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CORBA is independent of the programming language used to construct clients and 
implementations. In order to use the ORB, it is necessary for programmers to know 
how to access ORB functionality from their programming languages. This chapte
defines the mapping of OMG IDL constructs to the C programming language. 

Contents

This chapter contains the following sections. 

Section Title Page

“Requirements for a Language Mapping” 19-2

“Scoped Names” 19-5

“Mapping for Interfaces” 19-6

“Inheritance and Operation Names” 19-8

“Mapping for Attributes” 19-8

“Mapping for Constants” 19-10

“Mapping for Basic Data Types” 19-10

“Mapping Considerations for Constructed Types” 19-11

“Mapping for Structure Types” 19-12

“Mapping for Union Types” 19-12

“Mapping for Sequence Types” 19-13

“Mapping for Strings” 19-16

“Mapping for Wide Strings” 19-18
                                 CORBA V2.2                                 February 1998 19-1



19

 

and 

 

19.1 Requirements for a Language Mapping

All language mappings have approximately the same structure. They must define the 
means of expressing in the language:

• All OMG IDL basic data types 

• All OMG IDL constructed data types 

• References to constants defined in OMG IDL 

• References to objects defined in OMG IDL 

• Invocations of operations, including passing parameters and receiving results

• Exceptions, including what happens when an operation raises an exception 
how the exception parameters are accessed 

• Access to attributes 

• Signatures for the operations defined by the ORB, such as the dynamic invocation
interface, the object adapters, and so forth.

A complete language mapping will allow a programmer to have access to all ORB 
functionality in a way that is convenient for the particular programming language. To 
support source portability, all ORB implementations must support the same mapping 
for a particular language.
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19.1.1 Basic Data Types

A language mapping must define the means of expressing all of the data types defined 
in “Basic Types” on page 3-23. The ORB defines the range of values supported, bu
language mapping defines how a programmer sees those values. For example, the C
mapping might define TRUE as 1 and FALSE as 0, whereas the LISP mapping m
define TRUE as T and FALSE as NIL. The mapping must specify the means to 
construct and operate on these data types in the programming language.

19.1.2 Constructed Data Types

A language mapping must define the means of expressing the constructed data typ
defined in “Constructed Types” on page 3-25. The ORB defines aggregates of ba
data types that are supported, but the language mapping defines how a programmer 
sees those aggregates. For example, the C mapping might define an OMG IDL str
a C struct, whereas the LISP mapping might define an OMG IDL struct as a list. The
mapping must specify the means to construct and operate on these data types in the
programming language. 

19.1.3 Constants

OMG IDL definitions may contain named constant values that are useful as param
for certain operations. The language mapping should provide the means to access
constants by name.

19.1.4 Objects

There are two parts of defining the mapping of ORB objects to a particular language. 
The first specifies how an object is represented in the program and passed as a 
parameter to operations. The second is how an object is invoked. The representation of 
an object reference in a particular language is generally opaque, that is, some 
language-specific data type is used to represent the object reference, but the program 
does not interpret the values of that type. The language-specific representation is 
independent of the ORB representation of an object reference, so that programs a
ORB-dependent. In an object-oriented programming language, it may be convenie
represent an ORB object as a programming language object. Any correspondence 
between the programming language object types and the OMG IDL types includin
inheritance, operation names, etc., is up to the language mapping. 

There are only three uses that a program can make of an object reference: it ma
specify it as a parameter to an operation (including receiving it as an output 
parameter), it can invoke an operation on it, or it can perform an ORB operation 
(including object adapter operations) on it.
CORBA V2.2       Requirements for a Language Mapping         February 1998 19-3
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19.1.5 Invocation of Operations

An operation invocation requires the specification of the object to be invoked, the
operation to be performed, and the parameters to be supplied. There are a variety of 
possible mappings, depending to a large extent on the procedure mechanism in 
particular language. Some possible choices for language mapping of invocation 
include: interface-specific stub routines, a single general-purpose routine, a set of
to construct a parameter list and initiate the operation, or mapping ORB operations t
operations on objects defined in an object-oriented programming language.

The mapping must define how parameters are associated with the call, and how th
operation name is specified. It is also necessary to specify the effect of the call o
flow of control in the program, including when an operation completes normally and 
when an exception is raised.

The most natural mapping would be to model a call on an ORB object as the 
corresponding call in the particular language. However, this may not always be 
possible for languages where the type system or call mechanism is not powerful 
enough to handle ORB objects. In this case, multiple calls may be required. For 
example, in C, it is necessary to have a separate interface for dynamic construction of 
calls, since C does not permit discovery of new types at runtime. In LISP, however, it
may be possible to make a language mapping that is the same for objects wheth
not they were known at compile time.

In addition to defining how an operation is expressed, it is necessary to specify the
storage allocation policy for parameters, for example, what happens to storage of 
parameters, and how and where output parameters are allocated. It is also necessar
describe how a return value is handled, for operations that have one.

19.1.6 Exceptions

There are two aspects to the mapping of exceptions into a particular language. F
the means for handling an exception when it occurs, including deciding which 
exception occurred. If the programming language has a model of exceptions that can
accommodate ORB exceptions, that would likely be the most convenient choice; 
does not, some other means must be used, for example, passing additional para
to the operations that receive the exception status.

It is commonly the case that the programmer associates specific code to handle each 
kind of exception. It is desirable to make that association as convenient as possib

Second, when an exception has been raised, it must be possible to access the 
parameters of the exception. If the language exception mechanism allows for 
parameters, that mechanism could be used. Otherwise, some other means of ob
the exception values must be provided.
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19.1.7 Attributes

The ORB models attributes as a pair of operations, one to set and one to get the 
attribute value. The language mapping defines the means of expressing these 
operations. One reason for distinguishing attributes from pairs of operations is to allow 
the language mapping to define the most natural way for accessing them. Some 
possible choices include defining two operations for each attribute, defining two 
operations that can set or get, respectively, any attribute, defining operations that can 
set or get groups of attributes, and so forth.

19.1.8 ORB Interfaces

Most of a language mapping is concerned with how the programmer-defined objects 
and data are accessed. Programmers who use the ORB must also access some 
interfaces implemented directly by the ORB, for example, to convert an object 
reference to a string. A language mapping must also specify how these interfaces 
appear in the particular programming language.

Various approaches may be taken, including defining a set of library routines, allow
additional ORB-related operations on objects, or defining interfaces that are simil
the language mapping for ordinary objects.

The last approach is called defining pseudo-objects. A pseudo-object has an interfa
that can (with a few exceptions) be defined in IDL, but is not necessarily impleme
as an ORB object. Using stubs a client of a pseudo-object writes calls to it in the same 
way as if it were an ordinary object. Pseudo-object operations cannot be invoked with 
the Dynamic Invocation Interface. However, the ORB may recognize such calls as 
special and handle them directly. One advantage of pseudo-objects is that the inte
can be expressed in IDL independent of the particular language mapping, and th
programmer can understand how to write calls by knowing the language mapping for 
the invocations of ordinary objects.

It is not necessary for a language mapping to use the pseudo-object approach. 
However, this document defines interfaces in subsequent chapters using OMG ID
wherever possible. A language mapping must define how these interfaces are acc
either by defining them as pseudo-objects and supporting a mapping similar to 
ordinary objects, by defining language-specific interfaces for them, or in some oth
way.

19.2 Scoped Names

The C programmer must always use the global name for a type, constant, exceptio
operation. The C global name corresponding to an OMG IDL global name is deriv
by converting occurrences of “:: ” to “_” (an underscore) and eliminating the leading 
underscore.
CORBA V2.2       Scoped Names         February 1998 19-5
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Consider the following example:

// IDL
typedef string<256> filename_t;
interface example0 {

enum color {red, green, blue};
union bar switch (enum foo {room, bell}) { ... };
• • •

};

Code to use this interface would look as follows:

/* C */
#include "example0.h"

filename_t FN;
example0_color C = example0_red;
example0_bar myUnion;

switch (myUnion._d) {
case example0_bar_room: • • •
case example0_bar_bell: • • •

};

Note that the use of underscores to replace the “:: ” separators can lead to ambiguity if
the OMG IDL specification contains identifiers with underscores in them. Consider
following example:

// IDL
typedef long foo_bar;
interface foo {

typedef short bar; /* A legal OMG IDL stat ement,
but ambiguous in C */
• • •

};

Due to such ambiguities, it is advisable to avoid the indiscriminate use of underscores 
in identifiers.

19.3 Mapping for Interfaces

All interfaces must be defined at global scope (no nested interfaces). The mapping for 
an interface declaration is as follows:

// IDL
interface example1 {

long op1(in long arg1);
};
19-6                                  CORBA V2.2                                 February 1998
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The preceding example generates the following C declarations1:

/* C */
typedef CORBA_Object example1;
extern CORBA_long example1_op1(

example1 o, 
CORBA_long arg1,
CORBA_Environment *ev

);

All object references (typed interface references to an object) are of the well-know
opaque type CORBA_Object . The representation of CORBA_Object  is a 
pointer. To permit the programmer to decorate a program with typed references, a
with the name of the interface is defined to be a CORBA_Object . The literal

CORBA_OBJECT_NIL is legal wherever a CORBA_Object  may be used; it is 
guaranteed to pass the is_nil operation defined in “Nil Object References” on 
page 4-5. 

