
Mapping: OLE Automation and
CORBA 17

ct
d by

f
This chapter describes the bidirectional data type and interface mapping between OLE
Automation and CORBA.

Microsoft’s Object Description Language (ODL) is used to describe Automation obje
model constructs. However, many constructs supported by ODL are not supporte
Automation. Therefore, this specification is confined to the Automation-compatible
ODL constructs.

As described in the Interworking Architecture chapter, many implementation choices
are open to the vendor in building these mappings. One valid approach is to generate
and compile mapping code, an essentially static approach. Another is to map objects
dynamically.

Although some features of the CORBA-Automation mappings address the issue o
inverting a mapping back to its original platform, this specification does not assume
the requirement for a totally invertible mapping between Automation and CORBA.

Contents

This chapter contains the following sections.

Section Title Page

“Mapping CORBA Objects to OLE Automation” 17-2

“Automation Objects as CORBA Objects” 17-38

“Older OLE Automation Controllers” 17-49

“Example Mappings” 17-50
 CORBA V2.2 February 1998 17-1

17

s

iew

17.1 Mapping CORBA Objects to OLE Automation

17.1.1 Architectural Overview

There are seven main pieces involved in the invocation of a method on a remote
CORBA object: the OLE Automation Controller; the COM Communication
Infrastructure; the OLE system registry; the client-side Automation View; the
operation’s type information; the Object Request Broker; and the CORBA object’s
implementation. These are illustrated in Figure 17-1 (the call to the Automation View
could be a call in the same process).

Figure 17-1 CORBA Object Architectural Overview

The Automation View is an OLE Automation server with a dispatch interface that is
isomorphic to the mapped OMG IDL interface. We call this dispatch interface an
Automation View Interface. The Automation server encapsulates a CORBA object
reference and maps incoming OLE Automation invocations into CORBA invocation
on the encapsulated reference. The creation and storage of the type information is not
specified.

There is a one-to-one correspondence between the methods of the Automation V
Interface and operations in the CORBA interface. The Automation View Interface’s
methods translate parameters bidirectionally between a CORBA reference and an OLE
reference.

OLE Automation
Controller

System

Automation

ORB

Object
Implementation

TypeInfo

COM

Registry

Communication

View
17-2 CORBA V2.2 February 1998

17

ere

Figure 17-2 Methods of the Automation View Interface delegate to the CORBA Stub

17.1.2 Main Features of the Mapping
• OMG IDL attributes and operations map to Automation properties and methods

respectively.

• OMG IDL interfaces map to Automation interfaces.

• The OMG IDL basic types map to corresponding basic types in Automation wh
possible. Since Automation supports a limited set of data types, some OMG IDL
types cannot be mapped directly. Specifically:

• OMG IDL constructed types such as structs and unions map to Automation
interfaces with appropriate attributes and operations. User exceptions are mapped
in the same way.

• OMG IDL unsigned types map as closely as possible to Automation types, and
overflow conditions are identified.

• OMG IDL sequences and arrays map to Automation Safearrays.

17.1.3 Mapping for Interfaces

A CORBA interface maps in a straightforward fashion to an Automation View
Interface. For example, the following CORBA interface

Client Space Object Space

CORBA Stub
MyInterface methods CORBA Skeleton

MyInterface methods

Automation View

- Interface DIMyInterface

Client App

Real CORBA Object
Interface MyInterface

pDIMyInterface->In voke(A_METHOD...

Network
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-3

17

t

t

L

e
module MyModule // OMG IDL
{
interface MyInterface
{
// Attributes and operations;
...
};
};

maps to the following Automation View Interface:

[odl, dual, uuid(...)]
interface DIMyModule_MyInterface: IDispatch
{
// Properties and methods;
...
};

The interface IMyModule_account is an OLE Automation Dual Interface. A Dual
Interface is a COM vtable-based interface which derives from IDispatch, meaning tha
its methods can be late-bound via IDispatch::Invoke or early-bound through the
vtable portion of the interface. Thus, IMyModule_account contains the methods of
IDispatch as well as separate vtable-entries for its operations and property get/se
methods.

Mapping for Attributes and Operations

An OMG IDL operation maps to an isomorphic Automation operation. An OMG ID
attribute maps to an ODL property, which has one method to get and one to set the
value of the property. An OMG IDL readonly attribute maps to an OLE property,
which has a single method to get the value of the property.

The order of the property and method declarations in the mapped Automation interfac
follows the rules described in “Ordering Rules for the CORBA->OLE Automation
Transformation” part of “Detailed Mapping Rules” on page 15-13.

For example, given the following CORBA interface,

interface account // OMG IDL
{
attribute float balance;
readonly attri bute string owner;
void makeLodgement(in float amount, out float balance);
void makeWithdrawal(in float amount, out float balance);
};

the corresponding Automation View Interface is:
17-4 CORBA V2.2 February 1998

17

9,

 in

cro

e
 the

 of
[odl, dual, uuid(...)]
interface DIaccount: IDispatch
{ // ODL

HRESULT makeLodgement ([in] float amount,
 [out] float * balance,

[optional, out] VARIANT * excep_OBJ);
HRESULT makeWithdrawal ([in] float amount,

[out] float * balance,
[optional, out] VARIANT * excep_OBJ);

[propget] HRESULT balance ([retval,out] float *
[IT_retval];

[propput] HRESULT balance ([in] float balance);
[propget] HRESULT owner ([retval,out] BSTR * IT_retval);

}

OMG IDL in , out , and inout parameters map to ODL [in] , [out] , and
[in,out] parameters, respectively. “Mapping for Basic Data Types” on page 17-
explains the mapping for basic data types. The mapping for CORBA oneway
operations is the same as for normal operations.

An operation of a Dual Interface always returns HRESULT, but the last argument
the operation’s signature may be tagged [retval,out] . An argument tagged in this
fashion is considered syntactically to be a return value. Automation controller ma
languages map this special argument to a return value in their language syntax. Thus, a
CORBA operation’s return value is mapped to the last argument in the corresponding
operation of the Automation View Interface.

Additional, Optional Parameter

All operations on the Automation View Interface have an optional out parameter of
type VARIANT. The optional parameter returns explicit exception information in the
context of each property set/get or method invocation. See “Mapping CORBA
Exceptions to Automation Exceptions” on page 17-29 for a detailed discussion of how
this mechanism works.

If the CORBA operation has no return value, then the optional parameter is the last
parameter in the corresponding Automation operation. If the CORBA operation does
have a return value, then the optional parameter appears directly before the return valu
in the corresponding Automation operation, since the return value must always be
last parameter.

Mapping for OMG IDL Single Inheritance

A hierarchy of singly-inherited OMG IDL interfaces maps to an identical hierarchy
Automation View Interfaces.

For example, given the interface account and its derived interface
checkingAccount defined as follows,
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-5

17

ing

on
module MyModule {// OMG IDL
interface account {
attribute float balance;
readonly attri butestr ing owner;
void makeLodgement (in float amount, out float

balance);
void makeWithdrawal (in float amount, out float

theBalance);
};
interface checking Acco unt: account {

readonly attri bute float overdraf tLimit;
boolean orderChequ eBook ();

};
};

the corresponding Automation View Interfaces are as follows

// ODL
[odl, dual, uuid(20c31e22-dcb2-aa79-1dc4-34a4ad297579)]
interface DIMyModule_account: IDispatch {

HRESULT makeLodgement ([in] float amount,
[out] float * balance,
[optional, out] VARIANT * excep_OBJ);

HRESULT makeWithdrawal ([in] float amount,
[out] float * balance,
[optional, out] VARIANT * excep_OBJ);

[propget] HRESULT balance ([retval,out] float *
[IT_retval];

[propput] HRESULT balance ([in] float balance);
[propget] HRESULT owner ([retval,out] BSTR * IT_retval);

};

[odl, dual, uuid(ffe752b2-a73f-2a28-1de4-21754778ab4b)]
interface DIMyModule_checkingAccount: IMyModule_account {

HRESULT orderChequeBook(
[optional, out] VARIANT * excep_OBJ,
[retval,out] short * IT_retval);

[propget] HRESULT overdraftLimit (
[retval,out] short * IT_retval);

};

Mapping of OMG IDL Multiple Inheritance

Automation does not support multiple inheritance; therefore, a direct mapping of a
CORBA inheritance hierarchy using multiple inheritance is not possible. This mapp
splits such a hierarchy, at the points of multiple inheritance, into multiple singly-
inherited strands.

The mechanism for determining which interfaces appear on which strands is based
a left branch traversal of the inheritance tree. At points of multiple inheritance, the
interface that is first in an ordering of the parent interfaces is included in what we call
17-6 CORBA V2.2 February 1998

17

ider

d of
rs,

 they

 of
the main strand, and other interfaces are assigned to other, secondary strands. (The
ordering of parent interfaces is explained later in this section.) For example, cons
the CORBA interface hierarchy, shown in Figure 17-3.

Figure 17-3 A CORBA Interface Hierarchy Using Multiple Inheritance

We read this hierarchy as follows:

• B and C derive from A

• D derives from B and C

• E derives from D

This CORBA hierarchy maps to the following two Automation single inheritance
hierarchies, shown in Figure 17-4.

Figure 17-4 The Mapped Automation Hierarchy Splits at the Point of Multiple Inheritance

Consider the multiple inheritance point D, which inherits from B and C. Following the
left strand B at this point, our main strand is A-B-D and our secondary strand is A-C.
However, to access all of the object’s methods, a controller would have to navigate
among these disjoint strands via QueryInterface. While such navigation is expecte
COM clients and might be an acceptable requirement of C++ automation controlle
many Automation controller environments do not support such navigation.

To accommodate such controllers, at points of multiple inheritance we aggregate the
operations of the secondary strands into the interface of the main strand. In our
example, we add the operations of C to D (A’s operations are not added because
already exist in the main strand). Thus, D has all the methods of the hierarchy and,
more important, an Automation controller holding a reference to D can access all
the methods of the hierarchy without calling QueryInterface.

A

B C

D

E

A

B C

D

E

(+ methods of C)

A

CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-7

17

ly

t

e

In order to have a reliable, deterministic, portable way to determine the inheritance
chain at points of multiple inheritance, an explicit ordering model must be used.
Furthermore, to achieve interoperability of virtual function tables for dual interfaces, a
precise model for ordering operations and attributes within an interface must be
specified.

Within an interface, attributes should appear before operations and both should be
ordered lexicographically by bytes in machine-collating sequence. For non-readon
attributes, the [propget] method immediately precedes the [propput] method.
This ordering determines the position of the vtable portion of a Dual Interface. At
points of multiple inheritance, the base interfaces should be ordered from left to righ
lexicographically by bytes in machine-collating order. (In all cases, the ordering is
based on ISO Latin-1.) Thus, the leftmost branch at a point of multiple inheritance is
the one ordered first among the base classes, not necessarily the one listed first in the
inheritance declaration.

Continuing with the example, the following OMG IDL code expresses a hierarchy
conforming to Figure 17-3 on page 17-7.

// OMG IDL
module MyModule {

interface A {
void aOp1();
void zOp1();

};
interface B: A{

void aOp2();
void zOp2();

};
interface C: A {

void aOp3();
void zOp3();

};
interface D: C, B{

void aOp4();
void zOp4();

};
};

The OMG IDL maps to the following two Automation View hierarchies. Note that th
ordering of the base interfaces for D has been changed based on our ISO Latin-1
alphabetic ordering model and that operations from C are added to interface D.
17-8 CORBA V2.2 February 1998

17

e D’s
 C

 ODL
// ODL
// strand 1: A-B-D
[odl, dual, uuid(8db15b54-c647-553b-1dc9-6d098ec49328)]
interface DIMyModule_A: IDispatch {

HRESULT aOp1([optional,out] VARIANT * excep_OBJ);
HRESULT zOp1([optional,out] VARIANT * excep_OBJ);

}
[odl, dual, uuid(ef8943b0-cef8-21a5-1dc0-37261e082e51)]
interface DIMyModule_B: DIMyModule_A {

HRESULT aOp2([optional,out] VARIANT * excep_OBJ);
HRESULT zOp2([optional,out] VARIANT * excep_OBJ);

}
[odl, dual, uuid(67528a67-2cfd-e5e3-1de2-d59a444fe593)]
interface DIMyModule_D: DIMyModule_B {

// C’s aggregated operations
HRESULT aOp3([optional,out] VARIANT * excep_OBJ);
HRESULT zOp3([optional,out] VARIANT * excep_OBJ);
// D’s normal operations
HRESULT aOp4([optional,out] VARIANT * excep_OBJ);
HRESULT zOp4([optional,out] VARIANT * excep_OBJ);

}

// strand 2: A-C
[odl, dual, uuid(327885f8-ae9e-19c0-1dd5-d1ea05bcaae5)]
interface DIMyModule_C: DIMyModule_A {

HRESULT aOp3([optional,out] VARIANT * excep_OBJ);
HRESULT zOp3([optional,out] VARIANT * excep_OBJ);

}

Also note that the repeated operations of the aggregated strands are listed befor
operations. The ordering of these operations obeys the rules for operations within
and is independent of the ordering within D.

