C Language Mapping 19

CORBA is independent of the gglamming laaguage used to construct clients and
implementations. In order to use the ORB, it is necessary fgrammers tdknow

how to access ORB functionality from their programming languages. This chapter
defines the mapping of OMG IDL constructs to the C programming language.

Contents

This chapter contains tHellowing sections.

Section Title Page
“Requirements for danguage Mapping” 19-2
“Scoped Names” 19-5
“Mapping for Interfaces” 19-6
“Inheritanceand Operation Bmes” 19-8
“Mapping for Attributes” 19-8
“Mapping for Constants” 19-10
“Mapping for Basic Data Types” 19-10
“Mapping Considerations for Constructed Types” 19-11
“Mapping for Structure Types” 19-12
“Mapping for Union Types” 19-12
“Mapping for Sequence Types” 19-13
“Mapping for Strings” 19-16
“Mapping for Wide Strings” 19-18

CORBA V2.2 ebruary 1998 19-1

19

Section Title Page
“Mapping for Fixed” 19-18
“Mapping for Arrays” 19-19
“Mapping for Exception Types” 19-20
“Implicit Arguments to Operations” 19-21
“Interpretation of Functions with Empty Argument Lists” 19-21
“Argument Passing Considerations” 19-21
“Return Result Passing Considerations” 19-22
“Summary of Argument/Result Passing” 19-23
“Handling Exceptions” 19-26
“Method Routine Signatures” 19-29
“Include Files” 19-29
“Pseudo-objects” 19-29
“Mapping for Object Implementations” 19-30
“Mapping of the Dynamic Skeleton Interface to C” 19-40
“ORB Initialization Operations” 19-44

19.1 Requirements for a Language Mapping

19-2

All language mappings have approximately the same structhey.must define the

means of expressing in the language:
» All OMG IDL basic data types
» All OMG IDL constructed data types
» References to constants defined in OMG IDL
» References to objects defined in OMG IDL

* Invocations of operations, including passing parameters and receiving results
» Exceptions, including what happens when an operation raises an exception and

how the exception parameters are accessed
» Access to dtibutes

* Signatures for the operations defined by the OfRBh as the dynamic invocation

interface, the object adapters, and so forth.

A complete lamguage mapping will allow programmer to have access to all ORB
functionality in a way that is convenient for the particular programminguiage. To
support sourc@ortability, all ORB implementations mustipport the same mapping

for a particular language.

CORBAV2.2 February 1998

19

19.1.1 Basic Data Types

A language mapping must define the means of expressing all of the dataé¢yipesl

in “Basic Types” on page 3-23. The ORB defines the range of values supported, but the
language mapping defines how a gr@mmer sees those values. For example, the C
mapping might define TRUE as 1 and FALSE as 0, whereas the LISP mapping might
define TRUE as T and FALSE as NIL. The mapping must specify the means to
construct and operate on these data types in the programmadsn

19.1.2 Constructed Data Types

A language mappingqust define the means of expressing the constructed data types
defined in “Constructed Types” on page 3-25. The ORB defines aggregates of basic
data types that are supported, but the language mapping dedwesprogrammer

sees those aggregates. For example, the C mapping might define an OMG IDL struct as
a C struct, whereas the LISP mappmght define an OMG IDL struct as a list. The
mapping must specify the means to constarat operate on these data types in the
programming language.

19.1.3 Constants

OMG IDL definitions may contain named constant values that are useful as parameters
for certain operations. The language mapping should provide the means to access thest
constants by name.

19.1.4 Objects

There are two parts afefining the mapping of ORB objects to a particulaglzage.

The frst specifies how an object is represented in the program and passed as a
parameter to operationghe second is how an object is invoked. Theespntation of

an object reference in a particular language igaly opaque, that is, some
language-specific data type used to represent the object reference, but thgrano

does nointerpret the values of that typ€he language-spdia representation is
independent of the ORB representation of an object reference, so that programs are not
ORB-dependent. In an object-oriented programming language, it may be convenient to
represent an ORB object as a programminguage object. Any correspondence
between the programming language object types and the OMG IDL types including
inheritarce, operation names, etc., is up to tagguage mapping.

There are only three uses that a program can make of an object reference: it may
specify it as a parameter to an operation (including receiving it as an output
parameter), it can toke an operation oib, or it can perform an ORB operation
(including object adapter operations) on it.

CORBAV2.2 Rpirements fora Language Mapping February 1998 19-3

19

19.1.5 Invocation of Operations

An operation invocation requires the specification of the object to be invoked, the
operation to be performed, and the parameters supplied. There are\ariety of

possible mappings, depending to a large extent on the procedure mechanism in the
particular laguage. Somegssible choices for lanage mapping of invocation

include: interface-specific stub routines, a single general-purpose routine, a set of calls
to construct a parameter liahd intiate the operation, or mapping ORB operations to
operations on objects defined in an object-oriented programmigadage.

The mappingnust define how parameters are associated with the call, and how the
operation name is specified. It is also necessary to specify the effect of the call on the
flow of control in the program, includinghven an operation completesrmally and

when an exception is raised.

The mostnatural mapping would be to model a call on an ORB object as the
corresponding call in the particular larage. Howeverthis may not always be

possible for languages where the type system or call mechanism is not powerful
enough to handle ORB objects. In this casaltiple calls may beequired. For

example, in C, it is necessary to have a separatedangefébr dynamic construction of
calls, since Gloes nofpermit discovery ohew types at runtime. In LISP, however, it
may be possible to make a language mapping that is the same for objects whether or
not they were known at compitane.

In addition to definincghow anoperation is expressed, it is necessary to specify the
storage allocation policy for parameters, for example, what happens to storage of input
parameters, ankdow and vihere output parameters are allocated. It is also necessary to
describe how a return value is handled, for operations that have one.

19.1.6 Exceptions

There are two aspects to the mapping of exceptions into a particular language. First is
the means for handling an exception when it occurs, including deciding which
exception occurred. If the programming darage has a model of exceptions that can
accommodate ORB exceptions, that would likely be the most convenient choice; if it
does not, some other means must be used, for example, passing additional parameter:
to the operations that receive the exception status.

It is commonly the case that the programmer associates spmaificto handle each
kind of exception. It is desirable to make that association as convenient as possible.

Second, when an exception has been raisedyst be possible to access the

parameters of the exception. If the language exception anérth allows for

parameters, that mechanism could be used. Otherwise, some other means of obtaining
the exception values must be provided.

19-4 CORBAV2.2 February 1998

19

19.1.7 Attributes

The ORB madalels attributes as a pair of operations, one to set and one to get the
attribute value. The language mapping defines the means of expressing these
operationsOnereason for distinguishing attributes from pairs of operations iddw al
the language mapping to define the most natural way for accessing them. Some
possible choices include defining two operations for edtiibute, defining two
operations that can set or get, respectivaahy,attribute, defining operations that can
set or get groups of aibutes,and so forth.

19.1.8 ORB Interfaces

Most of a language mapping is concerned viadlv theprogrammer-defined objects
and data are accessed. Peagmers who use the ORB must also access some
interfaces implemented directly by the ORB, for example, to convert an object
reference to a string. A language mappimgist also speciffiow thesdnterfaces
appear in the particular programming language.

Various approaches may be taken, including defining a set of library routines, allowing
additional ORB-related operations on objects, or defining interfaces that are similar to
the language mapping for ordinary objects.

The last approach is ¢edl defining pseudo-objects. A pseudo-object has an interface
that can (with a few exceptions) be defined in IDL, but is not necessarily implemented
as an ORB object. Using stubs a client of a pseudo-objéetswralls to it in the same

way as if it were an ordinary object. Pseudo-object operatmamnot be invoked with

the Dynamic Invocation Interface. Hewer, the ORB may recognize such calls as
special and handle them directly. One advantage of pseudo-objects is that the interface
can be expressed in IDL independent of the particular language mapping, and the
programmer can understand how to write callkbgwing the language mappirigr

the invocations of ordinary objects.

It is not necessary for a language mapping to use the pseudo-object approach.
However, this document defines interfaces in subsequent chapters using OMG IDL
wherever possible. A language mapping must define how these interfaces are accessed
either by defining them as pseudo-objects and supporting a mappiitgr $0

ordinary objects, by defining language-specific interfaces for them, or in some other
way.

19.2 Scoped Names

The Cprogrammer must always use the global name for a type, constant, exception, or
operation. The C global name corresponding to an OMG IDL global name is derived
by converting occurrences of " to “_" (an underscore) andiglinating the leading
underscore.

CORBAV2.2 Scopé&ames February 1998 19-5

19

Consider the following example:

/I IDL
typedef string<256> filename_t;
interface exampleO {
enum color {red, green, blue};
union bar switch (enum foo {room, bell}) { ... };

k

Code to use this interface would look as follows:

[*C*
#include "example0.h"

filename_t FN;
exampleO_color C = exampleO_red;
example0_bar myUnion;

switch (myUnion._d) {
case exampleO_bar_room: see
case exampleO_bar_bell: see

h

Note that the use of underscores to replace ‘tHeséparators can lead to ambiguity if
the OMG IDL specification contains identifiers with underscores in them. Consider the
following example:

/I IDL

typedef long foo_bar;

interface foo {
typedef short bar; /* A legal OMG IDL stat ement,
but ambiguous in C */

k

Due to such ambiguities, it is advisable to avoid thesieriininateuse of underscores
in identifiers.

19.3 Mapping for Interfaces

19-6

All interfaces must be defined at glolsalope 0 nested interfacesThe mappingor
an interface declaration is as follows:

/I IDL
interface examplel {

long op1(in long argl);
|3

CORBAV2.2 February 1998

19

The preceding example generaties following C declaratiorts

/*C*

typedef CORBA_Object examplel;

extern CORBA _long examplel_op1(
examplel o,
CORBA_long arg1,
CORBA_Environment *ev

);
All object references (typed interface references to an object) are of the well-known,
opaque typeCORBA_Object . The representation @ORBA_Object is a

pointer. To permit the programmer to decorate a program with typed references, a type
with the name of the interface is defined to LE@QRBA_Object . The literal

CORBA_OBJECT_NIlis legal wherever E«ORBA_Object may be used; it is
guaranteed to pass ti@ nil operation defined in “Nil Object References” on
page 4-5.

