Building Inter-ORB Bridges 12

This chapter provides damplementation-orientedonceptual framework for the
construction of bridges tprovide interoperabilitbetween ORBs. It focuses on the
layeredrequest level bridgethat the CORBA Core specifications fiéeite, although
ORBs may always be internally modified to support bridges.

Key feature of the specifications for inter-ORBidges are as follows:
® Enables requests froome ORB to be translated to requests on another

® Provides support for managing tables keyed by object references

The OMG IDL specification for interoperable object referenedsch are important to
inter-ORB bridging, isshown in ‘Interoperable Object References: IORs” on page
11-14.

Contents

This chapter contains tHellowing sections.

Section Title Page
“In-Line and Request-Level Bridging” 12-2
“Proxy Creation and Management” 12-5
“Interface-specific Bridges and Generic Bridges” 12-6
“Building Generic Request-Level Bridges” 12-6
“Bridging Non-Referencing Dmains” 12-7
“Bootstrapping Bridges” 12-7

CORBA V2.2 Febloag/ 12-1

12

12.1 In-Line and Request-LeRidging

Bridging of an invocatiorbetween a client in one domain and a server object in
another domain can bmediated through a standardized mechanism, or done
immediately using nonstandard ones.

The question of howhis bridging is constructed is broadly independent of whether the
bridging uses a standardized mechanism. There are two possible options for where the
bridge components are located:

® Code inside the ORB may perform the necessary translation or mappings; this is
termedin-line bridging

® Application stylecodeoutside the ORB can perform thranslation or mappings;
this is termedequest level bridging

Request level bridges which mediate througtoenmon protocol (usingetworking,
shared memory, or some other IPC provided by the host operating shstieveen
distinctexecution environments will involve components, one in each GR®&yn as
“half bridges.”

When that mediation is purely internal to one @k@®n environment, using a shared
programming environment’s binary interfaces to B3R and OMG-IDL-defined data
types, this is known as a “full bridge”From outside the execution environment this

will appear icentical to some kinds of in-line bgéhg, since only that environment
knows theconstruction techniques used. However, full bridges more easily support
portable policy mediation components, because of their use of only standard CORBA
programming interfaces.

Network protocols may be used immediately “in-line,” or to mediate between request-
level half bridges. The General Inter-ORB Protocol candslun either manner. In
addition, this specificatioprovides for Environment Specific Inter-ORB Protocols
(ESIOP), allowingfor alternative mediation mechanisms.

Note that mediated, request level half-bridges can be built bgn@mwho as access to
an ORB, without needingpformationabout the internal construction of that ORB.
Immediate-mode request level half-bridges (i.e., ones using nonstandédiation
mechanisms) casimilarly be built without needing information about ORB internals.
Only in-line bridges (using either standard or nonstandard mediation mechanisms)
need potentially pprietary iformationabout ORB internals.

1.Special initialization supporting object referencing domains (e.g. two protocols) to be
exposed to application programmers to support construction of this style bridge.

12-2 CORBAV2.2 February 1998

12

12.1.1 In-line Bridging

In-line bridging is in general the most direct method of bridging betweeBOR is
structurally similar tathe engineering commonly used to bridge between systems

within a single ORB (e.g., mediating using some cominder-process

communications scheme, such as a network protocol). This meamns phamenting

in-line bridges involves as fundamental a set of changes to an ORB as adding a new
inter-process communications scheme. (Some ORBs may be designed to facilitate such
modifications, though.)

In this approach, the required bridgingnétionality can be provided by a combination
of software components at various levels:

® As additional or alternative services provided by the underlying ORBs

® As additional or alternative studind skeleton code.

Logical client to server operation request

e I
(D)
' ORB Services ORB Services ‘
‘ ORB Core ORB Core ‘

Figure 12-1 In-Line bridges are built usin@RB internal APIs

12.1.2 Request-level Bging
The generaprinciple of request-level bridging is as follows:
1. The original request is passed to a proxy object in the client ORB.

2. The proxy objectranslates the request contents (including the target object
reference) to a form that will be understood by the server ORB.