17.1.4 Mapping for Basic Data Types

Basic Automation Types

Table 9 lists the basic data types supported by OLE Automation. The table contains
fewer data types than those allowed by ODL because not all types recognized by
can be handled by the marshaling of IDispatch interfaces and by the implementation of
ITypeInfo::Invoke . Arguments and return values of operations and properties
are restricted to these basic types.

Table 17-9OLE Automation Basic Types

Type Description

boolean True = -1, False = 0.

double 64-bit IEEE floating-point number.
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-9

17
The formal mapping of CORBA types to Automation types is shown in Table 17-9.

float 32-bit IEEE floating-point number.

long 32-bit signed integer.

short 16-bit signed integer.

void Allowed only as return type for a function, or in a
function parameter list to indicate no parameters.

BSTR Length-prefixed string. Prefix is an integer.

CURRENCY 8-byte fixed-point number.

DATE 64-bit floating-point fractional number of days since
December 30, 1899.

SCODE Built-in error type. In Win16, does not include additional
data contained in an HRESULT. In Win32, identical to
HRESULT.

IDispatch * Pointer to IDispatch interface. From the viewpoint of the
mapping, an IDispatch pointer parameter is an object
reference.

IUnknown * Pointer to IUnknown interface. (Any OLE interface can be
represented by its IUnknown interface.)

Table 17-9OMG CORBA to OLE Automation Data Type Mappings

CORBA Type OLE Automation Type

boolean boolean

char short

double double

float float

long long

octet short

short short

unsigned long long

unsigned short long

Type Description
17-10 CORBA V2.2 February 1998

17

e of

17.1.5 Special Cases of Basic Data Type Mapping

An operation of an Automation View Interface must perform bidirectional translation
of the Automation and CORBA parameters and return types. It must map from
Automation to CORBA for in parameters and from CORBA to Automation for out
parameters. The translation logic must handle the special conditions described in the
following sections.

Translating Automation long to CORBA unsigned long

If the Automation long parameter is a negative number, then the View operation should
return the HRESULT DISP_E_OVERFLOW.

Translating CORBA unsigned long to Automation long

If the CORBA::ULong parameter is greater than the maximum value of an
Automation long, then the View operation should return the HRESULT
DISP_E_OVERFLOW.

Translating Automation long to CORBA unsigned short

If the Automation long parameter is negative or is greater than the maximum valu
a CORBA::UShort , then the View operation should return the HRESULT
DISP_E_OVERFLOW.

Translating Automation boolean to CORBA boolean and CORBA
boolean to Automation boolean

True and false values for CORBA boolean are, respectively, one (1) and zero (0). True
and false values for Automation boolean are, respectively, negative one (-1) and zero
(0). Therefore, true values need to be adjusted accordingly.

17.1.6 Mapping for Strings

An OMG IDL bounded or unbounded string maps to an OLE BSTR. For example,
given the OMG IDL definitions,

// OMG IDL
string sortCode<20>;
string name;

the corresponding ODL code is
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-11

17

// ODL
BSTRsortCode;
BSTRname;

On Win32 platforms, a BSTR maps to a Unicode string. The use of BSTR is the only
support for internationalization of strings defined at this time.

17.1.7 A Complete IDL to ODL Mapping for the Basic Data Types

There is no requirement that the OMG IDL code expressing the mapped CORBA
interface actually exists. Other equivalent expressions of CORBA interfaces, such as
the contents of an Interface Repository, may be used. Moreover, there is no
requirement that ODL code corresponding to the CORBA interface be generated.

However, OMG IDL is the appropriate medium for describing a CORBA interface and
ODL is the appropriate medium for describing an Automation View Interface.
Therefore, the following OMG IDL code describes a CORBA interface that exercises
all of the CORBA base data types in the roles of attribute, operation in parameter,
operation out parameter, operation inout parameter, and return value. The OMG
IDL code is followed by ODL code describing the Automation View Interface that
would result from a conformant mapping.

module MyModule // OMG IDL
{
interface T ypesTest
{

attribute boolean boolT est;
attribute char charT est;
attribute double doubleT est;
attribute float floatTest;
attribute long longTest;
attribute octet octetTest;
attribute short shortTest;
attribute string stringTest;
attribute string<10>stringnTest;
attribute unsigned long ulongTest;
attribute unsigned sh ort us hortTest;

readonly attri bute short readonlyShortT est;

// Sets all the attri butes
boolean setAll (

in boolean boolT est,
in char charT est,
in double doubleT est,
in float floatTest,
in long longT est,
in octet octetTest,
in short shortT est,
17-12 CORBA V2.2 February 1998

17
in string str ingTest,
in string<10> str ingnTest,
in unsigned long ulongT est,
in unsigned short ushortTest);

// Gets all the attributes
boolean getAll (

out boolean boolT est,
out char charTest,
out double do ubleTest,
out float floatTest,
out long longT est,
out octet octetTest,
out short shortT est,
out string stringTest,
out string<10> stringnTest,
out unsigned long ulongT est,
out unsigned short ushortTest);

boolean setAndIncrement (
inout boolean boolT est,
inout char charTest,
inout double do ubleTest,
inout float floatTest,
inout long longTest,
inout octet octetTest,
inout short shortT est,
inout string str ingTest,
inout string<10> str ingnTest,
inout unsigned long ulongT est,
inout unsigned short ushortTest);

boolean boolReturn ();
char charReturn ();
double doubleReturn();
float f loatReturn();
long longReturn ();
octet octetReturn();
short shortReturn ();
string str ingReturn();
string<10> str ingnReturn();
unsigned long ulongReturn ();
unsigned shortushortReturn();

}; // End of Interface T ypesTest

}; // End of Module MyModule

The corresponding ODL code is as follows.
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-13

17
[odl, dual, uuid(180d4c5a-17d2-a1a8-1de1-82e7a9a4f93b)]
interface DIMyModule_TypesTest: IDispatch {

HRESULT boolReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] short *IT_retval);

HRESULT charReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] short *IT_retval);

HRESULT doubleReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] double *IT_retval);

HRESULT floatReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] float *IT_retval);

HRESULT getAll ([out] short *boolTest,
[out] short *charTest,
[out] double *doubleTest,
[out] float *floatTest,
[out] long *longTest,
[out] short *octetTest,
[out] short *shortTest,
[out] BSTR stringTest,
[out] BSTR *stringnTest,
[out] long *ulongTest,
[out] long *ushortTest,
[optional,out] VARIANT * excep_OBJ,
[retval,out] short * IT_retval);

HRESULT longReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] long *IT_retval);

HRESULT octetReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] short *IT_retval);

HRESULT setAll ([in] short boolTest,
[in] short charTest,
[in] double doubleTest,
[in] float floatTest,
[in] long longTest,
[in] short octetTest,
[in] short shortTest,
[in] BSTR stringTest,
[in] BSTR stringnTest,
[in] long ulongTest,
[in] long ushortTest,
[optional,out] VARIANT * excep_OBJ,
[retval,out] short * IT_retval);

HRESULT setAndIncrement ([in,out] short *boolTest,
[in,out] short *charTest,
[in,out] double *doubleTest,
[in,out] float *floatTest,
[in,out] long *longTest,
[in,out] short *octetTest,
[in,out] short *shortTest,
[in,out] BSTR *stringTest,
[in,out] BSTR *stringnTest,
[in,out] long *ulongTest,
[in,out] long *ushortTest,
17-14 CORBA V2.2 February 1998

17
[optional,out] VARIANT * excep_OBJ,
[retval,out] short *IT_retval);

HRESULT shortReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] short *IT_retval);

HRESULT stringReturn ([optional,out] VARIANT * excep_OBJ,
[retval,out] BSTR *IT_retval);

HRESULT stringnReturn ([optional,out] VARIANT *
exep_OBJ,

[retval,out] BSTR *IT_retval);
HRESULT ulongReturn ([optional,out] VARIANT * excep_OBJ,

[retval,out] long *IT_retval);
HRESULT ushortReturn ([optional,out] VARIANT * excep_OBJ,

[retval,out] long *IT_retval);
[propget] HRESULT boolTest([retval,out] short *IT_retval);
[propput] HRESULT boolTest([in] short boolTest);
[propget] HRESULT charTest([retval,out] short *IT_retval);
[propput] HRESULT charTest([in] short charTest);
[propget] HRESULT doubleTest([retval,out] double

*IT_retval);
[propput] HRESULT doubleTest([in] double doubleTest);
[propget] HRESULT floatTest([retval,out] float

*IT_retval);
[propput] HRESULT floatTest([in] float floatTest);
[propget] HRESULT longTest([retval,out] long *IT_retval);
[propput] HRESULT longTest([in] long longTest);
[propget] HRESULT octetTest([retval,out] short

*IT_retval);
[propput] HRESULT octetTest([in] short octetTest);
[propget] HRESULT readonlyShortTest([retval,out] short

*IT_retval);
[propget] HRESULT shortTest([retval,out] short

*IT_retval);
[propput] HRESULT shortTest([in] short shortTest);
[propget] HRESULT stringTest([retval,out] BSTR

*IT_retval);
[propput] HRESULT stringTest([in] BSTR stringTest);
[propget] HRESULT stringnTest([retval,out] BSTR

*IT_retval);
[propput] HRESULT stringnTest([in] BSTR stringnTest);
[propget] HRESULT ulongTest([retval,out] long *IT_retval);
[propput] HRESULT ulongTest([in] long ulongTest);
[propget] HRESULT ushortTest([retval,out] long

*IT_retval);
[propput] HRESULT ushortTest([in] long ushortTest);

}

CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-15

17

17.1.8 Mapping for Object References

Type Mapping

The mapping of an object reference as a parameter or return value can be fully
expressed by the following OMG IDL and ODL code. The OMG IDL code defines an
interface Simple and another interface that references Simple as an in parameter, as an
out parameter, as an inout parameter, and as a return value. The ODL code
describes the Automation View Interface that results from an accurate mapping.

module MyModule // OMG IDL
{
// A simple object we can use for testing object refere nces
interface Simple
{

attribute short shortTest;
};

interface ObjRefTest
{

attribute Simple simpleTest;
Simple simpleOp(in Simple inTest,

 out Simple outT est,
 inout Simple inoutT est);

};

}; // End of Module MyModule

The ODL code for the Automation View Dispatch Interface follows.

[odl, dual, uuid(c166a426-89d4-f515-1dfe-87b88727b4ea)]
interface DIMyModule_Simple: IDispatch
{

[propget] HRESULT shortTest([retval, out] short *
IT_retval);

[propput] HRESULT shortTest([in] short shortTest);
}

[odl, dual, uuid(04843769-120e-e003-1dfd-6b75107d01dd)]
interface DIMyModule_ObjRefTest: IDispatch
{

HRESULT simpleOp([in]DIMyModule_Simple *inTest,
[out] DIMyModule_Simple **outTest,
[in,out] DIMyModule_Simple **inoutTest,
[optional, out] VARIANT * excep_OBJ,
[retval, out] DIMyModule_Simple ** IT_retval);

[propget] HRESULT simpleTest([retval, out]
DIMyModule_Simple **
IT_retval);
17-16 CORBA V2.2 February 1998

17

s
phic
t a

ct,

r

[propput] HRESULT simpleTest([in] DIMyModule_Simple
*simpleTest);

}

Object Reference Parameters and IForeignObject

As described in the Interworking Architecture chapter, Automation and COM View
must expose the IForeignObject interface in addition to the interface that is isomor
to the mapped CORBA interface. IForeignObject provides a mechanism to extrac
valid CORBA object reference from a View object.

Consider an Automation View object B, which is passed as an in parameter to an
operation M in View A. Operation M must somehow convert View B to a valid
CORBA object reference. In Figure 17-1, Automation Views expose IForeignObje
as required of all Views.

Figure 17-1 Partial Picture of the Automation View

The sequence of events involving IForeignObject::GetForeignReference
is as follows:

• The client calls Automation-View-A::M , passing an IDispatch-derived pointe
to Automation-View-B.

• Automation-View-A::M calls IDispatch::QueryInterface for
IForeignObject.

• Automation-View-A::M calls IForeignObject::GetForeignReference to
get the reference to the CORBA object of type B.

• Automation-View-A::M calls CORBA-Stub-A::M with the reference, narrowed to
interface type B, as the object reference in parameter.

