
Mapping of OMG IDL to C++ 20
he

ion)
This chapter explains how OMG IDL constructs are mapped to the constructs of t
C++ programming language. It provides mapping information for:

• Interfaces

• Constants

• Basic data types

• Enums

• Types (string, structure, struct, union, sequence, array, typedefs, any, except

• Operations and attributes

• Arguments

Contents

This chapter contains the following sections.

Section Title Page

“Preliminary Information” 20-3

“Mapping for Modules” 20-5

“Mapping for Interfaces” 20-6

“Mapping for Constants” 20-13

“Mapping for Basic Data Types” 20-15

“Mapping for Enums” 20-16

“Mapping for String Types” 20-17

“Mapping for Wide String Types” 20-20

“Mapping for Structured Types” 20-21
 CORBA V2.2 February 1998 20-1

20
“Mapping for Struct Types” 20-27

“Mapping for Union Types” 20-31

“Mapping for Sequence Types” 20-35

“Mapping For Array Types” 20-41

“Mapping For Typedefs” 20-44

“Mapping for the Any Type” 20-46

“Mapping for Exception Types” 20-58

“Mapping For Operations and Attributes” 20-61

“Implicit Ar guments to Operations” 20-62

“Argument Passing Considerations” 20-62

“Mapping of Pseudo Objects to C++” 20-68

“Usage” 20-69

“Mapping Rules” 20-69

“Relation to the C PIDL Mapping” 20-70

“Environment” 20-71

“NamedValue” 20-72

“NVList” 20-73

“Request” 20-75

“Context” 20-80

“TypeCode” 20-81

“ORB” 20-83

“Object” 20-86

“Server-Side Mapping” 20-88

“Implementing Interfaces” 20-89

“Implementing Operations” 20-97

“Mapping of Dynamic Skeleton Interface to C++” 20-99

“PortableServer Functions” 20-101

“Mapping for PortableServer::ServantManager” 20-102

“C++ Definitions for CORBA” 20-103

“Alternative Mappings For C++ Dialects” 20-116

“C++ Keywords” 20-118

Section Title Page
20-2 CORBA V2.2 February 1998

20

a
 for

L to

 the

nt

the

e

ing

tly

+

20.1 Preliminary Information

20.1.1 Overview

Key Design Decisions

The design of the C++ mapping was driven by a number of considerations, including
design that achieves reasonable performance, portability, efficiency, and usability
OMG IDL-to-C++ implementations. Several other considerations are outlined in this
section.

For more information about the general requirements of a mapping from OMG ID
any programming language, refer to “Requirements for a Language Mapping” on
page 19-2.

Compliance

The C++ mapping tries to avoid limiting the implementation freedoms of ORB
developers. For each OMG IDL and CORBA construct, the C++ mapping explains
syntax and semantics of using the construct from C++. A client or server program
conforms to this mapping (is CORBA-C++ compliant) if it uses the constructs as
described in the C++ mapping chapters. An implementation conforms to this mapping
if it correctly executes any conforming client or server program. A conforming clie
or server program is therefore portable across all conforming implementations. For
more information about CORBA compliance, refer to the Preface, “Definition of
CORBA Compliance” on page -xxvi.

C++ Implementation Requirements

The mapping proposed here assumes that the target C++ environment supports all
features described in The Annotated C++ Reference Manual (ARM) by Ellis and
Stroustrup as adopted by the ANSI/ISO C++ standardization committees, including
exception handling. In addition, it assumes that the C++ environment supports th
namespace construct recently adopted into the language. Because C++
implementations vary widely in the quality of their support for templates, this mapp
does not explicitly require their use, nor does it disallow their use as part of a CORBA-
compliant implementation.

C Data Layout Compatibility

Some ORB vendors feel strongly that the C++ mapping should be able to work direc
with the CORBA C mapping. This mapping makes every attempt to ensure
compatibility between the C and C++ mappings, but it does not mandate such
compatibility. In addition to providing better interoperability and portability, the C+
call style solves the memory management problems seen by C programmers who use
the C call style. Therefore, the OMG has adopted the C++ call style for OMG IDL.
CORBA V2.2 Preliminary Information February 1998 20-3

20

 call

r

e
However, to provide continuity for earlier applications, an implementation might
choose to support the C call style as an option. If an implementation supports both
styles, it is recommended that the C call style be phased out.

Note that the mapping in the C Language Mapping chapter has been modified to
achieve compatibility between the C and C++ mappings.

No Implementation Descriptions

This mapping does not contain implementation descriptions. It avoids details that
would constrain implementations, but still allows clients to be fully source compatible
with any compliant implementation. Some examples show possible implementations,
but these are not required implementations.

20.1.2 Scoped Names

Scoped names in OMG IDL are specified by C++ scopes:

• OMG IDL modules are mapped to C++ namespaces.

• OMG IDL interfaces are mapped to C++ classes (as described in “Mapping fo
Interfaces” on page 20-6).

• All OMG IDL constructs scoped to an interface are accessed via C++ scoped
names. For example, if a type mode were defined in interface printer then the
type would be referred to as printer::mode .

These mappings allow the corresponding mechanisms in OMG IDL and C++ to b
used to build scoped names. For instance:

// IDL
module M
{

struct E {
long L;

};
};

is mapped into:

// C++
namespace M
{

struct E {
Long L;

};
}

and E can be referred outside of M as M::E . Alternatively, a C++ using statement
for namespace M can be used so that E can be referred to simply as E:

// C++
using namespace M;
20-4 CORBA V2.2 February 1998

20

ple,

 and

ally
E e;
e.L = 3;

Another alternative is to employ a using statement only for M::E :

// C++
using M::E;
E e;
e.L = 3;

To avoid C++ compilation problems, every use in OMG IDL of a C++ keyword as an
identifier is mapped into the same name preceded by the prefix “_cxx_”. For exam
an IDL interface named “try” would be named “_cxx_try” when its name is mapped
into C++. The complete list of C++ keywords from the 2 December 1996 Working
Paper of the ANSI/ISO C++ standardization committees (X3J16, WG21) can be found
in the "C++ Keywords" appendix.

20.1.3 C++ Type Size Requirements

The sizes of the C++ types used to represent OMG IDL types are implementation-
dependent. That is, this mapping makes no requirements as to the sizeof(T) for
anything except basic types (see “Mapping for Basic Data Types” on page 20-15)
string (see “Mapping for String Types” on page 20-17).

20.1.4 CORBA Module

The mapping relies on some predefined types, classes, and functions that are logic
defined in a module named CORBA. The module is automatically accessible from a
C++ compilation unit that includes a header file generated from an OMG IDL
specification. In the examples presented in this document, CORBA definitions are
referenced without explicit qualification for simplicity. In practice, fully scoped names
or C++ using statements for the CORBA namespace would be required in the
application source. Appendix A contains standard OMG IDL types.

20.2 Mapping for Modules

As shown in “Scoped Names” on page 20-4, a module defines a scope, and as such is
mapped to a C++ namespace with the same name:

// IDL
module M
{

// definit ions
};

// C++
namespace M
{

CORBA V2.2 Mapping for Modules February 1998 20-5

20

 the

// definitions
}

Because namespaces were only recently added to the C++ language, few C++
compilers currently support them. Alternative mappings for OMG IDL modules that do
not require C++ namespaces are in the Appendix “Alternative Mappings for C++
Dialects.”

20.3 Mapping for Interfaces

An interface is mapped to a C++ class that contains public definitions of the types,
constants, operations, and exceptions defined in the interface.

A CORBA–C++–compliant program cannot

• Create or hold an instance of an interface class

• Use a pointer (A*) or a reference (A&) to an interface class.

The reason for these restrictions is to allow a wide variety of implementations. For
example, interface classes could not be implemented as abstract base classes if
programs were allowed to create or hold instances of them. In a sense, the generated
class is like a namespace that one cannot enter via a using statement. This example
shows the behavior of the mapping of an interface:

// IDL
interface A
{

struct S { short field; };
};

// C++
// Conformant uses
A::S s; // declare a struct variable
s.field = 3; // field access

// Non-conformant uses:
// one cannot declare an instance of an interface class...
A a;
// ...nor declare a pointer to an interface class...
A *p;
// ...nor declare a reference to an interface class.
void f(A &r);

20.3.1 Object Reference Types

The use of an interface type in OMG IDL denotes an object reference. Because of
different ways an object reference can be used and the different possible
implementations in C++, an object reference maps to two C++ types. For an interface
A, these types are named A_var and A_ptr . For historical reasons, the type ARef
is defined as a synonym for A_ptr , but usage of the Ref names is not portable and
20-6 CORBA V2.2 February 1998

20

 is not

of

es
face

ll

e
is thus deprecated. These types need not be distinct—A_var may be identical to
A_ptr , for example—so a compliant program cannot overload operations using these
types solely.

An operation can be performed on an object by using an arrow (“-> ”) on a reference
to the object. For example, if an interface defines an operation op with no parameters
and obj is a reference to the interface type, then a call would be written obj-
>op() . The arrow operator is used to invoke operations on both the _ptr and _var
object reference types.

Client code frequently will use the object reference variable type (A_var) because a
variable will automatically release its object reference when it is deallocated or when
assigned a new object reference. The pointer type (A_ptr) provides a more primitive
object reference, which has similar semantics to a C++ pointer. Indeed, an
implementation may choose to define A_ptr as A* , but is not required to. Unlike
C++ pointers, however, conversion to void* , arithmetic operations, and relational
operations, including test for equality, are all non-compliant. A compliant
implementation need not detect these incorrect uses because requiring detection
practical.

For many operations, mixing data of type A_var and A_ptr is possible without any
explicit operations or casts. However, one needs to be careful in doing so because
the implicit release performed when the variable is deallocated. For example, the
assignment statement in the code below will result in the object reference held byp to
be released at the end of the block containing the declaration of a.

// C++
A_var a;
A_ptr p = // ...somehow obtain an objref...
a = p;

20.3.2 Widening Object References

OMG IDL interface inheritance does not require that the corresponding C++ class
are related, though that is certainly one possible implementation. However, if inter
B inherits from interface A, the following implicit widening operations for B must be
supported by a compliant implementation:

• B_ptr to A_ptr

• B_ptr to Object_ptr

• B_var to A_ptr

• B_var to Object_ptr

Implicit widening from a B_var to A_var or Object_var need not be
supported; instead, widening between _var types for object references requires a ca
to _duplicate (described in “Object Reference Operations” on page 20-8).1 An
attempt to implicitly widen from one _var type to another must cause a compile-tim
error.2 Assignment between two _var objects of the same type is supported, but
widening assignments are not and must cause a compile-time error. Widening
assignments may be done using _duplicate .
CORBA V2.2 Mapping for Interfaces February 1998 20-7

20

ll

ype

e
 a nil
// C++
B_ptr bp = ...
A_ptr ap = bp; // implicit widening
Object_ptr objp = bp; // implicit widening
objp = ap; // implicit widening

B_var bv = bp; // bv assumes ownership of bp
ap = bv; // implicit widening, bv retains

// ownership of bp
obp = bv; // implicit widening, bv retains

// ownership of bp

A_var av = bv; // illegal, compile-time error
A_var av = B::_duplicate(bv);// av, bv both refer to bp
B_var bv2 = bv; // implicit _duplicate
A_var av2;
av2 = av; // implicit _duplicate

20.3.3 Object Reference Operations

Conceptually, the Object class in the CORBA module is the base interface type for a
CORBA objects. Any object reference can therefore be widened to the type
Object_ptr . As with other interfaces, the CORBA namespace also defines the t
Object_var .

CORBA defines three operations on any object reference: duplicate , release , and
is_nil . Note that these are operations on the object reference, not the object
implementation. Because the mapping does not require object references to themselves
be C++ objects, the “-> ” syntax cannot be employed to express the usage of thes
operations. Also, for convenience these operations are allowed to be performed on
object reference.

The release and is_nil operations depend only on type Object , so they can be
expressed as regular functions within the CORBA namespace as follows:

1.When T_ptr is mapped to T* , it is impossible in C++ to provide implicit widening
between T_var types while also providing the necessary duplication semantics for
T_ptr types.

2.This can be achieved by deriving all T_var types for object references from a base _var
class, then making the assignment operator for _var private within each T_var type.
20-8 CORBA V2.2 February 1998

20

 nil,

r the

ber

,

an
// C++
void release(Object_ptr obj);
Boolean is_nil(Object_ptr obj);

The release operation indicates that the caller will no longer access the reference
so that associated resources may be deallocated. If the given object reference is
release does nothing. The is_nil operation returns TRUE if the object reference
contains the special value for a nil object reference as defined by the ORB. Neithe
release operation nor the is_nil operation may throw CORBA exceptions.

The duplicate operation returns a new object reference with the same static type as
the given reference. The mapping for an interface therefore includes a static mem
function named _duplicate in the generated class. For example:

// IDL
interface A { };

// C++
class A
{

public:
 static A_ptr _duplicate(A_ptr obj);
};

If th e given object reference is nil, _duplicate will return a nil object reference.
The _duplicate operation can throw CORBA system exceptions.

20.3.4 Narrowing Object References

The mapping for an interface defines a static member function named _narrow that
returns a new object reference given an existing reference. Like _duplicate , the
_narrow function returns a nil object reference if the given reference is nil. Unlike
_duplicate , the parameter to _narrow is a reference of an object of any
interface type (Object_ptr). If the actual (runtime) type of the parameter object
can be widened to the requested interface’s type, then _narrow will return a valid
object reference. Otherwise, _narrow will return a nil object reference. For example
suppose A, B, C, and D are interface types, and D inherits from C, which inherits from
B, which in turn inherits from A. If an object reference to a C object is widened to
A_ptr variable called ap , the

• A::_narrow(ap) returns a valid object reference;

• B::_narrow(ap) returns a valid object reference;

• C::_narrow(ap) returns a valid object reference;

• D::_narrow(ap) returns a nil object reference.

Narrowing to A, B, and C all succeed because the object supports all those interfaces.
The D::_narrow returns a nil object reference because the object does not support
the D interface.
CORBA V2.2 Mapping for Interfaces February 1998 20-9

20

o a

ot be

For another example, suppose A, B, C, and D are interface types. C inherits from B,
and both B and D inherit from A. Now suppose that an object of type C is passed t
function as an A. If the function calls B::_narrow or C::_narrow , a new object
reference will be returned. A call to D::_narrow will fail and return nil.

If successful, the _narrow function creates a new object reference and does not
consume the given object reference, so the caller is responsible for releasing both the
original and new references.

The _narrow operation can throw CORBA system exceptions.

20.3.5 Nil Object Reference

The mapping for an interface defines a static member function named _nil that
returns a nil object reference of that interface type. For each interface A, the following
call is guaranteed to return TRUE:

// C++
Boolean true_result = is_nil(A::_nil());

A compliant application need not call release on the object reference returned from
the _nil function.

As described in “Object Reference Types” on page 20-6, object references may n
compared using operator== , so is_nil is the only compliant way an object
reference can be checked to see if it is nil.

The _nil function may not throw any CORBA exceptions.

A compliant program cannot attempt to invoke an operation through a nil object
reference, since a valid C++ implementation of a nil object reference is a null pointer.

20.3.6 Object Reference Out Parameter

When a _var is passed as an out parameter, any previous value it refers to must be
implicitly released. To give C++ mapping implementations enough hooks to meet this
requirement, each object reference type results in the generation of an _out type
which is used solely as the out parameter type. For example, interface A results in the
object reference type A_ptr , the helper type A_var , and the out parameter type
A_out . The general form for object reference _out types is shown below.
20-10 CORBA V2.2 February 1998

20

ly

re
// C++
class A_out
{

public:
A_out(A_ptr& p) : ptr_(p) { ptr_ = A::_nil(); }
A_out(A_var& p) : ptr_(p.ptr_) {
release(ptr_); ptr_ = A::_nil();
}
A_out(A_out& a) : ptr_(a.ptr_) {}
A_out& operator=(A_out& a) {
ptr_ = a.ptr_; return *this;
}
A_out& operator=(const A_var& a) {
ptr_ = A::_duplicate(A_ptr(a)); return *this;
}
A_out& operator=(A_ptr p) { ptr_ = p; return *this; }
operator A_ptr&() { return ptr_; }
A_ptr& ptr() { return ptr_; }
A_ptr operator->() { return ptr_; }

private:
A_ptr& ptr_;
};

The first constructor binds the reference data member with the A_ptr& argument.
The second constructor binds the reference data member with the A_ptr object
reference held by the A_var argument, and then calls release() on the object
reference. The third constructor, the copy constructor, binds the reference data
member to the same A_ptr object reference bound to the data member of its
argument. Assignment from another A_out copies the A_ptr referenced by the
argument A_out to the data member. The overloaded assignment operator for
A_ptr simply assigns the A_ptr object reference argument to the data member.
The overloaded assignment operator for A_var duplicates the A_ptr held by the
A_var before assigning it to the data member. Note that assignment does not cause
any previously-held object reference value to be released; in this regard, the A_out
type behaves exactly as an A_ptr . The A_ptr& conversion operator returns the
data member. The ptr() member function, which can be used to avoid having to re
on implicit conversion, also returns the data member. The overloaded arrow operator
(operator->()) returns the data member to allow operations to be invoked on the
underlying object reference after it has been properly initialized by assignment.

20.3.7 Interface Mapping Example

The example below shows one possible mapping for an interface. Other mappings a
also possible, but they must provide the same semantics and usage as this example.
CORBA V2.2 Mapping for Interfaces February 1998 20-11

20
// IDL
interface A
{

A op(in A arg1, out A arg2);
};

// C++
class A;
typedef A *A_ptr;
class A : public virtual Object
{

public:
static A_ptr _duplicate(A_ptr obj);
static A_ptr _narrow(Object_ptr obj);
static A_ptr _nil();

virtual A_ptr op(A_ptr arg1, A_out arg2) = 0;

protected:
A();
virtual ~A();

private:
A(const A&);
void operator=(const A&);
};

class A_var : public _var
{
 public:
A_var() : ptr_(A::_nil()) {}
A_var(A_ptr p) : ptr_(p) {}
A_var(const A_var &a) : ptr_(A::_duplicate(A_ptr(a))) {}
~A_var() { free(); }

A_var &operator=(A_ptr p) {
reset(p); return *this;
}
A_var &operator=(const A_var& a) {
if (this != &a) {
free();
ptr_ = A::_duplicate(A_ptr(a));
}
return *this;
}
A_ptr in() const { return ptr_; }
A_ptr& inout() { return ptr_; }
A_ptr& out() {
reset(A::_nil());
return ptr_;
20-12 CORBA V2.2 February 1998

20

ple,
nt
scope
ilation

}
A_ptr _retn() {
// yield ownership of managed object reference
A_ptr val = ptr_;
ptr_ = A::_nil();
return val;
}

operator const A_ptr&() const { return ptr_; }
operator A_ptr&() { return ptr_; }
A_ptr operator->() const { return ptr_; }

protected:
A_ptr ptr_;
void free() { release(ptr_); }
void reset(A_ptr p) { free(); ptr_ = p; }

private:
// hidden assignment operators for var types to
// fulfill the rules specified in
// Section 19.3.2
void operator=(const _var &);
};

The definition for the A_out type is the same as the one shown in “Object Reference
Out Parameter” on page20-10.

20.4 Mapping for Constants

OMG IDL constants are mapped directly to a C++ constant definition that may or may
not define storage depending on the scope of the declaration. In the following exam
a top-level IDL constant maps to a file-scope C++ constant whereas a nested consta
maps to a class-scope C++ constant. This inconsistency occurs because C++ file-
constants may not require storage (or the storage may be replicated in each comp
unit), while class-scope constants always take storage. As a side effect, this difference
means that the generated C++ header file might not contain values for constants
defined in the OMG IDL file.
CORBA V2.2 Mapping for Constants February 1998 20-13

20

alue

d

e
// IDL
const string name = "testing";

interface A
{

const float pi = 3.14159;
};

// C++
static const char *const name = "testing";

class A
{

public:
static const Float pi;
};

In certain situations, use of a constant in OMG IDL must generate the constant’s v
instead of the constant’s name.3 For example,

// IDL
interface A
{

const long n = 10;
typedef long V[n];

};

// C++
class A
{

public:
static const long n;
typedef long V[10];

};

Wide Character and Wide String Constants

The mappings for wide character and wide string constants is identical to character an
string constants, except that IDL literals are preceded by L in C++. For example, IDL
constant:

const wstring ws = “Hello World”;

would map to

3.A recent change made to the C++ language by the ANSI/ISO C++ standardization commit-
tees allows static integer constants to be initialized within the class declaration, so for som
C++ compilers, the code generation issues described here may not be a problem.
20-14 CORBA V2.2 February 1998

20

er

n

 the
static const CORBA::WChar *const ws = L”Hello World”;

in C++.

20.5 Mapping for Basic Data Types

The basic data types have the mappings shown in Table 20-14. Note that the mapping of
the OMG IDL boolean type defines only the values 1 (TRUE) and 0 (FALSE); oth
values produce undefined behavior.

Each OMG IDL basic type is mapped to a typedef in the CORBA module. This is
because some types, such as short and long , may have different representations o
different platforms, and the CORBA definitions will reflect the appropriate
representation. For example, on a 64-bit machine where a long integer is 64 bits,
definition of CORBA::Long would still refer to a 32-bit integer. Requirements for
the sizes of basic types are shown in “Basic Types” on page 3-23.

4. This mapping assumes that CORBA::LongLong , CORBA::ULongLong , and
CORBA::LongDouble are mapped directly to native numeric C++ types (e.g.,
CORBA::LongLong to a 64-bit integer type) that support the required IDL semantics and
that can be manipulated via built-in operators. If such native type support is not widely
available, then an alternate mapping to C++ classes (that support appropriate creation,
conversion, and manipulation operators) should also be provided by the C++ Mapping
Revision Task Force.

Table 20-1Basic Data Type Mappings

OMG IDL C++ C++ Out Type

short CORBA::Short CORBA::Short_out

long CORBA::Long CORBA::Long_out

long long CORBA::LongLong CORBA::LongLong_out

unsigned short CORBA::UShort CORBA::UShort_out

unsigned long CORBA::ULong CORBA::ULong_out

unsigned long long CORBA::ULongLong CORBA::ULongLong_out

float CORBA::Float CORBA::Float_out

double CORBA::Double CORBA::Double_out

long double CORBA::LongDouble CORBA::LongDouble_out

char CORBA::Char CORBA::Char_out

wchar CORBA::WChar CORBA::WChar_out

boolean CORBA::Boolean CORBA::Boolean_out

octet CORBA::Octet CORBA::Octet
CORBA V2.2 Mapping for Basic Data Types February 1998 20-15

20

5. For

e

.

ing

s

 of

e
Except for boolean , char , and octet , the mappings for basic types must be
distinguishable from each other for the purposes of overloading. That is, one can safely
write overloaded C++ functions on Short , UShort , Long , ULong, Float , and
Double .

