Mapping: COM and CORBA 16

This chapter dscribes the data tyand interface mapping between COM and

CORBA. The mappings are described in the context of both Win16 and Win32 COM
due to the differences between the versions of CaDll between the automated tools
available to COM developers under these environments. The mapping is designed to be
fully implemented by automated interworking tools.

Contents

This chapter contains tHellowing sections.

Section Title Page
“Data Type Mapping” 16-1
“CORBA to COM Data Type Mapping” 16-2
“COM to CORBA Data Type Mapping” 16-32

16.1 Data Type Mapping

The data type model used in this mapping for Win32 COM is defied MIDL (a
derivative of DCE IDL). COM interfaces using “custom marshaling” must be hand-
coded and require speciatatment to interoperate with CORBA using automated
tools. This spefication does not address interworking between CORBA and custom-
marshaled COM interfaces.

The data type model used in this mapping for Win16 COM ivefrom ODL since
Microsoft RPC and th&licrosoft MIDL compiler are not available for Winl6. The
ODL data type model was chosen since it is the only standard, high-level
representation available to COM object developers on Win16.

CORBA V2.2 Febloag/ 16-1

16

Note that although the MIDL and ODL data type models are used as the reference for
the data model mapping, there is no requirement that either MIDL or ODL be used to

implement a COM/CORBA interworkingsolution.

In many cases, there is a one-to-one mapping between COM and CORBA data types.
However, in cases without exact mappings, run-time conversion errors may occur.
Conversion errors will be discussed in Mapping Exception Types undeiriterface
Mapping” on page 16-11.

16.2 CORBAto COM Data Type Mapping

16-2

16.2.1 Mapping for Basic Data Types

The basic data types available in OMG IDL map to the corresponding data types
available in Microsoft IDL as shown in Table 16-1.

Table 16-1 OMG IDL to MIDL Intrinsic Data Type Mappings

OMG IDL Microsoft Microsoft Description

IDL ODL
short short short Signed integer with a range 6P.-2!°- 1
long long long Signed integer with a range of%22%% - 1

unsigned short unsigned short unsigned short Unsiguteder with a range of 0.2 - 1

unsigned long unsigned long unsigned long Unsiginéeber vith a range of 0.3 - 1

float float float IEEE single-precision floating point number

double double double IEEE double-precisitwating point number

char char char 8-bit quantityntited tothe 1SO Latin-1
character set

boolean boolean boolean 8-bit quantity which is limited tand 0

octet byte unsigned char 8-bipaque data type, guaranteed to not
undergo any conversion during transfer
betweensystems.

16.2.2 Mapping for Constants

The mapping of the OMG IDkeyword const to Microsoft IDL and ODL israbst
exactly the same. The following OMG IDL definitions for constants

CORBAV2.2 February 1998

16

/ OMG IDL
constshort S= ...;
constlongL =..;
const unsigned short US = ..
const unsigned long UL = ._;
constcharC = ..
const boolean B = ...;

const string STR = “...";

maps to the following Microsoft IDland ODL deihitions for constants

/I Microsoft IDL and ODL
constshortS =..,;
constlongL =...;
const unsigned short US = ..,;
const unsigned long UL = ...;
constcharC =...;
const boolean B = ...;
const string STR =*“...";

Note that OMG IDL supports the definition of constants for the data figas and
double , while COM does not. Because thfs, any tool that generates Microsoft IDL
or ODL from OMG IDL should raise an error when a float or double constant is
encountered.

16.2.3 Mapping for Enumerators

CORBA has enumerators that are not explicitly tagged with values. Microsoft IDL and
ODL support enumerators that are explicitly tagged with vallles.castraint is that

any language mapping thpérmits two enumerators to be compared or defines
successor or predecessor functions on enumerators must conform to the ordering of the
enumerators as specified in the OMG IDL.

// OMG IDL
enumA _or B or C{A,B, C};

CORBA enumerators are mapped to COM enumerations directly as per the CORBA C
language binding. The Miosoft IDL keywordvl enum is required in order for an
enumeration to be transmitted as 32-bit values. Microsoft recoasrthat this

keyword be used onZ3bit platforms, since it increases the efficiency of marshalling
and tnmarshalling data lnen such an enumerator is embedded in a structure or union.

/I Microsoft IDL and ODL
typedef [vl_enum] enum tagA _or B orC{A=0,B,C}
A or B or_C;

A maximum 0f2°32 identifiers may be specified in an enumeration in CORBA.
Enumerators in Microsoft IDL and ODL will only support 2 itntifiers, and
therefore, truncation may result.

CORBA V2.2 CORBA to COM Data Tiyepping February 1998 16-3

16

16-4

16.2.4 Mapping for Stringypes

CORBA currently defines the data typling to represent strings that consist of
8-bit quantities, which are NULL-terminated.

Microsoft IDL and ODL define a number of different data typdsich are used to
represent both 8-bit character striragsd strings containing wide characters based on
Unicode.

Table 16-2 liustrateshow to mapthe string data types in OMG IDL to their
corresponding data types in both Microsoft IDL and ODL.

Table 16-2 OMG IDL to Microsoft IDL/ODL String Mappings

OMG Microsoft Microsoft Description
IDL IDL ODL
string LPSTR, char * LPSTR Null teiimated 8-bit character
string
LPTSTR LPTSTR Null ternmated 8-bit or Unicode
string (dependspon compler
flags used)

If a BSTR containing embedded nulls is passed to a CORBA server, thecliédiv
will receive an E_DATA_CONVERION.

OMG IDL supports two dferent types of stringdoundedandunbounded Bounded
strings are defined as strings that have a maximum length specified; whereas,
unbounded strings do not havenaximum length specified.

Mapping for Unbounded String Types

The deinition of an unlwunded string thited to 8-bit quantities in OMG IDL

/I OMG IDL
typedef string UN BOUNDED_STRING;

is mapped to the following syntax in Microsoft IDL and ODL, which denotes the type
of a “stringified unique pointer to character.”

// Microsoft IDL and ODL
typedef [string, unique] char * UNBOUNDED_STRING;

In other words, a value of type UNBOUNDED_STRING is a non-NULL pointer to a
one-dimensional nisterminated character array whose extent and numbealaf
elementscan vary at ruriime.

Mapping for Bounded String Types

Bounded strings have a slightly different mapping between OMG IDL and Microsoft
IDL and ODL. The following OMG IDL defition for a boundedtring:

CORBAV2.2 February 1998

16

/ OMG IDL
constlong N =..;
typedef string<N> BOUNDED_STRING;

maps to the following syntax in Microsoft IDL and ODL for arlisgified non-
conformant array.”

/I Microsoft IDL and ODL
constlong N = ... ;
typedef [string, unique] char (* BOUNDED_STRING) [N];

In other words, the encoding for a value of type BOUNDED_STRING is that of a null-
terminated array of characters whose extent is known at compileaimdehe number
of valid charactersan vary arun-time.

16.2.5 Mapping for Struct Types

OMG IDL uses the keyword struct to define a record type, consisting of an ordered set
of name-value pairs representing the member types and names. A structure defined in
OMG IDL maps bidirectionally to Microsoft IDland ODL structures. Each member

of the structure is mapped according to the mapping rules for that data type.

An OMG IDL struct type with members of types TO, T1, T2, and so on

/ OMG IDL
typedef... TO
typedef ... T1;
typedef ... T2;

typedef ... Tn;
struct STRUCTURE
{

TO mo;

T1 ml;

T2 m2;

Tn mN;
|

has an encoding equivalent to a Microsoft IBhd ODL structure dafition, as
follows.

CORBA V2.2 CORBA to COM Data Tiyepping February 1998 16-5

16

/I Microsoft IDL and ODL

typedef ... TO;
typedef ... Tl;
typedef ... T2;
typedef ... Tn;
typedef struct
{
TO mO;
TI ml;
T2 m2;
TN mN;
} STRUCTURE;

Self-referential data types aegpanded in the same manner. For example,

struct A {// OMG IDL
seque nce<A>v1;

h

is mapped as

typedef struct A {
struct { // MIDL
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]
struct A * pValue;
}vi,;
A

16.2.6 Mapping for Union Types

OMG IDL defines unions to be encapsulated discriminated unionstisheminator
itself must be encapsulated within the union.

In addition, the OMG IDL union discriminants must be constant expressiche
discriminator tag must be a previously defidedg , short , unsigned long ,
unsigned short , char , boolean , or enumconstant. The default case can appear
at most once in the daftion of a discriminatedinion, and case labels must match or
be automatically castable to the defined type of the discriminator.

16-6 CORBAV2.2 February 1998

16

The followingdefinition for a discriminatedinion in OMG IDL

/I OMG IDL
enum UNION_DISCRIMINATOR
{
dChar,
dShort,
dLong,
dFloat,
dDouble

h

union UNION_OF_CHAR_AND_ARITHMETIC
switch(UNION_DISCRIMINATOR)
{
case dChar: char c;
case dShort: short s;
case dLong: long |;
case dFloat: float f;
case dDouble: double d;
default: octet v[8];

h

is mapped into encapsulated unions in Microsoft IDL as follows:

/I Microsoft IDL
typedef enum
{
dchar,
dShort,
dLong,
dFloat,
dDouble
} UNION_DISCRIMINATOR,;

typedef union switch (UNION_DISCRIMINATOR DCE_d)
{
case dChar: char c;
case dShort: short s;
case dLong: long |;
case dFloat: float f;
case dDouble: double d;
default: byte v[8];
JUNION_OF_CHAR_AND_ARITH

CORBA V2.2 CORBA to COM Data Tiyepping February 1998 16-7

16

16.2.7 Mapping for Spience Types

OMG IDL defines the keyord sequence to be a one-dimensional array witko
characteristics: an optional maximum size which is fixed at compile time, and a length
that is determined at run-timkike the definition of strings, OMG IDlallows

sequences to be defined in one of two ways: bounded and unbounded. A sequence is
bounded if anaximum size is specified, else it is consideneounded.

Mapping for Unbounded Segunce Types

Themapping of the following OMG IDL syntax for the unbounded sequence of type T

/[l OMG IDL for T
typedef ... T;
typedef sequence<T> UNBOUNDED_SEQUENCE;

maps to the following Microsoft IDland ODL syntax:

/I Microsoft IDL or ODL

typedef ... U;
typedef struct
{

unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]

U * pValue;
} UNBOUNDED_SEQUENCE;

The encodingor an inbounded OMG IDL sequence of type T is that dfiarosoft

IDL or ODL struct containing anique pointer to a conformant array of type U, where
U is the Microsoft IDL or ODL mapping of T. The enclosing struct in the Microsoft
IDL/ODL mapping is necessary to provide a scope in which extent and data bounds
can bedefined.