OMG IDL permits specifications in lich arguments, return results, or components of
constructed types may be interface references. Consider the following example:

/I IDL
#include "exampl el.idl"

interface example2 {
examplel op2();
|3

This is equivalent to the following C declaration:

/*C*
#include "examplel.h"

typedef CORBA_Object example2;
extern examplel example2_op2(example2 o, CORBA_Environment
*ev);

A C fragment for invoking such an operation is as follows:

1. “Implicit Arguments to Operations” on page 19-21 dé®s the additional argu-
ments added to an operation in the C mapping.

CORBAV2.2 Mapping for etfaces February 1998 19-7

19

/*C*
#include "example2.h"

examplel ex1;
example2 ex2;
CORBA_Environment ev;

[* code for binding ex2 */

ex1 = example2_op2(ex2, &ev);

19.4 Inheritanceand Operation Names

OMG IDL permits thespecification of interfaces that inherit operations from other
interfaces. Consider the following example:

/I DL
interface example3 : examplel {

void op3(in long arg3, out long arg4);
¥

This is equivalent to the following C declarations:

[*C*

typedef CORBA_Object example3;

extern CORBA _long example3_opl1(
example3 o,
CORBA long arg1,
CORBA_Environment *ev

);

extern void example3_op3(
example3 o,
CORBA long arg3,
CORBA _long *arg4,
CORBA_Environment *ev

);

As a result, an object written in C can acoaeg$ as if it was diectly declared in
example3 . Of course, the programmer could also invekamplel _opl on an
Object of typeexample3 ; the virtual nature of operations in interface definitions
will cause invacations of eithefunction to cause the same method to be invoked.

19.5 Mapping for Attributes

The mappindor attributes is bestxplained through example. Consider the following
specification:

19-8 CORBAV2.2 February 1998

19

/I IDL
interface foo {
struct position_t {
float x, y;

k

attribute float radius;
readonly attribute position_t position;

|3
This is exactly equivalent to the following illegal OMG IDL sgwgition:
/I'IDL (illegal)

interface foo {
struct position_t {

float x, y;
|3
float _get_radius();
void _set_radius(in float r);

position_t _get position();

h

This latter specification idlegal, since OMG IDL identifiersre not permitted to start
with the underscore | character.

The language mappirfgr attributes themecomes the language mapping for these
equivalent operations. More specifically, the function signatgeeerated for the
above operations are fdlows:

[* C*

typedef struct foo_position_t {
CORBA float x, y;

} foo_position_t;

extern CORBA float foo__get radius(foo o, CORBA_Environment
“ev);
extern void foo__set_radius(

foo o,

CORBA floatr,

CORBA_Environment *ev
);
extern foo_position_t foo_ get_position(foo o,
CORBA_Environment *ev);

Note that two underscore characters] separate the name of the interface from the
words ‘get ” or “set ” in the names of the functions.

If the “set " accessor function fails to set the attribute value, the method should return
one of the standard egptions defined in “Standard Exceptions” on pagiy.

CORBAV2.2 Mapping for Athutes February 1998 19-9

19

19.6 Mapping for Constants

Constant identifiergan be referenced at any point in treei’s code where a literal of
that type is legal. In C, these constants#define d.

The fact that constants afglefine d may lead to ambiguities itode. All names
which are mandated by the mappings for any of the structured types stalbwvith
an underscore.

The mappings for wide chacterand wide string constants eintical to character and
string constants, except that IDL literals are preceded ioyC. For exmple, IDL
congant:

const wstring ws = “Hello World”;
would map to

#define ws L"Hello World”
in C.

19.7 Mapping for Basic Data Types

19-10

The basic data types have the mappisgswn in Table 19-1 on page 19-10.
Implementations are responsible for providing typedefs for CORBA_short,
CORBA _long, and so forth. consistenittvOMG IDL requirements for the
corresponding data types.

Table 19-1Data Type Mappings

OMG IDL C

short CORBA_short
long CORBA _long

long long CORBA_long_long

unsignedshort CORBA_unsigned_short

unsigned long CORBA_unsigned_long

unsigned long CORBA _unsigned_long_long

long

float CORBA _float

double CORBA _double

long double CORBA _long_double

char CORBA _char

wchar CORBA_wchar

boolean CORBA _hoolean

any typedef struct CORBA_any { CORBA_TypeCode _type; void *_value; }

CORBA_any;

CORBAV2.2 February 1998

19

The Cmapping of the OMG IDIboolean types isunsigned char with only the
values 1 (TRUE) and 0 (FALSHefined; other values pdoice undefined behavior.
CORBA_boolean is provided faymmetry vith the other basic data type mappings.

The Cmapping of OMG IDLenum types is an unsigned integer type capable of
representing ¥ enumerations. Each enumerator ineaum is #define d with an
appropriate unsigned integer value conforming to the ordering constraints described in
“Enumerations” on page 3-27.

TypeCodesare described in “TygCodes” on page 8-35. Thealue member for an
any is a pointer to the actual value of the datum.

The any type supports the notion of ownershipitsf_value member. By setting a
release flag in thany when a value is installed, programmers can control ownership
of the memory pointed to byvalue . The location of this release flag is
implementation-dependent, so tudlowing two ORB-supplied functions allow for the
settng and checking of thany release flag:

[*C*
void CORBA_any_set release(CORBA_any*, CORBA_boolean);
CORBA_boolean CORBA_any_get_release(CORBA_any*);

CORBA_any_set _release can be used to set the state of the release flag. If the
flag is set tolf RUE theany effectively “owns” the storage pointed to byalue ; if
FALSE, the programmer is responsible for the storage. If, for examplangris
returned from an operation with its release flag sétAb.SE, calling

CORBA _free() on the returnea@ny* will not deallocate the memory pointed to
by value . Before calingCORBA _free() on the_value member of arany
directly, the programmer shouttheck the release flag using
CORBA _any get release . If it returnsFALSE, the programmer should not
invoke CORBA free() onthe value member; doing so produces undefined
behavior. Also, passing a null pointer to eitlPRBA_any_set release or
CORBA_any_get _release produces undefined behavior.

If CORBA_any_set release is never called for a given instanceasty, the
default value of the release flag for that instandeAs. SE

19.8 Mapping Considerations for Constructed Types

The mappingor OMG IDL structured types (structs, unions, arrays, and sequences)
can vary slightly depending on whether the data structuireid-lengthor variable-
length A type isvariable-lengthif it is one of thefollowing types:

* The typeany

» A bounded or unboundedristy or wide string

* A bounded or unbounded sequence

» An object reference or reference to a transmissib&igo-object

* A struct or union that contains a member whose type is variable-length
* An array with a variable-length element type

A typedef to a variable-length type

CORBAV2.2 Mapping Csitlerations for Constructed Types February 1998 19-11

19

The reasorior treating fixed- and variable-length data structures differently is to allow
more flexibility in the allocation obut parameters and return valuiesm an

operation. This flexibility allows a client-side stub for an operation that returns a
sequence aftrings, for example, to allocate all te&ring storage in one area that is
deallocated in a single calthe mapping of aariable-length type as @ut parameter

or operation return value is a pointer to the associated class or arsapwasin

Table 19-2 on page 19-23.

For types whose parameter passing modes require heap allocation, an ORB
implementation will provide allocatiofunctions. These types include variable-length
struct , variable-lengttunion , sequence , any, string , wstring and array of a
variable-length tpe. The return value of thea#ocation functions must be freed using
CORBA_free() . For one of these listed types T, the ORB implementation will
provide the following type-specific allocation function:

[*C*

T *T__ alloc();

The functions are defined at global scope using the fully-scoped name of T converted
into a C language name (as described in Section 19.2) followed by the suffix “__alloc”

(note the double underscore). Roty, string, andwstring , the allocation functions
are:

[*C*

CORBA_any *CORBA_any_alloc();
char *CORBA _string_alloc();
CORBA_wchar* CORBA_wstring_alloc(CORBA _unsigned_long len);

respectively.

19.9 Mapping for Structure Types

OMG IDL structures map directly onto €truct s. Note that all OMG IDL tges
that map to Gstruct s may potentially include padding.

19.10 Mapping for Union Types

19-12

OMG IDL discriminated unions are mapped ontst@ict s. Consider the following
OMG IDL declaration:

/I IDL

union Foo switch (long) {
case 1:long x;
case 2: floaty;
default: char z;

k

This is equivalent to the followingtruct in C:

CORBAV2.2 February 1998

19

[*C*
typedef struct {
CORBA _long _d;
union {
CORBA _long x;
CORBA float y;
CORBA _char z;
o
} Foo;

The discriminator in the struct islwaysreferred to as d; the union in the struct is
always referred to asu.

Reference to unioplements is as in normal C:

C
Foo *v;

/* make a call that returns a pointer to a Foo in v */

switch(v->_d) {
case 1: printf("x = %ld\n", v->_u.x); break;
case 2: printf("y = %f\n", v->_u.y); break;
default: printf("z = %c\n", v->_u.z); break;

}

An ORB implementation need not use aigion to hold the OMG IDLunion
elements; a C struct may heedinstead. In either case, the ggammer accesses the
union elements via theu member.

