
ORB Interoperability Architecture 11
Contents

This chapter contains the following sections. 

11.1 Overview

The original Request for Proposal on Interoperability (OMG Document 93-9-15) 
defines interoperability as the ability for a client on ORB A to invoke an OMG IDL-
defined operation on an object on ORB B, where ORB A and ORB B are 
independently developed. It further identifies general requirements including in 
particular:

• Ability for two vendors’ ORBs to interoperate without prior knowledge of each 
other’s implementation.

• Support of all ORB functionality.

Section Title Page

“Overview” 11-1

“ORBs and ORB Services” 11-3

“Domains” 11-5

“Interoperability Between ORBs” 11-7

“Object Addressing” 11-11

“An Information Model for Object References” 11-14

“Code Set Conversion” 11-22

“Example of Generic Environment Mapping” 11-34

“Relevant OSFM Registry Interfaces” 11-35
                                 CORBA V2.2                               February 1998 11-1



11

e 
ate 

be 
ents 
y 

 

B 
re. 
y 

d 
• Preservation of content and semantics of ORB-specific information across ORB 
boundaries (for example, security).

In effect, the requirement is for invocations between client and server objects to b
independent of whether they are on the same or different ORBs, and not to mand
fundamental modifications to existing ORB products.

11.1.1 Domains

The CORBA Object Model identifies various distribution transparencies that must 
supported within a single ORB environment, such as location transparency. Elem
of ORB functionality often correspond directly to such transparencies. Interoperabilit
can be viewed as extending transparencies to span multiple ORBs.

In this architecture a domain is a distinct scope, within which certain common 
characteristics are exhibited and common rules are observed: over which a distribution 
transparency is preserved. Thus, interoperability is fundamentally involved with 
transparently crossing such domain boundaries.

Domains tend to be either administrative or technological in nature, and need not 
correspond to the boundaries of an ORB installation. Administrative domains include 
naming domains, trust groups, resource management domains and other “run-time” 
characteristics of a system. Technology domains identify common protocols, syntaxes
and similar “build-time” characteristics. In many cases, the need for technology 
domains derives from basic requirements of administrative domains.

Within a single ORB, most domains are likely to have similar scope to that of the OR
itself: common object references, network addresses, security mechanisms, and mo
However, it is possible for there to be multiple domains of the same type supported b
a given ORB: internal representation on different machine types, or security domains. 
Conversely, a domain may span several ORBs: similar network addresses may be use
by different ORBs, type identifiers may be shared.

11.1.2 Bridging Domains

The abstract architecture describes ORB interoperability in terms of the translation 
required when an object request traverses domain boundaries. Conceptually, a mapping 
or bridging mechanism resides at the boundary between the domains, transforming 
requests expressed in terms of one domain’s model into the model of the destination 
domain.

The concrete architecture identifies two approaches to inter-ORB bridging: 

• At application level, allowing flexibility and portability

• At ORB level, built into the ORB itself
11-2                                  CORBA V2.2                               February 1998



11

e 
t, 

ese 
 
RB’s 

n 

 
s, or 

ge 
 and 

est. 
es, 
rvices 

B 

.

11.2 ORBs and ORB Services

The ORB Core is that part of the ORB which provides the basic representation of 
objects and the communication of requests. The ORB Core therefore supports th
minimum functionality to enable a client to invoke an operation on a server objec
with (some of) the distribution transparencies required by CORBA. 

An object request may have implicit attributes which affect the way in which it is 
communicated - though not the way in which a client makes the request. These 
attributes include security, transactional capabilities, recovery, and replication. Th
features are provided by “ORB Services,” which will in some ORBs be layered as
internal services over the core, or in other cases be incorporated directly into an O
core. It is an aim of this specification to allow for new ORB Services to be defined in 
the future, without the need to modify or enhance this architecture.

Within a single ORB, ORB services required to communicate a request will be 
implemented and (implicitly) invoked in a private manner. For interoperability betwee
ORBs, the ORB services used in the ORBs, and the correspondence between them, 
must be identified.

11.2.1 The Nature of ORB Services

ORB Services are invoked implicitly in the course of application-level interactions. 
ORB Services range from fundamental mechanisms such as reference resolutionand 
message encoding to advanced features such as support for security, transaction
replication.

An ORB Service is often related to a particular transparency. For example, messa
encoding – the marshaling and unmarshaling of the components of a request into
out of message buffers – provides transparency of the representation of the requ
Similarly, reference resolution supports location transparency. Some transparenci
such as security, are supported by a combination of ORB Services and Object Se
while others, such as replication, may involve interactions between ORB Services 
themselves.

ORB Services differ from Object Services in that they are positioned below the 
application and are invoked transparently to the application code. However, many OR
Services include components which correspond to conventional Object Services in that 
they are invoked explicitly by the application. 

Security is an example of service with both ORB Service and normal Object Service 
components, the ORB components being those associated with transparently 
authenticating messages and controlling access to objects while the necessary 
administration and management functions resemble conventional Object Services

11.2.2 ORB Services and Object Requests

Interoperability between ORBs extends the scope of distribution transparencies and 
other request attributes to span multiple ORBs. This requires the establishment of 
relationships between supporting ORB Services in the different ORBs.
CORBA V2.2        ORBs and ORB Services             February 1998 11-3



11

is 

ect, 

t, 
 

 
f a 
tiple 

t 

s 

 
t 
 true 
and 
e or 

he 
order 

nd 
In order to discuss how the relationships between ORB Services are established, it 
necessary to describe an abstract view of how an operation invocation is communicated 
from client to server object. 

• The client generates an operation request, using a reference to the server obj
explicit parameters, and an implicit invocation context. This is processed by certain 
ORB Services on the client path.

• On the server side, corresponding ORB Services process the incoming reques
transforming it into a form directly suitable for invoking the operation on the server
object.

• The server object performs the requested operation.

• Any result of the operation is returned to the client in a similar manner.

The correspondence between client-side and server-side ORB Services need not be
one-to-one and in some circumstances may be far more complex. For example, i
client application requests an operation on a replicated server, there may be mul
server-side ORB service instances, possibly interacting with each other. 

In other cases, such as security, client-side or server-side ORB Services may interac
with Object Services such as authentication servers. 

11.2.3 Selection of ORB Services

The ORB Services used are determined by:

• Static properties of both client and server objects; for example, whether a server i
replicated.

• Dynamic attributes determined by a particular invocation context; for example, 
whether a request is transactional.

• Administrative policies (e.g., security).

Within a single ORB, private mechanisms (and optimizations) can be used to establish
which ORB Services are required and how they are provided. Service selection migh
in general require negotiation to select protocols or protocol options. The same is
between different ORBs: it is necessary to agree which ORB Services are used, 
how each transforms the request. Ultimately, these choices become manifest as on
more protocols between the ORBs or as transformations of requests.

In principle, agreement on the use of each ORB Service can be independent of t
others and, in appropriately constructed ORBs, services could be layered in any 
or in any grouping. This potentially allows applications to specify selective 
transparencies according to their requirements, although at this time CORBA provides 
no way to penetrate its transparencies. 

A client ORB must be able to determine which ORB Services must be used in order to 
invoke operations on a server object. Correspondingly, where a client requires dynamic 
attributes to be associated with specific invocations, or administrative policies dictate, 
it must be possible to cause the appropriate ORB Services to be used on client a
11-4                                  CORBA V2.2                               February 1998



11

le, 

f 

 

g by 
and 

).

 a 
 

t and 

 them 

rent 
server sides of the invocation path. Where this is not possible - because, for examp
one ORB does not support the full set of services required - either the interaction 
cannot proceed or it can only do so with reduced facilities or transparencies.

11.3 Domains

From a computational viewpoint, the OMG Object Model identifies various 
distribution transparencies which ensure that client and server objects are presented 
with a uniform view of a heterogeneous distributed system. From an engineering 
viewpoint, however, the system is not wholly uniform. There may be distinctions o
location and possibly many others such as processor architecture, networking 
mechanisms and data representations. Even when a single ORB implementation is used 
throughout the system, local instances may represent distinct, possibly optimized
scopes for some aspects of ORB functionality.

Figure 11-1 Different Kinds of Domains can Coexist.

Interoperability, by definition, introduces further distinctions, notably between the 
scopes associated with each ORB. To describe both the requirements for 
interoperability and some of the solutions, this architecture introduces the concept of 
domains to describe the scopes and their implications.

Informally, a domain is a set of objects sharing a common characteristic or abidin
common rules. It is a powerful modelling concept which can simplify the analysis 
description of complex systems. There may be many types of domains (e.g., 
management domains, naming domains, language domains, and technology domains

11.3.1 Definition of a Domain

Domains allow partitioning of systems into collections of components which have 
some characteristic in common. In this architecture a domain is a scope in which
collection of objects, said to be members of the domain, is associated with some
common characteristic; any object for which the association does not exist, or is 
undefined, is not a member of the domain. A domain can be modelled as an objec
may be itself a member of other domains.

It is the scopes themselves and the object associations or bindings defined within
which characterize a domain. This information is disjoint between domains. However, 
an object may be a member of several domains, of similar kinds as well as of diffe
kinds, and so the sets of members of domains may overlap. 

Representation Representation

Reference Reference

Security

Networking
CORBA V2.2        Domains             February 1998 11-5



11

of 

l

ithin 

 

re 

s the 
erior 

f 
The concept of a domain boundary is defined as the limit of the scope in which a 
particular characteristic is valid or meaningful. When a characteristic in one domain is 
translated to an equivalent in another domain, it is convenient to consider it as 
traversing the boundary between the two domains.

Domains are generally either administrative or technological in nature. Examples 
domains related to ORB interoperability issues are:

• Referencing domain – the scope of an object reference

• Representation domain – the scope of a message transfer syntax and protoco

• Network addressing domain – the scope of a network address

• Network connectivity domain – the potential scope of a network message

• Security domain – the extent of a particular security policy

• Type domain – the scope of a particular type identifier

• Transaction domain – the scope of a given transaction service

Domains can be related in two ways: containment, where a domain is contained w
another domain, and federation, where two domains are joined in a manner agreed and 
set up by their administrators. 

11.3.2 Mapping Between Domains: Bridging

Interoperability between domains is only possible if there is a well-defined mapping 
between the behaviors of the domains being joined. Conceptually, a mapping 
mechanism or bridge resides at the boundary between the domains, transforming
requests expressed in terms of one domain’s model into the model of the destination 
domain. Note that the use of the term “bridge” in this context is conceptual and refers 
only to the functionality which performs the required mappings between distinct 
domains. There are several implementation options for such bridges and these a
discussed elsewhere. 

