit external access, or to providenthin-tased access control. Only a very few
objects, types of objects, or classifications of data might be externally accessible
through a “firewall.”

Such policy-mediated bridging requires a bridge that knows something aboutfibe traf
being bridged. It could in general be grphcation-specific policyand many policy-
mediated bridges could be parts of applications. Those might be organization-specific,
off-the-shelf, or anywhere in between.

Request-level bridges, which use only public ORB APIs, easibport the ddition of
policy mediation components, without loss of access to any other siydtastructure
that may be needed identify or enforce the appropriate policies.

CORBAV2.2 February 1998

11

11.4.5 Configurations of Bridges in Networks

In the case of netwk-aware ORBs, we anticipate that some ORB protocols will be
more frequently bridged to than others, and so will begin to serve the role of
“backbone ORBs.” (This is a role that the IIOP is spealify expected to serve.) This
use of “backbone topology” is true both on a large scale anchlh stale. While a

large scale public dataetwork provider could definks own backbone ORB, on a
smaller scale, any given institution will probably designate one commercially available
ORB as its backbone.

Backbone ORB

Figure 11-3 An ORB chosen as a backbone will connect other ORBs through bridges, both full-
bridges and half-bridges.

Adopting a lackbone stylarchitecture is a standard adrsimative technique for
managing networks. It has the consequence of minimizing the number of bridges
needed, while at the same time making the ORB topology match typical network
organizations. (That is, it allows the number of bridges to be proportional to the
number of protocols, rather than combinatorial.)

In large configurations, it will beommon to notice thatdaling ORB bridges doesn’t

even add any new “hops” to networkutes, because the bridges naturally fit in

locations where connectivity was already indirect, and augment or supplant the existing
network firewalls.

11.5 Object Addressing

The Object Mdel (see Chapter Requests) defes an object reference as an object
name that reliably denotes a particular object. Aject reference identifies the same
object eachitne the reference igsed in a request, and an object may be denoted by
multiple, distinct references.

CORBAV2.2 Object Addressing February 1998 11-11

11

11-12

The fundamental ORB interoperability requirement is to allow clients to use such
object names to invoke operations on objects in other ORBs. Clients do not need to
distinguish betwen references to objects in a local ORB or in a remote one. Providing
this transparency can be quite involved, aadhing models are fundamental to it.

This section of this specification discusses models for namtities in multiple
domains, and transformations of such names as they crossrttendoundaries. That
is, it presents transformations of object reference information as it passes through
networks ofinter-ORB bridges. It uses theowd “ORB” as synonymous with
referencing domain; this is purely to simplify the discussion. In atbetexts, “ORB”
can usefully denote other kinds adrdain.

11.5.1 Domain-relative Object Referencing

Since CORBA does not require ORBs to understand object references from other
ORBs, when discussing object references froaitiple ORBsone mustalways

associate the object reference’s domain (ORB) with the object reference. We use the
notationD0.ROto denote an object referenR@ from domainDQ; this is itself an

object reference. This is called “domain-relative” referencing (or addressing) and need
not reflect themplementation of object referencesgthin any ORB.

At an implementation level, associating an object reference with an ORB is only
important at an inter-ORB lmdary; that is, inside a bridge. This is simple, since the
bridge knows from which ORB each request (or response) came, inchrdingbject
references embedded in it.

11.5.2 Handling of Referencing Between Domains

When a bridge hands an object reference to an ORBuSst do so in a form
understood by that ORB: the object referemugst be in the recipient ORB’s native
format. Also, in cases where thabject originated from some other ORB, the bridge
must associateach newly created “proxy” objerdference with (what it sees as) the
original object reference.

Several basic schemes to solve these two problems exist. dlhbsee advanges in
some circumstances; aan be used, and in arbitrary combination with each other,
since CORBA object references angagque toapplications. Theamifications ofeach
schemeamerits atention, with respect tscalingand administration. The schemes
include:

1. Object Reference Translatioreference Embedding he bridge can store the
original object reference itself, and pass an entirely different proxy reference into
the new domain. The bridge must then manstgée on behalf odach bridged
object reference, map these references from one Of@Bist to the other’s, and
vice versa.

CORBAV2.2 February 1998

11

2. Reference Encapsulatioifhe bridge can avoid holding anyat at all by
conceptually concatenating a domain identifier to the object n@mss if a
referenceD0.R, originating in domairDO0, traversed domaind1... D4 it could be
identified in D4 as proxy referencd3.d2.d1.d0.Rwheredn is the address ddn
relative toDn+1.

Figure 11-4 Reference encapsulation adds domain information during bridging.

3. Domain Reference Translationtike object referenc&ranslation, this scheme holds
some state in the bigeé. However, it supportsharing that statbetweenmultiple
object references by adding a domain-based route identifier to the proxy (tithich s
holds the original reference, as in the reference encapsulation scheme).

It achieves this by providing encoded domain route information éaehat domain
boundary is traversed; thus if a referem®R originating in domairDO0, traversed
domainsD1...D4it would be identified irD4 as(d3, x3).Rand inD2 as(d1,x1).R
and so on, wherdn s the address @n relative toDn+1, andxn identifies the pair
(dn-1, xn-1)

Figure 11-5 Domain Reference Translatieubstitutes domain referenceésring bridging.

4. ReferenceCanmicalization: This scheme is like domain refaemetranslation,
except that the proxy uses a “wkiHlown” (e.g.,global) domain iderfiier rather
than an encoded path. Thus a referdRceriginating in domairb0 would be
identified in other domains d30.R

Observations about these approaches to inter-domain reference handlin§pHogvas

®* Naive application of reference encapsulation could lead to arbitrarily large
references. A “topology service” could apize cycles withinany given
encapsulated reference and eliminate the appearance of references to local objects
as alien references.

® A topology service could alsmptimize the chains of routesed in the domain
reference translation scheme. Since the links in such chains are re-used by any path
traversing the same sequence of domains, such optimizatiqrahasilarly high
leverage.

CORBAV2.2 Object Addressing February 1998 11-13

11

With the general purpose APIs definedd@RBA 2.1 object reference translation

can be supported even by ORBs natddfically intended tasupport efficient

bridging, but this approach involves the mstdte in intermediate biggs. As vith
reference encapsulation, a topology service coulionipd individual object
references. (APIs are defined by the Dynamic Skeleton Interface, Dynamic
Invocation Interface, and by the object identity operations described in Chapter 8.)

The chain of addressing links established with both object and domain reference
translation schemes must be represented as state withiettierk of bridges.
There are issues associated with managingstaie.

Reference canonicalization can also be performed with managed hierarchical name
spaces such as thosew in use on the Internet and.500 naming.

11.6 AnInformation Model for Object References

11-14

This section provides a simple, powerful information model for the information found
in an object refemrece. That model is intended to be used directly by developers of
bridging technology, and is used in that role by the 1IOP, described in the General
Inter-ORB Protocol chapter, Object References section.

11.6.1 What Information Do Bridges Need?

The following potential information about object references hasn identified as
critical for use in bridging technologies:

Is it null? Nulls only need to be transmitteshd never support operation invocation.

What type is itMany ORBs requir&nowledge of armbject’s type in order to
efficiently preserve the integrity of their type systems.

What protocols are supported®me ORBs support objrefs that in effect live in
multiple referencing domains, to allow clients the choice of the mdisieaft
communications facilities available.

What ORB Services are availabld® noted in “Selection of ORB Services” on
page 11-4, several different OREBISices might be involved in anviocation.
Providing information about those services in a standardized way could in many
cases reduce @liminatenegotiation overhead in selecting them.

11.6.2 Interoperable Object References: IORs

To provide the information above, an “Interoperable Object Refere(i@R) data
structure has been provided. This data structure need not bantesedlly toany
given ORB, and is not intended to Wisible to application-level ORBrogrammers. It
should be used only whemossing object reference domain hdaries, vithin bridges.

