Mapping of OMG IDL to C++ 20

This chapter explains how OMG IDL constructs are mapped to the constructs of the
C++ programming language. It provides mapping informafibwn

* Interfaces

» Constants

» Basic data types

* Enums

» Types (string, structure, struct, union, sequence, array, typedefs, any, exception)

e Operationsand atributes

e Arguments

Contents

This chapter contains tHellowing sections.

Section Title Page
“Preliminary Information” 20-3
“Mapping for Modules” 20-5
“Mapping for Interfaces” 20-6
“Mapping for Constants” 20-13
“Mapping for Basic Data Types” 20-15
“Mapping for Enums” 20-16
“Mapping for String Types” 20-17
“Mapping for Wide String Types” 20-20
“Mapping for Structured Types” 20-21

CORBA V2.2 Febloag/ 20-1

20

Section Title Page
“Mapping for Struct Types” 20-27
“Mapping for Union Types” 20-31
“Mapping for Sequence Types” 20-35
“Mapping For Array Types” 20-41
“Mapping For Typedefs” 20-44
“Mapping for the Any Type” 20-46
“Mapping for Exception Types” 20-58
“Mapping For (perationsand Attributes” 20-61
“Implicit Arguments to Operations” 20-62
“Argument Passing Considerations” 20-62
“Mapping of Pseudo Objects to C++” 20-68
“Usage” 20-69
“Mapping Rules” 20-69
“Relation to the CPIDL Mapping” 20-70
“Environment” 20-71
“NamedValue” 20-72
“NVList” 20-73
“Request” 20-75
“Context” 20-80
“TypeCode” 20-81
“ORB” 20-83
“Object” 20-86
“Server-Side Mapping” 20-88
“Implementing Interfaces” 20-89
“Implementing Operations” 20-97
“Mapping of Dynamic Skeleton Interface to C++” 20-99
“PortableServer Functions” 20-101
“Mapping for PortableServer::ServantManager” 20-102
“C++ Definitions for CORBA” 20-103
“Alternative Mappings For C++ Dialects” 20-116
“C++ Keywords” 20-118

20-2 CORBAV2.2 February 1998

20

20.1 Preliminary Information
20.1.1 Overview

Key Design Decisions

The design of the C++ mapping wadisven by a number of considerations, including a
design that achieves reasonable performance, portability, efficiency, and usability for
OMG IDL-to-C++ implementatias. Several other congdhtions are outlined in this
section.

For more information about the general requirements of a mapping from OMG IDL to
any programming language, refer to “Requirements for a Language Mapping” on
page 19-2.

Compliance

The C++mapping tries to avoidrhiting the implementation freedoms of ORB
developers. For each OMG IDL and CORBA construct, the C++ mapping explains the
syntax and semantics of using the construct from C++. A client or server program
conforms to this mapping (is CORBA-C++ compliant) if it uses the constructs as
described in the C++ mapping chapters.idplementation conforms to this mapping

if it correctly executes any conforming client or server program. A conforming client
or server program is therefore portable across all conforming implemeistafior

more information about CORBA comptiae, refer to the Preface, “Definition of

CORBA Compliance” on page -xxvi.

C++ ImplementatiorRequirements

The mapping proposecehe assumes that the target C++ environment supports all the
features described ifhe AnnotatedC++ Reference ManualARM) by Ellis and
Stroustrup as adopted by the ANSI/ISO C++ standardizatiomiti@es, including
exception handling. In addition, it assumes that the C++ environment supports the
namespace construct recently adopted into the language. Because C++
implementations vary widely in the quality of their support for templates, this mapping
does not explicitly require their use, nor does it thsalkheir use as part of a CORBA-
compliant implementation.

C Data Layout Compatibility

Some ORB venars feel strongly that the C++ mapping should be able to work directly
with the CORBA C mapping. This mapping makes every attempt to ensure
compatibility between the C and C++ mappings, but it does not mandate such
compatibility. In addition to providing better interoperability and portability, the C++
call style solves the memory management problesen by C programmers who use
the C call style. Therefore, the OM@s adopted the C++ call style for OMG IDL.

CORBAV2.2 Preliminary Information February 1998 20-3

20

20-4

However, to provide continuity fazarlier applications, an implementation might
choose to support the C call style as an option. If an implementation supports both call
styles, it is recommated that the C call style be phased out.

Note that the mapping in the C Language Mappingtdrahas been modified to
achieve compatibilitypetween the C and C++ mappings.

No Implementation Descriptions

This mapping does not contaimplementation descriptions. It avoids details that
would constrain implementations, buillsillows clients to be fully source compatible
with any compliant implementation. Some exampéb®w possible implementans,
but these are not requiré@dplementations.

20.1.2 Scoped Names

Scoped names in OMG IDL are spfeadl by C++ scopes:
* OMG IDL modules are mapped to C++ namespaces.
 OMG IDL interfaces arenapped to C++ classes (as described in “Mapping for
Interfaces” on page 20-6).
» All OMG IDL constructs scoped to an interface are accessed vias€aped
names. For example, if a typeode were defined in interfacperinter then the
type would be referred to gwinter::mode

These mappings allow the corresponding mechanisms in OMG IDL and C++ to be
used to build scoped names. For instance:

/I DL
module M

{
struct E {

long L;
|3
|3

is mapped into:

/I C++
namespace M

{
struct E {

Long L;
3
}

andE can be referred outside Mas M::E . Alternatively, a C+4using statement
for namespac®lcan be used so thEtcan bereferred to simply ak:

/I C++
using namespace M;

CORBAV2.2 February 1998

20

E e;
elL=3;

Another alternative is to employusing statement only foM::E :

/I C++
using M::E;
E e;
elL=3;

To avoid C++ compilation problems, every use in OMG IDL of a @eyword as an
identifier is mapped into the same name preceded by the prefix “_cxx_". For example,
an IDL interface named “try” would be named “_cxx_try” whenname is mapped

into C++. The comigete list of C++keywords from the 2 Decemb@&896 Working

Paper of the ANSI/ISO C++ standardizatioommittees (X3J16, WG21) can be found

in the "C++Keywords" appendix.

20.1.3 C++ Type Size Requirements

The sizes othe C++ types used to represent OMG IDL types are implementation-
dependent. That ishis mapping makes no requirements as tostaeof(T) for
anything except basic types (see “Mapping for Basic Data Types” on page 20-15) and
string (see “Mapping for String Types” on page 20-17).

20.1.4 CORBA Module

The mappingrelies onsome predefined types, classes, and functions that are logically
defined in a module name&Z@iORBA. The maluleis automatically accessible from a
C++ compilation unit that includes a header file generated from an OMG IDL
specification. In the examples presented in tlisument, CORBAdefinitions are
referenced without explicit qualificatiofior simplicity. In practice, fullyscoped names

or C++using statements for thEORBAamespace would be required in the
application source. Appendix A otains standard OMG IDL types.

20.2 Mapping for Modules

As shown in “Scoped &mes” onpage 20-4, a moduldefines a scope, and asch is
mapped to a C+hamespace with the same name:

/I IDL
module M

{
>

/I C++
namespace M

{

/I definit ions

CORBA V2.2 Mapping for Modules February 1998 20-5

20

/I definitions

}

Because namespaces were only recently added to the C++ language, few C++
compilers currently support themlt&rnatve mappings for OMG IDL modules that do
not require C++ namespaces are in the Appendix “Alternative Mappings for C++
Dialects.”