For full interoperability, it is essential that all the concepts used in one domain are 
transformable into concepts in other domains with which interoperability is required, 
or that if the bridge mechanism filters such a concept out, nothing is lost as far a
supported objects are concerned. In other words, one domain may support a sup
service to others, but such a superior functionality will not be available to an 
application system spanning those domains.

A special case of this requirement is that the object models of the two domains need to 
be compatible. This specification assumes that both domains are strictly compliant 
with the CORBA Object Model and the CORBA specifications. This includes the use o
OMG IDL when defining interfaces, the use of the CORBA Core Interface Repository, 
and other modifications that were made to CORBA. Variances from this model could 
easily compromise some aspects of interoperability.
11-6                                  CORBA V2.2                               February 1998



11

on 

must 

(e.g. 

: 

e 
cture 

nge 

 all 

 
es 
e 

ries 
11.4 Interoperability Between ORBs

An ORB “provides the mechanisms by which objects transparently make and receive 
requests and responses. In so doing, the ORB provides interoperability between 
applications on different machines in heterogeneous distributed environments...” ORB 
interoperability extends this definition to cases in which client and server objects 
different ORBs “transparently make and receive requests...” 

Note that a direct consequence of this transparency requirement is that bridging 
be bidirectional: that is, it must work as effectively for object references passed as 
parameters as for the target of an object invocation. Were bridging unidirectional 
if one ORB could only be a client to another) then transparency would not have been 
provided, because object references passed as parameters would not work correctly
ones passed as “callback objects,” for example, could not be used.

Without loss of generality, most of this specification focuses on bridging in only one 
direction. This is purely to simplify discussions, and does not imply that unidirectional 
connectivity satisfies basic interoperability requirements.

11.4.1 ORB Services and Domains

In this architecture, different aspects of ORB functionality - ORB Services - can b
considered independently and associated with different domain types. The archite
does not, however, prescribe any particular decomposition of ORB functionality and 
interoperability into ORB Services and corresponding domain types. There is a ra
of possibilities for such a decomposition:

1. The simplest model, for interoperability, is to treat all objects supported by one 
ORB (or, alternatively, all ORBs of a given type) as comprising one domain. 
Interoperability between any pair of different domains (or domain types) is then 
achieved by a specific all-encompassing bridge between the domains. (This is
CORBA implies.)

2. More detailed decompositions would identify particular domain types - such as
referencing, representation, security, and networking. A core set of domain typ
would be pre-determined and allowance made for additional domain types to b
defined as future requirements dictate (e.g., for new ORB Services).

11.4.2 ORBs and Domains

In many respects, issues of interoperability between ORBs are similar to those which 
can arise with a single type of ORB (e.g., a product). For example:

• Two installations of the ORB may be installed in different security domains, with 
different Principal identifiers. Requests crossing those security domain bounda
will need to establish locally meaningful Principals for the caller identity, and for 
any Principals passed as parameters.

• Different installations might assign different type identifiers for equivalent types, 
and so requests crossing type domain boundaries would need to establish locally 
meaningful type identifiers (and perhaps more).
CORBA V2.2        Interoperability Between ORBs             February 1998 11-7



11

 a 

 be 

 
 
es. It 
ies 

ls or 

or 

e 

r 

een 

main 

nt 
Conversely, not all of these problems need to appear when connecting two ORBs of
different type (e.g., two different products). Examples include:

• They could be administered to share user visible naming domains, so that naming 
domains do not need bridging.

• They might reuse the same networking infrastructure, so that messages could
sent without needing to bridge different connectivity domains.

Additional problems can arise with ORBs of different types. In particular, they may 
support different concepts or models, between which there are no direct or natural
mappings. CORBA only specifies the application level view of object interactions, and
requires that distribution transparencies conceal a whole range of lower level issu
follows that within any particular ORB, the mechanisms for supporting transparenc
are not visible at the application level and are entirely a matter of implementation 
choice. So there is no guarantee that any two ORBs support similar internal mode
that there is necessarily a straightforward mapping between those models.

These observations suggest that the concept of an ORB (instance) is too coarse 
superficial to allow detailed analysis of interoperability issues between ORBs. Indeed, 
it becomes clear that an ORB instance is an elusive notion: it can perhaps best b
characterized as the intersection or coincidence of ORB Service domains.

11.4.3 Interoperability Approaches

When an interaction takes place across a domain boundary, a mapping mechanism, o
bridge, is required to transform relevant elements of the interaction as they traverse the 
boundary. There are essentially two approaches to achieving this: mediated bridging 
and immediate bridging. These approaches are described in the following subsections.

Figure 11-2 Two bridging techniques, different uses of an intermediate form agreed on betw
the two domains.

Mediated Bridging

With mediated bridging, elements of the interaction relevant to the domain are 
transformed, at the boundary of each domain, between the internal form of that do
and an agreed, common form. 

Observations on mediated bridging are as follows:

• The scope of agreement of a common form can range from a private agreeme
between two particular ORB/domain implementations to a universal standard.

Domain

Interop

Mediated Bridging

Domain Domain Domain

Interop

Immediate Bridging
11-8                                  CORBA V2.2                               February 1998



11

 can 

t, or 

diate 

iated 

 

f a 

tems. 

 to 

as 
e 
• There can be more than one common form, each oriented or optimized for a 
different purpose.

• If there is more than one possible common form, then selection of which is used
be static (e.g., administrative policy agreed between ORB vendors, or between 
system administrators) or dynamic (e.g., established separately for each objec
on each invocation).

• Engineering of this approach can range from in-line specifically compiled (compare 
to stubs) or generic library code (such as encryption routines) code, to interme
bridges to the common form.

Immediate Bridging

With immediate bridging, elements of the interaction relevant to the domain are 
transformed, at the boundary of each domain, directly between the internal form of one 
domain and the internal form of the other. 

Observations on immediate bridging are as follows:

• This approach has the potential to be optimal (in that the interaction is not med
via a third party, and can be specifically engineered for each pair of domains) but 
sacrifices flexibility and generality of interoperability to achieve this.

• This approach is often applicable when crossing domain boundaries which are 
purely administrative (i.e., there is no change of technology). For example, when 
crossing security administration domains between similar ORBs, it is not necessary 
to use a common intermediate standard.

As a general observation, the two approaches can become almost indistinguishable 
when private mechanisms are used between ORB/domain implementations. 

Location of Inter-Domain Functionality

Logically, an inter-domain bridge has components in both domains, whether the 
mediated or immediate bridging approach is used. However, domains can span ORB
boundaries and ORBs can span machine and system boundaries; conversely, a machine 
may support, or a process may have access to more than one ORB (or domain o
given type). From an engineering viewpoint, this means that the components of an 
inter-domain bridge may be dispersed or co-located, with respect to ORBs or sys
It also means that the distinction between an ORB and a bridge can be a matter of 
perspective: there is a duality between viewing inter-system messaging as belonging
ORBs, or to bridges.

For example, if a single ORB encompasses two security domains, the inter-domain 
bridge could be implemented wholly within the ORB and thus be invisible as far as 
ORB interoperability is concerned. A similar situation arises when a bridge between 
two ORBs or domains is implemented wholly within a process or system which h
access to both. In such cases, the engineering issues of inter-domain bridging ar
CORBA V2.2        Interoperability Between ORBs             February 1998 11-9



11

lely 

ace, 

n 
 
 
n 

iate 

main 
hide 

s 

 

af

cific, 
confined, possibly to a single system or process. If it were practical to implement all 
bridging in this way, then interactions between systems or processes would be so
within a single domain or ORB.

Bridging Level

As noted at the start of this section, bridges may be implemented both internally to an 
ORB and as layers above it. These are called respectively “in-line” and “request-level” 
bridges.

Request level bridges use the CORBA APIs, including the Dynamic Skeleton Interf
to receive and issue requests. However, there is an emerging class of “implicit context” 
which may be associated with some invocations, holding ORB Service informatio
such as transaction and security context information, which is not at this time exposed
through general purpose public APIs. (Those APIs expose only OMG IDL-defined
operation parameters, not implicit ones.) Rather, the precedent set with the Transactio
Service is that special purpose APIs are defined to allow bridging of each kind of 
context. This means that request level bridges must be built to specifically understand 
the implications of bridging such ORB Service domains, and to make the appropr
API calls.

11.4.4 Policy-Mediated Bridging

An assumption made through most of this specification is that the existence of do
boundaries should be transparent to requests: that the goal of interoperability is to 
such boundaries. However, if this were always the goal, then there would be no real 
need for those boundaries in the first place.

Realistically, administrative domain boundaries exist because they reflect ongoing 
differences in organizational policies or goals. Bridging the domains will in such case
require policy mediation. That is, inter-domain traffic will need to be constrained, 
controlled, or monitored; fully transparent bridging may be highly undesirable. 
Resource management policies may even need to be applied, restricting some kinds of 
traffic during certain periods.

Security policies are a particularly rich source of examples: a domain may need to 
audit external access, or to provide domain-based access control. Only a very few 
objects, types of objects, or classifications of data might be externally accessible
through a “firewall.”

Such policy-mediated bridging requires a bridge that knows something about the trfic 
being bridged. It could in general be an application-specific policy, and many policy-
mediated bridges could be parts of applications. Those might be organization-spe
off-the-shelf, or anywhere in between.

Request-level bridges, which use only public ORB APIs, easily support the addition of 
policy mediation components, without loss of access to any other system infrastructure 
that may be needed to identify or enforce the appropriate policies.
11-10                                  CORBA V2.2                               February 1998



11

 

ble 

 full-

 

isting 

t 
 
y 
11.4.5 Configurations of Bridges in Networks

In the case of network-aware ORBs, we anticipate that some ORB protocols will be
more frequently bridged to than others, and so will begin to serve the role of 
“backbone ORBs.” (This is a role that the IIOP is specifically expected to serve.) This 
use of “backbone topology” is true both on a large scale and a small scale. While a 
large scale public data network provider could define its own backbone ORB, on a 
smaller scale, any given institution will probably designate one commercially availa
ORB as its backbone.

Figure 11-3 An ORB chosen as a backbone will connect other ORBs through bridges, both
bridges and half-bridges.