This data structure is designed to be efficient in typical single-protocol configurations,
while not penalizing multiprotocol ones.

CORBAV2.2 February 1998

11

module IOP { /I IDL
I
/I Standard Protocol Pr ofile tag val ues
"
typedef unsigned long Profileld;
const Profileld TAG_INTERNET _IOP = 0;
const Profileld TAG_MULTIPLE_COM PONENTS = 1;

struct TaggedProfile {
Profileld tag;
seque nce <octet> profile_data;

|

"
/I an Interoperable Object Reference is a sequence of
/I object-specific protocol profiles, plus a type ID.

"
struct IOR {
string type_id;
seque nce <TaggedPr ofile> profiles;
|3
"

/I Standard way of representing multicomponent profiles.
/I This would be encapsulated ina T aggedPr ofile.
"
typedef unsigned long Compon entld;
struct TaggedComponent {
Compo nentld tag;
seque nce <octet> com ponent_data;
|3
typedef sequence <TaggedComponent> MultipleComponentProfile;

|

Object references have at leasttagged profile Eachprofile supportone or more
protocols and encapsulates all the basic information the protocols it suppedtso
identify an objectAny single profile holdsenoughinformation to drive a complete
invocation using any of the protocols it suppspthe contenand structure of those
profile entries are wholly specified by these protocols. A bridge dmtvtwo domains
may need t&know the detailed content of the profile for those domains’ profiles,
depending on the technique it uses to bridge the dofains

1.Based on topology and policy information availablig, @bridge may find it pudent to add
or remove some profiles as it forwards an object reference. For example, a bridge actingas a
firewall might remove all profiles except ones that make such profiles, letting clients that
understand the profiles make routing choices.

CORBA V2.2 Amformation Model for Object References February 1998 11-15

11

Eachprofile has aunique numeric tagassigned by OMG. The ones defined here are
for the IIOP (see Chapter 12, General Inter-ORB Protocol) and for Useultiple
component profiles.” Prdé tags in therange 0x80000000 through Oxffffffff are
reserved for future use, and are not currentilable for assignment.

Null object references are indicated by an empty set of profite$ by a “Null” type

ID (a string which contains only a singkerminating character). Type IDs may only be
“Null” in any messagerequiring the client to use existirkgnowledge or to consult the
object, to determine interface typepported. The type ID is provided to allow ORBs
to preserve strong typing.Thisedtifier is agreed on within the bridge and, for reasons
outside the scope of this interoperability specificatimeeds to have a much broader
scope to address various problems in system evolution and maintenance. Type IDs
supportdetection of type equivalencand in conjunction with an Interfad&epostory,

allow processes to reason about the relationship of the type of the object referred to
and any other type.

The type ID, if provided byhe server, indicates the most ded type at théime the
reference is generated. The object’'s actual nimsived type may later @mge to a
more dened type. Therefore, the type ID in the IOR can only be interpreted by the
client as a hint that the object supports at least the indigatedace. The clientan
succeed in narrowing the reference to the indicattsdface, or to one ats base
interfaces, based solely on the type ID in the IOR, but must not fail to narrow the
reference without consulting the object via the “_is_a” or “_get_interface” pseudo-
operations.

TheTAG_INTERNET_IOP Profile

The TAG_INTERNET_IOP tag identifies profiles that support the Internet Inter-ORB
Protocol. TheProfileBody of this profile, described in detail inlOP IOR Profles”

on page 13-34, contains a CDR emmgtion of a structure containing addressing and
object identification information used BYOP. Version 1.1 of the

TAG_INTERNET _IOP profile also includes aequence<TaggedCompo nent>

that can catain additional informatiosupportingoptional IOP features, ORB

services such as security, and future protocol extensions.

Protocols other than IIOP (such as ESIOPs and other GIOPS) carpstfdes
information (such as object identity or security informatioithwOP by encoding

their additional profile information as components in TA& INTERNET_IOP

profile. All TAG_INTERNET_IOP profiles support IIOP, regardless of whether they
also support additional protocols. Interoperable ORBs are not required to create or
understand any other profile, nor are they requirecréate or understarahy of the
components defined for other protocols that might shar@Afe INTERNET_IOP
profile with IIOP.

TheTAG_MULTIPLE_COMPONENTS Profile

The TAG_MULTIP LE_COMPONENTS tag indicates that the value encapsulated is of
type MultipleComponentProfile . In this case, the profile consists ofist of
protocol components, indicating ORB services accessible using that protocol. ORB

11-16 CORBAV2.2 February 1998

11

services are assigned component identifiers in a namespace that is distinct from the
profile identifiers. Note that protocols mage theMultiple ComponentProfile data
structure to hold prdé components even without using
TAG_MULTIPLE_COMPONENTS to indicate that particular protocol profile, and
need not use MultipleComponentProfie to hold sets of profileomponents.

IOR Camponents

TaggedComponent s contained iMTAG_INTERNET _IOP and
TAG_MULTIPLE_COMPONENTS profiles are identified by unique numeric tags
using a namespace distinct form that used forilprtdgs.Component tags are
assigned by the OMG.

Specifications of componenisust include théollowing information:

® Component ID:The compoundag that is obtained from OMG.

® Structure and encodingfhe syntax of the component data and the encoding rules.
® SemanticsHow the component data is intended to be used.

® Protocols: The protocoffor which the component is defined, and whether it is
intended that the component be usable by other protocols.

® At most oncewhether more than one instance of this component can be included in
a profile.

Specification of protocols must describew thecomponents affect the protocol. The
following should be speéédd in any protocol definition for eacfaggedComponent
that the protocol uses:

®* Mandatory presencélhether inclusion of the component in profiles supporting the
protocol is requiredMANDATORY PRESENCE) omot required (OPIONAL
PRESENCE).

® Droppable:For optional presence component, whether component, if present, must
be retained or may be dropped.

11.6.3 Standard IOR Components

The followingare standard IOR components that can be included in
TAG_INTERNET_IOP andTAG_MULTIPLE_COMPONENTS profiles,and may
apply to IOP, other GIOP£SIOPs omther protocols. An ORB must not drop these
components from an existing IOR. Additional componentsdhatbe used by other
protocols are specified in “DEECIOP (bject References” on page 14-16.

CORBA V2.2 Amformation Model for Object References February 1998 11-17

11

11-18

module IOP {
const Compon entld TAG_ORB_TYPE =0;
const Compon entld TAG _CODE_SETS =1;
const Compon entld TAG_S EC_NAME = 14;
const Compon entld TAG_A SSOCIATION_OPTIONS =13;
const Compon entld TAG_GENERIC_SE C_MECH =12;

k

TAG_ORB_TYPE Component

It is often useful in the real world to be able to identify the particular kind of ORB an
object reference is comirfgpm, to work around plalems with that particular ORB, or
exploit shared efficiencies.

The TAG_ORB_TYPE component has an associated value of typsgned long
encoded as a CDR encapsulation, deaiipg an ORB type ID allocated by the OMG
for the ORB type of the originating ORB nfone mayregisterany ORB types by
submitting a short (one-paragraph) description of the ORB type to the OMG, and will
receive a new ORB type ID in return.list of ORB typedescriptions and values will

be made available on the OMG web server.

The TAG_ORB_TYPE component can appear at most oncarip IOR profile. For
profiles supportindlOP 1.1, it is optionally present and may not be dropped.

Other Components
The following compoents are specified in different OMG specifications:

® TAG_CODE_SETS (See “CodeSet Component of I@&ti-Component Profile”
on page 11-28.)