Mapping for Bouded Sequence Types

The mappindor the following OMG IDL syntax for thdounded sequence of type T
which can grow to be N size

/ OMG IDL for T
constlongN = ..;
typedef...T;
typedef sequence<T,N> BOUNDED_SEQUENCE_OF _N;

maps to the following Microsoft IDL or ODL syntax:
/I Microsoft IDL or ODL

constlong N = ...;
typedef ...U;

16-8 CORBAV2.2 February 1998

16

typedef struct
{
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[length_is(cbLengthUsed)] U Value[N];
} BOUNDED_SEQUENCE_OF_N;

16.2.8 Mapping for Array Types

OMG IDL arrays are fixed lengtmultidimensional arrays. Both Microsoft IDL and
ODL also support fixed length uttidimensional arrays. Arraydefined in OMG IDL
map bidirectionally to COM fixed length arrays. The type of the array elements is
mapped according to the data type mapping rules.

The mappingor an OMG IDL array of some type T is that of an array of the type U
as defined in Microsoft IDL and ODL, where U is the result of mapping the OMG IDL
T into Microsoft IDL or ODL.

/ OMG IDL for T
constlongN = ...;
typedef... T,
typedef T ARRAY_OF_T[NJ;

/I Microsoft IDL or ODL for T
constlongN = ...;
typedef ... U;
typedef U ARRAY_OF_UIN];

In Microsoft IDL and ODL, the name ARRAY_OF_U denotes the type of a “one-
dimensional nonconformant and nonvarying array of U.” The value N can be of any
integral type, and const means (as in OMG IDL) that the value of N is fixekinamah

at IDL compilation time.The generalization tonultidimensional arrays followthe
obvious mapping of syntax.

Note that if the ellipsisvereoctet in the OMG IDL, then the ellipsis wouldave to
be byte in Microsoft IDL or ODL. That is why the types of the array elements have
different names in thavo texts.

CORBA V2.2 CORBA to COM Data Tiyepping February 1998 16-9

16

16.2.9 Mapping for thany Type

The CORBAany type pemits thespecification of values that can express any OMG
IDL data type. There is no direct or simple mapping of this type into COM, thus we
map it to the following interface deftion:

/I Microsoft IDL
typedef [vl_enum] enum CORBAAnyDataTagEnum {
anySimpleValTag,
anyAnyValTag,
anySeqValTag,
anyStructValTag,
anyUnionValTag
} CORBAAnyDataTag;

typedef union CORBAAnyDataUnion switch(CORBAAnyDataTag
whichOne){
case anyAnyValTag:
ICORBA_Any *anyVal;
case anySeqValTag:
case anyStructValTag:
struct {
[string, unique] char * repositoryld;
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed),
unique]
union CORBAAnyDataUnion *pVal;
} multival;
case anyUnionValTag:
struct {
[string, unique] char * repositoryld;
long disc;
union CORBAAnyDataUnion *value;
} unionVal;
case anyObjectValTag:
struct {
[string, unique] char * repositoryld;
VARIANT val;
} objectVal;
case anySimpleValTag: // All other types
VARIANT simpleVal,;
} CORBAAnNyData;

.... UUid(74105F50-3C68-11cf-9588-AA0004004A09)]
interface ICORBA_Any: IlUnknown
{
HRESULT _get value(Jout] VARIANT * val);
HRESULT _put_value([in] VARIANT val);
HRESULT _get CORBAAnyData(Jout] CORBAAnyData* val);

16-10 CORBAV2.2 February 1998

16

HRESULT _put_ CORBAAnyData([in] CORBAAnyData val);
HRESULT _get_typeCode(Jout] ICORBA_TypeCode ** tc);

}

However, the data types that can be included in a VARIANT areetstoigtive to

represent the data types that can be included angnsuch as structs and unions. In
cases where the data types can be represented in a VARIANT, they will be; in other
cases, they will optionally be returned as an IStream pointer in the VARIANT. An
implementation may choose not to represent these types as an IStream, in which case
an SCODE value of E_ DATA_CONVERSION is returned when the VARIANT is
requested.

16.2.10 Interface Mapping

Mapping for Interficeldentifiers

Interface identifiers are used in both CORBA and COMrtmuely icentify interfaces.
These allow thelient code taetrieve informatiorabout, or to inquire about other
interfaces of an object.

CORBA identifies interfaces using the Repositoryld. The Repositoryld is a unique
identifier for, among other things, an interface. COM identifies interfaces using a
structure similar to the DCE UUID (in fact, identical to a DCE UUID oim3¥)

known as an IID. As with CORBA, COlgpecifies that the textual names of interfaces
are only for convenience and need not be globally unique.

The CORBA Repsitoryld is mapped, bidirectionally, to the COM IID. The algorithm
for creating the mapping is detailed in “Mapping Interface Identitypage 15-16.

Mapping for Exception Types

The CORBAOobject model uses the concept of exceptions to report iefaymation.
Additional, exception-specification information may accompany thegian. The
exception-specific information is a specialized form of a recordaBee it is defined

as a record, the additional information may consist of any of the basic data types or a
complex data type constructed from one or more basic data fgpesptions are

classified into two types: System (Standard) Exceptants User Exceptions.

COM provides error information to clients only if an operation uses a return result of
type HRESULT. A COM HRESULT with a value of zero indicates success. The
HRESULT then can be converted into an SCODE (the SCODE is explicéalyifigul

as being the same as the HRESULT on Wip&&forms). The SCODE can then be
examined to determine whether the call succeeded or faiteckrror or success code,
also contained within the SCODE, is composed tfhaility” major code (13 bits on
Win32 and 4 bits on Win16) and a 16-bit minor code.

Unlike CORBA, COM provides no stadard way to return user-defined exception data
to the client. Also, there is no standard mechanism in COM to specify the completion
status of an invocation. In addition, it is not possible to predeterntia¢ set of errors

CORBA V2.2 CORBA to COM Data Tiyepping February 1998 16-11

16

16-12

a COM interface might return based on the definition of the interface as specified in
Microsoft IDL, ODL, or in a type library. Althagh the set of status codémat can be
returned from a COM operation must be fixelem the operation is defined, there is
currently no machine-readable way to discover the set of valid codes.

Since the CORBA exception model is significantly richer than the COM exception
model, mapping CORBA exceptions to COM requires an additional protocol to be
defined for COM. However, this protocol does not violate baakls compatibility, nor
does it require any changes t©OR. To return the User Exception data to a COM
client, an optional parameter éslded to the end of a COM operation signatuhen
mapping CORBA operations, which raise User Exceptions. System exception
information is returned in a standard OLE Error Object.

Mapping for System Exceptions

System exceptions are standard exception types, which are defined by the CORBA
specification and are used by the Object Request Broker (ORB)kgect adapters
(OA). Standard exceptiomaay be returned as a result of any operation invocation,
regardless of the interface avhich the requestedperation was attempted.

There are two aggts to the mapping of System Exceptions. One aspect is generating
an appropriate HRESULT for the operation to return. The other aspect is conveying
System Exception information via a standard OLE Error Object.

The followingtableshowsthe HRESULT, which must be returned by the COM View
when a CORBA System Exception is raised. Each of the CORB#eB Exceptions

is assigned a 16-bit numerical ID starting a200 to be used as the code (lower 16
bits) of the HRESULT. Because these errors are interface-specific, thef&lky
code FACILITY_ITF is used athe facility code in the HRESULT.

Bits 12-13 of the HRESULT g¢dain a bit mask, which indicates the completion status
of the CORBA request. The bit value 00 indicates that the operation did not complete,
a bit value of 01 indicates that the operation did compbatd,a bit value of 02

indicates that the operation may have completed. Tablelisfs3he HRESULT

constants and their values.

Table 16-3Standard Exception to SCODE Mapping

HRESULT Constant HRESULT
Value
ITF_E_UNKNOWN_NO 0x40200
ITF_E_UNKNOWN_YES 0x41200
ITF_E_UNKNOWN_MAYBE 0x42200
ITF_E_BAD_PARAM_NO 0x40201
ITF_E_BAD_PARAM_YES 0x41201
ITE_E_BAD_PARAM_MAYBE 0x42201
ITF_E_NO_MEMORY_NO 0x40202

CORBAV2.2 February 1998

16

Table 16-3Standard Exception to SCODE Mappif@ontinued)

ITF_E_NO_MEMORY_YES 0x41202
ITF_E_NO_MEMORY_MAYBE 0x42202
ITF_E_IMP_LIMIT_NO 0x40203
ITF_E_IMP_LIMIT_YES 0x41203
ITF_E_IMP_LIMIT_MAYBE 0x42203
ITF_E_COMM_FAILURE_NO 0x40204
ITF_E_COMM_FAILURE_YES 0x41204
ITF_E_COMM_FAILURE_MAYBE 0x42204
ITF_E_INV_OBJREF_NO 0x40205
ITF_E_INV_OBJREF_YES 0x41205
ITF_E_INV_OBJREF_MAYBE 0x42205
ITF_E_NO_PERMISSION_NO 0x40206
ITF_E_NO_PERMISSION_YES 0x41206
ITF_E_NO_PERMISSION_MAYBE 0x42206
ITF_E_INTERNAL_NO 0x40207
ITF_E_INTERNAL_YES 0x41207
ITF_E_INTERNAL_MAYBE 0x42207
ITF_E_MARSHAL_NO 0x40208
ITF_E_MARSHAL_YES 0x41208
ITF_E_MARSHAL_MAYBE 0x42208
ITF_E_INITIALIZE_NO 0x40209
ITF_E_INITIALIZE_YES 0x41209
ITF_E_INITIALIZE_MAYBE 0x42209
ITF_E_NO_IMPLEMENT_NO 0x4020A
ITF_E_NO_IMPLEMENT_YES 0x4120A
ITF_E_NO_IMPLEMENT_MAYBE 0x4220A
ITF_E_BAD_TYPECODE_NO 0x4020B
ITF_E_BAD_TYPECODE_YES 0x4120B
ITF_E_BAD_TYPECODE_MAYBE 0x4220B

CORBA V2.2 CORBA to COM Data Tiyepping February 1998 16-13

16

16-14

Table 16-3Standard Exception to SCODE Mappif@ontinued)

ITF_E_BAD_OPERATION_NO
ITF_E_BAD_OPERATION_YES
ITF_E_BAD_OPERATION_MAYBE
ITF_E_NO_RESOURCES_NO
ITF_E_NO_RESOURCES_YES
ITF_E_NO_RESOURCES_MAYBE
ITF_E_NO_RESPONSE_NO
ITF_E_NO_RESPONSE_YES
ITF_E_NO_RESPONSE_MAYBE
ITF_E_PERSIST_STORE_NO
ITF_E_PERSIST_STORE_YES
ITF_E_PERSIST_STORE_MAYBE
ITF_E_BAD_INV_ORDER_NO
ITF_E_BAD_INV_ORDER_YES
ITF_E_BAD_INV_ORDER_MAYBE
ITF_E_TRANSIENT_NO
ITF_E_TRANSIENT_YES
ITF_E_TRANSIENT_MAYBE
ITF_E_FREE MEM_NO
ITF_E_FREE MEM_YES
ITF_E_FREE MEM_MAYBE
ITF_E_INV_IDENT_NO
ITF_E_INV_IDENT_YES
ITF_E_INV_IDENT_MAYBE
ITF_E_INV_FLAG_NO
ITF_E_INV_FLAG_YES
ITF_E_INV_FLAG_MAYBE
ITF_E_INTF_REPOS_NO
ITF_E_INTF_REPOS_YES