OMG IDL permits specifications in which arguments, return results, or components 
constructed types may be interface references. Consider the following example:

// IDL
#include "exampl e1.idl"

interface example2 {
example1 op2();

};

This is equivalent to the following C declaration:

/* C */
#include "example1.h"

typedef CORBA_Object example2;
extern example1 example2_op2(example2 o, CORBA_Environment 
*ev);

A C fragment for invoking such an operation is as follows:

1. “Implicit Arguments to Operations” on page 19-21 describes the additional argu-
ments added to an operation in the C mapping.
CORBA V2.2       Mapping for Interfaces         February 1998 19-7
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/* C */
#include "example2.h"

example1 ex1;
example2 ex2;
CORBA_Environment ev;

/* code for binding ex2 */

ex1 = example2_op2(ex2, &ev);

19.4 Inheritance and Operation Names

OMG IDL permits the specification of interfaces that inherit operations from other 
interfaces. Consider the following example:

// IDL
interface example3 : example1 {

void op3(in long arg3, out long arg4);
};

This is equivalent to the following C declarations:

/* C */
typedef CORBA_Object example3;
extern CORBA_long example3_op1(

example3 o, 
CORBA_long arg1,
CORBA_Environment *ev

);
extern void example3_op3(

example3 o, 
CORBA_long arg3, 
CORBA_long *arg4,
CORBA_Environment *ev

);

As a result, an object written in C can access op1  as if it was directly declared in 
example3 . Of course, the programmer could also invoke example1_op1  on an 
Object  of type example3 ; the virtual nature of operations in interface definitions
will cause invocations of either function to cause the same method to be invoked.

19.5 Mapping for Attributes

The mapping for attributes is best explained through example. Consider the followin
specification:
19-8                                  CORBA V2.2                                 February 1998
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// IDL
interface foo {

struct position_t {
float x, y;

};

attribute float radius;
readonly attri bute position_t position;

};

This is exactly equivalent to the following illegal OMG IDL specification:

// IDL (illegal)
interface foo {

struct position_t {
float x, y;

};

float _get_radius();
void _set_radius(in float r);
position_t _get_position();

};

This latter specification is illegal, since OMG IDL identifiers are not permitted to start 
with the underscore (_) character. 

The language mapping for attributes then becomes the language mapping for these 
equivalent operations. More specifically, the function signatures generated for the 
above operations are as follows:

/* C */
typedef struct foo_position_t {

CORBA_float x, y;
} foo_position_t;

extern CORBA_float foo__get_radius(foo o, CORBA_Environment 
*ev);
extern void foo__set_radius(

foo o, 
CORBA_float r,
CORBA_Environment *ev

);
extern foo_position_t foo__get_position(foo o,  
CORBA_Environment *ev);

Note that two underscore characters (__) separate the name of the interface from th
words “get ” or “set ” in the names of the functions.

If the “set ” accessor function fails to set the attribute value, the method should re
one of the standard exceptions defined in “Standard Exceptions” on page3-37. 
CORBA V2.2       Mapping for Attributes         February 1998 19-9
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19.6 Mapping for Constants

Constant identifiers can be referenced at any point in the user’s code where a literal of 
that type is legal. In C, these constants are #define d.

The fact that constants are #define d may lead to ambiguities in code. All names 
which are mandated by the mappings for any of the structured types below start with 
an underscore. 

The mappings for wide character and wide string constants is identical to character and 
string constants, except that IDL literals are preceded by L in C. For example, IDL 
constant:

const wstring ws = “Hello World”;

would map to

#define ws L”Hello World”

in C.

19.7 Mapping for Basic Data Types

The basic data types have the mappings shown in Table 19-1 on page 19-10. 
Implementations are responsible for providing typedefs for CORBA_short, 
CORBA_long, and so forth. consistent with OMG IDL requirements for the 
corresponding data types. 

Table 19-1 Data Type Mappings 

OMG IDL C

short CORBA_short

long CORBA_long

long long CORBA_long_long

unsigned short CORBA_unsigned_short

unsigned long CORBA_unsigned_long

unsigned long 
long

CORBA_unsigned_long_long

float CORBA_float

double CORBA_double

long double CORBA_long_double

char CORBA_char

wchar CORBA_wchar

boolean CORBA_boolean

any typedef struct CORBA_any { CORBA_TypeCode _type; void *_value; }

 CORBA_any;
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The C mapping of the OMG IDL boolean  types is unsigned  char  with only the 
values 1 (TRUE) and 0 (FALSE) defined; other values produce undefined behavior. 
CORBA_boolean is provided for symmetry with the other basic data type mappings.

The C mapping of OMG IDL enum  types is an unsigned integer type capable of 
representing 232 enumerations. Each enumerator in an enum  is #define d with an 
appropriate unsigned integer value conforming to the ordering constraints describ
“Enumerations” on page 3-27.

TypeCodes are described in “TypeCodes” on page 8-35. The _value  member for an 
any  is a pointer to the actual value of the datum.

The any  type supports the notion of ownership of its _value  member. By setting a 
release flag in the any  when a value is installed, programmers can control ownersh
of the memory pointed to by _value . The location of this release flag is 
implementation-dependent, so the following two ORB-supplied functions allow for the 
setting and checking of the any  release flag:

/* C */
void CORBA_any_set_release(CORBA_any*, CORBA_boolean);

CORBA_boolean CORBA_any_get_release(CORBA_any*);

CORBA_any_set_release  can be used to set the state of the release flag. If 
flag is set to TRUE, the any  effectively “owns” the storage pointed to by _value ; if 
FALSE, the programmer is responsible for the storage. If, for example, an any  is 
returned from an operation with its release flag set to FALSE, calling 
CORBA_free()  on the returned any*  will not deallocate the memory pointed to 
by _value . Before calling CORBA_free()  on the _value  member of an any  
directly, the programmer should check the release flag using 
CORBA_any_get_release . If it returns FALSE, the programmer should not 
invoke CORBA_free()  on the _value  member; doing so produces undefined 
behavior. Also, passing a null pointer to either CORBA_any_set_release  or 
CORBA_any_get_release  produces undefined behavior.

If CORBA_any_set_release  is never called for a given instance of any, the 
default value of the release flag for that instance is FALSE.

19.8 Mapping Considerations for Constructed Types

The mapping for OMG IDL structured types (structs, unions, arrays, and sequence
can vary slightly depending on whether the data structure is fixed-length or variable-
length. A type is variable-length if it is one of the following types:

• The type any
• A bounded or unbounded string or wide string

• A bounded or unbounded sequence

• An object reference or reference to a transmissible pseudo-object

• A struct or union that contains a member whose type is variable-length

• An array with a variable-length element type

• A typedef to a variable-length type
CORBA V2.2       Mapping Considerations for Constructed Types         February 1998 19-11
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The reason for treating fixed- and variable-length data structures differently is to allo
more flexibility in the allocation of out  parameters and return values from an 
operation. This flexibility allows a client-side stub for an operation that returns a 
sequence of strings, for example, to allocate all the string storage in one area that is 
deallocated in a single call. The mapping of a variable-length type as an out  parameter 
or operation return value is a pointer to the associated class or array, as shown in 
Table 19-2 on page 19-23.

For types whose parameter passing modes require heap allocation, an ORB 
implementation will provide allocation functions. These types include variable-length
struct , variable-length union , sequence , any, string , wstring  and array of a 
variable-length type. The return value of these allocation functions must be freed using
CORBA_free() . For one of these listed types T, the ORB implementation will 
provide the following type-specific allocation function:

/* C */
T *T__alloc();

The functions are defined at global scope using the fully-scoped name of T conve
into a C language name (as described in  Section 19.2) followed by the suffix “__a
(note the double underscore). For any, string, and wstring , the allocation functions 
are:

/* C */

CORBA_any *CORBA_any_alloc();
char *CORBA_string_alloc();
CORBA_wchar* CORBA_wstring_alloc(CORBA_unsigned_long len);

respectively.

19.9 Mapping for Structure Types

OMG IDL structures map directly onto C struct s. Note that all OMG IDL types 
that map to C struct s may potentially include padding.

19.10 Mapping for Union Types

OMG IDL discriminated unions are mapped onto C struct s. Consider the following 
OMG IDL declaration:

// IDL
union Foo switch (long) {

case 1: long x;
case 2: float y;
default: char z;

};

This is equivalent to the following struct  in C:
19-12                                  CORBA V2.2                                 February 1998
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/* C */
typedef struct {

CORBA_long _d;
union {

CORBA_long x;
CORBA_float y;
CORBA_char z;

} _u;
} Foo;

The discriminator in the struct is always referred to as _d ; the union in the struct is 
always referred to as _u.

Reference to union elements is as in normal C:

/* C */
Foo *v;

/* make a call that returns a pointer to a Foo in v */

switch(v->_d) {
case 1: printf("x = %ld\n", v->_u.x); break;
case 2: printf("y = %f\n", v->_u.y); break;
default: printf("z = %c\n", v->_u.z); break;

}

An ORB implementation need not use a C union  to hold the OMG IDL union  
elements; a C struct may be used instead. In either case, the programmer accesses the
union elements via the _u  member.