® TAG_SEC_NAME(Security - CORBAServices)
® TAG_ASSOCIATION_OPTIONS (Bcurity - CORBAServices)
®* TAG_GENERIC_SEC_MECH (&urity - CORBAServices)

11.6.4 Profile and Component Composition in IORs

The followingrules augment the preceding discussion:

1. Profiles must be independent, completed self-contained. Their use shall not
depend on iformation contained in another profile.

2. Any invocation uses information from exactipe profile.

3. Information used to drive multiple inter-ORB protocols may coexist within a single
profile, possibly with some information (e.g., components) shbeddeen the
protocols, as specified by the specific protocols.

4. Unless otherwise specified in the definition of a particular profile, multiple profiles
with the same profile tag may be included in an IOR.

CORBAV2.2 February 1998

11

5. Unless otherwise specified in the definition of a particular compomaritiple
components with the same component tag may be part of agiotle within an
IOR.

6. A TAG_MULTIPLE_COMPONENTS profile may hold components shared
betweenmultiple protocols. Multiple such pridés may exist in an IOR.

7. The definition of each protocol usingfAG_MULTIPLE _COMPONENTS profile
must specify which components it usasd how it usethem.

8. Profile and component definitions can be either public or private. Public definitions
are those whose tag and data format is specified in OMG documents. For private
definitions, only the tag is registered with OMG.

9. Public component definitions shall state whether or not they are intended for use by
protocols other than the one(s) for which they were originally defined, and
dependencies on other components.

The OMG is responsible for allocating aredjistering protocol and component tags.
Neither allocation nor registration indicates any “standard” status, only that the tag will
not be confused with other tags. Requests to allocate tags should be sent to
tag_request@omg.org.

11.6.5 IOR Creabn andScope

IORs are created from object referencéeemwrequired to cross some kind of
referencing domaimoundary. ORBwvill implement object references in whatever
form they fnd appropriate, including possibly using the IOR structure. Bridges will
normally use IORs to mediate transfers where that standard is appropriate.

11.6.6 StringifiedObject References

Object references can bstfingified” (turned into an external string form) by the
ORB::object to_st ring operation, and then “destringified” (turned back into a
programming environment's object reference representation) using the
ORB::string_to_object operation.

There can be wariety of reasonsvhy being able to parse this string form migjuit
help make an invocation on the original object reference:

® |dentifiers embedded in the string form can belong tdfardntdomain than the
ORB attempting to destringify the object reference.

®* The ORBs in question might not share a network protocol, or be connected.

® Secuity constraints may be placed on object refier destringification.

Nonetheless, there igility in having a definedvay for ORBs to generate and parse
stringified IORs, so that in some cases an object reference stringified by one ORB
could be destringified by another.

CORBA V2.2 Amformation Model for Object References February 1998 11-19

11

To allow a stringified object reference to be internalized by what may be a different
ORB, a stringified IOR representation is specified. This representation instead
establishes that ORBs could pastgngfied object references using that format. This
helps address the problem of bootstrapping, allowing programs to obtain and use object
references, everfirom different ORBs.

The following isthe representation of ttadringfied (externalized) IOR:

<oref> = <prefix> <hex_Octets>

<prefix> m="IOR”

<hex_Octets> ::=<hex_Octet> {<hex_Octet>}*

<hex_Octet> ::= <hexDigit> <hexDigit>

<hexDigit> = <digit> | <a> | | <c> | <d> | <e> | <f>

<digit> n=00" |17 27| 37| "4 | 57|
“6” 47" 8" “9”

<a> L=tat | AT

 ="b" | “B”

<c> =" |“C”

<d> =4d" | “D”

<e> n="e” |"E”

<f> R B =

The hexadeanal strings are garated by first turning an object reference into an IOR,
and then encapsulating the IOR using the encoding rules of CDR. (See CDR Transfer
Syntax in Chapter 13 for moreformation.) The content ofthe encapsulated IOR is

then turned into hexadecimal digit paissarting with the first octet ithe

encapsulation and going until the end. The high four bits of each octatcéed as

a hexadeanal digit, then the low four bits.

11.6.7 Object Service Context

Emerging specifications for Object Services occasionally require service-specific
context information to be passedplicitly with requests and replies. (Specifications
for OMG'’s Object Services are containedd®@RBAservices: Common Object Service
Specificationg. The Interoperability specifications define a mechanism for identifying
and mssing this service-specific context informatior'lsidden” parameters. The
specification makes thillowing assumptions:

® Object Service specifications thag¢ed additional context passed will completely
specify that context as an OMG IDL data type.

®* ORB APIs will be provided that will allow services to glypand consume context
information at appropriate points in the process of sendimreceiving reqests
andreplies.

11-20 CORBAV2.2 February 1998

11

® |tis an ORB’s responsibility to determinenhen to send service-spécicontext
information, and what to do with such information ikaming messages. iitay be
possible, for example, for a server receiving a request to be unable to de-
encapsulate and use a certain element of servicefispemtext, but nevertheless
still be able to successfully reply to the message.

As shown in the following OMG IDL specification, the IOP module provides the
mechanism for passing Object Service—specific information. It does not describe any
service-specific information. It only describes a mechanism forrrtisg it in the

most general way possibl&he meclanism is currentiyused by the DCE ESIOP and
could also be used by the Internet Inter-ORB protocol (IIOP) Geneeal ®RB

Protocol (GIOP).

Each Obgct Service requiring implicit service-specifiontext to be passed through
GIOP will be allocated a unique service context ID value by OMG. Service context ID
values are of typensigned long . Object service specifications are responsible for
describing their context information as single OMG IDL data types, one data type
associated with each service contixt

The marshaling of Object Service data is described byfdlewing OMG IDL:
module IOP { /I 1DL

typedef unsigned long Serviceld;

struct ServiceContext {

Serviceld context_id;
seque nce <octet> context_data;

|

typedef sequence <ServiceContext>ServiceContextList;
const Serviceld TransactionS ervice = 0;
const Serviceld CodeSets = 1;

>

The context dta for a particular service will be @ded as specified for its service-
specific OMG IDL definition, and that encoded representation will be encapsulated in
thecontext_data member oflOP::Service Context . (See “Encagulation” on

page 13-12). Theontext_id member contains the service ID value identifying the
service and data format. Context data is encapsulated in octet sequencestto per
ORBs to handle context data without unmarshaling, and to handle unknown context
data types.

During request and reply marshaling, ORBs will collect all service context data
associated with thRequesbr Replyin aServiceContextList , and include it in the
generated messages. No ordering is specified for service context data witlgh the
The lst is placed at the beginning of those messages to support security policies that
may need to apply to thmajority of the data in a request (including the message
headers).

CORBA V2.2 Amformation Model for Object References February 1998 11-21

11

The Serviceld s currently defined are:

® TransactionService identifies a CDR encapsulation of the
CosTSlInteroperation::PropogationContext defined inCORBAserges:
Common Object Services Specifications

® CodeSets identifies a CDR encapsulation of the
CONV_FRAME::C odeSetC ontext defined in “GIOP Code Set Service Context”
on page 11-29

11.7 Code Set Conversion

11-22

11.7.1 Character Processing Terminology

This section introducesfaw terms and gxains a fewconcepts to help umdstandhe
character processing portions of this document.

Character Set

A finite set of different characters used for the representation, organization or control
of data. In this document, therm*“character set” is used without anglationship to

code representation or asgated eoding. Examples of character sets are Eglish
alphabet, Kanji or sets of ideographic characters, corporate charact@osetsonly

used in Japan), and the charactegeded to write certain European languages.

Coded Character Set, or Code Set

A set of unambiguous rules that establishes a charactanddhe one-to-one
relationship between each character of the seftarat representation or numeric
value. In this document, the tefftode set” is used as an abbreviation for téren
“coded character set.” Examples include ASCII, ISO 8859-1, JIE&@which
includes Roman characters, Japanese hiragana, Gragdcths, Japanese kanji, etc.)
and Unicode.