The _out types for the basic types are used to type out parameters within operation
signatures, as described in “Operation Parameters and Signatures” on page 20-6
the basic types, each _out type shall be a typedef to a reference to the
corresponding C++ type. For example, the Short_out shall be defined in the
CORBA namespace as follows:

// C++
typedef Short& Short_out;

The _out types for the basic types are provided for consistency with other out
parameter types.

Programmers concerned with portability should use the CORBA types. However, som
may feel that using these types with the CORBA qualification impairs readability. If
the CORBA module is mapped to a namespace, a C++ using statement may help
this problem. On platforms where the C++ data type is guaranteed to be identical to the
OMG IDL data type, a compliant implementation may generate the native C++ type

For the Boolean type, only the values 1 (representing TRUE) and 0 (representing
FALSE) are defined; other values produce undefined behavior. Since many exist
C++ software packages and libraries already provide their own preprocessor macro
definitions of TRUE and FALSE, this mapping does not require that such definition
be provided by a compliant implementation. Requiring definitions for TRUE and
FALSE could cause compilation problems for CORBA applications that make use
such packages and libraries. Instead, we recommend that compliant applications
simply use the values 1 and 0 directly.5 Alternatively, for those C++ compilers that
support the bool type, the keywords true and false may be used.

20.6 Mapping for Enums

An OMG IDL enum maps directly to the corresponding C++ type definition. The
only difference is that the generated C++ type may need an additional constant that is
large enough to force the C++ compiler to use exactly 32 bits for values declared to b
of the enumerated type.

5.Examples and descriptions in this document still use TRUE and FALSE for purposes of clar-
ity.
20-16 CORBA V2.2 February 1998

20

s

ic

// IDL
enum Color { red, green, blue };

// C++
enum Color { red, green, blue };

In addition, an _out type used to type out parameters within operation signatures i
generated for each enumerated type. For enum Color shown above, the
Color_out type shall be defined in the same scope as follows:

// C++
typedef Color& Color_out;

The _out types for enumerated types are generated for consistency with other out
parameter types.

20.7 Mapping for String Types

As in the C mapping, the OMG IDL string type, whether bounded or unbounded, is
mapped to char* in C++. String data is null-terminated. In addition, the CORBA
module defines a class String_var that contains a char* value and automatically
frees the pointer when a String_var object is deallocated. When a String_var
is constructed or assigned from a char* , the char* is consumed and thus the string
data may no longer be accessed through it by the caller. Assignment or construction
from a const char* or from another String_var causes a copy. The
String_var class also provides operations to convert to and from char* values,
as well as subscripting operations to access characters within the string. The full
definition of the String_var interface is given in “String_var and String_out
Class” on page 20-104. Because its mapping is char* , the OMG IDL string type is
the only non-basic type for which this mapping makes size requirements. For dynam
allocation of strings, compliant programs must use the following functions from the
CORBA namespace:

// C++
namespace CORBA {
char *string_alloc(ULong len);
char *string_dup(const char*);
void string_free(char *);
...
}

The string_alloc function dynamically allocates a string, or returns a null
pointer if it cannot perform the allocation. It allocates len+1 characters so that the
resulting string has enough space to hold a trailing NUL character. The
string_dup function dynamically allocates enough space to hold a copy of its
string argument, including the NUL character, copies its string argument into that
memory, and returns a pointer to the new string. If allocation fails, a null pointer is
returned. The string_free function deallocates a string that was allocated with
string_alloc or string_dup . Passing a null pointer to string_free is
acceptable and results in no action being performed. These functions allow ORB
CORBA V2.2 Mapping for String Types February 1998 20-17

20

t
implementations to use special memory management mechanisms for strings if
necessary, without forcing them to replace global operator new and operator
new[] .

The string_alloc , string_dup , and string_free functions may not
throw CORBA exceptions.

Note that a static array of char in C++ decays to a char* 6, so care must be taken
when assigning one to a String_var , since the String_var will assume the
pointer points to data allocated via string_alloc and thus will eventually attempt
to string_free it:

// C++
// The following is an error, since the char* should point to
// data allocated via string_alloc so it can be consumed
String_var s = "static string";// error

// The following are OK, since const char* are copied,
// not consumed
const char* sp = "static string";
s = sp;
s = (const char*)"static string too";

// C++
// The following is an error, since the char* should point to
// data allocated via string_alloc so it can be consumed
String_var s = "static string";// error

// The following are OK, since const char* are copied,
// not consumed
const char* sp = "static string";
s = sp;
s = (const char*)"static string too";

6. This has changed in ANSI/ISO C++, where string literals are const char*, not char*. How-
ever, since most C++ compilers do not yet implement this change, portable programs mus
heed the advice given here.
20-18 CORBA V2.2 February 1998

20

When a String_var is passed as an out parameter, any previous value it refers to
must be implicitly freed. To give C++ mapping implementations enough hooks to
meet this requirement, the string type also results in the generation of a String_out
type in the CORBA namespace which is used solely as the string out parameter type.
The general form for the String_out type is shown below.

// C++
class String_out
{

public:
String_out(char*& p) : ptr_(p) { ptr_ = 0; }
String_out(String_var& p) : ptr_(p.ptr_) {
string_free(ptr_); ptr_ = 0;
}
String_out(String_out& s) : ptr_(s.ptr_) {}
String_out& operator=(String_out& s) {
ptr_ = s.ptr_; return *this;
}
String_out& operator=(char* p) {
ptr_ = p; return *this;
}
String_out& operator=(const char* p) {
ptr_ = string_dup(p); return *this;
}
operator char*&() { return ptr_; }
char*& ptr() { return ptr_; }

private:
char*& ptr_;

// assignment from String_var disallowed
void operator=(const String_var&);
};

The first constructor binds the reference data member with the char*& argument.
The second constructor binds the reference data member with the char* held by the
String_var argument, and then calls string_free() on the string. The third
constructor, the copy constructor, binds the reference data member to the same char*
bound to the data member of its argument. Assignment from another String_out
copies the char* referenced by the argument String_out to the char*
referenced by the data member. The overloaded assignment operator for char*
simply assigns the char* argument to the data member. The overloaded assignment
operator for const char* duplicates the argument and assigns the result to the
data member. Note that assignment does not cause any previously-held string to be
freed; in this regard, the String_out type behaves exactly as a char* . The
char*& conversion operator returns the data member. The ptr() member function,
which can be used to avoid having to rely on implicit conversion, also returns the data
member.
CORBA V2.2 Mapping for String Types February 1998 20-19

20

ine

ked

Assignment from String_var to a String_out is disallowed because of the
memory management ambiguities involved. Specifically, it is not possible to determ
whether the string owned by the String_var should be taken over by the
String_out without copying, or if it should be copied. Disallowing assignment
from String_var forces the application developer to make the choice explicitly:

// C++
void
A::op(String_out arg)
{
String_var s = string_dup("some string");
...
arg = s;// disallowed; either
arg = string_dup(s);// 1: copy, or
arg = s._retn();// 2: adopt
}

On the line marked with the comment “1,” the application writer is explicitly copying
the string held by the String_var and assigning the result to the arg argument.
Alternatively, the application writer could use the technique shown on the line mar
with the comment “2” in order to force the String_var to give up its ownership of
the string it holds so that it may be returned in the arg argument without incurring
memory management errors.

20.8 Mapping for Wide String Types

Both bounded and unbounded wide string types are mapped to CORBA::WChar* in
C++. In addition, the CORBA module defines WString _var and WString_out
classes. Each of these classes provides the same member functions with the same
semantics as their string counterparts, except of course they deal with wide strings
and wide characters.

Dynamic allocation and deallocation of wide strings must be performed via the
following functions:

// C++
namespace CORBA {

// ...
WChar *wstring_alloc(ULong len);
WChar *wstring_dup(const WChar* ws);
void wstring_free(WChar*);

};

These functions have the same semantics as the same functions for the string type,
except they operate on wide strings.
20-20 CORBA V2.2 February 1998

20

 a

ct
 to

s)

w

 also
is
es
20.9 Mapping for Structured Types

The mapping for struct , union , and sequence (but not array) is a C++ struct or
class with a default constructor, a copy constructor, an assignment operator, and
destructor. The default constructor initializes object reference members to
appropriately-typed nil object references and string members to NULL; all other
members are initialized via their default constructors. The copy constructor performs a
deep-copy from the existing structure to create a new structure, including calling
_duplicate on all object reference members and performing the necessary heap
allocations for all string members. The assignment operator first releases all obje
reference members and frees all string members, and then performs a deep-copy
create a new structure. The destructor releases all object reference members and frees
all string members.

The mapping for OMG IDL structured types (structs, unions, arrays, and sequence
can vary slightly depending on whether the data structure is fixed-length or variable-
length. A type is variable-length if it is one of the following types:

• The type any
• A bounded or unbounded string

• A bounded or unbounded sequence

• An object reference or reference to a transmissible pseudo-object

• A struct or union that contains a member whose type is variable-length

• An array with a variable-length element type

• A typedef to a variable-length type

The reason for treating fixed- and variable-length data structures differently is to allo
more flexibility in the allocation of out parameters and return values from an
operation. This flexibility allows a client-side stub for an operation that returns a
sequence of strings, for example, to allocate all the string storage in one area that is
deallocated in a single call.

As a convenience for managing pointers to variable-length data types, the mapping
provides a managing helper class for each variable-length type. This type, which
named by adding the suffix “_var” to the original type’s name, automatically delet
the pointer when an instance is destroyed. An object of type T_var behaves similarly
to the structured type T, except that members must be accessed indirectly. For a struct,
this means using an arrow (“-> ”) instead of a dot (“. ”).
CORBA V2.2 Mapping for Structured Types February 1998 20-21

20

// IDL
struct S { string name; float age; };
void f(out S p);

// C++
S a;
S_var b;
f(b);
a = b; // deep-copy
cout << "names " << a.name << ", " << b->name << endl;

20.9.1 T_var Types

The general form of the T_var types is shown below.

// C++
class T_var
{

public:
T_var();
T_var(T *);
T_var(const T_var &);
~T_var();

T_var &operator=(T *);
T_var &operator=(const T_var &);

T* operator->();
const T* operator->() const;

/* in parameter type */ in() const;
/* inout parameter type */ inout();
/* out parameter type */ out();
/* return type */ _retn();

// other conversion operators to support
// parameter passing
};

The default constructor creates a T_var containing a null T* . Compliant applications
may not attempt to convert a T_var created with the default constructor into a T* nor
use its overloaded operator-> without first assigning to it a valid T* or another
valid T_var . Due to the difficulty of doing so, compliant implementations are not
required to detect this error. Conversion of a null T_var to a T_out is allowed,
however, so that a T_var can legally be passed as an out parameter. Conversion of a
null T_var to a T*& is also allowed so as to be compatible with earlier versions of
this specification.
20-22 CORBA V2.2 February 1998

20

ssed

s

w

The T* constructor creates a T_var that, when destroyed, will delete the storage
pointed to by the T* parameter. The parameter to this constructor should never be a
null pointer. Compliant implementations are not required to detect null pointers pa
to this constructor.

The copy constructor deep-copies any data pointed to by the T_var constructor
parameter. This copy will be destroyed when the T_var is destroyed or when a new
value is assigned to it. Compliant implementations may, but are not required to, utilize
some form of reference counting to avoid such copies.

The destructor uses delete to deallocate any data pointed to by the T_var , except
for strings and array types, which are deallocated using the string_free and
T_free (for array type T) deallocation functions, respectively.

The T* assignment operator results in the deallocation of any old data pointed to by
the T_var before assuming ownership of the T* parameter.

The normal assignment operator deep-copies any data pointed to by the T_var
assignment parameter. This copy will be destroyed when the T_var is destroyed or
when a new value is assigned to it.

The overloaded operator-> returns the T* held by the T_var , but retains
ownership of it. Compliant applications may not call this function unless the T_var
has been initialized with a valid non-null T* or T_var .

In addition to the member functions described above, the T_var types must support
conversion functions that allow them to fully support the parameter passing mode
shown in “Basic Argument and Result Passing” on page 20-66. The form of these
conversion functions is not specified so as to allow different implementations, but the
conversions must be automatic (i.e., they must require no explicit application code to
invoke them).

Because implicit conversions can sometimes cause problems with some C++ compilers
and with code readability, the T_var types also support member functions that allo
them to be explicitly converted for purposes of parameter passing. To pass a T_var
as an in parameter, an application can call the in() member function of the T_var ;
for inout parameters, the inout() member function; for out parameters, the
out() member function; and to obtain a return value from the T_var , the
_retn() function.7 For each T_var type, the return types of each of these
functions shall match the types shown in Table 6 on page 19-59 for the in , inout ,
out , and return modes for underlying type T respectively.

For T_var types that return T*& from the out() member function, the out()
member function calls delete on the T* owned by the T_var , sets it equal to the
null pointer, and then returns a reference to it. This is to allow for proper management

7.A leading underscore is needed on the _retn() function to keep it from clashing with
user-defined member names of constructed types, but leading underscores are not needed
for the in() , inout() , and out() functions because their names are IDL key-
words, so users can’t define members with those names.
CORBA V2.2 Mapping for Structured Types February 1998 20-23

20

le

 of
of the T* owned by a T_var when passed as an out parameter, as described in
“Mapping For Operations and Attributes” on page 20-61. An example implementation
of such an out() function is shown below:

// C++
T*& T_var::out()
{
// assume ptr_ is the T* data member of the T_var
delete ptr_;
ptr_ = 0;
return ptr_;
}

Similarly, for T_var types whose corresponding type T is returned from IDL
operations as T* (see Table 20-2 on page 20-66), the _retn() function stores the
value of the T* owned by the T_var into a temporary pointer, sets the T* to the null
pointer value, and then returns the temporary. The T_var thus yields ownership of its
T* to the caller of _retn() without calling delete on it, and the caller becomes
responsible for eventually deleting the returned T* . An example implementation of
such a _retn() function is shown below:

// C++
T* T_var::_retn()
{
// assume ptr_ is the T* data member of the T_var
T* tmp = ptr_;
ptr_ = 0;
return tmp;
}

This allows, for example, a method implementation to store a T* as a potential return
value in a T_var so that it will be deleted if an exception is thrown, and yet be ab
to acquire control of the T* to be able to return it properly:

// C++
T_var t = new T;// t owns pointer to T
if (exceptional_condition) {
// t owns the pointer and will delete it
// as the stack is unwound due to throw
throw AnException();
}
...
return t._retn();// _retn() takes ownership of
// pointer from t

The T_var types are also produced for fixed-length structured types for reasons
consistency. These types have the same semantics as T_var types for variable-length
types. This allows applications to be coded in terms of T_var types regardless of
whether the underlying types are fixed- or variable-length.

Each T_var type must be defined at the same level of nesting as its T type.
20-24 CORBA V2.2 February 1998

20

y is
T_var types do not work with a pointer to constant T, since they provide no
constructor nor operator= taking a const T* parameter. Since C++ does not
allow delete to be called on a const T* 8, the T_var object would normally
have to copy the const object; instead, the absence of the const T* constructor and
assignment operators will result in a compile-time error if such an initialization or
assignment is attempted. This allows the application developer to decide if a cop
really wanted or not. Explicit copying of const T* objects into T_var types can
be achieved via the copy constructor for T:

// C++
const T *t = ...;
T_var tv = new T(*t);

20.9.2 T_out Types

When a T_var is passed as an out parameter, any previous value it referred to must
be implicitly deleted. To give C++ mapping implementations enough hooks to meet
this requirement, each T_var type has a corresponding T_out type which is used
solely as the out parameter type. The general form for T_out types for variable-
length types is shown below.

// C++

class T_out
{

public:
T_out(T*& p) : ptr_(p) { ptr_ = 0; }
T_out(T_var& p) : ptr_(p.ptr_) {
delete ptr_;
ptr_ = 0;
}
T_out(T_out& p) : ptr_(p.ptr_) {}
T_out& operator=(T_out& p) {
ptr_ = p.ptr_;
return *this;
}

8. This too has changed in ANSI/ISO C++, but it not yet widely implemented by C++ compil-
ers.
CORBA V2.2 Mapping for Structured Types February 1998 20-25

20

d by

r.

d

e
T_out& operator=(T* p) { ptr_ = p; return *this; }

operator T*&() { return ptr_; }
T*& ptr() { return ptr_; }

T* operator->() { return ptr_; }

private:
T*& ptr_;

// assignment from T_var not allowed
void operator=(const T_var&):
};

The first constructor binds the reference data member with the T*& argument and sets
the pointer to the null pointer value. The second constructor binds the reference data
member with the pointer held by the T_var argument, and then calls delete on the
pointer (or string_free() in the case of the String_out type or
T_free() in the case of a T_var for an array type T). The third constructor, the
copy constructor, binds the reference data member to the same pointer reference
the data member of the constructor argument. Assignment from another T_out copies
the T* referenced by the T_out argument to the data member. The overloaded
assignment operator for T* simply assigns the pointer argument to the data membe
Note that assignment does not cause any previously-held pointer to be deleted; in this
regard, the T_out type behaves exactly as a T* . The T*& conversion operator
returns the data member. The ptr() member function, which can be used to avoid
having to rely on implicit conversion, also returns the data member. The overloade
arrow operator (operator->()) allows access to members of the data structure
pointed to by the T* data member. Compliant applications may not call the overloaded
operator->() unless the T_out has been initialized with a valid non-null T* .

Assignment to a T_out from instances of the corresponding T_var type is
disallowed because there is no way to determine whether the application developer
wants a copy to be performed, or whether the T_var should yield ownership of its
managed pointer so it can be assigned to the T_out . To perform a copy of a T_var
to a T_out , the application should use new:

// C++
T_var t = ...;
my_out = new T(t.in());// heap-allocate a copy

The in() function called on t typically returns a const T&, suitable for invoking
the copy constructor of the newly-allocated T instance.

Alternatively, to make the T_var yield ownership of its managed pointer so it can b
returned in a T_out parameter, the application should use the T_var::_retn()
function:
20-26 CORBA V2.2 February 1998

20

s to

y.

ed
cess

he

t of

. These

p-
// C++
T_var t = ...;
my_out = t._retn();// t yields ownership, no copy

Note that the T_out types are not intended to serve as general-purpose data type
be created and destroyed by applications; they are used only as types within operation
signatures to allow necessary memory management side-effects to occur properl

20.10 Mapping for Struct Types

An OMG IDL struct maps to C++ struct, with each OMG IDL struct member mapp
to a corresponding member of the C++ struct. This mapping allows simple field ac
as well as aggregate initialization of most fixed-length structs. To facilitate such
initialization, C++ structs must not have user-defined constructors, assignment
operators, or destructors, and each struct member must be of self-managed type. With
the exception of strings and object references, the type of a C++ struct member is t
normal mapping of the OMG IDL member’s type.

For a string or object reference member, the name of the C++ member’s type is not
specified by the mapping—a compliant program therefore cannot create an objec
that type. The behavior9 of the type is the same as the normal mapping (char* for
string, A_ptr for an interface A) except the type’s copy constructor copies the
member’s storage and its assignment operator releases the member’s old storage
types must also provide the in() , inout() , out() , and _retn() functions that
their corresponding T_var types provide to allow them to support the parameter
passing modes specified in “Basic Argument and Result Passing” on page 20-66.

Assignment between a string or object reference member and a corresponding T_var
type (String_var or A_var) always results in copying the data, while assignment
with a pointer does not. The one exception to the rule for assignment is when a
const char* is assigned to a member, in which case the storage is copied.

When the old storage must not be freed (for example, it is part of the function’s
activation record), one can access the member directly as a pointer using the _ptr
field accessor. This usage is dangerous and generally should be avoided.

// IDL
struct FixedLen { float x, y, z; };

// C++
FixedLen x1 = {1.2, 2.4, 3.6};

9.Those implementations concerned with data layout compatibility with the C mapping in this
manual will also want to ensure that the sizes of these members match those of their C ma
ping counterparts.
CORBA V2.2 Mapping for Struct Types February 1998 20-27

20

FixedLen_var x2 = new FixedLen;
x2->y = x1.z;

The example above shows usage of the T and T_var types for a fixed-length struct.
When it goes out of scope, x2 will automatically free the heap-allocated FixedLen
object using delete .

The following examples illustrate mixed usage of T and T_var types for variable-
length types, using the following OMG IDL definition:

// IDL
interface A;
struct Variable { string name; };

// C++
Variable str1;// str1.name is initially NULL
Variable_var str2 = new Variable;// str2->name is

// initially NULL
char *non_const;
const char *const2;
String_var string_var;
const char *const3 = "string 1";
const char *const4 = "string 2";

str1.name = const3;// 1: free old storage, copy
str2->name = const4;// 2: free old storage, copy

In the example above, the name components of variables str1 and str2 both start
out as null. On the line marked 1, const3 is assigned to the name component of
str1 ; this results in the previous str1.name being freed, and since const3
points to const data, the contents of const3 being copied. In this case, str1.name
started out as null, so no previous data needs to be freed before the copying of
const3 takes place. Line 2 is similar to line 1, except that str2 is a T_var type.

Continuing with the example:

// C++
non_const = str1.name;// 3: no free, no copy
const2 = str2->name;// 4: no free, no copy

On the line marked 3, str1.name is assigned to non_const . Since
non_const is a pointer type (char*), str1.name is not freed, nor are the data
it points to copied. After the assignment, str1.name and non_const effectively
point to the same storage, with str1.name retaining ownership of that storage. Line
4 is identical to line 3, even though const2 is a pointer to const char; str2-
>name is neither freed nor copied because const2 is a pointer type.
20-28 CORBA V2.2 February 1998

20

t

ginal

on or
// C++
str1.name = non_const;// 5: free, no copy
str1.name = const2;// 6: free old storage, copy

Line 5 involves assignment of a char* to str1.name , which results in the old
str1.name being freed and the value of the non_const pointer, but not the data
it points to, being copied. In other words, after the assignment str1.name points to
the same storage as non_const points to. Line 6 is the same as line 5 except tha
because const2 is a const char* , the data it points to are copied.

// C++
str2->name = str1.name;// 7: free old storage, copy
str1.name = string_var;// 8: free old storage, copy
string_var = str2->name;// 9: free old storage, copy

On line 7, assignment is performed to a member from another member, so the ori
value is of the left-hand member is freed and the new value is copied. Similarly, lines
8 and 9 involve assignment to or from a String_var , so in both cases the original
value of the left-hand side is freed and the new value is copied.

// C++
str1.name._ptr = str2.name;// 10: no free, no copy

Finally, line 10 uses the _ptr field accessor, so no freeing or copying takes place.
Such usage is dangerous and generally should be avoided.

ORB implementations concerned with single-process interoperability with the C
mapping may overload operator new() and operator delete() for
structs so that dynamic allocation uses the same mechanism as the C language dynamic
allocation functions. Whether these operators are overloaded by the implementati
not, compliant programs use new to dynamically allocate structs and delete to free
them.