3. The proxy invokes the required operation on the apparent server object.

4. Any operation result is passed back to the client via a complementary route.

CORBAV2.2 nkLine and Request-Level Bridging February 1998 12-3

12

Logical client to server operation request

S I
oy DSl (DIl

Q ORB Services' ORB Services Q
O O O O
ORBCore | | ORBCore

Figure 12-2 Request-Level bridges are built usipgblic ORB APIs

The request translation involves performing object reference mapping for all object
references involved in the request (the target, explicit paramatetgyerhapgnplicit

ones such as transaction context). As elaborated later, this translation may also involve
mappings for other domains: the security domai€ORBA: :Principal parameters,

type identifiers, and so on.

It is a language mapping requirement of the CORBA Core fpagt@n that all
dynamic typing APIs (e.gAny, NamedValue) support such manipulation of
parameters evenhen the bridgevas notcreated with compile-timknowledge of the
data types involved.

12.1.3 Collocated ORBs

In the case of immediate bridging (i.e. not via a standardized, external protocol) the
means of communication between tent-side bridge component and that on the
server-side is an entirely private matter. One possible engineeringidee optimizes
this communication by coalescing ttveo components into theame system or even

the same address space. In lti¢er case, accommodations must be made by both
ORBs to allow them to share the same execution environment.

12-4 CORBAV2.2 February 1998

12

Similar observations apply tequest level bridges, which in the case of collocated
ORBs use a common binary interface to all OMG IDL-defined data as their mediating
data format.

Inter-ORB messaging Intra-ORB messaging

ORB 1 ORB 2

Figure 12-3 When the two ORBs are collocated in a bridge execution environment, network
communications will be purely intrafRB. If the ORBs are natollocated, such
communications must go between ORBs.

An advantage of using bridges spanning collocated ORBs is that all external messaging
can be arranged to be intra-ORB, using whatever message passing mechanisms each
ORB uses to achieve didittion within a single ORBnultiple machine system. That

is, for bridges between networked ORBs such a bridge would add only a single “hop,”
a cost analogous to normal routing.

12.2 Proxy Creatiomand Management

Bridges need to support arbitrary numbers of proxy objects, because of the
(bidirectional) object reference mappings required. Réyeschemes focreating and
managing proxies ameference translatiorandreference encapsulatioras discussed
in “Handling of Referencin®etween mains” on page 11-12.

* Reference translation approaches are possible with CORBA V2.0 Core APIs.
Proxies themselves can be created as normal objects using the BgsitAdlapter
(BOA) and the Dynamic Skeleton Interface (DSI).

* Reference Encapsulation is not supported by the BOA, since it would call for
knowledge oimore than one ORB. Some ORBs could provide other object adapters
which support such encapsulation.

Note that from the perspective of clients, they only ever deal with local objects; clients
do not need to distinguish between proxies and other objects. Accordingly, all CORBA
operations supported by the local ORB are also supported through a bridge. The ORB
used by the client mighhowever, be able to recognize thatapsulation is in use,
depending on howhe ORB is implemented.

Also, note that th€ ORBA:: Interfa ceDef used when creating proxies (e.g, the one
passed td€CORBA::BOA::create) could be either a proxy to one in the target ORB,

or could be an equivalent local one. When the domains being bridged include a type
domain, then thénterfaceDef objects cannot be proxies since type descriptions will
not have the same information. When bridging CORBA complianBR/pe

domains by deéition do not need to be bridged.

CORBAV2.2 Prox@greation and Management February 1998 12-5

12

12.3 Interface-specific Bridgesd Generic Bridges

Request-level bridges may be:

* Interface-specificthey support predetermined IDL interfaces only, and are built
using IDL-compiler gearated stub and skeleton interfaces.

® Generic capable of bridging requests to server objects of arbitrary IDL interfaces,
using the interface reysitory and other dynamic invocation support (DIl and DSI).

Interface-specific bridges may be more efficient in some casgsngic bridge could
conceivably create the same stubs and skeletons using the interface repository), but the
requirement for prior compilation means that this approach offers tegbility than

use of generic bridges.

12.4 Building Generic Request-Level Bridges

12-6

The CORBA Corespecifications define thiollowing interfaces. Thse interfaces are
of particular significance when building a generic request-level bridge:

® Dynamic Invocation Interface (Dll)lets the bridge make arbitrary invocations on
object references whose types may not have kerewn whenthe bridge was
developed or deployed.

®* Dynamic Skeleton Interface (DSllets the bridge handle invocations on proxy
object references which iinplements, even whetheir types may not have been
known whernthe bridge was developed or deployed.