CORBAV2.2 February 1998

0x4020C
0x4120C
0x4220C
0x4020D
0x4120D
0x4220D
0x4020E
0x4120E
0x4220E
0x4020F
0x4120F
0x4220F
0x40210
0x41210
0x42210
0x40211
0x41211
0x42211
0x40212
0x41212
0x42212
0x40213
0x41213
0x42213
0x40214
0x41214
0x42214
0x40215
0x41215

16

Table 16-3Standard Exception to SCODE Mappif@ontinued)

ITF_E_INTF_REPOS_MAYBE 0x42215
ITF_E_BAD_CONTEXT_NO 0x40216
ITF_E_BAD_CONTEXT_YES 0x41216
ITF_E_BAD_CONTEXT_MAYBE 0x42216
ITF_E_OBJ_ADAPTER_NO 0x40217
ITF_E_OBJ_ADAPTER_YES 0x41217
ITF_E_OBJ_ADAPTER_MAYBE 0x42217
ITF_E_DATA_CONVERSION_NO 0x40218
ITF_E_DATA_CONVERSION_YES 0x41218
ITF_E_DATA_CONVERSION_MAYBE 0x42218

It is not possible to map a System Exception’s minor codeRambsioryld into the
HRESULT. Therefore, OLE Error Objects may be used to convey thesé\ddtiag
the exception information to an OLE Error Object is optionawkver, if the Eror
Object is used for this purpose, it must lmne according to the following
specifications.

® The COM View must implement the standard COM interface ISupportErrorinfo
such that the View can respondimhatively to an inquiry from the client as to
whether Error Objects are supported by the View Interface.

® The COM View must calBetErrorinfo with a NULL value for the IErrorinfo
pointer parameter when the mapped CORBA operation is completed without an
exception being raised.alling SetErrorinfo in this fashion assures that the Error
Object on that thread is thoroughly destroyed.

The properties of the OLE Error Object must be set according to Table 16-4.

CORBA V2.2 CORBA to COM Data Tiyepping February 1998 16-15

16

16-16

Table 16-4Error Object Usage for CORBA System Exceptions

Property

Description

bstrSource

<interface name>.<operation name>
where the interface and operation names are those of the
CORBA in¢rface that thisAutomation View is regsenting.

bstrDescription

CORBA System Exception: [<exception repository id>]
minor code [<minor code>]gompletion status>]
where the<exception repository id=and <minor code> are
those of the CORBA systentegtion. <completion status> is
“YES,” “NO,” or “MAYBE" based uponthe value of the
system exception’s GRBA conpletion status. Spaces and
square brackets are literals and must be included in the
string.

bstrHelpFile Unspeftied
dwHelpContext Unspedied
GUID The IID ofthe COM View Interface

A COM View supporting error lgjects would haveode, which approximates the
following C++ example.

SetErrorinfo(OL,NULL); // Initialize the thread-local error

object
try

/I Call the CORBA operation

}
catch(...)

{

CreateErrorinfo(&plCreateErrorinfo);
plCreateErrorinfo->SetSource(...);
plCreateErrorinfo->SetDescription(...);
plCreateErrorinfo->SetGUID(...);
plCreateErrorinfo
->QuerylInterface(l1D_IErrorinfo,&plErrorinfo);
plCreateErrorinfo->SetErrorinfo(OL,plErrorinfo);
plErrorinfo->Release();
plCreateErrorinfo->Release();

CORBAV2.2 February 1998

16

A client to a COM View would access the OLE Error Object with code approximating
the following.

/I After obtaining a pointer to an interface on
/I the COM View, the
/I client does the following one time

pIMyMappedinterface->Querylnterface(lID_ISupportErrorinfo,
&plSupportErrorinfo);

hr = pISupportErrorinfo
->InterfaceSupportsErrorinfo(lID_MyMappedinterface);
BOOL bSupportsErrorinfo = (hr == NOERROR ? TRUE : FALSE);

/I Call to the COM operation...
HRESULT hrOperation = pIMyMappedInterface->...

if (bSupportsErrorinfo)

{
HRESULT hr = GetErrorinfo(O,&plErrorinfo);

/I S_FALSE means that error data is not available,
NO_ERROR

/ means it is

if (hr == NO_ERROR)

{

plErrorinfo->GetSource(...);

/I Has repository id & minor code. hrOperation (above)
/I has the completion status encoded into it.
plErrorinfo->GetDescription(...);

}

The COMclient program could use C++ exception handling mechanisms to avoid
doing this exgtit check after every call to an operation on the COM View.

Mapping forUserException Types

User exeptions are defined by users in OMG IRhd used by the methods in an
object server to report operation-specific errors. Thendieh of a User Exception is
identified in an OMG IDL file with the keyord exeption. The body of &ser
Exception is described using the synfak describing a structure in OMG IDL.

When CORBA User Eseptions are mapped into COM, a structure is used to describe
various information about the exception — hereafter called an Exception structure. The
structure contains members, which indicate the type of the CORBA exception, the
identifier of the exception definition in a CORBA Interface Repository, and interface
pointers to User Exceptions. The name of the structure is construmedhfe name of

CORBA V2.2 CORBA to COM Data Tiyepping February 1998 16-17

16

16-18

the CORBA module in which the exception is defined (if specified), the name of the
interface in which the exception is either defined or used, and the word “Exceptions.”
A template illustrating this namingonvention is a$ollows.

/I Microsoft IDL and ODL
typedef enum { NO_EXCEPTION, USER_EXCEPTION}
ExceptionType;

typedef struct
{
ExceptionType type;
LPTSTR repositoryld;
<ModuleName><InterfaceName>UserException
*....piUserException;

} <ModuleName><InterfaceName>Exceptions;

The Exceptions structure specified as an output parameter, which appears as the last
parameter ofiny goeration mapped from OMG IDL to Microsoft IDwhich raises a
User Exception. The Exceptions structure is always passediigct reference.

Because of the memory managemenés of COM, passing thExceptions structure

as an output parameter by indirect reference allows the parameter to be treated as
optional by the callee. Thfellowing example illustrates this point.

/I Microsoft IDL
interface IAccount
{
HRESULT Withdraw([in] float fAmount,
[out] float pfNewBalance,
[out] BankExceptions
** ppException);
¥

The caller can indicate that no exceptigmformationshould be returned, if an

exception occurs, by specifying NULL as the value for the Exceptions parameter of the
operation. If thecaller expects to receive exception information, it npass the

address of a pointer to the memory in which the exception information is to leelplac
COM'’s memory management rules state that it is the responsibility of the caller to
release this memory when it is no longer required.

If the callerprovides a no-NULL value for the Exceptions parameter anddhlee is

to return exception information, the callee is responsible for allocating any memory
used to hold the exceptianformation being returned. If no exception is to be
returned, thecalleeneed do nothing with the parameter value.

If a CORBA exception is not raised, then S_OK must be returned as the value of the
HRESULT to the callee, indicating the operation succeetied.value othe

HRESULT returned to the callee when a CORBA exceptias been raised depends
upon the type of exception being raised and whether an Exceptiaiiure was

specified by the caller.

CORBAV2.2 February 1998

16

The following OMG IDL satementshowthe definition of the formatised to
represent User Exceptions.

/l OMG IDL
module BANK

{

exception InsufFunds { float balance };
exception InvalidAmount { float amount };

interface Account

{

exception NotAuthorized { };
float Deposit(in fl oat Amount)
raises(InvalidAmount);
float Withdraw(in float Amount)
raises(InvalidAmount, NotAuthorized);
¥
¥

and map to théollowing statements in Microsoft IDL and ODL.

/I Microsoft IDL and ODL
struct BanklinsufFunds

{

float balance;

h

struct BankinvalidAmount

{

float amount;

h

struct BankAccountNotAuthorized

{
h

interface IBankAccountUserExceptions : lUnknown

{
HRESULT get_InsufFunds([out] BanklnsufFunds

* exceptionBody);
HRESULT get_InvalidAmount([out] BankinvalidAmount
* exceptionBody);
HRESULT get_NotAuthorized([out]
BankAccountNotAuthorized

* exceptionBody);

typedef struct
{

CORBAV2.2 CORBA to COM Data Tiyepping February 1998

16-19

16

16-20

ExceptionType type;

LPTSTR repositoryld,;

IBankAccountUserExceptions * piUserException;
} BankAccountExceptions;

User exeptions are mapped to a COM interfag®l a structure which describes the
body ofinformation to be returned for the User Eption. A COM interface is defined

for each CORBAinterface containing an operation that raises a User Excefitha.

name of the interface defined for accessing User Exception information is constructed
from the fully scoped name of the CORBA interface on which tleemon is raised.

A structure is defined for each User Exception, which contains the badfoohation

to be returned as part of that exceptibhe name ofhe structure follows the naming
conventions used to map CORBA structdsdinitions.

Each User Exception that can be raised by an operation defined for a CiofRBace

is mapped into an operation on the Exception interfabe.name ofhe operation is
constructed by prefixing the name of the exception withsthieg“get_". Each

accessor operation defined takes one output parameter in which to return the body of
information defined for the Usédtxception. The dta type of the output parameter is a
structure that is defined for the exception. The operation is defined to return an
HRESULT value.

If a CORBA User Exception is to be raised, the value of the HRESULT returned to the
caller is E_FAIL.

If the caller specified aon-NULL valuefor the Exceptions structure parameter, the
callee must allocate the memory to hold &xeeption information andlffin the
Exceptions structure as irable 16-5.

Table 16-5User Exceptions Structure

Member Description

type Indicates the type of CORBA exception that
is being raised. Must b@SER_E>CEPTION.

repositoryld Indicates the repository identifier for the
exception definition.

piUserException Points to an interface with which to obtain
information about the User Exception
raised.

When data conversion errors occurihmapping the data types between object
models (during a call from a COM client to a CORBA server), an HRESULT with the
code E_DATA_CONVERION and thefacility value FACILITY_NULL is returned to

the client.

CORBAV2.2 February 1998

16

MappingUserExceptions: A SpeciaCase

If a CORBA operation raises only one User Exception, and it is the COM_ERROR
User Exception (defined undee&ion 133.10, Mapping for COM Errors), then the
mapped COM operation should not have the additional parameter for exceptions. This
proviso enables a CORB#nplementation of a preexisting COM interface to be

mapped back to COM without altering the COM operation’s original signature.

COM_ERROR idlefined as part of the CORBA to COM mapping. However, this
special rule in effect means that a COM_ERROR raises clause can be added to an
operation specifically to indicate that the operatreas originally defined as a COM
operation.