20.11 Mapping for Fixed

The C++ mapping for fixed is an abstract data type, with the following class and
function templates:

// C++ class template
template<CORBA::UShort d, Short s>
class Fixed
{
 public:

// Constructors...
Fixed(int val = 0);
Fixed(CORBA::LongDouble val);
Fixed(const Fixed<d,s>& val);
~Fixed();

// Conversions...
CORBA V2.2 Mapping for Fixed February 1998 20-29

20

operator LongDouble() const;

// Operators...
Fixed<d,s>& operator=(const Fixed<d,s>& val);
Fixed<d,s>& operator++();
Fixed<d,s>& operator++(int);
Fixed<d,s>& operator--();
Fixed<d,s>& operator--(int);
Fixed<d,s>& operator+() const;
Fixed<d,s>& operator-() const;
int operator!() const;

// Other member functions
CORBA::UShort fixed_digits() const;
CORBA::Short fixed_scale() const;

};

template<CORBA::UShort d, CORBA::Short s>
istream& operator>>(istream& is, Fixed<d,s> &val);
template<CORBA::UShort d, CORBA::Short s>
ostream& operator<<(ostream& os, const Fixed<d,s> &val);

The digits and scale, dr and sr, respectively, in the results of the binary arithmetic
functions (+, - , * and /) are computed according to the rules in “Semantics” on
page 3-20. One way to do this is to declare the result types with a macro that evaluates
to the appropriate values, based on the digits and scale of the operands:

// Example of Fixed result type declaration
// Fixed<_FIXED_ADD_TYPE(d1,s1,d2,s2)> => Fixed<d r ,s r >

The template specification below should be read as a prefix to each of the operator
function declarations following.

// C++ function templates for operators...
template<unsigned short d1, short s1, unsigned short d2,

short s2)
Fixed<d r ,s r > operator + (const Fixed<d1,s1> &val1,

const Fixed<d2,s2> &val2);
Fixed<d r ,s r > operator - (const Fixed<d1,s1> &val1,

const Fixed<d2,s2> &val2);
Fixed<d r ,s r > operator * (const Fixed<d1,s1> &val1,

const Fixed<d2,s2> &val2);
Fixed<d r ,s r > operator / (const Fixed<d1,s1> &val1,

const Fixed<d2,s2> &val2);
Fixed<d1,s1> operator += (const Fixed<d1,s1> &val1,

const Fixed<d2,s2> &val2);
Fixed<d1,s1> operator -= (const Fixed<d1,s1> &val1,

const Fixed<d2,s2> &val2);
Fixed<d1,s1> operator *= (const Fixed<d1,s1> &val1,

const Fixed<d2,s2> &val2);
20-30 CORBA V2.2 February 1998

20

so.
Fixed<d1,s1> operator /= (const Fixed<d1,s1> &val1,
const Fixed<d2,s2> &val2);

int operator > (const Fixed<d1,s1> &val1,
const Fixed<d2,s2> &val2);

int operator < (const Fixed<d1,s1> &val1,
const Fixed<d2,s2> &val2);

int operator >= (const Fixed<d1,s1> &val1,
const Fixed<d2,s2> &val2);

int operator <= (const Fixed<d1,s1> &val1,
const Fixed<d2,s2> &val2);

int operator == (const Fixed<d1,s1> &val1,
const Fixed<d2,s2> &val2);

int operator != (const Fixed<d1,s1> &val1,
const Fixed<d2,s2> &val2);

20.11.1 Fixed T_var and T_out Types

Just as for other types, T_var types are defined for Fixed types. The semantics of
the T_var types for Fixed types is similar to that for fixed-length structs.

A T_out type for a Fixed type is defined as typedef to a reference to the Fixed
type, with the digits and scale added to the name to disambiguate it. For example, the
name of the T_out type for the type Fixed<5,2> is Fixed_5_2_out 10:

// C++
typedef Fixed<5, 2>& Fixed_5_2_out;

20.12 Mapping for Union Types

Unions map to C++ classes with access functions for the union members and
discriminant. The default union constructor performs no application-visible
initialization of the union. It does not initialize the discriminator, nor does it initialize
any union members to a state useful to an application. (The implementation of the
default constructor can do whatever type of initialization it wants to, but such
initialization is implementation-dependent. No compliant application can count on a
union ever being properly initialized by the default constructor alone.)

It is therefore an error for an application to access the union before setting it, but ORB
implementations are not required to detect this error due to the difficulty of doing
The copy constructor and assignment operator both perform a deep-copy of their
parameters, with the assignment operator releasing old storage if necessary. The
destructor releases all storage owned by the union.

10. Note that this naming scheme would not be necessary if fixed types, like sequences and
arrays, were not allowed to be passed as anonymous types.
CORBA V2.2 Mapping for Union Types February 1998 20-31

20

n
lues
The union discriminant access functions have the name _d to both be brief and avoid
name conflicts with the members. The _d discriminator modifier function can only be
used to set the discriminant to a value within the same union member. In addition to
the _d accessors, a union with an implicit default member provides a _default()
member function that sets the discriminant to a legal default value. A union has a
implicit default member if it does not have a default case and not all permissible va
of the union discriminant are listed.

Setting the union value through an access function automatically sets the discriminant
and may release the storage associated with the previous value. Attempting to get a
value through an access function that does not match the current discriminant results in
undefined behavior. If an access function for a union member with multiple legal
discriminant values is used to set the value of the discriminant, the union
implementation is free to set the discriminant to any one of the legal values for that
member. The actual discriminant value chosen under these circumstances is
implementation dependent.

The following example helps illustrate the mapping for union types:

// IDL
typedef octet Bytes[64];
struct S { long len; };
interface A;
union U switch (long) {

case 1: long x;
case 2: Bytes y;
case 3: string z;
case 4:
case 5: S w;
default: A obj;

};

// C++
typedef Octet Bytes[64];
typedef Octet Bytes_slice;
class Bytes_forany { ... };
struct S { Long len; };
typedef ... A_ptr;
class U
{

20-32 CORBA V2.2 February 1998

20

 of

-const
e

 the
e

 array
public:
U();
U(const U&);
~U();
U &operator=(const U&);

void _d(Long);
Long _d() const;

void x(Long);
Long x() const;

void y(Bytes);
Bytes_slice *y() const;

void z(char*);// free old storage, no copy
void z(const char*);// free old storage, copy
void z(const String_var &);// free old storage, copy
const char *z() const;

void w(const S &);// deep copy
const S &w() const;// read-only access
S &w();// read-write access

void obj(A_ptr);// release old objref,
// duplicate

A_ptr obj() const;// no duplicate
};

Accessor and modifier functions for union members provide semantics similar to that
of struct data members. Modifier functions perform the equivalent of a deep-copy
their parameters, and their parameters should be passed by value (for small types) or
by reference to const (for larger types). Accessors that return a reference to a non
object can be used for read-write access, but such accessors are only provided for th
following types: struct , union , sequence , and any.

For an array union member, the accessor returns a pointer to the array slice, where
slice is an array with all dimensions of the original except the first (array slices ar
described in detail in “Mapping For Array Types” on page 20-41). The array slice
return type allows for read-write access for array members via regular subscript
operators. For members of an anonymous array type, supporting typedefs for the
must be generated directly into the union. For example:
CORBA V2.2 Mapping for Union Types February 1998 20-33

20

re
ray

ns a

tions
rn
rship
// IDL
union U switch (long) {
default: long array[20][20];

};

// C++
class U
{

public:
// ...
void array(long arg[20][20]);
typedef long _array_slice[20];
_array_slice * array();
// ...
};

The name of the supporting array slice typedef is created by prepending an undersco
and appending “_slice” to the union member name. In the example above, the ar
member named “array” results in an array slice typedef called “_array_slice” nested in
the union class.

For string union members, the char* modifier results in the freeing of old storage
before ownership of the pointer parameter is assumed, while the const char*
modifier and the String_var modifier11 both result in the freeing of old storage
before the parameter’s storage is copied. The accessor for a string member retur
const char* to allow examination but not modification of the string storage.12

For object reference union members, object reference parameters to modifier func
are duplicated after the old object reference is released. An object reference retu
value from an accessor function is not duplicated because the union retains owne
of the object reference.

The restrictions for using the _d discriminator modifier function are shown by the
following examples, based on the definition of the union U shown above:

11.A separate modifier for String_var is needed because it can automatically convert to
both a char* and a const char* ; since unions provide modifiers for both of these
types, an attempt to set a string member of a union from a String_var would otherwise
result in an ambiguity error at compile time.

12.A return type of char* allowing read-write access could mistakenly be assigned to a
String_var , resulting in the String_var and the union both assuming ownership
for the string’s storage.
20-34 CORBA V2.2 February 1998

20

o

on or

ength
n the
// C++
S s = {10};
U u;
u.w(s);// member w selected
u._d(4);// OK, member w selected
u._d(5);// OK, member w selected
u._d(1);// error, different member selected
A_ptr a = ...;
u.obj(a);// member obj selected
u._d(7);// OK, member obj selected
u._d(1);// error, different member selected

As shown here, the _d modifier function cannot be used to implicitly switch between
different union members. The following shows an example of how the _default()
member function is used:

// IDL
union Z switch(boolean) {

case TRUE: short s;
};

// C++
Z z;
z._default(); // implicit default member selected
Boolean disc = z._d();// disc == FALSE
U u;// union U from previous example
u._default();// error, no _default() provided

For union Z, calling the _default() member function causes the union’s value t
be composed solely of the discriminator value of FALSE, since there is no explicit
default member. For union U, calling _default() causes a compilation error
because U has an explicitly declared default case and thus no _default() member
function. A _default() member function is only generated for unions with
implicit default members.

ORB implementations concerned with single-process interoperability with the C
mapping may overload operator new() and operator delete() for unions
so that dynamic allocation uses the same mechanism as the C language dynamic
allocation functions. Whether these operators are overloaded by the implementati
not, compliant programs use new to dynamically allocate unions and delete to free
them.

20.13 Mapping for Sequence Types

A sequence is mapped to a C++ class that behaves like an array with a current l
and a maximum length. For a bounded sequence, the maximum length is implicit i
sequence’s type and cannot be explicitly controlled by the programmer. For an
CORBA V2.2 Mapping for Sequence Types February 1998 20-35

20

th
ting a

e the
 length
te,
t
alue.

e

unbounded sequence, the initial value of the maximum length can be specified in the
sequence constructor to allow control over the size of the initial buffer allocation. The
programmer may always explicitly modify the current length of any sequence.

For an unbounded sequence, setting the length to a larger value than the current leng
may reallocate the sequence data. Reallocation is conceptually equivalent to crea
new sequence of the desired new length, copying the old sequence elements zero
through length-1 into the new sequence, and then assigning the old sequence to b
same as the new sequence. Setting the length to a smaller value than the current
does not affect how the storage associated with the sequence is manipulated. No
however, that the elements orphaned by this reduction are no longer accessible and tha
their values cannot be recovered by increasing the sequence length to its original v

For a bounded sequence, attempting to set the current length to a value larger than th
maximum length given in the OMG IDL specification produces undefined behavior.

For each different named OMG IDL sequence type, a compliant implementation
provides a separate C++ sequence type. For example:

// IDL
typedef sequence<long> LongSeq;
typedef sequence<Lo ngSeq, 3> LongSeqSeq;

// C++
class LongSeq// unbounded sequence
{

public:
LongSeq();// default constructor
LongSeq(ULong max);// maximum constructor
LongSeq(// T *data constructor
ULong max,
ULong length,
Long *value,
Boolean release = FALSE
);
LongSeq(const LongSeq&);
~LongSeq();
...
};
20-36 CORBA V2.2 February 1998

20

e

it

ces, it

ssary.
ource

class LongSeqSeq// bounded sequence
{

public:
LongSeqSeq();// default constructor
LongSeqSeq(// T *data constructor
ULong length,
LongSeq *value,
Boolean release = FALSE
);
LongSeqSeq(const LongSeqSeq&);
~LongSeqSeq();
...
};

For both bounded and unbounded sequences, the default constructor (as shown in the
example above) sets the sequence length equal to 0. For bounded sequences, th
maximum length is part of the type and cannot be set or modified, while for
unbounded sequences, the default constructor also sets the maximum length to 0. The
default constructor for a bounded sequence always allocates a contents vector, so
always sets the release flag to TRUE.

Unbounded sequences provide a constructor that allows only the initial value of the
maximum length to be set (the “maximum constructor” shown in the example above).
This allows applications to control how much buffer space is initially allocated by the
sequence. This constructor also sets the length to 0 and the release flag to TRUE.

The “T *data ” constructor (as shown in the example above) allows the length and
contents of a bounded or unbounded sequence to be set. For unbounded sequen
also allows the initial value of the maximum length to be set. For this constructor,
ownership of the contents vector is determined by the release parameter—FALSE
means the caller owns the storage, while TRUE means that the sequence assumes
ownership of the storage. If release is TRUE, the contents vector must have been
allocated using the sequence allocbuf function, and the sequence will pass it to
freebuf when finished with it. The allocbuf and freebuf functions are
described on “Additional Memory Management Functions” on page 20-40.

The copy constructor creates a new sequence with the same maximum and length as
the given sequence, copies each of its current elements (items zero through length–1),
and sets the release flag to TRUE.

The assignment operator deep-copies its parameter, releasing old storage if nece
It behaves as if the original sequence is destroyed via its destructor and then the s
sequence copied using the copy constructor.

If release=TRUE , the destructor destroys each of the current elements (items zero
through length–1).

For an unbounded sequence, if a reallocation is necessary due to a change in the length
and the sequence was created using the release=TRUE parameter in its
constructor, the sequence will deallocate the old storage. If release is FALSE
under these circumstances, old storage will not be freed before the reallocation is
performed. After reallocation, the release flag is always set to TRUE.
CORBA V2.2 Mapping for Sequence Types February 1998 20-37

20

any

t

of

For an unbounded sequence, the maximum() accessor function returns the total
amount of buffer space currently available. This allows applications to know how m
items they can insert into an unbounded sequence without causing a reallocation to
occur. For a bounded sequence, maximum() always returns the bound of the
sequence as given in its OMG IDL type declaration.

The overloaded subscript operators (operator[]) return the item at the given
index. The non-const version must return something that can serve as an lvalue (i.e.,
something that allows assignment into the item at the given index), while the const
version must allow read-only access to the item at the given index.

The overloaded subscript operators may not be used to access or modify any elemen
beyond the current sequence length. Before either form of operator[] is used on a
sequence, the length of the sequence must first be set using the length(ULong)
modifier function, unless the sequence was constructed using the T *data
constructor.

For strings and object references, operator[] for a sequence must return a type
with the same semantics as the types used for string and object reference members
structs and arrays, so that assignment to the string or object reference sequence
member via operator=() will release old storage when appropriate. Note that
whatever these special return types are, they must honor the setting of the release
parameter in the T *data constructor with respect to releasing old storage.

For the T *data sequence constructor, the type of T for strings and object
references is char* and T_ptr , respectively. In other words, string buffers are
passed as char** and object reference buffers are passed as T_ptr* .

20.13.1 Sequence Example

The example below shows full declarations for both a bounded and an unbounded
sequence.

// IDL
typedef sequence<T> V1; // u nbounded sequence
typedef sequence<T, 2> V2; // b ounded sequence

// C++
class V1// unbounded sequence
{

public:
V1();
V1(ULong max);
V1(ULong max, ULong length, T *data,
Boolean release = FALSE);
V1(const V1&);
~V1();
V1 &operator=(const V1&);
20-38 CORBA V2.2 February 1998

20
ULong maximum() const;

void length(ULong);
ULong length() const;

T &operator[](ULong index);
const T &operator[](ULong index) const;
};

class V2// bounded sequence
{

public:
V2();
V2(ULong length, T *data, Boolean release = FALSE);
V2(const V2&);
~V2();
V2 &operator=(const V2&);

ULong maximum() const;

void length(ULong);
ULong length() const;

T &operator[](ULong index);
const T &operator[](ULong index) const;
};

20.13.2 Using the “release” Constructor Parameter

Consider the following example:

// IDL
typedef sequence< string, 3> St ringSeq;

// C++
char *static_arr[] = {"one", "two", "three"};
char **dyn_arr = StringSeq::allocbuf(3);
dyn_arr[0] = string_dup("one");
dyn_arr[1] = string_dup("two");
dyn_arr[2] = string_dup("three");

StringSeq seq1(3, static_arr);
StringSeq seq2(3, dyn_arr, TRUE);

seq1[1] = "2";// no free, no copy
char *str = string_dup("2");
seq2[1] = str;// free old storage, no copy
CORBA V2.2 Mapping for Sequence Types February 1998 20-39

20

t

 can

t

es.

 to

or
In this example, both seq1 and seq2 are constructed using user-specified data, bu
only seq2 is told to assume management of the user memory (because of the
release=TRUE parameter in its constructor). When assignment occurs into
seq1[1] , the right-hand side is not copied, nor is anything freed because the
sequence does not manage the user memory. When assignment occurs into seq2[1] ,
however, the old user data must be freed before ownership of the right-hand side
be assumed, since seq2 manages the user memory. When seq2 goes out of scope, it
will call string_free for each of its elements and freebuf on the buffer given to
it in its constructor.

When the release flag is set to TRUE and the sequence element type is either a
string or an object reference type, the sequence will individually release each element
before releasing the contents buffer. It will release strings using string_free , and it
will release object references using the release function from the CORBA
namespace.

In general, assignment should never take place into a sequence element via
operator[] unless release=TRUE due to the possibility for memory managemen
errors. In particular, a sequence constructed with release=FALSE should never be
passed as an inout parameter because the callee has no way to determine the setting of
the release flag, and thus must always assume that release is set to TRUE. Code
that creates a sequence with release=FALSE and then knowingly and correctly
manipulates it in that state, as shown with seq1 in the example above, is compliant,
but care should always be taken to avoid memory leaks under these circumstanc

As with other out and return values, out and return sequences must not be assigned
by the caller without first copying them. This is more fully explained in Section 20.20,
“Argument Passing Considerations,” on page 20-62.

When a sequence is constructed with release=TRUE , a compliant application should
make no assumptions about the continued lifetime of the data buffer passed to the
constructor, since a compliant sequence implementation is free to copy the buffer and
immediately free the original pointer.

20.13.3 Additional Memory Management Functions

ORB implementations concerned with single-process interoperability with the C
mapping may overload operator new() and operator delete() for
sequences so that dynamic allocation uses the same mechanism as the C language
dynamic allocation functions. Whether these operators are overloaded by the
implementation or not, compliant programs use new to dynamically allocate
sequences and delete to free them.

Sequences also provide additional memory management functions for their buffers. F
a sequence of type T, the following static member functions are provided in the
sequence class public interface:
20-40 CORBA V2.2 February 1998

20

ter
tors

 or
ers.
e old
// C++
static T *allocbuf(ULong nelems);
static void freebuf(T *);

The allocbuf function allocates a vector of T elements that can be passed to the T
*data constructor. The length of the vector is given by the nelems function
argument. The allocbuf function initializes each element using its default
constructor, except for strings, which are initialized to null pointers, and object
references, which are initialized to suitably-typed nil object references. A null poin
is returned if allocbuf for some reason cannot allocate the requested vector. Vec
allocated by allocbuf should be freed using the freebuf function. The freebuf
function ensures that the destructor for each element is called before the buffer is
destroyed, except for string elements, which are freed using string_free() , and
object reference elements, which are freed using release() . The freebuf function
will ignore null pointers passed to it. Neither allocbuf nor freebuf may throw
CORBA exceptions.

20.13.4 Sequence T_var and T_out Types

In addition to the regular operations defined for T_var and T_out types, the
T_var and T_out for a sequence type also supports an overloaded operator[]
that forwards requests to the operator[] of the underlying sequence.13 This
subscript operator should have the same return type as that of the corresponding
operator on the underlying sequence type.

20.14 Mapping For Array Types

Arrays are mapped to the corresponding C++ array definition, which allows the
definition of statically-initialized data using the array. If the array element is a string
an object reference, then the mapping uses the same type as for structure memb
That is, assignment to an array element will release the storage associated with th
value.

// IDL
typedef float F[10];
typedef string V[10];
typedef string M [1][2][3];
void op(out F p1, out V p2, out M p3);

13.Note that since T_var and T_out types do not handle const T* , there is no need to
provide the const version of operator[] for Sequence_var and
Sequence_out types.
CORBA V2.2 Mapping For Array Types February 1998 20-41

20

 the

ch
pe

r than
// C++
typedef CORBA::Float F[10];
typedef ... V[10];// underlying type not shown because
typedef ... M[1][2][3];// it is implementation-dependent
F f1; F_var f2;
V v1; V_var v2;
M m1; M_var m2;
f(f2, v2, m2);
f1[0] = f2[1];
v1[1] = v2[1];// free old storage, copy
m1[0][1][2] = m2[0][1][2];// free old storage, copy

In the above example, the last two assignments result in the storage associated with the
old value of the left-hand side being automatically released before the value from
right-hand side is copied.

As shown in “Basic Argument and Result Passing” on page 20-66, out and return
arrays are handled via pointer to array slice, where a slice is an array with all the
dimensions of the original specified except the first one. As a convenience for
application declaration of slice types, the mapping also provides a typedef for ea
array slice type. The name of the slice typedef consists of the name of the array ty
followed by the suffix “_slice”. For example:

// IDL
typedef long LongArray[4] [5];

// C++
typedef Long LongArray[4][5];
typedef Long LongArray_slice[5];

Both the T_var type and the T_out type for an array should overload
operator[] instead of operator-> . The use of array slices also means that the
T_var type and the T_out type for an array should have a constructor and
assignment operator that each take a pointer to array slice as a parameter, rathe
T* . The T_var for the previous example would be:
20-42 CORBA V2.2 February 1998

20

for

e

n.
// C++
class LongArray_var
{

public:
LongArray_var();
LongArray_var(LongArray_slice*);
LongArray_var(const LongArray_var &);
~LongArray_var();
LongArray_var &operator=(LongArray_slice*);
LongArray_var &operator=(const LongArray_var &);

LongArray_slice &operator[](ULong index);
const LongArray_slice &operator[](Ulong index) const;

const LongArray_slice* in() const;
LongArray_slice* inout();
LongArray_slice* out();
LongArray_slice* _retn();

// other conversion operators to support
// parameter passing
};

Because arrays are mapped into regular C++ arrays, they present special problems
the type-safe any mapping described in “Mapping for the Any Type” on page 20-46.
To facilitate their use with the any mapping, a compliant implementation must also
provide for each array type a distinct C++ type whose name consists of the array nam
followed by the suffix _forany. These types must be distinct so as to allow functions to
be overloaded on them. Like Array_var types, Array_forany types allow
access to the underlying array type, but unlike Array_var , the Array_forany
type does not delete the storage of the underlying array upon its own destructio
This is because the Any mapping retains storage ownership, as described in
“Extraction from any” on page 20-49.

The interface of the Array_forany type is identical to that of the Array_var
type, but it may not be implemented as a typedef to the Array_var type by a
compliant implementation since it must be distinguishable from other types for
purposes of function overloading. Also, the Array_forany constructor taking an
Array_slice* parameter also takes a Boolean nocopy parameter which
defaults to FALSE:
CORBA V2.2 Mapping For Array Types February 1998 20-43

20

ill be

it

rcing

.

