
 Mapping: COM and CORBA 16
M

 to be

-

m-
This chapter describes the data type and interface mapping between COM and
CORBA. The mappings are described in the context of both Win16 and Win32 CO
due to the differences between the versions of COM and between the automated tools
available to COM developers under these environments. The mapping is designed
fully implemented by automated interworking tools.

Contents

This chapter contains the following sections.

16.1 Data Type Mapping

The data type model used in this mapping for Win32 COM is derived from MIDL (a
derivative of DCE IDL). COM interfaces using “custom marshaling” must be hand
coded and require special treatment to interoperate with CORBA using automated
tools. This specification does not address interworking between CORBA and custo
marshaled COM interfaces.

The data type model used in this mapping for Win16 COM is derived from ODL since
Microsoft RPC and the Microsoft MIDL compiler are not available for Win16. The
ODL data type model was chosen since it is the only standard, high-level
representation available to COM object developers on Win16.

Section Title Page

“Data Type Mapping” 16-1

“CORBA to COM Data Type Mapping” 16-2

“COM to CORBA Data Type Mapping” 16-32
 CORBA V2.2 February 1998 16-1

16

e for
d to

ypes.
.
Note that although the MIDL and ODL data type models are used as the referenc
the data model mapping, there is no requirement that either MIDL or ODL be use
implement a COM/CORBA interworking solution.

In many cases, there is a one-to-one mapping between COM and CORBA data t
However, in cases without exact mappings, run-time conversion errors may occur
Conversion errors will be discussed in Mapping for Exception Types under “Interface
Mapping” on page 16-11.

16.2 CORBA to COM Data Type Mapping

16.2.1 Mapping for Basic Data Types

The basic data types available in OMG IDL map to the corresponding data types
available in Microsoft IDL as shown in Table 16-1.

16.2.2 Mapping for Constants

The mapping of the OMG IDL keyword const to Microsoft IDL and ODL is almost
exactly the same. The following OMG IDL definitions for constants

Table 16-1 OMG IDL to MIDL Intrinsic Data Type Mappings

OMG IDL Microsoft
IDL

Microsoft
ODL

Description

short short short Signed integer with a range of -215...215 - 1

long long long Signed integer with a range of -231...231 - 1

unsigned short unsigned short unsigned short Unsigned integer with a range of 0...216 - 1

unsigned long unsigned long unsigned long Unsigned integer with a range of 0...232 - 1

float float float IEEE single-precision floating point number

double double double IEEE double-precision floating point number

char char char 8-bit quantity limited to the ISO Latin-1
character set

boolean boolean boolean 8-bit quantity which is limited to 1 and 0

octet byte unsigned char 8-bit opaque data type, guaranteed to not
undergo any conversion during transfer
between systems.
16-2 CORBA V2.2 February 1998

16

and

 of the

A C

ion.
// OMG IDL
const short S = ...;
const long L = ...;
const unsigned short US = ...;
const unsigned long UL = ...;
const char C = ...;
const boolean B = ...;
const string STR = “...”;

maps to the following Microsoft IDL and ODL definitions for constants

// Microsoft IDL and ODL
const short S = ...;
const long L = ...;
const unsigned short US = ...;
const unsigned long UL = ...;
const char C = ...;
const boolean B = ...;
const string STR = “...”;

Note that OMG IDL supports the definition of constants for the data types float and
double , while COM does not. Because of this, any tool that generates Microsoft IDL
or ODL from OMG IDL should raise an error when a float or double constant is
encountered.

16.2.3 Mapping for Enumerators

CORBA has enumerators that are not explicitly tagged with values. Microsoft IDL
ODL support enumerators that are explicitly tagged with values. The constraint is that
any language mapping that permits two enumerators to be compared or defines
successor or predecessor functions on enumerators must conform to the ordering
enumerators as specified in the OMG IDL.

// OMG IDL
enum A_or_B_or_C {A, B, C};

CORBA enumerators are mapped to COM enumerations directly as per the CORB
language binding. The Microsoft IDL keyword v1_enum is required in order for an
enumeration to be transmitted as 32-bit values. Microsoft recommends that this
keyword be used on 32-bit platforms, since it increases the efficiency of marshalling
and unmarshalling data when such an enumerator is embedded in a structure or un

// Microsoft IDL and ODL
 typedef [v1_enum] enum tagA_or_B_orC { A = 0, B, C }
A_or_B_or_C;

A maximum of 2ˆ32 identifiers may be specified in an enumeration in CORBA.
Enumerators in Microsoft IDL and ODL will only support 2ˆ16 identifiers, and
therefore, truncation may result.
CORBA V2.2 CORBA to COM Data Type Mapping February 1998 16-3

16

n

pe

 a

ft
16.2.4 Mapping for String Types

CORBA currently defines the data type string to represent strings that consist of
8-bit quantities, which are NULL-terminated.

Microsoft IDL and ODL define a number of different data types which are used to
represent both 8-bit character strings and strings containing wide characters based o
Unicode.

Table 16-2 illustrates how to map the string data types in OMG IDL to their
corresponding data types in both Microsoft IDL and ODL.

If a BSTR containing embedded nulls is passed to a CORBA server, the COM client
will receive an E_DATA_CONVERSION.

OMG IDL supports two different types of strings: bounded and unbounded. Bounded
strings are defined as strings that have a maximum length specified; whereas,
unbounded strings do not have a maximum length specified.

Mapping for Unbounded String Types

The definition of an unbounded string limited to 8-bit quantities in OMG IDL

 // OMG IDL
 typedef string UN BOUNDED_STRING;

is mapped to the following syntax in Microsoft IDL and ODL, which denotes the ty
of a “stringified unique pointer to character.”

 // Microsoft IDL and ODL
typedef [string, unique] char * UNBOUNDED_STRING;

In other words, a value of type UNBOUNDED_STRING is a non-NULL pointer to
one-dimensional null-terminated character array whose extent and number of valid
elements can vary at run-time.

Mapping for Bounded String Types

Bounded strings have a slightly different mapping between OMG IDL and Microso
IDL and ODL. The following OMG IDL definition for a bounded string:

Table 16-2 OMG IDL to Microsoft IDL/ODL String Mappings

OMG
IDL

Microsoft
IDL

Microsoft
ODL

Description

string LPSTR, char * LPSTR Null terminated 8-bit character
string

LPTSTR LPTSTR Null terminated 8-bit or Unicode
string (depends upon compiler
flags used)
16-4 CORBA V2.2 February 1998

16

ull-

d set
ed in
// OMG IDL
 const long N = ...;
 typedef string<N> BOUNDED_STRING;

maps to the following syntax in Microsoft IDL and ODL for a “stringified non-
conformant array.”

// Microsoft IDL and ODL
 const long N = ... ;
 typedef [string, unique] char (* BOUNDED_STRING) [N];

In other words, the encoding for a value of type BOUNDED_STRING is that of a n
terminated array of characters whose extent is known at compile time, and the number
of valid characters can vary at run-time.

16.2.5 Mapping for Struct Types

OMG IDL uses the keyword struct to define a record type, consisting of an ordere
of name-value pairs representing the member types and names. A structure defin
OMG IDL maps bidirectionally to Microsoft IDL and ODL structures. Each member
of the structure is mapped according to the mapping rules for that data type.

An OMG IDL struct type with members of types T0, T1, T2, and so on

// OMG IDL
typedef ... T0
typedef ... T1;
typedef ... T2;
...
typedef ... Tn;
struct STRUCTURE
{

T0 m0;
T1 ml;
T2 m2;

 ...
Tn mN;

 };

has an encoding equivalent to a Microsoft IDL and ODL structure definition, as
follows.
CORBA V2.2 CORBA to COM Data Type Mapping February 1998 16-5

16

ar
r
// Microsoft IDL and ODL
typedef ... T0;
typedef ... Tl;
typedef ... T2;
...
typedef ... Tn;
typedef struct

 {
 T0 m0;

 Tl ml;
T2 m2;

 ...
 TN mN;

} STRUCTURE;

Self-referential data types are expanded in the same manner. For example,

struct A { // OMG IDL
seque nce<A> v1;

};

is mapped as

typedef struct A {
struct { // MIDL

unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]
struct A * pValue;

} v1;
} A;

16.2.6 Mapping for Union Types

OMG IDL defines unions to be encapsulated discriminated unions: the discriminator
itself must be encapsulated within the union.

In addition, the OMG IDL union discriminants must be constant expressions. The
discriminator tag must be a previously defined long , short , unsigned long ,
unsigned short , char , boolean , or enum constant. The default case can appe
at most once in the definition of a discriminated union, and case labels must match o
be automatically castable to the defined type of the discriminator.
16-6 CORBA V2.2 February 1998

16
The following definition for a discriminated union in OMG IDL

// OMG IDL
enum UNION_DISCRIMINATOR
 {

dChar,
dShort,
dLong,
dFloat,
dDouble
};

union UNION_OF_CHAR_AND_ARITHMETIC
switch(UNION_DISCRIMINATOR)
{
case dChar: char c;
case dShort: short s;
case dLong: long l;
case dFloat: float f;
case dDouble: double d;
default: octet v[8];

};

is mapped into encapsulated unions in Microsoft IDL as follows:

// Microsoft IDL
typedef enum

{
dchar,
dShort,
dLong,
dFloat,
dDouble

} UNION_DISCRIMINATOR;

typedef union switch (UNION_DISCRIMINATOR DCE_d)
{
case dChar: char c;
case dShort: short s;
case dLong: long l;
case dFloat: float f;
case dDouble: double d;
default: byte v[8];
}UNION_OF_CHAR_AND_ARITH
CORBA V2.2 CORBA to COM Data Type Mapping February 1998 16-7

16

ngth

ce is

e T

e
t
ds

16.2.7 Mapping for Sequence Types

OMG IDL defines the keyword sequence to be a one-dimensional array with two
characteristics: an optional maximum size which is fixed at compile time, and a le
that is determined at run-time. Like the definition of strings, OMG IDL allows
sequences to be defined in one of two ways: bounded and unbounded. A sequen
bounded if a maximum size is specified, else it is considered unbounded.

Mapping for Unbounded Sequence Types

The mapping of the following OMG IDL syntax for the unbounded sequence of typ

// OMG IDL for T
typedef ... T;
typedef sequence<T> UNBOUNDED_SEQUENCE;

maps to the following Microsoft IDL and ODL syntax:

// Microsoft IDL or ODL
typedef ... U;
typedef struct
 {

unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]

U * pValue;
} UNBOUNDED_SEQUENCE;

The encoding for an unbounded OMG IDL sequence of type T is that of a Microsoft
IDL or ODL struct containing a unique pointer to a conformant array of type U, wher
U is the Microsoft IDL or ODL mapping of T. The enclosing struct in the Microsof
IDL/ODL mapping is necessary to provide a scope in which extent and data boun
can be defined.

