
 Building Inter-ORB Bridges 12
This chapter provides an implementation-oriented conceptual framework for the
construction of bridges to provide interoperability between ORBs. It focuses on the
layered request level bridges that the CORBA Core specifications facilitate, although
ORBs may always be internally modified to support bridges.

Key feature of the specifications for inter-ORB bridges are as follows:

• Enables requests from one ORB to be translated to requests on another

• Provides support for managing tables keyed by object references

The OMG IDL specification for interoperable object references, which are important to
inter-ORB bridging, is shown in “Interoperable Object References: IORs” on page
11-14.

Contents

This chapter contains the following sections.

Section Title Page

“In-Line and Request-Level Bridging” 12-2

“Proxy Creation and Management” 12-5

“Interface-specific Bridges and Generic Bridges” 12-6

“Building Generic Request-Level Bridges” 12-6

“Bridging Non-Referencing Domains” 12-7

“Bootstrapping Bridges” 12-7
 CORBA V2.2 February 1998 12-1

12

he
re the

 is

t
BA

est-

.
)
12.1 In-Line and Request-Level Bridging

Bridging of an invocation between a client in one domain and a server object in
another domain can be mediated through a standardized mechanism, or done
immediately using nonstandard ones.

The question of how this bridging is constructed is broadly independent of whether t
bridging uses a standardized mechanism. There are two possible options for whe
bridge components are located:

• Code inside the ORB may perform the necessary translation or mappings; this
termed in-line bridging.

• Application style code outside the ORB can perform the translation or mappings;
this is termed request level bridging.

Request level bridges which mediate through a common protocol (using networking,
shared memory, or some other IPC provided by the host operating system) between
distinct execution environments will involve components, one in each ORB, known as
“half bridges.”

When that mediation is purely internal to one execution environment, using a shared
programming environment’s binary interfaces to CORBA- and OMG-IDL-defined data
types, this is known as a “full bridge”1. From outside the execution environment this
will appear identical to some kinds of in-line bridging, since only that environment
knows the construction techniques used. However, full bridges more easily suppor
portable policy mediation components, because of their use of only standard COR
programming interfaces.

Network protocols may be used immediately “in-line,” or to mediate between requ
level half bridges. The General Inter-ORB Protocol can be used in either manner. In
addition, this specification provides for Environment Specific Inter-ORB Protocols
(ESIOP), allowing for alternative mediation mechanisms.

Note that mediated, request level half-bridges can be built by anyone who as access to
an ORB, without needing information about the internal construction of that ORB.
Immediate-mode request level half-bridges (i.e., ones using nonstandard mediation
mechanisms) can similarly be built without needing information about ORB internals
Only in-line bridges (using either standard or nonstandard mediation mechanisms
need potentially proprietary information about ORB internals.

1.Special initialization supporting object referencing domains (e.g. two protocols) to be
exposed to application programmers to support construction of this style bridge.
12-2 CORBA V2.2 February 1998

12

new
 such

12.1.1 In-line Bridging

In-line bridging is in general the most direct method of bridging between ORBs. It is
structurally similar to the engineering commonly used to bridge between systems
within a single ORB (e.g., mediating using some common inter-process
communications scheme, such as a network protocol). This means that implementing
in-line bridges involves as fundamental a set of changes to an ORB as adding a
inter-process communications scheme. (Some ORBs may be designed to facilitate
modifications, though.)

In this approach, the required bridging functionality can be provided by a combination
of software components at various levels:

• As additional or alternative services provided by the underlying ORBs

• As additional or alternative stub and skeleton code.

Figure 12-1 In-Line bridges are built using ORB internal APIs.

12.1.2 Request-level Bridging

The general principle of request-level bridging is as follows:

1. The original request is passed to a proxy object in the client ORB.

2. The proxy object translates the request contents (including the target object
reference) to a form that will be understood by the server ORB.

3. The proxy invokes the required operation on the apparent server object.

4. Any operation result is passed back to the client via a complementary route.

Client Server

 ORB Core ORB Core

ORB Services ORB Services

Logical client to server operation request

(DII)
CORBA V2.2 In-Line and Request-Level Bridging February 1998 12-3

12

t

volve

he
Figure 12-2 Request-Level bridges are built using public ORB APIs.