C++,
// C++
class Array_forany
{

public:
Array_forany(Array_slice*, Boolean nocopy = FALSE);
...
};

The nocopy flag allows for a non-copying insertion of an Array_slice* into an
Any.

Each Array_forany type must be defined at the same level of nesting as its
Array type.

For dynamic allocation of arrays, compliant programs must use special functions
defined at the same scope as the array type. For array T, the following functions w
available to a compliant program:

// C++
T_slice *T_alloc();
T_slice *T_dup(const T_slice*);
void T_free(T_slice *);

The T_alloc function dynamically allocates an array, or returns a null pointer if
cannot perform the allocation. The T_dup function dynamically allocates a new array
with the same size as its array argument, copies each element of the argument array
into the new array, and returns a pointer to the new array. If allocation fails, a null
pointer is returned. The T_free function deallocates an array that was allocated with
T_alloc or T_dup . Passing a null pointer to T_free is acceptable and results in
no action being performed. These functions allow ORB implementations to utilize
special memory management mechanisms for array types if necessary, without fo
them to replace global operator new and operator new[] .

The T_alloc , T_dup , and T_free functions may not throw CORBA exceptions

20.15 Mapping For Typedefs

A typedef creates an alias for a type. If the original type maps to several types in
then the typedef creates the corresponding alias for each type. The example below
illustrates the mapping.
20-44 CORBA V2.2 February 1998

20

s. For
// IDL
typedef long T;
interface A1;
typedef A1 A2;
typedef sequence< long> S1;
typedef S1 S2;

// C++
typedef Long T;

// ...definitions for A1...

typedef A1 A2;
typedef A1_ptr A2_ptr;
typedef A1_var A2_var;

// ...definitions for S1...

typedef S1 S2;
typedef S1_var S2_var;

For a typedef of an IDL type that maps to multiple C++ types, such as arrays, the
typedef maps to all of the same C++ types and functions that its base type require
example:

// IDL
typedef long array[10];
typedef array another_array;

// C++
// ...C++ code for array not shown...
typedef array another_array;
typedef array_var another_array_var;
typedef array_slice another_array_slice;
typedef array_forany another_array_forany;

inline another_array_slice *another_array_alloc() {
return array_alloc();
}

inline another_array_slice*
another_array_dup(another_array_slice *a) {
return array_dup(a);
}
inline void another_array_free(another_array_slice *a) {
array_free(a);
}

CORBA V2.2 Mapping For Typedefs February 1998 20-45

20

for

h

20.16 Mapping for the Any Type

A C++ mapping for the OMG IDL type any must fulfill two different requirements:

• Handling C++ types in a type-safe manner.

• Handling values whose types are not known at implementation compile time.

The first item covers most normal usage of the any type—the conversion of typed
values into and out of an any. The second item covers situations such as those
involving the reception of a request or response containing an any that holds data of a
type unknown to the receiver when it was created with a C++ compiler.

20.16.1 Handling Typed Values

To decrease the chances of creating an any with a mismatched TypeCode and value,
the C++ function overloading facility is utilized. Specifically, for each distinct type in
an OMG IDL specification, overloaded functions to insert and extract values of that
type are provided by each ORB implementation. Overloaded operators are used
these functions so as to completely avoid any name space pollution. The nature of
these functions, which are described in detail below, is that the appropriate TypeCode
is implied by the C++ type of the value being inserted into or extracted from the any.

Since the type-safe any interface described below is based upon C++ function
overloading, it requires C++ types generated from OMG IDL specifications to be
distinct. However, there are special cases in which this requirement is not met:

• As noted in Section 20.5, “Mapping for Basic Data Types,” on page 20-15, the
boolean , octet , and char OMG IDL types are not required to map to distinct
C++ types, which means that a separate means of distinguishing them from each
other for the purpose of function overloading is necessary. The means of
distinguishing these types from each other is described in “Distinguishing
boolean, octet, char, wchar, bounded string, and bounded wstring” on page 20-52.

• Since all strings and wide strings are mapped to char* and WChar* ,
respectively, regardless of whether they are bounded or unbounded, another
means of creating or setting an any with a bounded string or wide string value is
necessary. This is described in “Distinguishing boolean, octet, char, wchar,
bounded string, and bounded wstring” on page 20-52.

• In C++, arrays within a function argument list decay into pointers to their first
elements. This means that function overloading cannot be used to distinguis
between arrays of different sizes. The means for creating or setting an any when
dealing with arrays is described below and in “Mapping For Array Types” on
page 20-41.

20.16.2 Insertion into any

To allow a value to be set in an any in a type-safe fashion, an ORB implementation
must provide the following overloaded operator function for each separate OMG IDL
type T.
20-46 CORBA V2.2 February 1998

20

he

n,
// C++
void operator<<=(Any&, T);

This function signature suffices for types that are normally passed by value:

• Short , UShort , Long , ULong, LongLong , ULongLong , Float ,
Double , LongDouble

• Enumerations

• Unbounded strings and wide strings (char* and WChar* passed by value)

• Object references (T_ptr)

For values of type T that are too large to be passed by value efficiently, such as structs,
unions, sequences, fixed types, Any, and exceptions, two forms of the insertion
function are provided.

// C++
void operator<<=(Any&, const T&);// copying form
void operator<<=(Any&, T*);// non-copying form

Note that the copying form is largely equivalent to the first form shown, as far as the
caller is concerned.

These “left-shift-assign” operators are used to insert a typed value into an any as
follows.

// C++
Long value = 42;
Any a;
a <<= value;

In this case, the version of operator<<= overloaded for type Long must be able
to set both the value and the TypeCode properly for the any variable.

Setting a value in an any using operator<<= means that:

• For the copying version of operator<<= , the lifetime of the value in the any is
independent of the lifetime of the value passed to operator<<= . The
implementation of the any may not store its value as a reference or pointer to t
value passed to operator<<= .

• For the noncopying version of operator<<= , the inserted T* is consumed by
the any . The caller may not use the T* to access the pointed-to data after insertio
since the any assumes ownership of it, and it may immediately copy the pointed-to
data and destroy the original.

• With both the copying and non-copying versions of operator<<= , any previous
value held by the Any is properly deallocated. For example, if the
Any(TypeCode_ptr,void*,TRUE) constructor (described in “Handling
Untyped Values” on page 20-56) was called to create the Any, the Any is
responsible for deallocating the memory pointed to by the void* before copying
the new value.
CORBA V2.2 Mapping for the Any Type February 1998 20-47

20

nded

be

r
Copying insertion of a string type or wide string type causes one of the following
functions to be invoked:

// C++
void operator<<=(Any&, const char*);
void operator<<=(Any&, const WChar*);

Since all string types are mapped to char* , and all wide string types are mapped to
WChar* , these insertion functions assume that the value being inserted are
unbounded. “Distinguishing boolean, octet, char, wchar, bounded string, and bou
wstring” on page 20-52 describes how bounded strings and bounded wide strings may
be correctly inserted into an Any. Non-copying insertion of both bounded and
unbounded strings can be achieved using the Any::from_string helper type.
Similarly, non-copying insertion of bounded and unbounded wide strings strings can
achieved using theAny::from_wstring helper type. Both of these helper types
are described in “Distinguishing boolean, octet, char, wchar, bounded string, and
bounded wstring” on page 20-52.

Type-safe insertion of arrays uses the Array_forany types described in “Mapping
For Array Types” on page 20-41. Compliant implementations must provide a version
of operator<<= overloaded for each Array_forany type. For example:

// IDL
typedef long LongArray[4] [5];

// C++
typedef Long LongArray[4][5];
typedef Long LongArray_slice[5];
class LongArray_forany { ... };

void operator<<=(Any &, const LongArray_forany &);

The Array_forany types are always passed to operator<<= by reference to
const. The nocopy flag in the Array_forany constructor is used to control whethe
the inserted value is copied (nocopy == FALSE) or consumed (nocopy == TRUE).
Because the nocopy flag defaults to FALSE, copying insertion is the default.

Because of the type ambiguity between an array of T and a T* , it is highly
recommended that portable code explicitly14 use the appropriate Array_forany
type when inserting an array into an any :

14.A mapping implementor may use the new C++ key word “explicit” to prevent implicit con-
versions through the Array_forany constructor, but this feature is not yet widely available
in current C++ compilers.
20-48 CORBA V2.2 February 1998

20

he

of

o by
 by

// IDL
struct S {... };
typedef S SA[5];

// C++
struct S { ... };
typedef S SA[5];
typedef S SA_slice;
class SA_forany { ... };

SA s;
// ...initialize s...
Any a;
a <<= s; // line 1
a <<= SA_forany(s); // line 2

Line 1 results in the invocation of the noncopying operator<<=(Any&, S*)
due to the decay of the SA array type into a pointer to its first element, rather than t
invocation of the copying SA_forany insertion operator. Line 2 explicitly constructs
the SA_forany type and thus results in the desired insertion operator being invoked.

The noncopying version of operator<<= for object references takes the address
the T_ptr type.
// IDL
interface T { ... };

// C++
void operator<<=(Any&, T_ptr); // copying
void operator<<=(Any&, T_ptr*); // non-copying

The noncopying object reference insertion consumes the object reference pointed t
T_ptr* ; therefore after insertion the caller may not access the object referred to
T_ptr since the any may have duplicated and then immediately released the original
object reference. The caller maintains ownership of the storage for the T_ptr itself.

The copying version of operator<<= is also supported on the Any_var type.
Note that due to the conversion operators that convert Any_var to Any& for
parameter passing, only those operator<<= functions defined as member functions
of any need to be explicitly defined for Any_var .

20.16.3 Extraction from any

To allow type-safe retrieval of a value from an any , the mapping provides the
following operators for each OMG IDL type T:

// C++
Boolean operator>>=(const Any&, T&);
CORBA V2.2 Mapping for the Any Type February 1998 20-49

20

.

This function signature suffices for primitive types that are normally passed by value
For values of type T that are too large to be passed by value efficiently, such as structs,
unions, sequences, fixed types, Any, and exceptions, this function may be prototyped
as follows:

// C++
Boolean operator>>=(const Any&, T*&);

The first form of this function is used only for the following types:

• Boolean , Char , Octet , Short , UShort , Long , ULong, LongLong ,
ULongLong , Float , Double , LongDouble

• Enumerations

• Unbounded stringsand wide strings (char* and WChar* passed by reference,
i.e., char*& and WChar*&)

• Object references (T_ptr)

For all other types, the second form of the function is used.

All versions of operator>>= implemented as member functions of class Any,
such as those for primitive types, should be marked as const .

This “right-shift-assign” operator is used to extract a typed value from an any as
follows:

// C++
Long value;
Any a;
a <<= Long(42);
if (a >>= value) {

// ... use the value ...
}

In this case, the version of operator>>= for type Long must be able to determine
whether the Any truly does contain a value of type Long and, if so, copy its value
into the reference variable provided by the caller and return TRUE. If the Any does
not contain a value of type Long , the value of the caller’s reference variable is not
changed, and operator>>= returns FALSE.

For non-primitive types, such as struct, union, sequence, exception, Any, and fixed
types, extraction is done by pointer. For example, consider the following IDL struct:

// IDL
struct MyStruct {

long lmem;
short smem;

};

Such a struct could be extracted from an any as follows:
20-50 CORBA V2.2 February 1998

20

e

ay,

// C++
Any a;
// ... a is somehow given a value of type MyStruct ...
MyStruct *struct_ptr;
if (a >>= struct_ptr) {

// ... use the value ...
}

If the extraction is successful, the caller’s pointer will point to storage managed by the
any , and operator>>= will return TRUE. The caller must not try to delete or
otherwise release this storage. The caller also should not use the storage after th
contents of the any variable are replaced via assignment, insertion, or the replace
function, or after the any variable is destroyed. Care must be taken to avoid using
T_var types with these extraction operators, since they will try to assume
responsibility for deleting the storage owned by the any .

If the extraction is not successful, the value of the caller’s pointer is set equal to the
null pointer, and operator>>= returns FALSE.

Correct extraction of array types relies on the Array_forany types described
in“Mapping For Array Types” on page 20-41.

// IDL
typedef long A[20];
typedef A B[30][40][50];

// C++
typedef Long A[20];
typedef Long A_slice;
class A_forany { ... };
typedef A B[30][40][50];
typedef A B_slice[40][50];
class B_forany { ... };

Boolean operator>>=(const Any &, A_forany&);// for type A
Boolean operator>>=(const Any &, B_forany&);// for type B

The Array_forany types are always passed to operator>>= by reference.

For strings, wide strings, and arrays, applications are responsible for checking the
TypeCode of the any to be sure that they do not overstep the bounds of the arr
string, or wide string object when using the extracted value.

The operator>>= is also supported on the Any_var type. Note that due to the
conversion operators that convert Any_var to const Any& for parameter passing,
only those operator>>= functions defined as member functions of any need to be
explicitly defined for Any_var .
CORBA V2.2 Mapping for the Any Type February 1998 20-51

20

20.16.4 Distinguishing boolean, octet, char, wchar, bounded string, and
bounded wstring

Since the boolean , octet , char , and wchar OMG IDL types are not required
to map to distinct C++ types, another means of distinguishing them from each other is
necessary so that they can be used with the type-safe any interface. Similarly, since
both bounded and unbounded strings map to char* , and both bounded and
unbounded wide strings map to WChar* , another means of distinguishing them must
be provided. This is done by introducing several new helper types nested in the any
class interface. For example, this can be accomplished as shown next.

// C++
class Any
{

public:
// special helper types needed for boolean, octet, char,
// and bounded string insertion
struct from_boolean {

from_boolean(Boolean b) : val(b) {}
Boolean val;

};
struct from_octet {

from_octet(Octet o) : val(o) {}
Octet val;

};
struct from_char {

from_char(Char c) : val(c) {}
Char val;

};
struct from_wchar {

from_wchar(WChar wc) : val(wc) {}
WChar val;

};
struct from_string {

from_string(char* s, ULong b,
Boolean nocopy = FALSE) :

val(s), bound(b) {}
char *val;
ULong bound;

};
struct from_wstring {

from_wstring(WChar* s, ULong b,
Boolean nocopy = FALSE) :

val(s), bound(b) {}
WChar *val;
ULong bound;
20-52 CORBA V2.2 February 1998

20
};

void operator<<=(from_boolean);
void operator<<=(from_char);
void operator<<=(from_wchar);
void operator<<=(from_octet);
void operator<<=(from_string);
void operator<<=(from_wstring);

// special helper types needed for boolean, octet,
// char, and bounded string extraction
struct to_boolean {

to_boolean(Boolean &b) : ref(b) {}
Boolean &ref;

};
struct to_char {

to_char(Char &c) : ref(c) {}
Char &ref;

};
struct to_wchar {

to_wchar(WChar &wc) : ref(wc) {}
WChar &ref;

};
struct to_octet {

to_octet(Octet &o) : ref(o) {}
Octet &ref;

};
struct to_string {

to_string(char *&s, ULong b) : val(s), bound(b) {}
char *&val;
ULong bound;

};
struct to_wstring {

to_wstring(WChar *&s, ULong b) : val(s), bound(b) {}
WChar *&val;
ULong bound;

};

Boolean operator>>=(to_boolean) const;
Boolean operator>>=(to_char) const;
CORBA V2.2 Mapping for the Any Type February 1998 20-53

20

used
Boolean operator>>=(to_wchar) const;
Boolean operator>>=(to_octet) const;
Boolean operator>>=(to_string) const;
Boolean operator>>=(to_wstring) const;

// other public Any details omitted

private:
// these functions are private and not implemented
// hiding these causes compile-time errors for
// unsigned char
void operator<<=(unsigned char);
Boolean operator>>=(unsigned char &) const;

};

An ORB implementation provides the overloaded operator<<= and
operator>>= functions for these special helper types. These helper types are
as shown next.

// C++
Boolean b = TRUE;
Any any;
any <<= Any::from_boolean(b);
// ...
if (any >>= Any::to_boolean(b)) {

// ...any contained a Boolean...
}

char* p = "bounded";
any <<= Any::from_string(p, 8);
// ...
if (any >>= Any::to_string(p, 8)) {

// ...any contained a string<8>...
}

A bound value of zero passed to the appropriate helper type indicates an unbounded
string or wide string.

For noncopying insertion of a bounded or unbounded string into an any , the nocopy
flag on the from_string constructor should be set to TRUE.

// C++
char* p = string_alloc(8);
// ...initialize string p...
any <<= Any::from_string(p, 8, 1); // any consumes p

The same rules apply for bounded and unbounded wide strings and the
from_wstring helper type.
20-54 CORBA V2.2 February 1998

20

nce

med
Assuming that boolean , char , and octet all map the C++ type unsigned
char , the private and unimplemented operator<<= and operator>>=
functions for unsigned char will cause a compile-time error if straight insertion
or extraction of any of the boolean , char , or octet types is attempted.

// C++
Octet oct = 040;
Any any;
any <<= oct;// this line will not compile
any <<= Any::from_octet(oct);// but this one will

It is important to note that the previous example is only one possible implementation
for these helpers, not a mandated one. Other compliant implementations are possible,
such as providing them via in-lined static any member functions if boolean ,
char , and octet are in fact mapped to distinct C++ types. All compliant C++
mapping implementations must provide these helpers, however, for purposes of
portability.

20.16.5 Widening to Object

Sometimes it is desirable to extract an object reference from an Any as the base
Object type. This can be accomplished using a helper type similar to those required
for extracting Boolean , Char , and Octet :

// C++
class Any
{

public:
...
struct to_object {
to_object(Object_ptr &obj) : ref(obj) {}
Object_ptr &ref;
};
Boolean operator>>=(to_object) const;
...
};

The to_object helper type is used to extract an object reference from an Any as
the base Object type. If the Any contains a value of an object reference type as
indicated by its TypeCode , the extraction function
operator>>=(to_object) explicitly widens its contained object reference to
Object and returns true, otherwise it returns false. This is the only object refere
extraction function that performs widening on the extracted object reference. As with
regular object reference extraction, no duplication of the object reference is perfor
by the to_object extraction operator.
CORBA V2.2 Mapping for the Any Type February 1998 20-55

20

eate

 the
20.16.6 Handling Untyped Values

Under some circumstances the type-safe interface to Any is not sufficient. An example
is a situation in which data types are read from a file in binary form and used to cr
values of type Any . For these cases, the Any class provides a constructor with an
explicit TypeCode and generic pointer:

// C++
Any(TypeCode_ptr tc, void *value, Boolean release = FALSE);

The constructor is responsible for duplicating the given TypeCode pseudo object
reference. If the release parameter is TRUE, then the Any object assumes
ownership of the storage pointed to by the value parameter. A compliant application
should make no assumptions about the continued lifetime of the value parameter
once it has been handed to an Any with release=TRUE , since a compliant Any
implementation is allowed to copy the value parameter and immediately free the
original pointer. If the release parameter is FALSE (the default case), then the
Any object assumes the caller will manage the memory pointed to by value . The
value parameter can be a null pointer.

The Any class also defines three unsafe operations:

// C++
void replace(
TypeCode_ptr,
void *value,
Boolean release = FALSE
);
TypeCode_ptr type() const;
const void *value() const;

The replace function is intended to be used with types that cannot be used with
type-safe insertion interface, and so is similar to the constructor described above. The
existing TypeCode is released and value storage deallocated, if necessary. The
TypeC ode function parameter is duplicated. If the release parameter is TRUE, then
the Any object assumes ownership for the storage pointed to by the value parameter.
A compliant application should make no assumptions about the continued lifetime of
the value parameter once it has been handed to the Any::replace function with
release=TRUE , since a compliant Any implementation is allowed to copy the
value parameter and immediately free the original pointer. If the release
parameter is FALSE (the default case), then the Any object assumes the caller will
manage the memory occupied by the value. The value parameter of the replace
function can be a null pointer.

For C++ mapping implementations that use Environment parameters to pass
exception information, the default release argument can be simulated by providing
two overloaded replace functions, one that takes a non-defaulted release
parameter and one that takes no release parameter. The second function simply
invokes the first with the release parameter set to FALSE.
20-56 CORBA V2.2 February 1998

20

tency

r

tions

on

namic
on or

n
Note that neither the constructor shown above nor the replace function is type-safe.
In particular, no guarantees are made by the compiler or runtime as to the consis
between the TypeCode and the actual type of the void* argument. The behavior of
an ORB implementation when presented with an Any that is constructed with a
mismatched TypeCode and value is not defined.

The type function returns a TypeCode_ptr pseudo-object reference to the
TypeCode associated with the Any. Like all object reference return values, the calle
must release the reference when it is no longer needed, or assign it to a
TypeCode_var variable for automatic management.

The value function returns a pointer to the data stored in the Any. If the Any has no
associated value, the value function returns a null pointer. The type to which the
void* returned by the value function may be cast depends on the ORB
implementation; thus, use of the value function is not portable across ORB
implementations and its usage is therefore deprecated. Note that ORB implementa
are allowed to make stronger guarantees about the void* returned from the value
function, if so desired.

20.16.7 Any Constructors, Destructor, Assignment Operator

The default constructor creates an Any with a TypeCode of type tk_null , and no
value. The copy constructor calls _duplicate on the TypeCode_ptr of its
Any parameter and deep-copies the parameter’s value. The assignment operator
releases its own TypeCode_ptr and deallocates storage for the current value if
necessary, then duplicates the TypeCode_ptr of its Any parameter and deep-
copies the parameter’s value. The destructor calls release on the
TypeCode_ptr and deallocates storage for the value, if necessary.

Other constructors are described in Section 20.16.6, “Handling Untyped Values,”
page 20-56.

ORB implementations concerned with single-process interoperability with the C
mapping may overload operator new() and operator delete() for
Anys so that dynamic allocation uses the same mechanism as the C language dy
allocation functions. Whether these operators are overloaded by the implementati
not, compliant programs use new to dynamically allocate anys and delete to free
them.

20.16.8 The Any Class

The full definition of the Any class can be found in “The Any Class” on page 20-57.

20.16.9 The Any_var Class

Since Anys are returned via pointer as out and return parameters (see Table 20-2 o
page 20-66), there exists an Any_var class similar to the T_var classes for object
references. Any_var obeys the rules for T_var classes described in “Mapping for
CORBA V2.2 Mapping for the Any Type February 1998 20-57

20

her or

ree
fines a
lizes
g

s

icit

rt of

 to
ss

t
Structured Types” on page 20-21, calling delete on its Any* when it goes out of
scope or is otherwise destroyed. The full interface of the Any_var class is shown in
“Any_var Class” on page 20-107.

20.17 Mapping for Exception Types

An OMG IDL exception is mapped to a C++ class that derives from the standard
UserException class defined in the CORBA module (see “CORBA Module” on
page 20-5). The generated class is like a variable-length struct, regardless of whet
not the exception holds any variable-length members. Just as for variable-length
structs, each exception member must be self-managing with respect to its storage.