Code Set Clashcations

Some language environments distinguish between byte-oriented and “wide characters."
The byte-oriented characters are encoded in one or mbrel§tes. A typical single-

byte encoding is ASCII as used for western European languages like English. A typical
multi-byte encoding which uses froame to three ®it bytes for each character is

eucJP (Extended UNIX Code - Japan, packedat) asused for Japanese

workstations.

Wide characters are a fixed 16 or 32 bitsgpand are used for languages like Chinese,
Japanese, etc., where the number of combinations offered by 8 bits is insufficient and a
fixed-width encoding is needed. A typical example is Unicode (a “universal’ character
set defined by th&he Unicode ©nsortium, which uses an encoding scheme identical

CORBAV2.2 February 1998

11

to ISO 10646 UCS-2, or 2-byte Universal Character Set encoding). An extended
encoding scheme for Unicode characters 1§16 (UCSTransformation Format, 16-
bit representations).

The Clanguage has data typebar for byte-oriented characters amdhar_t for

wide characters. The languadefinition for C states that the sizes for these characters
areimplemenation dependent. Some environments do not distinguish between byte-
oriented and wide characters, e.g., Ada 8nthlltalk. Hereagain, the size of a
character iSmplemenation dependent. Thiellowing table illustrates code set
classifications asised in thisdocument.

Orientation Code Element Encoding| Code Set Examples C Data Type
byte-oriented single-byte ASCII, ISO 8859-1 (Latin-1), | char
EBCDIC, ...
multi-byte UTF-8, eucJP, Bift-JIS, JIS, Big-| char]
5 ..
non-byte- fixed-length ISO 10646 UCS-2 (Unicode), | wchar_t
oriented ISO 10646 UCS-4, UTF-16, ...

Narrow and Wide Characters

Some language environmemistinguish between “narrow” and “wide” characters.
Typically the narrow characters are considered t84é long and are used for

western European languages like English, while the wide characters are 16-bit or 32-
bit long and are used for languages like Chinese, Japanese, etc. where the number of
combinations offered by 8 bits are infstient. However, as notedbove there are

common encoding schemes in which Asian characters are encodednusiinigyte

code sets and it is incorrect to assume that Asianachers are alwaysieoded as

“wide” characters.

Within this document, the genertdrms“narrow character” and “wide character” are
only used in discussing OMG IDL.

Char Data and Wchar Data

The phrasec¢har data” in this document refers to dathase IDL types have been
specified aghar orstring . Likewise ‘wchar data” refers to data whose IDL types
have been specified agchar or wstring .

Byte-Oriented Code Set

An encoding of characters where the numeric code corresponding to a character code
elemenftcan occupy one or more bytes. A byte as used in this document is synonymous
with octet, which occupies 8 bits.

CORBAV2.2 Code Sebnversion February 1998 11-23

11

Multi-Byte Character Strings

A character string represented in a byte-oriented encoding where each character can
occupy one or more bytes is callednalti-byte character string. Typically, wide
characters are converted to this form from =mediwidth) process code set before
transmittingthe characters outside the process dew about process code sets).

Care must be taken to correctly process the component bytes of a chamagttr’s

byte representation.

Non-Byte Oriented Code Set

An encoding of characters where the numeric code corresponding to a character code
elementcan occupy fixed 16 or 32 bits.

Char Transmission Code Set (TCS-C) and Wchar Transmission
Code Set (TCS-W)

These twaerms refer to code sets that are usedrimsmissiorbetween ORBsfter
negotiation is completed. As the names imply, the @irs is used fochar data and
the second one fawchar data. Each TCS can be byte-oriented or non-byte oriented.

Process Code Set and File Code Set

Processes generally represent international characters in an internal fixedewiath
which allows for efficient representation and manipulation. This internal format is
called a“process code set.” The process code set is irrelex#nide the process, and
hence to the interoperation between CORBA clients and servers thitzeigh
respective ORBSs.

When a process needs to write international charadtmation out to a file, or
communicate with another process (possibly over a network), it typically uses a
different encoding called ail€ code set.” In this specification, unless erilvise

indicated, all references to a programdle set refer to the file code set, not the
process code set. Even when a client and server are located physically on the same
machine, it is possible for them to udifferent file code sets.

Native Code Set

A native code set is the code set which a client or a server uses to communicate with
its ORB. There might be separatative code sets fochar andwchar data.

11-24 CORBAV2.2 February 1998

11

client process

Transmission Gde Set

A transmission code set is the commiyoagreed upon encoding used for character data
transfer between a client's ORB and a servers ORB. Therevargansmission code
sets established per session between a client and its server, oharfalata (TCS-C)
and the other fowchar data (TCS-W). Figure 11-6 on page 11-25 illustrates these
relationships:

native transmission native
ORB 44— __--P ORB server process
code sets
code set code set

Figure 11-6 Transmission Code Sets

The intent is for TCS-C to beyte-oriented and TCS-W to be non-byte-oriented.
However, this specification doadlow both types of characters to be transmitted using
the same transmissiarode set. That is, theelection of a transmission code set is
orthogonal to the wideness or narrowness of the characters, although a giveetcode
may be better suited for either narrow adecharacters.

Conversion Code Set (CCS)

With respect to a particular ORB’s natieede set, the set of other or targetlesets
for which an ORB can convert all code points or character encodings between the
native code set and that target code set.elagh code set in this CCS, the ORB
maintains appropriate translation or conversion procecandsadvertises the dity to
use that code set foransmitted data in addition to the nativedeset.

11.7.2 Code Set Conversion Framework

Requirements

The file codeset that an application uses is often determined by the platform on which
it runs. In Japan, for example, Japanese EUC is used on Unix systems, witHBSShi

is used on PCs. Code set conversion is therefore required to enablpdrabitity

across these platforms. This proposal definfaraework for the automatic

conversion of code sets in such situatiofise requirements dhis franework are:

1. Backwardcompatibility. Inprevious CORBA specifications, IDL typshar was
limited to ISO 859-1. The conversion framework shoulddmmpatible with
existing clientsand servers that use ISO 8859-1 as the cetléorchar.

2. Automatic code set conversion. Toifa@te development of CORBA clientand
servers, the ORB should perform any necessary setleonversions automatically
and eficiently. The IDL typeoctet can be used if necessary to prevent conversions.

CORBAV2.2 Code Sebnversion February 1998 11-25

11

11-26

3. Locale support. An internationalized applicat@etermines the code set in use by
examining the LOCALEstring (usually found in the LANG environment variable),
which may be changed dynamically at run time by the user. Example LOCALE
stringsare fr_FRISO8859-1(French, used in France with the ISO 8859-1 code set)
and ja_JP.ujis (Japanese, used in Jagdntive EUC code setnd X11R5
conventions for LOCALE). The conversion framework should allow applications to
use the LOCALE mechanism to indicate supported code sets, and thus select the
correct code set from the registry.

4. CMIR and SMIR support. The conversisamework should be flexible engh to
allow conversion to be performed either on the client or server side. For example, if
a client is running in a memory-constrained environment, then it is desirable for
code set converters to reside in the searal for a Server Makes It Right (SMIR)
conversion method to be used. On the other hand, if many servers are executed on
one server machine, then converters should be placed in each client to reduce the
load on the server machine. In this case,ctreversion method used is Client
Makes It Right (CMIR).

Overview of the Conversion Framework

Both theclientand server indicate mative code set indirectly by specifying a locale.
The exact method for doing this is language-specific, such as the X5HG#+
functionsetlocale . The client anderver use their native code setttmmmunicate
with their ORB. (Note that thesetivecode sets are in general different from process
code sets and hence conversions may be required at the client and server ends.)