Adopting a backbone style architecture is a standard administrative technique for 
managing networks. It has the consequence of minimizing the number of bridges
needed, while at the same time making the ORB topology match typical network 
organizations. (That is, it allows the number of bridges to be proportional to the 
number of protocols, rather than combinatorial.)

In large configurations, it will be common to notice that adding ORB bridges doesn’t 
even add any new “hops” to network routes, because the bridges naturally fit in 
locations where connectivity was already indirect, and augment or supplant the ex
network firewalls.

11.5 Object Addressing

The Object Model (see Chapter 1, Requests) defines an object reference as an objec
name that reliably denotes a particular object. An object reference identifies the same
object each time the reference is used in a request, and an object may be denoted b
multiple, distinct references.

Backbone ORB

ORB A

ORB CORB D

ORB B
CORBA V2.2        Object Addressing             February 1998 11-11



11

 to 
ing 

 

r 

 the 

eed 

e 

 

to 
The fundamental ORB interoperability requirement is to allow clients to use such 
object names to invoke operations on objects in other ORBs. Clients do not need
distinguish between references to objects in a local ORB or in a remote one. Provid
this transparency can be quite involved, and naming models are fundamental to it.

This section of this specification discusses models for naming entities in multiple 
domains, and transformations of such names as they cross the domain boundaries. That 
is, it presents transformations of object reference information as it passes through
networks of inter-ORB bridges. It uses the word “ORB” as synonymous with 
referencing domain; this is purely to simplify the discussion. In other contexts, “ORB” 
can usefully denote other kinds of domain.

11.5.1 Domain-relative Object Referencing

Since CORBA does not require ORBs to understand object references from othe
ORBs, when discussing object references from multiple ORBs one must always 
associate the object reference’s domain (ORB) with the object reference. We use
notation D0.R0 to denote an object reference R0 from domain D0; this is itself an 
object reference. This is called “domain-relative” referencing (or addressing) and n
not reflect the implementation of object references within any ORB.

At an implementation level, associating an object reference with an ORB is only 
important at an inter-ORB boundary; that is, inside a bridge. This is simple, since th
bridge knows from which ORB each request (or response) came, including any object 
references embedded in it.

11.5.2 Handling of Referencing Between Domains

When a bridge hands an object reference to an ORB, it must do so in a form 
understood by that ORB: the object reference must be in the recipient ORB’s native 
format. Also, in cases where that object originated from some other ORB, the bridge
must associate each newly created “proxy” object reference with (what it sees as) the 
original object reference.

Several basic schemes to solve these two problems exist. These all have advantages in 
some circumstances; all can be used, and in arbitrary combination with each other, 
since CORBA object references are opaque to applications. The ramifications of each 
scheme merits attention, with respect to scaling and administration. The schemes 
include:

1. Object Reference Translation Reference Embedding: The bridge can store the 
original object reference itself, and pass an entirely different proxy reference in
the new domain. The bridge must then manage state on behalf of each bridged 
object reference, map these references from one ORB’s format to the other’s, and 
vice versa.
11-12                                  CORBA V2.2                               February 1998



11

 

 s

bjects 

y path 
2. Reference Encapsulation: The bridge can avoid holding any state at all by 
conceptually concatenating a domain identifier to the object name. Thus if a 
reference D0.R, originating in domain D0, traversed domains D1... D4 it could be 
identified in D4 as proxy reference d3.d2.d1.d0.R, where dn is the address of Dn 
relative to Dn+1.

Figure 11-4 Reference encapsulation adds domain information during bridging.

3. Domain Reference Translation: Like object reference translation, this scheme holds
some state in the bridge. However, it supports sharing that state between multiple 
object references by adding a domain-based route identifier to the proxy (whichtill 
holds the original reference, as in the reference encapsulation scheme).

It achieves this by providing encoded domain route information each time a domain 
boundary is traversed; thus if a reference D0.R, originating in domain D0, traversed 
domains D1...D4 it would be identified in D4 as (d3, x3).R, and in D2 as (d1,x1).R, 
and so on, where dn is the address of Dn relative to Dn+1, and xn identifies the pair 
(dn-1, xn-1).

Figure 11-5 Domain Reference Translation substitutes domain references during bridging.

4. Reference Canonicalization: This scheme is like domain reference translation, 
except that the proxy uses a “well known” (e.g., global) domain identifier rather 
than an encoded path. Thus a reference R, originating in domain D0 would be 
identified in other domains as D0.R.

Observations about these approaches to inter-domain reference handling are as follows:

• Naive application of reference encapsulation could lead to arbitrarily large 
references. A “topology service” could optimize cycles within any given 
encapsulated reference and eliminate the appearance of references to local o
as alien references.

• A topology service could also optimize the chains of routes used in the domain 
reference translation scheme. Since the links in such chains are re-used by an
traversing the same sequence of domains, such optimization has particularly high 
leverage.

R
D0 D1 D2 D3 D4

d0 d1 d2 d3

R
D0 D1 D2 D3 D4

d0 d1 d2 d3
x1 x2 x3
CORBA V2.2        Object Addressing             February 1998 11-13



11

r 8.) 

ce 

name 

nd 
 
l 

.

y 

ns, 
• With the general purpose APIs defined in CORBA 2.1, object reference translation 
can be supported even by ORBs not specifically intended to support efficient 
bridging, but this approach involves the most state in intermediate bridges. As with 
reference encapsulation, a topology service could optimize individual object 
references. (APIs are defined by the Dynamic Skeleton Interface, Dynamic 
Invocation Interface, and by the object identity operations described in Chapte

• The chain of addressing links established with both object and domain referen
translation schemes must be represented as state within the network of bridges. 
There are issues associated with managing this state.

• Reference canonicalization can also be performed with managed hierarchical 
spaces such as those now in use on the Internet and X.500 naming.

11.6 An Information Model for Object References

This section provides a simple, powerful information model for the information fou
in an object reference. That model is intended to be used directly by developers of
bridging technology, and is used in that role by the IIOP, described in the Genera
Inter-ORB Protocol chapter, Object References section.

11.6.1 What Information Do Bridges Need?

The following potential information about object references has been identified as 
critical for use in bridging technologies:

• Is it null? Nulls only need to be transmitted and never support operation invocation

• What type is it? Many ORBs require knowledge of an object’s type in order to 
efficiently preserve the integrity of their type systems.

• What protocols are supported? Some ORBs support objrefs that in effect live in 
multiple referencing domains, to allow clients the choice of the most efficient 
communications facilities available.

• What ORB Services are available? As noted in “Selection of ORB Services” on 
page 11-4, several different ORB Services might be involved in an invocation. 
Providing information about those services in a standardized way could in man
cases reduce or eliminate negotiation overhead in selecting them.

11.6.2 Interoperable Object References: IORs

To provide the information above, an “Interoperable Object Reference,” (IOR) data 
structure has been provided. This data structure need not be used internally to any 
given ORB, and is not intended to be visible to application-level ORB programmers. It 
should be used only when crossing object reference domain boundaries, within bridges.

This data structure is designed to be efficient in typical single-protocol configuratio
while not penalizing multiprotocol ones.
11-14                                  CORBA V2.2                               February 1998



11

 a 
module IOP { // IDL
//
// Standard Protocol Pr ofile tag val ues 
// 
typedef unsigned long ProfileId;
const ProfileId TAG_INTERNET_IOP = 0;
const ProfileId TAG_MULTIPLE_COM PONENTS = 1;

struct TaggedProfile {
ProfileId tag;
seque nce <octet> profile_data;

};

//
// an Interoperable Object Reference is a sequence of
// object-specific protocol profiles, plus a type ID.
//
struct IOR {

string type_id;
seque nce <TaggedPr ofile> profiles;

};

//
// Standard way of representing multicomponent profiles.
// This would be encapsulated in a T aggedPr ofile.
//
typedef unsigned long Compon entId;
struct TaggedComponent {

Compo nentId tag;
seque nce <octet> com ponent_data;

};
typedef sequence <TaggedComponent> Mult ipleComponentProfile;

};

Object references have at least one tagged profile. Each profile supports one or more 
protocols and encapsulates all the basic information the protocols it supports need to 
identify an object. Any single profile holds enough information to drive a complete 
invocation using any of the protocols it supports; the content and structure of those 
profile entries are wholly specified by these protocols. A bridge between two domains 
may need to know the detailed content of the profile for those domains’ profiles, 
depending on the technique it uses to bridge the domains1.

1.Based on topology and policy information available to it, a bridge may find it prudent to add 
or remove some profiles as it forwards an object reference. For example, a bridge acting as
firewall might remove all profiles except ones that make such profiles, letting clients that 
understand the profiles make routing choices.
CORBA V2.2        An Information Model for Object References             February 1998 11-15



11

 

 

 
s 

 
s 

 to 

e 

 

B 

d 

 
r 

of 

B 
Each profile has a unique numeric tag, assigned by OMG. The ones defined here are
for the IIOP (see Chapter 12, General Inter-ORB Protocol) and for use in “multiple 
component profiles.” Profile tags in the range 0x80000000 through 0xffffffff are 
reserved for future use, and are not currently available for assignment.

Null object references are indicated by an empty set of profiles, and by a “Null” type 
ID (a string which contains only a single terminating character). Type IDs may only be
“Null” in any message, requiring the client to use existing knowledge or to consult the 
object, to determine interface types supported. The type ID is provided to allow ORBs
to preserve strong typing.This identifier is agreed on within the bridge and, for reason
outside the scope of this interoperability specification, needs to have a much broader
scope to address various problems in system evolution and maintenance. Type ID
support detection of type equivalence, and in conjunction with an Interface Repository, 
allow processes to reason about the relationship of the type of the object referred
and any other type.

The type ID, if provided by the server, indicates the most derived type at the time the 
reference is generated. The object’s actual most derived type may later change to a 
more derived type. Therefore, the type ID in the IOR can only be interpreted by th
client as a hint that the object supports at least the indicated interface. The client can 
succeed in narrowing the reference to the indicated interface, or to one of its base 
interfaces, based solely on the type ID in the IOR, but must not fail to narrow the
reference without consulting the object via the “_is_a” or “_get_interface” pseudo-
operations.

The TAG_INTERNET_IOP Profile

The TAG_INTERNET_IOP tag identifies profiles that support the Internet Inter-OR
Protocol. The ProfileBody  of this profile, described in detail in “IIOP IOR Profiles” 
on page 13-34, contains a CDR encapsulation of a structure containing addressing an
object identification information used by IIOP. Version 1.1 of the 
TAG_INTERNET_IOP  profile also includes a sequence<TaggedCompo nent>  
that can contain additional information supporting optional IIOP features, ORB 
services such as security, and future protocol extensions.