The copy constructor, assignment operator, and destructor automatically copy or f
the storage associated with the exception. For convenience, the mapping also de
constructor with one parameter for each exception member—this constructor initia
the exception members to the given values. For exception types that have a strin
member, this constructor should take a const char* parameter, since the
constructor must copy the string argument. Similarly, constructors for exception type
that have an object reference member must call _duplicate on the corresponding
object reference constructor parameter. The default constructor performs no expl
member initialization.

// C++
class Exception
{

public:
virtual ~Exception();

virtual void _raise() = 0;
};

The Exception base class is abstract and may not be instantiated except as pa
an instance of a derived class. It supplies one pure virtual function to the exception
hierarchy: the _raise() function which can be used to tell an exception instance
throw itself so that a catch clause can catch it by a more derived type. Each cla
derived from Exception shall implement _raise() as follows:

// C++
void SomeDerivedException::_raise()
{
throw *this;
}

For environments that do not support exception handling, please refer to “Withou
Exception Handling” on page 20-116 for information about the _raise() function.

The UserException class is derived from a base Exception class, which is
also defined in the CORBA module.
20-58 CORBA V2.2 February 1998

20
All standard exceptions are derived from a SystemException class, also defined in
the CORBA module. Like UserException , SystemException is derived
from the base Exception class. The SystemException class interface is
shown below.

// C++
enum CompletionStatus {
COMPLETED_YES,
COMPLETED_NO,
COMPLETED_MAYBE
};

class SystemException : public Exception
{

public:
SystemException();
SystemException(const SystemException &);
SystemException(ULong minor, CompletionStatus status);
~SystemException();
SystemException &operator=(const SystemException &);

ULong minor() const;
void minor(ULong);

void _raise();

CompletionStatus completed() const;
void completed(CompletionStatus);
};

The default constructor for SystemException causes minor() to return 0 and
completed() to return COMPLETED_NO.

Each specific system exception (described in “Exceptions” on page 19-4) is derived
from SystemException :

// C++
class UNKNOWN : public SystemException { ... };
class BAD_PARAM : public SystemException { ... };
// etc.

All specific system exceptions are defined within the CORBA module.

This exception hierarchy allows any exception to be caught by simply catching the
Exception type:
CORBA V2.2 Mapping for Exception Types February 1998 20-59

20

’s
// C++
try {
...
} catch (const Exception &exc) {
...
}

Alternatively, all user exceptions can be caught by catching the UserException
type, and all system exceptions can be caught by catching the SystemException
type:

// C++
try {
...
} catch (const UserException &ue) {
...
} catch (const SystemException &se) {
...
}

Naturally, more specific types can also appear in catch clauses.

Exceptions are normally thrown by value and caught by reference. This approach lets
the exception destructor release storage automatically.

The Exception class provides for narrowing within the exception hierarchy:

// C++
class UserException : public Exception
{

public:
static UserException *_narrow(Exception *);
// ...
};

class SystemException : public Exception
{

public:
static SystemException *_narrow(Exception *);
// ...
};

Each exception class supports a static member function named _narrow . The
parameter to the _narrow call is a pointer to the base class Exception . If the
parameter is a null pointer, the return type of _narrow is a null pointer. If the actual
(runtime) type of the parameter exception can be widened to the requested exception
type, then _narrow will return a valid pointer to the parameter Exception .
Otherwise, _narrow will return a null pointer.
20-60 CORBA V2.2 February 1998

20

wise

++

type

a.

me),

egular
Unlike the _narrow operation on object references, the _narrow operation on
exceptions returns a suitably-typed pointer to the same exception parameter, not a
pointer to a new exception. If the original exception goes out of scope or is other
destroyed, the pointer returned by _narrow is no longer valid.

For application portability, conforming C++ mapping implementations built using C
compilers that support the standard C++ Run Time Type Information (RTTI)
mechanisms still need to support narrowing for the Exception hierarchy. RTTI
supports, among other things, determination of the run-time type of a C++ object. In
particular, the dynamic_cast<T*> operator15 allows for narrowing from a base
pointer to a more derived pointer if the object pointed to really is of the more derived
type. This operator is not useful for narrowing object references, since it cannot
determine the actual type of remote objects, but it can be used by the C++ mapping
implementation to narrow within the exception hierarchy.

Request invocations made through the DII may result in user-defined exceptions that
cannot be fully represented in the calling program because the specific exception
was not known at compile-time. The mapping provides the
UnknownUserException so that such exceptions can be represented in the
calling process:

// C++
class UnknownUserException : public UserException
{

public:
Any &exception();
};

As shown here, UnknownUserException is derived from UserException .
It provides the exception() accessor that returns an Any holding the actual
exception. Ownership of the returned Any is maintained by the
UnknownUserException —the Any merely allows access to the exception dat
Conforming applications should never explicitly throw exceptions of type
UnknownUserException —it is intended for use with the DII.

20.18 Mapping For Operations and Attributes

An operation maps to a C++ function with the same name as the operation. Each read-
write attribute maps to a pair of overloaded C++ functions (both with the same na
one to set the attribute’s value and one to get the attribute’s value. The set function
takes an in parameter with the same type as the attribute, while the get function takes
no parameters and returns the same type as the attribute. An attribute marked
readonly maps to only one C++ function, to get the attribute’s value. Parameters and
return types for attribute functions obey the same parameter passing rules as for r
operations.

15.It is unlikely that a compiler would support RTTI without supporting exceptions, since much
of a C++ exception handling implementation is based on RTTI mechanisms.
CORBA V2.2 Mapping For Operations and Attributes February 1998 20-61

20

n

 (to
OMG IDL oneway operations are mapped the same as other operations; that is, there
is no way to know by looking at the C++ whether an operation is oneway or not.

The mapping does not define whether exceptions specified for an OMG IDL operatio
are part of the generated operation’s type signature or not.

// IDL
interface A
{

void f();
oneway void g();
attribute long x;

};

// C++
A_var a;
a->f();
a->g();
Long n = a->x();
a->x(n + 1);

Unlike the C mapping, C++ operations do not require an additional Environment
parameter for passing exception information—real C++ exceptions are used for this
purpose. See “Mapping for Exception Types” on page 20-58 for more details.

20.19 Implicit Arguments to Operations

If an operation in an OMG IDL specification has a context specification, then a
Context_ptr input parameter (see “Context Interface” on page 20-80) follows all
operation-specific arguments. In an implementation that does not support real C++
exceptions, an output Environment parameter is the last argument, following all
operation-specific arguments, and following the context argument if present. The
parameter passing mode for Environment is described in “Without Exception
Handling” on page 20-116.

20.20 Argument Passing Considerations

The mapping of parameter passing modes attempts to balance the need for both
efficiency and simplicity. For primitive types, enumerations, and object references, the
modes are straightforward, passing the type P for primitives and enumerations and the
type A_ptr for an interface type A.

Aggregate types are complicated by the question of when and how parameter memory
is allocated and deallocated. Mapping in parameters is straightforward because the
parameter storage is caller-allocated and read-only. The mapping for out and inout
parameters is more problematic. For variable-length types, the callee must allocate
some if not all of the storage. For fixed-length types, such as a Point type represented
as a struct containing three floating point members, caller allocation is preferable
allow stack allocation).
20-62 CORBA V2.2 February 1998

20

ng

truct is

There

e

To accommodate both kinds of allocation, avoid the potential confusion of split
allocation, and eliminate confusion with respect to when copying occurs, the mappi
is T& for a fixed-length aggregate T and T*& for a variable-length T. This approach
has the unfortunate consequence that usage for structs depends on whether the s
fixed- or variable-length; however, the mapping is consistently T_var& if the caller
uses the managed type T_var .

The mapping for out and inout parameters additionally requires support for
deallocating any previous variable-length data in the parameter when a T_var is
passed. Even though their initial values are not sent to the operation, we include out
parameters because the parameter could contain the result from a previous call.
are many ways to implement this support. The mapping does not require a specific
implementation, but a compliant implementation must free the inaccessible storag
associated with a parameter passed as a T_var managed type. The provision of the
T_out types is intended to give implementations the hooks necessary to free the
inaccessible storage while converting from the T_var types. The following examples
demonstrate the compliant behavior:

// IDL
struct S { string name; float age; };
void f(out S p);

// C++
S_var s;
f(s);
// use s
f(s); // first result will be freed

S *sp; // need not initialize before passing to out
f(sp);
// use sp
delete sp; // cannot assume next call will free old value
f(sp);

Note that implicit deallocation of previous values for out and inout parameters works
only with T_var types, not with other types:

// IDL
void q(out string s);

// C++
char *s;
for (int i = 0; i < 10; i++)
q(s);// memory leak!

Each call to the q function in the loop results in a memory leak because the caller is
not invoking string_free on the out result. There are two ways to fix this, as
shown below:
CORBA V2.2 Argument Passing Considerations February 1998 20-63

20

ple,

 is
e

se

sult
// C++
char *s;
String_var svar;
for (int i = 0 ; i < 10; i++) {
q(s);
string_free(s);// explicit deallocation
// OR:
q(svar);// implicit deallocation
}

Using a plain char* for the out parameter means that the caller must explicitly
deallocate its memory before each reuse of the variable as an out parameter, while
using a String_var means that any deallocation is performed implicitly upon each
use of the variable as an out parameter.

Variable-length data must be explicitly released before being overwritten. For exam
before assigning to an inout string parameter, the implementor of an operation may
first delete the old character data. Similarly, an inout interface parameter should be
released before being reassigned. One way to ensure that the parameter storage
released is to assign it to a local T_var variable with an automatic release, as in th
following example:

// IDL
interface A;
void f(inout string s, inout A obj);

// C++
void Aimpl::f(char *&s, A_ptr &obj) {
String_var s_tmp = s;
s = /* new data */;
A_var obj_tmp = obj;
obj = /* new reference */
}

To allow the callee the freedom to allocate a single contiguous area of storage for all
the data associated with a parameter, we adopt the policy that the callee-allocated
storage is not modifiable by the caller. However, trying to enforce this policy by
returning a const type in C++ is problematic, since the caller is required to relea
the storage, and calling delete on a const object is an error16. A compliant
mapping therefore is not required to detect this error.

For parameters that are passed or returned as a pointer (T*) or reference to pointer
(T*&), a compliant program is not allowed to pass or return a null pointer; the re
of doing so is undefined. In particular, a caller may not pass a null pointer under any of
the following circumstances:

16.The upcoming ANSI/ISO C++ standard allows delete on a pointer to const object,
but many C++ compilers do not yet support this feature.
20-64 CORBA V2.2 February 1998

20

r,

r

 that

t

hould

of an
 not

t
• in and inout string

• in and inout array (pointer to first element)

A caller may pass a reference to a pointer with a null value for out parameters,
however, since the callee does not examine the value but rather just overwrites it. A
callee may not return a null pointer under any of the following circumstances:

• out and return variable-length struct

• out and return variable-length union

• out and return string

• out and return sequence

• out and return variable-length array, return fixed-length array

• out and return any

Since OMG IDL has no concept of pointers in general or null pointers in particula
allowing the passage of null pointers to or from an operation would project C++
semantics onto OMG IDL operations.17 A compliant implementation is allowed but not
required to raise a BAD_PARAM exception if it detects such an error.

20.20.1 Operation Parameters and Signatures

Table 20-2 on page 20-66 displays the mapping for the basic OMG IDL paramete
passing modes and return type according to the type being passed or returned, while
Table 20-3 on page 20-66 displays the same information for T_var types. “T_var
Argument and Result Passing” is merely for informational purposes; it is expected
operation signatures for both clients and servers will be written in terms of the
parameter passing modes shown in Table 20-2 on page 20-66, with the exception tha
the T_out types will be used as the actual parameter types for all out parameters. It
is also expected that T_var types will support the necessary conversion operators to
allow them to be passed directly. Callers should always pass instances of either
T_var types or the base types shown in Table 20-2 on page 20-66, and callees s
treat their T_out parameters as if they were actually the corresponding underlying
types shown in “Basic Argument and Result Passing”.

In Table 20-2 on page 20-66, fixed-length arrays are the only case where the type
out parameter differs from a return value, which is necessary because C++ does
allow a function to return an array. The mapping returns a pointer to a slice of the
array, where a slice is an array with all the dimensions of the original specified excep
the first one. A caller is responsible for providing storage for all arguments passed as
in arguments.

17.When real C++ exceptions are not available, however, it is important that null pointers are
returned whenever an Environment containing an exception is returned; see “Without
Exception Handling” on page 20-116 for more details.
CORBA V2.2 Argument Passing Considerations February 1998 20-65

20
Table 20-2 Basic Argument and Result Passing

Data Type In Inout Out Return

short Short Short& Short& Short

long Long Long& Long& Long

long long LongLong LongLong& LongLong& LongLong

unsigned short UShort UShort& UShort& UShort

unsigned long ULong ULong& ULong& ULong

unsigned long long ULongLong ULongLong& ULongLong& ULongLong

float Float Float& Float& Float

double Double Double& Double& Double

long double LongDouble LongDouble& LongDouble& LongDouble

boolean Boolean Boolean& Boolean& Boolean

char Char Char& Char& Char

wchar WChar WChar& WChar& WChar

octet Octet Octet& Octet& Octet

enum enum enum& enum& enum

object reference ptr1

1. Including pseudo-object references.

objref_ptr objref_ptr& objref_ptr& objref_ptr

struct, fixed const struct& struct& struct& struct

struct, variable const struct& struct& struct*& struct*

union, fixed const union& union& union& union

union, variable const union& union& union*& union*

string const char* char*& char*& char*

wstring const WChar* WChar*& WChar*& WChar*

sequence const sequence& sequence& sequence*& sequence*

array, fixed const array array array array slice*2

2. A slice is an array with all the dimensions of the original except the first one.

array, variable const array array array slice*&2 array slice*2

any const any& any& any*& any*

fixed const fixed& fixed& fixed& fixed&

Table 20-3T_var Argument and Result Passing

Data Type In Inout Out Return

object reference var1 const objref_var& objref_var& objref_var& objref_var

struct_var const struct_var& struct_var& struct_var& struct_var

union_var const union_var& union_var& union_var& union_var

string_var const string_var& string_var& string_var& string_var

sequence_var const sequence_var& sequence_var& sequence_var& sequence_var
20-66 CORBA V2.2 February 1998

20
Table 20-4 on page 20-67 and Table 20-5 on page 20-68 describe the caller’s
responsibility for storage associated with inout and out parameters and for return
results

array_var const array_var& array_var& array_var& array_var

any_var const any_var& any_var& any_var& any_var

1. Including pseudo-object references.

Table 20-4Caller Argument Storage Responsibilities

Type
Inout
Param

Out
Param

Return
Result

short 1 1 1

long 1 1 1

long long 1 1 1

unsigned short 1 1 1

unsigned long 1 1 1

unsigned long long 1 1 1

float 1 1 1

double 1 1 1

long double 1 1 1

boolean 1 1 1

char 1 1 1

wchar 1 1 1

octet 1 1 1

enum 1 1 1

object reference ptr 2 2 2

struct, fixed 1 1 1

struct, variable 1 3 3

union, fixed 1 1 1

union, variable 1 3 3

string 4 3 3

wstring 4 3 3

sequence 5 3 3

array, fixed 1 1 6

array, variable 1 6 6

any 5 3 3

fixed 1 1 1

Table 20-3T_var Argument and Result Passing

Data Type In Inout Out Return
CORBA V2.2 Argument Passing Considerations February 1998 20-67

20

r as
.

20.21 Mapping of Pseudo Objects to C++

CORBA pseudo objects may be implemented either as normal CORBA objects o
serverless objects. In the CORBA specification, the fundamental differences between
these strategies are:

Table 20-5Argument Passing Cases

Case

1 Caller allocates all necessary storage, except that which may be encapsulated and managed
within the parameter itself. For inout parameters, the caller provides the initial value, and the
callee may change that value. For out parameters, the caller allocates the storage but need not
initialize it, and the callee sets the value. Function returns are by value.

2 Caller allocates storage for the object reference. For inout parameters, the caller provides an ini-
tial value; if the callee wants to reassign the inout parameter, it will first call CORBA::release on
the original input value. To continue to use an object reference passed in as an inout, the caller
must first duplicate the reference. The caller is responsible for the release of all out and return
object references. Release of all object references embedded in other structures is performed
automatically by the structures themselves.

3 For out parameters, the caller allocates a pointer and passes it by reference to the callee. The
callee sets the pointer to point to a valid instance of the parameter’s type. For returns, the callee
returns a similar pointer. The callee is not allowed to return a null pointer in either case. In both
cases, the caller is responsible for releasing the returned storage. To maintain local/remote
transparency, the caller must always release the returned storage, regardless of whether the
callee is located in the same address space as the caller or is located in a different address
space. Following the completion of a request, the caller is not allowed to modify any values in
the returned storage—to do so, the caller must first copy the returned instance into a new
instance, then modify the new instance.

4 For inout strings, the caller provides storage for both the input string and the char* or wchar*
pointing to it. Since the callee may deallocate the input string and reassign the char* or
wchar* to point to new storage to hold the output value, the caller should allocate the input
string using string_alloc() or wstring_alloc() . The size of the out string is
therefore not limited by the size of the in string. The caller is responsible for deleting the storage
for the out using string_free() or wstring_free() . The callee is not allowed to return
a null pointer for an inout, out, or return value.

5 For inout sequences and anys, assignment or modification of the sequence or any may cause
deallocation of owned storage before any reallocation occurs, depending upon the state of the
Boolean release parameter with which the sequence or any was constructed.

6 For out parameters, the caller allocates a pointer to an array slice, which has all the same
dimensions of the original array except the first, and passes the pointer by reference to the
callee. The callee sets the pointer to point to a valid instance of the array. For returns, the callee
returns a similar pointer. The callee is not allowed to return a null pointer in either case. In both
cases, the caller is responsible for releasing the returned storage. To maintain local/remote
transparency, the caller must always release the returned storage, regardless of whether the
callee is located in the same address space as the caller or is located in a different address
space. Following completion of a request, the caller is not allowed to modify any values in the
returned storage—to do so, the caller must first copy the returned array instance into a new
array instance, then modify the new instance.
20-68 CORBA V2.2 February 1998

20

s

that are

 the
bjects

l.

ject
re
hile

pply

e
• Serverless object types do not inherit from CORBA::Object
• Individual serverless objects are not registered with any ORB

• Serverless objects do not necessarily follow the same memory management rule
as for regular IDL types.

References to serverless objects are not necessarily valid across computational
contexts; for example, address spaces. Instead, references to serverless objects
passed as parameters may result in the construction of independent functionally-
identical copies of objects used by receivers of these references. To support this,
otherwise hidden representational properties (such as data layout) of serverless o
are made known to the ORB. Specifications for achieving this are not contained in this
chapter: making serverless objects known to the ORB is an implementation detai

This chapter provides a standard mapping algorithm for all pseudo object types. This
avoids the need for piecemeal mappings for each of the nine CORBA pseudo ob
types, and accommodates any pseudo object types that may be proposed in futu
revisions of CORBA. It also avoids representation dependence in the C mapping w
still allowing implementations that rely on C-compatible representations.

20.22 Usage

Rather than C-PIDL, this mapping uses an augmented form of full OMG IDL to
describe serverless object types. Interfaces for pseudo object types follow the exact
same rules as normal OMG IDL interfaces, with the following exceptions:

• They are prefaced by the keyword pseudo.
• Their declarations may refer to other18 serverless object types that are not

otherwise necessarily allowed in OMG IDL.

As explained in “Pseudo-objects” on page19-29, the pseudo prefix means that the
interface may be implemented in either a normal or serverless fashion. That is, a
either the rules described in the following sections or the normal mapping rules
described in this chapter.

20.23 Mapping Rules

Serverless objects are mapped in the same way as normal interfaces, except for the
differences outlined in this section.

Classes representing serverless object types are not subclasses of CORBA::Object ,
and are not necessarily subclasses of any other C++ class. Thus, they do not
necessarily support, for example, the Object::create_request operation.

For each class representing a serverless object type T, overloaded versions of th
following functions are provided in the CORBA namespace:

18.In particular, exception used as a data type and a function name.
CORBA V2.2 Usage February 1998 20-69

20

,
d

e
ld be

e

le”
nt

gs
g

en the

of

es,
// C++
void release(T_ptr);
Boolean is_nil(T_ptr p);

The mapped C++ classes are not guaranteed to be usefully subclassable by users
although subclasses can be provided by implementations. Implementations are allowe
to make assumptions about internal representations and transport formats that may not
apply to subclasses.

The member functions of classes representing serverless object types do not
necessarily obey the normal memory management rules. This is due to the fact that
some serverless objects, such as CORBA::NVList , are essentially just containers
for several levels of other serverless objects. Requiring callers to explicitly free th
values returned from accessor functions for the contained serverless objects wou
counter to their intended usage.

All other elements of the mapping are the same. In particular:

1. The types of references to serverless objects, T_ptr , may or may not simply be a
typedef of T* .

2. Each mapped class supports the following static member functions:

// C++
static T_ptr _duplicate(T_ptr p);
static T_ptr _nil();

Legal implementations of _duplicate include simply returning the
argument or constructing references to a new instance. Individual
implementations may provide stronger guarantees about behavior.

3. The corresponding C++ classes may or may not be directly instantiable or hav
other instantiation constraints. For portability, users should invoke the appropriate
constructive operations.

4. As with normal interfaces, assignment operators are not supported.

5. Although they can transparently employ “copy-style” rather than “reference-sty
mechanics, parameter passing signatures and rules as well as memory manageme
rules are identical to those for normal objects, unless otherwise noted.

20.24 Relation to the C PIDL Mapping

All serverless object interfaces and declarations that rely on them have direct analo
in the C mapping. The mapped C++ classes can, but need not be, implemented usin
representations compatible to those chosen for the C mapping. Differences betwe
pseudo object specifications for C-PIDL and C++ PIDL are as follows:

• C++-PIDL calls for removal of representation dependencies through the use
interfaces rather than structs and typedefs.

• C++-PIDL calls for placement of operations on pseudo objects in their interfac
including a few cases of redesignated functionality as noted.
20-70 CORBA V2.2 February 1998

20

may

• In C++-PIDL, the release performs the role of the associated free and
delete operations in the C mapping, unless otherwise noted.

Brief descriptions and listings of each pseudo-interface and its C++ mapping are
provided in the following sections. Further details, including definitions of types
referenced but not defined below, may be found in the relevant sections of this
document.

20.25 Environment

Environment provides a vehicle for dealing with exceptions in those cases where true
exception mechanics are unavailable or undesirable (for example in the DII). They
be set and inspected using the exception attribute.