20.3 Mapping for Interfaces

An interface is maped to a C++ class that contains publiciniébns ofthe types,
constants, operations, and exceptions defined in the interface.

A CORBA-C++-compliant program cannot
» Create or hold an instance of an interface class
e Use a pointerA*) or a reference/A&) to an interface class.

The reasorior these restrictions is tallow a wide variety of implementations. For
example, interface classesuld not be implemented as abstract base classes if
programs were allowed to create or hold instances of themséms®e, the generated
class is like a namespace that one cannot enterwsing statement. This example
shows the behavior of the mapping ofiaterface:

/I IDL
interface A

{
k

/I C++

/I Conformant uses

A::S s; /[declare a struct variable
s.field = 3; // field access

struct S { short field; };

/I Non-conformant uses:

/I one cannot declare an instance of an interface class...
Aq;

/I ...nor declare a pointer to an interface class...

A*p;

/I ...nor declare a reference to an interface class.

void f(A &r);

20.3.1 Object Reference Types

The use of ainterface type in OMG IDL denotes an object reference. Because of the
different ways an object reference can be used and the different possible
implementations in C++, an object reference mapsitoC++ types. For an interface

A, these types are naméd var andA_ptr . For historical reasons, the typdRef

is defined as a synonym féx_ptr , but usage of thRef names is not portable and

20-6 CORBAV2.2 February 1998

20

is thus deprecated. These types need not be disthhctar may be identical to
A_ptr , for example—so a compliant program cannot overloatamnsusing these
types solely.

An operation can be performed on an object by using an arrow’'dbn a reference
to the object. For example, if amterface defines an operatiop with no parameters
andobj is a reference to the interface type, then a call would be wotign

>op() . The arrow operator is used to invoke operations on bothptre and_var
object reference types.

Client code frequently will use the object reference variable tfpadr) because a
variable will automatically release its object reference when it is deallocateldeor
assigned aew obgct reference. The pointer typ& (ptr) provides a more priitive

object reference, which hasmiar semantics to a C++ pointer. Indeed, an
implementation may choose to defide ptr asA*, but is not required to. Unlike

C++ pointers however, conversion teoid* , arithmetic operadns, and relational
operations, including test for equality, are all non-compliant. A compliant
implementation need not detect these incorrect uses because requiring detection is not
practical.

For many operationsnixing data oftype A_var andA_ptr is possible without any
explicit operations or casts.a/ever, one needs to be careful in doing so because of
theimplicit release performed when the variable is deallocated. For example, the
assignment statement in the code below will result in the object reference heloh by
be released at the end of the block containingdédaration ofa.

/I C++

A _var a,;

A_ptr p =// ...somehow obtain an objref...
a=p;

20.3.2 Widening Object References

OMG IDL interface inheritance does not require that the corresponding C++ classes
are related, though that is certainly one possible implementation. However, if interface
B inherits from interface A, the followingmiplicit widening operations for B must be
supported by a compliaimnplementation:

« B_ptr to A _ptr

B _ptr to Object_ptr

e B var to A _ptr

- B _var to Object_ptr

Implicit widening from aB_var to A var or Object var need not be
supportedijnstead, widening betweenvar types for object references requires a call
to _duplicate (described in “Object Reference Operations” on page 20/8).
attempt to implicitly viden from one var type to another must cause a compile-time
error? Assignment between twovar objects of the same type is supported, but
widening assignments are not amdst cause a conipitime error. Vilening
assignments may be done usinduplicate

CORBA V2.2 Mapping for Interfaces February 1998 20-7

20

Il C++

B_ptrbp = ...

A_ptr ap = bp; /I implicit widening

Object_ptr objp = bp; /I implicit widening

objp = ap; /l implicit widening

B_var bv = bp; /I bv assumes ownership of bp

ap = bv; I/ implicit widening, bv retains
/I ownership of bp

obp = byv; /l implicit widening, bv retains
/I ownership of bp

A_var av = bv; /I illegal, compile-time error

A_var av = B::_duplicate(bv);// av, bv both refer to bp

B_var bv2 = bv; // implicit _duplicate

A var avz;

av2 = av; /[implicit _duplicate

20.3.3 Object Reference Opéions

Conceptually, th®bject class in theCORBA module is the base interface type for all
CORBA objects Any object reference can therefore be widened to the type
Object_ptr . As with other interfaces, the CORBA namespace also defines the type
Object_var

CORBA defines three operations on any object referaigglicate , release, and

is_nil . Note that these are operations on the object reference, not the object
implementation. Because the mapping does not require object referetivemselves

be C++ objects, the-> " syntax cannot be employed to express the usage of these
operations. Also, for convenience these operations are allowed to be performed on a nil
object reference.

Therelease andis_nil operations depend only on ty@dject, so they can be
expressed as regularnictions within the CORBA namespace as follows:

1.WhenT_ptr is mappedtd™, it isimpossible in C++ to provide implicit widening
betweenl _var types while also providing the necessary duplication semantics for
T ptr types.

2.This can be achieved by deriving&llvar types for object references from a bavar
class, then making the assignment operator¥ar private within eacA_var type.

20-8 CORBAV2.2 February 1998

20

Il C++
void release(Object_ptr obj);
Boolean is_nil(Object_ptr obj);

Therelease operation indicates that the caller will nomgger access the reference

so that associated resources may be deallocated. If the given object reference is nil,
release does nothing. This_nil operation return§ RUEIf the object reference
contains the special value for a nil object reference as defined by the ORB. Neither the
release operationnor theis_nil operation may throw CORBA exceptions.

The duplicate operation returns a new object reference with the satie type as
the given reference. The mapping for an interface therefore includes a static member
function named_duplicate in the generated class. For example:

/I IDL
interface A {};

/I C++
class A
{
public:
static A_ptr _duplicate(A_ptr obj);
h

If the given object reference is nilduplicate will return a nil object referece.
The duplicate operation can throw CORBA system exceptions.

20.3.4 Narrowing Object References

The mappindor an interface defines a static member function namearow that
returns a new object reference giveneasting referace. Like _duplicate | the
_narrow function returns a nil object reference if the given refeeeis nil. Unlike
_duplicate | the parameter tonarrow is a reference of an object aifiy

interface type @bject_ptr). If the actual (runtime) type of the parameter object
can be widened to the requestetérface’s type, thennarrow will return a valid
object reference. Otherwisenarrow will return a nil object reference. For example,
suppose A, B, C, and &re interface typesnd Dinherits from C, which inherits from

B, which in turn imerits from A. If an object reference to a C object is widened to an
A_ptr variable calledap, the

« A::_narrow(ap) returns a valid object reference;

 B::_narrow(ap) returns a valid object reference;
« C::_narrow(ap) returns a valid object reference;
» D::_narrow(ap) returns a nil object refenge.

Narrowing to A, B, and C all succeed because the object subtiteseinterfaces.
TheD::_narrow returns a nil object reference because the oljees not support
the D inter&ce.

CORBA V2.2 Mapping for Interfaces February 1998 20-9

20

For another example, suppose A, B, C, and D are interface typeBefits from B,

and both B and Dnherit from A. Now suppose that an object of type C is passed to a
function as an A. If the function cal&:_narrow orC:._narrow , a new dject
reference will be returned. A call tB::_narrow will fail and return nil.