Protocols other than IIOP (such as ESIOPs and other GIOPs) can share profile 
information (such as object identity or security information) with IIOP by encoding 
their additional profile information as components in the TAG_INTERNET_IOP 
profile. All TAG_INTERNET_IOP profiles support IIOP, regardless of whether they
also support additional protocols. Interoperable ORBs are not required to create o
understand any other profile, nor are they required to create or understand any of the 
components defined for other protocols that might share the TAG_INTERNET_IOP 
profile with IIOP.

The TAG_MULTIPLE_COMPONENTS  Profile

The TAG_MULTIP LE_COMPONENTS tag indicates that the value encapsulated is 
type Mult ipleComponentProfile . In this case, the profile consists of a list of 
protocol components, indicating ORB services accessible using that protocol. OR
11-16                                  CORBA V2.2                               February 1998



11

the 

es.

d in 

 

e 

ust 

 

services are assigned component identifiers in a namespace that is distinct from 
profile identifiers. Note that protocols may use the Multiple ComponentProfile  data 
structure to hold profile components even without using 
TAG_MULTIPLE_COMPONENTS  to indicate that particular protocol profile, and 
need not use a MultipleComponentProfile  to hold sets of profile components.

IOR Components

TaggedComponent s contained in TAG_INTERNET_IOP and 
TAG_MULTIPLE_COMPONENTS  profiles are identified by unique numeric tags 
using a namespace distinct form that used for profile tags. Component tags are 
assigned by the OMG.

Specifications of components must include the following information:

• Component ID: The compound tag that is obtained from OMG.

• Structure and encoding: The syntax of the component data and the encoding rul

• Semantics: How the component data is intended to be used.

• Protocols: The protocol for which the component is defined, and whether it is 
intended that the component be usable by other protocols.

• At most once: whether more than one instance of this component can be include
a profile.

Specification of protocols must describe how the components affect the protocol. The
following should be specified in any protocol definition for each TaggedComponent  
that the protocol uses:

• Mandatory presence: Whether inclusion of the component in profiles supporting th
protocol is required (MANDATORY PRESENCE) or not required (OPTIONAL 
PRESENCE).

• Droppable: For optional presence component, whether component, if present, m
be retained or may be dropped.

11.6.3 Standard IOR Components

The following are standard IOR components that can be included in 
TAG_INTERNET_IOP  and TAG_MULTIP LE_COMPONENTS profiles, and may 
apply to IIOP, other GIOPs, ESIOPs or other protocols. An ORB must not drop these
components from an existing IOR. Additional components that can be used by other 
protocols are specified in “DCE-CIOP Object References” on page 14-16.
CORBA V2.2        An Information Model for Object References             February 1998 11-17



11

an 

 

 will 

gle 

les 
module IOP {
const Compon entId TAG _ORB_TYPE = 0;
const Compon entId TAG_COD E_SETS = 1;
const Compon entId TAG_S EC_NAME = 14;
const Compon entId TAG_A SSOCIATION_OPTIONS = 13;
const Compon entId TAG_ GENERIC_SE C_MECH = 12;

};

TAG_ORB_TYPE Component 

It is often useful in the real world to be able to identify the particular kind of ORB 
object reference is coming from, to work around problems with that particular ORB, or 
exploit shared efficiencies. 

The TAG_ORB_TYPE  component has an associated value of type unsigned long , 
encoded as a CDR encapsulation, designating an ORB type ID allocated by the OMG
for the ORB type of the originating ORB. Anyone may register any ORB types by 
submitting a short (one-paragraph) description of the ORB type to the OMG, and
receive a new ORB type ID in return. A list of ORB type descriptions and values will 
be made available on the OMG web server. 

The TAG_ORB_TYPE  component can appear at most once in any IOR profile. For 
profiles supporting IIOP 1.1, it is optionally present and may not be dropped.

Other Components

The following components are specified in different OMG specifications:

• TAG_CODE_SETS (See “CodeSet Component of IOR Multi-Component Profile” 
on page 11-28.) 

• TAG_SEC_NAME (Security - CORBAServices)

• TAG_ASSOCIATION_OPTIONS (Security - CORBAServices)

• TAG_GENERIC_SEC_MECH (Security - CORBAServices)

11.6.4 Profile and Component Composition in IORs

The following rules augment the preceding discussion:

1. Profiles must be independent, complete, and self-contained. Their use shall not 
depend on information contained in another profile.

2. Any invocation uses information from exactly one profile.

3. Information used to drive multiple inter-ORB protocols may coexist within a sin
profile, possibly with some information (e.g., components) shared between the 
protocols, as specified by the specific protocols.

4. Unless otherwise specified in the definition of a particular profile, multiple profi
with the same profile tag may be included in an IOR.
11-18                                  CORBA V2.2                               February 1998



11

ons 
ate 

e by 

 
 will 

l 

B 
5. Unless otherwise specified in the definition of a particular component, multiple 
components with the same component tag may be part of a given profile within an 
IOR.

6. A TAG_MULTIPLE_COMPONENTS  profile may hold components shared 
between multiple protocols. Multiple such profiles may exist in an IOR.

7. The definition of each protocol using a TAG_MULTIPLE _COMPONENTS profile 
must specify which components it uses, and how it uses them.

8. Profile and component definitions can be either public or private. Public definiti
are those whose tag and data format is specified in OMG documents. For priv
definitions, only the tag is registered with OMG.

9. Public component definitions shall state whether or not they are intended for us
protocols other than the one(s) for which they were originally defined, and 
dependencies on other components.

The OMG is responsible for allocating and registering protocol and component tags.
Neither allocation nor registration indicates any “standard” status, only that the tag
not be confused with other tags. Requests to allocate tags should be sent to 
tag_request@omg.org.

11.6.5 IOR Creation and Scope

IORs are created from object references when required to cross some kind of 
referencing domain boundary. ORBs will implement object references in whatever 
form they find appropriate, including possibly using the IOR structure. Bridges wil
normally use IORs to mediate transfers where that standard is appropriate.

11.6.6 Stringified Object References

Object references can be “stringified” (turned into an external string form) by the 
ORB::object_to_st ring operation, and then “destringified” (turned back into a 
programming environment’s object reference representation) using the 
ORB::string_to_object  operation.

There can be a variety of reasons why being able to parse this string form might not 
help make an invocation on the original object reference:

• Identifiers embedded in the string form can belong to a different domain than the 
ORB attempting to destringify the object reference.

• The ORBs in question might not share a network protocol, or be connected.

• Security constraints may be placed on object reference destringification.

Nonetheless, there is utility in having a defined way for ORBs to generate and parse 
stringified IORs, so that in some cases an object reference stringified by one OR
could be destringified by another.
CORBA V2.2        An Information Model for Object References             February 1998 11-19



11

nt 

s 
bject 

, 
nsfer 

e 
g 
To allow a stringified object reference to be internalized by what may be a differe
ORB, a stringified IOR representation is specified. This representation instead 
establishes that ORBs could parse stringified object references using that format. Thi
helps address the problem of bootstrapping, allowing programs to obtain and use o
references, even from different ORBs.

The following is the representation of the stringified (externalized) IOR:

<oref> ::= <prefix> <hex_Octets>

<prefix> ::= “IOR:”

<hex_Octets> ::= <hex_Octet> {<hex_Octet>}*

<hex_Octet> ::= <hexDigit> <hexDigit>

<hexDigit> ::= <digit> | <a> | <b> | <c> | <d> | <e> | <f>

<digit> ::= “0” | “1” | “2” | “3” | “4” | “5” |

 “6” | “7” | “8” | “9”

<a> ::= “a” | “A”

<b> ::= “b” | “B”

<c> ::= “c” | “C”

<d> ::= “d” | “D”

<e> ::= “e” | “E”

<f> ::= “f” | “F”

The hexadecimal strings are generated by first turning an object reference into an IOR
and then encapsulating the IOR using the encoding rules of CDR. (See CDR Tra
Syntax in Chapter 13 for more information.) The content of the encapsulated IOR is 
then turned into hexadecimal digit pairs, starting with the first octet in the 
encapsulation and going until the end. The high four bits of each octet are encoded as 
a hexadecimal digit, then the low four bits.

11.6.7 Object Service Context

Emerging specifications for Object Services occasionally require service-specific 
context information to be passed implicitly with requests and replies. (Specifications 
for OMG’s Object Services are contained in CORBAservices: Common Object Servic
Specifications.) The Interoperability specifications define a mechanism for identifyin
and passing this service-specific context information as “hidden” parameters. The 
specification makes the following assumptions:

• Object Service specifications that need additional context passed will completely 
specify that context as an OMG IDL data type.

• ORB APIs will be provided that will allow services to supply and consume context 
information at appropriate points in the process of sending and receiving requests 
and replies. 
11-20                                  CORBA V2.2                               February 1998



11

any 

t ID 
 
 

d in 

ext 

that 
• It is an ORB’s responsibility to determine when to send service-specific context 
information, and what to do with such information in incoming messages. It may be 
possible, for example, for a server receiving a request to be unable to de-
encapsulate and use a certain element of service-specific context, but nevertheless 
still be able to successfully reply to the message. 

As shown in the following OMG IDL specification, the IOP module provides the 
mechanism for passing Object Service–specific information. It does not describe 
service-specific information. It only describes a mechanism for transmitting it in the 
most general way possible. The mechanism is currently used by the DCE ESIOP and 
could also be used by the Internet Inter-ORB protocol (IIOP) General Inter_ORB 
Protocol (GIOP). 

Each Object Service requiring implicit service-specific context to be passed through 
GIOP will be allocated a unique service context ID value by OMG. Service contex
values are of type unsigned long . Object service specifications are responsible for
describing their context information as single OMG IDL data types, one data type
associated with each service context ID. 

The marshaling of Object Service data is described by the following OMG IDL: 

module IOP { // IDL

typedef unsigned long ServiceId;

struct ServiceContext {
 ServiceId context_id;
 seque nce <octet> context_data;
 };

typedef sequence <ServiceContext>ServiceContextList;

const ServiceId TransactionS ervice = 0;
const ServiceId CodeSets = 1;

};

The context data for a particular service will be encoded as specified for its service-
specific OMG IDL definition, and that encoded representation will be encapsulate
the context_data  member of IOP::Service Context . (See “Encapsulation” on 
page 13-12). The context_id  member contains the service ID value identifying the 
service and data format. Context data is encapsulated in octet sequences to permit 
ORBs to handle context data without unmarshaling, and to handle unknown cont
data types.