Automation View
Object

IDispatch

IForeignObject

IUnknown

...
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-17

17

 as a

turn

he
ot
r than

d type
17.1.9 Mapping for Enumerated Types

CORBA enums map to Automation enums. Consider the following example

// OMG IDL
module MyModule {

enum color {red, green, blue};
interface foo {

void op1(in color col);
};

};

which maps to the following ODL

// ODL
typedef enum {red, green, blue} MyModule_color;

[odl,dual,uuid(7d1951f2-b5d3-8b7c-1dc3-aa0d5b3d6a2b)]
interface DIMyModule_foo: IDispatch {

HRESULT op1([in] MyModule_color col, [optional,out]
VARIANT * excep_OBJ);

}

Internally, OLE Automation maps enum parameters to the platform’s integer type. (For
Win32, the integer type is equivalent to a long.) If the number of elements in the
CORBA enum exceeds the maximum value of an integer, the condition should be
trapped at some point during static or dynamic construction of the Automation View
Interface corresponding to the CORBA interface in which the enum type appears
parameter. If the overflow is detected at run-time, the Automation View operation
should return the HRESULT DISP_E_OVERFLOW.

If an actual parameter applied to the mapped parameter in the Automation View
Interface exceeds the maximum value of the enum, the View operation should re
the HRESULT DISP_E_OVERFLOW.

Since all Automation controllers do not promote the ODL definition of enums into the
controller scripting language context, vendors may wish to generate a header file
containing an appropriate enum declaration or a set of constant declarations for t
client language. Since the method for doing so is an implementation detail, it is n
specified here. However, it should be noted that some languages type enums othe
as longs, introducing the possibility of conversion errors or faults. If such problems
arise, it is best to use a series of constant declarations rather than an enumerate
declaration in the client header file.

For example, the following enum declaration

enum color {red, green, blue, yellow, white};// OMG IDL

could be translated to the following Visual Basic code:

' Visual Basic
Global const color_red = 0
17-18 CORBA V2.2 February 1998

17

n the

ys are

he

rays.

RBA

eyond

and a
f the
e
Global const color_green = 1
Global const color_blue = 2
Global const color_yellow = 3
Global const color_white = 4

In this case the default naming rules for the enum values should follow those for
interfaces. That is, the name should be fully scoped with the names of enclosing
modules or interfaces. (See “Naming Conventions for View Components” on
page 15-29.)

If the enum is declared at global OMG IDL scope, as in the previous example, the
name of the enum should also be included in the constant name.

17.1.10 Mapping for Arrays and Sequences

OLE Automation methods may have array parameters called Safearrays. Safearra
one or multidimensional arrays whose elements are of any of the basic Automation
types. The following ODL syntax describes an array parameter:

SAFEARRAY (elementtype) arrayname

A Safearray may be passed by reference, using the following syntax:

SAFEARRAY (elementtype) *arrayname

Safearrays have a header which describes certain characteristics of the array including
bounding information, and are thus relatively safe for marshaling. Note that the ODL
declaration of Safearrays does not include bound specifiers. OLE provides an API for
allocating and manipulating Safearrays, which includes a procedure for resizing t
array.

IDL arrays and sequences, both bounded and unbounded, are mapped to Safear
Bounded sequences are mapped to Safearrays with the same boundaries; they do not
grow dynamically up to the bounded size but are statically allocated to the bounded
size. Unbounded sequences are mapped to Safearrays with some default bound.
Attempts to access past the boundary result in a resizing of the Safearray.

Since ODL Safearray declarations contain no boundary specifiers, the bounding
knowledge is contained in the Automation View. A method of the Automation View
Interface, which has a Safearray as a parameter, has the intelligence to handle the
parameter properly. When Safearrays are submitted as in parameters, the View
method uses the Safearray API to dynamically repackage the Safearray as a CO
array, bounded sequence, or unbounded sequence. When Safearrays are out
parameters, the View method uses the Safearray API to dynamically repackage the
CORBA array or sequence as a Safearray. When an unbounded sequence grows b
the current boundary of the corresponding Safearray, the View’s method uses the
Safearray API to increase the size of the array by one allocation unit. The size of an
allocation unit is unspecified. If a Safearray is mapped from a bounded sequence
client of the View attempts to write to the Safearray past the maximum element o
bounded sequence, the View operation considers this a run-time error and returns th
HRESULT DISP_E_OVERFLOW.
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-19

17

f
f

to do
Multidimensional OMG IDL arrays map to multidimensional Safearrays. The order o
dimensions in the OMG IDL array from left to right corresponds to ascending order o
dimensions in the Safearray.

17.1.11 Mapping for CORBA Complex Types

CORBA constructed types—Structs, Unions and Exceptions—cannot be mapped
directly to ODL constructed types, as Automation does not support them as valid
parameter types. Instead, constructed types are mapped to Pseudo-Automation
Interfaces. The objects that implement Pseudo-Automation Interfaces are called
pseudo-objects. Pseudo-objects do not expose the IForeignObject interface.

Pseudo-Automation Interfaces are Dual Interfaces, but do not derive directly from
IDispatch as do Automation View Interfaces. Instead, they derive from
DIForeignComplexType:

// ODL
[odl, dual, uuid(...)]
interface DIForeignComplexType: IDispatch
{
[propget] HRESULT INSTANCE_repositoryId([retval,out]
BSTR *IT_retval);
HRESULT INSTANCE_clone([in] IDispatch *pDispatch,
[retval, out] IDispatch **IT_retval);
}

The UUID for DIForeignComplexType is:

{A8B553C0-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in
which case it is named DForeignComplexType and its UUID is:

{E977F900-3B75-11cf-BBFC-444553540000}

The purpose of the DIForeignComplexType::INSTANCE_clone method is to
provide the client programmer a way to duplicate a complex type. INSTANCE_clone
creates a new instance of the type with values identical to the input instance.
Therefore, INSTANCE_clone does not simply duplicate a reference to a complex
type.

The purpose of the INSTANCE_repositoryId readonly property is to support the
ability of DICORBAAny (see “Mapping for anys” on page 17-24), when it wraps an
instance of a complex type, to produce a type code for the instance when asked
so via DICORBAAny’s readonly typeCode property.
17-20 CORBA V2.2 February 1998

17

s
RBA

s

A in
Mapping for Structure Types

CORBA structures are mapped to a Pseudo-Struct, which is an Pseudo-Automation
Interface containing properties corresponding to the members of the struct. The name
of a Pseudo-Struct’s properties are identical to the names of the corresponding CO
struct members.

A Pseudo-Struct derives from DICORBAStruct which, in turn, derives from
DIForeignComplexType:

// ODL
[odl, dual, uuid(...)]
interface DICORBAStruct: DIForeignComplexType
{
}

The GUID for DICORBAStruct is:

{A8B553C1-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in
which case it is named DCORBAStruct and its UUID is:

{E977F901-3B75-11cf-BBFC-444553540000}

The purpose of the methodless DICORBAStruct interface is to mark the interface a
having its origin in the mapping of a CORBA struct. This information, which can be
stored in a type library, is essential for the task of mapping the type back to CORB
the event of an inverse mapping.

An example of mapping a CORBA struct to a Pseudo-Struct follows. The struct

struct S// IDL
{

long l;
double d;
float f;

};

maps to Automation as follows, except that the mapped Automation Dual Interface
derives from DICORBAStruct.

// IDL
interface S
{

attribute long l;
attribute double d;
attribute float f;

};
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-21

17

, with

the
Mapping for Union Types

CORBA unions are mapped to a Pseudo-Automation Interface called a Pseudo-Union.
A Pseudo-Union contains properties that correspond to the members of the union
the addition of a discriminator property. The discriminator property’s name is
UNION_d, and its type is the Automation type that corresponds to the OMG IDL
union discriminant.

If a union element is accessed from the Pseudo-Union, and the current value of the
discriminant does not match the property being requested, then the operation of
Pseudo-Union returns DISP_E_TYPEMISMATCH. Whenever an element is set, the
discriminant’s value is set to the value that corresponds to that element.

A Pseudo-Union derives from the methodless interface DICORBAUnion which, in
turn, derives from DIForeignComplexType:

// ODL
[odl, dual, uuid(...)]
interface DICORBAUnion: DIForeignComplexType // ODL
{
}

The UUID for DICORBAUnion is:

{A8B553C2-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in
which case it is named DCORBAUnion and its UUID is:

{E977F902-3B75-11cf-BBFC-444553540000}

An example of mapping a CORBA union to a Pseudo-Union follows. The union

interface A; // IDL

union U switch(long)
{

case 1: long l;
case 2: float f;
default: A obj;

};

maps to Automation as if it were defined as follows, except that the mapped
Automation Dual Interface derives from DICORBAUnion.
17-22 CORBA V2.2 February 1998

17
interface A; // IDL

interface U
{
// Switch discriminant
readonly attri bute long UNION_d;

attribute long l;
attribute float f;
attribute A obj;

};

17.1.12 Mapping for TypeCodes

The OMG IDL TypeCode data type maps to the DICORBATypeCode interface. The
DICORBATypeCode interface is defined as follows.

// ODL
typedef enum {

tk_null = 0, tk_void, tk_short, tk_long, tk_ushort,
tk_ulong, tk_float, tk_double, tk_octet,
tk_any, tk_typeCode, tk_principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_alias, tk_except
} CORBATCKind;

[odl, dual, uuid(...)]
interface DICORBATypeCode: DIForeignComplexType {

[propget] HRESULT kind([retval,out] TCKind * IT_retval);

// for tk_objref, tk_struct, tk_union, tk_alias,
tk_except

[propget] HRESULT id([retval,out] BSTR *IT_retval);
[propget] HRESULT name([retval,out] BSTR * IT_retval);

//tk_struct,tk_union,tk_enum,tk_except
[propget] HRESULT member_count([retval,out]

long * IT_retval);
HRESULT member_name([in] long index,[retval,out]

BSTR * IT_retval);
HRESULT member_type([in] long index,

[retval,out] IDispatch ** IT_retval),

// tk_union
HRESULT member_label([in] long index,[retval,out]

VARIANT * IT_retval);
[propget] HRESULT discriminator_type([retval,out]

IDispatch ** IT_retval);
[propget] HRESULT default_index([retval,out]
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-23

17

ed
long * IT_retval);

// tk_string, tk_array, tk_sequence
[propget] HRESULT length([retval,out] long * IT_retval);

// tk_sequence, tk_array, tk_alias
[propget] HRESULT content_type([retval,out]

IDispatch ** IT_retval);
}

The UUID for DICORBATypeCode is:

{A8B553C3-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in
which case it is named DCORBATypeCode and its UUID is:

{E977F903-3B75-11cf-BBFC-444553540000}

When generating Visual Basic constants corresponding to the values of the
CORBATCKind enumeration, the constants should be declared as follows.

Global const CORBATCKind_tk_null =0
Global const CORBATCKind_tk_void = 1
. . .

Since DICORBATypeCode derives from DIForeignComplexType, objects which
implement it are, in effect, pseudo-objects.

17.1.13 Mapping for anys

The OMG IDL any data type maps to the DICORBAAny interface, which is declar
as:

//ODL
[odl, dual, uuid(...)]
interface DICORBAAny: DIForeignComplexType
{

[propget] HRESULT value([retval,out]
VARIANT * IT_retval);

[propput] HRESULT value([in] VARIANT val);
[propget] HRESULT typeCode([retval,out]

DICORBATypeCode ** IT_retval);
}

The UUID for DICORBAAny is:

{A8B553C4-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in
which case it is named DCORBAAny and its UUID is:
17-24 CORBA V2.2 February 1998

17

r

e
e, the
{E977F904-3B75-11cf-BBFC-444553540000}

Since DICORBAAny derives from DIForeignComplexType, objects that implement it
are, in effect, pseudo-objects. See Section 13.1.11, Mapping for CORBA Complex
Types, for a description of the DIForeignComplexType interface.

Note that the VARIANT value property of DICORBAAny can represent a Safearray o
can represent a pointer to a DICORBAStruct or DICORBAUnion interface. Therefore,
the mapping for any is valid for an any that represents a CORBA array, sequence,
structure, or union.

17.1.14 Mapping for Typedefs

The mapping of OMG IDL typedef definitions to OLE depends on the OMG IDL
type for which the typedef is defined. No mapping is provided for typedef
definitions for the basic types: float , double , long , short , unsigned
long , unsigned short , char , boolean , and octet . Hence, a Visual
Basic programmer cannot make use of these typedef definitions.

// OMG IDL
module MyModule {

module Module2 {
module Module3 {

interface foo {};
};

};
};
typedef MyModule::Module2::Module3::foo bar;

For complex types, the mapping creates an alias for the pseudo-object. For interfaces,
the mapping creates an alias for the Automation View object. A conforming
implementation may register these aliases in the Windows System Registry.