If successful, the narrow function creates aew object reference and does not
consume the given object reference, sodhlter is responsible for releasing both the
original and new references.

The _narrow operationcan throw CORBA system exceptions.

20.3.5 Nil Object Reference

The mappindor an interéice defines atatic nember function named nil that
returns a nil object reference of that interfageetyFor each interface A, tliellowing
call is guaranteed to returhRUE

/I C++
Boolean true_result = is_nil(A::_nil());

A compliant applicatiomeed not calielease on the object reference returned from
the _nil function.

As described in “Object Reference Types” on page 20-6, object references may not be
compared usingperator==, sois_nil is the only compliantvay an object
reference can be checked to see if inik

The nil function may not throvany CORBA exceptions.

A compliant program cannot attempt to invoke gemtion through a nil object
reference, since a valid C+inplementation of a nil object referee is a null pointer.

20.3.6 Object Reference Out Parameter

When a_var is passed as avut parameterany previous value it refers to must be
implicitly released. To give C++ mappingplementations engh hooks taneet this
requirement, each object reference typsults in thegeneration of an out type
which is used solely as ttait parameter type. For example, interféceesults in the
object reference typA_ptr , the helper typd\ _var , and theout parameter type

A _out . The general form for object referenceut types is shown below.

20-10 CORBAV2.2 February 1998

20

/I C++
class A out
{
public:
A_out(A_ptr& p) : ptr_(p) { ptr_= A:_nil(); }
A_out(A_var& p) : ptr_(p.ptr_) {
release(ptr_); ptr_ = A::_nil();
}
A_out(A_out& a) : ptr_(a.ptr) {}
A_outé& operator=(A_out& a) {
ptr_ = a.ptr_; return *this;
}
A_out& operator=(const A_var& a) {
ptr_ = A::_duplicate(A_ptr(a)); return *this;
}
A_out& operator=(A_ptr p) { ptr_ = p; return *this; }
operator A_ptr&() { return ptr_; }
A_ptr& ptr() { return ptr_; }
A_ptr operator->() { return ptr_; }

private:
A_ptr& ptr_;
%
The frst constructor binds the reference data member withAthptr& argument.
The secondonstructor binds the reference data member wittAthptr object
reference held by thé_var argument, and thecalls release() on the object
reference. Thehird constructor, theapy constructor, binds theference data
member to the sam& ptr object reference bound to the data member of its
argument. Assignment from anoth&r out copies théA ptr referenced by the
argumentA_out to the data membeThe owerloaded assignment operator for
A _ptr simply assigns th&_ptr object reference argument to the data member.
The oveloaded assignment operator fr var duplicates théA ptr held by the
A var before assigning it to the data membenté\Nthat assignment does not cause
any previously-held lject reference value to be released; in this regardi thaut
type behaves exactly as Anptr . TheA_ptr& conversion operator returns the
data member. Thetr() member function, which can be used to avoid having to rely
on implicit corversion, also returns the data member. The overloaded arenatop
(operator->()) returns the data member to allow operations to bekad on the
underlying object reference after it has been properly initialized by assignment.

20.3.7 Interface Mapping Example

The examplebelow shows onegpossible mapping for an interface. Other mappings are
also possible, but they must provide the same semantics and usageexample.

CORBA V2.2 Mapping for Interfaces February 1998 20-11

20

/I IDL
interface A

{
A op(in A argl, out A arg?2);
|3

/I C++
class A;
typedef A *A_ptr;
class A : public virtual Object
{
public:
static A_ptr _duplicate(A_ptr obj);
static A_ptr _narrow(Object_ptr obj);
static A_ptr _nil();

virtual A_ptr op(A_ptr argl, A_out arg2) = 0;

protected:

AQ);
virtual ~A();

private:
A(const A&);
void operator=(const A&);

h

class A_var : public _var
{
public:
A_var() : ptr_(A:_nil() {}
A_var(A_ptr p) : ptr_(p) {}
A_var(const A_var &a) : ptr_(A::_duplicate(A_ptr(a))) {}
~A_var() { free(); }

A_var &operator=(A_ptr p) {
reset(p); return *this;

}

A_var &operator=(const A_var& a) {
if (this != &a) {

free();

ptr_ = A::_duplicate(A_ptr(a));

}

return *this;

}

A_ptrin() const { return ptr_; }
A_ptr& inout() { return ptr_; }
A_ptr& out() {

reset(A::_nil());

return ptr_;

20-12 CORBAV2.2 February 1998

20

}
A_ptr _retn() {

/I yield ownership of managed object reference

A_ptrval = ptr_;
ptr_ = A:z_nil();
return val;

}

operator const A_ptr&() const { return ptr_; }
operator A_ptr&() { return ptr_; }
A_ptr operator->() const { return ptr_; }

protected:
A_ptr ptr_;
void free() { release(ptr_); }
void reset(A_ptr p) { free(); ptr_=1p; }

private:
// hidden assignment operators for var types to
/1 fulfill the rules specified in
/I Section 19.3.2
void operator=(const _var &);

h

Thedefinition for theA_out type is the same as the asteown in “Chbject Reference
Out Parameter” on pad®9-10.

20.4 Mapping for Constants

OMG IDL constants are mapped directly to a C++ constamiteh that may or may

not define storage depending on the scope of the declaration. In the following example,
a top-level IDL constant maps to a fileege C++ constant whereas a nested constant
maps to a class-scope C++ constant. This inconsistency occurs because C++ file-scope
constants may not require storage (or the storage may be replicated in each compilation
unit), while class-scope constants always take storage. As a side effediffénéce

means that the generated C++ header file might not contain values for constants
defined in the OMG IDL file.

CORBA V2.2 Mapping for Constants February 1998 20-13

20

20-14

/I IDL
const string name = "testing";

interface A

{
k

Il C++
static const char *const name = "testing";

const float pi = 3.14159;

class A

{
public:
static const Float pi;

h

In certain situations, use of a constant in OMG IDL must generate the constant’s value
instead of the constant’s namh&or example,

/I DL
interface A

{

const long n = 10;
typedef long V[n];
|3

/| C++
class A

{
public:
static const long n;
typedef long V[10];

h

Wide Character and Wide String Constants

The mappings for wide elracterand wide string constants is identical to character and
string constants, except that IDL literals are pdecebyL in C++. For example, IDL
constant:

const wstring ws = “Hello World”;

would map to

3.A recent change made to the C++ language by the ANSI/ISO C++ standardization commit-
tees allows static integer constants to be initialized within the class declaration, so for some
C++ compilers, the code generation issues described here may not be a problem.

CORBAV2.2 February 1998

20

static const CORBA::WChar *const ws = L"Hello World”;

in C++.

20.5 Mapping for Basic Data Types

The basic data types have the mappings shown in Tablé 20sfe that the mapping of
the OMG IDLboolean type defines only the values 1 (TRUE) and 0 (FALSE); other
values produce undefined behavior.