19.11 Mapping for Sequence Types

The OMG IDL data type sequence  permits passing of unbounded arrays between 
objects. Consider the following OMG IDL declaration:

// IDL
typedef sequence< long,10> vec10;

In C, this is converted to:

/* C */
typedef struct {

CORBA_unsigned_long _maximum;
CORBA_unsigned_long _length;
CORBA_long *_buffer;

} vec10;

An instance of this type is declared as follows:

/* C */
vec10 x = {10L, 0L, (CORBA_long *)NULL);
CORBA V2.2       Mapping for Sequence Types         February 1998 19-13
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Prior to passing &x as an in  parameter, the programmer must set the _buffer  
member to point to a CORBA_long array of 10 elements, and must set the 
_length  member to the actual number of elements to transmit.

Prior to passing the address of a vec10*  as an out  parameter (or receiving a 
vec10*  as the function return), the programmer does nothing. The client stub will 
allocate storage for the returned sequence; for bounded sequences, it also alloca
buffer of the specified size, while for unbounded sequences, it also allocates a buffer 
big enough to hold what was returned by the object. Upon successful return from the 
invocation, the _maximum member will contain the size of the allocated array, the
_buffer  member will point at allocated storage, and the _length  member will 
contain the number of values that were returned in the _buffer  member. The client 
is responsible for freeing the allocated sequence using CORBA_free() .

Prior to passing &x as an inout  parameter, the programmer must set the _buffer  
member to point to a CORBA_long array of 10 elements. The _length  member 
must be set to the actual number of elements to transmit. Upon successful return
the invocation, the _length  member will contain the number of values that were 
copied into the buffer pointed to by the _buffer  member. If more data must be 
returned than the original buffer can hold, the callee can deallocate the original 
_buffer  member using CORBA_free()  (honoring the release flag) and assign 
_buffer  to point to new storage. 

For bounded sequences, it is an error to set the _length  or _maximum member to 
a value larger than the specified bound.

Sequence types support the notion of ownership of their _buffer  members. By 
setting a release flag in the sequence when a buffer is installed, programmers can 
control ownership of the memory pointed to by _buffer . The location of this release
flag is implementation-dependent, so the following two ORB-supplied functions allow 
for the setting and checking of the sequence release flag:

/* C */
void CORBA_sequence_set_release(void*, CORBA_boolean);
CORBA_boolean CORBA_sequence_get_release(void*);

CORBA_sequence_set_release  can be used to set the state of the release
flag. If the flag is set to TRUE, the sequence effectively “owns” the storage pointed to 
by _buffer ; if FALSE, the programmer is responsible for the storage. If, for 
example, a sequence is returned from an operation with its release flag set to FALSE, 
calling CORBA_free()  on the returned sequence pointer will not deallocate the 
memory pointed to by _buffer . Before calling CORBA_free()  on the 
_buffer  member of a sequence directly, the programmer should check the release 
flag using CORBA_sequence_get_release . If it returns FALSE, the 
programmer should not invoke CORBA_free()  on the _buffer  member; doing 
so produces undefined behavior. Also, passing a null pointer or a pointer to somethin
other than a sequence type to either CORBA_sequence_set_release  or 
CORBA_sequence_get_release  produces undefined behavior.
19-14                                  CORBA V2.2                                 February 1998
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CORBA_sequence_set_release  should only be used by the creator of a 
sequence. If it is not called for a given sequence instance, then the default value of th
release flag for that instance is FALSE.

Two sequence types are the same type if their sequence element type and size arguments 
are identical. For example,

// IDL
const long SIZE = 25;
typedef long seqtype;

typedef sequence< long, SIZE> s1;
typedef sequence< long, 25> s2;
typedef sequence<seqtype, SIZE> s3;
typedef sequence<seqtype, 25> s4;

declares s1 , s2, s3, and s4 to be of the same type.

The OMG IDL type

// IDL
seque nce<type,size>

maps to

/* C */
#ifndef _CORBA_sequence_type_defined
#define _CORBA_sequence_type_defined
typedef struct {

CORBA_unsigned_long _maximum;
CORBA_unsigned_long _length;
type *_buffer;

} CORBA_sequence_type;
#endif /* _CORBA_sequence_type_defined */

The ifdef ’s are needed to prevent duplicate definition where the same type is used 
more than once. The type name used in the C mapping is the type name of the eff
type, e.g. in

/* C */
typedef CORBA_long FRED;
typedef sequence<FRED,10> FredSeq;

the sequence is mapped onto 

struct { ... } CORBA_sequence_long;

If the type  in 

// IDL
seque nce<type,size>
CORBA V2.2       Mapping for Sequence Types         February 1998 19-15
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consists of more than one identifier (e.g, unsigned long), then the generated type 
consists of the string “CORBA_sequence_” concatenated to the string consisting o
concatenation of each identifier separated by underscores (e.g, “unsigned_long”).

If the type  is a string , the string “string” is used to generate the type name. If the 
type  is a sequence , the string “sequence” is used to generate the type name, 
recursively. For example

// IDL
sequence<sequen ce<long> >

generates a type of 

/* C */
CORBA_sequence_sequence_long

These generated type names may be used to declare instances of a sequence ty

In addition to providing a type-specific allocation function for each sequence, an ORB 
implementation must provide a buffer allocation function for each sequence type. 
These functions allocate vectors of type T for sequence<T> . They are defined at 
global scope and are named similarly to sequences:

/* C */
T *CORBA_sequence_T_allocbuf(CORBA_unsigned_long len);

Here, “T” refers to the type name. For the type

// IDL
sequence<sequen ce<long> >

for example, the sequence buffer allocation function is named

/* C */
T *CORBA_sequence_sequence_long_allocbuf

(CORBA_unsigned_long len);

Buffers allocated using these allocation functions are freed using CORBA_free() .

19.12 Mapping for Strings

OMG IDL strings are mapped to 0-byte terminated character arrays; i.e. the length of
the string is encoded in the character array itself through the placement of the 0-byte.
Note that the storage for C strings is one byte longer than the stated OMG IDL bound. 
Consider the following OMG IDL declarations:

// IDL
typedef string<10> sten;
typedef string sinf;

In C, this is converted to:
19-16                                  CORBA V2.2                                 February 1998
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/* C */
typedef CORBA_char *sten;
typedef CORBA_char *sinf;

Instances of these types are declared as follows:

/* C */
sten s1 = NULL;
sinf s2 = NULL;

Two string types are the same type if their size arguments are identical. For example,

/* C */
const long SIZE = 25;

typedef string<SIZE> sx;
typedef string<25> sy;

declares sx  and sy  to be of the same type.

Prior to passing s1  or s2  as an in  parameter, the programmer must assign the address 
of a character buffer containing a 0-byte terminated string to the variable. The caller 
cannot pass a null pointer as the string argument.

Prior to passing &s1  or &s2  as an out  parameter (or receiving an sten  or sinf  as 
the return result), the programmer does nothing. The client stub will allocate stora
for the returned buffer; for bounded strings, it allocates a buffer of the specified size,
while for unbounded strings, it allocates a buffer big enough to hold the returned 
string. Upon successful return from the invocation, the character pointer will contain
the address of the allocated buffer. The client is responsible for freeing the allocated 
storage using CORBA_free() .

Prior to passing &s1  or &s2  as an inout  parameter, the programmer must assign th
address of a character buffer containing a 0-byte terminated array to the variable. If th
returned string is larger than the original buffer, the client stub will call 
CORBA_free()  on the original string and allocate a new buffer for the new string. 
The client should therefore never pass an inout  string parameter that was not 
allocated using CORBA_string_alloc . The client is responsible for freeing the
allocated storage using CORBA_free() , regardless of whether or not a reallocatio
was necessary.

Strings are dynamically allocated using the following ORB-supplied function:

/* C */
CORBA_char *CORBA_string_alloc(CORBA_unsigned_long len);

This function allocates len+1  bytes, enough to hold the string and its terminating NUL 
character.

Strings allocated in this manner are freed using CORBA_free() .
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19.13 Mapping for Wide Strings

The mapping for wide strings is similar to that of strings, except that (1) wide strings
mapped to null-terminated (note: a wide null) wide-character arrays instead of 0-byte 
terminated character arrays; and (2) wide strings are dynamically allocated using the 
ORB-supplied function:

CORBA_wchar* CORBA_wstring_alloc(CORBA_unsigned_long len);

instead of CORBA_st ring_alloc . The length argument len  is the number of 
CORBA::WChar units to be allocated, including one additional unit for the null 
terminator.

19.14 Mapping for Fixed

If an implementation has a native fixed-point decimal type, matching the CORBA 
specifications of the fixed  type, then the OMG IDL fixed  type may be mapped to the 
native type.

Otherwise, the mapping is as follows. Consider the following OMG IDL declarations:

fixed<15,5> dec1; // IDL
typedef fixed<9,2> money;

In C, these become

typedef struct {/* C */
CORBA_unsigned_short _digits;
CORBA_short _scale;
CORBA_char _value[(15+2)/2];
} CORBA_fixed_15_5;

CORBA_fixed_15_5 dec1 = {15u, 5};

typedef struct {
CORBA_unsigned_short _digits;
CORBA_short _scale;
 CORBA_char _value[(9+2)/2];
} CORBA_fixed_9_2;

typedef CORBA_fixed_9_2 money;

An instance of money is declared:

money bags = {9u, 2};

To permit application portability, the following minimal set of functions and operations 
on the fixed  type must be provided by the mapping. Since C does not support 
parameterized types, the fixed  arguments are represented as void*  pointers. The type 
information is instead conveyed within the representation itself. Thus the _digits  and 
_scale  of every fixed  operand must be set prior to invoking these functions. Indeed 
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only the _value  field of the result, denoted by *rp , may be left unset. Otherwise the 
behavior of the functions is undefined.