During request and reply marshaling, ORBs will collect all service context data 
associated with the Request or Reply in a ServiceContextList , and include it in the 
generated messages. No ordering is specified for service context data within the list. 
The list is placed at the beginning of those messages to support security policies 
may need to apply to the majority of the data in a request (including the message 
headers).
CORBA V2.2        An Information Model for Object References             February 1998 11-21



11

” 

trol 

) 

ters." 

pical 

e, 
and a 
cter 
al 
The ServiceId s currently defined are:

• TransactionService  identifies a CDR encapsulation of the 
CosTSInteroperation::PropogationContext  defined in CORBAservices: 
Common Object Services Specifications.

• CodeSets  identifies a CDR encapsulation of the 
CONV_FRAME::C odeSetC ontext  defined in “GIOP Code Set Service Context
on page 11-29.

11.7 Code Set Conversion

11.7.1 Character Processing Terminology

This section introduces a few terms and explains a few concepts to help understand the 
character processing portions of this document.

Character Set 

A finite set of different characters used for the representation, organization or con
of data. In this document, the term “character set” is used without any relationship to 
code representation or associated encoding. Examples of character sets are the English 
alphabet, Kanji or sets of ideographic characters, corporate character sets (commonly 
used in Japan), and the characters needed to write certain European languages.

Coded Character Set, or Code Set

A set of unambiguous rules that establishes a character set and the one-to-one 
relationship between each character of the set and its bit representation or numeric 
value. In this document, the term “code set” is used as an abbreviation for the term 
“coded character set.” Examples include ASCII, ISO 8859-1, JIS X0208 (which 
includes Roman characters, Japanese hiragana, Greek characters, Japanese kanji, etc.
and Unicode.

Code Set Classifications

Some language environments distinguish between byte-oriented and “wide charac
The byte-oriented characters are encoded in one or more 8 bit bytes. A typical single-
byte encoding is ASCII as used for western European languages like English. A ty
multi-byte encoding which uses from one to three 8 bit bytes for each character is 
eucJP (Extended UNIX Code - Japan, packed format) as used for Japanese 
workstations.

Wide characters are a fixed 16 or 32 bits long, and are used for languages like Chines
Japanese, etc., where the number of combinations offered by 8 bits is insufficient 
fixed-width encoding is needed. A typical example is Unicode (a “universal” chara
set defined by the The Unicode Consortium, which uses an encoding scheme identic
11-22                                  CORBA V2.2                               February 1998



11

rs 
te-

 32-
er of 

 

code 
ous 
to ISO 10646 UCS-2, or 2-byte Universal Character Set encoding). An extended 
encoding scheme for Unicode characters is UTF-16 (UCS Transformation Format, 16-
bit representations).

The C language has data types char  for byte-oriented characters and wchar_t  for 
wide characters. The language definition for C states that the sizes for these characte
are implementation dependent. Some environments do not distinguish between by
oriented and wide characters, e.g., Ada and Smalltalk. Here again, the size of a 
character is implementation dependent. The following table illustrates code set 
classifications as used in this document.

Narrow and Wide Characters

Some language environments distinguish between “narrow” and “wide” characters. 
Typically the narrow characters are considered to be 8-bit long and are used for 
western European languages like English, while the wide characters are 16-bit or
bit long and are used for languages like Chinese, Japanese, etc. where the numb
combinations offered by 8 bits are insufficient. However, as noted above there are 
common encoding schemes in which Asian characters are encoded using multi-byte 
code sets and it is incorrect to assume that Asian characters are always encoded as 
“wide” characters.

Within this document, the general terms “narrow character” and “wide character” are
only used in discussing OMG IDL.

Char Data and Wchar Data

The phrase “char  data” in this document refers to data whose IDL types have been 
specified as char  or string . Likewise “wchar  data” refers to data whose IDL types 
have been specified as wchar  or wstring .

Byte-Oriented Code Set

An encoding of characters where the numeric code corresponding to a character 
element can occupy one or more bytes. A byte as used in this document is synonym
with octet, which occupies 8 bits. 

Orientation Code Element Encoding Code Set Examples C Data Type

byte-oriented single-byte ASCII, ISO 8859-1 (Latin-1), 
EBCDIC, ...

char

multi-byte UTF-8, eucJP, Shift-JIS, JIS, Big-
5, ...

char[]

non-byte-
oriented

fixed-length ISO 10646 UCS-2 (Unicode), 
ISO 10646 UCS-4, UTF-16, ...

wchar_t
CORBA V2.2        Code Set Conversion             February 1998 11-23



11

 can 

code 

d.

 

me 

 with 
Multi-Byte Character Strings

A character string represented in a byte-oriented encoding where each character
occupy one or more bytes is called a multi-byte character string. Typically, wide 
characters are converted to this form from a (fixed-width) process code set before 
transmitting the characters outside the process (see below about process code sets). 
Care must be taken to correctly process the component bytes of a character’s multi-
byte representation.

Non-Byte Oriented Code Set

An encoding of characters where the numeric code corresponding to a character 
element can occupy fixed 16 or 32 bits. 

Char Transmission Code Set (TCS-C) and Wchar Transmission 
Code Set (TCS-W)

These two terms refer to code sets that are used for transmission between ORBs after 
negotiation is completed. As the names imply, the first one is used for char  data and 
the second one for wchar  data. Each TCS can be byte-oriented or non-byte oriente

Process Code Set and File Code Set

Processes generally represent international characters in an internal fixed-width format 
which allows for efficient representation and manipulation. This internal format is 
called a “process code set.” The process code set is irrelevant outside the process, and
hence to the interoperation between CORBA clients and servers through their 
respective ORBs. 

When a process needs to write international character information out to a file, or 
communicate with another process (possibly over a network), it typically uses a 
different encoding called a “file code set.” In this specification, unless otherwise 
indicated, all references to a program’s code set refer to the file code set, not the 
process code set. Even when a client and server are located physically on the sa
machine, it is possible for them to use different file code sets.

Native Code Set

A native code set is the code set which a client or a server uses to communicate
its ORB. There might be separate native code sets for char  and wchar  data.
11-24                                  CORBA V2.2                               February 1998



11

ta 

 

g 

e 

e 

ich 

 
ns.
Transmission Code Set

A transmission code set is the commonly agreed upon encoding used for character da
transfer between a client’s ORB and a server’s ORB. There are two transmission code 
sets established per session between a client and its server, one for char  data (TCS-C) 
and the other for wchar  data (TCS-W). Figure 11-6 on page 11-25 illustrates these
relationships:

Figure 11-6 Transmission Code Sets

The intent is for TCS-C to be byte-oriented and TCS-W to be non-byte-oriented. 
However, this specification does allow both types of characters to be transmitted usin
the same transmission code set. That is, the selection of a transmission code set is 
orthogonal to the wideness or narrowness of the characters, although a given codset 
may be better suited for either narrow or wide characters.

Conversion Code Set (CCS)

With respect to a particular ORB’s native code set, the set of other or target code sets 
for which an ORB can convert all code points or character encodings between th
native code set and that target code set. For each code set in this CCS, the ORB 
maintains appropriate translation or conversion procedures and advertises the ability to 
use that code set for transmitted data in addition to the native code set.

11.7.2  Code Set Conversion Framework

Requirements

The file code set that an application uses is often determined by the platform on wh
it runs. In Japan, for example, Japanese EUC is used on Unix systems, while Shift-JIS 
is used on PCs. Code set conversion is therefore required to enable interoperability 
across these platforms.   This proposal defines a framework for the automatic 
conversion of code sets in such situations. The requirements of this framework are:

1. Backward compatibility. In previous CORBA specifications, IDL type char  was 
limited to ISO 8859-1. The conversion framework should be compatible with 
existing clients and servers that use ISO 8859-1 as the code set for char.

2. Automatic code set conversion. To facilitate development of CORBA clients and 
servers, the ORB should perform any necessary code set conversions automatically
and efficiently. The IDL type octet  can be used if necessary to prevent conversio

ORB ORB
transmission

code set

native
client process server processcode sets

code set

native
CORBA V2.2        Code Set Conversion             February 1998 11-25



11

 
 
 
et) 

 to 
the 

le, if 
r 

d on 
 the 

. 

s 

de 

e 

ecall 
3. Locale support. An internationalized application determines the code set in use by
examining the LOCALE string (usually found in the LANG environment variable),
which may be changed dynamically at run time by the user. Example LOCALE
strings are fr_FR.ISO8859-1 (French, used in France with the ISO 8859-1 code s
and ja_JP.ujis (Japanese, used in Japan with the EUC code set and X11R5 
conventions for LOCALE). The conversion framework should allow applications
use the LOCALE mechanism to indicate supported code sets, and thus select 
correct code set from the registry.

4. CMIR and SMIR support. The conversion framework should be flexible enough to 
allow conversion to be performed either on the client or server side. For examp
a client is running in a memory-constrained environment, then it is desirable fo
code set converters to reside in the server and for a Server Makes It Right (SMIR) 
conversion method to be used. On the other hand, if many servers are execute
one server machine, then converters should be placed in each client to reduce
load on the server machine. In this case, the conversion method used is Client 
Makes It Right (CMIR).

Overview of the Conversion Framework

Both the client and server indicate a native code set indirectly by specifying a locale
The exact method for doing this is language-specific, such as the XPG4 C/C++ 
function setlocale . The client and server use their native code set to communicate 
with their ORB. (Note that these native code sets are in general different from proces
code sets and hence conversions may be required at the client and server ends.)

The conversion framework is illustrated in Figure 11-7 on page 11-27. The server-si
ORB stores a server’s code set information in a component of the IOR multiple-
component profile structure (see “Interoperable Object References: IORs” on 
page 11-14)2. The code sets actually used for transmission are carried in the servic
context field of an IOP (Inter-ORB Protocol) request header (see “Object Service 
Context” on page 11-20 and “GIOP Code Set Service Context” on page 11-29). R
that there are two code sets (TCS-C and TCS-W) negotiated for each session.