Mapping for Bounded Sequence Types

The mapping for the following OMG IDL syntax for the bounded sequence of type T
which can grow to be N size

// OMG IDL for T
const long N = ...;
typedef ...T;
typedef sequence<T,N> BOUNDED_SEQUENCE_OF_N;

maps to the following Microsoft IDL or ODL syntax:

// Microsoft IDL or ODL
const long N = ...;
typedef ...U;
16-8 CORBA V2.2 February 1998

16

U
L

ny

e
typedef struct
{
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[length_is(cbLengthUsed)] U Value[N];
} BOUNDED_SEQUENCE_OF_N;

16.2.8 Mapping for Array Types

OMG IDL arrays are fixed length multidimensional arrays. Both Microsoft IDL and
ODL also support fixed length multidimensional arrays. Arrays defined in OMG IDL
map bidirectionally to COM fixed length arrays. The type of the array elements is
mapped according to the data type mapping rules.

The mapping for an OMG IDL array of some type T is that of an array of the type
as defined in Microsoft IDL and ODL, where U is the result of mapping the OMG ID
T into Microsoft IDL or ODL.

// OMG IDL for T
const long N = ...;
typedef ... T;
typedef T ARRAY_OF_T[N];

 // Microsoft IDL or ODL for T
const long N = ...;
typedef ... U;
typedef U ARRAY_OF_U[N];

In Microsoft IDL and ODL, the name ARRAY_OF_U denotes the type of a “one-
dimensional nonconformant and nonvarying array of U.” The value N can be of a
integral type, and const means (as in OMG IDL) that the value of N is fixed and known
at IDL compilation time. The generalization to multidimensional arrays follows the
obvious mapping of syntax.

Note that if the ellipsis were octet in the OMG IDL, then the ellipsis would have to
be byte in Microsoft IDL or ODL. That is why the types of the array elements hav
different names in the two texts.
CORBA V2.2 CORBA to COM Data Type Mapping February 1998 16-9

16

e
16.2.9 Mapping for the any Type

The CORBA any type permits the specification of values that can express any OMG
IDL data type. There is no direct or simple mapping of this type into COM, thus w
map it to the following interface definition:

// Microsoft IDL
typedef [v1_enum] enum CORBAAnyDataTagEnum {

anySimpleValTag,
anyAnyValTag,
anySeqValTag,
anyStructValTag,
anyUnionValTag

} CORBAAnyDataTag;

typedef union CORBAAnyDataUnion switch(CORBAAnyDataTag
whichOne){

case anyAnyValTag:
ICORBA_Any *anyVal;

case anySeqValTag:
case anyStructValTag:

struct {
[string, unique] char * repositoryId;
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed),

unique]
union CORBAAnyDataUnion *pVal;

} multiVal;
case anyUnionValTag:

struct {
[string, unique] char * repositoryId;
long disc;
union CORBAAnyDataUnion *value;

} unionVal;
case anyObjectValTag:

struct {
[string, unique] char * repositoryId;
VARIANT val;

} objectVal;
case anySimpleValTag: // All other types

VARIANT simpleVal;
} CORBAAnyData;

.... uuid(74105F50-3C68-11cf-9588-AA0004004A09)]
interface ICORBA_Any: IUnknown

{
HRESULT _get_value([out] VARIANT * val);
HRESULT _put_value([in] VARIANT val);
HRESULT _get_CORBAAnyData([out] CORBAAnyData* val);
16-10 CORBA V2.2 February 1998

16

er

 case

s

 or a

t of

ta
tion
HRESULT _put_CORBAAnyData([in] CORBAAnyData val);
HRESULT _get_typeCode([out] ICORBA_TypeCode ** tc);
}

However, the data types that can be included in a VARIANT are too restrictive to
represent the data types that can be included in an any, such as structs and unions. In
cases where the data types can be represented in a VARIANT, they will be; in oth
cases, they will optionally be returned as an IStream pointer in the VARIANT. An
implementation may choose not to represent these types as an IStream, in which
an SCODE value of E_DATA_CONVERSION is returned when the VARIANT is
requested.

16.2.10 Interface Mapping

Mapping for Interface Identifiers

Interface identifiers are used in both CORBA and COM to uniquely identify interfaces.
These allow the client code to retrieve information about, or to inquire about other
interfaces of an object.

CORBA identifies interfaces using the RepositoryId. The RepositoryId is a unique
identifier for, among other things, an interface. COM identifies interfaces using a
structure similar to the DCE UUID (in fact, identical to a DCE UUID on Win32)
known as an IID. As with CORBA, COM specifies that the textual names of interface
are only for convenience and need not be globally unique.

The CORBA RepositoryId is mapped, bidirectionally, to the COM IID. The algorithm
for creating the mapping is detailed in “Mapping Interface Identity” on page 15-16.

Mapping for Exception Types

The CORBA object model uses the concept of exceptions to report error information.
Additional, exception-specification information may accompany the exception. The
exception-specific information is a specialized form of a record. Because it is defined
as a record, the additional information may consist of any of the basic data types
complex data type constructed from one or more basic data types. Exceptions are
classified into two types: System (Standard) Exceptions and User Exceptions.

COM provides error information to clients only if an operation uses a return resul
type HRESULT. A COM HRESULT with a value of zero indicates success. The
HRESULT then can be converted into an SCODE (the SCODE is explicitly specified
as being the same as the HRESULT on Win32 platforms). The SCODE can then be
examined to determine whether the call succeeded or failed. The error or success code,
also contained within the SCODE, is composed of a “facility” major code (13 bits on
Win32 and 4 bits on Win16) and a 16-bit minor code.

Unlike CORBA, COM provides no standard way to return user-defined exception da
to the client. Also, there is no standard mechanism in COM to specify the comple
status of an invocation. In addition, it is not possible to predetermine what set of errors
CORBA V2.2 CORBA to COM Data Type Mapping February 1998 16-11

16

 in

A

ting
ng

s
lete,
a COM interface might return based on the definition of the interface as specified
Microsoft IDL, ODL, or in a type library. Although the set of status codes that can be
returned from a COM operation must be fixed when the operation is defined, there is
currently no machine-readable way to discover the set of valid codes.

Since the CORBA exception model is significantly richer than the COM exception
model, mapping CORBA exceptions to COM requires an additional protocol to be
defined for COM. However, this protocol does not violate backwards compatibility, nor
does it require any changes to COM. To return the User Exception data to a COM
client, an optional parameter is added to the end of a COM operation signature when
mapping CORBA operations, which raise User Exceptions. System exception
information is returned in a standard OLE Error Object.

Mapping for System Exceptions

System exceptions are standard exception types, which are defined by the CORB
specification and are used by the Object Request Broker (ORB) and object adapters
(OA). Standard exceptions may be returned as a result of any operation invocation,
regardless of the interface on which the requested operation was attempted.

There are two aspects to the mapping of System Exceptions. One aspect is genera
an appropriate HRESULT for the operation to return. The other aspect is conveyi
System Exception information via a standard OLE Error Object.

The following table shows the HRESULT, which must be returned by the COM View
when a CORBA System Exception is raised. Each of the CORBA System Exceptions
is assigned a 16-bit numerical ID starting at 0x200 to be used as the code (lower 16
bits) of the HRESULT. Because these errors are interface-specific, the COM facility
code FACILITY_ITF is used as the facility code in the HRESULT.

Bits 12-13 of the HRESULT contain a bit mask, which indicates the completion statu
of the CORBA request. The bit value 00 indicates that the operation did not comp
a bit value of 01 indicates that the operation did complete, and a bit value of 02
indicates that the operation may have completed. Table 16-3 lists the HRESULT
constants and their values.

Table 16-3Standard Exception to SCODE Mapping

HRESULT Constant HRESULT
Value

ITF_E_UNKNOWN_NO 0x40200

ITF_E_UNKNOWN_YES 0x41200

ITF_E_UNKNOWN_MAYBE 0x42200

ITF_E_BAD_PARAM_NO 0x40201

ITF_E_BAD_PARAM_YES 0x41201

ITF_E_BAD_PARAM_MAYBE 0x42201

ITF_E_NO_MEMORY_NO 0x40202
16-12 CORBA V2.2 February 1998

16
ITF_E_NO_MEMORY_YES 0x41202

ITF_E_NO_MEMORY_MAYBE 0x42202

ITF_E_IMP_LIMIT_NO 0x40203

ITF_E_IMP_LIMIT_YES 0x41203

ITF_E_IMP_LIMIT_MAYBE 0x42203

ITF_E_COMM_FAILURE_NO 0x40204

ITF_E_COMM_FAILURE_YES 0x41204

ITF_E_COMM_FAILURE_MAYBE 0x42204

ITF_E_INV_OBJREF_NO 0x40205

ITF_E_INV_OBJREF_YES 0x41205

ITF_E_INV_OBJREF_MAYBE 0x42205

ITF_E_NO_PERMISSION_NO 0x40206

ITF_E_NO_PERMISSION_YES 0x41206

ITF_E_NO_PERMISSION_MAYBE 0x42206

ITF_E_INTERNAL_NO 0x40207

ITF_E_INTERNAL_YES 0x41207

ITF_E_INTERNAL_MAYBE 0x42207

ITF_E_MARSHAL_NO 0x40208

ITF_E_MARSHAL_YES 0x41208

ITF_E_MARSHAL_MAYBE 0x42208

ITF_E_INITIALIZE_NO 0x40209

ITF_E_INITIALIZE_YES 0x41209

ITF_E_INITIALIZE_MAYBE 0x42209

ITF_E_NO_IMPLEMENT_NO 0x4020A

ITF_E_NO_IMPLEMENT_YES 0x4120A

ITF_E_NO_IMPLEMENT_MAYBE 0x4220A

ITF_E_BAD_TYPECODE_NO 0x4020B

ITF_E_BAD_TYPECODE_YES 0x4120B

ITF_E_BAD_TYPECODE_MAYBE 0x4220B

Table 16-3Standard Exception to SCODE Mapping (Continued)
CORBA V2.2 CORBA to COM Data Type Mapping February 1998 16-13

16
ITF_E_BAD_OPERATION_NO 0x4020C

ITF_E_BAD_OPERATION_YES 0x4120C

ITF_E_BAD_OPERATION_MAYBE 0x4220C

ITF_E_NO_RESOURCES_NO 0x4020D

ITF_E_NO_RESOURCES_YES 0x4120D

ITF_E_NO_RESOURCES_MAYBE 0x4220D

ITF_E_NO_RESPONSE_NO 0x4020E

ITF_E_NO_RESPONSE_YES 0x4120E

ITF_E_NO_RESPONSE_MAYBE 0x4220E

ITF_E_PERSIST_STORE_NO 0x4020F

ITF_E_PERSIST_STORE_YES 0x4120F

ITF_E_PERSIST_STORE_MAYBE 0x4220F

ITF_E_BAD_INV_ORDER_NO 0x40210

ITF_E_BAD_INV_ORDER_YES 0x41210

ITF_E_BAD_INV_ORDER_MAYBE 0x42210

ITF_E_TRANSIENT_NO 0x40211

ITF_E_TRANSIENT_YES 0x41211

ITF_E_TRANSIENT_MAYBE 0x42211

ITF_E_FREE_MEM_NO 0x40212

ITF_E_FREE_MEM_YES 0x41212

ITF_E_FREE_MEM_MAYBE 0x42212

ITF_E_INV_IDENT_NO 0x40213

ITF_E_INV_IDENT_YES 0x41213

ITF_E_INV_IDENT_MAYBE 0x42213

ITF_E_INV_FLAG_NO 0x40214

ITF_E_INV_FLAG_YES 0x41214

ITF_E_INV_FLAG_MAYBE 0x42214

ITF_E_INTF_REPOS_NO 0x40215

ITF_E_INTF_REPOS_YES 0x41215

Table 16-3Standard Exception to SCODE Mapping (Continued)
16-14 CORBA V2.2 February 1998

16

n

It is not possible to map a System Exception’s minor code and RepositoryId into the
HRESULT. Therefore, OLE Error Objects may be used to convey these data. Writing
the exception information to an OLE Error Object is optional. However, if the Error
Object is used for this purpose, it must be done according to the following
specifications.