As with normal OMG IDL attributes, the exception attribute is mapped into a pair of
C++ functions used to set and get the exception. The semantics of the set and get
functions, however, are somewhat different than those for normal OMG IDL attributes.
The set C++ function assumes ownership of the Exception pointer passed to it.
The Environment will eventually call delete on this pointer, so the
Exception it points to must be dynamically allocated by the caller. The get
function returns a pointer to the Exception , just as an attribute for a variable-length
struct would, but the pointer refers to memory owned by the Environment . Once
the Environment is destroyed, the pointer is no longer valid. The caller must not
call delete on the Exception pointer returned by the get function. The
Environment is responsible for deallocating any Exception it holds when it is
itself destroyed. If the Environment holds no exception, the get function returns
a null pointer.

The clear() function causes the Environment to delete any Exception
it is holding. It is not an error to call clear() on an Environment holding no
exception. Passing a null pointer to the set exception function is equivalent to calling
clear() . If an Environment contains exception information, the caller is
responsible for calling clear() on it before passing it to an operation.

20.25.1 Environment Interface
// IDL
pseudo interface Envir onment
{ attribute exception except ion;

void clear();
};
CORBA V2.2 Environment February 1998 20-71

20

20.25.2 Environment C++ Class

// C++
class Environment
{

public:
void exception(Exception*);
Exception *exception() const;
void clear();
};

20.25.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:

• Defines an interface rather than a struct.

• Supports an attribute allowing operations on exception values as a whole rather
than on major numbers and/or identification strings.

• Supports a clear() function that is used to destroy any Exception the
Environment may be holding.

• Supports a default constructor that initializes it to hold no exception information.

20.25.4 Memory Management

Environment has the following special memory management rules:

• The void exception(Exception*) member function adopts the
Exception* given to it.

• Ownership of the return value of the Exception *exception() member
function is maintained by the Environment ; this return value must not be freed
by the caller.

20.26 NamedValue

NamedValue is used only as an element of NVList , especially in the DII.
NamedValue maintains an (optional) name, an any value, and labelling flags. Legal
flag values are ARG_IN , ARG_OUT, and ARG_INOUT.

The value in a NamedValue may be manipulated via standard operations on any.
20-72 CORBA V2.2 February 1998

20
20.26.1 NamedValue Interface

// IDL
pseudo interface N amedValue
{

readonly attri bute Identif ier n ame;
readonly attri bute any value;
readonly attri bute Flags flags;

};

20.26.2 NamedValue C++ Class

// C++
class NamedValue
{

public:
const char *name() const;
Any *value() const;
Flags flags() const;
};

20.26.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:

• Defines an interface rather than a struct.

• Provides no analog of the len field.

20.26.4 Memory Management

NamedValue has the following special memory management rules:

• Ownership of the return values of the name() and value() functions is
maintained by the NamedValue ; these return values must not be freed by the
caller.

20.27 NVList

NVList is a list of NamedValue s. A new NVList is constructed using the
ORB::create_list operation (see “ORB” on page20-83). New NamedValue s may be
constructed as part of an NVList , in any of three ways:

• add—creates an unnamed value, initializing only the flags.

• add_item —initializes name and flags.

• add_value —initializes name, value, and flags.

• add_item_consume —initializes name and flags, taking over memory
management responsibilities for the char * name parameter.
CORBA V2.2 NVList February 1998 20-73

20

• add_value_consume —initializes name, value, and flags, taking over memory
management responsibilities for both the char* name parameter and the Any*
value parameter. Each of these operations returns the new item.

Elements may be accessed and deleted via zero-based indexing. The add , add_item ,
add_value , add_item_consume , and add_value_consume functions lengthen
the NVList to hold the new element each time they are called. The item function can
be used to access existing elements.

20.27.1 NVList Interface
// IDL
pseudo interface NVList
{

readonly attri bute unsigned long count;
NamedValue add(in Fl ags flags);
NamedValue add_i tem(in Identifier item_name, in Flags flags);
NamedValue add_v alue(

in Identifier item_name,
in any val,
in Flags flags

);
NamedValue it em(in unsigned long i ndex) raises(Bounds);

Status remove(in unsigned long index) raises(Bounds);
};

20.27.2 NVList C++ Class

// C++
class NVList
{

public:
ULong count() const;
NamedValue_ptr add(Flags);
NamedValue_ptr add_item(const char*, Flags);
NamedValue_ptr add_value(
const char*,
const Any&,
Flags
);
NamedValue_ptr add_item_consume(
char*,
Flags
);
20-74 CORBA V2.2 February 1998

20

on
NamedValue_ptr add_value_consume(
char*,
Any *,
Flags
);
NamedValue_ptr item(ULong);
Status remove(ULong);
};

20.27.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:

• Defines an interface rather than a typedef

• Provides different signatures for operations that add items in order to avoid
representation dependencies

• Provides indexed access methods

20.27.4 Memory Management

NVList has the following special memory management rules:

• Ownership of the return values of the add , add_item , add_value ,
add_item_consume , add_value_consume , and item functions is
maintained by the NVList ; these return values must not be freed by the caller.

• The char* parameters to the add_item_consume and
add_value_consume functions and the Any* parameter to the
add_value_consume function are consumed by the NVList . The caller may
not access these data after they have been passed to these functions because the
NVList may copy them and destroy the originals immediately. The caller should
use the NamedValue::value() operation in order to modify the value
attribute of the underlying NamedValue , if desired.

• The remove function also calls CORBA::release on the removed
NamedValue .

20.28 Request

Request provides the primary support for DII. A new request on a particular target
object may be constructed using the short version of the request creation operati
shown in “Object” on page 20-86:

// C++
Request_ptr Object::_request(Identifier operation);

Arguments and contexts may be added after construction via the corresponding
attributes in the Request interface. Results, output arguments, and exceptions are
similarly obtained after invocation. The following C++ code illustrates usage:
CORBA V2.2 Request February 1998 20-75

20

e

tion
// C++
Request_ptr req = anObj->_request("anOp");
*(req->arguments()->add(ARG_IN)->value()) <<= anArg;
// ...
req->invoke();
if (req->env()->exception() == NULL) {
*(req->result()->value()) >>= aResult;
}

While this example shows the semantics of the attribute-based accessor functions, th
following example shows that it is much easier and preferable to use the equivalent
argument manipulation helper functions:

// C++
Request_ptr req = anObj->_request("anOp");
req->add_in_arg() <<= anArg;
// ...
req->invoke();
if (req->env()->exception() == NULL) {
req->return_value() >>= aResult;
}

Alternatively, requests can be constructed using one of the long forms of the crea
operation shown in the Object interface in “Object” on page 20-86:

// C++
Status Object::_create_request(
Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
Request_out request,
Flags req_flags
);
Status Object::_create_request(
Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
ExceptionList_ptr,
ContextList_ptr,
Request_out request,
Flags req_flags
);

Usage is the same as for the short form except that all invocation parameters are
established on construction. Note that the OUT_LIST_MEMORY and
IN_COPY_VALUE flags can be set as flags in the req_flags parameter, but they
are meaningless and thus ignored because argument insertion and extraction are done
via the Any type.
20-76 CORBA V2.2 February 1998

20

o
over

t

Request also allows the application to supply all information necessary for it to be
invoked without requiring the ORB to utilize the Interface Repository. In order to
deliver a request and return the response, the ORB requires:

• a target object reference

• an operation name

• a list of arguments (optional)

• a place to put the result (optional)

• a place to put any returned exceptions

• a Context (optional)

• a list of the user-defined exceptions that can be thrown (optional)

• a list of Context strings that must be sent with the operation (optional)

Since the Object:: create_request operation allows all of these except the last two t
be specified, an ORB may have to utilize the Interface Repository in order to disc
them. Some applications, however, may not want the ORB performing potentially
expensive Interface Repository lookups during a request invocation, so two new
serverless objects have been added to allow the application to specify this information
instead:

• ExceptionList : allows an application to provide a list of TypeCode s for all user-
defined exceptions that may result when the Request is invoke.

• ContextList : allows an application to provide a list of Context strings that must
be supplied with the Request invocation.

The ContextList differs from the Context in that the former supplies only the contex
strings whose values are to be looked up and sent with the request invocation (if
applicable), while the latter is where those values are obtained.

The IDL descriptions for ExceptionList , ContextList , and Request are shown
below.

20.28.1 Request Interface

// IDL
pseudo interface ExceptionList
{

readonly attri bute unsigned long count;
void add(in Type Code exc);
TypeC ode item(in unsigned long index) raises(Bounds);
Status remove(in unsigned long index) raises(Bounds);

};

pseudo interface ContextList
{

readonly attri bute unsigned long count;
void add(in string ctxt);
CORBA V2.2 Request February 1998 20-77

20
string item(in unsigned long index) raises(Bounds);
Status remove(in unsigned long index) raises(Bounds);

};

pseudo interface R equest
{

readonly attri bute Object target;
readonly attri bute Identif ier o peration;
readonly attri bute NVList arguments;
readonly attri bute NamedV alue result;
readonly attri bute Environment env;
readonly attri bute ExceptionList exceptions;
readonly attri bute ContextList contexts;

attribute context ctx;

Status invoke();
Status s end_one way();
Status send_deferred();
Status get_re sponse();
boolean poll_response();

};

20.28.2 Request C++ Class

// C++
class ExceptionList
{

public:
ULong count();
void add(TypeCode_ptr tc);
void add_consume(TypeCode_ptr tc);
TypeCode_ptr item(ULong index);
Status remove(ULong index);
};

class ContextList
{

public:
ULong count();
void add(const char* ctxt);
void add_consume(char* ctxt);
const char* item(ULong index);
Status remove(ULong index);
};
20-78 CORBA V2.2 February 1998

20

n

class Request
{

public:
Object_ptr target() const;
const char *operation() const;
NVList_ptr arguments();
NamedValue_ptr result();
Environment_ptr env();
ExceptionList_ptr exceptions();
ContextList_ptr contexts();

void ctx(Context_ptr);
Context_ptr ctx() const;

// argument manipulation helper functions
Any &add_in_arg();
Any &add_in_arg(const char* name);
Any &add_inout_arg();
Any &add_inout_arg(const char* name);
Any &add_out_arg();
Any &add_out_arg(const char* name);
void set_return_type(TypeCode_ptr tc);
Any &return_value();
Status invoke();
Status send_oneway();
Status send_deferred();
Status get_response();
Boolean poll_response();
};

20.28.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:

• Replacement of add_argument , and so forth, with attribute-based accessors.

• Use of env attribute to access exceptions raised in DII calls.

• The invoke operation does not take a flag argument, since there are no flag
values that are listed as legal in CORBA.

• The send_oneway and send_deferred operations replace the single send
operation with flag values, in order to clarify usage.

• The get_response operation does not take a flag argument, and an operatio
poll_response is defined to immediately return with an indication of whether
the operation has completed. This was done because in CORBA, if the type
Status is void , the version with RESP_NO_WAIT does not enable the caller to
determine if the operation has completed.

• The add_*_arg , set_return_type , and return_value member functions are
added as shortcuts for using the attribute-based accessors.
CORBA V2.2 Request February 1998 20-79

20

ion.
20.28.4 Memory Management

Request has the following special memory management rules:

• Ownership of the return values of the target , operation , arguments ,
result , env , exceptions , contexts , and ctx functions is maintained
by the Request ; these return values must not be freed by the caller.

ExceptionList has the following special memory management rules:

• The add_consume function consumes its TypeCode_ptr argument. The
caller may not access the object referred to by the TypeCode_ptr after it has
been passed in because the add_consume function may copy it and release the
original immediately.

• Ownership of the return value of the item function is maintained by the
ExceptionList ; this return value must not be released by the caller.

ContextList has the following special memory management rules:

• The add_consume function consumes its char* argument. The caller may
not access the memory referred to by the char* after it has been passed in
because the add_consume function may copy it and free the original
immediately.

• Ownership of the return value of the item function is maintained by the
ContextList ; this return value must not be released by the caller.

20.29 Context

A Context supplies optional context information associated with a method invocat

20.29.1 Context Interface

// IDL
pseudo interface Context
{

readonly attri bute Identif ier c ontext_name;
readonly attri bute context parent;

Status creat e_chi ld(in Identifier chi ld_ctx_name, out Context child_ctx);

Status set_one_value(in Identifier propname, in any propvalue);
Status set_values(in NVList values);
Status delete_values(in Identi fier propname);
Status get_values(

in Identifier sta rt_scope,
in Flags op_flags,
in Identifier pattern,
out NVList values

);
};
20-80 CORBA V2.2 February 1998

20

r.
20.29.2 Context C++ Class

// C++
class Context
{

public:
const char *context_name() const;
Context_ptr parent() const;

Status create_child(const char *, Context_out);

Status set_one_value(const char *, const Any &);
Status set_values(NVList_ptr);
Status delete_values(const char *);
Status get_values(
const char*,
Flags,
const char*,
NVList_out
);
};

20.29.3 Differences from C-PIDL

The C++-PIDL specification differs from the C-PIDL specification as follows:

• Introduction of attributes for context name and parent.

• The signatures for values are uniformly set to any.

• In the C mapping, set_one_value used strings, while others used
NamedValue s containing any. Even though implementations need only support
strings as values, the signatures now uniformly allow alternatives.

• The release operation frees child contexts.

20.29.4 Memory Management

Context has the following special memory management rules:

• Ownership of the return values of the context_name and parent functions is
maintained by the Context ; these return values must not be freed by the calle

20.30 TypeCode

A TypeCode represents OMG IDL type information.

No constructors for TypeCode s are defined. However, in addition to the mapped
interface, for each basic and defined OMG IDL type, an implementation provides
access to a TypeCode pseudo object reference (TypeCode_ptr) of the form
tc<type> that may be used to set types in Any, as arguments for equal , and so
CORBA V2.2 TypeCode February 1998 20-81

20

be

er,
since
on. In the names of these TypeCode reference constants, <type> refer to the local
name of the type within its defining scope. Each C++ _tc_<type> constant must be
defined at the same scoping level as its matching type.

In all C++ TypeCode pseudo object reference constants, the prefix “_tc_” should
used instead of the “TC_” prefix prescribed in “TypeCode” on page 20-81. This is to
avoid name clashes for CORBA applications that simultaneously use both the C and
C++ mappings.

Like all other serverless objects, the C++ mapping for TypeCode provides a _nil()
operation that returns a nil object reference for a TypeCode . This operation can be
used to initialize TypeCode references embedded within constructed types. Howev
a nil TypeCode reference may never be passed as an argument to an operation,
TypeCode s are effectively passed as values, not as object references.

20.30.1 TypeCode Interface

The TypeCode IDL interface is fully defined in “The TypeCode Interface” on
page 8-36 and is thus is not duplicated here.

20.30.2 TypeCode C++ Class

// C++
class TypeCode
{

public:
class Bounds { ... };
class BadKind { ... };

Boolean equal(TypeCode_ptr) const;
TCKind kind() const;

const char* id() const;
const char* name() const;

ULong member_count() const;
const char* member_name(ULong index) const;

TypeCode_ptr member_type(ULong index) const;
20-82 CORBA V2.2 February 1998

20
Any *member_label(ULong index) const;
TypeCode_ptr discriminator_type() const;
Long default_index() const;

ULong length() const;

TypeCode_ptr content_type() const;

UShort fixed_digits() const;
Short fixed_scale() const;

Long param_count() const;
Any *parameter(Long) const;
};

20.30.3 Differences from C-PIDL

For C++, use of prefix “_tc_” instead of “TC_” for constants.

20.30.4 Memory Management

TypeCode has the following special memory management rules:

• Ownership of the return values of the id , name, and member_name functions
is maintained by the TypeCode ; these return values must not be freed by the
caller.

20.31 ORB

An ORB is the programmer interface to the Object Request Broker.

20.31.1 ORB Interface

// IDL
pseudo interface ORB
{

typedef sequence<R equest> R equestSeq;
string object_to_string(in Object obj);
Object string_to_obj ect(in string str);
Status create_list(in long count, out N VList new_l ist);
Status create_operation_list (in Operatio nDef oper, out NVList ne w_list);
Status create_named_value(out NamedValue nmval);
Status create_exception_list(out Except ionList exclist);
Status create_context_list(out ContextList ctxtli st);

Status get_default_context(out Context ctx);
Status create_environment(out Environment new_env);

Status send_mul tiple_req uests_oneway(in RequestSeq req);
CORBA V2.2 ORB February 1998 20-83

20
Status send_mul tiple_req uests_deferred(in RequestSeq req);
boolean poll_next_response();

Status get_next_response(out Req uest req);
};

Boolean work_pending();
void perform_work();
void shutdown(in Boolean wait_for_completion);
void run();

Boolean get_service_information (
in ServiceType service_type,
out ServiceInformation service_information

);
};

20.31.2 ORB C++ Class

// C++
class ORB
{

public:
class RequestSeq {...};
char *object_to_string(Object_ptr);
Object_ptr string_to_object(const char *);
Status create_list(Long, NVList_out);
Status create_operation_list(
OperationDef_ptr,
NVList_out
);
Status create_named_value(NamedValue_out);
Status create_exception_list(ExceptionList_out);
Status create_context_list(ContextList_out);

Status get_default_context(Context_out);
Status create_environment(Environment_out);

Status send_multiple_requests_oneway(
const RequestSeq&
);
Status send_multiple_requests_deferred(
const RequestSeq &
);
Boolean poll_next_response();
Status get_next_response(Request_out);

Boolean work_pending();
void perform_work();
void shutdown(Boolean wait_for_completion);
void run();
20-84 CORBA V2.2 February 1998

20

s

”

f
Boolean get_service_information(
ServiceType svc_type,
ServiceInformation_out svc_info
);
};

20.31.3 Differences from C-PIDL

• Added create_environment . Unlike the struct version, Environment requires
a construction operation. (Since this is overly constraining for implementation
that do not support real C++ exceptions, these implementations may allow
Environment to be declared on the stack. See “Without Exception Handling
on page 20-116 for details.)

• Assigned multiple request support to ORB, made usage symmetrical with that in
Request , and used a sequence type rather than otherwise illegal unbounded
arrays in signatures.

• Added create_named_value , which is required for creating NamedValue
objects to be used as return value parameters for the Object::create_request
operation.

• Added create_exception_list and create_context_list (see “Request” on
page 20-75 for more details).

20.31.4 Mapping of ORB Initialization Operations

The following PIDL specifies initialization operations for an ORB; this PIDL is part o
the CORBA module (not the ORB interface) and is described in “ORB Initialization”
on page 4-8.

// PIDL
module CORBA {

typedef string ORBid;
typedef sequence <string> arg_list;
ORB ORB_init (inout arg_l ist argv, in ORBid orb_identi fier);

};

The mapping of the preceding PIDL operations to C++ is as follows:
CORBA V2.2 ORB February 1998 20-85

20

hich

. If

g

er or

he

bjects.
// C++
namespace CORBA {
typedef char* ORBid;
static ORB_ptr ORB_init(
int& argc,
 char** argv,
const char* orb_identifier = ""
);
}

The C++ mapping for ORB_init deviates from the OMG IDL PIDL in its handling of
the arg_list parameter. This is intended to provide a meaningful PIDL definition of
the initialization interface, which has a natural C++ binding. To this end, the arg_list
structure is replaced with argv and argc parameters.

The argv parameter is defined as an unbound array of strings (char **) and the
number of strings in the array is passed in the argc (int &) parameter.

If an empty ORBid string is used then argc arguments can be used to determine w
ORB should be returned. This is achieved by searching the argv parameters for one
tagged ORBid, e.g., -ORBid "ORBid_example." If an empty ORBid string is used and
no ORB is indicated by the argv parameters, the default ORB is returned.

Regardless of whether an empty or non-empty ORBid string is passed to ORB_init ,
the argv arguments are examined to determine if any ORB parameters are given
a non-empty ORBid string is passed to ORB_init , all -ORBid parameters in the
argv are ignored. All other -ORB<suffix> parameters may be of significance durin
the ORB initialization process.

For C++, the order of consumption of argv parameters may be significant to an
application. In order to ensure that applications are not required to handle argv
parameters they do not recognize the ORB initialization function must be called before
the remainder of the parameters are consumed. Therefore, after the ORB_init call
the argv and argc parameters will have been modified to remove the ORB
understood arguments. It is important to note that the ORB_init call can only reord
remove references to parameters from the argv list, this restriction is made in order to
avoid potential memory management problems caused by trying to free parts of t
argv list or extending the argv list of parameters. This is why argv is passed as a
char** and not a char**& .

20.32 Object

The rules in this section apply to OMG IDL interface Object , the base of the OMG
IDL interface hierarchy. Interface Object defines a normal CORBA object, not a
pseudo object. However, it is included here because it references other pseudo o
20-86 CORBA V2.2 February 1998

20

 on

e
20.32.1 Object Interface

// IDL
interface Object
{

boolean is_nil();
Object duplicate();
void release();
Implementat ionDef get_i mplementation();
InterfaceDef get_inter face();
boolean is_a(in string logical _type_id);
boolean non_existent();
boolean is_equivalent(in Object other_object);
unsigned long hash(in unsigned long maxi mum);
Status create_requ est(

in Context ctx,
in Identifier operation,
in NVList arg_l ist,
in NamedValue result,
out R equest request,
in Flags req_flags

);
Status create_request2(

in Context ctx,
in Identifier operation,
in NVList arg_l ist,
in NamedValue result,
in ExceptionList exclist,
in Context List ctxtlist,
out R equest request,
in Flags req_flags

);
Policy_ptr get_policy(in PolicyType policy_type);
DomainManagerList get_domain_managers();
Object set_policy_override(in PolicyList policies,

in SetOverrideType set_or_add);
};

20.32.2 Object C++ Class

In addition to other rules, all operation names in interface Object have leading
underscores in the mapped C++ class. Also, the mapping for create_request is split
into three forms, corresponding to the usage styles described in “create_request”
page 5-5 and in“Request” on page 20-75 of this document. The is_nil and release
functions are provided in the CORBA namespace, as described in “Object Referenc
Operations” on page 20-8.
CORBA V2.2 Object February 1998 20-87

20

pping
// C++
class Object
{

public:
static Object_ptr _duplicate(Object_ptr obj);
static Object_ptr _nil();
ImplementationDef_ptr _get_implementation();
InterfaceDef_ptr _get_interface();
Boolean _is_a(const char* logical_type_id);
Boolean _non_existent();
Boolean _is_equivalent(Object_ptr other_object);
ULong _hash(ULong maximum);
Status _create_request(
Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
Request_out request,
Flags req_flags
);
Status _create_request(
Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
ExceptionList_ptr,
ContextList_ptr,
Request_out request,
Flags req_flags
);
Request_ptr _request(const char* operation);
Policy_ptr _get_policy(PolicyType policy_type);

DomainManagerList* _get_domain_managers();
Object_ptr _set_policy_override(

const PolicyList&,
SetOverrideType

};

20.33 Server-Side Mapping

Server-side mapping refers to the portability constraints for an object implementation
written in C++. The term server is not meant to restrict implementations to situations
in which method invocations cross address space or machine boundaries. This ma
addresses any implementation of an OMG IDL interface.
20-88 CORBA V2.2 February 1998

20

as the

ically,

ide

ive

s

kes
20.34 Implementing Interfaces

To define an implementation in C++, one defines a C++ class with any valid C++
name. For each operation in the interface, the class defines a non-static member
function with the mapped name of the operation (the mapped name is the same
OMG IDL identifier except when the identifier is a C++ keyword, in which case the
string “_cxx_” is prepended to the identifier, as noted in “Preliminary Information” on
page 20-3). Note that the ORB implementation may allow one implementation class to
derive from another, so the statement “the class defines a member function” does not
mean the class must explicitly define the member function—it could inherit the
function.