Table 20-1Basic Data Type Mappings

OMG IDL C++ C++ Out Type

short CORBA::Short CORBA::Short_out

long CORBA::Long CORBA::Long_out

long long CORBA::LongLong CORBA::LongLong_out
unsigned short CORBA::UShort CORBA::UShort_out
unsigned long CORBA::ULong CORBA::ULong_out
unsigned long long CORBA::ULongLong CORBA::ULonglLong_out
float CORBA::Float CORBA::Float_out
double CORBA::Double CORBA::Double_out
long double CORBA::LongDouble = CORBA::LongDouble_out
char CORBA::Char CORBA::Char_out
wchar CORBA::WChar CORBA::WChar_out
boolean CORBA::Boolean CORBA::Boolean_out
octet CORBA::Octet CORBA::Octet

Each OMG IDL basic type is mapped to a typedef in the CORBA modhis.i§

because some types, suclshert andlong , may have different representations on
different platforms, and the CORBA definitions will reflect the appropriate
representation. For example, on a 64-bit machine where a long integer is 64 bits, the
definition of CORBA::Long would still refer to a 32-biinteger. Requirements for

the sizes of basic types are shown in “Basic Types” on page 3-23.

4. This mapping assumes tIGORBA::LongLong , CORBA::ULongLong , and
CORBA::LongDouble are mapped directly to native numeric C++ types (e.g.,
CORBA::.LongLong to a 64-bit integer type) that support the required IDL semantics and
that can be manipulated via built-in operators. If such native type support is not widely
available, then an alternate mapping to C++ classes (that support appropriate creation,
conversion, and manipulation operators) should also be provided by the C++ Mapping
Revision Task Force.

CORBA V2.2 Mapping for Basic Data Types February 1998 20-15

20

Exceptfor boolean , char, andoctet, the mappings for basic types must be
distinguishable from each other for the purposes of overloading. That is, osafedn
write overloaded C++ functions dshort , UShort , Long, ULong, Float , and
Double .

The_out types for the basic types are used to ®@pé parameters within operation
signatures, as described in “Operation Parameters and Signatures” on page 20-65. For
the basic types, eachout type shall be &4ypedef to a reference to the

corresponding C++ type. For example, $ieort out shall be defined in the
CORBAnamespace dsllows:

/I C++
typedef Short& Short_out;

The out types for the basic types are provided for consistency with otiter
parameter types.

Programmers concernedttv portability should use the CORBA types. However, some
may feel that using these types with the CORBA qualificatiopairs readability. If

the CORBA module is mapped to a namespace, a GstAg statement mapelp

this problem. On platforms where the C++ data type is guaranteed tertieadi to the
OMG IDL data type, a&ompliant implementation may generate the native C++ type.

For theBoolean type, only the values 1 (representifigUE) and O (representing
FALSE) are defined; other values produce undefined behavior. Since many existing
C++ software packages anbirbries already provide their own preprocessor macro
definitions of TRUEandFALSE, this mapping does not require that such definitions
be provided by a compliant implementation. Requiring definitiond RUEand

FALSE could cause compilation problems for CORBA applications that make use of
such packages aritbraries. Instead, we recommend that compliant applications
simply use the values 1 andd@rectly® Alternatively, for those C++ compilers that
support thebool type, the keywordtrtue andfalse may be used.

20.6 Mapping for Enums

An OMG IDL enum maps directly to the corresponding C++ type definititine

only difference is that the generated C++ type magd an additional constant that is
large enough to force the C++ corepito use exactly 32 bits for values declared to be
of the enumerated type.

5.Examples and descriptions in this document stilllREJEandFALSE for purposes of clar-
ity.

20-16 CORBAV2.2 February 1998

20

/I IDL
enum Color { red, green, blue },

Il C++
enum Color { red, green, blue };

In addition, an_out type used to typeut parameters within operation signatures is
generated for each enumerated type. For eG@or shown above, the
Color_out type shall be defined in the same scope as follows:

/I C++
typedef Color& Color_out;

The out types for enumerated types are generated for consistency withoother
parameter types.

20.7 Mapping for String Types

As in the C mapping, the OMG IDL string type, whetheutded or unbounded, is
mapped tochar* in C++. String data is nuterminated. In addition, th€ ORBA
module defines a clagtring_var that contains ghar* value and automatically
frees the pointer when@tring_var object is deallocated. WherSdring_var

is constructed or assigned fronthar* , thechar* is consumed and thus the string
data may no longer be accessed through it bycdier. Assignment or construction
from aconst char* or from anotheString_var causes a copy. The
String_var class also provides operations to converrd fromchar* values,
as well as subscripting operations to access characters within the Strnfull
definition of theString_var interface is given in String_var andString_out

Class” on page 20-104. Becatitemapping ischar* , the OMG IDL string type is
the only non-basic type for whighis mapping makes size requirements. For dynamic
allocation of strigs, compliant programs must use fokowing functions from the
CORBAnamespace:

Il C++

namespace CORBA {

char *string_alloc(ULong len);
char *string_dup(const char*);
void string_free(char *);

The string_alloc function dynamically allocatessiring, or returns aull

pointer if it cannot perform the allocation. It allocales+1 characters so that the
resulting string has engh space to hold taailing NUL character. The

string_dup function dynamically allocatesnough space to hold a copyitsf
string argument, including the NUL character, copies its string argument into that
memory, and returns a pointer to the new string. If allocd#ads, a null pointer is
returned. Thestring_free function deallocates a string thaasallocated with
string_alloc orstring_dup . Passing a null pointer &tring_free is
acceptable and results in mctionbeing performed. These functionsoal ORB

CORBA V2.2 Mapping for String Types February 1998 20-17

20

implementations to use special memory management mechanisms for strings if
necessary, without forcing them to replace glatjg¢rator new andoperator
new[] .

The string_alloc , string_dup , andstring_free functions may not
throw CORBA exceptions.

Note that a static array of char in C#iecays to &har* ©, so care must be taken
when assigning one to3tring_var , since theString_var will assume the

pointer points to data allocated \string_alloc and thus will eventually attempt
to string_free it:
Il C++

/I The following is an error, since the char* should point to
/I data allocated via string_alloc so it can be consumed
String_var s = "static string";// error

/I The following are OK, since const char* are copied,
/I not consumed

const char* sp = "static string";

S = Sp;

s = (const char*)"static string too";

/I C++

/I The following is an error, since the char* should point to
/I data allocated via string_alloc so it can be consumed
String_var s = "static string";// error

/I The following are OK, since const char* are copied,
/I not consumed

const char* sp = "static string";

S = Sp;

s = (const char*)"static string too";

6. This has changed in ANSI/ISO C++, where string literals are const char*, not char*. How-
ever, since most C++ compilers do not yet implement this change, portable programs must
heed the advice given here.

20-18 CORBAV2.2 February 1998

20

When aString_var is passed as asut parameterany previous value it refers to
must be implicitlyfreed. To give C++ mappinignplementationsenough hooks to
meet this requirement, the stritype also results in the generation dbtaing_out

type in theCORBAamespace which is used solely asgtimgout parameter type.
The generaform for theString_out type is shown below.