• The COM View must implement the standard COM interface ISupportErrorInfo
such that the View can respond affirmatively to an inquiry from the client as to
whether Error Objects are supported by the View Interface.

• The COM View must call SetErrorInfo with a NULL value for the IErrorInfo
pointer parameter when the mapped CORBA operation is completed without a
exception being raised. Calling SetErrorInfo in this fashion assures that the Error
Object on that thread is thoroughly destroyed.

The properties of the OLE Error Object must be set according to Table 16-4.

ITF_E_INTF_REPOS_MAYBE 0x42215

ITF_E_BAD_CONTEXT_NO 0x40216

ITF_E_BAD_CONTEXT_YES 0x41216

ITF_E_BAD_CONTEXT_MAYBE 0x42216

ITF_E_OBJ_ADAPTER_NO 0x40217

ITF_E_OBJ_ADAPTER_YES 0x41217

ITF_E_OBJ_ADAPTER_MAYBE 0x42217

ITF_E_DATA_CONVERSION_NO 0x40218

ITF_E_DATA_CONVERSION_YES 0x41218

ITF_E_DATA_CONVERSION_MAYBE 0x42218

Table 16-3Standard Exception to SCODE Mapping (Continued)
CORBA V2.2 CORBA to COM Data Type Mapping February 1998 16-15

16
Table 16-4Error Object Usage for CORBA System Exceptions

A COM View supporting error objects would have code, which approximates the
following C++ example.

SetErrorInfo(OL,NULL); // Initialize the thread-local error
object
try
{

// Call the CORBA operation
}
catch(...)
{

...

CreateErrorInfo(&pICreateErrorInfo);
pICreateErrorInfo->SetSource(...);
pICreateErrorInfo->SetDescription(...);
pICreateErrorInfo->SetGUID(...);
pICreateErrorInfo

 ->QueryInterface(IID_IErrorInfo,&pIErrorInfo);
pICreateErrorInfo->SetErrorInfo(OL,pIErrorInfo);
pIErrorInfo->Release();
pICreateErrorInfo->Release();

...

}

Property Description

bstrSource <interface name>.<operation name>
where the interface and operation names are those of the
CORBA interface that this Automation View is representing.

bstrDescription CORBA System Exception: [<exception repository id>]
minor code [<minor code>][<completion status>]
where the <exception repository id> and <minor code> are
those of the CORBA system exception. <completion status> is
“YES,” “NO,” or “MAYBE” based upon the value of the
system exception’s CORBA completion status. Spaces and
square brackets are literals and must be included in the
string.

bstrHelpFile Unspecified

dwHelpContext Unspecified

GUID The IID of the COM View Interface
16-16 CORBA V2.2 February 1998

16

ing

ribe
 The

e
A client to a COM View would access the OLE Error Object with code approximat
the following.

// After obtaining a pointer to an interface on
// the COM View, the
// client does the following one time

pIMyMappedInterface->QueryInterface(IID_ISupportErrorInfo,
 &pISupportErrorInfo);

hr = pISupportErrorInfo

->InterfaceSupportsErrorInfo(IID_MyMappedInterface);
BOOL bSupportsErrorInfo = (hr == NOERROR ? TRUE : FALSE);
...
// Call to the COM operation...
HRESULT hrOperation = pIMyMappedInterface->...

if (bSupportsErrorInfo)
{

HRESULT hr = GetErrorInfo(O,&pIErrorInfo);

// S_FALSE means that error data is not available,
NO_ERROR

// means it is
if (hr == NO_ERROR)
{
pIErrorInfo->GetSource(...);

// Has repository id & minor code. hrOperation (above)
// has the completion status encoded into it.
pIErrorInfo->GetDescription(...);

}
}

The COM client program could use C++ exception handling mechanisms to avoid
doing this explicit check after every call to an operation on the COM View.

Mapping for User Exception Types

User exceptions are defined by users in OMG IDL and used by the methods in an
object server to report operation-specific errors. The definition of a User Exception is
identified in an OMG IDL file with the keyword exception. The body of a User
Exception is described using the syntax for describing a structure in OMG IDL.

When CORBA User Exceptions are mapped into COM, a structure is used to desc
various information about the exception — hereafter called an Exception structure.
structure contains members, which indicate the type of the CORBA exception, the
identifier of the exception definition in a CORBA Interface Repository, and interfac
pointers to User Exceptions. The name of the structure is constructed from the name of
CORBA V2.2 CORBA to COM Data Type Mapping February 1998 16-17

16

he
ns.”

 last

s

f the

c

ry

 the
the CORBA module in which the exception is defined (if specified), the name of t
interface in which the exception is either defined or used, and the word “Exceptio
A template illustrating this naming convention is as follows.

// Microsoft IDL and ODL
typedef enum { NO_EXCEPTION, USER_EXCEPTION}

ExceptionType;

typedef struct
{

ExceptionType type;
LPTSTR repositoryId;

<ModuleName><InterfaceName>UserException
*....piUserException;

} <ModuleName><InterfaceName>Exceptions;

The Exceptions structure is specified as an output parameter, which appears as the
parameter of any operation mapped from OMG IDL to Microsoft IDL, which raises a
User Exception. The Exceptions structure is always passed by indirect reference.
Because of the memory management rules of COM, passing the Exceptions structure
as an output parameter by indirect reference allows the parameter to be treated a
optional by the callee. The following example illustrates this point.

// Microsoft IDL
interface IAccount

{
 HRESULT Withdraw([in] float fAmount,

[out] float pfNewBalance,
[out] BankExceptions

** ppException);
 };

The caller can indicate that no exception information should be returned, if an
exception occurs, by specifying NULL as the value for the Exceptions parameter o
operation. If the caller expects to receive exception information, it must pass the
address of a pointer to the memory in which the exception information is to be plaed.
COM’s memory management rules state that it is the responsibility of the caller to
release this memory when it is no longer required.

If the caller provides a non-NULL value for the Exceptions parameter and the callee is
to return exception information, the callee is responsible for allocating any memo
used to hold the exception information being returned. If no exception is to be
returned, the callee need do nothing with the parameter value.

If a CORBA exception is not raised, then S_OK must be returned as the value of
HRESULT to the callee, indicating the operation succeeded. The value of the
HRESULT returned to the callee when a CORBA exception has been raised depends
upon the type of exception being raised and whether an Exception structure was
specified by the caller.
16-18 CORBA V2.2 February 1998

16
The following OMG IDL statements show the definition of the format used to
represent User Exceptions.

// OMG IDL
module BANK

{
...
exception InsufFunds { float balance };
exception InvalidAmount { float amount };
...
interface Account

 {
exception NotAuthorized { };
float Deposit(in fl oat Amount)

raises(InvalidAmount);
float Withdraw(in float Amount)

raises(InvalidAmount, NotAuthorized);
};

};

and map to the following statements in Microsoft IDL and ODL.

// Microsoft IDL and ODL
struct BankInsufFunds

{
float balance;
};

struct BankInvalidAmount
{
float amount;
};

struct BankAccountNotAuthorized
{
};

interface IBankAccountUserExceptions : IUnknown
{
HRESULT get_InsufFunds([out] BankInsufFunds

* exceptionBody);
HRESULT get_InvalidAmount([out] BankInvalidAmount

* exceptionBody);
HRESULT get_NotAuthorized([out]

BankAccountNotAuthorized

* exceptionBody);
};

typedef struct
{

CORBA V2.2 CORBA to COM Data Type Mapping February 1998 16-19

16

cted

y of

 the

he
ExceptionType type;
LPTSTR repositoryId;
IBankAccountUserExceptions * piUserException;

} BankAccountExceptions;

User exceptions are mapped to a COM interface and a structure which describes the
body of information to be returned for the User Exception. A COM interface is defined
for each CORBA interface containing an operation that raises a User Exception. The
name of the interface defined for accessing User Exception information is constru
from the fully scoped name of the CORBA interface on which the exception is raised.
A structure is defined for each User Exception, which contains the body of information
to be returned as part of that exception. The name of the structure follows the naming
conventions used to map CORBA structure definitions.

Each User Exception that can be raised by an operation defined for a CORBA interface
is mapped into an operation on the Exception interface. The name of the operation is
constructed by prefixing the name of the exception with the string “get_”. Each
accessor operation defined takes one output parameter in which to return the bod
information defined for the User Exception. The data type of the output parameter is a
structure that is defined for the exception. The operation is defined to return an
HRESULT value.

If a CORBA User Exception is to be raised, the value of the HRESULT returned to
caller is E_FAIL.

If the caller specified a non-NULL value for the Exceptions structure parameter, the
callee must allocate the memory to hold the exception information and fill in the
Exceptions structure as in Table 16-5.

When data conversion errors occur while mapping the data types between object
models (during a call from a COM client to a CORBA server), an HRESULT with t
code E_DATA_CONVERSION and the facility value FACILITY_NULL is returned to
the client.

Table 16-5User Exceptions Structure

Member Description

type Indicates the type of CORBA exception that
is being raised. Must be USER_EXCEPTION.

repositoryId Indicates the repository identifier for the
exception definition.

piUserException Points to an interface with which to obtain
information about the User Exception
raised.
16-20 CORBA V2.2 February 1998

16

 This

an

n

e
Mapping User Exceptions: A Special Case

If a CORBA operation raises only one User Exception, and it is the COM_ERROR
User Exception (defined under Section 13.3.10, Mapping for COM Errors), then the
mapped COM operation should not have the additional parameter for exceptions.
proviso enables a CORBA implementation of a preexisting COM interface to be
mapped back to COM without altering the COM operation’s original signature.