19.11 Mapping for Sequence Types

The OMG IDL data typsequence permits passing of doounded arrays between
objects. Consider the following OMG IDL declaration:

/I IDL
typedef sequence< long,10> veclO;

In C, this isconverted to:

[*C*

typedef struct {
CORBA _unsigned_long _maximum;
CORBA_unsigned_long _length;
CORBA _long *_buffer;

} vecl0;

An instance of this type is declared as follows:

[*C*
vecl0 x = {10L, OL, (CORBA_long *)NULL);

CORBAV2.2 Mapping for Sequengpes February 1998 19-13

19

19-14

Prior to passingkXx as anin parameter, the programmer must set theiffer
member to point to £ORBA_long array of 10 elements, and must set the
_length member to the actual number of elements to transmit.

Prior to passing the address of@cl0* as anout parameter (or receiving a

vecl0* as the function return), the programniees nothing. The client stub will
allocate storage for the returned sequence; for bounded sequences, it also allocates a
buffer of the specified size, while fanbounded sequences, it also allocates febuf

big enough to hold what was returned by the object. Upon successful fretarthe
invocation, the_maximum member will contain the size of the allocated array, the
_buffer member will point at allocated storage, and tthength member will

contain the number of values that were returned in theffer member. Thelient

is responsible for freeing the allocated sequence GIDRBA_free() .

Prior to passingkX as annout parameter, the programmer must set thaffer

member to point to £ORBA_long array of 10 elements. Thdength member

must be set to the actual number of elements to transmit. Upon successful return from
the invocation, thelength member will contain the number of values that were
copied into the buffer pointed to by théouffer member. If more data must be
returned than the original buffer can hold, the callee can deallocate the original
_buffer member usindZORBA_free() (honoring the release flag) and assign
_buffer to point tonew storage.

For bounded sequences, it isamor to set the length or _maximum member to
a value larger than the specified bound.

Sequence types support the notion of ownershipeaif buffer members. By
seting a release flag in the sequence when a buffersialled, programmersan
control ownership of the memory pointed to dyuffer . The location of this release
flag is implementation-degndent, so the followingvo ORB-supplied functionallow
for the setting andchecking of the sequence relealsey f

[*C*
void CORBA_sequence_set _release(void*, CORBA_boolean);
CORBA_boolean CORBA_sequence_get_release(void*);

CORBA_sequence_set release can be used to set the state of the release
flag. If the flag is set td RUE the sequence efféetly “owns” the storage pointed to
by buffer ;if FALSE, the programmer is responsible for the storage. If, for
example, a sequence is returned from agrafon vith its release flag set t6ALSE,
calling CORBA free() on the returned sequence pointer will nealibcate the
memory pointed to by buffer . Before callingCORBA _free() on the

_buffer member of a sequendérectly, the programmeshould check the release
flag usingCORBA_sequence_get_release . If it returnsFALSE the
programmer should not invokeORBA_free() on the_buffer member; doing
so produces undefined behavior. Alsasping a null pointer or a pointer to something
other than a sequence type to eitt@RBA_sequence_set release or
CORBA_sequence_get_release produces undefined behavior.

CORBAV2.2 February 1998

19

CORBA_sequence_set_release should only be used by the creator of a
sequence. If it is natalled for a given sguence instance, then the default value of the
release flag for that instanceFALSE

Two s@uence types are the same type if their sequence eleyperdnd size arguents
are identical. For exaple,

/I IDL
const long SIZE = 25;

typedef long seqtype;

typedef sequence< long, SIZE> s1;
typedef sequence< long, 25> s2;
typedef sequence<seqtype, SIZE> s3;
typedef sequence<seqtype, 25> s4;

declaressl, s2, s3, ands4 to be of the same type.
The OMG IDLtype

/l DL
seque nce<type size>

maps to

[*C*
#ifndef _CORBA_sequence_type_defined
#define _CORBA_sequence_type_defined
typedef struct {
CORBA_unsigned_long _maximum;
CORBA_unsigned_long _length;
type *_buffer;
} CORBA_sequence_type;
#endif /* _CORBA_sequence_type_defined */

Theifdef ’s are needed to prevent duplicate definition where the same tyseds
more than once. The type name used in the C mapping is the type name of the effective

type, e.g. in

[*C*

typedef CORBA_long FRED;

typedef sequence<FRED,10> FredSeq;

the sequence is mapped onto

struct { ... } CORBA_sequence_long;
If the type in

/I DL
seque nce<type size>

CORBAV2.2 Mapping for Sequengpes February 1998 19-15

19

consists of more than one identifier (e.g, unsigned long), then the generated type name
consists of the string “CORBA_sequence_" concatenated to the string consisting of the
concatenation of each identifier separated by underscores (e.g, “unsigned_long”).

If the type is astring , the string “string” isused to generate the type name. If the
type is asequence , the string “sequence” is used to generate the type name,
recursively. For example

I1'\DL
sequence<sequen ce<long> >

generates a type of

[*C*

CORBA_sequence_sequence_long

These generated type names may be used to declare instances of a sequence type.

In addition to providing a type-specific allocation function for eacjueace, an ORB
implementation must provide a buffer allocation function for each sequepee ty
These functions allocate vectors of type T $equence<T> . They are defined at
global scope and are namgidhilarly to sequences:

[*C*
T *CORBA_sequence_T_allocbuf(CORBA _unsigned_long len);

Here, “T” refers to the type name. For the type

I1''DL
sequence<sequen ce<long> >

for example, the sequence buffer ationfunction is named
[*C*
T *CORBA_sequence_sequence_long_allocbuf

(CORBA _unsigned_long len);

Buffers allocated using these alltion functions are freeusingCORBA_free() .

19.12 Mapping for Strings

OMG IDL strings are mapped to 0-byte terminatedrelster arrays; i.e. the length of
the string isencoded in the character ariigself thraugh the placement of the 0-byte.
Note that the storage for C strings is one byte longer than the stated OMi@UD4.
Consider the following OMG IDL declarations:

/I IDL
typedef string<10> sten;
typedef string sinf;

In C, this isconverted to:

19-16 CORBAV2.2 February 1998

19

/*C*
typedef CORBA _char *sten;
typedef CORBA_char *sinf;

Instances of these types are declared as follows:

[*C*
sten s1 = NULL,;
sinf s2 = NULL;

Two sting types are the same typehgtr size arguments are identicabr example,

[*C*
const long SIZE = 25;

typedef string<SIZE> sx;
typedef string<25> sy;

declaressx andsy to be of the same type.

Prior to passingl ors2 as anin parameter, the programmewust assign thaddress
of a character buffer containing a O-by¢eminated string téhe variable. The caller
cannot pass a null pointer as the string argument.

Prior to passingsl1 or &s2 as anout parameter (or receiving @ten orsinf as

the return result), the programmer does nothing. The client stub will allocate storage
for the returned bdér; for bounded strings, @llocates a buffer of the specified size,
while for unbounded strings, #@llocates a buffer big @ugh to hold the returned

string. Upon successful retufrom the invocation, the character pointer will contain
the address of the allocated bufféhe client is respnsible for freeing the allocated
storage usingCORBA _free() .

Prior to passingsl or &s2 as annout parameter, the programmer must assign the
address of a character buffemtaining a 0-byte terminated array to the variable. If the
returned string is larger than the original buffer, the client stub will call
CORBA_free() on the originaktringand allocate aew buffer for thenew sting.

The client shouldherefore never pass é&mout string parameter that was not
allocated usingCORBA_string_alloc . The client is responsible for freeing the
allocated storage usifgORBA _free() , regardless of whether or not a reallocation
was recessary.

Strings are dynaitally allocated usinghe follbwing ORB-sipplied function:

[*C*
CORBA _char *CORBA_string_alloc(CORBA_unsigned_long len);

This function allocatelen+1 bytes, enough to hold the string and its teating NUL
character.

Strings allocated in this manner are freed u§i@RBA _free() .

CORBAV2.2 Mapping for 8tgs February 1998 19-17

19

19.13 Mapping for Wide Strings

The mapping for wide strings is similar to that of strings, except that (1) wide strings are
mapped to null-teninated (note: a wide nuNyide-character arrays instead of 0-byte
terminated character arraymd (2) wide strings are dynamically allocated using the
ORB-supplied function:

CORBA_wchar* CORBA_wstring_alloc(CORBA unsigned_long len);

instead ofCORBA_string_alloc . The length ayjumentlen is the number of
CORBA::WChar units to be allocated, includiogeadditional unit for the null
terminator.

19.14 Mapping for Fixed

If an implementatiorhas a native fixed-point decimal type, matching the CORBA
specificaibns of thefixed type, then th®©MG IDL fixed type may be mapped to the
native type.

Otherwise, the mapping is aslfals. Coniler the followingOMG IDL declarations:

fixed<15,5> dec1; /I \DL
typedef fixed<9,2> money;

In C, these become

typedef struct {/* C */

CORBA _unsigned_short _digits;
CORBA _short _scale;
CORBA_char _value[(15+2)/2];
} CORBA_fixed_15_5;

CORBA fixed_15 5 decl = {15u, 5};

typedef struct {

CORBA _unsigned_short _digits;
CORBA _short _scale;
CORBA_char _value[(9+2)/2];

} CORBA_fixed_9 2;

typedef CORBA_fixed_9_2 money;

An instance ofmoney is declared:

money bags = {9u, 2};

To permit application portability, the followinginimal set offunctionsand operations
on thefixed typemust be prowed by the rappng. Since C does not support
parametered types, théixed arguments are representedvagl* pointers.The type
information is insteadonveyed within the represetita itself. Thus the digits and
_scale of everyfixed operand must be set prior to invoking these functiordedd

19-18 CORBAV2.2 February 1998

19

only the_value field of the result, denoted Byp , may be left unset. Otherwise the
behavior of the functions is undefined.