/I C++
class String_out
{
public:
String_out(char*& p) : ptr_(p) { ptr_=0;}
String_out(String_var& p) : ptr_(p.ptr_) {
string_free(ptr_); ptr_ =0;
}
String_out(String_out& s) : ptr_(s.ptr) {}
String_out& operator=(String_out& s) {
ptr_ = s.ptr_; return *this;
}
String_out& operator=(char* p) {
ptr_ = p; return *this;
}
String_out& operator=(const char* p) {
ptr_ = string_dup(p); return *this;
}
operator char*&() { return ptr_; }
char*& ptr() { return ptr_; }

private:
char*& ptr_;

/I assignment from String_var disallowed
void operator=(const String_var&);

3

The frst constructor binds the reference data member witlcha*& argument.
The second awstructor binds the reference data member witrcttar* held by the
String_var argument, and theralls string_free() on the string. The third
constructor, the copy constructor, binds the reference data member to thehsaifne
bound to the data member of its argumensigsment from anotheBtring_out
copies thechar* referenced by the argumeSBtring_out to thechar*
referenced by the datmember. The overloadeaksignment operator fahar*

simply assigns thehar* argument to the data member. The overloaasignment
operator forconst char* duplicates the argument and assignsrésallt to the
data member. Note that assignment does not causereviously-held string to be
freed; in this regard, thBtring_out type behaves exactly aschar* . The
char*& conversion operator returns the data memberplti{ ~member function,
which can be used to avoid having to rely mplicit conversion, also returns the data
member.

CORBA V2.2 Mapping for String Types February 1998 20-19

20

Assignment fronString_var to aString_out s disallowed because of the
memory management ambiguities involved. Specifically, it is not possible to determine
whether thestring owned bythe String_var should be taken over by the

String_out without copying, or if it should be copied. Disallowing assignment
from String_var forces the application developer to make the choice ettplici

/I C++

void
A::op(String_out arg)
{

String_var s = string_dup("some string");

arg = s;// disallowed; either

arg = string_dup(s);// 1: copy, or
arg = s._retn();// 2: adopt

}

On the line marked with the commeétit” the gpplication writer is explicitly copying

the string held by theString_var and assigning the result to taeg argument.
Alternatively, the application writer could use the technique shown on the line marked
with the comment “2” in order to force tf&tring_var to give up its ownership of

the string itholds so that it may be returned in @& argument without incurring
memory management errors.

20.8 Mapping for Wide String Types

Both bounded and unbounded wide string types are mapde@ RBA::WChar* in
C++. In addition, theCORBA module definedVString _var andWString_out
classes. Each of these classes provides the same memttiorfs with the same
semantics as thegtring counterparts, except of course they deal with wide strings
and wide claracters.

Dynamic allocatiorand ceallocation of wide strings must be perfad via the
following functions:

Il C++

namespace CORBA {
..
WChar *wstring_alloc(ULong len);
WChar *wstring_dup(const WChar* ws);
void wstring_free(WChar?*);

h

These functions have the same seimards the same functions for thiging type,
except they operate on wide strings.

20-20 CORBAV2.2 February 1998

20

20.9 Mapping for Structured Types

The mappindor struct, union , andsequence (but notarray) is a C++ struct or
class with a default constructor, a copy constructor, an assignment operator, and a
destructor. The default construciaitializes object reference members to
appropriately-typed nil object referencasd string members to NULL; all other
members are initialized via their default constructdte copyconstructor performs a
deep-copyfrom the existing structure to create a new structure, including calling
_duplicate on all object reference membensd performing the necessary heap
allocations for all string members. The assignment operator first releases all object
reference members and frees all string members, and then performs a deep-copy to
create a new structure. The destructor releases all object reference memnabfrees

all string members.

The mappingor OMG IDL structured types (structs, unions, arrays, and sequences)
can vary slightly depending on whether the data structuireid-lengthor variable-
length A type isvariable-lengthif it is one of thefollowing types:

» The typeany

* A bounded or unboundedrisig

» A bounded or unbounded sequence

* An object reference or reference to a transmissibéigo-object

A struct or union that contains a member whose type is variable-length

* An array with a variable-length element type

» A typedef to a variable-length type

The reasorfor treating fixed- and variable-length data structures differently is to allow
more flexibility in the allocation obut parameters and return valuiesm an

operation. This flexibility allows a client-side stub for an operation that returns a
sequence aftrings, for example, to allocate all tis&ring storage in one area that is
deallocated in a single call.

As a convenience for managing pointers to variable-length data types, the mapping also
provides a managing helper class for each variable-length type. This type, which is
named by adding the suffix “_var” to the original type’s hame, automatically deletes
the pointer when an instance is destroyed. An object of fyp@r behaves similarly

to the structured typé&, except that members must be accessedeaitly. For a struct,

this means using an arrow-¥") instead of a dot (*").

CORBA V2.2 Mapping for Structured Types February 1998 20-21

20

20-22

/I IDL
struct S { string name; float age; };
void f(out S p);

/I C++

S a;

S var b;

f(b);

a = b; // deep-copy

cout << "names " << a.name << ", " << pb->name << endl;

20.9.1 T _var Types

The generaform of theT_var types is shown below.

/I C++
class T var
{
public:
T_var();
T_var(T *);
T_var(const T_var &);
~T_var();

T_var &operator=(T *);
T_var &operator=(const T_var &);

T* operator->();
const T* operator->() const;

[* in parameter type */ in() const;
[* inout parameter type */ inout();
[* out parameter type */ out();

[* return type */ _retn();

/I other conversion operators to support
/I parameter passing

h

Thedefault constructor createslavar containing a null™* . Compliant applications
may not attempt to convertla var created with the default constructor intd*anor
useits overllmdedoperator-> without first assigning to it a valid™* or another
valid T_var . Due to the difficulty of doingo, compliant implementations are not
required to detect this error. Conversion of a dulvar to aT_out is allowed,
however, so thatd_var can legally be passed asa@ut parameter. Conversion of a
null T_var to aT*& is also allowed so as to be compatiblighvearlier versions of

this specification.

CORBAV2.2 February 1998

20

TheT* constructor creates® var that, when destroyedyill delete the storage
pointed to by thél* parameterThe parameter to this constructor should never be a
null pointer. Compliant implementations are not required to detect null pointers passed
to this constructor.

The copy costructordeep-copies any dataimted to by thel _var constructor
parameter. This copy will be destroyettem theT var is destroyed or when a new
value is assigned to it. Compliaimiple menations may, but are not required to, utilize
some form of reference counting to avoid such copies.

The destructor sesdelete to deallocatany data pointed to by tiE_var , except
for strings and array types, which are deallocated usingttireg_free and
T free (for array typel) deallocation functions, respectively.

The T* assignment operator results in the deallocatioangfold data pointed to by
theT_var before assuming ownership of thé& parameter.

The normal assignment operator deep-cogirg data pointed to by thke var
assignment parameter. Thispy will be destroyed when thle var is destroyed or
when a new value is assigned to it.

The oveloadedoperator-> returns thel™* held by thel _var , but retains
ownership of it. Compliant applications may not call this function unless thar
has beernitialized with avalid non-nullT* or T_var .

In addition to the member functions described aboveTthear types must support
conversion functions that allow them to fully support the parameter passing modes
shown in “Basic Argument and Result Passing” on page 20-66fdrhreof these
conversion functions is not specified so as to alttifferent implementatios, but the
conversions must be automatic (i.e., they must require nicigxgpplication code to
invoke them).

Because implicit conversions casometimes cause problems wétbme C++ compilers
and with codeeadability, thel _var types also support member functions that allow
them to be expditly converted for purposes of parameter passing. To pasyar

as anin parameter, an application can call th€) member function of thé& _var ;

for inout parameters, thmmout() = member function; foout parameters, the

out() member function; and to obtain a return value fromThear , the

_retn() function/ For eachl_var type, the return types of each of these
functions shall match the typsiown in Table 6 on page 19-5% thein, inout ,

out, and return modes for underlying typerespectively.