COM_ERROR is defined as part of the CORBA to COM mapping. However, this
special rule in effect means that a COM_ERROR raises clause can be added to
operation specifically to indicate that the operation was originally defined as a COM
operation.

Mapping for Operations

Operations defined for an interface are defined in OMG IDL within interface
definitions. The definition of an operation constitutes the operations signature. An
operation signature consists of the operation’s name, parameters (if any), and return
value. Optionally, OMG IDL allows the operation definition to indicate exceptions that
can be raised, and the context to be passed to the object as implicit arguments, both of
which are considered part of the operation.

OMG IDL parameter directional attributes in , out , inout map directly to Microsoft
IDL and ODL parameter direction attributes [in], [out], [in,out]. Operation
request parameters are represented as the values of in or inout parameters in OMG
IDL, and operation response parameters are represented as the values of inout or
out parameters. An operation return result can be any type that can be defined i
OMG IDL, or void if a result is not returned.

The OMG IDL sample (next) shows the definition of two operations on the Bank
interface. The names of the operations are bolded to make them stand out. Operations
can return various types of data as results, including nothing at all. The operation
Bank::Transfer is an example of an operation that does not return a value. Th
operation Bank::OpenAccount returns an object as a result of the operation.

// OMG IDL
#pragma ID::BANK::Bank "IDL:BANK/Bank:1.2"

interface Bank
{
Acco unt OpenAccount(in float Startin gBalance,

in AccountTypes AccountType);
void Transfer(in Account Accou nt1,

in Account Accou nt2,
in float Amount)

raises(InSufFunds);
};
CORBA V2.2 CORBA to COM Data Type Mapping February 1998 16-21

16

n
e

osoft

e

n, if
The operations defined in the preceding OMG IDL code is mapped to the following
lines of Microsoft IDL code

// Microsoft IDL
[object, uuid(682d22fb-78ac-0000-0c03-4d0000000000),
pointer_default(unique)]
interface IBank : IUnknown
 {
 HRESULT OpenAccount([in] float StartingBalance,

[in] AccountTypes AccountType,
[out] IAccount ** ppiNewAccount);

 HRESULT Transfer([in]IAccount * Account1,
 [in] IAccount * Account2,
 [in] float Amount,
 [out] IBankUserExceptions

** ppiUserException);
 };

and to the following statements in Microsoft ODL

// Microsoft ODL
[uuid(682d22fb-78ac-0000-0c03-4d0000000000)]
interface IBank: IUnknown
 {
 HRESULT OpenAccount([in] float StartingBalance,

[in] AccountTypes AccountType,
[out, retval] IAccount

** ppiNewAccount);
 HRESULT Transfer([in] IAccount * Account1,
 [in] IAccount * Account2,
 [in] float Amount,

[out]IBankUserExceptions
** ppiUserException);

 };

The ordering and names of parameters in the Microsoft IDL and ODL mapping is
identical to the order in which parameters are specified in the text of the operatio
definition in OMG IDL. The COM mapping of all CORBA operations must obey th
COM memory ownership and allocation rules specified.

It is important to note that the signature of the operation as written in OMG IDL is
different from the signature of the same operation in Microsoft IDL or ODL. In
particular, the result value returned by an operation defined in OMG IDL will be
mapped as an output argument at the end of the signature when specified in Micr
IDL or ODL. This allows the signature of the operation to be natural to the COM
developer. When a result value is mapped as an output argument, the result valu
becomes an HRESULT. Without an HRESULT return value, there would be no way for
COM to signal errors to clients when the client and server are not collocated. The
value of the HRESULT is determined based on a mapping of the CORBA exceptio
any, that was raised.
16-22 CORBA V2.2 February 1998

16

es

o

 RPC

y
he

f

e

n is
ed
It is also important to note that if any user’s exception information is defined for the
operation, an additional parameter is added as the last argument of the operation
signature. The user exception parameter follows the return value parameter, if both
exist. See Mapping for Exception Types under Section 13.2.10 for further details.

Mapping for Oneway Operations

OMG IDL allows an operation’s definition to indicate the invocation semantics the
communication service must provide for an operation. This indication is done through
the use of an operation attribute. Currently, the only operation attribute defined by
CORBA is the oneway attribute.

The oneway attribute specifies that the invocation semantics are best-effort, which do
not guarantee delivery of the request. Best-effort implies that the operation will be
invoked, at most, once. Along with the invocation semantics, the use of the oneway
operation attribute restricts an operation from having output parameters, must have n
result value returned, and cannot raise any user-defined exceptions.

It may seem that the Microsoft IDL maybe operation attribute provides a closer match
since the caller of an operation does not expect any response. However, Microsoft
maybe does not guarantee at most once semantics, and therefore is not sufficient.
Because of this, the mapping of an operation defined in OMG IDL with the oneway
operation attribute maps the same as an operation that has no output arguments.

Mapping for Attributes

OMG IDL allows the definition of attributes for an interface. Attributes are essentiall
a short-hand for a pair of accessor functions to an object’s data; one to retrieve t
value and possibly one to set the value of the attribute. The definition of an attribute
must be contained within an interface definition and can indicate whether the value o
the attribute can be modified or just read. In the example OMG IDL next, the attribute
Profile is defined for the Customer interface and the read-only attribute is Balanc
defined for the Account interface. The keyword attribute is used by OMG IDL to
indicate that the statement is defining an attribute of an interface.

The definition of attributes in OMG IDL are restricted from raising any user-defined
exceptions. Because of this, the implementation of an attribute’s accessor functio
limited to only raising system exceptions. The value of the HRESULT is determin
based on a mapping of the CORBA exception, if any, that was raised.

// OMG IDL
struct CustomerData

{
CustomerId Id;
string Name;
string SurName;
CORBA V2.2 CORBA to COM Data Type Mapping February 1998 16-23

16

n

e to
};

#pragma ID::BANK::Account "IDL:BANK/Acco unt:3.1"

interface Account
 {
 readonly attribute float Balance;
 float Deposit(in float amount) raises(InvalidAmount);
 float Withdrawal(in float amount) raises(In sufFunds, InvalidAmount);
 float Close();
 };

#pragma ID::BANK::Customer "IDL:BA NK/Customer :1.2"

 interface Customer
 {
 attribute C ustomerData Profile;
 };

When mapping attribute statements in OMG IDL to Microsoft IDL or ODL, the name
of the get accessor is the same as the name of the attribute prefixed with _get_ i
Microsoft IDL and contains the operation attribute [propget] in Microsoft ODL. The
name of the put accessor is the same as the name of the attribute prefixed with _put_ in
Microsoft IDL and contains the operation attribute [propput] in Microsoft ODL.

Mapping for Read-Write Attributes

In OMG IDL, attributes are defined as supporting a pair of accessor functions: on
retrieve the value and one to set the value of the attribute, unless the keyword readonly
precedes the attribute keyword. In the preceding example, the attribute Profile is
mapped to the following statements in Microsoft IDL.

// Microsoft IDL
[object, uuid(682d22fb-78ac-0000-0c03-4d0000000000),
pointer_default(unique)]
interface ICustomer : IUnknown
 {
 HRESULT _get_Profile([out] CustomerData * Profile);
 HRESULT _put_Profile([in] CustomerData * Profile);
 };

Profile is mapped to these statements in Microsoft ODL.
16-24 CORBA V2.2 February 1998

16

e

t
// Microsoft ODL
[uuid(682d22fb-78ac-0000-0c03-4d0000000000)]
interface ICustomer : IUnknown
 {
 [propget] HRESULT Profile([out] CustomerData

* Profile);
 [propput] HRESULT Profile([in] CustomerData

* Profile);
 };

Note that the attribute is actually mapped as two different operations in both Microsoft
IDL and ODL. The ICustomer::Get_Profile, in Microsoft IDL operations and the
[propget] Profile, in Microsoft ODL operations are used to retrieve the value of the
attribute. The ICustomer::Set_Profile operation is used to set the value of the attribute.

Mapping for Read-Only Attributes

In OMG IDL, an attribute preceded by the keyword readonly is interpreted as only
supporting a single accessor function used to retrieve the value of the attribute. In the
previous example, the mapping of the attribute Balance is mapped to the following
statements in Microsoft IDL.

// Microsoft IDL
[object, uuid(682d22fb-78ac-0000-0c03-4d0000000000)]
interface IAccount: IUnknown
 {
 HRESULT _get_Balance([out] float Balance);
 };

and the following statements in Microsoft ODL.

// Microsoft ODL
[uuid(682d22fb-78ac-0000-0c03-4d0000000000)]
interface IAccount: IUnknown
 {
 [propget] HRESULT Balance([out] float Balance);
 };

Note that only a single operation was defined since the attribute was defined to b
read-only.

16.2.11 Inheritance Mapping

Both CORBA and COM have similar models for individual interfaces. However, the
models for inheritance and multiple interfaces are different.

In CORBA, an interface can singly or multiply inherit from other interfaces. In
language bindings supporting typed object references, widening and narrowing suppor
convert object references as allowed by the true type of that object.
CORBA V2.2 CORBA to COM Data Type Mapping February 1998 16-25

16

BA,
thout

 C++

f

e
der.

r. If
es
However, there is no built-in mechanism in CORBA to access interfaces without an
inheritance relationship. The run-time interfaces of an object, as defined in CORBA
(for example, CORBA::Object::is_a , CORBA::Object::get_interface)
use a description of the object’s principle type, which is defined in OMG IDL. CORBA
allows many ways in which implementations of interfaces can be structured, including
using implementation inheritance.

In COM V2.0, interfaces can have single inheritance. However, as opposed to COR
there is a standard mechanism by which an object can have multiple interfaces (wi
an inheritance relationship between those interfaces) and by which clients can query
for these at run-time. (It defines no common way to determine if two interface
references refer to the same object, or to enumerate all the interfaces supported by an
entity.)

An observation about COM is that some COM objects have a required minimum set of
interfaces, which they must support. This type of statically defined interface relation is
conceptually equivalent to multiple inheritance; however, discovering this relationship
is only possible if ODL or type libraries are always available for an object.

COM describes two main implementation techniques: aggregation and delegation.
style implementation inheritance is not possible.

The mapping for CORBA interfaces into COM is more complicated than COM
interfaces into CORBA, since CORBA interfaces might be multiply inherited and
COM does not support multiple interface inheritance.

If a CORBA interface is singly inherited, this maps directly to single inheritance o
interfaces in COM. The base interface for all CORBA inheritance trees is IUnknown.
Note that the Object interface is not surfaced in COM. For single inheritance, although
the most derived interface can be queried using IUnknown::QueryInterface ,
each individual interface in the inheritance hierarchy can also be queried separately.

The following rules apply to mapping CORBA to COM inheritance.

• Each OMG IDL interface that does not have a parent is mapped to an MIDL
interface deriving from IUnknown.