/* Conversions: all signs are the same.        */
CORBA_long CORBA_fixed_integer_part(const void *fp);
CORBA_long CORBA_fixed_fraction_part(const void *fp);
void CORBA_fixed_set(void *rp, const CORBA_long i,

const CORBA_long f);

/* Operations, of the form: r = f1 op f2       */
void CORBA_fixed_add(void *rp, const void *f1p,

const void *f2p);
void CORBA_fixed_sub(void *rp, const void *f1p,

const void *f2p);
void CORBA_fixed_mul(void *rp, const void *f1p,

const void *f2p);
void CORBA_fixed_div(void *rp, const void *f1p,

const void *f2p);

These operations must maintain proper fixed-point decimal semantics, following the 
rules specified in “Semantics” on page 3-20 for the precision and scale of the 
intermediate results prior to assignment to the result variable. Truncation without 
rounding may occur if the result type cannot express the intermediate result exactly.

Instances of the fixed  type are dynamically allocated using the ORB-supplied functio

CORBA_fixed_d_s* CORBA_fixed_alloc(CORBA_unsigned_short d);

19.15 Mapping for Arrays
OMG IDL arrays map directly to C arrays. All array indices run from 0 to <size  - 1>.

For each named array type in OMG IDL, the mapping provides a C typedef for point
the array’s slice. A slice of an array is another array with all the dimensions of the origi
except the first. For example, given the following OMG IDL definition:

// IDL
typedef long LongArray[4] [5];

The C mapping provides the following definitions:

/* C */
typedef CORBA_long LongArray[4][5];
typedef CORBA_long LongArray_slice[5];

The generated name of the slice typedef is created by appending “_slice” to the original
array name.

If the return result, or an out  parameter for an array holding a variable-length type, of an 
operation is an array, the array storage is dynamically allocated by the stub; a pointer to 
the array slice of the dynamically allocated array is returned as the value of the clien
function. When the data is no longer needed, it is the programmer’s responsibility to return 
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the dynamically allocated storage by calling CORBA_free() .

An array T of a variable-length type is dynamically allocated using the following ORB
supplied function:

/* C */
T_slice *T__alloc();

This function is identical to the allocation functions described in Section19.8, “Mapping 
Considerations for Constructed Types,” on page 19-11, except that the return type is 
pointer to array slice, not pointer to array.

19.16 Mapping for Exception Types
Each defined exception type is defined as a struct tag and a typedef with the C global nam
for the exception. An identifier for the exception, in string literal form, is also
#define d, as is a type-specific allocation function. For example:

// IDL
exception foo {

long dummy;
};

yields the following C declarations:

/* C */
typedef struct foo {

CORBA_long dummy;
/* ...may contain additional

* implementation-specific members...
 */

} foo;
#define ex_foo <unique identifier for exception>
foo *foo__alloc();

The identifier for the exception uniquely identifies this exception type. For example, it 
could be the Interface Repository identifier for the exception (see “ExceptionDef” on 
page 8-26).

The allocation function dynamically allocates an instance of the exception and returns a 
pointer to it. Each exception type has its own dynamic allocation function. Exceptions 
allocated using a dynamic allocation function are freed using CORBA_free() .

Since IDL exceptions are allowed to have no members, but C structs must have a
one member, IDL exceptions with no members map to C structs with one membe
This member is opaque to applications. Both the type and the name of the single
member are implementation-specific.
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19.17 Implicit Arguments to Operations
From the point of view of the C programmer, all operations declared in an interface
additional leading parameters preceding the operation-specific parameters:

1. The first parameter to each operation is a CORBA_Object  input parameter; this 
parameter designates the object to process the request.

2. The last parameter to each operation is a CORBA_Environment*  output parame-
ter; this parameter permits the return of exception information. 

3. If an operation in an OMG IDL specification has a context specification, then a 
CORBA_Context  input parameter precedes the CORBA_Environment*  
parameter and follows any operation-specific arguments. 

As described above, the CORBA_Object  type is an opaque type. The 
CORBA_Environment  type is partially opaque; “Handling Exceptions” on 
page 19-26 provides a description of the non-opaque portion of the exception structure 
and an example of how to handle exceptions in client code. The CORBA_Context  type 
is opaque; see the Dynamic Invocation Interface chapter for more information on how to 
create and manipulate context objects.

19.18 Interpretation of Functions with Empty Argument Lists
A function declared with an empty argument list is defined to take no operation-specific
arguments.

19.19 Argument Passing Considerations
For all OMG IDL types (except arrays), if the OMG IDL signature specifies that 
argument is an out  or inout  parameter, then the caller must always pass the address of 
variable of that type (or the value of a pointer to that type); the callee must dereference t
parameter to get to the type. For arrays, the caller must pass the address of the first elem
of the array.

For in  parameters, the value of the parameter must be passed for all of the basic types, 
enumeration types, and object references. For all arrays, the address of the first eleme
the array must be passed. For all other structured types, the address of a variable o
type must be passed, regardless of whether they are fixed- or variable-length. For strings, a 
char*  and wchar* must be passed.

For inout  parameters, the address of a variable of the correct type must be passed fo
of the basic types, enumeration types, object references, and structured types. For sngs, 
the address of a char*  and the * of a wchar the must be passed. For all arrays, the
address of the first element of the array must be passed.

Consider the following OMG IDL specification:
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// IDL
interface foo {

typedef long Vector [25];

void bar(out Vector x, out long y);
};

Client code for invoking the bar  operation would look like:

/* C */
foo object;
foo_Vector_slice x;
CORBA_long y;
CORBA_Environment ev;

/* code to bind object to instance of foo */

foo_bar(object, &x, &y, &ev);

For out  parameters of type variable-length struct , variable-length union , string , 
sequence , an array holding a variable-length type, or any, the ORB will allocate storage 
for the output value using the appropriate type-specific allocation function. The client may 
use and retain that storage indefinitely, and must indicate when the value is no longer 
needed by calling the procedure CORBA_free , whose signature is:

/* C */
extern void CORBA_free(void *storage);

The parameter to CORBA_free()  is the pointer used to return the out  parameter. 
CORBA_free()  releases the ORB-allocated storage occupied by the out  parameter, 
including storage indirectly referenced, such as in the case of a sequence of strings or
array of object reference. If a client does not call CORBA_free()  before reusing the 
pointers that reference the out  parameters, that storage might be wasted. Passing a null 
pointer to CORBA_free()  is allowed; CORBA_free()  simply ignores it and 
returns without error.

19.20 Return Result Passing Considerations
When an operation is defined to return a non-void return result, the following rules hold:

1. If the return result is one of the types float , double , long , short , unsigned long , 
unsigned short , char , wchar, fixed, boolean , octet , Object , or an enumeration , 
then the value is returned as the operation result.

2. If the return result is one of the fixed-length types struct  or union , then the value of 
the C struct representing that type is returned as the operation result. If the return re
one of the variable-length types struct , union , sequence , or any, then a pointer to a C 
struct representing that type is returned as the operation result.

3. If the return result is of type string or wstring , then a pointer to the first character of
the string is returned as the operation result. 
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4. If the return result is of type array , then a pointer to the slice of the array is returned as 
the operation result. 

Consider the following interface:

// IDL
interface X {

struct y {
long a;
float b;

};

long op1();
y op2();

};

The following C declarations ensue from processing the specification:

/* C */
typedef CORBA_Object X;
typedef struct X_y {

CORBA_long a;
CORBA_float b;

} X_y;

extern CORBA_long X_op1(X object, CORBA_Environment *ev);
extern X_y X_op2(X object, CORBA_Environment *ev);

For operation results of type variable-length struct , variable-length union , wstring , 
string , sequence , array , or any, the ORB will allocate storage for the return value
using the appropriate type-specific allocation function. The client may use and retain 
that storage indefinitely, and must indicate when the value is no longer needed by 
calling the procedure CORBA_free()  described in “Argument Passing 
Considerations” on page 19-21. 

19.21 Summary of Argument/Result Passing

Table 19-3 on page 19-24 summarizes what a client passes as an argument to a stub a
receives as a result. For brevity, the CORBA_prefix is omitted from type names in the 
tables.