The mapping specifies two alternative relationships between the application-supplied
implementation class and the generated class or classes for the interface. Specif
the mapping requires support for both inheritance-based relationships and delegation-
based relationships. CORBA-compliant ORB implementations are required to prov
both of these alternatives. Conforming applications may use either or both of these
alternatives.

20.34.1 Mapping of PortableServer::Servant

The PortableServer module for the Portable Object Adapter (POA) defines the nat
Servant type. The C++ mapping for Servant is as follows:

// C++
namespace PortableServer
{
class ServantBase
{

public:
virtual ~ServantBase();

ServantBase& operator=(const ServantBase&);

virtual POA_ptr _default_POA();

protected:
ServantBase();
ServantBase(const ServantBase&);
// ...all other constructors...
};
typedef ServantBase* Servant;
}

The ServantBase destructor is public and virtual to ensure that skeleton classe
derived from it can be properly destroyed. The default constructor, along with other
implementation-specific constructors, must be protected so that instances of
ServantBase cannot be created except as sub-objects of instances of derived
classes. A default constructor (a constructor that either takes no arguments or ta
only arguments with default values) must be provided so that derived servants can be
CORBA V2.2 Implementing Interfaces February 1998 20-89

20

rator
te

r copy

d
 in

s

BA
es

e

e

is

constructed portably. Both copy construction and a public default assignment ope
must be supported so that application-specific servants can be copied if necessary. No
that copying a servant that is already registered with the object adapter, either by
assignment or by construction, does not mean that the target of the assignment o
is also registered with the object adapter. Similarly, assigning to a ServantBase or
a class derived from it that is already registered with the object adapter does not in any
way change its registration.

The only operation supplied by the ServantBase class is the
_default_POA() function. The default implementation of this function, provide
by ServantBase , returns an object reference to the root POA of the default ORB
this process — the same as the return value of an invocation of
ORB::resolve_initial_references("RootPOA") on the default ORB.
Classes derived from ServantBase can override this definition to return the POA
of their choice, if desired.

20.34.2 Skeleton Operations

All skeleton classes provide a _this() member function. This member function ha
three purposes:

1. Within the context of a request invocation on the target object represented by the
servant, it allows the servant to obtain the object reference for the target COR
object it is incarnating for that request. This is true even if the servant incarnat
multiple CORBA objects. In this context, _this() can be called regardless of the
policies the dispatching POA was created with.

2. Outside the context of a request invocation on the target object represented by th
servant, it allows a servant to be implicitly activated if its POA allows implicit
activation. This requires the activating POA to have been created with the
IMPLICIT_ACTIVATION policy. If the POA was not created with the
IMPLICIT_ACTIVATION policy, the PortableServer ::Wron gPolicy exception
is thrown.

3. Outside the context of a request invocation on the target object represented by th
servant, it will return the object reference for a servant that has already been
activated, as long as the servant is not incarnating multiple CORBA objects. Th
requires the POA with which the servant is activated to have been created with the
UNIQUE_ID and RETAIN policies. If the POA was created with the
MULTIPLE_ID or NON_RETAIN policies, the PortableServer ::WrongPolicy
exception is thrown.
20-90 CORBA V2.2 February 1998

20

MG

ass.
b

tions.
For example, using interface A

// IDL
interface A
{

short op1();
void op2(in long val);

};

The return value of _this() is a typed object reference for the interface type
corresponding to the skeleton class. For example, the _this() function for the
skeleton for interface A would be defined as follows:

// C++
class POA_A : public virtual ServantBase
{

public:
A_ptr _this();
...
};

The _this() function follows the normal C++ mapping rules for returned object
references, so the caller assumes ownership of the returned object reference and must
eventually call CORBA::release() on it.

The _this() function can be virtual if the C++ environment supports covariant
return types, otherwise the function must be non-virtual so the return type can be
correctly specified without compiler errors. Applications use _this() the same way
regardless of which of these implementation approaches is taken.

Assuming A_impl is a class derived from POA_A that implements the A interface,
and assuming that the servant’s POA was created with the appropriate policies, a
servant of type A_impl can be created and implicitly activated as follows:

// C++
A_impl my_a;
A_var a = my_a._this();

20.34.3 Inheritance-Based Interface Implementation

Implementation classes can be derived from a generated base class based on the O
IDL interface definition. The generated base classes are known as skeleton classes, and
the derived classes are known as implementation classes. Each operation of the
interface has a corresponding virtual member function declared in the skeleton cl
The signature of the member function is identical to that of the generated client stu
class. The implementation class provides implementations for these member func
The object adapter typically invokes the methods via calls to the virtual functions of
the skeleton class.

Assume that IDL interface A is defined as follows:
CORBA V2.2 Implementing Interfaces February 1998 20-91

20

ding

iguity.

r-
.

// IDL
interface A
{

short op1();
void op2(in long val);

};

For IDL interface A as shown above, the IDL compiler generates an interface class A.
This class contains the C++ definitions for the typedefs, constants, exceptions,
attributes, and operations in the OMG IDL interface. It has a form similar to the
following:

// C++
class A : public virtual CORBA::Object
{

public:
virtual Short op1() = 0;
virtual void op2(Long val) = 0;
...
};

Some ORB implementations might not use public virtual inheritance from
CORBA::Object , and might not make the operations pure virtual, but the
signatures of the operations will be the same.

On the server side, a skeleton class is generated. This class is partially opaque to the
programmer, though it will contain a member function corresponding to each operation
in the interface. For the POA, the name of the skeleton class is formed by prepen
the string “POA_” to the fully-scoped name of the corresponding interface, and the
class is either directly or indirectly derived from the servant base class
PortableServer::ServantBase . The
PortableServer::ServantBase class must be a virtual base class of the
skeleton to allow portable implementations to multiply inherit from both skeleton
classes and implementation classes for other base interfaces without error or amb

The skeleton class for interface A shown above would appear as follows:

// C++
class POA_A : public virtual PortableServer::ServantBase
{

public:
// ...server-side implementation-specific detail
// goes here...
virtual Short op1() throw(SystemException) = 0;
virtual void op2(Long val) throw(SystemException) = 0;
...
};

If interface A were defined within a module rather than at global scope, e.g., Mod::A ,
the name of its skeleton class would be POA_Mod::A . This helps to separate serve
side skeleton declarations and definitions from C++ code generated for the client
20-92 CORBA V2.2 February 1998

20

n

le,

ng
ation,

To implement this interface using inheritance, a programmer must derive from this
skeleton class and implement each of the operations in the OMG IDL interface. A
implementation class declaration for interface A would take the form:

// C++
class A_impl : public POA_A
{

public:
Short op1() throw(CORBA::SystemException);
void op2(Long val) throw(CORBA::SystemException);
...
};

Note that the presence of the _this() function implies that C++ servants must only
be derived directly from a single skeleton class. Direct derivation from multiple
skeleton classes could result in ambiguity errors due to multiple definitions of
_this() . This should not be a limitation, since CORBA objects have only a single
most-derived interface. Servants that are intended to support multiple interface types
can utilize the delegation-based interface implementation approach, described below in
“Delegation-Based Interface Implementation”, or can be registered as DSI-based
servants, as described in “Mapping of Dynamic Skeleton Interface to C++” on
page 20-99.

20.34.4 Delegation-Based Interface Implementation

Inheritance is not always the best solution for implementing servants. Using
inheritance from the OMG IDL–generated classes forces a C++ inheritance hierarchy
into the application. Sometimes, the overhead of such inheritance is too high, or it may
be impossible to compile correctly due to defects in the C++ compiler. For examp
implementing objects using existing legacy code might be impossible if inheritance
from some global class were required, due to the invasive nature of the inheritance.

In some cases delegation can be used to solve this problem. Rather than inheriti
from a skeleton class, the implementation can be coded as required for the applic
and a wrapper object will delegate upcalls to that implementation. This section
describes how this can be achieved in a type-safe manner using C++ templates.

For the examples in this section, the OMG IDL interface from “Inheritance-Based
Interface Implementation” on page 20-91 will again be used:

// IDL
interface A
{

short op1();
void op2(in long val);

};
CORBA V2.2 Implementing Interfaces February 1998 20-93

20

g

 the

late

ed on

In addition to generating a skeleton class, the IDL compiler generates a delegatin
class called a tie. This class is partially opaque to the application programmer, though
like the skeleton, it provides a method corresponding to each OMG IDL operation. The
name of the generated tie class is the same as the generated skeleton class with
addition that the string “_tie” is appended to the end of the name. For example:

// C++
template<class T>
class POA_A_tie : public POA_A
{

public:
...
};

An instance of this template class performs the task of delegation. When the temp
is instantiated with a class type that provides the operations of A, then the POA_A_tie
class will delegate all operations to an instance of that implementation class. A
reference or pointer to the actual implementation object is passed to the appropriate tie
constructor when an instance of the tie class is created. When a request is invok
it, the tie servant will just delegate the request by calling the corresponding method in
the implementation object.

// C++
template <class T>
class POA_A_tie : public POA_A
{

public:
POA_A_tie(T& t)
: _ptr(&t), _poa(POA::_nil()), _rel(0) {}
POA_A_tie(T& t, POA_ptr poa)
: _ptr(&t),
_poa(POA::_duplicate(poa)), _rel(0) {}
POA_A_tie(T* tp, Boolean release = 1)
: _ptr(tp), _poa(POA::_nil()), _rel(release) {}
POA_A_tie(T* tp, POA_ptr poa,
Boolean release = 1)
: _ptr(tp), _poa(POA::_duplicate(poa)),
_rel(release) {}
~POA_A_tie()
{
CORBA::release(_poa);
if (_rel) delete _ptr;
}

20-94 CORBA V2.2 February 1998

20

ree

// tie-specific functions
T* _tied_object() { return _ptr; }
void _tied_object(T& obj)
{
if (_rel) delete _ptr;
_ptr = &obj;
_rel = 0;
}
void _tied_object(T* obj, Boolean release = 1)
{
if (_rel) delete _ptr;
_ptr = obj;
_rel = release;
}
Boolean _is_owner() { return _rel; }
void _is_owner(Boolean b) { _rel = b; }

// IDL operations
Short op1() throw(SystemException)
{
return _ptr->op1();
}
void op2(Long val) throw(SystemException)
{
_ptr->op2(val);
}

// override ServantBase operations
POA_ptr _default_POA()
{
if (!CORBA::is_nil(_poa)) {
return _poa;
} else {
// return root POA
}
}

private:
T* _ptr;
POA_ptr _poa;
Boolean _rel;

// copy and assignment not allowed
POA_A_tie(const POA_A_tie&);
void operator=(const POA_A_tie&);
};

It is important to note that the tie example shown above contains sample
implementations for all of the required functions. A conforming implementation is f
to implement these operations as it sees fit, as long as they conform to the semantics in
the paragraphs described below. A conforming implementation is also allowed to
CORBA V2.2 Implementing Interfaces February 1998 20-95

20

ound

ated

in.

ined

at
ie to

tie

, such
y

e

ect
include additional implementation-specific functions if it wishes.

The T& constructors cause the tie servant to delegate all calls to the C++ object b
to reference t . Ownership for the object referred to by t does not become the
responsibility of the tie servant.

The T* constructors cause the tie servant to delegate all calls to the C++ object
pointed to by tp . The release parameter dictates whether the tie takes on
ownership of the C++ object pointed to by tp ; if release is TRUE, the tie adopts
the C++ object, otherwise it does not. If the tie adopts the C++ object being deleg
to, it will delete it when its own destructor is invoked, as shown above in the
~POA_A_tie() destructor.

The _tied_object() accessor function allows callers to access the C++ object
being delegated to. If the tie was constructed to take ownership of the C++ object
(release was TRUE in the T* constructor), the caller of _tied_object()
should never delete the return value.

The first _tied_object() modifier function calls delete on the current tied
object if the tie’s release flag is TRUE, and then points to the new tie object passed
The tie’s release flag is set to FALSE. The second _tied_object() modifier
function does the same, except that the final state of the tie’s release flag is determ
by the value of the release argument.

The _is_owner() accessor function returns TRUE if the tie owns the C++ object it
is delegating to, or FALSE if it does not. The _is_owner() modifier function
allows the state of the tie’s release flag to be changed. This is useful for ensuring th
memory leaks do not occur when transferring ownership of tied objects from one t
another, or when changing the tied object a tie delegates to.

For delegation-based implementations it is important to note that the servant is the
object, not the C++ object being delegated to by the tie object. This means that the tie
servant is used as the argument to those POA operations that require a Servant
argument. This also means that any operations that the POA calls on the servant
as ServantBase::_default_POA() , are provided by the tie servant, as shown b
the example above. The value returned by _default_POA() is supplied to the tie
constructor.

It is also important to note that by default, a delegation-based implementation (th
“tied” C++ instance) has no access to the _this() function, which is available only
on the tie. One way for this access to be provided is by informing the delegation obj
of its associated tie object. This way, the tie holds a pointer to the delegation object,
and vice-versa. However, this approach only works if the tie and the delegation object
have a one-to-one relationship. For a delegation object tied into multiple tie objects,
the object reference by which it was invoked can be obtained within the context of a
request invocation by calling PortableServer::Current::
get_object_id() , passing its return value to PortableServer::POA::
id_to_reference() , and then narrowing the returned object reference
appropriately.
20-96 CORBA V2.2 February 1998

20

,

t

ll

e
the

h is
In the tie class shown above, all the operations are shown as being inline. In practice
it is likely that they will be defined out of line, especially for those functions that
override inherited virtual functions. Either approach is allowed by conforming
implementations.

The use of templates for tie classes allows the application developer to provide
specializations for some or all of the template’s member functions for a given
instantiation of the template. This allows the application to control how the tied objec
is invoked. For example, the POA_A_tie<T>::op2() operation is normally defined
as follows:

// C++
template<class T>
void
POA_A_tie<T>::op2(Long val) throw(SystemException)
{
_ptr->op2(val);
}

This implementation assumes that the tied object supports an op2() operation with
the same signature and the ability to throw CORBA system exceptions. However, if the
application wants to use legacy classes for tied object types, it is unlikely they wi
support these capabilities. In that case, the application can provide its own
specialization. For example, if the application already has a class named Foo that
supports a log_value() function, the tie class op2() function can be made to call
it if the following specialization is provided:

// C++
void
POA_A_tie<Foo>::op2(Long val) throw(SystemException)
{
_tied_object()->log_value(val);
}

Portable specializations like the one shown above should not access tie class data
members directly, since the names of those data members are not standardized.

20.35 Implementing Operations

The signature of an implementation member function is the mapped signature of th
OMG IDL operation. Unlike the client side, the server-side mapping requires that
function header include the appropriate exception (throw) specification. This
requirement allows the compiler to detect when an invalid exception is raised, whic
necessary in the case of a local C++-to-C++ library call (otherwise the call would have
to go through a wrapper that checked for a valid exception). For example:
CORBA V2.2 Implementing Operations February 1998 20-97

20

ta
y
// IDL
interface A
{

exception B {};
void f() raises(B);

};

// C++
class MyA : public virtual POA_A
{

public:
void f() throw(A::B, CORBA::SystemException);
...
};

Since all operations and attributes may throw CORBA system exceptions,
CORBA::SystemException must appear in all exception specifications, even
when an operation has no raises clause.

Within a member function, the “this” pointer refers to the implementation object’s da
as defined by the class. In addition to accessing the data, a member function ma
implicitly call another member function defined by the same class. For example:
// IDL
interface A
{

void f();
void g();

};

// C++
class MyA : public virtual POA_A
{

public:
void f() throw(SystemException);
void g() throw(SystemException);

private:
long x_;
};

void
MyA::f() throw(SystemException)
{
this->x_ = 3;
this->g();
}

20-98 CORBA V2.2 February 1998

20

lled
a

ase

++
However, when a servant member function is invoked in this manner, it is being ca
simply as a C++ member function, not as the implementation of an operation on
CORBA object. In such a context, any information available via the POA_Current
object refers to the CORBA request invocation that performed the C++ member
function invocation, not to the member function invocation itself.

20.35.1 Skeleton Derivation From Object

In several existing ORB implementations, each skeleton class derives from the
corresponding interface class. For example, for interface Mod::A , the skeleton class
POA_Mod::A is derived from class Mod::A . These systems therefore allow an
object reference for a servant to be implicitly obtained via normal C++ derived-to-b
conversion rules:

// C++
MyImplOfA my_a;// declare impl of A
A_ptr a = &my_a;// obtain its object reference
// by C++ derived-to-base
// conversion

Such code can be supported by a conforming ORB implementation, but it is not
required, and is thus not portable. The equivalent portable code invokes _this() on
the implementation object in order to implicitly register it if it has not yet been
registered, and to get its object reference:

// C++
MyImplOfA my_a;// declare impl of A
A_ptr a = my_a._this();// obtain its object

// reference

20.36 Mapping of Dynamic Skeleton Interface to C++

“DSI: Language Mapping” on page 6-4 contains general information about mapping
the Dynamic Skeleton Interface to programming languages.

This section contains the following information:

• Mapping of the Dynamic Skeleton Interface’s ServerRequest to C++
• Mapping of the Portable Object Adapter’s Dynamic Implementation Routine to C

20.36.1 Mapping of ServerRequest to C++

The ServerRequest pseudo object maps to a C++ class in the CORBA namespace
which supports the following operations and signatures:
CORBA V2.2 Mapping of Dynamic Skeleton Interface to C++ February 1998 20-99

20

e

sed
e

quire

e

l

// C++
class ServerRequest
{
 public:
const char* operation() const;
void arguments(NVList_ptr& parameters);
Context_ptr ctx();
void set_result(const Any& value);
void set_exception(const Any& value);
};

Note that, as with the rest of the C++ mapping, ORB implementations are free to mak
such operations virtual and modify the inheritance as needed.

All of these operations follow the normal memory management rules for data pas
into skeletons by the ORB. That is, the DIR is not allowed to modify or change th
string returned by operation() , in parameters in the NVList returned from
arguments() , or the Context returned by ctx() . Similarly, data allocated by
the DIR and handed to the ORB (the NVList parameters, the result value, and
exception values) are freed by the ORB rather than by the DIR.

20.36.2 Handling Operation Parameters and Results

The ServerRequest provides parameter values when the DIR invokes the
arguments() operation. The NVList provided by the DIR to the ORB includes
the TypeCodes and direction Flags (inside NamedValues) for all parameters,
including out ones for the operation. This allows the ORB to verify that the correct
parameter types have been provided before filling their values in, but does not re
it to do so. It also relieves the ORB of all responsibility to consult an Interface
Repository, promoting high performance implementations.

The NVList provided to the ORB then becomes owned by the ORB. It will not b
deallocated until after the DIR returns. This allows the DIR to pass the out values,
including the return side of inout values, to the ORB by modifying the NVList after
arguments() has been called. Therefore, if the DIR stores the NVList_ptr
into an NVList_var , it should pass it to the arguments() function by invoking
the _retn() function on it, in order to force it to release ownership of its interna
NVList_ptr to the ORB.

20.36.3 Mapping of PortableServer Dynamic Implementation Routine

In C++, DSI servants inherit from the standard DynamicImplementation class.
This class inherits from the ServantBase class and is also defined in the
PortableServer namespace. The Dynamic Skeleton Interface (DSI) is
implemented through servants that are members of classes that inherit from dynamic
skeleton classes.
20-100 CORBA V2.2 February 1998

20

e

s

// C++
namespace PortableServer
{
class DynamicImplementation : public virtual ServantBase
{

public:
CORBA::Object_ptr _this();
virtual void invoke(
CORBA::ServerRequest_ptr request
) = 0;
virtual CORBA::RepositoryId
_primary_interface(
const ObjectId& oid,
POA_ptr poa
) = 0;
};
}

The _this() function returns a CORBA::Object_ptr for the target object.
Unlike _this() for static skeletons, its return type is not interface-specific because
a DSI servant may very well incarnate multiple CORBA objects of different types. If
DynamicImplementation::_this() is invoked outside of the context of a
request invocation on a target object being served by the DSI servant, it raises th
PortableSe rver::WrongPolicy exception.

The invoke() method receives requests issued to any CORBA object incarnated by
the DSI servant and performs the processing necessary to execute the request.

The _primary_interface() method receives an ObjectId value and a
POA_ptr as input parameters and returns a valid RepositoryId representing the
most-derived interface for that oid .

It is expected that the invoke() and _primary_interface() methods will
be only invoked by the POA in the context of serving a CORBA request. Invoking thi
method in other circumstances may lead to unpredictable results.

20.37 PortableServer Functions

Objects registered with POAs use sequences of octet, specifically the
PortableSe rver::POA::ObjectId type, as object identifiers. However, because C++
programmers will often want to use strings as object identifiers, the C++ mapping
provides several conversion functions that convert strings to ObjectId and vice-
versa:
CORBA V2.2 PortableServer Functions February 1998 20-101

20
// C++
namespace PortableServer
{
char* ObjectId_to_string(const ObjectId&);
wchar_t* ObjectId_to_wstring(const ObjectId&);

ObjectId* string_to_ObjectId(const char*);
ObjectId* wstring_to_ObjectId(const wchar_t*);
}

These functions follow the normal C++ mapping rules for parameter passing and
memory management.

If conversion of an ObjectId to a string would result in illegal characters in the
string (such as a NUL), the first two functions throw the CORBA::BAD_PARAM
exception.

20.38 Mapping for PortableServer::ServantManager

20.38.1 Mapping for Cookie

Since PortableServer::ServantLocator::Cookie is an IDL native type, its type
must be specified by each language mapping. In C++, Cookie maps to void* :

// C++
namespace PortableServer
{
class ServantLocator {
...
typedef void* Cookie;
};
}

For the C++ mapping of the PortableServer::ServantLocator::preinvoke()
operation, the Cookie parameter maps to a Cookie& , while for the postinvoke()
operation, it is passed as a Cookie .

20.38.2 ServantManagers and AdapterActivators

Portable servants that implement the
PortableServer::AdapterActivator , the
PortableServer::ServantActivator , or
PortableServer::ServantLocator interfaces are implemented just like
any other servant. They may use either the inheritance-based approach or the tie
approach.
20-102 CORBA V2.2 February 1998

20
20.39 C++ Definitions for CORBA

This section provides a complete set of C++ definitions for the CORBA module. The
definitions appear within the C++ namespace named CORBA.

// C++
namespace CORBA { ... }

Any implementations shown here are merely sample implementations: they are not the
required definitions for these types.