• Each OMG IDL interface that inherits from a single parent interface is mapped to
an MIDL interface that derives from the mapping for the parent interface.

• Each OMG IDL interface that inherits from multiple parent interfaces is mapped to
an MIDL interface deriving from IUnknown.

• For each CORBA interface, the mapping for operations precede the mapping for
attributes.

• The resulting mapping of operations within an interface are ordered based upon th
operation name. The ordering is lexicographic by bytes in machine-collating or

• The resulting mapping of attributes within an interface are ordered based upon the
attribute name. The ordering is lexicographic by bytes in machine-collating orde
the attribute is not readonly, the get_<attribute name> method immediately preced
the set_<attribute name> method.
16-26 CORBA V2.2 February 1998

16
Figure 16-1 CORBA Interface Inheritance to COM Interface Inheritance Mapping

//OMG IDL
//
interface A {

void opA();
attribute long val;

};
interface B : A {

void opB();
};
interface C : A {

void opC();
};
interface D : B, C {

void opD();
};
interface E {

void opE();
};
interface F : D, E {

void opF();

}//Microsoft MIDL
//
[object, uuid(b97267fa-7855-e044-71fb-12fa8a4c516f)]
interface IA: IUnknown{

HRESULT opA();
HRESULT get_val([out] long * val);
HRESULT set_val([in] long val);

};
[object, uuid(fa2452c3-88ed-1c0d-f4d2-fcf91ac4c8c6)]
interface IB: IA {

CORBA Interface Inheritance COM Interface Inheritance

A

B

D E

F

C IU

B C

A

IU

D

A IU

E

IU

F

IU
CORBA V2.2 CORBA to COM Data Type Mapping February 1998 16-27

16

HRESULT opB();
};
[object,uuid(dc3a6c32-f5a8-d1f8-f8e2-64566f815ed7)]
interface IC: IA {

HRESULT opC();
};
[object, uuid(b718adec-73e0-4ce3-fc72-0dd11a06a308)]
interface ID: IUnknown {

HRESULT opD();
};
[object, uuid(d2cb7bbc-0d23-f34c-7255-d924076e902f)]
interface IE: IUnknown{

HRESULT opE();
};
[object, uuid(de6ee2b5-d856-295a-fd4d-5e3631fbfb93)]
interface IF: IUnknown {

HRESULT opF();
};

Note that the co-class statement in Microsoft ODL allows the definition of an object
class that allows QueryInterface between a set of interfaces.

Also note that when the interface defined in OMG IDL is mapped to its corresponding
statements in Microsoft IDL, the name of the interface is proceeded by the letter I to
indicate that the name represents the name of an interface. This also makes the
mapping more natural to the COM programmer, since the naming conventions used
follow those suggested by Microsoft.

16.2.12 Mapping for Pseudo-Objects

CORBA defines a number of different kinds of pseudo-objects. Pseudo-objects differ
from other objects in that they cannot be invoked with the Dynamic Invocation
Interface (DII) and do not have object references. Most pseudo-objects cannot be used
as general arguments. Currently, only the TypeCode and Principal pseudo-objects can
be used as general arguments to a request in CORBA.

The CORBA NamedValue and NVList are not mapped into COM as arguments to
COM operation signatures.

Mapping for TypeCode Pseudo-Object

CORBA TypeCodes represent the types of arguments or attributes and are typically
retrieved from the interface repository. The mapping of the CORBA TypeCode
interface follows the same rules as mapping any other CORBA interface to COM. The
result of this mapping is as follows.

// Microsoft IDL or ODL
typedef struct { } TypeCodeBounds;
typedef struct { } TypeCodeBadKind;
16-28 CORBA V2.2 February 1998

16
[uuid(9556EA20-3889-11cf-9586-AA0004004A09), object,
pointer_default(unique)]

interface ICORBA_TypeCodeUserExceptions : IUnknown
{

HRESULT get_Bounds([out] TypeCodeBounds *ExceptionBody);
HRESULT get_BadKind([out] TypeCodeBadKind * pExceptionBody
);
};

typedef struct
{
 ExceptionType type;
 LPTSTR repositoryId;
 long minorCode;
 CompletionStatus completionStatus;
 ICORBA_SystemException * pSystemException;
 ICORBA_TypeCodeExceptions * pUserException;
} CORBATypeCodeExceptions;

typedef LPTSTR RepositoryId;
typedef LPTSTR Identifier;

typedef [v1_enum]
enum tagTCKind { tk_null = 0, tk_void, tk_short,

tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_octet,
tk_any, tk_TypeCode,
tk_principal, tk_objref,
tk_struct, tk_union, tk_enum,
tk_string, tk_sequence,
tk_array, tk_alias, tk_except

} TCKind;

[uuid(9556EA21-3889-11cf-9586-AA0004004A09), object,
pointer_default(unique)]

interface ICORBA_TypeCode : IUnknown
{
 HRESULT equal(

[in] ICORBA_TypeCode * piTc,
[out] boolean * pbRetVal,
[out] CORBATypeCodeExceptions** ppUserExceptions);

HRESULT kind(
[out] TCKind * pRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);

 HRESULT id(
[out] RepositoryId * pszRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);

 HRESULT name(
CORBA V2.2 CORBA to COM Data Type Mapping February 1998 16-29

16

e

ntil
[out] Identifier * pszRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);

HRESULT member_count(
[out] unsigned long * pulRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);

HRESULT member_name(
[in] unsigned long ulIndex,
[out] Identifier * pszRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);

 HRESULT member_type(
[in] unsigned long ulIndex,
[out] ICORBA_TypeCode ** ppRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);

 HRESULT member_label(
[in] unsigned long ulIndex,
[out] ICORBA_Any ** ppRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);

 HRESULT discriminator_type(
[out] ICORBA_TypeCode ** ppRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);

 HRESULT default_index(
[out] long * plRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);

 HRESULT length(
[out] unsigned long * pulRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);

 HRESULT content_type(
[out] ICORBA_TypeCode ** ppRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);

 HRESULT param_count(
[out] long * plRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);

 HRESULT parameter(
[in] long lIndex,
[out] ICORBA_Any ** ppRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions

);
}

Mapping for Context Pseudo-Object

This specification provides no mapping for CORBA’s Context pseudo-object into
COM. Implementations that choose to provide support for Context could do so in th
following way. Context pseudo-objects should be accessed through the ICORBA
Context interface. This would allow clients (if they are aware that the object they are
dealing with is a CORBA object) to set a single Context pseudo-object to be used for
all subsequent invocations on the CORBA object from the client process space u
such time as the ICORBA_Context interface is released.
16-30 CORBA V2.2 February 1998

16

e.

es a

e
.
The ICORBA_Context interface has the following definition in Microsoft IDL and
ODL:

// Microsoft IDL and ODL
typedef struct
 {
 unsigned long cbMaxSize;
 unsigned long cbLengthUsed;
 [size_is(cbMaxSize), length_is(cbLengthUsed), unique]

LPTSTR * pszValue;
 } ContextPropertyValue;

[object, uuid(74105F51-3C68-11cf-9588-AA0004004A09),
pointer_default(unique)]
interface ICORBA_Context: IUnknown
 {
 HRESULT GetProperty([in]LPTSTR Name,

[out] ContextPropertyValue
** ppValues);

 HRESULT SetProperty([in] LPTSTR,
[in] ContextPropertyValue

* pValues);
 };

If a COM client application knows it is using a CORBA object, the client application
can use QueryInterface to obtain an interface pointer to the ICORBA_Context interfac
Obtaining the interface pointer results in a CORBA context pseudo-object being
created in the View, which is used with any CORBA request operation that requir
reference to a CORBA context object. The context pseudo-object should be destroyed
when the reference count on the ICORBA_Context interface reaches zero.

This interface should only be generated for CORBA interfaces that have operations
defined with the context clause.

Mapping for Principal Pseudo-Object

The CORBA Principal is not currently mapped into COM. As both the COM and
CORBA security mechanisms solidify, security interworking will need to be defined
between the two object models.

16.2.13 Interface Repository Mapping

Name spaces within the CORBA interface repository are conceptually similar to COM
type libraries. However, the CORBA interface repository looks, to the client, to be on
unified service. Type libraries, on the other hand, are each stored in a separate file
Clients do not have a unified, hierarchical interface to type libraries.
CORBA V2.2 CORBA to COM Data Type Mapping February 1998 16-31

16

g
Table 16-6 defines the mapping between equivalent CORBA and COM interface
description concepts. Where there is no equivalent, the field is left blank.

Using this mapping, implementations must provide the ability to call
Object::get_interface on CORBA object references to COM objects to
retrieve an InterfaceDef. When CORBA objects are accessed from COM,
implementations may provide the ability to retrieve the ITypeInfo for a CORBA object
interface using the IProvideClassInfo COM interface.

16.3 COM to CORBA Data Type Mapping

16.3.1 Mapping for Basic Data Types

The basic data types available in Microsoft IDL and ODL map to the correspondin
data types available in OMG IDL as shown in Table 16-7.

Table 16-6CORBA Interface Repository to OLE Type Library Mappings

TypeCode TYPEDESC

Repository

ModuleDef ITypeLib

InterfaceDef ITypeInfo

AttributeDef VARDESC

OperationDef FUNCDESC

ParameterDef ELEMDESC

TypeDef ITypeInfo

ConstantDef VARDESC

ExceptionDef

Table 16-7Microsoft IDL and ODL to OMG IDL Intrinsic Data Type Mappings

Microsoft
IDL

Microsoft
ODL

OMG IDL Description

short short short Signed integer with a range of -
215...215 -1

long long long Signed integer with a range of -
231...231 -1

unsigned short unsigned short unsigned short Unsigned integer with a range of
0...216 -1

unsigned long unsigned long unsigned long Unsigned integer with a range of
0...232 -1
16-32 CORBA V2.2 February 1998

16

M
A,
16.3.2 Mapping for Constants

The mapping of the Microsoft IDL keyword const to OMG IDL const is almost exactly
the same. The following Microsoft IDL definitions for constants

// Microsoft IDL
const short S = ...;
const long L = ...;
const unsigned short US = ...;
const unsigned long UL = ...;
const char C = ...;
const boolean B = ...;
const string STR = “...”;

map to the following OMG IDL definitions for constants.