/* Conversions: all signs are the same. */

CORBA_long CORBA _fixed_integer_part(const void *fp);

CORBA_long CORBA _fixed_fraction_part(const void *fp);

void CORBA_fixed_set(void *rp, const CORBA_long i,
const CORBA_long f);

/* Operations, of the form: r =f1 op f2 *

void CORBA_fixed_add(void *rp, const void *f1p,
const void *f2p);

void CORBA _fixed_sub(void *rp, const void *f1p,
const void *f2p);

void CORBA_fixed_mul(void *rp, const void *f1p,
const void *f2p);

void CORBA_fixed_div(void *rp, const void *f1p,
const void *f2p);

These operations mustamtain poper fixed-point decimal semantics, following the
rules specified in “Semantics” on page 3-20 for the precision and scale of the
intermediate results prior to assignment to the result variable. Truncation without
rounding may occur if theesult ¥pe cannot express thetérmediate result exactly.

Instances of théixed type are dynamically allocated using the ORB-supplied function:

CORBA_fixed_d_s* CORBA_fixed_alloc(CORBA_unsigned_short d);

19.15 Mapping for Arrays
OMG IDL arays map directly to C arrays. All array indices run from Ogize - 1>.

For each named array type in OMG IDL, the mapping provides a C typedef for pointer to
the array’sslice A slice of an array is another array with all the dimensions of the original
except the first. For example, given the falilog OMG IDL definition:

/I IDL
typedef long LongArray[4] [5];

The C mapping provides the following defions:

[*C*
typedef CORBA_long LongArray[4][5];
typedef CORBA long LongArray_slice[5];

The generated name of thiesltypedef is created by appending “_slice” to the original
array name.

If the return result, or aaut parameter for an arrdyolding a vaable-lengthype, of an
operation is an array, the array storage is dynamiditigaded by the sb; a pointer to

the array slice of the dynamically allocated array is returned as the value of the client stub
function. When the data is no longer needed, it is the programmer’s réslitgrisireturn

CORBAV2.2 Mapping féxrrrays February 1998 19-19

19

the dynamically allocated storage by callG@RBA_free() .

An array T of a variable-length type is dynamically allocated using the following ORB-
supplied function:

/*C*
T _slice *T__ alloc();
This function is idental to the allocabn functions described in Sectid®8.8, “Mapping

Considerations for Constructed Types,’gage 19-11, except that the return type is
pointer to array slice, not pointer to array.

19.16 Mapping for Excemn Types

19-20

Each defined exception type is defined asuacstagand a typedef with the C global name
for the exceptin. An identifier for the exapton, in string lieral form, is also
#define d, as is a type-specific allocation furcti For example:

/I IDL
exception foo {
long dummy;

>

yields the following C declarations:

/*C*
typedef struct foo {

CORBA_long dummy;

/* ...may contain additional

* implementation-specific members...

*/
} foo;
#define ex_foo <unique identifier for exception>
foo *foo__alloc();

The identifier for the exception uniquely identifies this exceptyge. For exaple, it
could be the Interface Repository idiéier for the exception (see “ExceptionDef” on
page 8-26).

The allocation function dynacally allocates an instance of tixeception and returns a
pointer to it.Each exeption type has itswn dynamic allocation function. Exceptions
allocated using a dynamic allocation function are freed USBIRBA free() .

Since IDL exceptions are allowed to have no members, but C structs must have at least
onemember, IDL exceptions with no members map to C structs with one member.
This member is opaque to applications. Both the type and the name of the single
member are implementation-specific.

CORBAV2.2 February 1998

19

19.17 Implicit Arguments to Operations

From the point of view of the C programmer, all operations declared in an interface have
additional leading pameters preceding the operation-specific parameters:

1. The first paameter teeach operation is @GORBA_Object input parameter; this
parameter designatése object to process the request.

2. The last pameter teeach operation is@ORBA_Environment* output parame-
ter; this parameter permits the returrerteption information.

3. Ifan operation in an OMG IDL spemftion has @ontext specification, then a
CORBA_Context input parametegprecedes th€EORBA_Environment*
parameteand follows any operation-specific arguments.

As described above, tiegORBA_Object type is an opaque type. The
CORBA_Environment type is partially opaque; “Handling Exceptions” on

page 19-26 provides astziption of thenon-opaque portion of the exceptiorusture
and an example of how to handle exceptionsienttode. TheCORBA_Context type
is opaque; see the Dynamic Invocation Interface chapter for more informatimwaio
create and manipulate context objects.

19.18 Interpretation ofFunctions with Empty Argument Lists

A function declared with an empty argument list is iedi to takeno operation-specific
arguments.

19.19 Argument Passing Considerations

For all OMG IDL types (except arrays), if the OMG IDL signature specifies that an
argument is aout orinout parameter, then the caller mustays pass the address of a
variable of that type (or the value of a pointetttat type); the callee must dereference the
parameter to get to thgpe. For arrays, thealler must pass the address of the first element
of the array.

Forin parameterghe value of the pameter rast be passed for all of the basic types,
enumerationyipes, and object references. For all arrays, the address of the first element of
the array must be passed. For all other structured types, the address of a variable of that
type must be passed, regardlessloéther they are fixed- or vable-kength. For strings, a
char* andwchar* must be passed.

Forinout parameters, thaddress of a variable of the correct type must be passed for all
of the basic types, enumeration types, object references, and structured typesigsor stri
the address of ghar* and the* of awchar the must be passed. For all arrays, the
address of the first element of the array must be passed.

Consider the fotlwing OMG IDL $ecification:

CORBAV2.2 Iplicit Arguments to Operations February 1998 19-21

19

/I IDL
interface foo {
typedef long Vector [25];

void bar(out Vector x, out long y);

k

Client code for invoking thbar operation would look like:

[*C*

foo object;
foo_Vector_slice x;
CORBA longy;
CORBA_Environment ev;

/* code to bind object to instance of foo */

foo_bar(object, &x, &y, &ev);

Forout parameters ofype vaiable-engthstruct , variable-€ngthunion , string ,
sequence , an array holding a variablefgth type, oany, the ORB will allocate storage
for the output value using the appropriate type-specific allocation mdhe client may
use and retain that storage indefinitely, and must indichgn the value is no longer
needed by calling the proced@®RBA _free , whose ignature is:

/*C*
extern void CORBA_free(void *storage);

The paameter taACORBA free() is the pointer used to return tbet parameter.
CORBA free() releases the ORB-allocated storage occupied byuh@arameter,
including storage indirectly refemced, such as in the case of a sequence of strings or
array of object reference. If a clieddes not calCORBA_free() before reusing the
pointers that reference tlo@t parameters, that storage might be edsPassing a null
pointer toCORBA _free() is allowed;CORBA free() simply ignores it and
returns without error.

19.20 Return Result Passing Considerations

19-22

When an operation is defined to return a non-vetdmn result, the following rules hold:

1. If the return result is one of the typimat, double , long, short , unsigned long ,
unsigned short , char, wchar, fixed, boolean |, octet, Object, or anenumeration ,
then the value issturned as the operatiorsut.

2. If the return result is one of the fixed-lenggpédsstruct orunion , then the value of

the C struct representing that type is returned as the operation result. If the return result is
one of the vaable-lengthypesstruct , union , sequence , orany, then a paiterto a C

struct representing that type is returned as the opera$iati.re

3. If the return result is of typgtring or wstring , then a pointer to the first character of
the string is returned as the operation result.

CORBAV2.2 February 1998

19

4. If the return result is of typarray, then a pointer to the slice of the array is rtdras
the operation result.

Consider the followingniterface:

/l IDL
interface X {
struct y {
long a;
float b;
|8
long opl();
\ y op2();

The bllowing Cdeclarations ensue from processing the speddicat

[*C*

typedef CORBA_Object X;

typedef struct X_y {
CORBA long a;
CORBA float b;

PXLY;

extern CORBA _long X_op1(X object, CORBA_Environment *ev);
extern X_y X_op2(X object, CORBA_Environment *ev);

For operation results of type variable-lengtruct , variable-lengttunion , wstring ,
string , sequence , array, or any, the ORB will allocate storage for the return value
using the appropriate type-specific allocation function. The client mapngeetain
that storage indefinitely, and must indicatbem the value is no longer needed by
calling theprocedurecCORBA _free() described in “Argument Passing
Considerations” on page 19-21.

19.21 Summary of Aument/Result Passing

Table 19-3 on page 19-2dramarizes \Wat a client passes as an argument to a stub and

receives as a resukor brevity, theCORBAprefix is omitted fromytpe names in the
tables.

Table 19-2Basic Argument and Result Passing

Data Type In Inout Out Return
short short short* short* short

long long long* long* long

long long long_long long_long* long_long* long_long

unsigned short
unsigned long

unsigned long long

unsigned_short unsigned_short* unsigned_short* unsigned_short

unsigned_long unsigned_long* unsigned_long* unsigned_long

unsigned_long_long unsigned_long_long* unsigned_long_long* unsigned_long_long

CORBAV2.2 SummaryArfigument/Result Passing February 1998 19-23

19

Table 19-2Basic Argument and Result Pass{i@pntinued)

Data Type In Inout Out Return

float float float* float* float

double double double* double* double

long double long_double long_double* long_double* long_double
fixed<d,s> fixed_d_s* fixed_d_s* fixed_d_s* fixed_d_s
boolean boolean boolean* boolean* boolean
char char char* char* char

wchar wchar wchar* wchar* wchar

octet octet octet* octet* octet

enum enum enum* enum* enum
object reference ptr! objref_ptr objref_ptr* objref_ptr* objref_ptr
struct, fixed struct* struct* struct* struct
struct, variable struct* struct* struct** struct*
union, fixed union* union* union* union
union, variable union* union* union** union*
string char* char** char* char*
wstring wchar* wchar** wchar** wchar*
sequence sequence* sequence* sequence** sequence*
array, fixed array array array array slice*?
array, variable array array array slice**2 array slice*2
any any* any* any** any*

1. Including pseudo-objeceferences.
2. Aslice is an aay with all the dimensins of the oiginal except the firsbne.

A client is responsible for providing storage for all arguments passadaaguments.