Mapping for Operations

Operations defined for an interface are defined in OMG IDL within interface
definitions. The denition of anoperation constitutes the operations signature. An
operation signature consists of the operation’s name, parametany)ifand return
value. Optionally, OMG IDL allows the operation bhition to indicateexceptions that
can be raised, and the context to be passed to the objegtlacit arguments, both of
which are considered part of the operation.

OMG IDL parameter directional attributes, out , inout map directly to Microsoft
IDL and ODL parameter direction attribut¢m], [out], [in,out]. Operation

request parameters are represented as the valiresa@finout parameters in OMG
IDL, and operation response parameters are represented as the vahoes ofor

out parameters. An operation return result can be any type that can be defined in
OMG IDL, or void if a result is not returned.

The OMG IDLsample (nextshowsthe definition oftwo operations on the Bank
interface. Thenames of the operations drelded to make them stand out. édations
can return various types of datarasults, including nothing at all. The operation
Bank::Transfer is an example of an operation that does not return a value. The
operationBank::OpenAccount returns an object as a result of the operation.

// OMG IDL
#pragma ID::BANK::Bank "IDL:BANK/Bank:1.2"
interface Bank
{
Acco unt OpenAccount(infloat Startin gBalance,
in AccountTypes AccountType);
void Transfer(in Account Accou ntl,
in Account Accou nt2,
in float Amount)
raises(InSufFunds);

CORBA V2.2 CORBA to COM Data Tiyepping February 1998 16-21

16

16-22

The operations defined in the preceding OMG IDL code is mappt#eetllowing
lines of Microsoft IDL code

/I Microsoft IDL
[object, uuid(682d22fb-78ac-0000-0c03-4d0000000000),
pointer_default(unique)]
interface IBank : lUnknown
{
HRESULT OpenAccount([in] float StartingBalance,
[in] AccountTypes AccountType,
[out] IAccount ** ppiNewAccount);
HRESULT Transfer([in]IAccount * Accountl,
[in] IAccount * Account2,
[in] float Amount,
[out] IBankUserExceptions
** ppiUserException);

%

and to thefollowing statements in Microsoft ODL

/I Microsoft ODL
[uuid(682d22fb-78ac-0000-0c03-4d0000000000)]
interface IBank: lUnknown
{
HRESULT OpenAccount([in] float StartingBalance,
[in] AccountTypes AccountType,
[out, retval] IAccount
** ppiNewAccount);
HRESULT Transfer([in] IAccount * Accountl,
[in] IAccount * Account?2,
[in] float Amount,
[out]IBankUserExceptions
** ppiUserException);

h

The ordering anchames of parameters in the Microsoft Iehd ODL mapping is
identical to the order in which parameters are specified in the text of the operation
definition in OMG IDL. The COM mapping of all CORBA operations must obey the
COM memory ownership and allocation rules specified.

It is important to note that the signature of the operation as written in OMG IDL is
different from the signature of the same operation in Microsoft IDL or ODL. In
particular, the result value returned by an operation defined in OMG IDL will be
mapped as an output argument at the end of the signature when specified in Microsoft
IDL or ODL. This allows the signature of the operation to be natural to the COM
developer. When a result value is mapped as an output argument, the result value
becomes an HRESULT. Without an HRESULT return value, there would baydor

COM to signal errors to clientwhenthe clientand server are not collocated. The

value of the HRESULT is determined based on a mapping of the CORBA exception, if
any, that was raised.

CORBAV2.2 February 1998

16

It is also important to note that if anger's exception information is defined for the
operation, an additional parameter is added as the last argument of the operation
sighature. The user exception paramé&ows the return value parameter, if both
exist. See Mapping for Exception Types under Sectio8.1@8for further details.

Mapping for Oneway Operations

OMG IDL allows an operation’s diition to indicatethe invocation semantics the
communication service must provide for @weration. This indication isahe through
the use of an ggration attribute. Currently, thenly operationattribute defined by
CORBA is the onewanttribute.

The oneway dtibute species that the invocation semantics are best-effort, which does
not guarantee dekry of the request. Best-effdrhplies that theoperation will be
invoked, at most, once. Along with the invocatsemantics, the use of tlomeway
operationattributerestricts an operation frofmaving output parameters, must have no
result value returad, and cannot raise any user-defined exceptions.

It may seem that the Microsoft IDL maybe operatidtribute provides a closer match
since the caller of an operation does not expect any response. However, Microsoft RPC
maybe does not guarantee at most once semaatidstherefore is natufficient.

Because ofhis, the mapping of an operation defined in OMG IDL with the oneway
operationattribute maps the same as an operation that has no output arguments.

Mapping for Attributes

OMG IDL allows the definition ofttibutes for an interface. Attributes are essentially
a short-hand for a pair of accessor functions to an object's data; one to retrieve the
value and possibly one &®t the value of the attribute. The definition of amilaite

must becontained \ithin an interface definitiomnd can indicate whether the value of
the attribute can be modified or just read. In the example OMG IDL nexattilieute
Profile is defined for the Customer interface and the read-only attribute is Balance
defined for the Account interfac&he keyword dtibute isused by OMG IDL to
indicate that the statement is definingadtribute of an interface.

The deinition of attributes in OMG IDL are restricted from raising any useiredf
exceptions. Because of this, the implementation of an attribute’s accessor function is
limited to only raising system exceptions. The value of the HRESULT is determined
based on a mapping of the CORBA exception, if any, weet aised.

// OMG IDL
struct CustomerData
{
Customerld Id;
string Name;
string SurName;

CORBA V2.2 CORBA to COM Data Tiyepping February 1998 16-23

16

|3
#pragma ID::BANK::Account "IDL:BANK/Acco unt:3.1"

interface Account
{
readonly attribute float Balance;
float Deposit(in float amount) raises(InvalidAmount);
float Withdrawal(in float amount) raises(ln ~ sufFunds, InvalidAmount);
float Close();

|3
#pragma ID::BANK::Customer "IDL:BA NK/Customer :1.2"

interface Customer
{
attribute C ustomerData Profile;

b

When mapping attributstatements in OMG IDL to Microsoft IDL or ODL, the name
of the get accessor is the same as the name of the attribute prefixed with _get_ in
Microsoft IDL and contains the @pation attribute [propget] in Microsoft OD[The
name of the put accessor is the same as the name of the attribute prefixepinyvitin
Microsoft IDL and contains the @pation attributdpropput] in Micrasoft ODL.

Mapping for Read-Write Attributes

In OMG IDL, attributes are defined as supporting a pair of accessor functions: one to
retrieve the value and one to set the value of the attribute, uhkekeyword readonly
precedes the attributeeyword. Inthe preceding example, tlagtibute Profile is

mapped to théollowing statements in Microsoft IDL.

/I Microsoft IDL
[object, uuid(682d22fb-78ac-0000-0c03-4d0000000000),
pointer_default(unique)]
interface ICustomer : IlUnknown
{
HRESULT _get Profile([out] CustomerData * Profile);
HRESULT _put_Profile([in] CustomerData * Profile);

k

Profile is mapped to these statements in Microsoft ODL.

16-24 CORBAV2.2 February 1998

16

/I Microsoft ODL
[uuid(682d22fb-78ac-0000-0c03-4d0000000000)]
interface ICustomer : lUnknown

{

[propget] HRESULT Profile([out] CustomerData
* Profile);

[propput] HRESULT Profile([in] CustomerData
* Profile);

¥

Note that the attribute is actually mappedwas different gerations in both Microsoft
IDL and ODL. The I@istomer::Get_Profile, in Microsoft IDL operatioasd the
[propget] Profile, in Microsoft ODL operations are used to retrieve the value of the
attribute. The ICustomer::Set_Profile operation is used to set the valueaifribete.

Mapping for Read-Only Attributes

In OMG IDL, an attributepreceded by thkeywordreadonly is interpreted as only
supporting a single accessonéition used toretrievethe value of the attribute. In the
previous example, the mapping of the attribB&ance is mapped to the following
statements in Microsoft IDL.

/I Microsoft IDL
[object, uuid(682d22fb-78ac-0000-0c03-4d0000000000)]
interface IAccount: lUnknown

{
HRESULT _get Balance([out] float Balance);

5

and thefollowing statements in Microsoft ODL.

/l Microsoft ODL
[uuid(682d22fb-78ac-0000-0c03-4d0000000000)]
interface |Account: lUnknown

{
[propget] HRESULT Balance([out] float Balance);

b

Note that only a single operation was defined since the attribute was defined to be
read-only.

16.2.11 Inheritance Mapping

Both CORBA and COM havsimiar models for individual interfaces.ddever, the
models for inheritance andultiple interfaces are different.

In CORBA, aninterfacecan singly omultiply inherit from other interfaces. In
language bindings supporting typed object refeesnhwidening and narrowing support
convert object references as allowed by the true type of that object.

CORBA V2.2 CORBA to COM Data Tiyepping February 1998 16-25

16

16-26

However, there is no dtdin mechanism in CORBA to access interfaces without an
inheritance relatioship. The run-time interfaces of an object, as definddGRBA

(for example CORBA::Object::is_a , CORBA::Object::get_interface)
use a @scription of the object’s principle typehich is defined in OMG IDL. CORBA
allows many ways in whichmplementaibns of interfaces can be structured, ihg
using implementation inheritance.

In COM V2.0, interfaces can have single inheritance. However, as opposed to CORBA,
there is a standard mechanism by which an object can have multiple interfaces (without
an inheritance relationship between thogerfaces)and by which clients can query

for these at run-time. (It defines no common way to determitveoiinterface

references refer to the same object, or to enumerate afitdréacessupported by an

entity.)

An observation about COM is that some COM objects have a requirgthum set of
interfaces, which they must support. This typestafically defhed interface relation is
conceptually equivalent tmultiple inheriance; however, discovering this relationship
is only possible if ODL or typébraries arealways available for an object.

COM describes two main implementation techniques: aggregation and delegation. C++
style implementation inheritance is not possible.

The mappingor CORBA interfaces into COM is more complicated than COM
interfaces into CORBA, since CORBA interfaces mighthétiply inheritedand
COM does not support multiple interface inheritance.

If a CORBA interface is singly inherited, this maps directly to single inheritance of
interfaces in COM. The base interface for all CORBA inhedéatrees is ldknown.
Note that the Object interface is not surfaced in CE®bt.single inheritance, although
the most devied interface can be queried usitignknown::Querylinterface)
each individual interface in the inheritance hierarchy can alsaibgegl separately.

The followingrules apply to mapping CORBA to COM inheritance.

® Each OMG IDL interface that does not have a parent is mapped to an MIDL
interface deriving from IUnknown.

® Each OMG IDL interface that inherits from a single parent iaterfis mapped to
an MIDL interface that derives from the mapping for the parent interface.

® Each OMG IDL interface that inherits from multiple parent interfaces ipedpo
an MIDL interface deriving from ldknown.

® For each CORBA interface, the mapping foemgionsprecede the mapping for
attibutes.

® The resulting mapping of operations within an irdeef are ordered based upon the
operation name. The ordering is lexicographic by bytes in machine-collating order.