ForT_var types that returf*& from theout() member function, theut()
member function callslelete on theT* owned bythe T_var , sets it equal to the
null pointer, and then returns a reference to it. This <av for proper management

7.A leading underscore is needed on thetn() function to keep it from clashing with
user-defined member names of constructed typedeading underscores are not needed
forthein() ,inout() ,andout() functions because their names are IDL key-
words, so users can’t define members with those names.

CORBA V2.2 Mapping for Structured Types February 1998 20-23

20

of theT* owned by al_var when passed as @ut parameter, as described in
“Mapping For Operations and tibutes” onpage 20-61. An examplenplementation
of such arout() function is showrbelow:

/I C++

T*& T_var::out()

{

/I assume ptr_is the T* data member of the T_var
delete ptr_;

ptr_=0;

return ptr_;

}

Similarly, for T_var types whose corresponding types returned from IDL
operations aJ* (see Table 20-2 on page 20-66), thetn() function stores the
value of thel* owned by thel_var into a temporary pointer, sets th# to the null
pointer value, and then returns the temporahe T_var thus yields ownership of its
T* to the caller of retn() without callingdelete on it,and the cdér becomes
responsible for eventually deleting the returdéd An example implementation of
such a_retn() function is showrbelow:

/I C++

T* T_var::_retn()

{

/I assume ptr__is the T* data member of the T_var
T* tmp = ptr_;

ptr_=0;

return tmp;

}

This allows, for example, a method implementation to stofé aas a potential return
value in aT_var so that it will be deleted if an exception is thrown, and yet be able
to acquire control of th@* to be able to return it properly:

/I C++

T vart=new T;// t owns pointerto T

if (exceptional_condition) {

/It owns the pointer and will delete it

/I as the stack is unwound due to throw
throw AnException();

}

return t._retn();// _retn() takes ownership of
/I pointer from t

The T _var types are also produced for fixed-length structured types for reasons of
consistency. These types have the same sérraal _var types for variable-length
types. This allows applications to beded interms of T_var types regardless of
whether the underlying types are fixed- or variable-length.

EachT_var type must be defined at the same level of nesting dstgpe.

20-24 CORBAV2.2 February 1998

20

T _var types do not work with a pointer to constdnsince they provide no
constructor nooperator= taking aconst T* parameter. Since C++ does not
allow delete to be called on gonst T* & theT var object would normally

have to copy the consbject; instead, the absence of d@nst T* constructor and
assignment operators will result in a compile-time errguidh arninitialization or
assignment is attempted. This allows the application developer to decide if a copy is
really wanted or not. Explicit copying @onst T* objects intol _var types can

be achieved via the copy constructor Tor

/I C++
constT *t=..;
T _var tv = new T(*);

20.9.2 T out Types

When aT_var is passed as aut parameterany previous value it referred tust
be implicitly dekted. To give C++ mapping implementati@mough hooks tmeet
this requirement, each var type has a correspondifig out type which is used
solely as theut parameter type The generaform for T_out types for variable-
length types is shown below.

Il C++

class T_out
{
public:
T out(T*& p) : ptr_(p) { ptr_=20; }
T out(T_var& p) : ptr_(p.ptr_) {

delete ptr_;
ptr_ = 0;
}

T out(T_out& p) : ptr_(p.ptr) {}
T_out& operator=(T_out& p) {

ptr_ = p.ptr_;
return *this;
}

8. This too has changed in ANSI/ISO C++, but it not yet widely implemented by C++ compil-
ers.

CORBA V2.2 Mapping for Structured Types February 1998 20-25

20

20-26

T_out& operator=(T* p) { ptr_ = p; return *this; }

operator T*&() { return ptr_; }
T*& ptr() { return ptr_; }

T* operator->() { return ptr_; }

private:
T*& ptr_;

/I assignment from T_var not allowed
void operator=(const T_var&):

h

The first constructor binds the reference data member witA tBeargument and sets
the pointer to the null pointer valu&he second catructor binds the reference data
member with the pointer held by tfle var argument, and then catikelete on the
pointer (orstring_free() in the case of th&tring_out type or

T free() inthe case of &_var for an array typd). The third constructor, the
copy castructor, binds the reference data member to the same pointer referenced by
the data member of the constructor argument. Assignment from afotbat copies
the T* referenced by thd _out argument to the data memb&he oveloaded
assignment operator fd* simply assigns the pointer argument to the data member.
Note that assignmeimioes not cause any previously-held pointer to be deletedisin
regard, thel _out type behaves exactly asTd. TheT*& conversion operator
returns the data membefhe ptr() member function, which can be used to avoid
having to rely orimplicit conversion, also returns the data member. The overloaded
arrow operatorgperator->()) allows access to members of the data structure
pointed to by thel* data member. Compliant applications may cait the overloaded
operator->() unless thel _out has beernitialized with a valid non-nullT* .

Assignment to & _out from instances of the correspondihgvar type is
disallowedbecause there is nway to determine whether the application developer
wants a copy to be performed, or whetherthevar should yield ownership afs
managed pointer so it can be assigned toltheut . To perform a opy of aT_var
to aT_out , the application should useew:

/I C++
T vart=..;
my_out = new T(t.in());// heap-allocate a copy

Thein() function called ort typically returns econst T&, suitable for imoking
the copy constructor of the ngwallocatedT instance.

Alternatively, to make thd _var vyield ownership of its managed pointer so it can be
returned in al_out parameter, the applicationaiid use thél _var::_retn()
function:

CORBAV2.2 February 1998

20

Il C++
T vart=..;
my_out = t._retn();// t yields ownership, no copy

Note that thel _out types are not intended to serve as general-purpose data types to
be created and destroyed by applications; they are used only as types pattztiom
signatures to allow necessary memory management side-effects to occur properly.

20.10 Mapping for Struct Types

An OMG IDL struct maps to C++ struct, with each OMG IDL struct member mapped
to a corresponding member of the C++ struct. This mapping allows simple field access
as well as aggregatnitialization of nost fixed-length structs. Tiacilitate such
initialization, C++ structs mustot have user-defined constructors, assignment
operators, or destructors, and each struct member must delfeharaged type. WWh

the exception of strings andject references, the type of a C++ struct member is the
normal mapping of the OMG IDL member's type.

For a string or object referenceember, the name of the C++ member’s type is not
specified by the mapping—a compliant program therefore cannot create an object of
that type. The behavidiof the type is the same as the normal mappilgac* for

string, A_ptr for an interface A) except the type’s copy constructor copies the
member’s storage and its assignment operator releases the member’s old storage. Thes
types must also provide th®() ,inout() ,out() ,and retn() functions that

their corresponding_var types provide to allow them to support the parameter
passing modes specified in “Basic Argument and Result Passing” on page 20-66.

Assignment between a string or object reference member and a correspbnudarg
type String_var or A_var) always results in copying the data, whalgsignment
with a pointer does not. The one exception to the rule for assignment is when a
const char* is assiged to a member, in which case the storage is copied.

When the old storage must not be freed (for example,parsof the function’s
activationrecord), one can access the member directly as a pointer usinptthe
field accessor. This usage is dangerous and generally should be avoided.