® Interface Repositoriesre consulted by the bridge to acquire the informaiged
to drive DIl and DSI, such as the type codes for operation parameters, return values,
and exeptions.

® Object Adaptergsuch as the Basic Object Adaptare used to create proxy object
references botiwhen bmtstrappinghe bridge and when mappinbject references
which are dynamicallypassed from one ORB to the other.

®* CORBA Object Referencesupport operations to fully describe their interfaces and
to create tables mapping object references to their préainesvice versa).

Interface repositories accessed on either side of a half bridge need not have the same
information, thaugh of course thaformation associated witany given repository 1D
(e.g, aninterface type ID, exception ID) or operation ID must be the same.

Using these interfaces and an interface to some common transport mechanism such a
TCP, portable request-level half bridgemnected to an ORB can:

® Use DSI to translate all CORBA invocations on proxy objects tddha used by
some mediating protocol such as IIOP (see the General Inter-ORB Protocol
chapter).

®* Translate requests made using suchealiating protocol into DIl requests on
objects in the ORB.

CORBAV2.2 February 1998

12

As noted in “In-Line and Request-Level Bridging” on pddge2, translating requests
and responses (including eeptional responses) involves mapping object references
(and other explicit andriplicit parameter data) from the fornsed by the ORB to the
form used by themediating protocoland vice versa. Exigit parameters, hich are
defined by an operation’s OMG-IDL daition, are presented through DIl or DSI and
are listed in the Interface Repository entry for any particular operation.

Operations on object referencasch ashash() andis_equivalent() may be used to
maintain tables that support such mappings. When such a mapping does not exist, an
object adapter is used to create a ORB-$jgegioxy object references, and bridge-
internal interfaces are used to create the analogous data structure for the mediating
protocol.

12.5 Bridging Non-Referencing Domains

In the simplest form of request-level bridging, the bridge operates only on IDL-defined
data, and bridges only object reference domains. In this case, a proxy object in the
client ORB acts as a representative of the target object and is, in alnyogtactical
sense, indistinguishable from the target server object - indeed, even the client ORB will
not be aware of thdistinction.

However, as alluded to above, there mayrhatiple domains that need simultaneous
bridging. Thetransformation and encapsulation schemes described above may not
apply in the samevay to Principal otype identifiers. Request level bridges may need
to translatesuch identifiers, in addition to object references hay tare passed as
explicit operation parameters.

Moreover, there is an engéng class of ‘finplicit context” informaibn that ORBs may
need to convey ith any particular request, such asnsactionand security context
information. Suchparameters are not defined as part of an operatiod&-IDL
signhature, hence are “implicit” in the invocation context. Bridging tvaains ofsuch
implicit parameters could involve additional kindswedrk, needing to m#iate more
policies, than bridging the object reference, Principal] type domains directly
addressed by CORBA.

CORBA does not yet have a generic way (including support for &tatic and
dynamic invocations) to expose sualplicit conext information.

12.6 Bootstrapping Bridges

A particularly useful policy fosetting upbridges is to create a pair of proxies for two
Naming Service naming contexts (one in each ORB) and then install those proxies as
naming contexts in the other ORB’s naming service. (The Naming Service is described
in CORBAservice} This will allow clients in either ORB to transparently perform
naming context lookup operations on the other ORBijeving (proxy) object

references for other objects in that ORB. In this way, usansaccessatilities that

have been selectively exporttdm another ORB, through a naming context, with no
administrative addn beyond eporting thosdnitial contexts. (See “Obtaining bl

Object References” on page 4-10 for addition&rmation).

CORBAV2.2 ilging Non-Referencing Domains February 1998 12-7

12

This same approach may be taken with other discovery services, such as a trading
service or any kind of object that could provide object references as opeesidts
(and in “out” parameters). While bridges can be established which only pass a
predefined set of object references, this kindnafimal cannectivity policy is not
always desirable.

12-8 CORBAV2.2 February 1998

	Building Inter-ORB Bridges
	12.1 In-Line and Request-Level Bridging
	12.1.1 In-line Bridging
	12.1.2 Request-level Bridging
	12.1.3 Collocated ORBs

	12.2 Proxy Creation and Management
	12.3 Interface-specific Bridges and Generic Bridges
	12.4 Building Generic Request-Level Bridges
	12.5 Bridging Non-Referencing Domains
	12.6 Bootstrapping Bridges