®* The resulting mapping of attributes within an interface are ordesisdd upon the
attibute name. The ordering is lexicographic by bytes in machine-collating order. If
the attribute is not readonlihe get_<attribute name> method immediately precedes
the set_<attribute name> method.

CORBAV2.2 February 1998

16

CORBA Interface Inheritance COM Interface Inheritance

A
OIS W W

Ce i

Figure 16-1 CORBA Interface Inheritance to COM Interface Inheritance Mapping

/IOMG IDL

/)

interface A {
void opA();
attribute long val,

|3

interface B : A {
void opB();

|3

interface C : A {
void opC();

|3

interface D : B, C{
void opD();

|3

interface E {
void opE();

|3

interface F: D, E{
void opF();

}Y/Microsoft MIDL
1
[object, uuid(b97267fa-7855-e044-71fb-12fa8a4c516f)]
interface IA: IlUnknown{
HRESULT opAJ();
HRESULT get_val(Jout] long * val);
HRESULT set_val([in] long val);
h
[object, uuid(fa2452c3-88ed-1c0d-f4d2-fcf9lac4c8c6)]
interface IB: IA {

CORBA V2.2 CORBA to COM Data Tiyepping February 1998 16-27

16

16-28

HRESULT opB();
h
[object,uuid(dc3a6c32-f5a8-d1f8-f8e2-64566f815ed7)]
interface IC: 1A {

HRESULT opC();
h
[object, uuid(b718adec-73e0-4ce3-fc72-0dd11a06a308)]
interface ID: IlUnknown {

HRESULT opD();
h
[object, uuid(d2cb7bbc-0d23-f34c-7255-d924076e€902f)]
interface IE: IUnknown{

HRESULT opE();
h
[object, uuid(de6ee2b5-d856-295a-fd4d-5e3631fbfb93)]
interface IF: lUnknown {

HRESULT opF();

h

Note that theco-classstatement in Microsoft ODL lalws thedefinition of an object
class that allows Queryinterface between a set of interfaces.

Also note thatwhenthe interface defined in OMG IDL imapped to its corresponding
statements in Microsoft IDL, the name of the irded is proceeded by thetter | to
indicate that the name represents the name of an iceerfdis also makes the
mapping more natural to the COM programmer, since the natoingentions used
follow those suggested by Microsoft.

16.2.12 Mapping for Pseudo-Objects

CORBA defines a number of differekinds of pseudo-objects. Pseudojects differ
from other objects in that they cannot be invokethwhe Dynamic Invocation
Interface (DII) and do not have object referenddast pseudo-objectsannot be used
as general arguments. Currently, only tlypéiCode and Rrcipal pseudo-objects can
be used as general arguments to a request in CORBA.

The CORBA NamedValue and N\&t are not mapped into COM as arguments to
COM operation signatures.

Mapping for TypeCode Pseudo-Object

CORBA TypeCodes mresent the types of argumentsatiributes and are typically
retrieved from the interface repository. The mapping of the CORBxUgpde
interface follows the same rules as mappang other CORBAnterface to COM. The
result of this mapping is as follows.

/I Microsoft IDL or ODL

typedef struct { } TypeCodeBounds;
typedef struct { } TypeCodeBadKind;

CORBAV2.2 February 1998

16

[uuid(9556EA20-3889-11cf-9586-AA0004004A09), object,
pointer_default(unique)]

interface ICORBA_TypeCodeUserExceptions : IlUnknown

{
HRESULT get_Bounds([out] TypeCodeBounds *ExceptionBody);

HRESULT get_BadKind([out] TypeCodeBadKind * pExceptionBody

);

%

typedef struct

{
ExceptionType type;
LPTSTR repositoryld;
long minorCode;

CompletionStatus completionStatus;

ICORBA_SystemException * pSystemException;

ICORBA_TypeCodeExceptions * pUserException;
} CORBATypeCodeExceptions;

typedef LPTSTR Repositoryld;
typedef LPTSTR Identifier;

typedef [v1l_enum]
enum tagTCKind { tk_null = 0, tk_void, tk_short,
tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_octet,
tk_any, tk_TypeCode,
tk_principal, tk_objref,
tk_struct, tk_union, tk_enum,
tk_string, tk_sequence,
tk_array, tk_alias, tk_except
} TCKind;

[uuid(9556EA21-3889-11cf-9586-AA0004004A09), object,
pointer_default(unique)]

interface ICORBA_TypeCode : IlUnknown

{
HRESULT equal(
[in] ICORBA_TypeCode * piTc,
[out] boolean * pbRetVal,
[out] CORBATypeCodeExceptions** ppUserExceptions);
HRESULT kind(
[out] TCKind * pRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);
HRESULT id(
[out] Repositoryld * pszRetVal,

[out] CORBATypeCodeExceptions ** ppUserExceptions);
HRESULT name(

CORBAV2.2 CORBA to COM Data Tiyepping February 1998

16-29

16

16-30

[out] Identifier * pszRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);
HRESULT member_count(
[out] unsigned long * pulRetVal,
[out] CORBATypeCodeExceptions ** ppUserExceptions);
HRESULT member_name(

[in] unsigned long ulindex,

[out] Identifier * pszRetVal,

[out] CORBATypeCodeExceptions ** ppUserExceptions);
HRESULT member_type(

[in] unsigned long ulindex,

[out] ICORBA_TypeCode ** ppRetVal,

[out] CORBATypeCodeExceptions ** ppUserExceptions);
HRESULT member_label(

[in] unsigned long ulindex,

[out] ICORBA_Any ** ppRetVal,

[out] CORBATypeCodeExceptions ** ppUserExceptions);
HRESULT discriminator_type(

[out] ICORBA_TypeCode ** ppRetVal,

[out] CORBATypeCodeExceptions ** ppUserExceptions);
HRESULT default_index(

[out] long * plRetVal,

[out] CORBATypeCodeExceptions ** ppUserExceptions);
HRESULT length(

[out] unsigned long * pulRetVal,

[out] CORBATypeCodeExceptions ** ppUserExceptions);
HRESULT content_type(

[out] ICORBA_TypeCode ** ppRetVal,

[out] CORBATypeCodeExceptions ** ppUserExceptions);
HRESULT param_count(

[out] long * plRetVal,

[out] CORBATypeCodeExceptions ** ppUserExceptions);
HRESULT parameter(

[in] long lIndex,

[out] ICORBA_Any ** ppRetVal,

[out] CORBATypeCodeExceptions ** ppUserExceptions

);

Mapping for Context Pseudo-Object

This spedication provides no mapping for CORBA's Context pseudo-object into
COM. Implementations thathoose to provide support for Context could do so in the
following way. Context pseudo-objects should be accessed through tHRBEO

Context interface. This would allow clienfi$ they are aware that the object they are
dealing with is a CORBA object) to set a single Congesdudo-object to be used for
all subsequent invocations on the CORBA object from the client process space until
suchtime as the IORBA_Context in¢rface is released.

CORBAV2.2 February 1998

16

The ICORBA_Contextriterface has the following daftion in Microsoft IDL and
ODL:

/I Microsoft IDL and ODL
typedef struct

{

unsigned long cbMaxSize;

unsigned long cbLengthUsed;

[size_is(cbMaxSize), length_is(cbLengthUsed), unique]
LPTSTR * pszValue;

} ContextPropertyValue;

[object, uuid(74105F51-3C68-11cf-9588-AA0004004A09),
pointer_default(unique)]
interface ICORBA_Context: IlUnknown

{
HRESULT GetProperty([in]LPTSTR Name,

[out] ContextPropertyValue
** ppValues);
HRESULT SetProperty([in] LPTSTR,
[in] ContextPropertyValue
* pValues);

%

If a COM client application kows it is using a CORBAlject, the client application

can us&ueryinterfaceto obtain an interface pointer to the ICORBA_Context interface.
Obtaining the interface pointer results in a CORBA conpseudo-object being

created in the View, which is used with any CORBA request operation that requires a
reference to a CORBA context object. The context pseudjeei should be destroyed
when the reference count on the ICBXR Context interface reaches zero.

This interface should only be generated for CORBi&rfaces thahave operations
defined with the context clause.

Mapping for Principal Pseudo-Object

The CORBAPrincipal is not currently mapped into COM. As both the COM and
CORBA security mechanisms solidify, security interworking wéked to be defined
between the two object models.

16.2.13 Interface Repository Mapping

Name spaces within the CORBA interface repository are conceptuaibaisio COM
type libraries. However, the CORBA intack repository looks, to the client, to be one
unified service. ype libraries, on the other hand, are each stored in a separate file.
Clients do not have a unified, hierarchical interface to type libraries.

CORBA V2.2 CORBA to COM Data Tiyepping February 1998 16-31

16

Table 16-6 defines the mapping between equivalent CORBA and COM interface
description concepts. Where there is no equivalent, the field is left blank.

Table 16-6 CORBA Interface Repository to OLE Type Library Mappings

TypeCode TYPEDESC
Repository

ModuleDef ITypeLib
InterfaceDef ITypelnfo
AttributeDef VARDESC
OperaibnDef FUNCDESC
ParameterDef ELEMDESC
TypeDef ITypelnfo
ConstantDef VARDESC
ExceptionDef

Using this mappingimplementations must provide tladility to call
Object::get_interface on CORBA object references to COM objects to
retrieve an InterfaceDef. When CORBA objects are accdsssdCOM,
implementations may provide tlbility to retrieve the I§pelnfo for a CORBA object
interface using the IProvideClassinfo COM interface.

16.3 COM to CORBA Data Tydapping

16-32

16.3.1 Mapping for Basic Data Types

The basic data types available in Microsoft IDL and ODL map to the corresponding
data types available in OMG IDL atown in Rble 16-7.

Table 16-7Microsoft IDL and ODL to OMG IDL Intrinsic Data Type Mappings

Microsoft Microsoft OMG IDL Description

IDL ODL

short short short Signed integer with a range of -
2152151

long long long Signed integer with a range of -
231, 2811

unsigned short unsigned short unsigned short Unsigned integer with a range of

0..26-1

unsigned long unsigned long unsigned long Unsigned integer with a range of

0.22-1

CORBAV2.2 February 1998

16

Table 16-7Microsoft IDL and ODL to OMG IDL Intrinsic Data Type Mappin¢Sontinued)

float float float IEEE single -precision floating point
number

double double double IEEE double-precision floating point
number

char char char 8-bit quantity limited to the ISO Latin-
1 character set

boolean boolean boolean 8-bitaptity, which islimited to 1
and 0

byte unsigned char octet 8-bit ague data type, guaranteed to

not undergo any conversion during
transfer betweesystems

16.3.2 Mapping for Constants

The mapping of the Microsoft IDL keyword const to OMG IDLn&b is almost exactly
the same. The following Microsoft IDL deftions for constants

/I Microsoft IDL

const short S = ...;
constlongL = ...;

const unsigned short US = ..;
const unsigned long UL = ...;
constcharC = ..,

const boolean B = ...;

const string STR =*“...";

map to the following OMG IDL dédfitions for constants.