Creating a View for this interface would require something like the following:

‘ in Visual Basic
Dim a as Object
Set a = theOrb.GetObject(“MyModule.Module2.Module3.foo”)
‘ Release the object
Set a = Nothing
‘ Create the object using a typedef alias
Set a = theOrb.GetObject(“bar”)

17.1.15 Mapping for Constants

The notion of a constant does not exist in OLE Automation; therefore, no mapping is
prescribed for a CORBA constant.

As with the mapping for enums, some vendors may wish to generate a header fil
containing an appropriate constant declaration for the client language. For exampl
following OMG IDL declaration
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-25

17

, the

es

ming
// OMG IDL
const long Max = 1000;

could be translated to the following in Visual Basic:

' Visual Basic
Global Const Max = 1000

The naming rules for these constants should follow that of enums.

17.1.16 Getting Initial CORBA Object References

The DICORBAFactory interface, described in “ICORBAFactory Interface” on
page 15-24, provides a mechanism that is more suitable for the typical programmer in
an Automation controller environment such as Visual Basic.

The implementation of the DICORBAFactory interface is not prescribed, but possible
options include delegating to the OMG Naming Service and using the Windows
System Registry1.

The use of this interface from Visual Basic would appear as:

Dim theORBfactory as Object
Dim Target as Object
Set theORBfactory=CreateObject(“CORBA.Factory”)
Set Target=theORBfactory.GetObject

(“software.sales.accounts”)

In Visual Basic 4.0 projects that have preloaded the standard CORBA Type Library
code could appear as follows:

Dim Target as Object
Set Target=theORBfactory.GetObject(“soft-
ware.sales.accounts”)

The stringified name used to identify the desired target object should follow the rul
for arguments to DICORBAFactory::GetObject described in “ICORBAFactory
Interface” on page 15-24.

A special name space for names with a period in the first position can be used to
resolve an initial reference to the OMG Object Services (for example, the Naming
Service, the Life Cycle Service, and so forth). For example, a reference for the Na
Service can be found using:

1.It is always permissible to directly register a CORBA/OLE Automation bridging object
directly with the Windows Registry. The administration and assignment of ProgIds for direct
registration should follow the naming rules described in the Interworking Architecture
chapter.
17-26 CORBA V2.2 February 1998

17

ject

 a
f
Dim NameContext as Object
Set NameContext=theORBfactory.GetObject(“.NameService”)

Generally the GetObject method will be used to retrieve object references from the
Registry/Naming Service. The CreateObject method is really just a shorthand
notation for GetObject(“someName”).create. It is intended to be used for object
references to objects supporting a CORBAServices Factory interface.

17.1.17 Creating Initial in Parameters for Complex Types

Although CORBA complex types are represented by Automation Dual Interfaces,
creating an instance of a mapped CORBA complex type is not the same as creating an
instance of a mapped CORBA interface. The main difference lies in the fact that the
name space for CORBA complex types differs fundamentally from the CORBA ob
and factory name spaces.

To support creation of instances of Automation objects exposing Pseudo-Automation
Interfaces, we define a new interface, derived from DICORBAFactory (see
“ICORBAFactory Interface” on page 15-24 for a description of DICORBAFactory).

// ODL
[odl, dual, uuid(...)]
interface DICORBAFactoryEx: DICORBAFactory
{

HRESULT CreateType([in] IDispatch *scopingObject,
[in] BSTR typeName,

 [retval,out] VARIANT *val);
HRESULT CreateTypeById([in] IDispatch *scopingObject,

[in] BSTR repositoryId,
[retval,out] VARIANT *val);

}

The UUID for DICORBAFactoryEx is:

{A8B553C5-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in
which case it is named DCORBAFactoryEx and its UUID is:

{E977F905-3B75-11cf-BBFC-444553540000}

The Automation object having the ProgId “CORBA.Factory” shown next actually
exposes DICORBAFactoryEx.

The CreateType method creates an Automation object that has been mapped from
CORBA complex type. The parameters are used to determine the specific type o
object returned.

The first parameter, scopingObject, is a pointer to an Automation View Interface. The
most derived interface type of the CORBA object bound to the View identifies the
scope within which the second parameter, typeName, is interpreted. For example,
assume the following CORBA interface exists:
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-27

17

ace

ce,

e

.

ce,
// OMG IDL
module A {

module B {
interface C {

struct S {
// ...

}
void op(in S s);

//
}

}
}

The following Visual Basic example illustrates the primary use of CreateType:

‘ Visual Basic
Dim myC as Object
Dim myS as Object
Dim myCORBAFactory as Object
Set myCORBAFactory = CreateObject(“CORBA.Factory”)
Set myC = myCORBAFactory.CreateObject(“...”)

‘ creates Automation View of the CORBA object
supporting interface ‘ A::B::C
Set myS = myCORBAFactory.CreateType(myC, “S”)
myC.op(myS)

The following rules apply to CreateType:

• The typeName parameter can contain a fully-scoped name (i.e., the name begins
with a double colon “::”). If so, then the first parameter defines the type name sp
within which the fully scoped name will be resolved.

• If the scopingObject parameter does not point to a valid Automation View Interfa
then CreateObject returns the HRESULT DISP_E_UNKNOWNINTERFACE.

• If the typeName parameter does not identify a valid type in the name space
associated with the scopingObject parameter, then CreateObject returns the
HRESULT TYPE_E_UNDEFINEDTYPE.

The CreateTypeByID method accomplishes the same general goal of CreateType, th
creation of Automation objects that are mapped from CORBA constructed types. The
second parameter, repositoryID, is a string containing the CORBA Interface Repository
ID of the CORBA type whose mapped Automation Object is to be created. The
Interface Repository associated with the CORBA object identified by the
scopingObject parameter defines the repository within which the ID will be resolved

The following rules apply to CreateTypeById:

• If the scopingObject parameter does not point to a valid Automation View Interfa
then CreateObject returns the HRESULT DISP_E_UNKNOWNINTERFACE.
17-28 CORBA V2.2 February 1998

17

s

s
rs.

ch

was
ses

a
y
• If the repositoryID parameter does not identify a valid type in the Interface
Repository associated with the scopingObject parameter, then CreateObject return
the HRESULT TYPE_E_UNDEFINEDTYPE.

ITypeFactory Interface

The DICORBAFactory interface delegates its CreateType and CreateTypeByID
methods to an ITypeFactory interface on the scoping object. ITypeFactory is defined a
a COM interface because it is not intended to be exposed to Automation controlle
Every Automation View object must support the ITypeFactory interface:

//MIDL
interface ITypeFactory: IUnknown
{

HRESULT CreateType([in] LPSTR typeName, [out] VARIANT
*IT_retval);

HRESULT CreateTypeById([in] RepositoryId repositoryID,
[out] VARIANT *IT_retval);

}

The UUID for ITypeFactory is:

{A8B553C6-3B72-11cf-BBFC-444553540000}

The methods on ITypeFactory provide the behaviors previously described for the
corresponding DICORBAFactory methods.

17.1.18 Mapping CORBA Exceptions to Automation Exceptions

Overview of Automation Exception Handling

Automation’s notion of exceptions does not resemble true exception handling as
defined in C++ and CORBA. Automation methods are invoked with a call to
IDispatch::Invoke or to a vtable method on a Dual Interface. These methods
return a 32-bit HRESULT, as do almost all COM methods. HRESULT values, whi
have the severity bit (bit 31 being the high bit) set, indicate that an error occurred
during the call, and thus are considered to be error codes. (In Win16, an SCODE
defined as the lower 31 bits of an HRESULT, whereas in Win32 and for our purpo
HRESULT and SCODE are identical.) HRESULTs also have a multibit field called the
facility. One of the predefined values for this field is FACILITY_DISPATCH. Visual
Basic 4.0 examines the return HRESULT. If the severity bit is set and the facility field
has the value FACILITY_DISPATCH, then Visual Basic executes a built-in error
handling routine, which pops up a message box and describes the error.

Invoke has among its parameters one of type EXCEPINFO*. The caller can choose to
pass a pointer to an EXCEPINFO structure in this parameter or to pass NULL. If
non-NULL pointer is passed, the callee can choose to handle an error condition b
returning the HRESULT DISP_E_EXCEPTION and by filling in the EXCEPINFO
structure.
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-29

17

fired
 is
e
g
OLE also provides Error Objects, which are task local objects containing similar
information to that contained in the EXCEPINFO structure. Error objects provide a
way for Dual Interfaces to set detailed exception information.

Visual Basic allows the programmer to set up error traps, which are automatically
when an invocation returns an HRESULT with the severity bit set. If the HRESULT
DISP_E_EXCEPTION, or if a Dual Interface has filled an Error Object, the data in th
EXCEPINFO structure or in the Error Object can be extracted in the error handlin
routine.

CORBA Exceptions

CORBA exceptions provide data not directly supported by the Automation error
handling model. Therefore, all methods of Automation View Interfaces have an
additional, optional out parameter of type VARIANT which is filled in by the View
when a CORBA exception is detected.

Both CORBA System exceptions and User exceptions map to Pseudo-Automation
Interfaces called pseudo-exceptions. Pseudo-exceptions derive from IForeignException
which, in turn, derives from IForeignComplexType:

//ODL
[odl, dual, uuid(...)]
interface DIForeignException: DIForeignComplexType
{

[propget] HRESULT EX_majorCode([retval,out] long
*IT_retval);

[propget] HRESULT EX_repositoryID([retval,out] BSTR
*IT_retval);

};

The UUID for DIForeignException is:

{A8B553C7-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in
which case it is named DForeignException and its UUID is:

{E977F907-3B75-11cf-BBFC-444553540000}

The attribute EX_majorCode defines the broad category of exception raised, and has
one of the following numeric values:

NO_EXCEPTION = 0
SYSTEM_EXCEPTION = 1
USER_EXCEPTION = 2

These values may be specified as an enum in the typelibrary information:
17-30 CORBA V2.2 February 1998

17

e

h it

o-
ULT
typedef enum {NO_EXCEPTION,
SYSTEM_EXCEPTION,
USER_EXCEPTION } CORBA_ExceptionType;

The attribute EX_repositoryID is a unique string that identifies the exception. It is
the exception type’s repository ID from the CORBA Interface Repository.

CORBA User Exceptions

A CORBA user exception is mapped to a properties-only pseudo-exception whos
properties correspond one-to-one with the attributes of the CORBA user exception, and
which derives from the methodless interface DICORBAUserException:

//ODL
[odl, dual, uuid(...)]
interface DICORBAUserException: DIForeignException
{
}

The UUID for DICORBAUserException is:

{A8B553C8-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in
which case it is named DCORBAUserException and its UUID is:

{E977F908-3B75-11cf-BBFC-444553540000}

Thus, an OMG IDL exception declaration is mapped to an OLE definition as thoug
were defined as an interface. The declaration

// OMG IDL
exception reject
{

string reason;
};

maps to the following ODL:

//ODL
[odl, dual, uuid(6bfaf02d-9f3b-1658-1dfb-7f056665a6bd)]
interface DIreject: DICORBAUserException
{

[propget] HRESULT reason([retval,out] BSTR reason);
}

Operations that Raise User Exceptions

If the optional exception parameter is supplied by the caller and a User Exception
occurs, the parameter is filled in with an IDispatch pointer to an exception Pseud
Automation Interface, and the operation on the Pseudo-Interface returns the HRES
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-31

17

nal
t

e
S_FALSE. S_FALSE does not have the severity bit set, so that returning it from the
operation prevents an active Visual Basic Error Trap from being fired, allowing the
caller to retrieve the exception parameter in the context of the invoked method. The
View fills in the VARIANT by setting its vt field to VT_DISPATCH and setting the
pdispval field to point to the pseudo-exception. If no exception occurs, the optio
parameter is filled with an IForeignException pointer on a pseudo-exception objec
whose EX_majorCode property is set to NO_EXCEPTION.

If the optional parameter is not supplied and an exception occurs, and

• If the operation was invoked via IDispatch::Invoke , then

• The operation returns DISP_E_EXCEPTION.

• If the caller provided an EXCEPINFO, then it is filled by the View.

• If the method was called via the vtable portion of a Dual Interface, then the OLE
Error Object is filled by the View.

Note that in order to support Error Objects, Automation Views must implement th
standard OLE interface ISupportErrorInfo.