/I IDL
struct FixedLen {floatx, y, z; };

Il C++
FixedLen x1 ={1.2, 2.4, 3.6}

9.Those implementations concerned with data layout compatibility with the C mapping in this
manual will also want to ensure that the sizes of these members match those of their C map-
ping counterparts.

CORBA V2.2 Mapping for Struct Types February 1998 20-27

20

FixedLen_var x2 = new FixedLen;
x2->y = x1.z7;

The example above shows usagehefT andT_var types for a fixed-length struct.
When it goes out of scopg? will automatically free the heap-allocatEdxedLen
object usingdelete

The followingexamples illustrate mixed usage bfandT_var types for variable-
length types, using the following OMG IDL deition:

/I DL
interface A;
struct Variable { string name; };

/I C++

Variable str1;// strl.name is initially NULL

Variable_var str2 = new Variable;// str2->name is
// initially NULL

char *non_const;

const char *const2;

String_var string_var;

const char *const3 = "string 1";

const char *const4 = "string 2";

strl.name = const3;// 1: free old storage, copy
str2->name = const4;// 2: free old storage, copy

In the example above, theame components of variablestrl andstr2 both start
out as null. On the line marked dagnst3 is assigned to theame component of
strl ; this results in the previowsrl.name being freed, and sincgonst3
points to const data, the contentohst3 being copied. In this cassirl.name
started out as null, so no previous data needs to be freed before the copying of
const3 takes place. Line 2 is silar to line 1, except thagtr2 is aT_var type.

Continuing with the example:

/I C++
non_const = strl.name;// 3: no free, no copy
const2 = str2->name;// 4: no free, no copy

On the line marked &trl.name s assigned tmon_const . Since

non_const is a pointer typechar*), strl.name is not freed, nor are the data
it points to copied. After the assignmestrl.name andnon_const effectively
point to the same storageijtivstrl.name retaining ownership of that storadéne

4 is identical to line 3, even thougionst2 is a pointer to const chastr2-

>name is neither freed nor copied becausEnst?2 is a pointer type.

20-28 CORBAV2.2 February 1998

20

Il C++
strl.name = non_const;// 5: free, no copy
strl.name = const2;// 6: free old storage, copy

Line 5 involves assignment ofchar* to strl.name , which results in the old
strl.name being freed and the value of then_const pointer, but not the data
it points to, being copied. In other words, after dssignmenstrl.name points to
the same storage @®n_const points to. Line 6 is the same as line 5 except that
becauseconst?2 is aconst char* | the data it points to are copied.

/I C++

str2->name = strl.name;// 7: free old storage, copy
strl.name = string_var;// 8: free old storage, copy
string_var = str2->name;// 9: free old storage, copy

On line 7, assignment is performed to a member from another member, so the original
value is of the left-hand member is freed and the new value is copieiar8j, lines

8 and 9 involve assignment to or fronBting_var , so in both cases the original
value of the left-hand side is freed and tiesv value iscopied.

/I C++
strl.name._ptr = str2.name;// 10: no free, no copy

Finally, line 10 uses theptr field accessor, so no freeing or copying takes place.
Such usage is dangerous arhegrally should be avoided.

ORB implementations concerned with single-process interopi¢yalith the C

mapping may overloadperator new() andoperator delete() for

structs so that dynamic allocation uses the same mechanism as tlyp&@ykdynamic
allocation functions. Whether these operators are overloaded by the implementation or
not, compliant programs ugeew to dynamically allocate structs adelete to free

them.

20.11 Mapping for Fixed

The C++mapping forfixed is an abstract datapg, with thefollowing class and
function templates:

/I C++ class template
template<CORBA::UShort d, Short s>
class Fixed

{
public:

/I Constructors...

Fixed(int val = 0);
Fixed(CORBA::LongDouble val);
Fixed(const Fixed<d,s>& val);
~Fixed();

/I Conversions...

CORBA V2.2 Mapping for Fixed February 1998 20-29

20

operator LongDouble() const;

/I Operators...

Fixed<d,s>& operator=(const Fixed<d,s>& val);
Fixed<d,s>& operator++();

Fixed<d,s>& operator++(int);

Fixed<d,s>& operator--();

Fixed<d,s>& operator--(int);

Fixed<d,s>& operator+() const;

Fixed<d,s>& operator-() const;

int operator!() const;

/I Other member functions
CORBA::UShort fixed_digits() const;
CORBA::Short fixed_scale() const;

h

template<CORBA::UShort d, CORBA::Short s>

istream& operator>>(istreamé& is, Fixed<d,s> &val);
template<CORBA::UShort d, CORBA::Short s>

ostream& operator<<(ostream& os, const Fixed<d,s> &val);

The digits and scale, @nd §, respectively, in the results of the binanythmetic
functions ¢, - ,* and/) are computed according to the rules in “Semantics” on
page 3-20. One way to do this is to declare the respéistyith a macro that evaluates
to the appropriate values, based on the digits and scale of the operands:

/I Example of Fixed result type declaration
Il Fixed<_FIXED_ADD_TYPE(d1,s1,d2,s2)> => Fixed<d S >

The tempéite specificatiomelow should be read as a prefix to each ofoperator
function declarations following.

/I C++ function templates for operators...

template<unsigned short d1, short s1, unsigned short d2,
short s2)

Fixed<d ,,s ,> operator + (const Fixed<d1,s1> &vall,
const Fixed<d2,s2> &val?);

Fixed<d ,,s ,> operator - (const Fixed<d1,s1> &vall,
const Fixed<d2,s2> &val?);

Fixed<d ,,s ,> operator * (const Fixed<d1,s1> &vall,
const Fixed<d2,s2> &val?);

Fixed<d ,,s , > operator / (const Fixed<d1,s1> &vall,
const Fixed<d2,s2> &val?);

Fixed<d1,s1> operator += (const Fixed<d1,s1> &vall,
const Fixed<d2,s2> &val?);

Fixed<d1,s1> operator -= (const Fixed<d1,s1> &vall,
const Fixed<d2,s2> &val?);

Fixed<d1,s1> operator *= (const Fixed<dl,s1> &vall,
const Fixed<d2,s2> &val?);

20-30 CORBAV2.2 February 1998

20

Fixed<d1,s1> operator /= (const Fixed<dl,s1> &vall,
const Fixed<d2,s2> &val?);

int operator > (const Fixed<d1,s1> &vall,
const Fixed<d2,s2> &val?);

int operator < (const Fixed<d1,s1> &vall,
const Fixed<d2,s2> &val2);

int operator >= (const Fixed<d1,s1> &vall,
const Fixed<d2,s2> &val?);

int operator <= (const Fixed<d1,s1> &vall,
const Fixed<d2,s2> &val?);

int operator == (const Fixed<d1,s1> &vall,
const Fixed<d2,s2> &val?);

int operator != (const Fixed<d1,s1> &vall,
const Fixed<d2,s2> &val?);

20.11.1 Fixed T_var and T_out Types

Just as for other type$, var types are defined fdrixed types. The semantics of
the T_var types forFixed types issimilar to thatfor fixed-length structs.