2.Version 1.1 of the IIOP profile body can also be used to specify the server’s code set 
information, as this version introduces an extra field that is a sequence of tagged 
components.
11-26                                  CORBA V2.2                               February 1998



11

on is 

erver-
, the 

on 
r 

 

, 
 

 

Figure 11-7 Code Set Conversion Framework Overview

If the native code sets used by a client and server are the same, then no conversi
performed. If the native code sets are different and the client-side ORB has an 
appropriate converter, then the CMIR conversion method is used. In this case, the 
server’s native code set is used as the transmission code set. If the native code sets are 
different and the client-side ORB does not have an appropriate converter but the s
side ORB does have one, then the SMIR conversion method is used. In this case
client’s native code set is used as the transmission code set.

The conversion framework allows clients and servers to specify a native char  code set 
and a native wchar  code set, which determine the local encodings of IDL types char  
and wchar , respectively. The conversion process outlined above is executed 
independently for the char  code set and the wchar  code set. In other words, the 
algorithm that is used to select a transmission code set is run twice, once for char  data 
and once for wchar  data. 

The rationale for selecting two transmission code sets rather than one (which is 
typically inferred from the locale of a process) is to allow efficient data transmissi
without any conversions when the client and server have identical representations fo
char  and/or wchar  data. For example, when a Windows NT client talks to a Windows 
NT server and they both use Unicode for wide character data, it becomes possible to
transmit wide character data from one to the other without any conversions. Of course, 
this becomes possible only for those wide character representations that are well-
defined, not for any proprietary ones. If a single transmission code set was mandated
it might require unnecessary conversions. (For example, choosing Unicode as the
transmission code set would force conversion of all byte-oriented character data to 
Unicode.)

ORB Databases and Code Set Converters

The conversion framework requires an ORB to be able to determine the native code set 
for a locale and to convert between code sets as necessary. While the details of exactly
how these tasks are accomplished are implementation-dependent, the following 
databases and code set converters might be used:

ServerClient

ORB ORB

Client’s native
code set

Server’s native
code set

IOP service context
indicates transmission
code sets information

IOR multi-component
profile structure indicates
server’s native code set information 
CORBA V2.2        Code Set Conversion             February 1998 11-27



11

ode set 

etup 

y 

or 

 

• Locale database. This database defines a native code set for a process. This c
could be byte-oriented or non-byte-oriented and could be changed programmatically 
while the process is running. However, for a given session between a client and a 
server, it is fixed once the code set information is negotiated at the session’s s
time.

• Environment variables or configuration files. Since the locale database can onl
indicate one code set while the ORB needs to know two code sets, one for char  
data and one for wchar  data, an implementation can use environment variables 
configuration files to contain this information on native code sets.

• Converter database. This database defines, for each code set, the code sets to which 
it can be converted. From this database, a set of “conversion code sets” (CCS) can 
be determined for a client and server. For example, if a server’s native code set is 
eucJP, and if the server-side ORB has eucJP-to-JIS and eucJP-to-SJIS bilateral 
converters, then the server’s conversion code sets are JIS and SJIS.

• Code set converters. The ORB has converters which are registered in the converter 
database.

CodeSet Component of IOR Multi-Component Profile

The code set component of the IOR multi-component profile structure contains:

• server’s native char  code set and conversion code sets; and

• server’s native wchar  code set and conversion code sets.

Both char  and wchar  conversion code sets are listed in order of preference. The code
set component is identified by the following tag:

const IOP::C omponentID TAG_CODE_SETS = 1;

This tag has been assigned by OMG (See “Standard IOR Components” on 
page 11-17.). The following IDL structure defines the representation of code set 
information within the component:

module CON V_FRAME { // IDL
typedef unsigned long Code SetId;
struct CodeSetComp onent {

 CodeSetId native _code_set;
 sequence<CodeSetId> conversion_c ode_sets;

};
struct CodeSetComponentInfo {

 CodeSetComponent ForCharData;
 CodeSetComponent ForWcharData;

};
};
11-28                                  CORBA V2.2                               February 1998



11

ype 

 
e 

ice 
Code sets are identified by a 32-bit integer id from the OSF Character and Code Set 
Registry (See “Character and Code Set Registry” on page 11-35 for further 
information). Data within the code set component is represented as a structure of t
CodeSetComponentInfo . In other words, the char  code set information comes first, 
then the wchar  information, represented as structures of type CodeSetComponent .

A null value should be used in the native_code_set  field if the server desires to 
indicate no native code set (possibly with the identification of suitable conversion code 
sets).

If the code set component is not present in a multi-component profile structure, then 
the default char  code set is ISO 8859-1 for backward compatibility. However, there is 
no default wchar  code set. If a server supports interfaces that use wide character data
but does not specify the wchar  code sets that it supports, client-side ORBs will rais
exception INV_OBJREF.

GIOP Code Set Service Context

The code set GIOP service context contains:

• char  transmission code set, and

• wchar  transmission code set

in the form of a code set service. This service is identified by:

const IOP::ServiceID CodeSets = 1;

This service ID has been assigned by OMG (See “Object Service Context” on 
page 11-20.) The following IDL structure defines the representation of code set serv
information:

module CON V_FRAME { // IDL
typedef unsigned long Code SetId;
struct CodeSetContext {

CodeSetId char_data;
CodeSetId wchar_data;

};
};

Code sets are identified by a 32-bit integer id from the OSF Character and Code Set 
Registry (See “Character and Code Set Registry” on page 11-35 for further 
information).

Note – A server’s char  and wchar  Code set components are usually different, but 
under some special circumstances they can be the same. That is, one could use the 
same code set for both char  data and wchar  data. Likewise the CodesetId s in the 
service context don’t have to be different.
CORBA V2.2        Code Set Conversion             February 1998 11-29



11

rom 
 

ient 

g 

they 
on 

 
e 
Code Set Negotiation

The client-side ORB determines a server’s native and conversion code sets from the 
code set component in an IOR multi-component profile structure, and it determines a 
client’s native and conversion code sets from the locale setting (and/or environment 
variables/configuration files) and the converters that are available on the client. F
this information, the client-side ORB chooses char  and wchar  transmission code sets
(TCS-C and TCS-W). For both requests and replies, the char  TCS-C determines the 
encoding of char  and string  data, and the wchar  TCS-W determines the encoding of 
wchar  and wstring  data. 

Code set negotiation is not performed on a per-request basis, but only when a cl
initially connects to a server. All text data communicated on a connection are encoded 
as defined by the TCSs selected when the connection is established.

As the following figure illustrates, there are two channels for character data flowin
between the client and the server. The first, TCS-C, is used for char  data and the 
second, TCS-W, is used for wchar  data. Also note that two native code sets, one for 
each type of data, could be used by the client and server to talk to their respective 
ORBs (as noted earlier, the selection of the particular native code set used at any 
particular point is done via setlocale  or some other implementation dependent 
method).

Figure 11-8 Transmission Code Set Use

Let us look at an example. Assume that the code set information for a client and server 
is as shown in the table below. (Note that this example is talking about only char  code 
sets and is applicable only for data described as char s in the IDL.)

The client-side ORB first compares the native code sets of the client and server. If 
are identical, then the transmission and native code sets are the same and no conversi
is required. In this example, they are different, so code set conversion is necessary. 
Next, the client-side ORB checks to see if the server’s native code set, eucJP, is one of
the conversion code sets supported by the client. It is, so eucJP is selected as th

Client Server

Native code set: SJIS eucJP

Conversion code
sets:

eucJP, 
JIS

SJIS, 
JIS

S
erverC

lie
nt

ORB ORB

Client’s native
code set for char for char (TCS-C) 

Transmission code set

Client’s native
code set for wchar

Server’s native
code set for char

Server’s native
code set for wchar

for wchar (TCS-W) 
Transmission code set

Client
Side Side

Server
11-30                                  CORBA V2.2                               February 1998



11

rom 

. 

 
 If 
rsion 
transmission code set, with the client (i.e., its ORB) performing conversion to and f
its native code set, SJIS, to eucJP. Note that the client may first have to convert all its 
data described as char s (and possibly wchar_ ts) from process codes to SJIS first. 

Now let us look at the general algorithm for determining a transmission code set and 
where conversions are performed. First, we introduce the following abbreviations:

• CNCS - Client Native Code Set;

• CCCS - Client Conversion Code Sets;

• SNCS - Server Native Code Set; 

• SCCS - Server Conversion Code Sets; and

• TCS   - Transmission Code Set.

The algorithm is as follows:

if (CNCS==SNCS) 
TCS = CNCS; // no conversion required

else {
if (elementOf(SNCS,CCCS))

TCS = SNCS; // client converts to server’s native code set
else if (elementOf(CNCS,SCCS))

 TCS = CNCS; // server converts from client’s native code set
else if (intersection(CCCS,SCCS) != emptySet) {

TCS = oneOf(intersection(CCCS,SCCS)); 
// client chooses TCS, from intersection(CCCS,SCCS), that is
// most preferable to server;
// client converts from CNCS to TCS and server from TCS to SNCS

else if (compatible(CNCS,SNCS))
TCS = fallbackCS; // fallbacks are UTF-8 (for char data) and

// UTF-16 (for wchar data)
else

raise CODESET_INCOMPATIBLE  exception;
}

The algorithm first checks to see if the client and server native code sets are the same
If they are, then the native code set is used for transmission and no conversion is 
required. If the native code sets are not the same, then the conversion code sets are 
examined to see if (1) the client can convert from its native code set to the server’s 
native code set; (2) the server can convert from the client’s native code set to its native
code set; or (3) transmission through an intermediate conversion code set is possible.
the third option is selected and there is more than one possible intermediate conve
code set (i.e., the intersection of CCCS and SCCS contains more than one code set), 
then the one most preferable to the server is selected.3

3.Recall that server conversion code sets are listed in order of preference.
CORBA V2.2        Code Set Conversion             February 1998 11-31



11

he 
r sets 

 
E 
client 

 

 a 

 

, 

t, 

eption 

. The 
e can 

x 

each 
If none of these conversions is possible, then the fallback code set (UTF-8 for char  
data and UTF-16 for wchar  data— see below) is used. However, before selecting t
fallback code set, a compatibility test is performed. This test looks at the characte
encoded by the client and server native code sets. If they are different (e.g., Korean and 
French), then meaningful communication between the client and server is not possible
and a CODESET_INCOMPATIBLE exception is raised. This test is similar to the DC
compatibility test and is intended to catch those cases where conversion from the 
native code set to the fallback, and the fallback to the server native code set would 
result in massive data loss. (See 11.9 on page 11-35 for the relevant OSF registry 
interfaces that could be used for determining compatibility.)