The request translation involves performing object reference mapping for all objec
references involved in the request (the target, explicit parameters, and perhaps implicit
ones such as transaction context). As elaborated later, this translation may also in
mappings for other domains: the security domain of CORBA: :Principal parameters,
type identifiers, and so on.

It is a language mapping requirement of the CORBA Core specification that all
dynamic typing APIs (e.g., Any, NamedValue) support such manipulation of
parameters even when the bridge was not created with compile-time knowledge of the
data types involved.

12.1.3 Collocated ORBs

In the case of immediate bridging (i.e. not via a standardized, external protocol) t
means of communication between the client-side bridge component and that on the
server-side is an entirely private matter. One possible engineering technique optimizes
this communication by coalescing the two components into the same system or even
the same address space. In the latter case, accommodations must be made by both
ORBs to allow them to share the same execution environment.

Client Server

 ORB Core ORB Core

ORB Services ORB Services

Logical client to server operation request

(DII) DSI (DII)

Bridge
12-4 CORBA V2.2 February 1998

12

ting

k

aging
 each

op,”

ters

ents
BA

ORB

,
ype
ill
Similar observations apply to request level bridges, which in the case of collocated
ORBs use a common binary interface to all OMG IDL-defined data as their media
data format.

Figure 12-3 When the two ORBs are collocated in a bridge execution environment, networ
communications will be purely intra-ORB. If the ORBs are not collocated, such
communications must go between ORBs.

An advantage of using bridges spanning collocated ORBs is that all external mess
can be arranged to be intra-ORB, using whatever message passing mechanisms
ORB uses to achieve distribution within a single ORB, multiple machine system. That
is, for bridges between networked ORBs such a bridge would add only a single “h
a cost analogous to normal routing.

12.2 Proxy Creation and Management

Bridges need to support arbitrary numbers of proxy objects, because of the
(bidirectional) object reference mappings required. The key schemes for creating and
managing proxies are reference translation and reference encapsulation, as discussed
in “Handling of Referencing Between Domains” on page 11-12.

• Reference translation approaches are possible with CORBA V2.0 Core APIs.
Proxies themselves can be created as normal objects using the Basic Object Adapter
(BOA) and the Dynamic Skeleton Interface (DSI).

• Reference Encapsulation is not supported by the BOA, since it would call for
knowledge of more than one ORB. Some ORBs could provide other object adap
which support such encapsulation.

Note that from the perspective of clients, they only ever deal with local objects; cli
do not need to distinguish between proxies and other objects. Accordingly, all COR
operations supported by the local ORB are also supported through a bridge. The
used by the client might, however, be able to recognize that encapsulation is in use,
depending on how the ORB is implemented.

Also, note that the CORBA:: Interfa ceDef used when creating proxies (e.g, the one
passed to CORBA::BOA::create) could be either a proxy to one in the target ORB
or could be an equivalent local one. When the domains being bridged include a t
domain, then the InterfaceDef objects cannot be proxies since type descriptions w
not have the same information. When bridging CORBA compliant ORBs, type
domains by definition do not need to be bridged.

Bridge

Bridge Bridge

BridgeBridge

ORB 2

ORB 3ORB 1

ORB 1 ORB 2

Inter-ORB messaging Intra-ORB messaging
CORBA V2.2 Proxy Creation and Management February 1998 12-5

12

es,
).

ut the

lues,

t

d

same

uch as
12.3 Interface-specific Bridges and Generic Bridges

Request-level bridges may be:

• Interface-specific: they support predetermined IDL interfaces only, and are built
using IDL-compiler generated stub and skeleton interfaces.

• Generic: capable of bridging requests to server objects of arbitrary IDL interfac
using the interface repository and other dynamic invocation support (DII and DSI

Interface-specific bridges may be more efficient in some cases (a generic bridge could
conceivably create the same stubs and skeletons using the interface repository), b
requirement for prior compilation means that this approach offers less flexibility than
use of generic bridges.

12.4 Building Generic Request-Level Bridges

The CORBA Core specifications define the following interfaces. These interfaces are
of particular significance when building a generic request-level bridge:

• Dynamic Invocation Interface (DII) lets the bridge make arbitrary invocations on
object references whose types may not have been known when the bridge was
developed or deployed.

• Dynamic Skeleton Interface (DSI) lets the bridge handle invocations on proxy
object references which it implements, even when their types may not have been
known when the bridge was developed or deployed.