Table 19-3Client Argument Storage Responsibilities

Inout Out Return
Type Param Param Result
short 1 1 1
long 1 1 1
unsigned short 1 1 1
unsigned long 1 1 1
float 1 1 1
double 1 1 1
boolean 1 1 1
char 1 1 1
octet 1 1 1
enum 1 1 1
object reference ptr 2 2 2
struct, fixed 1 1 1
struct, variable 1 3 3

19-24 CORBAV2.2 February 1998

19

Table 19-3Client Argument Storage Responsibilitigontinued)

array, variable

Inout Out Return
Type Param Param Result
union, fixed 1 1 1
union, variable 1 3 3
string 4 3 3
sequence 5 3 3
array, fixed 1 1 6

1 6 6

5 3 3

any

Table 19-4Argument Passing Cases

Casel

1

Caller allocates all necessary storage, except that which may be encapsulated and managed
within the parameter itself. For inout parameters, the caller provides the initial value, and the
callee may change that value. For out parameters, the caller allocates the storage but need not
initialize it, and the callee sets the value. Function returns are by value.

Caller allocates storage for the object reference. For inout parameters, the caller provides an
initial value; if the callee wants to reassign the inout parameter, it will first call
CORBA_Obiject_release on the original input value. To continue to use an object reference
passed in as an inout, the caller must first duplicate the reference. The client is responsible for
the release of all out and return object references. Release of all object references embedded in
other out and return structures is performed automatically as a result of calling CORBA_free.

For out parameters, the caller allocates a pointer and passes it by reference to the callee. The
callee sets the pointer to point to a valid instance of the parameter’s type. For returns, the callee
returns a similar pointer. The callee is not allowed to return a null pointer in either case. In both
cases, the caller is responsible for releasing the returned storage. Following the completion of a
request, the caller is not allowed to modify any values in the returned storage—to do so, the
caller must first copy the returned instance into a new instance, then modify the new instance.

For inout strings, the caller provides storage for both the input string and the char* pointing to it.
The callee may deallocate the input string and reassign the char* to point to new storage to hold
the output value. The size of the out string is therefore not limited by the size of the in string. The
caller is responsible for freeing the storage for the out. The callee is not allowed to return a null
pointer for an inout, out, or return value.

For inout sequences and anys, assignment or modification of the sequence or any may cause
deallocation of owned storage before any reallocation occurs, depending upon the state of the
boolean release in the sequence or any.

For out parameters, the caller allocates a pointer to an array slice, which has all the same
dimensions of the original array except the first, and passes the pointer by reference to the
callee. The callee sets the pointer to point to a valid instance of the array. For returns, the callee
returns a similar pointer. The callee is not allowed to return a null pointer in either case. In both
cases, the caller is responsible for releasing the returned storage. Following the completion of a
request, the caller is not allowed to modify any values in the returned storage—to do so, the
caller must first copy the returned array instance into a new array instance, then modify the new
instance.

1. As listed in Tabl&9-3 onpage 19-24

CORBAV2.2 SummaryArfigument/Result Passing February 1998

19-25

19

19.22 Handling Exceptions

19-26

Since the C language does not provide native exception handling suppocatamgli
pass and receive equtions via thespecialCORBA _Environment parameter passed
to each IDL operation. TREORBA_Environment type is partially opaque; the C
declaration contains at least the dating:

[*C*
typedef struct CORBA_Environment {
CORBA _exception_type _major;

} CORBA_Environment;

Upon return from an invocation, thanajor field indicates whether the invocation ter-
minated successfully;major can have one of the vallEORBA NO_EXCEPTION
CORBA_USER_EXCEPTIOb CORBA_SYSTEM_EXCEPTIONthe value is
one of the latter two, then any exceptiongpaeters signbdd by the object can be
accessed.

Five functions are defined onGORBA_Environment structure for accessing
exception information. Their signatures are:

[*C*
extern void CORBA_exception_set(
CORBA_Environment *ev,
CORBA_exception_type major,
CORBA_char *except_repos_id,
void *param
);
extern CORBA_char *CORBA_exception_id(
CORBA_Environment *ev
);
extern void *CORBA_exception_value(CORBA_Environment *ev);
extern void CORBA_exception_free(CORBA_Environment *ev);
extern CORBA_any* CORBA_exception_as_any(
CORBA_Environment *ev

):

CORBA_exception_set() allows a method implementation to raise an
exception. Thev parameter is the environment parameter passed into thedneth
The caller must spply a value for the major parameter. The value of the major
parameter constrains the other parameters in the call as follows:

« If the major parameter has the val@ORBA_NO_EXCEPTIOMhis is a
normal outcome to the operation. In this caseth except_repos_id and
param must be NULL. Note that it inot necessary to invoke
CORBA _exception_set() to indicate a normal outcome; it is the default
behavior if the method simply returns.

CORBAV2.2 February 1998

19

 For any other value aiajor it specifies either a user-defined or system
exception. Theexcept_repos_id parameter is the repository 1D
representing the exception type. If the exception is declared to have members, the
param parameter must be the address of an instance @xtteption struct
containing the parameters according to the C language mapping, coerced to a
void* . In this case, the exception struct must be allocated using the appropriate
T__alloc() function, and the€ORBA_exception_set() function
adopts the allocated memory and frees it when it no longer needs it. Once the
allocated exception struct is passedXORBA_exception_set() , the
application is not allowed to access it because it no longer owns it. If the
exception takes nogrametersparam must be NULL.

If the CORBA_Environment argument tdCORBA_exception_set() already
has an exception set in it, that exception is properly freed before the new exception infor-
mation is set.

CORBA_exception_id() returns a pointer to the character string identifying the
exception. The chacter string contains the repository ID for the exception. tked on
aCORBA_Environment which identifies a non-exception,
(_major==CORBA_NO_EXCEPTIONa null pointer is retued. Notethat owner-
ship of the returned pointer does not transfer to thercatisead, the pointer remains
valid until CORBA_exception_free() is called.

CORBA _exception_value() returns a pointer to the structure corresponding to
this exception. If invoked on@ORBA_Environment which identifies a non-excep-
tion or an exception for which there is no associated information, a null pointer is
retuned. Notethat ownership of the returned pter does not transfer to the caller;
instead, the pointer remains valid u@ORBA_exception_free() is called.

CORBA_exception_free() frees any storage which was allocated in the con-
struction of th€CORBA_Environment or adopted by th€ORBA _Environment
whenCORBA_exception_set() is called on it, and sets thenajor field to
CORBA_NO_EXCEPTIONis permissible to invoke

CORBA_exception_free() regardless of the value of thenajor field.

CORBA_exception_as_any() returns a pointer to @ORBA_anycontaining

the exception. This allows a C ajgalion to deal with exceptions for which it has no static
(compile-time) information. If invoked on@GORBA_Environment which identifies

a non-exception, a null pointer is retad. Note that ownghip of the returned pointer
does not transfer to the caller; instead, the poiet@ains valid until
CORBA_exception_free() is called.

Consider the following example:

CORBAV2.2 Hadling Exceptions February 1998 19-27

19

/I IDL
interface exampleX {
exception BadCall {
string<80> reason;

k

void op() raises(BadCall);
|3

This interface defines a single operatminich returns no resultand carraise aBadCall
exception. The following user codeaws how to invoke the operation and nesrofrom
an exception:

C
#include "exampleX.h"

CORBA_Environment ev;
exampleX obj;
exampleX_ BadCall *bc;

/*
* some code to initialize obj to a reference to an object
* supporting the exampleX interface
*/

exampleX_op(obj, &ev);
switch(ev._major) {
case CORBA _NO_EXCEPTION:/* successful outcome*/
/* process out and inout arguments */
break;
case CORBA _USER_EXCEPTION:/* a user-defined exception */
if (stremp(ex_exampleX_BadCall,
CORBA_exception_id(&ev)) == 0) {
bc = (exampleX_BadCall*)CORBA_exception_value(&ev);
fprintf(stderr, "exampleX_op() failed - reason: %s\n",
bc->reason);

else{ /*should never get here ... */
fprintf(stderr,

"unknown user-defined exception -%s\n",
CORBA _exception_id(&evV));

}

break;

default:/* standard exception */

/*

* CORBA_exception_id() can be used to determine

* which particular standard exception was

* raised; the minor member of the struct

* associated with the exception (as yielded by

* CORBA_exception_value()) may provide additional

* system-specific information about the exception

19-28 CORBAV2.2 February 1998

19

*

break;
}
[* free any storage associated with exception */
CORBA_exception_free(&ev);

19.23 Method Routine Signatures

The sigqatures of the methods used toplement an objectiepend not only on the
language binding, but also on the choice of objegptadaDifferent object adapters may
provide additional paragters to access object adapter-specific features.

Most object adapters are likely to provide method signatures that are similar in most
respects to those of the client stubgdnticular, the rapping for the operation pameters
expressed in OMG IDL should be the same as for tkatdide.

See “Mapping for Object Ipilementations” opage 19-30 for the deription of méhod
signatures for implementations using the &uale Object Adapter.

19.24 Include Files

Multiple interfaces may be defined in a single source filec@wenton, eachriterface is
stored in a separate source file. AllOMG IDL compilers will, byad#fgenerate a header
file named Foo.h from Foo.idl. This file should be#include d by clients and
implementations of the interfaces defined-wo.idl .

Inclusion ofFoo.h is sufficient to define all global names associated withrttexfaces
in Foo.idl and any interfaces from which they are derived.

19.25 Pseudo-objects

In the C language mappindpere are several interfaces that are definedeagdpsobgcts;

A client m&es calls on a pseudo-object in the samg as an ordinary ORB object. How-
ever, the ORB may implement the pseudo-objaeictly, and there are restrictions on
what a clent may do with a pseudo-object.