Table 17-1EXCEPINFO Usage for CORBA User Exceptions

Field Description

wCode Must be zero.

bstrSource <interface name>.<operation name>
where the interface and operation names are those of the
CORBA interface, which this Automation View is
representing.

bstrDescription CORBA User Exception [<exception repository id>]
where the repository id is that of the CORBA user exception.

bstrHelpFile Unspecified

dwHelpContext Unspecified

pfnDeferredFillIn NULL

scode DISP_E_EXCEPTION

Table 17-2ErrorObject Usage for CORBA User Exceptions

Property Description

bstrSource <interface name>.<operation name>
where the interface and operation names are those of the
CORBA interface, which this Automation View is
representing.

bstrDescription CORBA User Exception: [<exception repository id>]
where the repository id is that of the CORBA user exception.
17-32 CORBA V2.2 February 1998

17
CORBA System Exceptions

A CORBA System Exception is mapped to the Pseudo-Exception
DICORBASystemException, which derives from DIForeignException:

// ODL
[odl, dual, uuid(...)]
interface DICORBASystemException: DIForeignException
{

[propget] HRESULT EX_minorCode([retval,out] long
*IT_retval);

[propget] HRESULT EX_completionStatus([retval,out] long
*IT_retval);

}

The UUID for DICORBASystemException is:

{1E5FFCA0-563B-11cf-B8FD-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in
which case it is named DCORBASystemException and its UUID is:

{1E5FFCA1-563B-11cf-B8FD-444553540000}

The attribute EX_minorCode defines the type of system exception raised, while
EX_completionStatus has one of the following numeric values:

COMPLETION_YES = 0
COMPLETION_NO = 1
COMPLETION_MAYBE =

These values may be specified as an enum in the typelibrary information:

typedef enum {COMPLETION_YES,
COMPLETION_NO,
COMPLETION_MAYBE } CORBA_ExceptionType;

Operations that Raise System Exceptions

As is the case for UserExceptions, system exceptions can be returned to the caller
using the optional last parameter, which is present on all mapped methods.

bstrHelpFile Unspecified

dwHelpContext Unspecified

GUID The IID of the Automation View Interface.

Table 17-2ErrorObject Usage for CORBA User Exceptions (Continued)

Property Description
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-33

17

nd

ption
tions

e

6-12.

 to
If the optional parameter is supplied and a system exception occurs, the optional
parameter is filled in with an IForeignException pointer to the pseudo-exception, a
the automation return value is S_FALSE. If no exception occurs, the optional
parameter is filled with an IForeignException pointer whose EX_majorCode
property is set to NO_EXCEPTION.

If the optional parameter is not supplied and a system exception occurs, the exce
is looked up in Table 17-3. This table maps a subset of the CORBA system excep
to semantically equivalent FACILITY_DISPATCH HRESULT values. If the exception
is on the table, the equivalent HRESULT is returned. If the exception is not on th
table, that is, if there is no semantically equivalent FACILITY_DISPATCH HRESULT,
then the exception is mapped to an HRESULT according to Table 16-3 on page 1
This new HRESULT is used as follows.

• If the operation was invoked via IDispatch::Invoke :

• The operation returns DISP_E_EXCEPTION.

• If the caller provided an EXCEPINFO, then it is filled with the scode field set
the new HRESULT value.

• If the method was called via the vtable portion of a Dual Interface:

• The OLE Error Object is filled.

• The method returns the new HRESULT.

Table 17-3CORBA Exception to COM Error Codes

CORBA Exception COM Error Codes

BAD_OPERATION DISP_E_MEMBERNOTFOUND

NO_RESPONSE DISP_E_PARAMNOTFOUND

BAD_INV_ORDER DISP_E_BADINDEX

INV_IDENT DISP_E_UNKNOWNNAME

INV_FLAG DISP_E_PARAMNOTFOUND

DATA_CONVERSION DISP_E_OVERFLOW
17-34 CORBA V2.2 February 1998

17
Table 17-4EXCEPINFO Usage for CORBA System Exceptions

Field Description

wCode Must be zero.

bstrSource <interface name>.<operation name>
where the interface and operation names are those of the
CORBA interface, which this Automation View is
representing.

bstrDescription CORBA System Exception: [<exception repository id>]
minor code [<minor code>][<completion status>]
where the <exception repository id> and <minor code> are
those of the CORBA system exception. <completion status> is
“YES,” “NO,” or “MAYBE” based upon the value of the
system exceptions’s CORBA completion status. Spaces and
square brackets are literals and must be included in the
string.

bstrHelpFile Unspecified

dwHelpContext Unspecified

pfnDeferredFillIn NULL

scode Mapped COM error code from Table 13-3 in Chapter 13B.

Table 17-5ErrorObject Usage for CORBA System Exceptions

Property Description

bstrSource <interface name>.<operation name>
where the interface and operation names are those of the
CORBA interface, which this Automation View is
representing.

bstrDescription CORBA System Exception: [<exception repository id>]
minor code [<minor code>][<completion status>]
where the <exception repository id> and <minor code> are
those of the CORBA system exception. <completion status> is
“YES,” “NO,” or “MAYBE” based upon the value of the
system exceptions’s CORBA completion status. Spaces and
square brackets are literals and must be included in the
string.

bstrHelpFile Unspecified

dwHelpContext Unspecified

GUID The IID of the Automation View Interface.
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-35

17

eudo-

nents
e is
e

quired

17.1.19 Conventions for Naming Components of the Automation View

The conventions for naming components of the Automation View are detailed
in“Naming Conventions for View Components” on page 15-29.

17.1.20 Naming Conventions for Pseudo-Structs, Pseudo-Unions, and Ps
Exceptions

The formulas used to name components of the Automation View (see “Naming
Conventions for View Components” on page 15-29) are also used to name compo
Pseudo-Structs, Pseudo-Unions, and Pseudo-Exceptions. The CORBA type nam
used as input to the formulas, just as the CORBA interface name is used as input to th
formulas when mapping interfaces.

These formulas apply to the name and IID of the Pseudo-Automation Interface, and to
the Program Id and Class Id of an object implementing the Pseudo-Automation
Interface if it is registered in the Windows System Registry.

17.1.21 Automation View Interface as a Dispatch Interface (Nondual)

In addition to implementing the Automation View Interface as an OLE Automation
Dual Interface, it is also acceptable to map it as a generic Dispatch Interface.

In this case, the normal methods and attribute accessor/assign methods are not re
to have HRESULT return values. Instead, an additional “dispinterface” is defined,
which can use the standard OLE dispatcher to dispatch invocations.

For example, a method declared in a dual interface in ODL as follows:

HRESULT aMethod([in] <type> arg1, [out] <type> arg2,
[retval, out] <return type> IT_retval)

would be declared in ODL in a dispatch interface in the following form:

<return type> aMethod([in] <type> arg1, [out] <type> arg2)

Using the example from “Mapping for Interfaces” on page 17-3:

interface account
{ // OMG IDL

attribute float balance;
readonly attri bute string owner;
void makeLodgement (in float amount, out float
balance);
void makeWithdrawal (in float amount, out float
balance);

};

the corresponding Iaccount interfaces are defined as follows.
17-36 CORBA V2.2 February 1998

17

e

-29

nt,

a

ts,
rfaces

s
[odl, uuid(e268443e-43d9-3dab-1d7e-f303bbe9642f)]
interface Iaccount: IUnknown {// ODL

void makeLodgement ([in] float amount,
[out] float balance,[out,optional]

VARIANT *excep_OBJ);
void makeWithdrawal([in] float amount,

[out] float balance,[out,optional]
VARIANT *excep_OBJ);

[propget] float balance ([retval,out] *IT_retval);
[propput] void balance ([in] float balance)
[propget] BSTR owner ([retval,out] *IT_retval);

}
[uuid(e268443e-43d9-3dab-1dbe-f303bbe9642f)]
dispinterface Daccount {

interface Iaccount;
};

A separate “dispinterface” declaration is required because Iaccount derives from
IUnknown. The dispatch interface is DIaccount. Thus, in the example used for
mapping object references in “Mapping for Object References” on page 17-16, th
reference to the Simple interface in the OMG IDL would map to a reference to
IMyModule_Simple rather than DIMyModule_Simple . The naming conventions
for Dispatch Interfaces (and for their IIDs) exposed by the View are slightly different
from Dual Interfaces. See “Naming Conventions for View Components” on page 15
for details.

The Automation View Interface must correctly respond to a QueryInterface for the
specific Dispatch Interface Id (DIID) for that View. By conforming to this requireme
the Automation View can be strongly type-checked. For example,
ITypeInfo::Invoke , when handling a parameter that is typed as a pointer to
specific DIID, calls QueryInterface on the object for that DIID to make sure the object
is of the required type.

Pseudo-Automation Interfaces representing CORBA complex types such as struc
unions, exceptions and the other noninterface constructs mapped to dispatch inte
can also be exposed as nondual dispatch interfaces.

17.1.22 Aggregation of Automation Views

COM’s implementation reuse mechanism is aggregation. Automation View object
must either be capable of being aggregated in the standard COM fashion or must
follow COM rules to indicate their inability or unwillingness to be aggregated.

The same rule applies to pseudo-objects.

17.1.23 DII and DSI

OLE Automation interfaces are inherently self-describing and may be invoked
dynamically. There is no utility in providing a mapping of the DII interfaces and
related pseudo-objects into OLE Automation interfaces.
CORBA V2.2 Mapping CORBA Objects to OLE Automation February 1998 17-37

17

 is

ts
ctory

 the
legal
e

sly

 of the

ch
17.2 Automation Objects as CORBA Objects

This problem is the reverse of exposing CORBA objects as Automation objects. It
best to solve this problem in a manner similar to the approach for exposing CORBA
objects as Automation objects.

17.2.1 Architectural Overview

We begin with ODL or type information for an Automation object, which implemen
one or more dispatch interfaces and whose server application exposes a class fa
for its COM class.

We then create a CORBA View object, which provides skeletal implementations of
operations of each of those interfaces. The CORBA View object is in every way a
CORBA object. It is not an Automation object. The skeleton is placed on the machin
where the real Automation object lives.

The CORBA View is not fully analogous to the Automation View which, as previou
explained, is used to represent a CORBA object as an Automation object. The
Automation View has to reside on the client side because COM is not distributable. A
copy of the Automation View needs to be available on every client machine.

The CORBA View, however, can live in the real CORBA object’s space and can be
represented on the client side by the CORBA system’s stub because CORBA is
distributable. Thus, only one copy of this View is required.

Note – Throughout this section, the term CORBA View is distinct from CORBA stubs
and skeletons, from COM proxies and stubs, and from Automation Views.

The CORBA View is an Automation client. Its implementations of the CORBA
operations translate parameter types and delegate to the corresponding methods
real Automation object. When a CORBA client wishes to instantiate the real
Automation object, it instantiates the CORBA View.

Thus, from the point of view of the client, it is interacting with a CORBA object whi
may be a remote object. CORBA handles all of the interprocess communication and
marshaling. No COM proxies or stubs are created.
17-38 CORBA V2.2 February 1998

17

emote
Figure 17-2 The CORBA View: a CORBA Object, which is a Client of a COM Object

17.2.2 Main Features of the Mapping

• ODL or type library information can form the input for the mapping.

• Automation properties and methods map to OMG IDL attributes and operations,
respectively.

• Automation interfaces map to OMG IDL interfaces.

• Automation basic types map to corresponding OMG IDL basic types where
possible.

• Automation errors are mapped similarly to COM errors.

17.2.3 Getting Initial Object References

The OMG Naming Service can be used to get initial references to the CORBA View
Interfaces. These interfaces may be registered as normal CORBA objects on the r
machine.

Client Space Object Space

CORBA Stub

MyInterface methods
CORBA Skeleton

MyInterface methods

CORBA Client App

Real Automation Object

IUnknown

((MyInterface *)pObj ect)->Method(...

Network

CORBA View

MyInterface methods
pUnknown->QueryInterface(DIID_MyInterface,&
pIntface->Method(...

Dual Interface DIMyInterface

ORB
CORBA V2.2 Automation Objects as CORBA Objects February 1998 17-39

17

17.2.4 Mapping for Interfaces

The mapping for an ODL interface to a CORBA View interface is straightforward.
Each interface maps to an OMG IDL interface. In general, we map all methods and
properties with the exception of the IUnknown and IDispatch methods.

For example, given the ODL interface IMyModule_account ,

[odl, dual, uuid(...)]
interface DIMyModule_account: IDispatch
{

[propget] HRESULT balance([retval,out] float * ret);
};

the following is the OMG IDL equivalent:

// OMG IDL
interface MyModule_account
{

readonly attri bute float balance;
};

If the ODL interface does not have a parameter with the [retval,out] attributes,
its return type is mapped to long. This allows COM SCODE values to be passed
through to the CORBA client.

17.2.5 Mapping for Inheritance

A hierarchy of Automation interfaces is mapped to an identical hierarchy of CORBA
View Interfaces.