The conversion framework is illtrated in Figure 11-7 on page 11-27. The server-side
ORB stores a server’s code set information in a component of the IQRIsul
component prale structure (see “Interoperable Object References: IORs” on

page 11-14) The codesets actually used for transmission are carried in the service
context field of an IOP (Inter-ORB Protocol) requiesader (see “Object Service
Context” on page 11-20 and “GIOP Code Set Service Context” on page 11-29). Recall
that there are two code sets (TCS-C and TCS-W) negotiated for each session.

2.Versionl.1 of the [IORprofile body can also be used to specify the server’'s code set
information, as thigersion introduces an extra field that is a sequence of tagged
components.

CORBAV2.2 February 1998

11

Client Server
. . IOP service context .
Client's native indicates transmission Server's native
code set code sets information code set
ORB ORB

IOR multi-component
profile structure indicates
server's native code set information

Figure 11-7 Code Set Conversion Framework Overview

If the native ode sets used by a client and server are the same, then no conversion is
performed. If the native codeets are different and the client-side OR&s an

appropriate converter, then t@IR conversion method is used.tims case, the

server's native code setused as the transmissicnde set. If theativecode sets are
different and the client-side ORB does not have an appropriate converter but the server-
side ORB does have one, then the SMIR conversion method is used. In this case, the
client's native code set is used as the transmission code set.

The conversion frameworkllows clients and servers to specify a natiiar code set
and anativewchar code set, whicldetermine the locancodings of IDL typeshar
andwchar, respectively. Theonversion process outlined above is executed
indepenéntly for thechar code set and thechar code set. In other words, the
algorithm that is used to select a transmission code sah isvice, once fochar data
and once fowchar data.

The rationalefor selectingtwo transmission code sets rather than one (which is
typically inferred from the locale of a process) is to allow efficient data transmission
without any conversions when tibent and server have identical representations for
char and/orwchar data. For example, when a Windows NT client talks to addlirs
NT server and they both use Unicode for widarelcter data, it becomes possible to
transmit wide character data from one to the other without any conver€l course,
this becomes possible only for those wide character representations thatlare w
defined, not for any proprietary ones. If a single tnaission code set was mandated,
it might require unnecessary conversions. (For example, choosing Unicode as the
transmission codset would force conversion of all byte-oriented character data to
Unicode.)

ORB Databases and Code Set Converters

The conersionframeworkrequires an ORB to be able to determine the natde set
for a locale and to convert between code sets assae While the details of exactly
how thesdasks are accomplished are implementationedépnt, thdollowing
databases and code senveters might be used:

CORBAV2.2 Code Sebnversion February 1998 11-27

11

® |ocale database. This database defines a native code set for a process. This code s
could be byte-oriented or non-byte-oriented and could be changgdhprmatically
while the process is running. However, for a gigessiorbetween a client and a
server, it is fixed once the code set information is negotiated at the session’s setup
time.

®* Environment variables or configuration files. Since the locale database can only
indicate one code set while the ORB needs to know two code sets, atarfor
data and one fawnchar data, an implementation can use environment variables or
configuration files to contain this information on natoate sets.

® Converter database. This database defines, for each code sefl¢hsets to which
it can be converted. From this database, a set of “conversimaets” (CCS) can
be determined for a cliemind server. For example, if a servera&ive code set is
eucJP, and if the server-side ORB has eucJP-t0-JIS and eucJP-tui&&ial
converters, then the server’s conversion code sets are JIS and SJIS.

® Code set converter$he ORB has convetts which areegistered in the converter
database.

CodeSet Componentl@R Multi-Camponent Profile

The codeset component of the IORwulti-compaent profile structure contains:
® server’s nativehar code set andonversion code sets; and

® server’s nativavchar code sefind conversion codsets.

Both char andwchar conversion code sets disted inorder of preference. The code
set component is @htified by the following tag:

const IOP::C omponentlD TAG_CODE_SETS =1,

This tag has been assigned by OMG (See “Standard IOR Components” on
page 11-17.). The following IDIstructure defines the representatiorcofle set
information within the component:

module CON V_FRAME { /I \DL

typedef unsigned long Code Setld;

struct CodeSetComp onent {
CodeSetld native _code_set;
sequence<CodeSetld> conversion_c ode_sets;

|3

struct CodeSetComponentinfo {
CodeSetComponent ForCharData;
CodeSetComponent ForWcharData;

>

11-28 CORBAV2.2 February 1998

11

Code sets are identified by a 32-bit integer id from the OSF ChamuieCode Set
Registry (See “Character and Code Set Registry” on page 11-35 for further
information). Data within theode set component is represented as a structure of type
CodeSetComponentinfo . In other words, thehar code set information comeigst,

then thewchar information, represented as structures of todeSetComponent .

A null value should be used in thative_code_set field if the server desires to
indicate no nativeode set (possibly with theadtification of suitable conversiaode
sets).

If the code set component is not present mudti-component profile structure, then
the defaulchar code set is ISO 8859-1 fbackwardcompatibility. However, there is
no defaultwchar code set. If a server suppoitderfaces thatise wide character data
but does not specify thechar code sets that it supports, client-side ORBs will raise
exceptionINV_OBJREF.

GIOP Code Set Service Context

The codeset GIOP service context contains:
® char transmissiorcode set, and

® wchar transmission code set

in the form of acode set service. This serviceidentified by:

const IOP::ServicelD CodeSets = 1;

This service ID has beesssiqmed by OMG (See “Object Service Context” on
page 11-20.) The following IDistructure defines the representation of code set service
information:

module CON V_FRAME { /I \DL
typedef unsigned long Code Setld;
struct CodeSetContext {
CodeSetld char_data;
CodeSetld wchar_data;
|3
|3
Code sets are identified by a 32-bit integer id from the OSF ChamudeCode Set

Registry (See “Character and Code Set Registry” on page 11-35 for further
information).

Note —A server'schar andwchar Codeset components are usuatlifferent, but
under some special circumstances thay be the same. That is, one could use the
same code set for botthar data andvchar data. Likewise th&€odesetld s in the
service context don't have to be different.

CORBAV2.2 Code Sebnversion February 1998 11-29

11

11-30

Code Set Negotiation

The clientside ORB determines a server's natared conversion code sdtem the

code set component in an IQ@Rulti-component proile structureand it cetermines a
client's native and conversion codets from the locale setting (and/or environment
variables/configuration files) and the converters that are available on the client. From
this information, the client-side OR&hooseshar andwchar transmission code sets
(TCS-C and TCS-W). For both negsts and replies, ttehar TCS-Cdetermines the
encoding ofchar andstring data, and thevchar TCS-Wdetermines thencoding of
wchar andwstring data.

Code set negotiation is not performed on a per-request basis, but only when a client
initially connects to a server. All text data communicated on a connecti@neoeed
as defined by the TCSs selecte@tlenthe connection is established.

As the following figure illustrates, there are two channels for character data flowing
between the client and the server. The first, TCS-C, is usethéwrdata and the
second, TCS-W, is used farchar data. Also note that twoative code sets, one for
each type of data, could be used by the clent server to talk ttheir respective
ORBs (as noted elaar, the selection ofhe particular native code set used at any
particular point isdlone viasetlocale = or some other implementatiatependent
method).

Server's native

Client's native Transmission code set

code set for char) for char (TCS-C) code set for char

> > Client < > Server > .
Side Side

Client
JEYVEIS

ey ORB (< ————-| ORD |-<—-
Transmission code set X .
Client’s native for wchar (TCS-W) Servers native

code set for wchar code set for wchar

Figure 11-8 Transmission Code Set Use

Let us look at an example. Assume that the code set information for aatigdserver
is as shown in the table below. (Note that this example is talking aboutlmarlycode
sets and isplicable only for data described @sars in the IDL.)

Client Server

Native code set: SJIS eucJP
Conversion code eucJP, SJIS,
sets: JIS JIS

The clientside ORB first compares the native code sets of the client and server. If they
are identical, then the transmission aradivecode sets are the same and no conversion
is required. In this example, they aliéferent, so code s&onversion is necessary.