// OMG IDL
const short S = ...;
const long L = ...;
const unsigned short US = ...;
const unsigned long UL = ...;
const char C = ...;
const boolean B = ...;
const string STR = “...”;

16.3.3 Mapping for Enumerators

COM enumerations can have enumerators explicitly tagged with values. When CO
enumerations are mapped into CORBA, the enumerators are presented in CORB
ordered according to their tagged values. This Microsoft IDL or ODL

float float float IEEE single -precision floating point
number

double double double IEEE double-precision floating point
number

char char char 8-bit quantity limited to the ISO Latin-
1 character set

boolean boolean boolean 8-bit quantity, which is limited to 1
and 0

byte unsigned char octet 8-bit opaque data type, guaranteed to
not undergo any conversion during
transfer between systems

Table 16-7Microsoft IDL and ODL to OMG IDL Intrinsic Data Type Mappings (Continued)
CORBA V2.2 COM to CORBA Data Type Mapping February 1998 16-33

16

a
// Microsoft IDL or ODL
 typedef [v1_enum] enum tagA_or_B_orC { A = 0, B, C }
A_or_B_or_C;

would be represented as the following statements in OMG IDL:

// OMG IDL
enum A_or_B_ or_C {A, B, C};

Because COM allows enumerators to be defined with explicit tagged values, the
enumerators are mapped to OMG IDL in the same order they appear in Microsoft IDL
or ODL and it is the COM View’s responsibility to maintain the mapping based on
names.

16.3.4 Mapping for String Types

COM support for strings includes the concepts of bounded and unbounded strings.
Bounded strings are defined as strings that have a maximum length specified, whereas
unbounded strings do not have a maximum length specified. COM also supports
Unicode strings where the characters are wider than 8 bits. As in OMG IDL, non-
Unicode strings in COM are NULL-terminated. The mapping of COM definitions for
bounded and unbounded strings differs from that specified in OMG IDL.

Table 16-8 illustrates how to map the string data types in OMG IDL to their
corresponding data types in both Microsoft IDL and ODL.

If a COM Server returns a BSTR containing embedded nulls to a CORBA client,
E_DATA_CONVERSION exception will be raised.

Mapping for Unbounded String Types

The definition of an unbounded string in Microsoft IDL and ODL denotes the
unbounded string as a stringified unique pointer to a character. The following
Microsoft IDL statement

Table 16-8Microsoft IDL/ODL to OMG IDL String Mappings

Microsoft
IDL

Microsoft
ODL OMG IDL Description

LPSTR, char * LPSTR, string Null terminated 8-bit
character string

LPTSTR LPTSTR string Null terminated 8-bit
character string

BSTR on Win16 string Null-terminated 8-bit
character string
16-34 CORBA V2.2 February 1998

16

 a

ft

ull-
// Microsoft IDL
 typedef [string, unique] char * UNBOUNDED_STRING;

is mapped to the following syntax in OMG IDL.

// OMG IDL
 typedef string UN BOUNDED_STRING;

In other words, a value of type UNBOUNDED_STRING is a non-NULL pointer to
one-dimensional null-terminated character array whose extent and number of valid
elements can vary at run-time.

Mapping for Bounded String Types

Bounded strings have a slightly different mapping between OMG IDL and Microso
IDL. Bounded strings are expressed in Microsoft IDL as a “stringified nonconformant
array.” The following Microsoft IDL and ODL definition for a bounded string

// Microsoft IDL and ODL
 const long N = ...;
 typedef [string, unique] char (* BOUNDED_STRING) [N];

maps to the following syntax in OMG IDL.

// OMG IDL
 const long N = ...;
 typedef string<N> BOUNDED_STRING;

In other words, the encoding for a value of type BOUNDED_STRING is that of a n
terminated array of characters whose extent is known at compile time, and the number
of valid characters can vary at run-time.

Mapping for Unicode Unbounded String Types

The mapping for a Unicode unbounded string type in Microsoft IDL or ODL is no
different from that used for ANSI string types. The following Microsoft IDL and ODL
statement

// Microsoft IDL and ODL
 typedef [string, unique] LPTSTR UNBOUNDED_UNICODE_STRING;

is mapped to the following syntax in OMG IDL.

// OMG IDL
 typedef wstring UNBOUNDED_UNICODE _STRING;

It is the responsibility of the mapping implementation to perform the conversions
between ANSI and Unicode formats when dealing with strings.
CORBA V2.2 COM to CORBA Data Type Mapping February 1998 16-35

16
Mapping for Unicode Bound String Types

The mapping for a Unicode bounded string type in Microsoft IDL or ODL is no
different from that used for ANSI string types. The following Microsoft IDL and ODL
statements

// Microsoft IDL and ODL
 const long N = ...;
 typedef [string, unique] TCHAR (* BOUNDED_UNICODE_STRING)
[N];

map to the following syntax in OMG IDL.

// OMG IDL
 const long N = ...;
 typedef wstring<N> BOUNDED_ UNICODE_STRING;

It is the responsibility of the mapping implementation to perform the conversions
between ANSI and Unicode formats when dealing with strings.

16.3.5 Mapping for Structure Types

Support for structures in Microsoft IDL and ODL maps bidirectionally to OMG IDL.
Each structure members is mapped according to the mapping rules for that data type.
The structure definition in Microsoft IDL or ODL is as follows.
// Microsoft IDL and ODL
 typedef ... T0;
 typedef ... Tl;
 ...
 typedef ...TN;
 typedef struct

{
T0 m0;
Tl ml;
...
TN mN;
} STRUCTURE;

The structure has an equivalent mapping in OMG IDL, as follows.
16-36 CORBA V2.2 February 1998

16

 be

// OMG IDL
 typedef ... T0
 typedef ... T1;
 ...
 typedef ... TN;
 struct S TRUCTURE

{
T0 m0;
T1 ml;
...
Tn mm;
};

16.3.6 Mapping for Union Types

ODL unions are not discriminated unions and must be custom marshaled in any
interfaces that use them. For this reason, this specification does not provide any
mapping for ODL unions to CORBA unions.

MIDL unions, while always discriminated, are not required to be encapsulated. The
discriminator for a nonencapsulated MIDL union could, for example, be another
argument to the operation. The discriminants for MIDL unions are not required to
constant expressions.

Mapping for Encapsulated Unions

When mapping from Microsoft IDL to OMG IDL, Microsoft IDL encapsulated unions
having constant discriminators are mapped to OMG IDL unions as shown next.

// Microsoft IDL
 typedef enum

{
dchar,
dShort,
dLong,
dFloat,
dDouble
} UNION_DISCRIMINATOR;

 typedef union switch (UNION_DISCRIMINATOR _d)
{
case dChar: char c;
case dShort: short s;
case dLong: long l;
case dFloat: float f;
case dDouble: double d;
CORBA V2.2 COM to CORBA Data Type Mapping February 1998 16-37

16

th
default: byte v[8];
}UNION_OF_CHAR_AND_ARITHMETIC;

The OMG IDL definition is as follows.

// OMG IDL
 enum UNION_DISCRIMINATOR

{
dChar,
dShort,
dLong,
dFloat,
dDouble
};

 union UNION_OF_CHAR_AND_ARITHMETIC
switch(UNION_DISCRI MINATOR)
{
case dChar: char c;
case dSh ort: short s;
case dLong: long l;
case dFloat:. float f;
case dDouble:. double d;
default: octet v[8];

};

Mapping for Nonencapsulated Unions

Microsoft IDL nonencapsulated unions and Microsoft IDL encapsulated unions wi
nonconstant discriminators are mapped to an any in OMG IDL. The type of the any
is determined at run-time during conversion of the Microsoft IDL union.

// Microsoft IDL
typedef [switch_type(short)] union
tagUNION_OF_CHAR_AND_ARITHMETIC
 {
 [case(0)] char c;
 [case(1)] short s;
 [case(2)] long l;
 [case(3)] float f;
 [case(4)] double d;
 [default] byte v[8];
 } UNION_OF_CHAR_AND_ARITHMETIC;

The corresponding OMG IDL syntax is as follows.
16-38 CORBA V2.2 February 1998

16

ying
can be
// OMG IDL
typedef any UNION_OF_CHAR_AND _ARITHMETIC;

16.3.7 Mapping for Array Types

COM supports fixed-length arrays, just as in CORBA. As in the mapping from OMG
IDL to Microsoft IDL, the arrays can be mapped bidirectionally. The type of the array
elements is mapped according to the data type mapping rules. The following
statements in Microsoft IDL and ODL describe a nonconformant and nonvarying array
of U.

// Microsoft IDL for T
const long N = ...;
typedef ... U;
typedef U ARRAY_OF_N[N];
typedef float DTYPE[0..10]; // Equivalent to [11]

The value N can be of any integral type, and const means (as in OMG IDL) that the
value of N is fixed and known at compilation time. The generalization to
multidimensional arrays follows the obvious trivial mapping of syntax.

The corresponding OMG IDL syntax is as follows.

// OMG IDL for T
 const long N = ...;
 typedef ... T;
 typedef T ARRAY_OF_N[N];
 typedef float DTYPE[11];

Mapping for Nonfixed Arrays

In addition to fixed length arrays, as well as conformant arrays, COM supports var
arrays, and conformant varying arrays. These are arrays whose bounds and size
determined at run-time. Nonfixed length arrays in Microsoft IDL and ODL are mapped
to sequence in OMG IDL, as shown in the following statements.

// Microsoft IDL
typedef short BTYPE[]; // Equivalent to [*];
typedef char CTYPE[*];

The corresponding OMG IDL syntax is as follows.
CORBA V2.2 COM to CORBA Data Type Mapping February 1998 16-39

16

mined

o

// OMG IDL
typedef sequence<sh ort> BTYPE;
typedef sequence<char> CTYPE;

Mapping for SAFEARRAY

Microsoft ODL also defines SAFEARRAY as a variable length, variable dimension
array. Both the number of dimensions and the bounds of the dimensions are deter
at run-time. Only the element type is predefined. A SAFEARRAY in Microsoft ODL is
mapped to a CORBA sequence, as shown in the following statements.

// Microsoft ODL
SAFEARRAY(element-type) * ArrayName;

// OMG IDL
typedef sequence< element-type > SequenceN ame;

If a COM server returns a multidimensional SAFEARRAY to a CORBA client, an
E_DATA_CONVERSION exception will be raised.

16.3.8 Mapping for VARIANT

The COM VARIANT provides semantically similar functionality to the CORBA any .
However, its allowable set of data types are currently limited to the data types
supported by OLE Automation. VARTYPE is an enumeration type used in the
VARIANT structure. The structure member vt is defined using the data type
VARTYPE. Its value acts as the discriminator for the embedded union and governs the
interpretation of the union. The list of valid values for the data type VARTYPE are
listed in Table 16-9 on page 16-40, along with a description of how to use them t
represent the OMG IDL any data type.

Table 16-9 Valid OLE VARIANT Data Types

Value Description

VT_EMPTY No value was specified. If an argument is left blank, you
should not return VT_EMPTY for the argument. Instead,
you should return the VT_ERROR value:
DISP_E_MEMBERNOTFOUND.

VT_EMPTY |
VT_BYREF

Illegal.

VT_UI1 An unsigned 1-byte character is stored in bVal.

VT_UI1 |
VT_BYREF

A reference to an unsigned 1-byte character was passed; a
pointer to the value is in pbVal.

VT_I2 A 2-byte integer value is stored in iVal.
16-40 CORBA V2.2 February 1998

16

VT_I2 | VT_BYREF A reference to a 2-byte integer was passed; a pointer to
the value is in piVal.