The ORB iself is a psudo-object with the following partial definition (st ORBInter-
face chapter for the complete definition):

/I IDL
interface ORB {
string object_to_string (in Object obj);
Object string_to_obiject (in string str);
|3

This means that a C programmer may convert an object reference into its string form by
calling:

CORBAV2.2 Methdgloutine Signatures February 1998 19-29

19

[*C*
CORBA_Environment ev;
CORBA_char *str = CORBA_ORB_object_to_string(
orbobj, obj, &ev
);

just as ifthe ORB were an dimary objectThe C libary contains the routine
CORBA_ORB_object _to_string , and it does not do a real invocation. The
orbobj is an object referentkatspecifies which ORB is ohterest, sice it is possible
to choose which ORB should be used to convert ascblgference to a string (see the
ORB Interfice chapter for details on this specific raien).

Although operations on pseudo-objects are invoked in the wsyallefined by the C lan-
guage mapping, there aestrictions on them. In general, a pseudo-object cannot be spec-
ified as a parameter to aperation on an ordinary object. Pseudo-objects are also not
accessible using the dynamic invocation int&fand do not have definitions in the inter-
face repository.

Because the programmer uses pseudo-objects in the same way as ordinary objects, some
ORB implementations maghoose to implement some pseudo-objects as ordinary objects.
For example, assumingdould be efficienenough, a context object might loepile-

mented as an ordinary object.

19.25.1 ORB Operations

The operations othe ORB defined in the ORB Interface chapter are used as if they
had the OMG IDL defitions described in the document, and then mapped in the usual
way with the C language mapping.

For example, thestring_to_object ORB operatiorhas the following signature:

[*C*

CORBA_Object CORBA_ORB_string_to_object(
CORBA_Object orb,
CORBA_char *objectstring,

CORBA_Environment *ev

);

Although in this example, we are using an “object” that is special (aB)QRe
method name is generatediasterface_operation in the same way as
ordinary objects. Also, the signature containgC’ADRBA_Environment parameter
for error indications.

Following the same procedure, the @daage binding for theemainder of the ORB
and objectreference operations may be determined.

19.26 Mapping for Object Implementations
This section describes the details of the OMG IDL-to-C lemwyg mapping that apply

specifically to the Portable Object Adapter, such as hovwintipbkementaibn methods
are connected to the skeleton.

19-30 CORBAV2.2 February 1998

19

19.26.1 Operation-specific Details

The C Language Mapping @pter defines most of the details of binding methods to
skeletons, naming of parameter types, and parameter passing conventioeallige
for those parameters that are operation-specific, the méthgdmenting the
operation appears to receive the same values that would be passed to the stubs.

19.26.2 PortableServer Functions

Objects registered with POAs use sequences of octet, specifically the
PortableSe rver::POA::Objectld type, as objeddentifiers. However, because C
programmers will often want to use strings as object identifiers, the C mapping
provides several conversion functions that convert strin@bfectld and vice-
versa:

[*C*

extern CORBA_char* PortableServer_Obijectld_to_string(
PortableServer_Objectld* id,
CORBA_Environment* env

);

extern CORBA_wchar_t* PortableServer_Objectld_to_wstring(
PortableServer_Objectld* id
CORBA_Environment* env

);

extern PortableServer_Objectld*
PortableServer_string_to_Objectld(
CORBA_char* str,
CORBA_Environment* env
);
extern PortableServer_Objectld*
PortableServer_wstring_to_Objectld(
CORBA_wchar_t* str,
CORBA_Environment* env

);

These functions follow the normal C mapping rules for parameter passingeamshyn
management.

If conversion of afDbjectld to a string would result in illegal characters in the string
(such as a NUL), the first two fuehs raise th€€ORBA_BAD_PARAMception.

19.26.3 Mapping for PortableSesx::ServantLocator::Cookie

SincePortableServer::ServantLocator::Cookie is an IDLnative type, its type
must be specified by eaddinguage mapping. In Gookie maps tovoid*

[*C*
typedef void* PortableServer_ServantLocator _Cookie;

CORBAV2.2 Mapping for Objdotplementations February 1998 19-31

19

For the C mapping of thieortableServer::ServantLocator:preinvoke() operation,
the Cookie parameter maps toGookie* , while for thepostinvoke() operation, itis
passed as @ookie :

/*C*

extern PortableServer_ServantLocator_preinvoke(
PortableServer_Objectld* oid,
PortableServer_POA adapter,
CORBA_Identifier op_name,
PortableServer_ServantLocator_Cookie* cookie

);

extern PortableServer_ServantLocator_postinvoke(
PortableServer_Objectld* oid,
PortableServer_POA adapter,
CORBA_ldentifier op_name,
PortableServer_ServantLocator_Cookie cookie,
PortableServer_Servant servant

);

19.26.4 Servant Mapping

A servantis a language-specific entity thedn incarnate a CORBA object. In C, a
servant is composed of a data structure that holds the state of the object along with a
collection ofmethod functionghat manipulate that state ander to implement the

CORBA obiject.

The PortableServer::Servant type maps into C as follows:

[*C*
typedef void* PortableServer_Servant;

Servant is mapped to goid* rather than a pointer ®ervantBase so that all ser-
vant types for derived interfaces can be passed to all the operations thaSéakeard
parameter witout requiring castg. However, it is expected that arstance of
PortableServer Servant points to an instance of a
PortableServer_ServantBase or its equivalent for derived interfaces, as
described below.

Associated with a servant igable of pointers to miedd functions. Thitable is called an
entry point vectqgror EPV. The EPV has the same name as the servant type with “__epv”
appended (note the double underscore). The EPNdidableServer_Servant is

defined as follows:

19-32 CORBAV2.2 February 1998

19

/*C*
typedef struct PortableServer_ServantBase__epv {
void* _private;
void (*finalize)(PortableServer_Servant,
CORBA_Environment*);
PortableServer_POA (*default_POA)(
PortableServer_Servant,
CORBA_Environment*);
} PortableServer_ServantBase__epv;

extern PortableServer_POA

PortableServer_ServantBase__default POA(
PortableServer_Servant,
CORBA_Environment*

);

ThePortableServer_ServantBase __epv “ private” member, which is

opaque to apjmations, is preided to allow ORB implementations &ssociate data with
eachServantBase EPV. Since itis expectébat BPVs will be iared among muifile
servants, this member is not suitable for per-servant data. The second member is a pointe
to the finalization function for the servant, which isaked when the seant is ethereal-

ized. The other function paiers correspond to the us&#rvant operatons.

The actuaPortableServer_ServantBase structure combies an EPV with
per-servant data, as shown below:

[*C*
typedef PortableServer_ServantBase _epv*
PortableServer_ServantBase__vepv;

typedef struct PortableServer_ServantBase {
void* _private;
PortableServer_ServantBase__vepv* vepy;
} PortableServer_ServantBase;

The first member is ®0id* that points to data specific émch ORB implementatn.

This member, which allows ORB implementations to keep per-servant data, is opaque to
applications. The second member is a pointer to a pointer to a
PortableServer_ServantBase___epv . The reason for the double level of
indirection is that servants for degtlclasses contain multiple EPV pointersge for each

base interface as well as one for the interface itself. (This is explained further in the next-
section.) The name of the secondmber, “vepv,” is standargéd to allow pdable access
through it.

19.26.5 Interface Skeletons

All C skeletons for IDL interfaces have essentially the same structuUsergaantBase,
with the exception that the second member has a type tbasadccess tall EPVs
for the servant, including those for base interfaces as well as for the mesdderi
interface.

CORBAV2.2 Mapping for Objdotplementations February 1998 19-33

19

19-34

For example, consider tHellowing IDL interface:

/I DL
interface Counter {
long add(in long v al);

k

The servant skeleton generated by the IDL compiler for this interface appears as
follows (thetype of the second member is defined further below):

[* C*

typedef struct POA_Counter {
void* _private;
POA_Counter__vepv* vepv;

} POA_Counter;

As with Portable Server_ServantBase , the name of the second member is
standardized to “vepv” for portability.

The EPV geerated for the skeleton is a bit more interestifgr theCounter
interface defined above, it appearsf@atows:

[*C*
typedef struct POA_Counter__epv {
void* _private;
CORBA_Long (*add)(PortableServer_Servant servant,
CORBA _Long val,
CORBA_Environment* env);
} POA _Counter__epv;

Sinceall servants are effectively deed from

PortableServer_ServantBase , the complete set of entry points has to
include EPVs for botliPortableServer_ServantBase and forCounter
itself:

C

typedef struct POA_Counter__vepv {
PortableServer_ServantBase__epv* _base_epv;
POA_Counter__epv* Counter_epv;

} POA_Counter__vepv;

The irst member othe POA_Counter__vepv struct is a pointer to the
PortableServer_ServantBase EPV. To ensure portability afitialization

and access code, this member is always named “_base_epv.” It must alwaydrbe the f
member. The second member is a pointer RO Counter__epv .

The pointers to PVs inthe VEPV structure are in the order that the IDL interfaces
appear in a top-to-bottomeft-to-right traversal of the inheritance hierarchy of the
most-deived interface. The base of this hierarchy, as far as servants are @ahdgm
alwaysPortableServer_ServantBase . For example, consider the following
complicated integfce hierarchy:

CORBAV2.2 February 1998

19

/I IDL
interface A {};
interface B : A {};
interface C : B {};
interface D : B {};
interface E : C, D {};
interface F {};
interface G 1 E, F {
void foo();

|3
The VEPV strgture for interface shall be generated dsllows:

/*C*
typedef struct POA_G__epv {
void* _private;
void (*foo)(PortableServer_Servant, CORBA_Environment*);
I3
typedef struct POA_G__ vepv {
PortableServer_ServantBase__epv* _base_epv;
POA_A__epv* A_epv;
POA_B__ epv*B_epv;
POA_C__epv* C_epv;
POA_D__epv* D_epv;
POA_E__ epv* E_epv;
POA_F__epv*F_epv;
POA_G__epv* G_epv;
2
Note that each member other than the “_base _epv” member is named by appending
“_epv” to the interface name whose EPV the member points to. These names are
standardized to allow for portable access to these struct fields.