Next, the client-side ORB checks to see if the servaativecode set, eucJP, is one of
the conversion code sets supported by the client. It is, so eucJP is selected as the

CORBAV2.2 February 1998

11

transmission code set, with the client (i.e., its ORB) performing conversion to and from
its native code set, SJIS, to eucJP. Note that the client nsapdive to converall its
data described ashars (and possiblyvchar _ts) from process codes to SJIS first.

Now let us look at the general algorithm for determining a transmissida set and
where conversions are performed. First, we introduce the following abbreviations:

® CNCS - Client NativeCode Set;

® CCCS - Client Conversion Code Sets;

® SNCS - Server Native Codget;

® SCCS - Server Conversion Code Sets; and

® TCS - Transmission Code Set.

The algorithm is as follows:

if (CNCS==SNCS)

TCS = CNCS; /I no conversion required
else {
if (elementOf(SNCS,CCCS))
TCS = SNCS; // client converts to server’s native code set
else if (elementOf(CNCS,SCCS))
TCS = CNCS; /I server converts from client’s native code set
else if (intersection(CCCS,SCCS) != emptySet) {
TCS = oneOf(intersection(CCCS,SCCYS));
/I client chooses TCS, from intersection(CCCS,SCCS), that is
/I most preferable to server;
/I client converts from CNCS to TCS and server from TCS to SNCS
else if (compatible(CNCS,SNCS))
TCS =fallbackCsS; /I fallbacks are UTF-8 (for char data) and
/I UTF-16 (for wchar data)
else
raise CODESET_INCOMPATIBLE exception;
}

The algorithm first dciecks to see if the cliemind servenativecode sets are the same.

If they are, then the nativeode set is used faransmissiorand no conversion is

required. If the native code sets are not the same, then the conwad®sets are
examined to see if (1) the client can eert from its nativecode set to the server’s
nativecode set; (2) the server can convert fromdlent’s native code set to its native
code set; 0(3) transmission thragh anintermediate conversion code set is possible. If
the third option is selected and there is more than one possible intermediate conversion
code set (i.e., the intersection of CCCS and SCG®agts more than one codet),

then the one most preferable to the server is selécted.

3.Recall that server conversion code sets are listed in order of preference.

CORBAV2.2 Code Sebnversion February 1998 11-31

11

11-32

If none of these conversions is possible, then the fallback setd@TF-8 for char

data and UTF-16 fowchar data— see below) is used. However, before selecting the
fallback code set, a compatibility test is performed. This test looks at the character sets
encoded by the client and server native code sets. If they are diffeenK@rean and
French), then meaningfgbommunication beteen the clienand server is not possible

and a CODESET_INCOMPATIBLEEXxception is raised. This test is similar to the DCE
compatibility test and is intended to catch those cases where conversion from the client
native code set to the fallbacknd the fallback to the serveative code set would

result in massive data log&See 11.9 on page 11-35 for ttedevant OSF registry
interfaces that could be used fartdrmining compatiltity.)

A DATA_CONVERSION exception is raised when a client or servégrapts to

transmit a character that does not map intonégotiatedransmission code set. For
example, not all characters in Taiwan Chinese map imicdde. When an tmpt is
made to transmibne of these characters via Unicode, an ORB is required to raise a
DATA_CONVERSION exception.

In summary, the fallbackode set is UTF-8 farthar data (identified in the 8gistry as
0x05010001, “X/Open UTF-8; UCSrdnsformation Format 8 (UTF-8)"), and UTF-16
for wchar data (identified in the Registry ag@010109, "ISO/IEC 10646-1:1993;
UTF-16, UCS Transformation Format 16-bit form"). mentioned above the fallback
code set is meaningful onlyhen theclientand server character sets are compatible,
and the fallbaclcode set is distinguishdtbm a defaulicode set used fdyackward
compatibility.

If a server's nativehar code set is not specified in the |ORulti-component profile,
then it is considered to be 1ISO 8859-1 for backwamahpatibility. However, a server
that supports interfaces that use wide character data is required to #getétive
wchar codeset; ifone is notspecified, then the client-side ORB raises exception
INV_OBJREF.

Similarly, if nochar transmission ade set ispecified in the code set service context,
then thechar transmission code set is considered to be 8869-1for backvard
compatibility. If a client transmit&/ide character data and does not speitifyvchar
transmission code set in the service context, then the server-side ORB raises exceptior
BAD_PARAM.

To guarantee “out-of-the-box” interoperhtyi clientsand servers must be able to

convert betweetheir nativechar code set and UTF-8 arideir nativewchar code set

(if specified) and Unicde. Note that this does not require that all semative code

sets be mappable to Unicode, but only those that are exported as native in the IOR. The
server may have other native code sets that aren’t mappable to Unicode and those car
be exported as SCCSs (but not SNCSs). This is done to guarantee out-of-the-box
interoperability and to reduce the number of codecenveters that a CORBA-

compliant ORB must provide.

ORB implementations are strongly encouraged to use widely-used code sets for each
regional market. For example, in the Japanese marketplace, allmi@&nentations
should support Japanese EUC, JIS and Shift JIS to be compatible with existing
business practices.

CORBAV2.2 February 1998

11

11.7.3 Mapping to Generi€Character Environments

Certain language environments do dattinguish between byte-oriented and wide
characters. In such environments bolttar andwchar are mapped to the same
“generic” character representation of the laage.string andwstring are likewise
mapped to generistrings in such environment&xamples of language environments
that provide generic character support are Smalltalk adad A

Even while using languages that daetiiguish between wide and byte-oriented
characters (e.g., C and C++), it is possible imimsome generic behavior by the use
of suitable macros ansupport libraries. For example, developers of Windows NT and
Windows 95 applications can write portable code between NT (which uses Unicode
strings) and Windows 95 (which uses byte-oriented charatrtegs) by using a set of
macros for declaring and manipulating characéerd character strgs. Appendix A in

this chapteshows how tanap wide and byte-oriented characters to these generic
macros.

Another way to achieve generic manipulation of characters and stringgrisaliyig
them as abstract data types (ADTs). For exampriifgs were treated as abstract
data types and the pgrammers are required to create, destamgl manipulatestrings
only through the operations in the ADT interface, then it becomes possible to write
code that is representation independent. This approach has an advantage over the
macro-based approach in that it provides portability between byte-oriendedide
character environments even without recompilation (at runtime the string fucatien
are bound to the appropriate byte-oriented/wide library). Anotlagrof looking at it

is that the macro-based genericity gives cdeapime flexibility, while ADT-based
genericity gives runtime flexibility.

Yet another way to achieve generic manipulation of character data is througN$he A
C++ Strings library defined as a template that can be parameterizgthby
wchar_t or other integer types.

Given that there can be sevenalys oftreating characters and characitnings in a
generic way, this standard cannot, and therefore does not, specify the mapgiag, of
wchar, string andwstring to all of them. It only specifies the followingprmative
requirements which are applicable to generic character environments:

® wchar must bemapped to the generic character type in a generic character
environment.

® wstring must be mpped to a string of such genericachcters in a generic
character environment.

®* The language binding files €i., stubs) generated for these generic environments
must ensure that the generic type representation is converted to the appropriate code
sets (i.e., CNCS on the client side and SNCS on the server side) before character
data is given to the ORB rumte for transmission.

CORBAV2.2 Code Sebnversion February 1998 11-33

11

Describing Generic Interfaces

To describe generic interfaces in IDL we recommend usicttar andwstring .

These can be mapped to generic character types in environments where they do exist
and to wide characters where they do not. Eitisgy interoperation between generic

and non-generic @racter type environments is achieved because of the code set
conversion framework.