VT_I4 A 4-byte integer value is stored in lVal.

VT_I4 | VT_BYREF A reference to a 4-byte integer was passed; a pointer to
the value is in plVal.

VT_R4 An IEEE 4-byte real value is stored in fltVal.

VT_R4 |
VT_BYREF

A reference to an IEEE 4-byte real was passed; a pointer
to the value is in pfltVal.

VT_R8 An 8-byte IEEE real value is stored in dblVal.

VT_R8 |
VT_BYREF

A reference to an 8-byte IEEE real was passed; a pointer
to its value is in pdblVal.

VT_CY A currency value was specified. A currency number is
stored as an 8-byte, two’s complement integer, scaled by
10,000 to give a fixed-point number with 15 digits to the
left of the decimal point and 4 digits to the right. The
value is in cyVal.

VT_CY |
VT_BYREF

A reference to a currency value was passed; a pointer to
the value is in pcyVal.

VT_BSTR A string was passed; it is stored in bstrVal. This pointer
must be obtained and freed via the BSTR functions.

VT_BSTR |
VT_BYREF

A reference to a string was passed. A BSTR*, which
points to a BSTR, is in pbstrVal. The referenced pointer
must be obtained or freed via the BSTR functions.

VT_NULL A propagating NULL value was specified. This should not
be confused with the NULL pointer. The NULL value is
used for tri-state logic as with SQL.

VT_NULL |
VT_BYREF

Illegal.

VT_ERROR An SCODE was specified. The type of error is specified
in code. Generally, operations on error values should raise
an exception or propagate the error to the return value, as
appropriate.

VT_ERROR |
VT_BYREF

A reference to an SCODE was passed. A pointer to the
value is in pscode.

VT_BOOL A Boolean (True/False) value was specified. A value of
0xFFFF (all bits one) indicates True; a value of 0 (all bits
zero) indicates False. No other values are legal.

Table 16-9 Valid OLE VARIANT Data Types (Continued)
CORBA V2.2 COM to CORBA Data Type Mapping February 1998 16-41

16

VT_BOOL |
VT_BYREF

A reference to a Boolean value. A pointer to the Boolean
value is in pbool.

VT_DATE A value denoting a date and time was specified. Dates are
represented as double-precision numbers, where midnight,
January 1, 1900 is 2.0, January 2, 1900 is 3.0, and so on.
The value is passed in date.

This is the same numbering system used by most
spreadsheet programs, although some incorrectly believe
that February 29, 1900 existed, and thus set January 1,
1900 to 1.0. The date can be converted to and from an
MS-DOS representation using
VariantTimeToDosDateTime.

VT_DATE |
VT_BYREF

A reference to a date was passed. A pointer to the value is
in pdate.

VT_DISPATCH A pointer to an object was specified. The pointer is in
pdispVal. This object is only known to implement
IDispatch; the object can be queried as to whether it
supports any other desired interface by calling
QueryInterface on the object. Objects that do not
implement IDispatch should be passed using
VT_UNKNOWN.

VT_DISPATCH |
VT_BYREF

A pointer to a pointer to an object was specified. The
pointer to the object is stored in the location referred to by
ppdispVal.

VT_VARIANT Illegal. VARIANTARGs must be passed by reference.

VT_VARIANT |
VT_BYREF

A pointer to another VARIANTARG is passed in pvarVal.
This referenced VARIANTARG will never have the
VT_BYREF bit set in vt, so only one level of indirection
can ever be present. This value can be used to support
languages that allow functions to change the types of
variables passed by reference.

VT_UNKNOWN A pointer to an object that implements the IUnknown
interface is passed in punkVal.

VT_UNKNOWN |
VT_BYREF

A pointer to a pointer to the IUnknown interface is passed
in ppunkVal. The pointer to the interface is stored in the
location referred to by ppunkVal.

Table 16-9 Valid OLE VARIANT Data Types (Continued)
16-42 CORBA V2.2 February 1998

16

sent

ence

ses

ough
g

.

A COM VARIANT is mapped to the CORBA any without loss. If at run-time a
CORBA client passes an inconvertible any to a COM server, a DATA_CONVERSION
exception is raised.

16.3.9 Mapping for Pointers

MIDL supports three types of pointers:

• Reference pointer; a non-null pointer to a single item. The pointer cannot repre
a data structure with cycles or aliasing (two pointers to the same address).

• Unique pointer; a (possibly null) pointer to a single item. The pointer cannot
represent a data structure with cycles or aliasing.

• Full pointer; a (possibly null) pointer to a single item. Full pointers can be used for
data structures, which form cycles or have aliases.

A reference pointer is mapped to a CORBA sequence containing one element. Unique
pointers and full pointers with no aliases or cycles are mapped to a CORBA sequ
containing zero or one elements. If at run-time a COM client passes a full pointer
containing aliases or cycles to a CORBA server, E_DATA_CONVERSION is returned
to the COM client. If a COM server attempts to return a full pointer containing alia
or cycles to a CORBA client, a DATA_CONVERSION exception is raised.

16.3.10 Interface Mapping

COM is a binary standard based upon standard machine calling conventions. Alth
interfaces can be expressed in Microsoft IDL, Microsoft ODL, or C++, the followin
interface mappings between COM and CORBA will use Microsoft ODL as the
language of expression for COM constructs.

COM interface pointers bidirectionally map to CORBA Object references with the
appropriate mapping of Microsoft IDL and ODL interfaces to OMG IDL interfaces

Mapping for Interface Identifiers

Interface identifiers are used in both CORBA and COM to uniquely identify interfaces.
These allow the client code to retrieve information about, or to inquire about other
interfaces of an object.

VT_ARRAY |
<anything>

An array of data type <anything> was passed.
(VT_EMPTY and VT_NULL are illegal types to combine
with VT_ARRAY.) The pointer in pByrefVal points to an
array descriptor, which describes the dimensions, size, and
in-memory location of the array. The array descriptor is
never accessed directly, but instead is read and modified
using functions.

Table 16-9 Valid OLE VARIANT Data Types (Continued)
CORBA V2.2 COM to CORBA Data Type Mapping February 1998 16-43

16

ult
, if
eing
rmine

s, or

ate a

turn
, are

ta
tion

rned
ntly
COM identifies interfaces using a structure similar to the DCE UUID (in fact, identical
to a DCE UUID on Win32) known as an IID. As with CORBA, COM specifies that the
textual names of interfaces are only for convenience and need not be globally unique.

The COM interface identifier (IID and CLSID) are bidirectionally mapped to the
CORBA RepositoryId.

Mapping for COM Errors

COM will provide error information to clients only if an operation uses a return res
of type HRESULT. The COM HRESULT, if zero, indicates success. The HRESULT
nonzero, can be converted into an SCODE (the SCODE is explicitly specified as b
the same as the HRESULT on Win32). The SCODE can then be examined to dete
whether the call succeeded or failed. The error or success code, also contained within
the SCODE, is composed of a “facility” major code (13 bits on Win32 and 4 bits on
Win16) and a 16-bit minor code.

COM object developers are expected to use one of the predefined SCODE value
use the facility FACILITY_ITF and an interface specific minor code. SCODE values
can indicate either success codes or error codes. A typical use is to overload the
SCODE with a boolean value, using S_OK and S_FALSE success codes to indic
true or false return. If the COM server returns S_OK or S_FALSE, a CORBA
exception will not be raised and the value of the SCODE will be mapped as the re
value. This is because COM operations, which are defined to return an HRESULT
mapped to CORBA as returning an HRESULT.

Unlike CORBA, COM provides no standard way to return user-defined exception da
to the client. Also, there is no standard mechanism in COM to specify the comple
status of an invocation. In addition, it is not possible to predetermine what set of errors
a COM interface might return. Although the set of success codes that can be retu
from a COM operation must be fixed when the operation is defined, there is curre
no machine-readable way to discover what the set of valid success codes are.

COM exceptions have a straightforward mapping into CORBA. COM system error
codes are mapped to the CORBA standard exceptions. COM user-defined error codes
are mapped to CORBA user exceptions.

COM system error codes are defined with the FACILITY_NULL and FACILITY_RPC
facility codes. All FACILITY_NULL and FACILITY_RPC COM errors are mapped to
CORBA standard exceptions. Table 16-10 lists the mapping from COM
FACILITY_NULL exceptions to CORBA standard exceptions.

Table 16-10Mapping from COM FACILITY_NULL Error Codes to
CORBA Standard (System) Exceptions

COM CORBA

E_OUTOFMEMORY NO_MEMORY

E_INVALIDARG BAD_PARAM

E_NOTIMPL NO_IMPLEMENT
16-44 CORBA V2.2 February 1998

16

d

Table 16-11 lists the mapping from COM FACILITY_RPC exceptions to CORBA
standard exceptions. All FACILITY_RPC exceptions not listed in this table are mappe
to the new CORBA standard exception COM.

E_FAIL UNKNOWN

E_ACCESSDENIED NO_PERMISSION

E_UNEXPECTED UNKNOWN

E_ABORT UNKNOWN

E_POINTER BAD_PARAM

E_HANDLE BAD_PARAM

Table 16-11 Mapping from COM FACILITY_RPC Error Codes to CORBA Standard
(System) Exceptions

COM CORBA

RPC_E_CALL_CANCELED TRANSIENT

RPC_E_CANTPOST_INSENDCALL COMM_FAILURE

RPC_E_CANTCALLOUT_INEXTERNALCALL COMM_FAILURE

RPC_E_CONNECTION_TERMINATED NV_OBJREF

RPC_E_SERVER_DIED INV_OBJREF

RPC_E_SERVER_DIED_DNE INV_OBJREF

RPC_E_INVALID_DATAPACKET COMM_FAILURE

RPC_E_CANTTRANSMIT_CALL TRANSIENT

RPC_E_CLIENT_CANTMARSHAL_DATA MARSHAL

RPC_E_CLIENT_CANTUNMARSHAL_DATA MARSHAL

RPC_E_SERVER_CANTMARSHAL_DATA MARSHAL

RPC_E_SERVER_CANTUNMARSHAL_DATA MARSHAL

RPC_E_INVALID_DATA COMM_FAILURE

RPC_E_INVALID_PARAMETER BAD_PARAM

RPC_E_CANTCALLOUT_AGAIN COMM_FAILURE

RPC_E_SYS_CALL_FAILED NO_RESOURCES

RPC_E_OUT_OF_RESOURCES NO_RESOURCES

RPC_E_NOT_REGISTERED NO_IMPLEMENT

Table 16-10Mapping from COM FACILITY_NULL Error Codes to
CORBA Standard (System) Exceptions (Continued)
CORBA V2.2 COM to CORBA Data Type Mapping February 1998 16-45

16

is

 any),

 IDL
COM SCODEs, other than those previously listed, are mapped into CORBA user
exceptions and will require the use of the raises clause in OMG IDL. Since the
OMG IDL mapping from the Microsoft IDL and ODL is likely to be generated, this
not a burden to the average programmer. The following OMG IDL illustrates such a
user exception.