For example, given the interface “account” and its derived interface
“checkingAccount” defined next,

// ODL
[odl, dual, uuid(...)]
interface DIMyModule_account: IDispatch {

[propput] HRESULT balance([in] float balance);
[propget] HRESULT balance([retval,out] float * ret);
[propget] HRESULT owner([retval,out] BSTR * ret);
HRESULT makeLodgement([in] float amount,

[out] float * balance);
HRESULT makeWithdrawal([in] float amount,

[out] float * balance);
};
interface DIMyModule_checkingAccount: DIMyModule_account {

[propget] HRESULT overdraftLimit ([retval,out]
short * ret);

HRESULT orderChequeBook([retval,out] short * ret);
};
17-40 CORBA V2.2 February 1998

17

to an
the corresponding CORBA View Interfaces are:

// OMG IDL
interface MyModule_account {

attribute float balance;
readonly attri bute string owner;
long makeLodgement (in float amount, out float

balance);
long makeWithdrawal (in f loat amount, out float

theBalance);
};
interface MyModul e_checkingAccount: MyModule_account {

readonly attri buteshort overdraftLimit;
short orderC hequeBook ();

};

17.2.6 Mapping for ODL Properties and Methods

An ODL property which has either a get/set pair or just a set method is mapped
OMG IDL attribute. An ODL property with just a get accessor is mapped to an OMG
IDL readonly attribute.

Given the ODL interface definition

// ODL
[odl, dual, uuid(...)]
interface DIaccount: IDispatch {

[propput] HRESULT balance ([in] float balance,
[propget] HRESULT balance ([retval,out] float * ret);
[propget] HRESULT owner ([retval,out] BSTR * ret);
HRESULT makeLodgement ([in] float amount,

[out] float * balance,
[optional, out] VARIANT * excep_OBJ);

HRESULT makeWithdrawal([in] float amount,
[out] float * balance,
[optional, out] VARIANT * excep_OBJ);

}

the corresponding OMG IDL interface is:

// OMG IDL
interface account {

attribute float balance;
readonly attri bute string owner;
long makeLodg ement(in float amount, out float balance);
long makeW ithdraw al(in fl oat amount, out float balance);

};

ODL [in] , [out] , and [in,out] parameters map to OMG IDL in , out, and
inout parameters, respectively. “Mapping for Basic Data Types” on page 17-9
explains the mapping for basic types.
CORBA V2.2 Automation Objects as CORBA Objects February 1998 17-41

17

s are

17.2.7 Mapping for Automation Basic Data Types

Basic Automation Types

The basic data types allowed by OLE Automation as parameters and return value
detailed in “Mapping for Basic Data Types” on page 17-9.

The formal mapping of CORBA types to Automation types is shown in Table17-6.

The Automation CURRENCY type is a 64-bit integer scaled by 10,000, giving a fixed
point number with 15 digits left of the decimal point and 4 digits to the right. The
COM::Currency type is thus defined as follows:

module COM
{

struct Currency
{

unsigned long lower;
long upper;

}
}

This mapping of the CURRENCY type is transitional and should be revised when the
extended data types revisions to OMG IDL are adopted. These revisions are slated to
include a 64-bit integer.

The Automation DATE type is an IEEE 64-bit floating-point number representing the
number of days since December 30, 1899.

Table 17-6Mapping of Automation Types to OMG IDL Types

OLE Automation Type OMG IDL Type

boolean boolean

short short

double double

float float

long long

BSTR string

CURRENCY COM::Currency

DATE double

SCODE long
17-42 CORBA V2.2 February 1998

17

n

.

pped

 is no

e,
17.2.8 Conversion Errors

An operation of a CORBA View Interface must perform bidirectional translation of the
Automation and CORBA parameters and return types. It must map from CORBA to
Automation for in parameters and from Automation to CORBA for out parameters.

When the CORBA View encounters an error condition while translating between
CORBA and Automation data types, it raises the CORBA system exception
DATA_CONVERSION.

17.2.9 Special Cases of Data Type Conversion

Translating COM::Currency to Automation CURRENCY

If the supplied COM::Currency value does not translate to a meaningful Automatio
CURRENCY value, then the CORBA View should raise the CORBA System
Exception DATA_CONVERSION.

Translating CORBA double to Automation DATE

If the CORBA double value is negative or converts to an impossible date, then the
CORBA View should raise the CORBA System Exception DATA_CONVERSION.

Translating CORBA boolean to Automation boolean and
Automation boolean to CORBA boolean

True and false values for CORBA boolean are, respectively, one and zero. True and
false values for Automation boolean are, respectively, negative one (-1) and zero
Therefore, true values need to be adjusted accordingly.

17.2.10 A Complete OMG IDL to ODL Mapping for the Basic Data Types

As previously stated, there is no requirement that the ODL code expressing the ma
Automation interface actually exist. Other equivalent expressions of Automation
interfaces, such as the contents of a Type Library, may be used. Moreover, there
requirement that OMG IDL code corresponding to the CORBA View Interface be
generated.

However, ODL is the appropriate medium for describing an Automation interface, and
OMG IDL is the appropriate medium for describing a CORBA View Interface.
Therefore, we provide the following ODL code to describe an Automation interfac
which exercises all of the Automation base data types in the roles of properties,
method [in] parameter, method [out] parameter, method [inout] parameter, and
return value. The ODL code is followed by OMG IDL code describing the CORBA
View Interface, which would result from a conformant mapping.
CORBA V2.2 Automation Objects as CORBA Objects February 1998 17-43

17
// ODL
[odl, dual, uuid(...)]
interface DIMyModule_TypesTest: IForeignObject {

[propput] HRESULT boolTest([in] short boolTest);
[propget] HRESULT boolTest([retval,out] short

*IT_retval);
[propput] HRESULT doubleTest([in] double doubleTest);
[propget] HRESULT doubleTest([retval,out] double

*IT_retval);
[propput] HRESULT floatTest([in] float floatTest);

[propget] HRESULT floatTest([retval,out] float
*IT_retval);

[propput] HRESULT longTest([in] long longTest);
[propget] HRESULT longTest([retval,out] long *IT_retval);
[propput] HRESULT shortTest([in] short shortTest);
[propget] HRESULT shortTest([retval,out] short

*IT_retval);
[propput] HRESULT stringTest([in] BSTR stringTest);
[propget] HRESULT stringTest([retval,out] BSTR

*IT_retval);
[propput] HRESULT dateTest([in] DATE stringTest);
[propget] HRESULT dateTest([retval,out] DATE *IT_retval);
[propput] HRESULT currencyTest([in] CURRENCY stringTest);
[propget] HRESULT currencyTest([retval,out] CURRENCY

*IT_retval);
[propget] HRESULT readonlyShortTest([retval,out] short

*IT_retval);
HRESULT setAll ([in] short boolTest,

[in] double doubleTest,
[in] float floatTest,
[in] long longTest,
[in] short shortTest,
[in] BSTR stringTest,
[in] DATE dateTest,
[in] CURRENCY currencyTest,
[retval,out] short * IT_retval);

HRESULT getAll ([out] short *boolTest,
[out] double *doubleTest,
[out] float *floatTest,
[out] long *longTest,
[out] short *shortTest,
[out] BSTR stringTest,
[out] DATE * dateTest,
[out] CURRENCY *currencyTest,
[retval,out] short * IT_retval);

HRESULT setAndIncrement ([in,out] short *boolTest,
[in,out] double *doubleTest,
[in,out] float *floatTest,
[in,out] long *longTest,
[in,out] short *shortTest,
[in,out] BSTR *stringTest,
17-44 CORBA V2.2 February 1998

17
[in,out] DATE * dateTest,
[in,out] CURRENCY * currencyTest,
[retval,out] short *IT_retval);

HRESULT boolReturn ([retval,out] short *IT_retval);
HRESULT doubleReturn ([retval,out] double *IT_retval);
HRESULT floatReturn ([retval,out] float *IT_retval);
HRESULT longReturn ([retval,out] long *IT_retval);
HRESULT shortReturn ([retval,out] short *IT_retval);
HRESULT stringReturn ([retval,out] BSTR *IT_retval);
HRESULT octetReturn ([retval,out] DATE *IT_retval);
HRESULT currencyReturn ([retval,out] CURRENCY

*IT_retval);
}

The corresponding OMG IDL is as follows.

// OMG IDL
interface MyModule_Ty pesTest

{
attribute boolean boolT est;
attribute double doubleT est;
attribute float floatTest;
attribute long longTest;
attribute short shortTest;
attribute string stringTest;
attribute double dateT est;
attribute COM::Currency currencyTest;

readonly attri bute short readonlyShortT est;

// Sets all the attri butes
boolean setAll (in boolean boolT est,

in double doubleTest,
in float floatTest,
in long longT est,
in short shortT est,
in string str ingTest,
in double dateT est,
in COM::Currency currencyT est);

// Gets all the attributes
boolean getAll (out boolean boolT est,

out double doubleTest,
out float floatTest,
out long longT est,
out short shortT est,
out string stringTest,
out double dateT est,
out COM::Currency currencyTest);
CORBA V2.2 Automation Objects as CORBA Objects February 1998 17-45

17
boolean setAndIncrement (
inout boolean boolT est,
inout double doubleTest,
inout float floatTest,
inout long longTest,
inout short shortT est,
inout string str ingTest,
inout double dateT est,
inout COM::Currency cur rencyTest);

boolean boolReturn ();
double doubleReturn();
float f loatReturn();
long longReturn ();
short shortReturn ();
string str ingReturn();
double dateReturn ();
COM::CurrencycurrencyReturn();

}; // End of Interface T ypesTest

17.2.11 Mapping for Object References

The mapping of an object reference as a parameter or return value can be fully
expressed by the following OMG IDL and ODL code. The ODL code defines an
interface “Simple” and another interface that references Simple as an in parameter, an
out parameter, an inout parameter, and as a return value. The OMG IDL code
describes the CORBA View Interface that results from a proper mapping.

// ODL
[odl, dual, uuid(...)]
interface DIMyModule_Simple: IDispatch
{

[propget] HRESULT shortTest([retval, out]
short * IT_retval);

[propput] HRESULT shortTest([in] short sshortTest);
}

[odl, dual, uuid(...)]
interface DIMyModule_ObjRefTest: IDispatch
{

[propget] HRESULT simpleTest([retval, out]
DIMyModule_Simple ** IT_retval);

[propput] HRESULT simpleTest([in] DIMyModule_Simple
*pSimpleTest);

HRESULT simpleOp([in] DIMyModule_Simple *inTest,
[out] DIMyModule_Simple **outTest,
[in,out]DIMyModule_Simple **inoutTest,
[retval, out] DIMyModule_Simple **IT_retval);

}

17-46 CORBA V2.2 February 1998

17
The OMG IDL code for the CORBA View Dispatch Interface is as follows.

// OMG IDL
// A simple object we can use for testing object refere nces
interface MyModule_Simple
{

attribute short shortTest;
};

interface MyModule_ObjRefTest
{

attribute MyModule_Simple simpleTest;
MyModule_Simple simpleOp(in MyModule_Simple inTest,
 out MyModule_Simple outTest,
 inout MyModule_Simple inoutT est);

};

17.2.12 Mapping for Enumerated Types

ODL enumerated types are mapped to OMG IDL enums; for example:

// ODL
typedef enum MyModule_color {red, green, blue};

[odl,dual,uuid(...)]
interface DIMyModule_foo: IDispatch {

HRESULT op1([in] MyModule_color col);
}

// OMG IDL
module COM {

enum MyModule_color {red, green, blue};
interfacefoo: COM::CORBA_View {

long op1(in MyModule_color col);
};

};

17.2.13 Mapping for SafeArrays

Automation SafeArrays should be mapped to CORBA unbounded sequences.

A method of the CORBA View Interface, which has a SafeArray as a parameter, will
have the knowledge to handle the parameter properly.

When SafeArrays are in parameters, the View method uses the Safearray API to
dynamically repackage the SafeArray as a CORBA sequence. When arrays are out
parameters, the View method uses the Safearray API to dynamically repackage the
CORBA sequence as a SafeArray.
CORBA V2.2 Automation Objects as CORBA Objects February 1998 17-47

17

lable
.

ns.

e
 is as

n

 on

Multidimensional SafeArrays

SafeArrays are allowed to have more than one dimension. However, the bounding
information for each dimension, and indeed the number of dimensions, is not avai
in the static typelibrary information or ODL definition. It is only available at run-time

For this reason, SafeArrays, which have more than one dimension, are mapped to an
identical linear format and then to a sequence in the normal way.

This linearization of the multidimensional SafeArray should be carried out as follows:

• The number of elements in the linear sequence is the product of the dimensio

• The position of each element is deterministic; for a SafeArray with dimensions d0,
d1, d2, the location of an element [p0][p1][p2] is defined as:

pos[p0][p1][p2] = p0*d1*d2 + p1*d2 + p2

Consider the following example: SafeArray with dimensions 5, 8, 9.