Interoperation

Let us consider an example to see how a generic environment can interoperate with a
non-generic environment. Let us say there is an IDL interfatte voth char and

wchar parameters on the operations, and let us say the client pfténface is in a

generic environment while the server is in a non-generic environment (for example the
client is written in Smalltalland the server iwritten in C++).

Assume that theerver’s (byte-oriented) natidnar code set (SNCS) is eucJP and the
client's nativechar code set (CNCS) is SJIS. Further assume that the code set
negotiation led to the decision to use eucJP ashhe TCS-C and Unicode as the
wchar TCS-W.

As per the aboveaormative requirements for mapping to a generic environment, the
client's Smalltalk stubs are responsible for convertingladlr data (however they are
represented inside Smalltalk) $3J1S and alvchar data to the client's/char code set
before passing the data to the client-side ORB. (Note that this conversion could be an
identity mapping if the internal representationnafrow and wide characters is the

same as that of the native cagkt(s).)The clientside ORB now converts athar data

from SJIS to eucJP arall wechar data from the client'sichar code set tdJnicode,

and thentransmits to the server side.

The server side ORB and stubs cenvtheeucJP data and Unicode data into C++’s
internal representation fawhars andwchar s as dictated by the IDL operation
signatures. Notice that when the dataives at the server side it does not look any
different from dataarriving from a nm-generic environment (e.g., that is just like the
server itself). In othewords, the mappings to genericachcter environments do not
affect the odeset conversion frameavk.

11.8 Example of Generic Environment Mapping

This Appendix showsow char, wchar, string , andwchar can be mapped to the
generic C/C++ macros of the Windows environment. Thimésely to illustrateone
possibility. This Appendix is natormative and is applicable only in generic
environments. See “Mapping to Generic Character Environments” on page 11-33.

11-34 CORBAV2.2 February 1998

11

11.8.1 Generic Mappings

char andstring are mapped t&€/C++char andchar* as per the standard C/C++
mappingswchar is mapped to the CHARmacro which expands to eithemar or
wchar_t depending on whethetUNICODEis definedwstring is mapped to
pointers toTCHARas well as to the string cla8ORBA::Wstring_var . Literal
strings in IDL are mapped to th&EXT macro as in TEXT(<literal>)

11.8.2 Interoperation and Generic Mappings

We now illustrate howhe interoperation works with the above generic mapping.
Consider an IDL interface operation withastring parameter, a client for the

operation which is compiled and run on a Windows 95 machine, and a server for the
operation which is compiled and run on a Windows NT machine. Assume that the
locale (and/or the environment variables for CNCSwohar representation) on the
Windows 95client indicates the client’s nativeode set to be SJIand that the
corresponding server’s native code set is Udécol he code setegotiation in this case

will probably choose Unicode as the TCS-W.

Both theclientand server sides will be compiled witthNICODEdefined. The IDL
typewstring will be represented as a stringva¢har_t on the client. However, since

the client's locale or environment indicates that the CNCS for wide characters is SJIS,
the client side ORB will get the@string parameter encoded as a SJIS multi-byte string
(since that is the client’s nativde set), which it will then convert to Unicode before
transmitting tathe server. On the server side the ORB has no conversions to do since
the TCS-W matches the servenativecode set for wide characters.

We therefore notice that the code set converBameworkhandles the necessary
translations between byte-oriented and wide forms.

11.9 Relevan®DSFM Registry Interfaces

11.9.1 Character and Code Set Registry

The OSF character and codet registry is defined i@SF Character and Code Set
Registry(see References in the Preface) and current registry contents may be obtained
directly from the Open Softwafeourdation (obtain via monymous ftp to
ftp.opengroup.org:/pub/code_set_registry). Tieigistry containgwo parts: character

sets, and code sets. For each listed code set, the set of chegtcenoded bythis

code set is shown.

Each 32-bit codeet value consists of a high-order 16-bit organization nurabera
16-bit identification of thecode set within that organization. As the numbering of
organizations starts with 0801, a codeset null value (0x0000000) may be used to
indicate an unknown code set.

When associating character sets and code sets, OSF uses the concept of “fuzzy
equality,” meaning that a code set is shown as encoding a particular character set if the
code set can encode “most” of the characters.

CORBAV2.2 RelevantOSFM Registry Interfaces February 1998 11-35

11

“Compatibility” is deternmed with respect towo codesets by examining their entries

in the registrypaying special attention to the character sets encoded by each code set.
For each of the two code sets, attempt is made to see if there is at least (fuzzy-
defined) character set in commamd if such a charactset is found, then the
assumption is made that these code sets are “compatible.” Obviously, applications
which exploit parts of a character set not properly encod¢gisrscheme will suffer
informationloss when communicating with another application in this “fuzzy” scheme.

The ORB is respnsible for accessing the OSF registry and determining
“compatibility” based on the information returned.

OSF members and other organizations can request additions to both the character set
and codeset registries by email to cs-registry@nogeoup.org; inparticular, one nage

of the code set registry0Xf5000000 through Oxffffffff) is reserved for
organizations to use in identifying sets which are not registered with the OSF (although
such use would ndacilitate interoperability whout regstration).

11.9.2 Access Routines

The following routines are for aessinghe OSF character and code set registry. These
routines map a code set string name to code saiddvice versa. They also help in
determining character set compatibility. These routine interfaces, their semantics and
their actual implementation are not normatfve., ORB vendors do not have to bundle
the OSF registry implementationittv their products for compliance).

Thefollowing routines are adopted froRPC Runtime Support For I18N Characters -
Functional Specificatiorfsee References in the Preface).

dce _cs_loc _to _rgy

Maps a local system-specific string name faroale set to a numeric code set value
specified in the code set rsiy.

SYNOPSIS

void dce_cs_loc_to_rgy(
idl_char *local_code_set _name,
unsigned32 *rgy_code_set value,
unsigned16 *rgy_char_sets_number,
unsigned16 **rgy_char_sets_value,
error_status_t *status);

PARAMETERS

Input
local_code_set name
A string that specifies the name that the local host's locale environment uses to
refer to thecode set. The string is a maximum of 32 bytes: 31 data bytes plus a
terminaing NULL charater.

11-36 CORBAV2.2 February 1998

11

Output
rgy_code_set_value
The registered integer value that uniquely identifies the code set specified by
local_code_set _name.

rgy_char_sets_number
The number of character sets that the specified code set encodes. Specifying
NULL prevents this routine from returning this parameter.

rgy_char_sets value
A pointer to an array of regesed intger values that uniquely identify the
character set(s) that the specif@tie set encodes. Specifying NULL prevents
this routine from returning this parametEne routine dynainally allocates
this value.

status
Retumns the status code from this routine. This status code indicates whether
the routine completesluccessfully or, if not, why not.

The possiblestatus codes and their meanings are as follows:

dce_cs_c_ok — Code set registry access operation succeeded.

dce_cs_c_cannatllocate_memory -Cannot allocate memory for code set
info.

dce_cs_c_unknown — No code set value was not found ingisryavhich
corresponds to the code set name specified.

dce_cs_c_notfound — Nodal code set name was found in thgistey which
corresponds to the name specified.

DESCRIPTION

The dce_cs_loc_to_rgy() routimeaps operating system-specific names for
character/code set encodings to their unique identifiers in the code satyregi

The dce_cs_loc_to_rgy() routinakes as input a string that holds the host-specific
“local name” of a code seind returns the corresponding integer vaheg uniquely
identifies that ode set, asegistered in the host's code set registry. If the integer value
does nogxist in the registry, the routine returns the stattes ds_c_unknown.