/ OMG IDL

constshort S= ..,
constlongL =...;

const unsigned short US = ..,;
const unsigned long UL =...;
constcharC = ..

const boolean B = ...;

const string STR = “...";

16.3.3 Mapping for Enumerators

COM enumerations can have enumerators explicitly tagged with values. When COM
enumerations are mapped into CORBA, the enumerators are presented in CORBA,
ordered according to their tagged values. This Microsoft IDL or ODL

CORBA V2.2 COM to CORBA Data Tiyepping February 1998 16-33

16

16-34

/I Microsoft IDL or ODL
typedef [vl_enum] enum tagA _or B orC { A=0,B,C}
A or B or_C;

would be represented as the following statements in OMG IDL:

// OMG IDL
enumA _or B or C {A, B, C}

Because COM allowsneimerators to be defined with explicigged values, the
enumerators are mapped to OMG IDL in the same order they appear irsdfididL
or ODL and it is the COM View'’s respaibility to maintain the mapping based on
names.

16.3.4 Mapping for Stringypes

COM support for strings includes the conceptboidinded and unbounded strings.
Bounded strings argefined as strings thaéave amaximum length specified, whereas
unbounded strings do not havenaximum length specified. COM also supports
Unicode strings Were the characters are wider than 8 bits. As in OMG IDL, non-
Unicode strings in COMire NULL-terminatedThe mapping of COMlefinitions for
bounded and unbounded stringdeti$ from that specified in OMG IDL.

Table 16-8 llustrateshow to mapthe string data types in OMG IDL to their
corresponding data types in both Microsoft IDL and ODL.

Table 16-8Microsoft IDL/ODL to OMG IDL String Mappings

Microsoft Microsoft
IDL OoDL OMG IDL Description
LPSTR, char * LPSTR, string Nuterminated 8-bit
charactesstring
LPTSTR LPTSTR string Nulterminated 8-bit
characterstring
BSTR on Win1l6 string Null-terminated 8-bit

charactesstring

If a COM Server returns a BSTR containing embedded nulls to a CORBA client, a
E_DATA_ CONVERSIONexception will be raised.

Mapping for Unbounded String Types

The deinition of an untounded string iMicrosoft IDL and ODL denotes the
unbounded string asdringified unique pointer to a character. The following
Microsoft IDL statement

CORBAV2.2 February 1998

16

/I Microsoft IDL
typedef [string, unique] char * UNBOUNDED_STRING;

is mapped to théollowing syntax in OMG IDL.

// OMG IDL
typedef sting UN BOUNDED_STRING;

In other words, a value of type UNBOUNDED_STRING is a non-NULL pointer to a
one-dimensional nistermnated character array whose extent and numbealaf
elementscan vary at runime.

Mapping for Bounded String Types

Bounded strings have a slightly different mapping between OMG IDL and Microsoft
IDL. Bounded strings are expressedMitrosoft IDL as a “stringified nonconformant
array.” The followng Microsoft IDL and ODL definition for &oundedstring

/I Microsoft IDL and ODL
constlong N = ...;
typedef [string, unique] char (* BOUNDED_STRING) [N];

maps to the following syntax in OMG IDL.

/ OMG IDL
constlong N =...;
typedef string<N> BOUNDED_STRING;

In other words, the encoding for a value of type BOUNDED_STRING is that of a null-
terminated array of characters whose extent is known at compileaindehe number
of valid charactersan vary atun-time.

Mapping for Unicode Unbouted String Types

The mappindor a Unicode unboundestring type in Microsoft IDL or ODL is no
different from that used for WSl string types. Thefollowing Microsoft IDL and ODL
statement

/I Microsoft IDL and ODL
typedef [string, unique] LPTSTR UNBOUNDED_UNICODE_STRING;

is mapped to théollowing syntax in OMG IDL.

// OMG IDL
typedef wstring UNBOUNDED_UNICODE _STRING;

It is the responsibility of the mapping implementation to perfornctre/ersions
between ANSI and Unicod®rmats wherdealing with strings.

CORBA V2.2 COM to CORBA Data Tiyepping February 1998 16-35

16

16-36

Mapping for Unicode Bound String Types

The mappindor a Unicode bounded string type in Microsoft IDL or ODL is no
different from that used for RSI string types. Thefollowing Microsoft IDL and ODL
statements

/I Microsoft IDL and ODL
constlong N = ...;
typedef [string, unique] TCHAR (* BOUNDED_UNICODE_STRING)

[N;
map to the following syntax in OMG IDL.

/I OMG IDL
constlong N =...;
typedef wstring<N>BOUNDED_ UNICODE_STRING;

It is the responsibility of the mapping implementation to perfornctrerersions
between ANSI and Unicod®rmats wherdealing with strings.

16.3.5 Mapping for Structure Types

Supportfor structures in Microsoft IDL and ODL majédirectionally to OMG IDL.
Each structure members is mapped according to the mappeggfor that data type.
The structure défition in Microsoft IDL or ODL is as follows.

/I Microsoft IDL and ODL

typedef ... TO;
typedef ... TI;
typedef ...TN;
typedef struct

{

TO mO;

Tl ml;

TN mN;

} STRUCTURE;

The structure has aquivalent mapping in OMG IDL, as follows.

CORBAV2.2 February 1998

16

/ OMG IDL
typedef ... TO
typedef ... T1;
typedef ... TN;
struct S TRUCTURE
{
TO mO;
T1 ml;
Tn mm;
|3

16.3.6 Mapping for Union Types

ODL unions are not discriminated unions and must be custom marshaay in
interfaces that use them. For this reason, this specification does not poyide
mapping for ODL unions to CORBA unions.

MIDL unions, while alwaydiscriminated, are not required to be encapsulaftibd.
discriminator for anonencapsulated MIDL union could, for example, be another
argument to the operation. The discriminants for MIDL unions are not required to be
constant expressions.

Mapping for Encapsulated Unions

When mappindgrom Microsoft IDL to OMG IDL, Microsoft IDL encapsulated unions
having constandliscriminators are mapped to OMG IDL unionssaswn next.

/I Microsoft IDL
typedef enum
{
dchar,
dShort,
dLong,
dFloat,
dDouble
} UNION_DISCRIMINATOR,;

typedef union switch (UNION_DISCRIMINATOR _d)
{
case dChar: char c;
case dShort: short s;
case dLong: long |[;
case dFloat: float f;
case dDouble: double d;

CORBA V2.2 COM to CORBA Data Tiyepping February 1998 16-37

16

default: byte v[8];
JUNION_OF_CHAR_AND_ARITHMETIC;

The OMG IDL deinition is as follows.

// OMG IDL
enum UNION_DISCRIMINATOR
{
dChar,
dShort,
dLong,
dFloat,
dDouble

h

union UNION_OF CHAR_AND_ARITHMETIC
switch(UNION_DISCRI MINATOR)
{
case dChar: charc;
case dSh ort: short s;
case dLong: long |;
case dFloat:. floatf;
case dDouble:. double d;
default: octet v[8];

h

Mapping for Nonencapsulated Unions

Microsoft IDL nonencapsulated unions and Microsoft IDL encapsulated unions with
nonconstantiscriminators are mapped to any in OMG IDL. The type of thany
is determined at run-time during conversion of the Microsoft idion.

/I Microsoft IDL
typedef [switch_type(short)] union
tagUNION_OF_CHAR_AND_ARITHMETIC
{
[case(0)] char c;
[case(1)] short s;
[case(2)] long I;
[case(3)] float f;
[case(4)] double d;
[default] byte v[8];
} UNION_OF_CHAR_AND_ARITHMETIC;

The corresponding OMG IDL syntax is as follows.

16-38 CORBAV2.2 February 1998

16

// OMG IDL
typedef any UNION_OF_CHAR_AND _ARITHMETIC;

16.3.7 Mapping for Array Types

COM supports fixed-length arrayjsist as in CORBA. As in thenapping from OMG
IDL to Microsoft IDL, the arrays can be mappleidirectionally. The type of the array
elements is mgged according to the data type mapping rules. The following
statements in Microsoft IDL and ODL describe a noncon&trand nonvarying array
of U.

/I Microsoft IDL for T
constlong N = ...;
typedef ... U;
typedef U ARRAY_OF_NINJ;
typedef float DTYPE[0..10]; // Equivalent to [11]

The value N can be of angtegral type, and const means (as in OMG IDL) that the
value of N is fixed and known at compilatiime. The generalization to
multidimensional arrays follows the obvious trivial mapping of syntax.

The corresponding OMG IDL syntax is as follows.

/ OMG IDL for T
constlong N =...;
typedef ... T;
typedef T ARRAY_OF_NI[N]J;
typedef float DTYPE[11];

Mapping for Nonfixed Arrays

In addition to fixed length arrays, as well as conformant arrays, COM supports varying
arrays, and conformant varying arrays. These are arrays whose bounds and size can b
determined at run-time. Nowéd length arrays iMicrosoft IDL and ODLare mapped

to sequence in OMG IDL, as shownthe following statements.

/I Microsoft IDL
typedef short BTYPE]]; // Equivalent to [*];
typedef char CTYPE[*];

The corresponding OMG IDL syntax is as follows.

CORBA V2.2 COM to CORBA Data Tiyepping February 1998 16-39

16

/ OMG IDL
typedef sequence<sh ort>BTYPE;
typedef sequence<char> CTYPE;

Mapping for SAFEARRAY

Microsoft ODL also defines SAFEARRAY as a variable length, variable dimension
array. Both the number of dimensions and the bounds of the dimensions are determined
at run-time.Only theelement type is predefined. A SAFEARRAY in Microsoft ODL is
mapped to a CORBA sequen@s shown irthe following statements.

/I Microsoft ODL
SAFEARRAY élement-type) * ArrayName;

/ OMG IDL
typedef sequence< element-type > SequenceN ame;

If a COM server returns multidimensional SAFEARRAY to a CORBA client, an
E_DATA_CONVERSIONexception will be raised.

16.3.8 Mapping for VARIANT

The COM VARIANT providessemantically similar functionality tthe CORBAany.
However, its allowable set of data types are currently limited to the data types
supported by OLE Automation. VARTYPE is an enumeration type used in the
VARIANT structure.The structure membet is defined using the data type
VARTYPE. Its valueacts as the discriminator for the emted union and governs the
interpretation of the union. The list of valid values for the data typRTY PE are
listed in Table 16-9 on page 16-40, along with a description of how to use them to
represent the OMG IDlany data type.

Table 16-9 Valid OLE VARIANT Data Types

Value Description

VT_EMPTY No value wasspecified. If an argument Isft blank, you
shouldnot return VT EMPTY for the argment. Instead,
you should return the VT_ERROR value:
DISP_E_MEMBERNOTFOUND.

VT_EMPTY | lllegal.

VT_BYREF

VT_UIl An unsigned 1-byte character is storedVal

VT_UIL | A reference to an unsigned 1-byte character was passed; a
VT_BYREF pointer to the value is ipbVal

VT _I2 A 2-byte integer value is stored ivial.