Table 19-2Basic Argument and Result Passing

Data Type In Inout Out Return

short short short* short* short

long long long* long* long

long long long_long long_long* long_long* long_long

unsigned short unsigned_short unsigned_short* unsigned_short* unsigned_short

unsigned long unsigned_long unsigned_long* unsigned_long* unsigned_long

unsigned long long unsigned_long_long unsigned_long_long* unsigned_long_long* unsigned_long_long
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A client is responsible for providing storage for all arguments passed as in  arguments.

float float float* float* float

double double double* double* double

long double long_double long_double* long_double* long_double

fixed<d,s> fixed_d_s* fixed_d_s* fixed_d_s* fixed_d_s

boolean boolean boolean* boolean* boolean

char char char* char* char

wchar wchar wchar* wchar* wchar

octet octet octet* octet* octet

enum enum enum* enum* enum

object reference ptr1 objref_ptr objref_ptr* objref_ptr* objref_ptr

struct, fixed struct* struct* struct* struct

struct, variable struct* struct* struct** struct*

union, fixed union* union* union* union

union, variable union* union* union** union*

string char* char** char** char*

wstring wchar* wchar** wchar** wchar*

sequence sequence* sequence* sequence** sequence*

array, fixed array array array array slice*2

array, variable array array array slice**2 array slice*2

any any* any* any** any*

1. Including pseudo-object references.

2. A slice is an array with all the dimensions of the original except the first one.

Table 19-3 Client Argument Storage Responsibilities

Type
Inout 
Param

Out 
Param

Return 
Result

short 1 1 1

long 1 1 1

unsigned short 1 1 1

unsigned long 1 1 1

float 1 1 1

double 1 1 1

boolean 1 1 1

char 1 1 1

octet 1 1 1

enum 1 1 1

object reference ptr 2 2 2

struct, fixed 1 1 1

struct, variable 1 3 3

Table 19-2Basic Argument and Result Passing (Continued)

Data Type In Inout Out Return
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union, fixed 1 1 1

union, variable 1 3 3

string 4 3 3

sequence 5 3 3

array, fixed 1 1 6

array, variable 1 6 6

any 5 3 3

Table 19-4 Argument Passing Cases

Case1

1. As listed in Table 19-3 on page 19-24

1 Caller allocates all necessary storage, except that which may be encapsulated and managed 
within the parameter itself. For inout parameters, the caller provides the initial value, and the 
callee may change that value. For out parameters, the caller allocates the storage but need not 
initialize it, and the callee sets the value. Function returns are by value.

2 Caller allocates storage for the object reference. For inout parameters, the caller provides an 
initial value; if the callee wants to reassign the inout parameter, it will first call 
CORBA_Object_release on the original input value. To continue to use an object reference 
passed in as an inout, the caller must first duplicate the reference. The client is responsible for 
the release of all out and return object references. Release of all object references embedded in 
other out and return structures is performed automatically as a result of calling CORBA_free.

3 For out parameters, the caller allocates a pointer and passes it by reference to the callee. The 
callee sets the pointer to point to a valid instance of the parameter’s type. For returns, the callee 
returns a similar pointer. The callee is not allowed to return a null pointer in either case. In both 
cases, the caller is responsible for releasing the returned storage. Following the completion of a 
request, the caller is not allowed to modify any values in the returned storage—to do so, the 
caller must first copy the returned instance into a new instance, then modify the new instance.

4 For inout strings, the caller provides storage for both the input string and the char* pointing to it. 
The callee may deallocate the input string and reassign the char* to point to new storage to hold 
the output value. The size of the out string is therefore not limited by the size of the in string. The 
caller is responsible for freeing the storage for the out. The callee is not allowed to return a null 
pointer for an inout, out, or return value.

5 For inout sequences and anys, assignment or modification of the sequence or any may cause 
deallocation of owned storage before any reallocation occurs, depending upon the state of the 
boolean release in the sequence or any.

6 For out parameters, the caller allocates a pointer to an array slice, which has all the same 
dimensions of the original array except the first, and passes the pointer by reference to the 
callee. The callee sets the pointer to point to a valid instance of the array. For returns, the callee 
returns a similar pointer. The callee is not allowed to return a null pointer in either case. In both 
cases, the caller is responsible for releasing the returned storage. Following the completion of a 
request, the caller is not allowed to modify any values in the returned storage—to do so, the 
caller must first copy the returned array instance into a new array instance, then modify the new 
instance.

Table 19-3 Client Argument Storage Responsibilities (Continued)

Type
Inout 
Param

Out 
Param

Return 
Result
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19.22 Handling Exceptions

Since the C language does not provide native exception handling support, applications 
pass and receive exceptions via the special CORBA_Environment  parameter passed 
to each IDL operation. The CORBA_Environment  type is partially opaque; the C 
declaration contains at least the following:

/* C */
typedef struct CORBA_Environment {

CORBA_exception_type _major;
...

} CORBA_Environment;

Upon return from an invocation, the _major  field indicates whether the invocation ter-
minated successfully; _major  can have one of the values CORBA_NO_EXCEPTION, 
CORBA_USER_EXCEPTION, or CORBA_SYSTEM_EXCEPTION; if the value is 
one of the latter two, then any exception parameters signalled by the object can be 
accessed. 

Five functions are defined on a CORBA_Environment  structure for accessing 
exception information. Their signatures are:

/* C */
extern void CORBA_exception_set(

CORBA_Environment *ev,
CORBA_exception_type major, 
CORBA_char *except_repos_id, 
void *param

);
extern CORBA_char *CORBA_exception_id(

CORBA_Environment *ev
);

extern void *CORBA_exception_value(CORBA_Environment *ev);
extern void CORBA_exception_free(CORBA_Environment *ev);
extern CORBA_any* CORBA_exception_as_any(

CORBA_Environment *ev
);

CORBA_exception_set()  allows a method implementation to raise an 
exception. The ev  parameter is the environment parameter passed into the method. 
The caller must supply a value for the major parameter. The value of the major 
parameter constrains the other parameters in the call as follows: 

• If the major  parameter has the value CORBA_NO_EXCEPTION, this is a 
normal outcome to the operation. In this case, both except_repos_id  and 
param  must be NULL. Note that it is not necessary to invoke 
CORBA_exception_set()  to indicate a normal outcome; it is the default
behavior if the method simply returns. 
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• For any other value of major  it specifies either a user-defined or system 
exception. The except_repos_id  parameter is the repository ID 
representing the exception type. If the exception is declared to have members
param  parameter must be the address of an instance of the exception struct 
containing the parameters according to the C language mapping, coerced to
void* . In this case, the exception struct must be allocated using the approp
T__alloc()  function, and the CORBA_exception_set()  function 
adopts the allocated memory and frees it when it no longer needs it. Once th
allocated exception struct is passed to CORBA_exception_set() , the 
application is not allowed to access it because it no longer owns it. If the 
exception takes no parameters, param  must be NULL. 

If the CORBA_Environment  argument to CORBA_exception_set()  already 
has an exception set in it, that exception is properly freed before the new exception 
mation is set.

CORBA_exception_id()  returns a pointer to the character string identifying the
exception. The character string contains the repository ID for the exception. If invoked on 
a CORBA_Environment  which identifies a non-exception, 
(_major==CORBA_NO_EXCEPTION) a null pointer is returned. Note that owner-
ship of the returned pointer does not transfer to the caller; instead, the pointer remains 
valid until CORBA_exception_free()  is called.

CORBA_exception_value()  returns a pointer to the structure corresponding to
this exception. If invoked on a CORBA_Environment  which identifies a non-excep-
tion or an exception for which there is no associated information, a null pointer is 
returned. Note that ownership of the returned pointer does not transfer to the caller; 
instead, the pointer remains valid until CORBA_exception_free()  is called.

CORBA_exception_free()  frees any storage which was allocated in the con-
struction of the CORBA_Environment  or adopted by the CORBA_Environment  
when CORBA_exception_set()  is called on it, and sets the _major  field to 
CORBA_NO_EXCEPTION. It is permissible to invoke 
CORBA_exception_free()  regardless of the value of the _major  field. 

CORBA_exception_as_any()  returns a pointer to a CORBA_any containing 
the exception. This allows a C application to deal with exceptions for which it has no stat
(compile-time) information. If invoked on a CORBA_Environment  which identifies 
a non-exception, a null pointer is returned. Note that ownership of the returned pointer 
does not transfer to the caller; instead, the pointer remains valid until 
CORBA_exception_free()  is called.

Consider the following example:
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// IDL
interface exampleX {

exception BadCall {
string<80> reason;

};

void op() raises(BadCall);
};

This interface defines a single operation which returns no results and can raise a BadCall  
exception. The following user code shows how to invoke the operation and recover from 
an exception: 

/* C */
#include "exampleX.h"

CORBA_Environment ev;
exampleX obj;
exampleX_BadCall *bc;

/*
* some code to initialize obj to a reference to an object
* supporting the exampleX interface
*/

exampleX_op(obj, &ev);
switch(ev._major) {
case CORBA_NO_EXCEPTION:/* successful outcome*/

/* process out and inout arguments */
break;

case CORBA_USER_EXCEPTION:/* a user-defined exception */
if (strcmp(ex_exampleX_BadCall,

CORBA_exception_id(&ev)) == 0) {
bc = (exampleX_BadCall*)CORBA_exception_value(&ev);
fprintf(stderr, "exampleX_op() failed - reason: %s\n",

bc->reason);
}
else { /* should never get here ... */

fprintf( stderr, 
"unknown user-defined exception -%s\n",
CORBA_exception_id(&ev));

}
break;

default:/* standard exception */
/* 

  * CORBA_exception_id() can be used to determine
 * which particular standard exception was
 * raised; the minor member of the struct

  * associated with the exception (as yielded by
  * CORBA_exception_value()) may provide additional 

 * system-specific information about the exception 
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break;

}
/* free any storage associated with exception */
CORBA_exception_free(&ev);

19.23 Method Routine Signatures
The signatures of the methods used to implement an object depend not only on the
language binding, but also on the choice of object adapter. Different object adapters ma
provide additional parameters to access object adapter-specific features.