20.39.1 Primitive Types

typedef unsigned charBoolean;
typedef unsigned charChar;
typedef wchar_tWChar;
typedef unsigned charOctet;
typedef shortShort;
typedef unsigned shortUShort;
typedef longLong;
typedef ...LongLong;
typedef unsigned longULong;
typedef ...ULongLong;
typedef floatFloat;
typedef doubleDouble;
typedef long doubleLongDouble;
typedef Boolean&Boolean_out;
typedef Char&Char_out;
typedef WChar&WChar_out;
typedef Octet&Octet_out;
typedef Short&Short_out;
typedef UShort&UShort_out;
typedef Long&Long_out;
typedef LongLong&LongLong_out;
typedef ULong&ULong_out;
typedef ULongLong&ULongLong_out;
typedef Float&Float_out;
typedef Double&Double_out;
typedef LongDouble&LongDouble_out;
CORBA V2.2 C++ Definitions for CORBA February 1998 20-103

20
20.39.2 String_var and String_out Class

class String_var
{

public:
String_var();
String_var(char *p);
String_var(const char *p);
String_var(const String_var &s);
~String_var();

String_var &operator=(char *p);
String_var &operator=(const char *p);
String_var &operator=(const String_var &s);

operator char*();
operator const char*() const;
const char* in() const;
char*& inout();
char*& out();
char* _retn();

char &operator[](ULong index);
char operator[](ULong index) const;
};

class String_out
{

public:
String_out(char*& p);
String_out(String_var& p);
String_out(String_out& s);
String_out& operator=(String_out& s);
String_out& operator=(char* p);
String_out& operator=(const char* p)

operator char*&();
char*& ptr();

private:
// assignment from String_var disallowed
void operator=(const String_var&);
};

20.39.3 WString_var and WString_out

The WString_var and WString_out types are identical to String_var and
String_out , respectively, except that they operate on wide string and wide
character types.
20-104 CORBA V2.2 February 1998

20
20.39.4 Any Class

class Any
{

public:
Any();
Any(const Any&);
Any(TypeCode_ptr tc, void *value,
Boolean release = FALSE);
~Any();

Any &operator=(const Any&);

void operator<<=(Short);
void operator<<=(UShort);
void operator<<=(Long);
void operator<<=(ULong);
void operator<<=(Float);

void operator<<=(Double);
void operator<<=(const Any&);// copying
void operator<<=(Any*);// non-copying
void operator<<=(const char*);

Boolean operator>>=(Short&) const;
Boolean operator>>=(UShort&) const;
Boolean operator>>=(Long&) const;
Boolean operator>>=(ULong&) const;
Boolean operator>>=(Float&) const;
Boolean operator>>=(Double&) const;
Boolean operator>>=(Any*&) const;
Boolean operator>>=(char*&) const;

// special types needed for boolean, octet, char,
// and bounded string insertion
// these are suggested implementations only
struct from_boolean {
from_boolean(Boolean b) : val(b) {}
Boolean val;
};
struct from_octet {
from_octet(Octet o) : val(o) {}
Octet val;
};
struct from_char {
from_char(Char c) : val(c) {}
Char val;
};
struct from_wchar {
from_char(WChar c) : val(c) {}
CORBA V2.2 C++ Definitions for CORBA February 1998 20-105

20
WChar val;
};
struct from_string {
from_string(char* s, ULong b,
Boolean nocopy = FALSE) :
val(s), bound(b) {}
char *val;
ULong bound;
};
struct from_wstring {
from_wstring(WChar* s, ULong b,
Boolean nocopy = FALSE) :
val(s), bound(b) {}
WChar *val;
ULong bound;
};

void operator<<=(from_boolean);
void operator<<=(from_char);
void operator<<=(from_wchar);
void operator<<=(from_octet);
void operator<<=(from_string);
void operator<<=(from_wstring);

// special types needed for boolean, octet,
// char extraction
// these are suggested implementations only
struct to_boolean {
to_boolean(Boolean &b) : ref(b) {}
Boolean &ref;
};
struct to_char {
to_char(Char &c) : ref(c) {}
Char &ref;
};
struct to_wchar {
to_wchar(WChar &c) : ref(c) {}
WChar &ref;
};
struct to_octet {
to_octet(Octet &o) : ref(o) {}
Octet &ref;
};
struct to_object {
to_object(Object_ptr &obj) : ref(obj) {}
Object_ptr &ref;
};
struct to_string {
20-106 CORBA V2.2 February 1998

20
to_string(char *&s, ULong b) : val(s), bound(b) {}
char *&val;
ULong bound;
};
struct to_wstring {
to_wstring(WChar *&s, ULong b)
: val(s), bound(b) {}
WChar *&val;
ULong bound;
};

Boolean operator>>=(to_boolean) const;
Boolean operator>>=(to_char) const;
Boolean operator>>=(to_wchar) const;
Boolean operator>>=(to_octet) const;
Boolean operator>>=(to_object) const;
Boolean operator>>=(to_string) const;
Boolean operator>>=(to_wstring) const;

void replace(TypeCode_ptr, void *value,
Boolean release = FALSE);

TypeCode_ptr type() const;
const void *value() const;

private:
// these are hidden and should not be implemented
// so as to catch erroneous attempts to insert
// or extract multiple IDL types mapped to unsigned char
void operator<<=(unsigned char);
Boolean operator>>=(unsigned char&) const;
};

20.39.5 Any_var Class

class Any_var
{

public:
Any_var();
Any_var(Any *a);
Any_var(const Any_var &a);
~Any_var();

Any_var &operator=(Any *a);
Any_var &operator=(const Any_var &a);

Any *operator->();

const Any& in() const;
Any& inout();
CORBA V2.2 C++ Definitions for CORBA February 1998 20-107

20
Any*& out();
Any* _retn();

// other conversion operators for parameter passing
};

20.39.6 Exception Class

// C++
class Exception
{

public:
Exception(const Exception &);
virtual ~Exception();
Exception &operator=(const Exception &);

virtual void _raise() = 0;

protected:
Exception();
};

20.39.7 SystemException Class

// C++
enum CompletionStatus { COMPLETED_YES, COMPLETED_NO,

COMPLETED_MAYBE };
class SystemException : public Exception
{

public:
SystemException();
SystemException(const SystemException &);
SystemException(ULong minor, CompletionStatus status);
~SystemException();
SystemException &operator=(const SystemException &);

ULong minor() const;
void minor(ULong);

CompletionStatus completed() const;
void completed(CompletionStatus);

static SystemException* _narrow(Exception*);
};

20.39.8 UserException Class

// C++
class UserException : public Exception
{

20-108 CORBA V2.2 February 1998

20
public:
UserException();
UserException(const UserException &);
~UserException();
UserException &operator=(const UserException &);

static UserException* _narrow(Exception*);
};

20.39.9 UnknownUserException Class

// C++
class UnknownUserException : public UserException
{

public:
Any &exception();

static UnknownUserException* _narrow(Exception*);
virtual void raise();
};

20.39.10 release and is_nil

// C++
namespace CORBA {
void release(Object_ptr);
void release(Environment_ptr);
void release(NamedValue_ptr);
void release(NVList_ptr);
void release(Request_ptr);
void release(Context_ptr);
void release(TypeCode_ptr);
void release(POA_ptr);
void release(ORB_ptr);

Boolean is_nil(Object_ptr);
Boolean is_nil(Environment_ptr);
Boolean is_nil(NamedValue_ptr);
Boolean is_nil(NVList_ptr);
Boolean is_nil(Request_ptr);
Boolean is_nil(Context_ptr);
Boolean is_nil(TypeCode_ptr);
Boolean is_nil(POA_ptr);
Boolean is_nil(ORB_ptr);
...
}

CORBA V2.2 C++ Definitions for CORBA February 1998 20-109

20
20.39.11 Object Class

// C++
class Object
{

public:
static Object_ptr _duplicate(Object_ptr obj);
static Object_ptr _nil();
InterfaceDef_ptr _get_interface();
Boolean _is_a(const char* logical_type_id);
Boolean _non_existent();
Boolean _is_equivalent(Object_ptr other_object);
ULong _hash(ULong maximum);
Status _create_request(
Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
Request_out request,
Flags req_flags
);
Status _create_request(
Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
ExceptionList_ptr,
ContextList_ptr,
Request_out request,
Flags req_flags
);
Request_ptr _request(const char* operation);
Policy_ptr _get_policy(PolicyType policy_type);

DomainManagerList* _get_domain_managers();
Object_ptr _set_policy_override(

const PolicyList& policies,
SetOverrideType set_or_add

);
};
20-110 CORBA V2.2 February 1998

20
20.39.12 Environment Class

// C++
class Environment
{

public:
void exception(Exception*);
Exception *exception() const;
void clear();

static Environment_ptr _duplicate(Environment_ptr ev);
static Environment_ptr _nil();
};

20.39.13 NamedValue Class

// C++
class NamedValue
{

public:
const char *name() const;
Any *value() const;
Flags flags() const;

static NamedValue_ptr _duplicate(NamedValue_ptr nv);
static NamedValue_ptr _nil();
};

20.39.14 NVList Class

// C++
class NVList
{

public:
ULong count() const;
NamedValue_ptr add(Flags);
NamedValue_ptr add_item(const char*, Flags);
NamedValue_ptr add_value(const char*, const Any&,

Flags);
NamedValue_ptr add_item_consume(
char*,
Flags
);
NamedValue_ptr add_value_consume(
char*,
Any *,
Flags
);
NamedValue_ptr item(ULong);
Status remove(ULong);
CORBA V2.2 C++ Definitions for CORBA February 1998 20-111

20
static NVList_ptr _duplicate(NVList_ptr nv);
static NVList_ptr _nil();
};

20.39.15 ExceptionList Class

// C++
class ExceptionList
{

public:
ULong count();
void add(TypeCode_ptr tc);
void add_consume(TypeCode_ptr tc);
TypeCode_ptr item(ULong index);
Status remove(ULong index);
};

20.39.16 ContextList Class

class ContextList
{

public:
ULong count();
void add(const char* ctxt);
void add_consume(char* ctxt);
const char* item(ULong index);
Status remove(ULong index);
};

20.39.17 Request Class

// C++
class Request
{

public:
Object_ptr target() const;
const char *operation() const;
NVList_ptr arguments();
NamedValue_ptr result();
Environment_ptr env();
ExceptionList_ptr exceptions();
ContextList_ptr contexts();

void ctx(Context_ptr);
Context_ptr ctx() const;

Any& add_in_arg();
Any& add_in_arg(const char* name);
Any& add_inout_arg();
20-112 CORBA V2.2 February 1998

20
Any& add_inout_arg(const char* name);
Any& add_out_arg();
Any& add_out_arg(const char* name);
void set_return_type(TypeCode_ptr tc);
Any& return_value();
Status invoke();
Status send_oneway();
Status send_deferred();
Status get_response();
Boolean poll_response();

static Request_ptr _duplicate(Request_ptr req);
static Request_ptr _nil();
};

20.39.18 Context Class

// C++
class Context
{

public:
const char *context_name() const;
Context_ptr parent() const;

Status create_child(const char*, Context_out);

Status set_one_value(const char*, const Any&);
Status set_values(NVList_ptr);
Status delete_values(const char*);
Status get_values(const char*, Flags, const char*,
NVList_out);

static Context_ptr _duplicate(Context_ptr ctx);
static Context_ptr _nil();
};

20.39.19 TypeCode Class

// C++
class TypeCode
{

public:
class Bounds { ... };
class BadKind { ... };

TCKind kind() const;
Boolean equal(TypeCode_ptr) const;

const char* id() const;
const char* name() const;
CORBA V2.2 C++ Definitions for CORBA February 1998 20-113

20
ULong member_count() const;
const char* member_name(ULong index) const;

TypeCode_ptr member_type(ULong index) const;

Any *member_label(ULong index) const;
TypeCode_ptr discriminator_type() const;
Long default_index() const;

ULong length() const;

TypeCode_ptr content_type() const;

UShort fixed_digits() const;
Short fixed_scale() const;

Long param_count() const;
Any *parameter(Long) const;

static TypeCode_ptr _duplicate(TypeCode_ptr tc);
static TypeCode_ptr _nil();
};

20.39.20 ORB Class

// C++
class ORB
{

public:
typedef sequence<Request_ptr> RequestSeq;
char *object_to_string(Object_ptr);
Object_ptr string_to_object(const char*);
Status create_list(Long, NVList_out);
Status create_operation_list(OperationDef_ptr,

NVList_out);
Status create_named_value(NamedValue_out);
Status create_exception_list(ExceptionList_out);
Status create_context_list(ContextList_out);

Status get_default_context(Context_out);
Status create_environment(Environment_out);

Status send_multiple_requests_oneway(
const RequestSeq&
);
Status send_multiple_requests_deferred(
const RequestSeq&
);
Boolean poll_next_response();
20-114 CORBA V2.2 February 1998

20
Status get_next_response(Request_out);

// Obtaining initial object references
typedef char* ObjectId;
class ObjectIdList {...};
class InvalidName {...};
ObjectIdList *list_initial_services();
Object_ptr resolve_initial_references(
const char *identifier
);

Boolean work_pending();
void perform_work();
void shutdown(Boolean wait_for_completion);
void run();

Boolean get_service_information(
ServiceType svc_type,
ServiceInformation_out svc_info
);

static ORB_ptr _duplicate(ORB_ptr orb);
static ORB_ptr _nil();
};

20.39.21 ORB Initialization

// C++
typedef char* ORBid;
static ORB_ptr ORB_init(
int& argc,
 char** argv,
const char* orb_identifier = ""
);

20.39.22 General T_out Types

// C++
class T_out
{

public:
T_out(T*& p) : ptr_(p) { ptr_ = 0; }
T_out(T_var& p) : ptr_(p.ptr_) {
delete ptr_;
ptr_ = 0;
}
T_out(T_out& p) : ptr_(p.ptr_) {}
T_out& operator=(T_out& p) {
ptr_ = p.ptr_;
return *this;
CORBA V2.2 C++ Definitions for CORBA February 1998 20-115

20

t does
r the
 the

.

ller.

r by
}
T_out& operator=(T* p) { ptr_ = p; return *this; }

operator T*&() { return ptr_; }
T*& ptr() { return ptr_; }

T* operator->() { return ptr_; }

private:
T*& ptr_;

// assignment from T_var not allowed
void operator=(const T_var&):
};

20.40 Alternative Mappings For C++ Dialects

20.40.1 Without Namespaces

If the target environment does not support the namespace construct but does support
nested classes, then a module should be mapped to a C++ class. If the environmen
not support nested classes, then the mapping for modules should be the same as fo
CORBA C mapping (concatenating identifiers using an underscore (“_”) character as
separator).

Note that module constants map to file-scope constants on systems that support
namespaces and class-scope constants on systems that map modules to classes

20.40.2 Without Exception Handling
For those C++ environments that do not support real C++ exception handling, referred to
here as non-exception handling (non-EH) C++ environments, an Environment
parameter passed to each operation is used to convey exception information to the ca

As shown in “Environment” on page 20-71, the Environment class supports the abil-
ity to access and modify the Exception it holds.

As shown in “Mapping for Exception Types” on page 20-58, both user-defined and system
exceptions form an inheritance hierarchy that normally allow types to be caught eithe
their actual type or by a more general base type. When used in a non-EH C++ environ-
ment, the narrowing functions provided by this hierarchy allow for examination and
manipulation of exceptions:

// IDL
interface A
{

exception Broken { ... };
20-116 CORBA V2.2 February 1998

20

n.

n-
void op() raises(Broken);
};

// C++
Environment ev;
A_ptr obj = ...
obj->op(ev);
if (Exception *exc = ev.exception()) {

if (A::Broken *b = A::Broken::_narrow(exc)) {
// deal with user exception

} else {
// must have been a system exception
SystemException *se = SystemException::_narrow(exc);
...

}
}

“ORB” on page 20-83 specifies that Environment must be created using
ORB::create_environment , but this is overly constraining for implementations
requiring an Environment to be passed as an argument to each method invocatio
For implementations that do not support real C++ exceptions, Environment may be
allocated as a static, automatic, or heap variable. For example, all of the following are
legal declarations on a non-EH C++ environment:

// C++
Environment global_env; // global
static Environment static_env;// file static

class MyClass
{

public:
...

private:
static Environment class_env; // class static

};

void func()
{

Environment auto_env; // auto
Environment *new_env = new Environment; // heap
...

}

For ease of use, Environment parameters are passed by reference in non-EH enviro
ments:

// IDL
interface A
{

exception Broken { ... };
void op() raises(Broken);
CORBA V2.2 Alternative Mappings For C++ Dialects February 1998 20-117

20

};

// C++
class A ...
{

public:
void op(Environment &);
...

};

For additional ease of use in non-EH environments, Environment should support
copy construction and assignment from other Environment objects. These additional
features are helpful for propagating exceptions from one Environment to another
under non-EH circumstances.

When an exception is “thrown” in a non-EH environment, object implementors and ORB
runtimes must ensure that all out and return pointers are returned to the caller as null
pointers. If non-initialized or “garbage” pointer values are returned, client application
code could experience runtime errors due to the assignment of bad pointers to T_var
types. When a T_var goes out of scope, it attempts to delete the T* given to it; if this
pointer value is garbage, a runtime error will almost certainly occur.

Exceptions in non-EH environments need not support the virtual _raise() function,
since the only useful implementation of it in such an environment would be to abort the
program.

20.41 C++ Keywords

Table 20-6 lists all C++ keywords from the 2 December 1996 Working Paper of the
ANSI (X3J16) C++ Language Standardization Committee.

Table 20-6 C++ Keywords

and and_eq asm auto bitand

bitor bool break case catch

char class compl const const_cast

continue default delete do double

dynamic_cast else enum explicit extern

false float for friend goto

if inline int long mutable

namespace new not not_eq operator

or or_eq private protected public

register reinterpret_cast return short signed

sizeof static static_cast struct switch

template this throw true try

typedef typeid typename union unsigned

using virtual void volatile wchar_t

while xor xor_eq
20-118 CORBA V2.2 February 1998

	Mapping of OMG IDL to C++
	20.1 Preliminary Information
	20.1.1 Overview
	20.1.2 Scoped Names
	20.1.3 C++ Type Size Requirements
	20.1.4 CORBA Module

	20.2 Mapping for Modules
	20.3 Mapping for Interfaces
	20.3.1 Object Reference Types
	20.3.2 Widening Object References
	20.3.3 Object Reference Operations
	20.3.4 Narrowing Object References
	20.3.5 Nil Object Reference
	20.3.6 Object Reference Out Parameter
	20.3.7 Interface Mapping Example

	20.4 Mapping for Constants
	20.5 Mapping for Basic Data Types
	20.6 Mapping for Enums
	20.7 Mapping for String Types
	20.8 Mapping for Wide String Types
	20.9 Mapping for Structured Types
	20.9.1 T_var Types
	20.9.2 T_out Types

	20.10 Mapping for Struct Types
	20.11 Mapping for Fixed
	20.11.1 Fixed T_var and T_out Types

	20.12 Mapping for Union Types
	20.13 Mapping for Sequence Types
	20.13.1 Sequence Example
	20.13.2 Using the “release” Constructor Parameter
	20.13.3 Additional Memory Management Functions
	20.13.4 Sequence T_var and T_out Types

	20.14 Mapping For Array Types
	20.15 Mapping For Typedefs
	20.16 Mapping for the Any Type
	20.16.1 Handling Typed Values
	20.16.2 Insertion into any
	20.16.3 Extraction from any
	20.16.4 Distinguishing boolean, octet, char, wchar, bounded string, and bounded wstring
	20.16.5 Widening to Object
	20.16.6 Handling Untyped Values
	20.16.7 Any Constructors, Destructor, Assignment Operator
	20.16.8 The Any Class
	20.16.9 The Any_var Class

	20.17 Mapping for Exception Types
	20.18 Mapping For Operations and Attributes
	20.19 Implicit Arguments to Operations
	20.20 Argument Passing Considerations
	20.20.1 Operation Parameters and Signatures

	20.21 Mapping of Pseudo Objects to C++
	20.22 Usage
	20.23 Mapping Rules
	20.24 Relation to the C PIDL Mapping
	20.25 Environment
	20.25.1 Environment Interface
	20.25.2 Environment C++ Class
	20.25.3 Differences from C-PIDL
	20.25.4 Memory Management

	20.26 NamedValue
	20.26.1 NamedValue Interface
	20.26.2 NamedValue C++ Class
	20.26.3 Differences from C-PIDL
	20.26.4 Memory Management

	20.27 NVList
	20.27.1 NVList Interface
	20.27.2 NVList C++ Class
	20.27.3 Differences from C-PIDL
	20.27.4 Memory Management

	20.28 Request
	20.28.1 Request Interface
	20.28.2 Request C++ Class
	20.28.3 Differences from C-PIDL
	20.28.4 Memory Management

	20.29 Context
	20.29.1 Context Interface
	20.29.2 Context C++ Class
	20.29.3 Differences from C-PIDL
	20.29.4 Memory Management

	20.30 TypeCode
	20.30.1 TypeCode Interface
	20.30.2 TypeCode C++ Class
	20.30.3 Differences from C-PIDL
	20.30.4 Memory Management

	20.31 ORB
	20.31.1 ORB Interface
	20.31.2 ORB C++ Class
	20.31.3 Differences from C-PIDL
	20.31.4 Mapping of ORB Initialization Operations

	20.32 Object
	20.32.1 Object Interface
	20.32.2 Object C++ Class

	20.33 Server-Side Mapping
	20.34 Implementing Interfaces
	20.34.1 Mapping of PortableServer::Servant
	20.34.2 Skeleton Operations
	20.34.3 Inheritance-Based Interface Implementation
	20.34.4 Delegation-Based Interface Implementation

	20.35 Implementing Operations
	20.35.1 Skeleton Derivation From Object

	20.36 Mapping of Dynamic Skeleton Interface to C++
	20.36.1 Mapping of ServerRequest to C++
	20.36.2 Handling Operation Parameters and Results
	20.36.3 Mapping of PortableServer Dynamic Implementation Routine

	20.37 PortableServer Functions
	20.38 Mapping for PortableServer::ServantManager
	20.38.1 Mapping for Cookie
	20.38.2 ServantManagers and AdapterActivators

	20.39 C++ Definitions for CORBA
	20.39.1 Primitive Types
	20.39.2 String_var and String_out Class
	20.39.3 WString_var and WString_out
	20.39.4 Any Class
	20.39.5 Any_var Class
	20.39.6 Exception Class
	20.39.7 SystemException Class
	20.39.8 UserException Class
	20.39.9 UnknownUserException Class
	20.39.10 release and is_nil
	20.39.11 Object Class
	20.39.12 Environment Class
	20.39.13 NamedValue Class
	20.39.14 NVList Class
	20.39.15 ExceptionList Class
	20.39.16 ContextList Class
	20.39.17 Request Class
	20.39.18 Context Class
	20.39.19 TypeCode Class
	20.39.20 ORB Class
	20.39.21 ORB Initialization
	20.39.22 General T_out Types

	20.40 Alternative Mappings For C++ Dialects
	20.40.1 Without Namespaces
	20.40.2 Without Exception Handling

	20.41 C++ Keywords