19.26.6 Servant Structure Initialization

Eachservant requiremitialization and etterealization, or finalization, functis. For
PortableServer_ServantBase , the ORB implementan shall provide the
following functions:

[*C*

void PortableServer_ServantBase__init(
PortableServer_Servant,
CORBA_Environment*);

void PortableServer_ServantBase__fini(
PortableServer_Servant,
CORBA_Environment*);

These functions are named by appending “__init"” and “__fini” (note the double
underscores) to the name of the servant, respectively.

CORBAV2.2 Mapping for Objdotplementations February 1998 19-35

19

The frst argument tdhe init function shall be a valid

PortableServer_Servant whose “vepv” member has already béseitialized
to point to a VEPV structure. The init function shall perform ORB-specific
initialization of thePortableServer_ServantBase , and shalinitialize the
“finalize” struct member of the pointed-to

PortableServer_ServantBase __epv to point to the
PortableServer_ServantBase_fini() function if the “finalize” member
is NULL. If the “finalize” member is not NULL, it is presumed that it has already
been correctlyriitialized by the applicatiorand is thus nomodified. Similarly, if the
thedefault. POA member of thdPortableServer_ServantBase__epv
structure is NULL when the init function &alled, its value is set to point to the
PortableServer_ServantBase _default POA() function, which
returns an object reference to the root POA.

If a servant pointed to by tHeortableServer_Servant passed to aimit
function has a NULL “vepv’member, or if théPortableServer_Servant
argument itself is NULL, no initiddation of the servant is performed, and the
CORBA::BAD_PARAM standard exception is raised via the
CORBA_Environment parameter. This also applies to interface-specific init
functions, which are described below.

The fini function only cleans up ORB-specific private data. It is the default
finalization function for servants. ttoes not make any assumptions about where the
servant is allocated, such as assuming that the servant is heap-aliorzhteying to

call CORBA_free() on it. Applications are allowed to “override” the fini function
for a given servant by initializing tHeortableServer_ServantBase___epv

“finalize” pointer with a pointer to a finalization fiction made specifically for that
servant; however, any such overriding functioastalways ensure that the

PortableServer_ServantBase_fini() function is invoked for that
servant as part of itenplemenation. The results of a finalization function failing to
invoke PortableServer_ServantBase_fini() are implementation-

specific, but may include memory leaks or faults twmtld crash the application.

If a servant passed to a finirfationhas a NULL “epv’member, or if the
PortableServer_Servant argument itself is NULL, no finalization of the
servant is performed, and tORBA::B AD_PARAM standard exception is raised
via theCORBA_Environment parameter. This also applies to interface-specific
fini functions, which are described below.

Normally, thePortableServer_ServantBase__init and
PortableServer_ServantBase__fini functions are not invoked directly
by applications, but rather by interface-speditfittialization and finalization functions
generated by an IDL compiler. For example, thieand fini functions generated for
the Counter skeleton are defined as follows:

19-36 CORBAV2.2 February 1998

19

[*C*
void POA_Counter__init(POA_Counter* servant,
CORBA_Environment* env)
{
/*

* first call immediate base interface init functions

* in the left-to-right order of inheritance

*/

PortableServer_ServantBase__init(
(PortableServer_ServantBase*)servant,
env

);

/* now perform POA_Counter initialization */

}

void POA_Counter__fini(POA_Counter* servant,
CORBA_Environment* env)

{

[* first perform POA_Counter cleanup */

#
* then call immediate base interface fini functions
* in the right-to-left order of inheritance
*/

PortableServer_ServantBase__fini(

(PortableServer_ServantBase*)servant,
env

}

The address of servant shall be passed to the init function before the servant is

allowed to be actated or registered with the POA in any wahhe results ofdiling

to properlyinitialize aservant via the appropriaieit function before registering it or

allowing it to be activated are implementation-specific, but could include memory
access violations that could crash the application.

19.26.7 Application Servants

It is expected that applications will create their own servant structures so thatathey
addtheir own servant-specific data members to store object skaetheCounter
exampleshown above, aapplication servant would probably have a data member used
to store the counter value:

[*C*

typedef struct AppServant {
POA_Counter base;
CORBA_Long value;

} AppServant;

CORBAV2.2 Mapping for Objdotplementations February 1998 19-37

19

The application might contain the following implementation of @@unter::add
operation:

[*C*

CORBA_Long

app_servant_add(PortableServer_Servant _servant,
CORBA_Long val,
CORBA_Environment* _env)

{
AppServant* self = (AppServant*)_servant;
self->value +=val;
return self->value;
}
The application could irtialize the servanstatically as follows:
[* C*
PortableServer_ServantBase__epv base_epv ={
NULL, /* ignore ORB private data */
NULL, /* no servant-specific finalize
function needed */
NULL, /* use base default_ POA function */
2

POA_Counter__epv counter_epv = {
NULL, /* ignore ORB private data */
app_servant_add /* point to our add function */

h

[* Vector of EPVs */
POA_Counter__vepv counter_vepv = {
&base_epv,
&counter_epv

h

2
AppServant my_servant = {
/* initialize POA_Counter */

{
NULL, /* ignore ORB private data */
&counter_vepv /* Counter vector of EPVs */

}1

0 /* initialize counter value */

3

Before registering or activating this servant, the application shall call:

19-38 CORBAV2.2 February 1998

19

[*C*
CORBA_Environment env;
POA_Counter__init(&my_servant, &env);

If the application requires a special destruction functionnfiyr servant , it shall
set the value of thPortableServer_ServantBase _epv “finalize”
member either before or after callilRDA_Counter__init()

[*C*
my_servant.epv._base_epv.finalize = my _finalizer_func;

Note that if the application statically initializede “finalize” member beforealling
the servantnitialization function, explicit assignment to the “finalize” member as
shown here is notetessary, since tHeéortableServer_ServantBase

__init() function will not modify it if it is non-NULL.

The example shown aboveuifitrates static initialization dhe EPV and VEPV
structures. While portable, this method of initializatiopeleds on the ordering of the
VEPV struct members for base interfaces—if the top-to-boté&dtro-right ordering

of the interface inheritance hierarchy is changed, the order of fiets®is also
changed. A less fragilway ofinitializing these fields is to perform the initialization at
runtime, relying on assignment to the named struct fiSloh&e the names of the fields
are used in this approach, it does not break if the order ofiltasfaceschanges.
Performing field initializationwithin a servantnitialization function alsgrovides a
convenient place to invoke the servantiatization functions. Inany case, both
approaches are portable, and itismately up tothe developer to choose the one that
is best for each application.

19.26.8 Method Signatures

With the POA, implementation methods have signatures that are identical to the stubs
except for thdirst agument. If thefollowing interface is defined in OMG IDL:

/I DL
interface example4 {

long op5(in long arg6);
|3

a method function for thep5 operation mushave the following function signature:

[*C*

CORBA _long example4_op5(
PortableServer_Servant _servant,
CORBA long arg6,
CORBA_Environment* _env

);

The_servant parameter is the pointer to the servant incarnating the CORBA object
on which the requestas invoked. The method can obt#ie object reference for the
target CORBA object by using tHeOA Current object. The env parameter is

CORBAV2.2 Mapping for Objdotplementations February 1998 19-39

19

used for raising exceptions. Note that the names of $fie&#vant and_env
parameters are standardized to allow the bodies of method functions to refer to them
portably.

The nethodterminatessuccessfully by executingr@turn statement returning the
declared operation value. Prior to returning the result of a succesajahtion, the
method code must assign legal values t@all andinout parameters.

The nethodterminates vth an error by executing tHeORBA_exception_set
operation (described in “Handling Exceptions” on page 19-26) prior toutikg a
return statemat. When raising an exception, the method codwoizrequired to
assign legal values to amyt or inout parameters. Due to restrictions int@wever,
it must return a legal function value.

19.27 Mapping of the Dynamic Skeleton Interface to C

19-40

For general information about mapping of the Dynamic Skeleton Interface to
programming languages, refer to “DSlahguage Mapping” on page 6-4.

This section contains
» A mapping of the Dynamic Skeleton Interface’s ServerRequest to C

* A mapping of the Portable Object Adapter’s Dynamic Implementation Routine to
C.

19.27.1 Mapping of ServerRequest to C

In the C mapping, a ServerRequest is a pseudo object in the CORBA module that
supports the following operations:

[*C*

CORBA_lIdentifier CORBA_ServerRequest_operation(
CORBA_ServerRequest req,
CORBA_Environment *env

);

This function returns the name of the operation being performeshoasn inthe
operation’s OMG IDL specification.

[*C*

CORBA_Context CORBA_ServerRequest_ctx (
CORBA_ServerRequest req,
CORBA_Environment *env

);

This function may be used to determine any context values passed as part of the
operation. Context will only be available to the extent defined in the operation’s OMG
IDL definition; for example, attribute operations hawna.

CORBAV2.2 February 1998

19

/*C*

void CORBA_ServerRequest_arguments(
CORBA_ServerRequest req,
CORBA_NVList* parameters,
CORBA_Environment *env

);

This function is used toetrieve parameters from ti&erverRequest , and to find
the addresses used to pass pointers to result values to the ORB. It must always be
called byeach DIR, even when there are parameters.

The caller asses ownership of thiEarameters NVList to the ORB. Before this
routine is called, that NVList should litialized with the Type&Codes and déction
flags for each of the parameters to the operation being implemémtedt, andinout
parameters inclusive. When thell returns, thgparameters NVList is stll usable

by the DIR, and alin andinout parameters will have been unmarshalled. Pointers to
those parameter values will at that point also be accessible througargmmeters
NVList.