This maps to a linear sequence with a run-time bound of 5 * 8 * 9 = 360. This gives us
valid offsets 0-359. In this example, the real offset to the element at location [4][5][1]
is 4*8*9 + 5*9 + 1 = 334.

17.2.14 Mapping for Typedefs

ODL typedefs map directly to OMG IDL typedefs. The only exception to this is th
case of an ODL enum, which is required to be a typedef. In this case the mapping
per “Mapping for Enumerated Types” on page 17-18.

17.2.15 Mapping for VARIANTs

The VARIANT data type maps to a CORBA any. If the VARIANT contains a DATE
or CURRENCY element, these are mapped as per “Mapping for Automation Basic
Data Types” on page 17-42.

17.2.16 Mapping Automation Exceptions to CORBA

There are several ways in which an HRESULT (or SCODE) can be obtained by a
Automation client such as the CORBA View. These ways differ based on the signature
of the method and the behavior of the server. For example, for vtable invocations
dual interfaces, the HRESULT is the return value of the method. For
IDispatch::Invoke invocations, the significant HRESULT may be the return
value from Invoke, or may be in the EXCEPINFO parameter’s SCODE field.

Regardless of how the HRESULT is obtained by the CORBA View, the mapping of the
HRESULT is the exactly the same as for COM to CORBA (see Mapping for COM
Errors under “Interface Mapping” on page 16-11. The View raises either a standard
CORBA system exception or the COM_HRESULT user exception.
17-48 CORBA V2.2 February 1998

17

as a

f it
hat no

n

_OK

as

alue

ting

this

licit
hods
CORBA Views must supply an EXCEPINFO parameter when making
IDispatch::Invoke invocations to take advantage of servers using EXCEPINFO.
Servers do not use the EXCEPINFO parameter if it is passed to Invoke as NULL.

An Automation method with an HRESULT return value and an argument marked
[retval] maps to an IDL method whose return value is mapped from the
[retval] argument. This situation is common in dual interfaces and means that
there is no HRESULT available to the CORBA client. It would seem on the face o
that there is a problem mapping S_FALSE scodes in this case because the fact t
system exception was generated means that the HRESULT on the vtable method could
have been either S_OK or S_FALSE. However, this should not truly be a problem. A
method in a dual interface should never attach semantic meaning to the distinctio
between S_OK and S_FALSE because a Visual Basic program acting as a client would
never be able to determine whether the return value from the actual method was S
or S_FALSE.

An Automation method with an HRESULT return value and no argument marked
[retval] maps to a CORBA interface with a long return value. The long HRESULT
returned by the original Automation operation is passed back as the long return v
from the CORBA operation.

17.3 Older OLE Automation Controllers

This section provides some solutions that vendors might implement to support exis
and older OLE Automation controllers. These solutions are suggestions; they are
strictly optional.

17.3.1 Mapping for OMG IDL Arrays and Sequences to Collections

Some OLE Automation controllers do not support the use of SAFEARRAYs. For
reason, arrays and sequences can also be mapped to OLE collection objects.

A collection object allows generic iteration over its elements. While there is no exp
ICollection type interface, OLE does specify guidelines on the properties and met
a collection interface should export.

// ODL
[odl, dual, uuid(...)]
interface DICollection: IDispatch {

[propget] HRESULT Count([retval,out] long * count);
[propget, id(DISPID_VALUE)] HRESULT Item([in] long index,

 [retval,out] VARIANT * retval);
[propput, id(DISPID_VALUE)] HRESULT Item([in] long index,

 [in] VARIANT val);
[propget, id(NEW_ENUM)] HRESULT _NewEnum(

 [retval, out] IEnumVARIANT * newEnum);
}

CORBA V2.2 Older OLE Automation Controllers February 1998 17-49

17

e

od
The UUID for DICollection is:

{A8B553C9-3B72-11cf-BBFC-444553540000}

This interface can also be implemented as generic (nondual) Automation Interface, in
which case it is named DCollection and its UUID is:

{E977F909-3B75-11cf-BBFC-444553540000}

In controller scripting languages such as VBA in MS-Excel, the FOR...EACH language
construct can automatically iterate over a collection object such as that previously
described.

‘ Visual Basic:
Dim doc as Object
For Each doc in DocumentCollection
doc.Visible = False
Next doc

The specification of DISPID_VALUE as the id() for the Item property means that
access code like the following is possible.

‘ Visual Basic:
Dim docs as Object
Set docs = SomeCollection

docs(4).Visible = False

Multidimensional arrays can be mapped to collections of collections with access code
similar to the following.

‘ Visual Basic
Set docs = SomeCollection

docs.Item(4).Item(5).Visible = False

If the Collection mapping for OMG IDL Arrays and Sequences is chosen, then th
signatures for operations accepting SAFEARRAYs should be modified to accept a
VARIANT instead. In addition, the implementation code for the View wrapper meth
should detect the kind of object being passed.

17.4 Example Mappings

17.4.1 Mapping the OMG Naming Service to OLE Automation

This section provides an example of how a standard OMG Object Service, the Naming
Service, would be mapped according to the Interworking specification.
17-50 CORBA V2.2 February 1998

17

. A

 on

s
The Naming Service provides a standard service for CORBA applications to obtain
object references. The reference for the Naming Service is found by using the
resolve_initial_references() method provided on the ORB pseudo-
interface:

CORBA::ORB_ptr theORB = CORBA::ORB_init(ar gc, argv,
CORBA::ORBid, ev)
CORBA: :Object_var obj =

theORB->resolve_initial_references(“NameService”, ev);
CosNaming::NamingContext_var inital_nc_ref =

CosNaming::NamingContext::_narrow(obj,ev);
CosNaming::Name factory_name;
factory_name.length(1);
factory_name[0].id = “myFactory”;
factory_name[0].kind = ““;
CORBA: :Object_var objref = initial_nc_ref->resolve(factory_name, ev);

The Naming Service interface can be directly mapped to an equivalent OLE
Automation interface using the mapping rules contained in the rest of this section
direct mapping would result in code from VisualBasic that appears as follows.

Dim CORBA as Object
Dim ORB as Object
Dim NamingContext as Object
Dim NameSequence as Object
Dim Target as Object

Set CORBA=GetObject(“CORBA.ORB”)
Set ORB=CORBA.init(“default”)
Set NamingContext = ORB.resolve_initial_reference(“Naming-
Service”)
Set NameSequence=NamingContext.create_type(“Name”)
ReDim NameSequence as Object(1)
NameSequence[0].name = “myFactory”
NameSequence[0].kind = ““
Set Target=NamingContext.resolve(NameSequence)

17.4.2 Mapping a COM Service to OMG IDL

This section provides an example of mapping a Microsoft IDL-described set of
interfaces to an equivalent set of OMG IDL-described interfaces. The interface is
mapped according to the rules provided in “COM to CORBA Data Type Mapping”
page 16-32 in the Mapping Com and CORBA chapter. The example chosen is the
COM ConnectionPoint set of interfaces. The ConnectionPoint service is commonly
used for supporting event notification in OLE custom controls (OCXs). The service i
a more general version of the IDataObject/IAdviseSink interfaces.
CORBA V2.2 Example Mappings February 1998 17-51

17

 on
The ConnectionPoint service is defined by four interfaces, described in Table 17-9
page 17-52.

For purposes of this example, we describe these interfaces in Microsoft IDL. The
IConnectionPointContainer interface is shown next.

// Microsoft IDL
interface IConnectionPoint;
interface IEnumConnectionPoints;
typedef struct {

 unsigned long Data1;
 unsigned short Data2;
 unsigned short Data3;
 unsigned char Data4[8];

} REFIID;
[object, uuid(B196B284-BAB4-101A-B69C-00AA00241D07),

pointer_default(unique)]
interface IConnectionPointContainer: IUnknown

{
HRESULT EnumConnectionPoints ([out] IEnumConnectionPoints

**pEnum);
HRESULT FindConnectionPoint([in] REFIID iid, [out]

IConnectionPoint **cp);
};
MIDL definition for IConnectionPointContainer

This IConnectionPointContainer interface would correspond to the OMG IDL interface
shown next.

Table 17-9Interfaces of the ConnectionPoint Service

IConnectionPointContaine
r

Used by a client to acquire a reference to one or
more of an object’s notification interfaces

IConnectionPoint Used to establish and maintain notification
connections

IEnumConnectionPoints An iterator over a set of IConnectionPoint
references

IEnumConnections Used to iterate over the connections currently
associated with a ConnectionPoint
17-52 CORBA V2.2 February 1998

17
// OMG IDL
interface IConnectionPoint;
interface IE numConnect ionPoints;
struct REFIID {
unsigned long Data1;
unsigned short Data2;
unsigned short Data3;
unsigned char Data4[8];
};
interface IConnectionPointContainer: CORBA::Composi te,
CosLifeCycle: :LifeCycleObject

{
HRESULT EnumConnectionPoints (out IEnumConnectionPoints

pEnum) r aises (COM_HRESULT);
HRESULT FindConnectionPoint(in REFIID iid, out

IConnect ionPoint cp) raises (COM_HRESULT);
#pragma ID IConnectionPointContainer =‘‘DCE:B 196B284-BAB4-

101A-B69C-00AA00241D07”;
};

Similarly, the forward declared ConnectionPoint interface shown next is remapped to
the OMG IDL definition shown in the second following example.

// Microsoft IDL
interface IEnumConnections;
[object, uuid(B196B286-BAB4-101A-B69C-00AA00241D07),

pointer_default(unique)]
interface IConnectionPoint: IUnknown

{
HRESULT GetConnectionInterface([out] IID *pIID);
HRESULT GetConnectionPointContainer([out]

IConnectionPointContainer **ppCPC);
HRESULT Advise([in] IUnknown *pUnkSink, [out] DWORD

*pdwCookie);
HRESULT Unadvise(in DWORD dwCookie);
HRESULT EnumConnections([out] IEnumConnections **ppEnum);

};

// OMG IDL
interface IE numConnections;
interface IConnectionPoint:: CORBA::Composite,

CosLifeCycle: :LifeCycleObject
{

CORBA V2.2 Example Mappings February 1998 17-53

17
HRESULT GetConnect ionInterface(out IID pIID)
raises (COM_HRESULT);

HRESULT GetConnectionPointC ontainer
(out IConn ectionPo intContainer pCPC)
raises (COM_HRESULT);

HRESULT Advise(in IUnknown pUnkSink, out DWORD pdwCookie)
raises (COM_HRESULT);

HRESULT Unadvise(in DWORD dwCookie)
raises (COM_HRESULT);

HRESULT EnumConnect ions(out IEnumConnections ppEnum)
raises (COM_HRESULT);

#pragma ID IConnectionPoint = “DCE:B 196B286-BAB4-101A-B69C-
00AA00241D 07”;
};

Finally, the MIDL definition for IEnumConnectionPoints and IEnum Connections
interfaces are shown next.

typedef struct tagCONNECTDATA {
IUnknown * pUnk;
DWORD dwCookie;

} CONNECTDATA;

[object, uuid(B196B285-BAB4-101A-B69C-00AA00241D07),
pointer_default(unique)]

interface IEnumConnectionPoints: IUnknown
{

HRESULT Next([in] unsigned long cConnections,
 [out] IConnectionPoint **rcpcn,
 [out] unsigned long *lpcFetched);

HRESULT Skip([in] unsigned long cConnections);
HRESULT Reset();
HRESULT Clone([out] IEnumConnectionPoints **pEnumval);

};
[object, uuid(B196B287-BAB4-101A-B69C-00AA00241D07),

pointer_default(unique)]
interface IEnumConnections: IUnknown
{

HRESULT Next([in] unsigned long cConnections,
 [out] IConnectionData **rcpcn,
 [out] unsigned long *lpcFetched);

HRESULT Skip([in] unsigned long cConnections);
HRESULT Reset();
HRESULT Clone([out] IEnumConnections **pEnumval);

};

The corresponding OMG IDL definition for EnumConnectionPoints and
EnumConnections is shown next:
17-54 CORBA V2.2 February 1998

17

g
struct CONNECTDATA {
IUnknown * pUnk;
DWORD dwCookie;

};
interface IE numConnect ionPoints: CORBA::Composi te,
CosLifeCycle: :LifeCycleObject
{

HRESULT Next(in unsigned long cConnections,
out IConnectionPoint r cpcn,
out unsigned long lpcFetched) raises (CO M_HRESULT);

HRESULT Skip(in unsigned long cC onnect ions) raises
(COM_HRESULT);

HRESULT Reset() raises (CO M_HRESULT);
HRESULT Clone(out IEnumConn ectionPoints p Enumval)

raises(COM_HRESULT)
#pragma ID IEnumConnectionPoints =

“DCE:B196B285-BAB4-101A-B69C-00AA00241D 07”;

};

interface IE numConnections: CORBA::Composi te,
CosLifeCycle: :LifeCycleObject

{
HRESULT Next(in unsigned long cConnections,

 out IConnectData rgcd,
out unsigned long lpcFetched) raises (CO M_HRESULT);

HRESULT Skip(in unsigned long cC onnect ions) raises
(COM_HRESULT);

HRESULT Reset() raises (CO M_HRESULT);
HRESULT Clone(out IEnumConn ectionPoints p EnumVal) raises

(COM_HRESULT);
#pragma ID IEnumConnections =

“DCE:B196B287-BAB4-101A-B69C-00AA00241D 07”;
};

17.4.3 Mapping an OMG Object Service to OLE Automation

This section provides an example of mapping an OMG-defined interface to an
equivalent OLE Automation interface. This example is based on the OMG Namin
Service and follows the mapping rules from the Mapping: OLE Automation and
CORBA chapter. The Naming Service is defined by two interfaces and some associated
CORBA V2.2 Example Mappings February 1998 17-55

17

ns.
types, which are scoped in the OMG IDL CosNaming module.