Most object adapters are likely to provide method signatures that are similar in most
respects to those of the client stubs. In particular, the mapping for the operation parameters 
expressed in OMG IDL should be the same as for the client side.

See “Mapping for Object Implementations” on page 19-30 for the description of method 
signatures for implementations using the Portable Object Adapter.

19.24 Include Files
Multiple interfaces may be defined in a single source file. By convention, each interface is
stored in a separate source file. All OMG IDL compilers will, by default, generate a header
file named Foo.h  from Foo.idl . This file should be #include d by clients and
implementations of the interfaces defined in Foo.idl .

Inclusion of Foo.h  is sufficient to define all global names associated with the interfaces 
in Foo.idl  and any interfaces from which they are derived.

19.25 Pseudo-objects

In the C language mapping, there are several interfaces that are defined as pseudo-objects; 
A client makes calls on a pseudo-object in the same way as an ordinary ORB object. How
ever, the ORB may implement the pseudo-object directly, and there are restrictions on 
what a client may do with a pseudo-object. 

The ORB itself is a pseudo-object with the following partial definition (see the ORB Inter-
face chapter for the complete definition): 

// IDL
interface ORB {

string object_to_string (in Object obj); 
Object string_to_object (in string str); 

};

This means that a C programmer may convert an object reference into its string form
calling:
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/* C */
CORBA_Environment ev;
CORBA_char *str = CORBA_ORB_object_to_string(

orbobj, obj, &ev
);

just as if the ORB were an ordinary object. The C library contains the routine 
CORBA_ORB_object_to_string , and it does not do a real invocation. The 
orbobj  is an object reference that specifies which ORB is of interest, since it is possible 
to choose which ORB should be used to convert an object reference to a string (see the 
ORB Interface chapter for details on this specific operation).

Although operations on pseudo-objects are invoked in the usual way defined by the C lan-
guage mapping, there are restrictions on them. In general, a pseudo-object cannot be s
ified as a parameter to an operation on an ordinary object. Pseudo-objects are also not
accessible using the dynamic invocation interface, and do not have definitions in the inte
face repository.

Because the programmer uses pseudo-objects in the same way as ordinary objects,
ORB implementations may choose to implement some pseudo-objects as ordinary obje
For example, assuming it could be efficient enough, a context object might be imple-
mented as an ordinary object.

19.25.1 ORB Operations

The operations on the ORB defined in the ORB Interface chapter are used as if the
had the OMG IDL definitions described in the document, and then mapped in the us
way with the C language mapping.

For example, the string_to_object ORB operation has the following signature:

/* C */
CORBA_Object CORBA_ORB_string_to_object(

CORBA_Object orb,
CORBA_char *objectstring,
CORBA_Environment *ev

);

Although in this example, we are using an “object” that is special (an ORB), the 
method name is generated as i nterface_operation  in the same way as 
ordinary objects. Also, the signature contains an CORBA_Environment  parameter 
for error indications.

Following the same procedure, the C language binding for the remainder of the ORB 
and object reference operations may be determined.

19.26 Mapping for Object Implementations

This section describes the details of the OMG IDL-to-C language mapping that apply 
specifically to the Portable Object Adapter, such as how the implementation methods 
are connected to the skeleton.
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19.26.1 Operation-specific Details

The C Language Mapping Chapter defines most of the details of binding methods to
skeletons, naming of parameter types, and parameter passing conventions. Generally, 
for those parameters that are operation-specific, the method implementing the 
operation appears to receive the same values that would be passed to the stubs.

19.26.2 PortableServer Functions

Objects registered with POAs use sequences of octet, specifically the 
PortableSe rver::POA::ObjectId  type, as object identifiers. However, because C 
programmers will often want to use strings as object identifiers, the C mapping 
provides several conversion functions that convert strings to ObjectId  and vice-
versa:

/* C */
extern CORBA_char* PortableServer_ObjectId_to_string(

PortableServer_ObjectId* id,
CORBA_Environment* env

);
extern CORBA_wchar_t* PortableServer_ObjectId_to_wstring(

PortableServer_ObjectId* id
CORBA_Environment* env

);

extern PortableServer_ObjectId*
PortableServer_string_to_ObjectId(

CORBA_char* str,
CORBA_Environment* env

);
extern PortableServer_ObjectId*

PortableServer_wstring_to_ObjectId(
CORBA_wchar_t* str,
CORBA_Environment* env

);

These functions follow the normal C mapping rules for parameter passing and memory 
management.

If conversion of an ObjectId  to a string would result in illegal characters in the strin
(such as a NUL), the first two functions raise the CORBA_BAD_PARAM exception.

19.26.3 Mapping for PortableServer::ServantLocator::Cookie

Since PortableServer::ServantLocator::Cookie is an IDL native  type, its type 
must be specified by each language mapping. In C, Cookie  maps to void* :

/* C */
typedef void* PortableServer_ServantLocator_Cookie;
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For the C mapping of the PortableServer::ServantLocator::preinvoke()  operation, 
the Cookie  parameter maps to a Cookie* , while for the postinvoke()  operation, it is 
passed as a Cookie :

/* C */
extern PortableServer_ServantLocator_preinvoke(

PortableServer_ObjectId* oid,
PortableServer_POA adapter,
CORBA_Identifier op_name,
PortableServer_ServantLocator_Cookie* cookie

);
extern PortableServer_ServantLocator_postinvoke(

PortableServer_ObjectId* oid,
PortableServer_POA adapter,
CORBA_Identifier op_name,
PortableServer_ServantLocator_Cookie cookie,
PortableServer_Servant servant

);

19.26.4 Servant Mapping

A servant is a language-specific entity that can incarnate a CORBA object. In C, a 
servant is composed of a data structure that holds the state of the object along w
collection of method functions that manipulate that state in order to implement the 
CORBA object.

The PortableServer::Servant  type maps into C as follows:

/* C */
typedef void* PortableServer_Servant;

Servant  is mapped to a void*  rather than a pointer to ServantBase  so that all ser-
vant types for derived interfaces can be passed to all the operations that take a Servant  
parameter without requiring casting. However, it is expected that an instance of 
PortableServer_Servant  points to an instance of a 
PortableServer_ServantBase  or its equivalent for derived interfaces, as 
described below.

Associated with a servant is a table of pointers to method functions. This table is called an 
entry point vector, or EPV. The EPV has the same name as the servant type with “__e
appended (note the double underscore).  The EPV for PortableServer_Servant  is 
defined as follows:
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/* C */
typedef struct PortableServer_ServantBase__epv {

void* _private;
void (*finalize)(PortableServer_Servant,

CORBA_Environment*);
PortableServer_POA (*default_POA)(

PortableServer_Servant,
CORBA_Environment*);

} PortableServer_ServantBase__epv;

extern PortableServer_POA
PortableServer_ServantBase__default_POA(

PortableServer_Servant,
CORBA_Environment*

);

The PortableServer_ServantBase__epv  “_private” member, which is 
opaque to applications, is provided to allow ORB implementations to associate data with 
each ServantBase  EPV. Since it is expected that EPVs will be shared among multiple 
servants, this member is not suitable for per-servant data. The second member is a 
to the finalization function for the servant, which is invoked when the servant is ethereal-
ized.  The other function pointers correspond to the usual Servant  operations.

The actual PortableServer_ServantBase  structure combines an EPV with 
per-servant data, as shown below:

/* C */
typedef PortableServer_ServantBase__epv*

PortableServer_ServantBase__vepv;

typedef struct PortableServer_ServantBase {
void* _private;
PortableServer_ServantBase__vepv* vepv;

} PortableServer_ServantBase;

The first member is a void*  that points to data specific to each ORB implementation. 
This member, which allows ORB implementations to keep per-servant data, is opaqu
applications.  The second member is a pointer to a pointer to a 
PortableServer_ServantBase__epv .  The reason for the double level of 
indirection is that servants for derived classes contain multiple EPV pointers, one for each 
base interface as well as one for the interface itself.  (This is explained further in the
section.) The name of the second member, “vepv,” is standardized to allow portable access 
through it.

19.26.5 Interface Skeletons

All C skeletons for IDL interfaces have essentially the same structure as ServantBase, 
with the exception that the second member has a type that allows access to all EPVs 
for the servant, including those for base interfaces as well as for the most-derived 
interface.
CORBA V2.2       Mapping for Object Implementations         February 1998 19-33



19

 

e f

 

 

For example, consider the following IDL interface:

// IDL
interface Counter {

long add(in long v al);
};

The servant skeleton generated by the IDL compiler for this interface appears as 
follows (the type of the second member is defined further below):

/* C */
typedef struct POA_Counter {

void* _private;
POA_Counter__vepv* vepv;

} POA_Counter;

As with PortableServer_ServantBase , the name of the second member is
standardized to “vepv” for portability.