16-40 CORBAV2.2 February 1998

16

Table 16-9 Valid OLE VARIANT Data TypeqContinued)

VT _ 12 | VT_BYREF A reference to a 2-byte integeas passed; pointer to

VT 14

VT |4 | VT_BYREF

VT_R4

VT R4 |
VT_BYREF

VT_R8

VT_R8 |
VT_BYREF

VT_CY

VT_CY |
VT_BYREF

VT_BSTR

VT_BSTR |
VT_BYREF

VT_NULL

VT_NULL |
VT_BYREF

VT_ERROR

VT_ERROR
VT_BYREF

VT_BOOL

CORBAV2.2

COM to CORBA Data Tiyepping

the value is irpiVal.
A 4-byte integer value is stored livial.

A reference to a 4-byte integeas passed; pointer to
the value is irplVval.

An IEEE 4-byteeal value is stored ifitVal.

A reference to atEEE 4-bytereal was passed; a pointer
to the value is ipfltVal.

An 8-byte IEEE real value is storeddhblVal

A reference to an 8-byte IEEE real was passed; a pointer
to its value is inpdblval

A currency value was specified. A currency number is
stored as an 8-byte, two’s complement integer, scaled by
10,000 to give a fixed-point numbeiittv 15 digits to the

left of the decimal point and 4 digits to the right. The
value is incyVal

A reference to a currency valweas passed; aginter to
the value is irpcyVal

A stringwas assed; it is stored instrVal This pointer
must be obtainednd freed via the BSTR functions.

A reference to a string was passed. A BSTR*, which
points to a BSTR, is ipbstrVal The eferenced pointer
must be obtained or freed via the BSTR functions.

A propagating NULL value was specified. This should not
be confused with the NULL pointéfhe NULL value is
used for ti-state Iagic as with SQL.

lllegal.

An SCODE was spdieid. The type of error is specified

in code Generally, operations on error values should raise
an exception or propagate the error to the return value, as
appropriate.

A reference to an SCODE was passed. A pointer to the
value is inpscode

A Boolean (True/False) value was specified. A value of
OxFFFF(all bits one) indicates True; a value ofdl bits
zero) indicates False. No other values are legal.

February 1998 16-41

16

16-42

VT_BOOL |
VT_BYREF

VT_DATE

VT_DATE |
VT_BYREF

VT_DISPATCH

VT_DISPATCH |
VT_BYREF

VT_VARIANT

VT_VARIANT |
VT_BYREF

VT_UNKNOWN

VT_UNKNOWN |
VT_BYREF

Table 16-9 Valid OLE VARIANT Data TypeqContinued)

A reference to a Boolean value. A pointer to the Boolean
value is inpbool

A value denoting a date and time was specified. Dates are
represented as doublegeisionnumbers, where midnight,
January 1, 1900 is 2.0, January 2, 1900 is 3.0, and so on.
The value is passed iate

This is the same numbering system used by most
spreadsheet programs, although some incorrectly believe
that February 29, 1900 existed, and tkesJanuary 1,

1900 to 1.0. The date can be converted tofaom an
MS-DOSrepresentation using
VariantTimeToDosDateTime.

A reference to a datwas passed. fointer to the value is
in pdate

A pointer to an objeatas specified.The pinter is in
pdispVal This object is onlknown toimplement
IDispatch; the object can be queried as to whether it
supports any other desired interface by calling
Querylnterface on the obje@bjects that do not
implement IDispatch should be passed using
VT_UNKNOWN.

A pointer to a pointer to an objewfs spedied. The
pointer to the object is stored in the location referred to by
ppdispVal

lllegal. VARIANTARGSs must be passed by reference.

A pointer to another VARIANTARG is passedprarVal
This referenced VARIANTARG will never have the
VT_BYREF bit set invt, so only one level of indirection
can ever be present. This value can be used to support
languages that allow functions to change the types of
variables passed by reference.

A pointer to an object that implements tténknown
interface is passed jpunkVal

A pointer to a pointer to the lUnknown interface is passed
in ppunkVal The pointer to the interface is stored in the
location referred to bppunkVal

CORBAV2.2 February 1998

16

Table 16-9 Valid OLE VARIANT Data TypeqContinued)

VT_ARRAY | An array of data type <anythingwas passed.

<anything> (VT_EMPTY and VT_NULLare illegal types to combine
with VT_ARRAY.) The pointer inpByrefValpoints to an
array descriptor, which describes the dimensions, size, and
in-memory location of the arrayf.he arraydescriptor is
never accessed directly, but instead is raad modified
using functions.

A COM VARIANT is mapped to the CORBAny without loss. If at run-time a
CORBA client passes an inconvertilsiey to a COM server, a DATA_ CONVESION
exception is raised.

16.3.9 Mapping for Pointers

MIDL supportsthree types of pointers:

® Reference pointer; a non-null pointer to a single item. The pointer cannot represent
a data structure with cycles or aliasing (two pointers to the same address).

® Unique pointer; a (possibly null) pointer to a singéam. Thepointer cannot
represent a data structure with cycles or aliasing.

® Full pointer; a (possibly null) pointer to a single item. Full pointers camsbd for
data structures, which form cycles or have aliases.

A reference pointer is mapped to a CORBA sequence containinglement. Unique
pointers and full pointers with no aliases or cycles are mapped to a CORBA sequence
containing zero or onelements. If at run-time a COM client passes a full pointer
containing aliases or cycles to a CORBA serize DATA_CONVERSION is returned

to the COM client. If a COM server attempts to return a full pointer containing aliases
or cycles to a CORBA client, a DATA_CONVERSION exception is raised.

16.3.10 Interface Mapping

COM is a binary standard based upon standard machine calling conventions. Although
interfaces can be expressed in Microsoft IDL, Microsoft ODL, or C++, the following
interface mappings between COM and CORBA will use Microsoft ODL as the
language of expression for COM constructs.

COM interface pointers bidirectionally map to CORBA Object references with the
appropriate mapping of Microsoft IDL and ODL interfaces to OMG IDL interfaces.
Mapping for Inter&iceldentifiers

Interface identifiers are used in both CORBA and COMrimuely icentify interfaces.
These allow thelient code taetrieve informatiorabout, or to inquire about other
interfaces of an object.

CORBA V2.2 COM to CORBA Data Tiyepping February 1998 16-43

16

16-44

COM identifies interfaces using a structureidar tothe DCE UUID (in fact, identical
to a DCE UUID on Win32) known as an IID. As with CORBA, CQlkcifies that the
textual names of interfaces are only for conveniesna# need not be dbally unique.

The COMinterface identifier (1ID and CSID) are bidirectionally mapped to the
CORBA Repositoryld.

Mapping for COM Errors

COM will provide error information to clients only if an operation uses a return result
of type HRESULT. The COM HRESULT, if zero, indicates success. The HRESULT, if
nonzero, can be converted into an SCODE (the SCODE is explicitly specified as being
the same as the HRESULT on Win32). The SCODE can then be examined to determine
whether the call succeeded or failed. The error or success code, atamed within

the SCODE, is composed of atility” major code (13bits on Win32 and 4 bits on
Win16) and a 16-bit minocode.

COM object developers are expected to use one of the predefined SCODE values, or
use the faility FACILITY_ITF and aninterface specific minocode. SCODE values

can indicate either success codes or error codes. A typical use is to overload the
SCODE with a boolean value, using S_OK and S_FALSE success codes to indicate a
true or false return. If the COM server returns S_OK or S_FALSE, a CORBA
exception will not be raised and the value of the SCODE will be mapped as the return
value. This is because COM operations, which are defined to return an HRESULT, are
mapped to CORBA as returning an HRESULT.

Unlike CORBA, COM provides no stadard way to return user-defined exception data

to the client. Also, there is no standard mechanism in COM to specify the completion
status of an invocation. In addition, it is not possible to predeterntia¢ set of errors

a COM interface might return. Although the set of success codes that can be returned
from a COM operation must be fixed when the operation is defined, there is currently
no machine-readable way to discover what the set of valid success codes are.

COM exceptions have straightfornard mapping into CORBA. COM system error
codes are mapped to the CORBA standard exceptions. @@Mdefined error codes
are mapped to CORBA user exceptions.

COM system error codes are defined with tACEITY_NULL and FACILITY_RPC
facility codes. All FAGLITY_NULL and FACILITY_RPC COMerrors are mapped to
CORBA standard exceptions. Table 164iHs themapping from COM
FACILITY_NULL exceptions to CORBA standard exceptions.

Table 16-1Mapping from COM FACILITY_NULL Error Codes to
CORBA Standard (System) Exceptions

COM CORBA
E_OUTOFMEMORY NO_MEMORY

E_INVALIDARG BAD_PARAM
E_NOTIMPL NO_IMPLEMENT

CORBAV2.2 February 1998

16

Table 16-10/apping from COM FACILITY_NULL Error Codes to
CORBA Standard (System) Exceptiof@ontinued)

E_FAIL UNKNOWN
E_ACCESSDENIED NO_PERMISSION

E_UNEXPECTED UNKNOWN
E_ABORT UNKNOWN
E_POINTER BAD_PARAM
E_HANDLE BAD_PARAM

Table 16-11ikts the mapping from COMACILITY_RPC exceptions to CORBA
standard exceptions. All FACILITY_RPC exptions not listed in this table are mapped

to the new CORBA standard exception COM.

Table 16-11Mapping from COM FACILITY_RPC Error Codes to CORBA Standard

(System) Exceptions

COM

CORBA

RPC_E_CALL_CANCELED
RPC_E_CANTPOST_INSENDCALL
RPC_E_CANTCALLOUT_INEXTERNALCALL
RPC_E_CONNECTION_TERMINATED
RPC_E_SERVER DIED
RPC_E_SERVER_DIED_DNE
RPC_E_INVALID_DATAPACKET
RPC_E_CANTTRANSMIT_CALL
RPC_E_CLIENT_CANTMARSHAL_DATA
RPC_E_CLIENT_CANTUNMARSHAL_DATA
RPC_E_SERVER _CANTMARSHAL_DATA
RPC_E_SERVER_CANTUNMARSHAL_DATA
RPC_E_INVALID_DATA
RPC_E_INVALID_PARAMETER
RPC_E_CANTCALLOUT_AGAIN
RPC_E_SYS_CALL_FAILED
RPC_E_OUT_OF_RESOURCES
RPC_E_NOT_REGISTERED

TRANSIENT
COMM_FAILURE
COMM_FAILURE
NV_OBJREF
INV_OBJREF
INV_OBJREF
COMM_FAILURE
TRANSIENT
MARSHAL
MARSHAL
MARSHAL
MARSHAL
COMM_FAILURE
BAD_PARAM
COMM_FAILURE
NO_RESOURCES
NO_RESOURCES
NO_IMPLEMENT

CORBAV2.2 COM to CORBA Data Timpping

February 1998 16-45

16

Table 16-11Mapping from COM FACILITY_RPC Error Codes to CORBA Standard
(System) ExceptionfContinued)

RPC_E_DISCONNECTED INV_OBJREF
RPC_E_RETRY TRANSIENT
RPC_E_SERVERCALL_REJECTED TRANSIENT
RPC_E_NOT_REGISTERED NO_IMPLEMENT

COM SCODEs, other than those previously listed, are mapped into CORBA user
exceptions and will require the use of ttases clause in OMG IDL. Since the
OMG IDL mapping from the Microsoft IDL and ODL is likely to be generated, this is
not a burden to the average programmiée following OMG IDLillustratessuch a

user exception.