The mplementation routine will then process the call, producing any result values. If
the DIR does not need to report an exception, it will replace point@reuovalues in
parameters with the values to be returreadj assign pointers toutvalues in that

NVList appropriately as well. When the DIR returali,the parameter memory is

freed as appropriate, and the NVLiself is freed by the ORB.

[*C*

void CORBA_ServerRequest_set_result(
CORBA_ServerRequest req,
CORBA_any* value,
CORBA_Environment *env

);
This function is used to report angsultvalue for an operation. If the operation has

no result, it must either be called with a tkid/TypeCode stored iwalue , or not be
called at all.

[*C*

void CORBA_ServerRequest_set_exception(
CORBA_ServerRequest req,
CORBA_exception_type major,
CORBA_any* value,
CORBA_Environment *env

);

This function is used to report exceptions, both user and system, to the client who
made the original invocation. The parameters are as follows:

major indicates whether the exception is a user exception or system exception

value is the value of the exception, including an exceptjmeCode.

CORBAV2.2 Mapping of tBgynamic Skeleton Interface to C February 1998 1941

19

19-42

19.27.2 Mapping of Dynamic Implementation Routine to C

In C, a DIR is a function with this signature:

[*C*

typedef void (*PortableServer_DynamiclmplRoutine)(
PortableServer_Servant servant,
CORBA_ServerRequest request

);

Such afunction will be irvoked by the Portable lfject Adapter when an irocation is
receved on an object reference whosglementation has registered a dynamic
skeleton.

servant is the C implementation object incarnating theREA object to which the invo-
cation is directed.

request isthe ServerRequest used to access explichpaters andeport result¢and
exceptions).

Unlike other C object implementations, the DIR does not receive a
CORBA_Environment* parameterand so th&CORBA_exception_set API

is not used. InsteafORBA _ServerRequest_set _exception is used; this
provides the ¥peCodefor the exception tohe ORB, so it does not need to consult the
InterfaceRepostory (or rely on compiled stubs) to marshal the exception value.

To register a Dynamic Implementation Routine with a POA, the proper EPV structure
and servaniust first be created. DSI servants are expected to supply EPWetfor

PortableServer_ServantBase and for
PortableServer_Dynamiclmpl , which is conceptuallgerived fom
PortableServer_ServantBase , as shown below.

CORBAV2.2 February 1998

19

/*C*
typedef struct PortableServer_Dynamiclmpl__epv {
void* _private;
PortableServer_DynamiclmplRoutine invoke;
CORBA_Repositoryld (*primary_interface)(
PortableServer_Servant svt,
PortableServer_Objectld id,
PortableServer_POA poa,
CORBA_Environment* env);
} PortableServer_Dynamiclmpl__epv;

typedef struct PortableServer_Dynamiclmpl__vepv {
PortableServer_ServantBase__epv* _base_epv;
PortableServer_Dynamiclmpl__epv*
PortableServer_Dynamiclmpl_epv;
} PortableServer_Dynamiclmpl__vepv;

typedef struct PortableServer_Dynamiclmpl {
void* _private;
PortableServer_Dynamiclmpl__vepv* vepy;
} PortableServer_Dynamiclmpl;

As for other servants, initialization and firzalion functions for
PortableServer_Dynamiclmpl are also provided, and must be invoked as
described in “Servant Structure Initizdtion” on pagel 9-35.

To properly initialize the BVs, theapplication must prade implementatins of the
invoke and theprimary_interface functions required by the
PortableServer_Dynamiclmpl EPV. Theinvoke method, which is the

DIR, receives requests issued to any CORBA object it represents and performs the
processing necessary to execute the request.

The primary_interface method receives a@bjectld value and a POA as
input parameters and returnyalid Interface Repository Id representing the most-
derived interface for thapid .

It is expected that these methods will be only invoked by tA,fn the context of
serving a CORBA request. Invoking these methods in other circumstances may lead to
unpredictable results.

An example of a DSI-based servansi®wnbelow:
[*C*
/* This function serves as the DIR */

void my_invoke(PortableServer_Servant servant,
CORBA_ServerRequest req)
{

}

/* details omitted */

CORBA_Repositoryld my_primary_intf(

CORBAV2.2 Mapping of tBgynamic Skeleton Interface to C February 1998 19-43

19

PortableServer_Servant svt,
PortableServer_Objectld id,
PortableServer_POA poa,

CORBA_Environment* env)

{
}

/* details omitted */

/* Application-specific DSI servant type */
typedef struct MyDSIServant {
POA_Dynamiclmpl base;
[* other application-specific data members */
} MyDSIServant;

PortableServer_ServantBase___epv base_epv = {

NULL, /* ignore ORB private data */
NULL, /* no servant-specific finalize */
NULL, /* use base default_POA function */

I

PortableServer_Dynamiclmpl__epv dynimpl_epv = {
NULL, /* ignore ORB private data */
my_invoke, * invoke() function */
my_primary_intf, /* primary_interface() function */

I

PortableServer_Dynamiclmpl__vepv dynimpl_vepv = {
&base_epv, /* ServantBase EPV */
&dynimpl_epv, /* Dynamiclmpl EPV */

h

MyDSIServant my_servant = {
[* initialize PortableServer_Dynamiclmpl */

{
NULL, /* ignore ORB private data */

&dynimpl_vepv /* Dynamiclmpl vector of EPVs */
¥
/* initialize application-specific data members */

h

Registration of theny_servant data structure via the
PortableServer POA_ set_servant() function on a suitably initialized
POA m&es themy_invoke DIR function avdable tohandle DSI requests.

19.28 ORSB InitializatiotDperations

ORBInitialization

Thefollowing PIDL specifies initializabn operations for an ORB; this PIDL is part of
the CORBA module (not the ORB interface) and is described in “OiRRlization”
on page 4-8.

19-44 CORBAV2.2 February 1998

19

/I PIDL
module CORBA {
typedef string ORBId;
typedef sequence <string> arg_list;

ORB ORB init (inout arg_list argv, in ORBId orb_identifier);
|3

The mapping of the precedi®JDL operaions to C is afollows:

[*C*/

typedef char* CORBA_ORBId;

extern CORBA_ORB CORBA_ORB _init(int *argc,
char **argv,
CORBA_ORBiId orb_identifier,
CORBA_Environment *env);

The C mapping foORB_init deviates from the OMG IDL PIDL in its handling of the
arg_list parameter. This is intended to provide a meaningful PIDL definition of the
initialization interface, whicthas a natural C binding. To this end, tirg_list
structure is replaced withrgv andargc parameters.

Theargv parameter is defined as anbound array of stringsiiar **) and the
number of strings in the array is passed inahgc (int*) parameter.

If an empty ORBId string is used then argc arguments can be used to determine which
ORB should be returned. This is achieved by searchingrdpe parameters for one
taggedORBId e.g.,-ORBid "ORBid_example.'If an empty ORBId string is used and

no ORB is indicated by thargv parameters, the default ORB is returned.

Regardless of whether an empty or non-empty ORfRidg ispassed t®©ORB_init
theargv arguments are examined to determine if any ORB parameters are given. If
a non-empty ORBId string is passed@®&®B_init , all -ORBid parameters in the

argv are ignored. All othetORB<suffix>parameters may be of significance during
the ORBinitialization process.

For C, the order of consumption afgv parameters may be significant to an
application. In order to ensure that applications are not required to rangie
parameters they do not recognize the ORB initialization function musdltel before

the remainder of the parameters are consumed. Therefore, af@RBeinit call
theargv andargc parameters will haveeen modified to remove the ORB
understood arguments. Itis important to note that the ORB_init call can only reorder or
remove references toarameters from the argv list; this restriction is made in order to
avoid potential memory management problems caused by trying to free parts of the
argv list or extending the argv list of parameters. This is aftgv is passed as a
char** and not achar***

CORBAV2.2 ORBitmlization Operations February 1998 19-45

19

19-46 CORBAV2.2 February 1998

	C Language Mapping
	19.1 Requirements for a Language Mapping
	19.1.1 Basic Data Types
	19.1.2 Constructed Data Types
	19.1.3 Constants
	19.1.4 Objects
	19.1.5 Invocation of Operations
	19.1.6 Exceptions
	19.1.7 Attributes
	19.1.8 ORB Interfaces

	19.2 Scoped Names
	19.3 Mapping for Interfaces
	19.4 Inheritance and Operation Names
	19.5 Mapping for Attributes
	19.6 Mapping for Constants
	19.7 Mapping for Basic Data Types
	19.8 Mapping Considerations for Constructed Types
	19.9 Mapping for Structure Types
	19.10 Mapping for Union Types
	19.11 Mapping for Sequence Types
	19.12 Mapping for Strings
	19.13 Mapping for Wide Strings
	19.14 Mapping for Fixed
	19.15 Mapping for Arrays
	19.16 Mapping for Exception Types
	19.17 Implicit Arguments to Operations
	19.18 Interpretation of Functions with Empty Argument Lists
	19.19 Argument Passing Considerations
	19.20 Return Result Passing Considerations
	19.21 Summary of Argument/Result Passing
	19.22 Handling Exceptions
	19.23 Method Routine Signatures
	19.24 Include Files
	19.25 Pseudo-objects
	19.25.1 ORB Operations

	19.26 Mapping for Object Implementations
	19.26.1 Operation-specific Details
	19.26.2 PortableServer Functions
	19.26.3 Mapping for PortableServer::ServantLocator::Cookie
	19.26.4 Servant Mapping
	19.26.5 Interface Skeletons
	19.26.6 Servant Structure Initialization
	19.26.7 Application Servants
	19.26.8 Method Signatures

	19.27 Mapping of the Dynamic Skeleton Interface to C
	19.27.1 Mapping of ServerRequest to C
	19.27.2 Mapping of Dynamic Implementation Routine to C

	19.28 ORB Initialization Operations