The EPV generated for the skeleton is a bit more interesting.  For the Counter 
interface defined above, it appears as follows:

/* C */
typedef struct POA_Counter__epv {

void* _private;
CORBA_Long (*add)(PortableServer_Servant servant,

CORBA_Long val,
CORBA_Environment* env);

} POA_Counter__epv;

Since all servants are effectively derived from 
PortableServer_ServantBase , the complete set of entry points has to 
include EPVs for both PortableServer_ServantBase  and for Counter  
itself:

/* C */
typedef struct POA_Counter__vepv {

PortableServer_ServantBase__epv* _base_epv;
POA_Counter__epv* Counter_epv;

} POA_Counter__vepv;

The first member of the POA_Counter__vepv  struct is a pointer to the 
PortableServer_ServantBase  EPV.  To ensure portability of initialization 
and access code, this member is always named “_base_epv.” It must always be thirst 
member.  The second member is a pointer to a POA_Counter__epv .

The pointers to EPVs in the VEPV structure are in the order that the IDL interfaces
appear in a top-to-bottom left-to-right traversal of the inheritance hierarchy of the 
most-derived interface.  The base of this hierarchy, as far as servants are concerned, is 
always PortableServer_ServantBase .  For example, consider the following
complicated interface hierarchy:
19-34                                  CORBA V2.2                                 February 1998



19

ing 
 

// IDL
interface A {};
interface B : A {};
interface C : B {};
interface D : B {};
interface E : C, D {};
interface F {};
interface G : E, F {

void foo();
};

The VEPV structure for interface G shall be generated as follows:

/* C */
typedef struct POA_G__epv {

void* _private;
void (*foo)(PortableServer_Servant, CORBA_Environment*);

};
typedef struct POA_G__vepv {

PortableServer_ServantBase__epv* _base_epv;
POA_A__epv* A_epv;
POA_B__epv* B_epv;
POA_C__epv* C_epv;
POA_D__epv* D_epv;
POA_E__epv* E_epv;
POA_F__epv* F_epv;
POA_G__epv* G_epv;

};

Note that each member other than the “_base_epv” member is named by append
“_epv” to the interface name whose EPV the member points to. These names are
standardized to allow for portable access to these struct fields.

19.26.6 Servant Structure Initialization

Each servant requires initialization and etherealization, or finalization, functions.  For 
PortableServer_ServantBase , the ORB implementation shall provide the 
following functions:

/* C */
void PortableServer_ServantBase__init(

PortableServer_Servant,
CORBA_Environment*);

void PortableServer_ServantBase__fini(
PortableServer_Servant,
CORBA_Environment*);

These functions are named by appending “__init” and “__fini” (note the double 
underscores) to the name of the servant, respectively.
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The first argument to the init function shall be a valid 
PortableServer_Servant  whose “vepv” member has already been initialized 
to point to a VEPV structure.  The init function shall perform ORB-specific 
initialization of the PortableServer_ServantBase , and shall initialize the 
“finalize” struct member of the pointed-to 
PortableServer_ServantBase__epv  to point to the 
PortableServer_ServantBase_fini()  function if the “finalize” member 
is NULL.  If the “finalize” member is not NULL, it is presumed that it has already 
been correctly initialized by the application, and is thus not modified.  Similarly, if the 
the default_POA  member of the PortableServer_ServantBase__epv  
structure is NULL when the init function is called, its value is set to point to the 
PortableServer_ServantBase__default_POA()  function, which 
returns an object reference to the root POA.

If a servant pointed to by the PortableServer_Servant  passed to an init 
function has a NULL “vepv” member, or if the PortableServer_Servant  
argument itself is NULL, no initialization of the servant is performed, and the 
CORBA::BAD_PARAM  standard exception is raised via the 
CORBA_Environment  parameter.  This also applies to interface-specific init 
functions, which are described below.

The fini function only cleans up ORB-specific private data.  It is the default 
finalization function for servants.  It does not make any assumptions about where th
servant is allocated, such as assuming that the servant is heap-allocated and trying to 
call CORBA_free()  on it. Applications are allowed to “override” the fini function
for a given servant by initializing the PortableServer_ServantBase__epv  
“finalize” pointer with a pointer to a finalization function made specifically for that 
servant; however, any such overriding function must always ensure that the 
PortableServer_ServantBase_fini()  function is invoked for that 
servant as part of its implementation. The results of a finalization function failing to 
invoke PortableServer_ServantBase_fini()  are implementation-
specific, but may include memory leaks or faults that could crash the application.

If a servant passed to a fini function has a NULL “epv” member, or if the 
PortableServer_Servant  argument itself is NULL, no finalization of the 
servant is performed, and the CORBA::B AD_PARAM  standard exception is raised
via the CORBA_Environment  parameter.  This also applies to interface-specific
fini functions, which are described below.

Normally, the PortableServer_ServantBase__init  and 
PortableServer_ServantBase__fini  functions are not invoked directly 
by applications, but rather by interface-specific initialization and finalization functions 
generated by an IDL compiler.  For example, the init and fini functions generated for 
the Counter  skeleton are defined as follows:
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/* C */
void POA_Counter__init(POA_Counter* servant,

CORBA_Environment* env)
{

/*
* first call immediate base interface init functions
* in the left-to-right order of inheritance
*/

PortableServer_ServantBase__init(
(PortableServer_ServantBase*)servant,
env

);
/* now perform POA_Counter initialization */
...

}

void POA_Counter__fini(POA_Counter* servant,
CORBA_Environment* env)

{
/* first perform POA_Counter cleanup */
...
/*

* then call immediate base interface fini functions
* in the right-to-left order of inheritance
*/

PortableServer_ServantBase__fini(
(PortableServer_ServantBase*)servant,
env

);
}

The address of a servant shall be passed to the init function before the servant is 
allowed to be activated or registered with the POA in any way.  The results of failing 
to properly initialize a servant via the appropriate init function before registering it or 
allowing it to be activated are implementation-specific, but could include memory 
access violations that could crash the application.

19.26.7 Application Servants

It is expected that applications will create their own servant structures so that theycan 
add their own servant-specific data members to store object state.  For the Counter  
example shown above, an application servant would probably have a data member us
to store the counter value:

/* C */
typedef struct AppServant {

POA_Counter base;
CORBA_Long value;

} AppServant;
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The application might contain the following implementation of the Counter::add 
operation:

/* C */
CORBA_Long
app_servant_add(PortableServer_Servant _servant,

CORBA_Long val,
CORBA_Environment* _env)

{
AppServant* self = (AppServant*)_servant;
self->value += val;
return self->value;

}

The application could initialize the servant statically as follows:

/* C */
PortableServer_ServantBase__epv base_epv = {

NULL, /* ignore ORB private data */
NULL, /* no servant-specific finalize

function needed */
NULL, /* use base default_POA function */

};

POA_Counter__epv counter_epv = {
NULL, /* ignore ORB private data */
app_servant_add /* point to our add function */

};

/* Vector of EPVs */
POA_Counter__vepv counter_vepv = {

&base_epv,
&counter_epv

};

};
AppServant my_servant = {

/* initialize POA_Counter */
{

NULL, /* ignore ORB private data */
&counter_vepv /* Counter vector of EPVs */

},
0 /* initialize counter value */

};

Before registering or activating this servant, the application shall call:
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/* C */
CORBA_Environment env;
POA_Counter__init(&my_servant, &env);

If the application requires a special destruction function for my_servant , it shall 
set the value of the PortableServer_ServantBase__epv  “finalize” 
member either before or after calling POA_Counter__init() :

/* C */
my_servant.epv._base_epv.finalize = my_finalizer_func;

Note that if the application statically initialized the “finalize” member before calling 
the servant initialization function, explicit assignment to the “finalize” member as 
shown here is not necessary, since the PortableServer_ServantBase
__init()  function will not modify it if it is non-NULL.

The example shown above illustrates static initialization of the EPV and VEPV 
structures. While portable, this method of initialization depends on the ordering of the
VEPV struct members for base interfaces—if the top-to-bottom left-to-right ordering 
of the interface inheritance hierarchy is changed, the order of these fields is also 
changed. A less fragile way of initializing these fields is to perform the initialization a
runtime, relying on assignment to the named struct fields. Since the names of the fields
are used in this approach, it does not break if the order of base interfaces changes. 
Performing field initialization within a servant initialization function also provides a 
convenient place to invoke the servant initialization functions. In any case, both 
approaches are portable, and it is ultimately up to the developer to choose the one tha
is best for each application.

19.26.8 Method Signatures

With the POA, implementation methods have signatures that are identical to the s
except for the first argument. If the following interface is defined in OMG IDL:

// IDL
interface example4 {

long op5(in long arg6);
};

a method function for the op5  operation must have the following function signature:

/* C */
CORBA_long example4_op5(

PortableServer_Servant _servant, 
CORBA_long arg6,
CORBA_Environment* _env

);

The _servant  parameter is the pointer to the servant incarnating the CORBA ob
on which the request was invoked. The method can obtain the object reference for the
target CORBA object by using the POA_Current  object. The _env  parameter is 
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used for raising exceptions. Note that the names of the _servant  and _env  
parameters are standardized to allow the bodies of method functions to refer to t
portably.

The method terminates successfully by executing a return  statement returning the 
declared operation value. Prior to returning the result of a successful invocation, the 
method code must assign legal values to all out  and inout  parameters.

The method terminates with an error by executing the CORBA_exception_set  
operation (described in “Handling Exceptions” on page 19-26) prior to executing a 
return  statement. When raising an exception, the method code is not required to 
assign legal values to any out  or inout  parameters. Due to restrictions in C, however, 
it must return a legal function value.