// OMG IDL
exception COM_ERROR { long hresult; };

When data conversion errors occurihmapping the data types between object
models (during aall from a CORBA client to a COM server), the sys&xoeption
DATA_CONVERSION will be raised.

Mapping for Operations

Operations defined for an interface are defined in Microsoftdbtd ODL within

interface dehitions. Thedefinition of an operation constitutes the operations

signature. An operation signature consists of the operation’s name, parameters (if any),
and return value. Unlike OMG IDL, Microsoft IDL and ODL does afibw the

operation dehition to indicatethe error information that can be returned.

Microsoft IDL and ODLparameter directional attributgsn(], [out], [in , out]) map
directly to OMG IDL {n , out , inout). Operation request parameters are
represented as the valuesfiof | or [inout] parameters in Microsoft IDLand
operation response parameters are represented as the vdlmesiof] or [out]
parameters. An operation return result can betgmy that can be defined in Micgoft
IDL/ODL, or void if a result is not returned. By convention, most operations are
defined to return an HRESULT. This provides a consistet to return operation
status information.

When Microsoft ODL methods are mapped to OMG IDL, they undergéotlosving
transformations. First, if the last parameter is tagged with the Microsoftkeipkord
retval, that argument will be used as the return type of pleeation. If the last

parameter is not tagged with retval, then the signature is mapped directly to OMG IDL
following the mapping rules for the data types of the arguments. Some example
mappings from COM methods to OMG IDL operations are shown iffiolleaving

code.

16-46 CORBAV2.2 February 1998

16

/I Microsoft ODL
interface IFoo: lUnknown

{
HRESULT stringify ([in] VARIANT value,

[out, retval] LPSTR * pszValue);
HRESULT permute([inout] short * value);

HRESULT tryPermute([inout] short * value,
[out] long newValue);

h
In OMG IDL this becomes:

typedef long HRESULT;
interface IFoo: CORBA::Comp osite, CosLifeCycle: :LifeCycleObject

{
string stringify(in any value) raises (CO M_ERROR);

HRESULT permute(inout short value);

HRESULT tryPermute(inout short value, out long newValue)

h

Mapping for Properties

In COM, only Microsoft ODL and OLE Typeibraries povide support for describing
properties. Microsoft IDL does not support this capability. Angragtions thatan be
determined to be either a put/set or get accessor are mapped to an attribute in OMG
IDL. Because Microsoft IDL does not provide a means to indicate that something is a
property, a mapping from Microsoft IDL to OMG IDL will not contain mappings to the
attribute statement in OMG IDL.

When mapping between Microsoft ODL or OLE Type Libraries, priggin COM

are mapped in aimilar fashion to thatised to mapmttibutes in OMG IDL to COM.

For example, the following Microsoft ODL statements define thébate Profile for

the ICustomer interface and the read-only attribute Balance for the IAccount interface.
The keywordgpropput] and [propget] are used by Microsoft ODL to indicate that the
statement is defining a property of an interface.

CORBA V2.2 COM to CORBA Data Tiyepping February 1998 16-47

16

16-48

/I Microsoft ODL
interface |1Account

{
[propget] HRESULT Balance([out, retval] float

* pfBalance);
¥

interface ICustomer

{
[propget] HRESULT Profile(Jout] CustomerData * Profile);

ropput] HRESULT Profile([in] CustomerData * Profile);
propp

The deinition of attributes in OMG IDL are restricted from raising any useiredf
exceptions. Because of this, the implementation of an attribute’s accessor function is
limited to raising system exceptions. The value of the HRESULT is determined by a
mapping of the CORBA exception, if any, that wassed.

16.3.11 Mapping for Read-Only Attributes

In Microsoft ODL, an attributgoreceded by thkeyword [propget] is interpreted as
only supporting an accessor function, whiclused to reteve the value of the
attribute. In the example above, the mapping ofatitiebute Balance immapped to the
following statements in OMG IDL.

/l OMG IDL
interface Account

{

readonly attri bute float Balance;

}

16.3.12 Mapping for Read-Write Attributes

In Microsoft ODL, an attributgoreceded by thkeyword [propput] is interpreted as
only supporting an accessor function whiclused to set the value of théribute. In
the previous example, the attribute Profile is pegpto thefollowing statements in
OMG IDL.

CORBAV2.2 February 1998

16

/l OMG IDL

struct CustomerData
{
Customerld Id;
string Name;
string SurName;

k

interface Customer

{

attribute CustomerData Profile;
|3
Since CORBA does not have the concept of write-only attributes, the mappistg

assume that a property that haskbgword [propput] isnapped to a single read-write
attribute, even if there is no associated [etgh method defined.

Inheritance Mapping

Both CORBA and COM havsimiar models for individual interfaces.adever, the
models for inheritance andultiple interfaces are different.

In CORBA, aninterfacecan singly omultiply inherit from other interfacesnd in
language bindings supporting typed object refeesnhwidening and narrowing support
convert object references as allowed by the true type of that object.

However, there is no Htdin mechanism in CORBA to access interfaces without an
inheritance relatioghip. The run-time interfaces of an object (for example,
CORBA::Object::is_a , CORBA::Object::get_interface) use a
description of the object’s principlepg, which is defined in OMG IDL. lterms of
implementation, CORBA allows many ways in which implementationateffaces
can be structured, including usimgplementation inheritace.

In COM V2.0, interfaces can have single inheritance. However, as opposed to CORBA,
there is a standard mechanism by which an object can have multiple interfaces (without
an inheritance relationship between thogerfaces)and by which clients can query

for these at run-time. (It defines no common way to determitveoiinterface

references refer to the same object, or to enumerate atitéréacessupported by an

entity.)

An observation about COM is that some COM objects have a requirethum set of
interfaces that they must support. This type oficatly-defined interéice relation is
conceptually equivalent tmultiple inheriance; however, discovering this relationship
is only possible if ODL or typébraries arealways available for an object.

COM describes two main implementation techniques: aggregation and delegation. C++
style implementation inheritance is not possible.

CORBA V2.2 COM to CORBA Data Tiyepping February 1998 16-49

16

When COMinterfaces arenapped into CORBA, their inheritance hierarchy (which
can only consist of single inheritance) is directly mapped into the equivalent OMG IDL
inheritance hierarchy.

Note that although it is possible, usikticrosoft ODL to map multiple COM

interfaces in a class to OMG IDL multiple inheritance, the necessary information is not
available for interfaces defined in Microsoft IDL. Aschuthis specification does not
define a mulfple COM interfice to OMG IDL multiple inheritance mapping. It is
assumed that future versions of COM will merge Microsoft ODL and MaiftolDL,

at which time the mapping can be extended to afmwnultiple COM interfaces to be
mapped to OMG IDLmultiple inheritance.

CORBA::Composite is a general-pugseinterfaceused to provide a standard
mechanism for accessing multiple interfaces from a client, even though those interfaces
are not related by inheritance. Any existing ORB can support this interface, although in
some cases a specialized implementatiamework may belesired to take advantage

of this interfce.

module CORBA // PIDL

i{nterface Composite

E)bject query_interface(in Repositoryld whichOne);
i};lterface Composable:Composite

E:omposite primary_interface();

I3

h

Theroot of a COM intece inheritance tree,hen mapped to CORBA, mmultiply
inherited fromCORBA::Composable and

CosLifeCycle::LifeCycleObject . Note that the IUnknowimterface is not
surfaced in OMG IDL. Any COM method parameters that requirekhbwninterfaces
as arguments are mapped, in OMG IDL, to object references of type
CORBA::Object .

/I Microsoft IDL or ODL
interface IFoo: IlUnknown

{
HRESULT inquire([in] lUnknown *obj);
%

1. This mapping fails in some cases, for example, if operation names are the same.

16-50 CORBAV2.2 February 1998

16

In OMG IDL, this becomes:

interface IFoo: CORBA:Comp osable, CosLifeCyc le::LifeCycleObject

{
void inquire(in Object obj);

¥

Type Lbrary Mapping

Name spaces within the OLE Type Library are cataally similar to CORBA

interface repositories. Howeveéne CORBA interface regsitorylooks, to the client, to
be one unified service. Type libraries, on the otherd, are each stored in a separate
file. Clients do not have a unified, hierarchical irded to type libraries.

The followingtable defines the mapping between equivalent CORBA and COM
interface description concepts. Where there is no equivalent, the flefd idank.

Table 16-1Z0RBA Interface Repository to OLE Type Library Mappings

CORBA COM
TypeCode TYPEDESC
Repository

ModuleDef ITypeLib
InterfaceDef ITypelnfo
AttributeDef VARDESC
OperaibnDef FUNCDESC
ParameterDef ELEMDESC
TypeDef ITypelnfo
ConstantDef VARDESC
ExceptionDef

Using this mappingimplementations must provide ttadbility to call
Object::get_interface on CORBA object references to COM objects to
retrieve an InterfaceDef. When CORBA objects are accdsssdCOM,
implementations may provide the ability fetrieve the ITypelnfo for CORBA object
interface using the IProvideClassinfo COM interface.

CORBA V2.2 COM to CORBA Data Tiyepping February 1998 16-51

16

16-52 CORBAV2.2 February 1998

	Mapping: COM and CORBA
	16.1 Data Type Mapping
	16.2 CORBA to COM Data Type Mapping
	16.2.1 Mapping for Basic Data Types
	16.2.2 Mapping for Constants
	16.2.3 Mapping for Enumerators
	16.2.4 Mapping for String Types
	16.2.5 Mapping for Struct Types
	16.2.6 Mapping for Union Types
	16.2.7 Mapping for Sequence Types
	16.2.8 Mapping for Array Types
	16.2.9 Mapping for the any Type
	16.2.10 Interface Mapping
	16.2.11 Inheritance Mapping
	16.2.12 Mapping for Pseudo-Objects
	16.2.13 Interface Repository Mapping

	16.3 COM to CORBA Data Type Mapping
	16.3.1 Mapping for Basic Data Types
	16.3.2 Mapping for Constants
	16.3.3 Mapping for Enumerators
	16.3.4 Mapping for String Types
	16.3.5 Mapping for Structure Types
	16.3.6 Mapping for Union Types
	16.3.7 Mapping for Array Types
	16.3.8 Mapping for VARIANT
	16.3.9 Mapping for Pointers
	16.3.10 Interface Mapping
	16.3.11 Mapping for Read-Only Attributes
	16.3.12 Mapping for Read-Write Attributes