Theroutine also returns the number of character sets that the code set earud des
registered integer values that uniquely identify those character sets. Specifying NULL
in the rgy_char_sets_number and rgy_char_sets_value[] parameters prevents the
routine from performing the additional search for these values. Applications that want
only to obtain a code set value from the code set regiatnyspecify NULL for these
parameters in order to improve the routine's performance. If the value is returned from
the routine, application developers should free the array afterset since the array
is dynamically allocated.

dce_cs_rgy _to_loc

Maps a numeric code set value contained in the code set registry to theykieah-
specific name for a code set.

CORBAV2.2 RelevantOSFM Registry Interfaces February 1998 11-37

11

SYNOPSIS

void dce_cs_rgy_to_loc(
unsigned32 *rgy_code_set value,
idl_char **local_code_set_name,
unsigned16 *rgy_char_sets_number,
unsigned16 **rgy_char_sets_value,
error_status_t *status);

PARAMETERS
Input
rgy_code_set value
The registered hexadecimal value that uniquely identifies the code set.

Output
local_code_set name
A string that specifies the name that the local host's locale environment uses to
refer to the code set. The string is a maximum of 32 bytedatilbytes and a
terminaing NULL charater.

rgy_char_sets number
The number of character sets that the specified code set encodes. Specifying
NULL in this parameter prevents the routine from returning this value.

rgy_char_sets value
A pointer to an array of regered intger values that uniquely identify the
character set(s) that the speciftamtie set encodes. Specifying NULL in this
parameter prevents the routine from returntig value. The routine dynami-
cally allocates this value.

status
Returns the status code from this routine. This status code indicates whether
the routine completesiuccessfully or, if not why not.

The possiblestatus codes and their meanings are as follows:

dce_cs_c ok — Code set registry access operation succeeded.

dce_cs_c_cannatllocate_memory -Cannot allocate memory for code set
info.

dce_cs_c_unknown — The requested code set value was not found in the code
set registry.

dce_cs_c_notfound — Nodal code set name was found in thgistey which
corresponds to to the specific codersgtstry ID value. This implies that the
code set is not supported in the local system environment.

DESCRIPTION

The dcecs_rgy to_loc() routine maps a unique identifier f@ode set in the code set
registry to the operating system-specific string name for the code set, if it exists in the
code set registry.

The dce_cs_rgy_to_loc(butine takes as input a registered integer value of a code set
and returns a string that holds the operasiystem-specific, or local name, of tbede
set.

11-38 CORBAV2.2 February 1998

11

If the code setdentifier does nokexist in the registry, the routine returns the status
dce_cs_c_unknown and returns an undefisteithg.

Theroutine also returns the number of character sets that the code set earud des
registered integer values that uniquely identify those character sets. Specifying NULL
in the rgy_char_sets_number and rgy_char_sets_value[] parameters prevents the
routine from performing the additional search for these values. Applications that want
only to obtain a local code set name from tloele set registry can specify NULL for
these parameters order to improve the routine's performance. If the value is returned
from the routine, application developers should free the rgy_char_sets_value array after
it is used.

rpc_cs_char_set_compat_check

Evaluates character set conipdity between a client and a server.

SYNOPSIS
void rpc_cs_char_set_compat_check(
unsigned32 client_rgy_code_set_value,
unsigned32 server_rgy _code_set_value,
error_status_t *status);

PARAMETERS
Input
client_gy_code_set value
The registered hexadecimal value that uniquely identifies the code set that the
client isusing as its local code set.

server_rgy_code_set value
The registered hexadecimal value that uniquely identifies the code set that the
server is using as its local code set.

Output
status
Returns the status code from this routine. This status code indicates whether
the routine completesluccessfully or, if not, why not.

The possiblestatus codes and their meanings are as follows:
rpc_s_ok — Successful status.
rpc_s_ss_no_compat_charsets — No cdibjgacode set found. Theieht and
server do no have a common encoding that both could recognize and convert.
The routine can also return status codes from the dce_cs_rgy_to_loc() routine.

DESCRIPTION

The rpc_cs_char_set _compat_check() irmuprovides a method for determining
character set compatibilityetween a client and a server; if $&rver's character set is
incompatible with that of the client, then connecting to that server is most likely not
acceptable, sincmassive data lossould resultfrom such a connection.

CORBAV2.2 RelevantOSFM Registry Interfaces February 1998 11-39

11

11-40

The routine takes the registered integer values that represenvdieesets that the

client and server areurrently using and calls the code set registry to obtain the
registered values that represent the character set(s) that the specified code sets suppor
If both client and server support just one character setptiténe compares clieraind

server registered character set values to determine whether or not the sets are
compatible. If they are not, the routine returns skedusmessage
rpc_s_ss_no_compat_charsets.

If the clientand server supponultiple character sets, the routine determines whether
at least two of the sets are compatible. If two or more sets match, the routine considers
the character sets compatible, and returns a success status code to the caller.

rpc_rgy_get_max_bytes

Gets the maxnum number of bytes thatemde set uses to encode one character from
the code set registry on a host

SYNOPSIS
void rpc_rgy_get_max_bytes(
unsigned32 rgy_code_set value,
unsigned16 *rgy_max_bytes,
error_status_t *status);

PARAMETERS

Input
rgy_code_set_value
The registered hexadecimal value that uniquely identifies the code set.

Output
rgy_max_bytes
The registered decimal value that iratees the number of bytes this code set
uses to encode one chete.

status
Returns the status code from this routine. This status code indicates whether
the routine completesluccessfully or, if not, why not.

The possiblestatus codes and their meanings are as follows:

rpc_s_ok — Operation succeeded.

dce_cs_c_cannatllocate_memory -Cannot allocate memory for code set
info.

dce_cs_c_unknown — No code set value was not found ingfsryavhich
corresponds to the code set value specified.

dce_cs_c_notfound — Nodal code set name was found in thgistey which
corresponds to the value specified.

CORBAV2.2 February 1998

11

DESCRIPTION

Therpc_rgy_get_max_bytes() routine reads the code set registry on the local host. It
takes the specified registeredde set value, uses it as an index intoréggstry,and
returns the decimal value that indicates the number of bytes thabdieeset uses to

encode one character.

This information can be used for buffer sizing as part of the proceddetdomine
whether additional storage needs to be allocated for conversion between local and
network code sets.

CORBAV2.2 RelevantOSFM Registry Interfaces February 1998 11-41

11

11-42 CORBAV2.2 February 1998

	ORB Interoperability Architecture
	11.1 Overview
	11.1.1 Domains
	11.1.2 Bridging Domains

	11.2 ORBs and ORB Services
	11.2.1 The Nature of ORB Services
	11.2.2 ORB Services and Object Requests
	11.2.3 Selection of ORB Services

	11.3 Domains
	11.3.1 Definition of a Domain
	11.3.2 Mapping Between Domains: Bridging

	11.4 Interoperability Between ORBs
	11.4.1 ORB Services and Domains
	11.4.2 ORBs and Domains
	11.4.3 Interoperability Approaches
	11.4.4 Policy-Mediated Bridging
	11.4.5 Configurations of Bridges in Networks

	11.5 Object Addressing
	11.5.1 Domain-relative Object Referencing
	11.5.2 Handling of Referencing Between Domains

	11.6 An Information Model for Object References
	11.6.1 What Information Do Bridges Need?
	11.6.2 Interoperable Object References: IORs
	11.6.3 Standard IOR Components
	11.6.4 Profile and Component Composition in IORs
	11.6.5 IOR Creation and Scope
	11.6.6 Stringified Object References
	11.6.7 Object Service Context

	11.7 Code Set Conversion
	11.7.1 Character Processing Terminology
	11.7.2 Code Set Conversion Framework
	11.7.3 Mapping to Generic Character Environments

	11.8 Example of Generic Environment Mapping
	11.8.1 Generic Mappings
	11.8.2 Interoperation and Generic Mappings

	11.9 Relevant OSFM Registry Interfaces
	11.9.1 Character and Code Set Registry
	11.9.2 Access Routines