A DATA_CONVERSION exception is raised when a client or server attempts to 
transmit a character that does not map into the negotiated transmission code set.   For
example, not all characters in Taiwan Chinese map into Unicode. When an attempt is 
made to transmit one of these characters via Unicode, an ORB is required to raise
DATA_CONVERSION exception.

In summary, the fallback code set is UTF-8 for char  data (identified in the Registry as 
0x05010001, “X/Open UTF-8; UCS Transformation Format 8 (UTF-8)"), and UTF-16
for wchar  data (identified in the Registry as 0x00010109, "ISO/IEC 10646-1:1993; 
UTF-16, UCS Transformation Format 16-bit form"). As mentioned above the fallback 
code set is meaningful only when the client and server character sets are compatible
and the fallback code set is distinguished from a default code set used for backward 
compatibility.

If a server’s native char  code set is not specified in the IOR multi-component profile, 
then it is considered to be ISO 8859-1 for backward compatibility. However, a server 
that supports interfaces that use wide character data is required to specify its native 
wchar  code set; if one is not specified, then the client-side ORB raises exception 
INV_OBJREF.

Similarly, if no char  transmission code set is specified in the code set service contex
then the char  transmission code set is considered to be ISO 8859-1 for backward 
compatibility. If a client transmits wide character data and does not specify its wchar  
transmission code set in the service context, then the server-side ORB raises exc
BAD_PARAM .

To guarantee “out-of-the-box” interoperability, clients and servers must be able to 
convert between their native char  code set and UTF-8 and their native wchar  code set 
(if specified) and Unicode.   Note that this does not require that all server native code 
sets be mappable to Unicode, but only those that are exported as native in the IOR
server may have other native code sets that aren’t mappable to Unicode and thos
be exported as SCCSs (but not SNCSs). This is done to guarantee out-of-the-bo
interoperability and to reduce the number of code set converters that a CORBA-
compliant ORB must provide.

ORB implementations are strongly encouraged to use widely-used code sets for 
regional market. For example, in the Japanese marketplace, all ORB implementations 
should support Japanese EUC, JIS and Shift JIS to be compatible with existing 
business practices.
11-32                                  CORBA V2.2                               February 1998



11

 

 
nd 
de 

te 
e 

 
 code 
cter 
11.7.3 Mapping to Generic Character Environments

Certain language environments do not distinguish between byte-oriented and wide 
characters. In such environments both char  and wchar  are mapped to the same 
“generic” character representation of the language. string  and wstring  are likewise 
mapped to generic strings in such environments. Examples of language environments
that provide generic character support are Smalltalk and Ada. 

Even while using languages that do distinguish between wide and byte-oriented 
characters (e.g., C and C++), it is possible to mimic some generic behavior by the use
of suitable macros and support libraries. For example, developers of Windows NT a
Windows 95 applications can write portable code between NT (which uses Unico
strings) and Windows 95 (which uses byte-oriented character strings) by using a set of 
macros for declaring and manipulating characters and character strings. Appendix A in 
this chapter shows how to map wide and byte-oriented characters to these generic 
macros.

Another way to achieve generic manipulation of characters and strings is by treating 
them as abstract data types (ADTs). For example, if strings were treated as abstract 
data types and the programmers are required to create, destroy, and manipulate strings 
only through the operations in the ADT interface, then it becomes possible to wri
code that is representation independent. This approach has an advantage over th
macro-based approach in that it provides portability between byte-oriented and wide 
character environments even without recompilation (at runtime the string function calls 
are bound to the appropriate byte-oriented/wide library). Another way of looking at it 
is that the macro-based genericity gives compile-time flexibility, while ADT-based 
genericity gives runtime flexibility.

Yet another way to achieve generic manipulation of character data is through the ANSI 
C++ Strings library defined as a template that can be parameterized by char , 
wchar_t  or other integer types.

Given that there can be several ways of treating characters and character strings in a 
generic way, this standard cannot, and therefore does not, specify the mapping of char , 
wchar, string  and wstring  to all of them. It only specifies the following normative 
requirements which are applicable to generic character environments:

• wchar  must be mapped to the generic character type in a generic character 
environment.

• wstring  must be mapped to a string of such generic characters in a generic 
character environment.

• The language binding files (i.e., stubs) generated for these generic environments
must ensure that the generic type representation is converted to the appropriate
sets (i.e., CNCS on the client side and SNCS on the server side) before chara
data is given to the ORB runtime for transmission.
CORBA V2.2        Code Set Conversion             February 1998 11-33



11

 exist 

ith a 

 the 

e 

e 

e an 

 

Describing Generic Interfaces

To describe generic interfaces in IDL we recommend using wchar  and wstring . 
These can be mapped to generic character types in environments where they do
and to wide characters where they do not. Either way interoperation between generic 
and non-generic character type environments is achieved because of the code set 
conversion framework.

Interoperation

Let us consider an example to see how a generic environment can interoperate w
non-generic environment. Let us say there is an IDL interface with both char  and 
wchar  parameters on the operations, and let us say the client of the interface is in a 
generic environment while the server is in a non-generic environment (for example
client is written in Smalltalk and the server is written in C++). 

Assume that the server’s (byte-oriented) native char  code set (SNCS) is eucJP and th
client’s native char  code set (CNCS) is SJIS. Further assume that the code set 
negotiation led to the decision to use eucJP as the char  TCS-C and Unicode as the 
wchar  TCS-W. 

As per the above normative requirements for mapping to a generic environment, th
client’s Smalltalk stubs are responsible for converting all char  data (however they are 
represented inside Smalltalk) to SJIS and all wchar  data to the client’s wchar  code set 
before passing the data to the client-side ORB. (Note that this conversion could b
identity mapping if the internal representation of narrow and wide characters is the 
same as that of the native code set(s).) The client-side ORB now converts all char  data 
from SJIS to eucJP and all wchar  data from the client’s wchar  code set to Unicode, 
and then transmits to the server side. 

The server side ORB and stubs convert the eucJP data and Unicode data into C++’s 
internal representation for char s and wchar s as dictated by the IDL operation 
signatures. Notice that when the data arrives at the server side it does not look any 
different from data arriving from a non-generic environment (e.g., that is just like the
server itself). In other words, the mappings to generic character environments do not 
affect the code set conversion framework.

11.8 Example of Generic Environment Mapping

This Appendix shows how char , wchar , string , and wchar  can be mapped to the 
generic C/C++ macros of the Windows environment. This is merely to illustrate one 
possibility. This Appendix is not normative and is applicable only in generic 
environments. See “Mapping to Generic Character Environments” on page 11-33.
11-34                                  CORBA V2.2                               February 1998



11

 the 
 

 
JIS, 
g 

e 
ince 

ained 

 if the 
11.8.1 Generic Mappings

char  and string  are mapped to C/C++ char  and char*  as per the standard C/C++ 
mappings. wchar  is mapped to the TCHAR macro which expands to either char  or 
wchar_t  depending on whether _UNICODE is defined. wstring  is mapped to 
pointers to TCHAR as well as to the string class CORBA::Wstring_var . Literal 
strings in IDL are mapped to the _TEXT macro as in _TEXT(<literal>) .

11.8.2 Interoperation and Generic Mappings

We now illustrate how the interoperation works with the above generic mapping. 
Consider an IDL interface operation with a wstring  parameter, a client for the 
operation which is compiled and run on a Windows 95 machine, and a server for
operation which is compiled and run on a Windows NT machine. Assume that the
locale (and/or the environment variables for CNCS for wchar  representation) on the 
Windows 95 client indicates the client’s native code set to be SJIS, and that the 
corresponding server’s native code set is Unicode. The code set negotiation in this case 
will probably choose Unicode as the TCS-W.

Both the client and server sides will be compiled with _UNICODE defined. The IDL 
type wstring  will be represented as a string of wchar_t  on the client. However, since
the client’s locale or environment indicates that the CNCS for wide characters is S
the client side ORB will get the wstring  parameter encoded as a SJIS multi-byte strin
(since that is the client’s native code set), which it will then convert to Unicode befor
transmitting to the server. On the server side the ORB has no conversions to do s
the TCS-W matches the server’s native code set for wide characters. 

We therefore notice that the code set conversion framework handles the necessary 
translations between byte-oriented and wide forms.

11.9 Relevant OSFM Registry Interfaces

11.9.1 Character and Code Set Registry

The OSF character and code set registry is defined in OSF Character and Code Set 
Registry (see References in the Preface) and current registry contents may be obt
directly from the Open Software Foundation (obtain via anonymous ftp to 
ftp.opengroup.org:/pub/code_set_registry). This registry contains two parts: character 
sets, and code sets. For each listed code set, the set of character sets encoded by this 
code set is shown.

Each 32-bit code set value consists of a high-order 16-bit organization number and a 
16-bit identification of the code set within that organization. As the numbering of 
organizations starts with 0x0001, a code set null value (0x00000000) may be used to 
indicate an unknown code set.

When associating character sets and code sets, OSF uses the concept of “fuzzy 
equality,” meaning that a code set is shown as encoding a particular character set
code set can encode “most” of the characters.
CORBA V2.2        Relevant OSFM Registry Interfaces             February 1998 11-35



11

 
e set. 

s 

e.

er set 

ugh 

se 

and 
 

- 

es to 
us a 
“Compatibility” is determined with respect to two code sets by examining their entries
in the registry, paying special attention to the character sets encoded by each cod
For each of the two code sets, an attempt is made to see if there is at least one (fuzzy-
defined) character set in common, and if such a character set is found, then the 
assumption is made that these code sets are “compatible.” Obviously, application
which exploit parts of a character set not properly encoded in this scheme will suffer 
information loss when communicating with another application in this “fuzzy” schem

The ORB is responsible for accessing the OSF registry and determining 
“compatibility” based on the information returned. 

OSF members and other organizations can request additions to both the charact
and code set registries by email to cs-registry@opengroup.org; in particular, one range 
of the code set registry (0xf5000000  through 0xffffffff ) is reserved for 
organizations to use in identifying sets which are not registered with the OSF (altho
such use would not facilitate interoperability without registration). 

11.9.2 Access Routines

The following routines are for accessing the OSF character and code set registry. The
routines map a code set string name to code set id and vice versa. They also help in 
determining character set compatibility. These routine interfaces, their semantics 
their actual implementation are not normative (i.e., ORB vendors do not have to bundle
the OSF registry implementation with their products for compliance).