19.27 Mapping of the Dynamic Skeleton Interface to C

For general information about mapping of the Dynamic Skeleton Interface to 
programming languages, refer to “DSI: Language Mapping” on page 6-4.

This section contains

• A mapping of the Dynamic Skeleton Interface’s ServerRequest to C

• A mapping of the Portable Object Adapter’s Dynamic Implementation Routine
C.

19.27.1 Mapping of ServerRequest to C

In the C mapping, a ServerRequest is a pseudo object in the CORBA module tha
supports the following operations:

/* C */
CORBA_Identifier CORBA_ServerRequest_operation(

CORBA_ServerRequest req,
CORBA_Environment *env

);

This function returns the name of the operation being performed, as shown in the 
operation’s OMG IDL specification.

/* C */
CORBA_Context CORBA_ServerRequest_ctx (

CORBA_ServerRequest req,
CORBA_Environment *env

);

This function may be used to determine any context values passed as part of the
operation. Context will only be available to the extent defined in the operation’s O
IDL definition; for example, attribute operations have none.
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/* C */
void CORBA_ServerRequest_arguments(

CORBA_ServerRequest req,
CORBA_NVList* parameters,
CORBA_Environment *env

);

This function is used to retrieve parameters from the ServerRequest , and to find 
the addresses used to pass pointers to result values to the ORB. It must always 
called by each DIR, even when there are no parameters.

The caller passes ownership of the parameters  NVList to the ORB. Before this 
routine is called, that NVList should be initialized with the TypeCodes and direction 
flags for each of the parameters to the operation being implemented: in, out, and inout 
parameters inclusive. When the call returns, the parameters  NVList is still usable 
by the DIR, and all in and inout parameters will have been unmarshalled. Pointers t
those parameter values will at that point also be accessible through the parameters  
NVList.

The implementation routine will then process the call, producing any result values
the DIR does not need to report an exception, it will replace pointers to inout values in 
parameters with the values to be returned, and assign pointers to out values in that 
NVList appropriately as well. When the DIR returns, all the parameter memory is 
freed as appropriate, and the NVList itself is freed by the ORB.

/* C */
void CORBA_ServerRequest_set_result(

CORBA_ServerRequest req,
CORBA_any* value,
CORBA_Environment *env

);

This function is used to report any result value  for an operation. If the operation has
no result, it must either be called with a tk_void TypeCode stored in value , or not be 
called at all.

/* C */
void CORBA_ServerRequest_set_exception(

CORBA_ServerRequest req,
CORBA_exception_type major,
CORBA_any* value,
CORBA_Environment *env

);

This function is used to report exceptions, both user and system, to the client wh
made the original invocation. The parameters are as follows:

major  indicates whether the exception is a user exception or system exception

value  is the value of the exception, including an exceptionTypeCode.
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19.27.2 Mapping of Dynamic Implementation Routine to C

In C, a DIR is a function with this signature:

/* C */
typedef void (*PortableServer_DynamicImplRoutine)(

PortableServer_Servant servant,
CORBA_ServerRequest request

);

Such a function will be invoked by the Portable Object Adapter when an invocation is 
received on an object reference whose implementation has registered a dynamic 
skeleton.

servant is the C implementation object incarnating the CORBA object to which the invo-
cation is directed.

request  is the ServerRequest used to access explicit parameters and report results (and 
exceptions).

Unlike other C object implementations, the DIR does not receive a 
CORBA_Environment*  parameter, and so the CORBA_exception_set  API 
is not used. Instead, CORBA_ServerRequest_set_exception  is used; this 
provides the TypeCode for the exception to the ORB, so it does not need to consult th
Interface Repository (or rely on compiled stubs) to marshal the exception value.

To register a Dynamic Implementation Routine with a POA, the proper EPV struc
and servant must first be created. DSI servants are expected to supply EPVs for both 
PortableServer_ServantBase  and for 
PortableServer_DynamicImpl , which is conceptually derived from 
PortableServer_ServantBase , as shown below.
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/* C */
typedef struct PortableServer_DynamicImpl__epv {

void* _private;
PortableServer_DynamicImplRoutine invoke;
CORBA_RepositoryId (*primary_interface)(

PortableServer_Servant svt,
PortableServer_ObjectId id,
PortableServer_POA poa,
CORBA_Environment* env);

} PortableServer_DynamicImpl__epv;

typedef struct PortableServer_DynamicImpl__vepv {
PortableServer_ServantBase__epv* _base_epv;
PortableServer_DynamicImpl__epv*

PortableServer_DynamicImpl_epv;
} PortableServer_DynamicImpl__vepv;

typedef struct PortableServer_DynamicImpl {
void* _private;
PortableServer_DynamicImpl__vepv* vepv;

} PortableServer_DynamicImpl;

As for other servants, initialization and finalization functions for 
PortableServer_DynamicImpl  are also provided, and must be invoked as 
described in “Servant Structure Initialization” on page19-35.

To properly initialize the EPVs, the application must provide implementations of the 
invoke  and the primary_interface  functions required by the 
PortableServer_DynamicImpl  EPV. The invoke  method, which is the 
DIR, receives requests issued to any CORBA object it represents and performs th
processing necessary to execute the request.

The primary_interface  method receives an ObjectId  value and a POA as 
input parameters and returns a valid Interface Repository Id representing the most-
derived interface for that oid .

It is expected that these methods will be only invoked by the POA, in the context of 
serving a CORBA request. Invoking these methods in other circumstances may le
unpredictable results.

An example of a DSI-based servant is shown below:

/* C */

/* This function serves as the DIR */
void my_invoke(PortableServer_Servant servant,

CORBA_ServerRequest req)
{

/* details omitted */
}

CORBA_RepositoryId my_primary_intf(
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PortableServer_Servant svt,
PortableServer_ObjectId id,
PortableServer_POA poa,
CORBA_Environment* env)

{
/* details omitted */

}

/* Application-specific DSI servant type */
typedef struct MyDSIServant {

POA_DynamicImpl base;
/* other application-specific data members */

} MyDSIServant;

PortableServer_ServantBase__epv base_epv = {
NULL, /* ignore ORB private data */
NULL, /* no servant-specific finalize */
NULL, /* use base default_POA function */

};
PortableServer_DynamicImpl__epv dynimpl_epv = {

NULL, /* ignore ORB private data */
my_invoke, /* invoke() function */
my_primary_intf, /* primary_interface() function */

};
PortableServer_DynamicImpl__vepv dynimpl_vepv = {

&base_epv, /* ServantBase EPV */
&dynimpl_epv, /* DynamicImpl EPV */

};

MyDSIServant my_servant = {
/* initialize PortableServer_DynamicImpl */
{

NULL, /* ignore ORB private data */
&dynimpl_vepv /* DynamicImpl vector of EPVs */

};
/* initialize application-specific data members */

};

Registration of the my_servant  data structure via the 
PortableServer_POA_set_servant()  function on a suitably initialized 
POA makes the my_invoke  DIR function available to handle DSI requests.

19.28 ORB Initialization Operations 

ORB Initialization

The following PIDL specifies initialization operations for an ORB; this PIDL is part o
the CORBA module (not the ORB interface) and is described in “ORB Initialization” 
on page 4-8.
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// PIDL 
module CORBA {

typedef string ORBid;
 typedef sequence <string> arg_list;

 ORB ORB_init (inout arg_list argv, in ORBid orb_identifier);
};

The mapping of the preceding PIDL operations to C is as follows:

/* C */
typedef char* CORBA_ORBid;
extern CORBA_ORB CORBA_ORB_init(int *argc,

char **argv,
CORBA_ORBid orb_identifier,
CORBA_Environment *env);

The C mapping for ORB_init deviates from the OMG IDL PIDL in its handling of the
arg_list parameter. This is intended to provide a meaningful PIDL definition of the
initialization interface, which has a natural C binding. To this end, the arg_list 
structure is replaced with argv  and argc  parameters. 

The argv  parameter is defined as an unbound array of strings (char ** ) and the 
number of strings in the array is passed in the argc  (int* ) parameter.

If an empty ORBid string is used then argc arguments can be used to determine w
ORB should be returned.  This is achieved by searching the argv  parameters for one 
tagged ORBid, e.g., -ORBid "ORBid_example."  If an empty ORBid string is used and
no ORB is indicated by the argv  parameters, the default ORB is returned.

Regardless of whether an empty or non-empty ORBid string is passed to ORB_init , 
the argv  arguments are examined to determine if any ORB parameters are given
a non-empty ORBid string is passed to ORB_init , all -ORBid parameters in the 
argv  are ignored.  All other -ORB<suffix> parameters may be of significance durin
the ORB initialization process.

For C, the order of consumption of argv  parameters may be significant to an 
application. In order to ensure that applications are not required to handle argv  
parameters they do not recognize the ORB initialization function must be called before 
the remainder of the parameters are consumed. Therefore, after the ORB_init  call 
the argv  and argc  parameters will have been modified to remove the ORB 
understood arguments. It is important to note that the ORB_init call can only reord
remove references to parameters from the argv list; this restriction is made in order
avoid potential memory management problems caused by trying to free parts of t
argv list or extending the argv list of parameters. This is why argv is passed as a 
char**  and not a char*** . 
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