// OMG IDL
exception COM_ERROR { long hresult; };

When data conversion errors occur while mapping the data types between object
models (during a call from a CORBA client to a COM server), the system exception
DATA_CONVERSION will be raised.

Mapping for Operations

Operations defined for an interface are defined in Microsoft IDL and ODL within
interface definitions. The definition of an operation constitutes the operations
signature. An operation signature consists of the operation’s name, parameters (if
and return value. Unlike OMG IDL, Microsoft IDL and ODL does not allow the
operation definition to indicate the error information that can be returned.

Microsoft IDL and ODL parameter directional attributes ([in], [out], [in , out]) map
directly to OMG IDL (in , out , inout). Operation request parameters are
represented as the values of [in] or [inout] parameters in Microsoft IDL, and
operation response parameters are represented as the values of [inout] or [out]
parameters. An operation return result can be any type that can be defined in Microsoft
IDL/ODL, or void if a result is not returned. By convention, most operations are
defined to return an HRESULT. This provides a consistent way to return operation
status information.

When Microsoft ODL methods are mapped to OMG IDL, they undergo the following
transformations. First, if the last parameter is tagged with the Microsoft ODL keyword
retval, that argument will be used as the return type of the operation. If the last
parameter is not tagged with retval, then the signature is mapped directly to OMG
following the mapping rules for the data types of the arguments. Some example
mappings from COM methods to OMG IDL operations are shown in the following
code.

RPC_E_DISCONNECTED INV_OBJREF

RPC_E_RETRY TRANSIENT

RPC_E_SERVERCALL_REJECTED TRANSIENT

RPC_E_NOT_REGISTERED NO_IMPLEMENT

Table 16-11 Mapping from COM FACILITY_RPC Error Codes to CORBA Standard
(System) Exceptions (Continued)
16-46 CORBA V2.2 February 1998

16

MG
 is a
e

ace.
e
// Microsoft ODL
interface IFoo: IUnknown

{
HRESULT stringify ([in] VARIANT value,

 [out, retval] LPSTR * pszValue);

HRESULT permute([inout] short * value);

HRESULT tryPermute([inout] short * value,
 [out] long newValue);

};

In OMG IDL this becomes:

typedef long HRESULT;
interface IFoo: CORBA::Comp osite, CosLifeCycle: :LifeCycleObject

{
string stringify(in any value) raises (CO M_ERROR);

HRESULT permute(inout short value);

HRESULT tryPermute(inout short value, out long newValue)
};

Mapping for Properties

In COM, only Microsoft ODL and OLE Type Libraries provide support for describing
properties. Microsoft IDL does not support this capability. Any operations that can be
determined to be either a put/set or get accessor are mapped to an attribute in O
IDL. Because Microsoft IDL does not provide a means to indicate that something
property, a mapping from Microsoft IDL to OMG IDL will not contain mappings to th
attribute statement in OMG IDL.

When mapping between Microsoft ODL or OLE Type Libraries, properties in COM
are mapped in a similar fashion to that used to map attributes in OMG IDL to COM.
For example, the following Microsoft ODL statements define the attribute Profile for
the ICustomer interface and the read-only attribute Balance for the IAccount interf
The keywords [propput] and [propget] are used by Microsoft ODL to indicate that th
statement is defining a property of an interface.
CORBA V2.2 COM to CORBA Data Type Mapping February 1998 16-47

16

n is
 a
// Microsoft ODL
interface IAccount
 {
 [propget] HRESULT Balance([out, retval] float

* pfBalance);
 ...
 };

interface ICustomer
 {
 [propget] HRESULT Profile([out] CustomerData * Profile);
 [propput] HRESULT Profile([in] CustomerData * Profile);
 };

The definition of attributes in OMG IDL are restricted from raising any user-defined
exceptions. Because of this, the implementation of an attribute’s accessor functio
limited to raising system exceptions. The value of the HRESULT is determined by
mapping of the CORBA exception, if any, that was raised.

16.3.11 Mapping for Read-Only Attributes

In Microsoft ODL, an attribute preceded by the keyword [propget] is interpreted as
only supporting an accessor function, which is used to retrieve the value of the
attribute. In the example above, the mapping of the attribute Balance is mapped to the
following statements in OMG IDL.

// OMG IDL
interface Account

{
readonly attri bute float Balance;
...
};

16.3.12 Mapping for Read-Write Attributes

In Microsoft ODL, an attribute preceded by the keyword [propput] is interpreted as
only supporting an accessor function which is used to set the value of the attribute. In
the previous example, the attribute Profile is mapped to the following statements in
OMG IDL.
16-48 CORBA V2.2 February 1998

16

t

BA,
thout

 C++
// OMG IDL
struct CustomerData

{
CustomerId Id;
string Name;
string SurName;
};

interface Customer
{
attribute CustomerData Profile;
...
};

Since CORBA does not have the concept of write-only attributes, the mapping must
assume that a property that has the keyword [propput] is mapped to a single read-write
attribute, even if there is no associated [propget] method defined.

Inheritance Mapping

Both CORBA and COM have similar models for individual interfaces. However, the
models for inheritance and multiple interfaces are different.

In CORBA, an interface can singly or multiply inherit from other interfaces, and in
language bindings supporting typed object references, widening and narrowing suppor
convert object references as allowed by the true type of that object.

However, there is no built-in mechanism in CORBA to access interfaces without an
inheritance relationship. The run-time interfaces of an object (for example,
CORBA::Object::is_a , CORBA::Object::get_interface) use a
description of the object’s principle type, which is defined in OMG IDL. In terms of
implementation, CORBA allows many ways in which implementations of interfaces
can be structured, including using implementation inheritance.

In COM V2.0, interfaces can have single inheritance. However, as opposed to COR
there is a standard mechanism by which an object can have multiple interfaces (wi
an inheritance relationship between those interfaces) and by which clients can query
for these at run-time. (It defines no common way to determine if two interface
references refer to the same object, or to enumerate all the interfaces supported by an
entity.)

An observation about COM is that some COM objects have a required minimum set of
interfaces that they must support. This type of statically-defined interface relation is
conceptually equivalent to multiple inheritance; however, discovering this relationship
is only possible if ODL or type libraries are always available for an object.

COM describes two main implementation techniques: aggregation and delegation.
style implementation inheritance is not possible.
CORBA V2.2 COM to CORBA Data Type Mapping February 1998 16-49

16

IDL

 not

faces
h in

When COM interfaces are mapped into CORBA, their inheritance hierarchy (which
can only consist of single inheritance) is directly mapped into the equivalent OMG
inheritance hierarchy.1

Note that although it is possible, using Microsoft ODL to map multiple COM
interfaces in a class to OMG IDL multiple inheritance, the necessary information is
available for interfaces defined in Microsoft IDL. As such, this specification does not
define a multiple COM interface to OMG IDL multiple inheritance mapping. It is
assumed that future versions of COM will merge Microsoft ODL and Microsoft IDL,
at which time the mapping can be extended to allow for multiple COM interfaces to be
mapped to OMG IDL multiple inheritance.

CORBA::Composite is a general-purpose interface used to provide a standard
mechanism for accessing multiple interfaces from a client, even though those inter
are not related by inheritance. Any existing ORB can support this interface, althoug
some cases a specialized implementation framework may be desired to take advantage
of this interface.

module CORBA // PIDL
{
interface Composite

{
Object query_interface(in RepositoryId whichOne);

};
interface Composable:Composite

{
Composite primary_interface();
};

};

The root of a COM interface inheritance tree, when mapped to CORBA, is multiply
inherited from CORBA::Composable and
CosLifeCycle::LifeCycleObject . Note that the IUnknown interface is not
surfaced in OMG IDL. Any COM method parameters that require IUnknown interfaces
as arguments are mapped, in OMG IDL, to object references of type
CORBA::Object .

// Microsoft IDL or ODL
interface IFoo: IUnknown
{
HRESULT inquire([in] IUnknown *obj);
};

1. This mapping fails in some cases, for example, if operation names are the same.
16-50 CORBA V2.2 February 1998

16

te
In OMG IDL, this becomes:

interface IFoo: CORBA::Comp osable, CosLifeCyc le::Li feCycleObject
{
void inquire(in Object obj);
};

Type Library Mapping

Name spaces within the OLE Type Library are conceptually similar to CORBA
interface repositories. However, the CORBA interface repository looks, to the client, to
be one unified service. Type libraries, on the other hand, are each stored in a separa
file. Clients do not have a unified, hierarchical interface to type libraries.

The following table defines the mapping between equivalent CORBA and COM
interface description concepts. Where there is no equivalent, the field is left blank.

Using this mapping, implementations must provide the ability to call
Object::get_interface on CORBA object references to COM objects to
retrieve an InterfaceDef. When CORBA objects are accessed from COM,
implementations may provide the ability to retrieve the ITypeInfo for CORBA object
interface using the IProvideClassInfo COM interface.

Table 16-12CORBA Interface Repository to OLE Type Library Mappings

CORBA COM

TypeCode TYPEDESC

Repository

ModuleDef ITypeLib

InterfaceDef ITypeInfo

AttributeDef VARDESC

OperationDef FUNCDESC

ParameterDef ELEMDESC

TypeDef ITypeInfo

ConstantDef VARDESC

ExceptionDef
CORBA V2.2 COM to CORBA Data Type Mapping February 1998 16-51

16
16-52 CORBA V2.2 February 1998

	Mapping: COM and CORBA
	16.1 Data Type Mapping
	16.2 CORBA to COM Data Type Mapping
	16.2.1 Mapping for Basic Data Types
	16.2.2 Mapping for Constants
	16.2.3 Mapping for Enumerators
	16.2.4 Mapping for String Types
	16.2.5 Mapping for Struct Types
	16.2.6 Mapping for Union Types
	16.2.7 Mapping for Sequence Types
	16.2.8 Mapping for Array Types
	16.2.9 Mapping for the any Type
	16.2.10 Interface Mapping
	16.2.11 Inheritance Mapping
	16.2.12 Mapping for Pseudo-Objects
	16.2.13 Interface Repository Mapping

	16.3 COM to CORBA Data Type Mapping
	16.3.1 Mapping for Basic Data Types
	16.3.2 Mapping for Constants
	16.3.3 Mapping for Enumerators
	16.3.4 Mapping for String Types
	16.3.5 Mapping for Structure Types
	16.3.6 Mapping for Union Types
	16.3.7 Mapping for Array Types
	16.3.8 Mapping for VARIANT
	16.3.9 Mapping for Pointers
	16.3.10 Interface Mapping
	16.3.11 Mapping for Read-Only Attributes
	16.3.12 Mapping for Read-Write Attributes