The following routines are adopted from RPC Runtime Support For I18N Characters 
Functional Specification (see References in the Preface).

dce_cs_loc_to_rgy

Maps a local system-specific string name for a code set to a numeric code set value 
specified in the code set registry.

SYNOPSIS
void dce_cs_loc_to_rgy(

idl_char *local_code_set_name,
unsigned32 *rgy_code_set_value,
unsigned16 *rgy_char_sets_number,
unsigned16 **rgy_char_sets_value,            
error_status_t *status);

PARAMETERS
Input

local_code_set_name
A string that specifies the name that the local host's locale environment us
refer to the code set. The string is a maximum of 32 bytes: 31 data bytes pl
terminating NULL character.
11-36                                  CORBA V2.2                               February 1998



11

 by 

ing 

ts 

her 

lue 

ULL 
e 
ant 

from 
Output
rgy_code_set_value

The registered integer value that uniquely identifies the code set specified
local_code_set_name. 

rgy_char_sets_number
The number of character sets that the specified code set encodes. Specify
NULL prevents this routine from returning this parameter. 

rgy_char_sets_value
A pointer to an array of registered integer values that uniquely identify the 
character set(s) that the specified code set encodes. Specifying NULL preven
this routine from returning this parameter. The routine dynamically allocates 
this value.

status
Returns the status code from this routine. This status code indicates whet
the routine completed successfully or, if not, why not. 

The possible status codes and their meanings are as follows:
dce_cs_c_ok – Code set registry access operation succeeded.   
dce_cs_c_cannot_allocate_memory –Cannot allocate memory for code set 

info.
dce_cs_c_unknown – No code set value was not found in the registry which 

corresponds to the code set name specified.
dce_cs_c_notfound – No local code set name was found in the registry which 

corresponds to the name specified.

DESCRIPTION

The dce_cs_loc_to_rgy() routine maps operating system-specific names for 
character/code set encodings to their unique identifiers in the code set registry.

The dce_cs_loc_to_rgy() routine takes as input a string that holds the host-specific 
“local name” of a code set and returns the corresponding integer value that uniquely 
identifies that code set, as registered in the host's code set registry. If the integer va
does not exist in the registry, the routine returns the status dce_cs_c_unknown. 

The routine also returns the number of character sets that the code set encodes and the 
registered integer values that uniquely identify those character sets. Specifying N
in the rgy_char_sets_number and   rgy_char_sets_value[] parameters prevents th
routine from performing the additional search for these values. Applications that w
only to obtain a code set value from the code set registry can specify NULL for these 
parameters in order to improve the routine's performance. If the value is returned 
the routine, application developers should free the array after it is used, since the array 
is dynamically allocated. 

dce_cs_rgy_to_loc

Maps a numeric code set value contained in the code set registry to the local system-
specific name for a code set. 
CORBA V2.2        Relevant OSFM Registry Interfaces             February 1998 11-37



11

es to 

ing 

her 

ode 

 

 
 the 

 set 
SYNOPSIS
void dce_cs_rgy_to_loc(

     unsigned32 *rgy_code_set_value,
     idl_char **local_code_set_name,
     unsigned16 *rgy_char_sets_number,
     unsigned16 **rgy_char_sets_value,
     error_status_t *status);

PARAMETERS
Input

rgy_code_set_value
The registered hexadecimal value that uniquely identifies the code set.

Output
local_code_set_name

A string that specifies the name that the local host's locale environment us
refer to the code set. The string is a maximum of 32 bytes: 31 data bytes and a 
terminating NULL character.

rgy_char_sets_number
The number of character sets that the specified code set encodes. Specify
NULL in this parameter prevents the routine from returning this value.

rgy_char_sets_value
A pointer to an array of registered integer values that uniquely identify the 
character set(s) that the specified code set encodes. Specifying NULL in this 
parameter prevents the routine from returning this value. The routine dynami-
cally allocates this value.

status
Returns the status code from this routine. This status code indicates whet
the routine completed successfully or, if not why not.

The possible status codes and their meanings are as follows:
dce_cs_c_ok – Code set registry access operation succeeded.   
dce_cs_c_cannot_allocate_memory –Cannot allocate memory for code set 

info.
dce_cs_c_unknown – The requested code set value was not found in the c

set registry.
dce_cs_c_notfound – No local code set name was found in the registry which 

corresponds to to the specific code set registry ID value. This implies that the
code set is not supported in the local system environment.

DESCRIPTION

The dce_cs_rgy_to_loc() routine maps a unique identifier for a code set in the code set
registry to the operating system-specific string name for the code set, if it exists in
code set registry.

The dce_cs_rgy_to_loc() routine takes as input a registered integer value of a code
and returns a string that holds the operating system-specific, or local name, of the code 
set.
11-38                                  CORBA V2.2                               February 1998



11

ULL 
 
ant 

ed 
 after 

t the 

t the 

her 

nvert.
e.

 
ot 
If the code set identifier does not exist in the registry, the routine returns the status 
dce_cs_c_unknown and returns an undefined string.

The routine also returns the number of character sets that the code set encodes and the 
registered integer values that uniquely identify those character sets. Specifying N
in the rgy_char_sets_number and rgy_char_sets_value[] parameters prevents the
routine from performing the additional search for these values. Applications that w
only to obtain a local code set name from the code set registry can specify NULL for 
these parameters in order to improve the routine's performance. If the value is return
from the routine, application developers should free the rgy_char_sets_value array
it is used.

rpc_cs_char_set_compat_check

Evaluates character set compatibility between a client and a server.

SYNOPSIS
void rpc_cs_char_set_compat_check(

     unsigned32 client_rgy_code_set_value,
     unsigned32 server_rgy_code_set_value,
     error_status_t *status);

PARAMETERS
Input

client_rgy_code_set_value
The registered hexadecimal value that uniquely identifies the code set tha
client is using as its local code set.

server_rgy_code_set_value
The registered hexadecimal value that uniquely identifies the code set tha
server is using as its local code set.

Output
status

Returns the status code from this routine. This status code indicates whet
the routine completed successfully or, if not, why not.

The possible status codes and their meanings are as follows:
rpc_s_ok – Successful status.
rpc_s_ss_no_compat_charsets – No compatible code set found. The client and 

server do no have a common encoding that both could recognize and co
The routine can also return status codes from the dce_cs_rgy_to_loc() routin

DESCRIPTION

The rpc_cs_char_set_compat_check() routine provides a method for determining 
character set compatibility between a client and a server; if the server's character set is
incompatible with that of the client, then connecting to that server is most likely n
acceptable, since massive data loss would result from such a connection.
CORBA V2.2        Relevant OSFM Registry Interfaces             February 1998 11-39



11

upport. 

er 
iders 

m 

 

her 
The routine takes the registered integer values that represent the code sets that the 
client and server are currently using and calls the code set registry to obtain the 
registered values that represent the character set(s) that the specified code sets s
If both client and server support just one character set, the routine compares client and 
server registered character set values to determine whether or not the sets are 
compatible. If they are not, the routine returns the status message 
rpc_s_ss_no_compat_charsets.

If the client and server support multiple character sets, the routine determines wheth
at least two of the sets are compatible. If two or more sets match, the routine cons
the character sets compatible, and returns a success status code to the caller.

rpc_rgy_get_max_bytes

Gets the maximum number of bytes that a code set uses to encode one character fro
the code set registry on a host

SYNOPSIS
void rpc_rgy_get_max_bytes(

unsigned32 rgy_code_set_value,
unsigned16 *rgy_max_bytes,
error_status_t *status);

PARAMETERS
Input

rgy_code_set_value
The registered hexadecimal value that uniquely identifies the code set.

Output
rgy_max_bytes

The registered decimal value that indicates the number of bytes this code set
uses to encode one character.

status
Returns the status code from this routine. This status code indicates whet
the routine completed successfully or, if not, why not.

The possible status codes and their meanings are as follows:
rpc_s_ok – Operation succeeded.
dce_cs_c_cannot_allocate_memory –Cannot allocate memory for code set 

info.
dce_cs_c_unknown – No code set value was not found in the registry which 

corresponds to the code set value specified.
dce_cs_c_notfound – No local code set name was found in the registry which 

corresponds to the value specified.
11-40                                  CORBA V2.2                               February 1998



11

t. It 

d 
DESCRIPTION

The rpc_rgy_get_max_bytes() routine reads the code set registry on the local hos
takes the specified registered code set value, uses it as an index into the registry, and 
returns the decimal value that indicates the number of bytes that the code set uses to 
encode one character.

This information can be used for buffer sizing as part of the procedure to determine 
whether additional storage needs to be allocated for conversion between local an
network code sets. 
CORBA V2.2        Relevant OSFM Registry Interfaces             February 1998 11-41



11
11-42                                  CORBA V2.2                               February 1998


	ORB Interoperability Architecture
	11.1 Overview
	11.1.1 Domains
	11.1.2 Bridging Domains

	11.2 ORBs and ORB Services
	11.2.1 The Nature of ORB Services
	11.2.2 ORB Services and Object Requests
	11.2.3 Selection of ORB Services

	11.3 Domains
	11.3.1 Definition of a Domain
	11.3.2 Mapping Between Domains: Bridging

	11.4 Interoperability Between ORBs
	11.4.1 ORB Services and Domains
	11.4.2 ORBs and Domains
	11.4.3 Interoperability Approaches
	11.4.4 Policy-Mediated Bridging
	11.4.5 Configurations of Bridges in Networks

	11.5 Object Addressing
	11.5.1 Domain-relative Object Referencing
	11.5.2 Handling of Referencing Between Domains

	11.6 An Information Model for Object References
	11.6.1 What Information Do Bridges Need?
	11.6.2 Interoperable Object References: IORs
	11.6.3 Standard IOR Components
	11.6.4 Profile and Component Composition in IORs
	11.6.5 IOR Creation and Scope
	11.6.6 Stringified Object References
	11.6.7 Object Service Context

	11.7 Code Set Conversion
	11.7.1 Character Processing Terminology
	11.7.2 Code Set Conversion Framework
	11.7.3 Mapping to Generic Character Environments

	11.8 Example of Generic Environment Mapping
	11.8.1 Generic Mappings
	11.8.2 Interoperation and Generic Mappings

	11.9 Relevant OSFM Registry Interfaces
	11.9.1 Character and Code Set Registry
	11.9.2 Access Routines