Microsoft ODL does not explicitly support the notions of modules or scoping domai
To avoid name conflicts, all types defined in the scoping space of CosNaming are
expanded to global names.

The data type portion (interfaces excluded) of the CosNaming interface is shown next.

// OMG IDL
module CosNaming{

typedef string Istring;
struct NameComponent {
Istring id;
Istring kind;

};
typedef sequence <NameComponent> Name;
enum BindingType { nobject, ncontext };
struct Binding {

Name binding_name;
BindingType binding_type;

};
typedef sequence <Binding> BindingList;
interface BindingIterator;
interface NamingContext;
// ...

}

The corresponding portion (interfaces excluded) of the Microsoft ODL interface is
shown next.

Table 17-10 Interfaces of the OMG Naming Service

Interface Description

CosNaming::NamingContext Used by a client to establish the name space
in which new associations between names
and object references can be created, and to
retrieve an object reference that has been
associated with a given name.

CosNaming::BindingIterator Used by a client to walk a list of registered
names that exist within a naming context.
17-56 CORBA V2.2 February 1998

17

s
[uuid(a1789c86-1b2c-11cf-9884-08000970dac7)] // from COMID
association
 library CosNaming
 {

importlib(“stdole32.tlb”);
importlib(“corba.tlb”); / for standard CORBA types
typedef CORBA_string CosNaming_Istring;
[uuid((04b8a791-338c-afcf-1dec-cf2733995279), help-

string(“struct NameComponent”),
oleautomation, dual]

interface CosNaming_NameComponent: ICORBAStruct {
[propget] HRESULT id([out, retval]CosNaming_Istring

**val);
[propput] HRESULT id([in]CosNaming_IString* val);
[propget] HRESULT kind([out, retval]CosNaming_Istring
** val);
[propget] HRESULT kind([in]CosNaming_Istring *val);

};
define Name SAFEARRAY(CosNaming_NameComponent *)

// typedef doesn’t work
typedef enum { [helpstring(“nobject”)]nobject,

[helpstring(“ncontext”)]ncontext
} CosNaming_BindingType;
#define CosNaming_BindingList SAFEARRAY(CosNaming_Binding *)

[uuid(58fbe618-2d20-d19f-1dc2-560cc6195add),
helpstring(“struct Binding”),
oleautomation, dual]

interface DICosNaming_Binding: ICORBAStruct {
[propget] HRESULT binding_name([retval, out]

CosNaming_IString ** val);
[propput] HRESULT binding_name([in]

CosNaming_IString * vall);
[propget] HRESULT binding_type([retval, out]

CosNaming_BindingType *val);
[propset] HRESULT binding_type([in]

CosNaming_BindingType val);
};
#define CosNaming_BindingList SAFEARRAY(CosNaming_Binding)

interface DICosNaming_BindingIterator;
interface DICosNaming_NamingContext;
// ...

};

The types scoped in an OMG IDL interface are also expanded using the notation
[<modulename>_]*[<interfacename>_]typename. Thus the types defined within the
CosNaming::NamingContext interface (shown next) are expanded in Microsoft ODL a
shown in the second following example.

module CosNaming{
// ...

interface NamingContext
CORBA V2.2 Example Mappings February 1998 17-57

17
{
enum NotFoun dReason { missing_ node, not_context,
not_object };
exception NotFound {

NotFoundR eason why;
Name rest_of_name;

};
exception C annotProceed {

NamingContext cxt;
Name rest_of_name;

};
exception InvalidName {};
exception AlreadyB ound {};
exception NotEmpty {};
void bind(in Name n, in Object obj)

raises(NotFou nd, CannotProceed, Inv alidName,
AlreadyBound);

void rebind(in Name n, in Object obj)
raises(NotFou nd, CannotProceed, Inv alidName);

void bind_cont ext(in Name n, in Namin gCont ext nc)
raises(NotFou nd, CannotProceed, Inv alidName,
AlreadyBound);

void rebin d_cont ext(in Name n, in NamingContext nc)
raises(NotFou nd, CannotProceed, Inv alidName);

Object resolve(in Name n)
raises(NotFou nd, CannotProceed, Inv alidName);

void unbind(in Name n)
raises(NotFou nd, CannotProceed, Inv alidName);

NamingContext new_context();
NamingContext bind_new_context (in Name n)

raises(NotFou nd, Al readyBound, CannotProc eed, InvalidName);
void destroy()

raises(NotEmpty);
void list(in unsigned long how_many,

out BindingList bl, out BindingIterator bi);
};

// ...
};

[uuid(d5991293-3e9f-0e16-1d72-7858c85798d1)]
library CosNaming
 {// ...

interface DICosNaming_NamingContext;
[uuid(311089b4-8f88-30f6-1dfb-9ae72ca5b337),

helpstring(“exception NotFound”),
oleautomation, dual]

 interface DICosNaming_NamingContext_NotFound:
ICORBAException {
[propget] HRESULT why([out, retval] long* _val);
[propput] HRESULT why([in] long _val);
[propget] HRESULT rest_of_name([out, retval]
17-58 CORBA V2.2 February 1998

17
CosNaming_Name ** _val);
[propput] HRESULT rest_of_name([in] CosNaming_Name

* _val);
};

[uuid(d2fc8748-3650-cedd-1df6-026237b92940),
helpstring(“exception CannotProceed”),
oleautomation, dual]

interface DICosNaming_NamingContext_CannotProceed:
DICORBAException{

[propget] HRESULT cxt([out, retval]
DICosNaming_NamingContext ** _val);

[propput] HRESULT cxt([in] DICosNaming_NamingContext
* _val);

[propget] HRESULT rest_of_name([out, retval]
CosNaming_Name ** _val);

[propput] HRESULT rest_of_name([in] CosNaming_Name *
_val);
};

[uuid(7edaca7a-c123-42a1-1dca-a7e317aafe69),
helpstring(“exception InvalidName”),
oleautomation, dual]

interface DICosNaming_NamingContext_InvalidName:
DICORBAException {};

[uuid(fee85a90-1f6b-c47a-1dd0-f1a2fc1ab67f),
helpstring(“exception AlreadyBound”),
oleautomation, dual]

interface DICosNaming_NamingContext_AlreadyBound:
DICORBAException {};

[uuid(8129b3e1-16cf-86fc-1de4-b3080e6184c3),
helpstring(“exception NotEmpty”),
oleautomation, dual]

interface CosNaming_NamingContext_NotEmpty:
DICORBAException {};

typedef enum {[helpstring(“missing_node”)]
NamingContext_missing_node,

[helpstring(“not_context”) NamingContext_not_context,
[helpstring(“not_object”) NamingContext_not_object

} CosNaming_NamingContext_NotFoundReason;
[uuid(4bc122ed-f9a8-60d4-1dfb-0ff1dc65b39a),

helpstring(“NamingContext”),
oleautomation,dual]

interface DICosNaming_NamingContext {
HRESULT bind([in] CosNaming_Name * n, [in] IDispatch *

obj,
[out, optional] VARIANT * _user_exception);

HRESULT rebind([in] CosNaming_Name * n, in] IDispatch *
obj,

[out, optional] VARIANT * _user_exception);
HRESULT bind_context([in] CosNaming_Name * n,

[in] DICosNaming_NamingContext * nc,
[out, optional] VARIANT * _user_exception);
CORBA V2.2 Example Mappings February 1998 17-59

17
HRESULT rebind_context([in] CosNaming_Name * n,
[in] DICosNaming_NamingContext * nc,
[out, optional] VARIANT * _user_exception);

HRESULT resolve([in] CosNaming_Name * n,
[out, retval] IDispatch** pResult,
[out, optional] VARIANT * _user_exception)

HRESULT unbind([in] CosNaming_Name * n,
[out, optional] VARIANT * _user_exception);

HRESULT new_context([out, retval]
DICosNaming_NamingContext ** pResult);

HRESULT bind_new_context([in] CosNaming_Name * n,
[out, retval] DICosNaming_NamingContext ** pResult,
[out, optional] VARIANT * _user_exception);

HRESULT destroy([out, optional] VARIANT*
_user_exception);

HRESULT list([in] unsigned long how_many, [out]
CosNaming_BindingList ** bl,

[out] DICosNaming_BindingIterator ** bi);
};

};

The BindingIterator interface is mapped in a similar manner, as shown in the next two
examples.

module CosNaming {
//...
interface BindingIterator {
boolean next_one(out Binding b);
boolean next_n(in unsigned long how_many,
out BindingList bl);
void destroy();
};

};

[uuid(a1789c86-1b2c-11cf-9884-08000970dac7)]
library CosNaming
 {// ...

[uuid(5fb41e3b-652b-0b24-1dcc-a05c95edf9d3),
help string(“BindingIterator”),

 helpcontext(1), oleautomation, dual]
interface DICosNaming_IBindingIterator: IDispatch {

HRESULT next_one([out] DICosNaming_Binding ** b,
[out, retval] boolean* pResult);

HRESULT next_n([in] unsigned long how_many,
[out] CosNaming_BindingList ** bl,
[out, retval] boolean* pResult);

HRESULT destroy();
};

}

17-60 CORBA V2.2 February 1998

	Mapping: OLE Automation and CORBA
	17.1 Mapping CORBA Objects to OLE Automation
	17.1.1 Architectural Overview
	17.1.2 Main Features of the Mapping
	17.1.3 Mapping for Interfaces
	17.1.4 Mapping for Basic Data Types
	17.1.5 Special Cases of Basic Data Type Mapping
	17.1.6 Mapping for Strings
	17.1.7 A Complete IDL to ODL Mapping for the Basic Data Types
	17.1.8 Mapping for Object References
	17.1.9 Mapping for Enumerated Types
	17.1.10 Mapping for Arrays and Sequences
	17.1.11 Mapping for CORBA Complex Types
	17.1.12 Mapping for TypeCodes
	17.1.13 Mapping for anys
	17.1.14 Mapping for Typedefs
	17.1.15 Mapping for Constants
	17.1.16 Getting Initial CORBA Object References
	17.1.17 Creating Initial in Parameters for Complex Types
	17.1.18 Mapping CORBA Exceptions to Automation Exceptions
	17.1.19 Conventions for Naming Components of the Automation View
	17.1.20 Naming Conventions for Pseudo-Structs, Pseudo-Unions, and Pseudo- Exceptions
	17.1.21 Automation View Interface as a Dispatch Interface (Nondual)
	17.1.22 Aggregation of Automation Views
	17.1.23 DII and DSI

	17.2 Automation Objects as CORBA Objects
	17.2.1 Architectural Overview
	17.2.2 Main Features of the Mapping
	17.2.3 Getting Initial Object References
	17.2.4 Mapping for Interfaces
	17.2.5 Mapping for Inheritance
	17.2.6 Mapping for ODL Properties and Methods
	17.2.7 Mapping for Automation Basic Data Types
	17.2.8 Conversion Errors
	17.2.9 Special Cases of Data Type Conversion
	17.2.10 A Complete OMG IDL to ODL Mapping for the Basic Data Types
	17.2.11 Mapping for Object References
	17.2.12 Mapping for Enumerated Types
	17.2.13 Mapping for SafeArrays
	17.2.14 Mapping for Typedefs
	17.2.15 Mapping for VARIANTs
	17.2.16 Mapping Automation Exceptions to CORBA

	17.3 Older OLE Automation Controllers
	17.3.1 Mapping for OMG IDL Arrays and Sequences to Collections

	17.4 Example Mappings
	17.4.1 Mapping the OMG Naming Service to OLE Automation
	17.4.2 Mapping a COM Service to OMG IDL
	17.4.3 Mapping an OMG Object Service to OLE Automation