• Interface Repositories are consulted by the bridge to acquire the information used
to drive DII and DSI, such as the type codes for operation parameters, return va
and exceptions.

• Object Adapters (such as the Basic Object Adapter) are used to create proxy objec
references both when bootstrapping the bridge and when mapping object references
which are dynamically passed from one ORB to the other.

• CORBA Object References support operations to fully describe their interfaces an
to create tables mapping object references to their proxies (and vice versa).

Interface repositories accessed on either side of a half bridge need not have the
information, though of course the information associated with any given repository ID
(e.g, an interface type ID, exception ID) or operation ID must be the same.

Using these interfaces and an interface to some common transport mechanism s
TCP, portable request-level half bridges connected to an ORB can:

• Use DSI to translate all CORBA invocations on proxy objects to the form used by
some mediating protocol such as IIOP (see the General Inter-ORB Protocol
chapter).

• Translate requests made using such a mediating protocol into DII requests on
objects in the ORB.
12-6 CORBA V2.2 February 1998

12

s

t, an

ing

ned
he

 will

t
d

s as

ribed

o
As noted in “In-Line and Request-Level Bridging” on page 12-2, translating requests
and responses (including exceptional responses) involves mapping object reference
(and other explicit and implicit parameter data) from the form used by the ORB to the
form used by the mediating protocol, and vice versa. Explicit parameters, which are
defined by an operation’s OMG-IDL definition, are presented through DII or DSI and
are listed in the Interface Repository entry for any particular operation.

Operations on object references such as hash() and is_equivalent() may be used to
maintain tables that support such mappings. When such a mapping does not exis
object adapter is used to create a ORB-specific proxy object references, and bridge-
internal interfaces are used to create the analogous data structure for the mediat
protocol.

12.5 Bridging Non-Referencing Domains

In the simplest form of request-level bridging, the bridge operates only on IDL-defi
data, and bridges only object reference domains. In this case, a proxy object in t
client ORB acts as a representative of the target object and is, in almost any practical
sense, indistinguishable from the target server object - indeed, even the client ORB
not be aware of the distinction.

However, as alluded to above, there may be multiple domains that need simultaneous
bridging. The transformation and encapsulation schemes described above may no
apply in the same way to Principal or type identifiers. Request level bridges may nee
to translate such identifiers, in addition to object references, as they are passed as
explicit operation parameters.

Moreover, there is an emerging class of “implicit context” information that ORBs may
need to convey with any particular request, such as transaction and security context
information. Such parameters are not defined as part of an operation’s OMG-IDL
signature, hence are “implicit” in the invocation context. Bridging the domains of such
implicit parameters could involve additional kinds of work, needing to mediate more
policies, than bridging the object reference, Principal, and type domains directly
addressed by CORBA.

CORBA does not yet have a generic way (including support for both static and
dynamic invocations) to expose such implicit context information.

12.6 Bootstrapping Bridges

A particularly useful policy for setting up bridges is to create a pair of proxies for two
Naming Service naming contexts (one in each ORB) and then install those proxie
naming contexts in the other ORB’s naming service. (The Naming Service is desc
in CORBAservices.) This will allow clients in either ORB to transparently perform
naming context lookup operations on the other ORB, retrieving (proxy) object
references for other objects in that ORB. In this way, users can access facilities that
have been selectively exported from another ORB, through a naming context, with n
administrative action beyond exporting those initial contexts. (See “Obtaining Initial
Object References” on page 4-10 for additional information).
CORBA V2.2 Bridging Non-Referencing Domains February 1998 12-7

12

g
This same approach may be taken with other discovery services, such as a tradin
service or any kind of object that could provide object references as operation results
(and in “out” parameters). While bridges can be established which only pass a
predefined set of object references, this kind of minimal connectivity policy is not
always desirable.
12-8 CORBA V2.2 February 1998

	Building Inter-ORB Bridges
	12.1 In-Line and Request-Level Bridging
	12.1.1 In-line Bridging
	12.1.2 Request-level Bridging
	12.1.3 Collocated ORBs

	12.2 Proxy Creation and Management
	12.3 Interface-specific Bridges and Generic Bridges
	12.4 Building Generic Request-Level Bridges
	12.5 Bridging Non-Referencing Domains
	12.6 Bootstrapping Bridges