A T_out type for aFixed type is defined as typedef to a reference toRbxed
type, with the digits and scadalded to the name to disambiguitd-or example, the
name of thel_out type for the typdrixed<5,2> isFixed 5 2 out 1O

/I C++
typedef Fixed<5, 2>& Fixed 5 2 out;

20.12 Mapping for Union Types

Unions map to C++ classes with access functions for the union members and
discriminant.The default union congtctor performs no application-visible
initialization of the wion. It does noinitialize the discriminator, nor doesiititialize
any union members tostate useful to an application. (The implementation of the
default constructor can do whatever typemfialization it wantsto, but such
initialization is implementation-depeent. No compliant application can count on a
union ever being properiyitialized by the default constructor ale.)

It is therefore an error for an application to access the union before settingGtRB
implementations are not required to detect this error due to the difficulty of doing so.
The copy castructorand assignment operator bagibrform a deep-copy of their
parameters, with the assignment operator releasing old storageei$saryThe

destructor releases all storagenad by the union.

10. Note that this naming scheme would not be necessary if fixed types, like sequences and
arrays, were not allowed to be passed as anonymous types.

CORBA V2.2 Mapping for Union Types February 1998 20-31

20

The union dscriminant access functions have the nardeto both be brief and avoid
name conflicts with the members. The discriminator modifier functiorcan only be

used to set thdiscriminant to a value within the saragion member. In addition to
the_d accessors, a union with an implicit default member providededault()

member function that sets the discriminant to a legal default value. A union has an
implicit default member if it does not have a default case and not all permissible values
of the union discriminant are listed.

Setting theunion value through an access function automatically setdisbeaminant
and may release the storage assed wth the previous value. Attempting to get a
value through an access function that does not match the current discrirasatst in
undefined behavior. If an access function for a union memibrmultiple legal
discriminant values is used to set the value of the discriminantinibe
implementation is free to set the discriminantty one of the legal values for that
member. Theactual discriminant valuehosen under these circumstances is
implementation dependent.

The followingexample helpdlustrate themapping for union types:

/I IDL

typedef octet Bytes[64];

struct S {long len; };

interface A;

union U switch (long) {
case 1:long x;
case 2: Bytes y;
case 3: string z;

case 4:
case 5:Sw;
default: A obj;
>
/I C++

typedef Octet Bytes[64];
typedef Octet Bytes_slice;
class Bytes_forany { ... };
struct S { Long len; };
typedef ... A_ptr;

class U

{

20-32 CORBAV2.2 February 1998

20

public:
U0;
U(const U&);
~U();
U &operator=(const U&);

void _d(Long);
Long _d() const;

void x(Long);
Long x() const;

void y(Bytes);
Bytes_slice *y() const;

void z(char*);// free old storage, no copy

void z(const char*);// free old storage, copy

void z(const String_var &);// free old storage, copy
const char *z() const;

void w(const S &);// deep copy
const S &w() const;// read-only access
S &w();// read-write access

void obj(A_ptr);// release old objref,
/Il duplicate
A_ptr obj() const;// no duplicate

Accessor and modifier functions for union members provide seéesarimilar to that

of struct data members. Modifier functions perform the equivalent of a deep-copy of
their parametersandtheir parameters should be passed by value (failggpes) or

by reference to const (for larger types). Accessors that return a reference to a hon-const
object can be used for readi@raccess, buduch accessors are only provided for the
following types:struct , union , sequence , andany.

For an array uniomember, the accessor returns a pointer to the array slice, where the
slice is an array with all dimensions of the original except the first (array slices are
described in detail in “Mapping For Array Types” on page 20-Fhg array slice

return type allows for read-write access for array members via regular subscript
operators. For members of an anonymous array type, supporting typedefs for the array
must be generated directly into the uniéor exanple:

CORBA V2.2 Mapping for Union Types February 1998 20-33

20

/I IDL
union U switch (long) {
default: long array[20][20];

¥

/I C++
class U

{

...

void array(long arg[20][20]);
typedef long _array_slice[20];
_array_slice * array();

...

h

The name of the supporting arrsljce typedef is created by prepending an underscore
and appending “_slice” to the union member name. In the example above, the array
member named “array” results in an array slice typed#éd “_array_slicehested in

the union class.

public:

For stringunion members, thehar* modifier results in the freeing of old storage
before ownership of the pointer parameter is assumed, whileothst char*

modifier and theString_var modifiett? both result in the freeing of old storage
before the parameter’s storage is copied. The accessor for a string member returns a
const char* to allow examination but not modification of the string storige.

For abject reference union members, object reference parameters to modifier functions
are duplicated after the old object reference is released. An object reference return
value from an accessor function is not duplicated because the union retains ownership
of the object reference.

The restrictions forusing the _d discriminator modifier function arshown bythe
following examples, based on the definition of the urlibshownabove:

11.A separate modifier f@tring_var is needed because it can automatically convert to
both achar* and aconst char* ; since unions provide modifiers for both of these

types, an attempt to set a string member of a union fiStniag_var would otherwise
result in an ambiguity error at compile time.

12.A return type o€har* allowing read-write access could mistakenly be assigned to a
String_var , resulting in théString_var and the unioiboth assuming ownership
for the string’s storage.

20-34 CORBAV2.2 February 1998

20

Il C++

Ss={10};

Uu;

u.w(s);// member w selected

u._d(4);// OK, member w selected
u._d(5);// OK, member w selected
u._d(2);// error, different member selected
A ptra=..;

u.obj(a);// member obj selected

u._d(7);// OK, member obj selected
u._d(1);// error, different member selected

As shown here, thed modifier function cannot be useditaplicitly switch between
different union memberghe following shows an example dbwthe _default()
member function is used:

/I IDL
union Z switch(boolean) {
case TRUE: short s;

|

/I C++

21z

z._default(); // implicit default member selected
Boolean disc = z._d();// disc == FALSE

U u;// union U from previous example
u._default();// error, no _default() provided

For unionZ, calling the_default() member function causes the union’s value to
be composed solely of thiiscriminator value oFALSE, since there is no explicit
default member. For uniod, calling_default() causes a compilation error
becausdJ has an explicitly declared default casel thus no default() member
function. A_default() member function is only generated for unions with
implicit default members.

ORB implementations concerned with single-process interopigyalith the C

mapping may overloadperator new() andoperator delete() for unions

so that dynamic allocation uses the same mechanism aslémgu@age dynamic

allocation functions. Whether these operators are overloaded by the implementation or
not, compliant programs usew to dynamically allocate unions adelete to free

them.

20.13 Mapping for Sequence Types

A sequence is mapped to a C++ class that behaves like an array with a current length
and a maximum length. For a bounded sequence, the maximum length is implicit in the
sequence’s type and cannotdlicitly controlled by the programmer. For an

CORBAV2.2 Mapping for Sequence Types February 1998 20-35

20

20-36

unbounded sequence, timétial value of the maximum length can be specified in the
sequence constructor to allow control over the size of thialibuffer allocation. The
programmer may always explicitly modify the current length of any sequence.

For an unbounded sequencetiagtthe length to a larger value than the current length
may reallocate the sequence data. Reallocation is conceptually equivalent to creating a
new sequence dhe desired new length, copying the old sequence elemernts
throughlength-1into the new sequence, and then assigning the old sequence to be the
same as the new sequence. Setting the length to a smaller value than the current lengtl
does not affect how the storage associated with the sequence is manipulated. Note,
however, that thelementorphaned by this redtionare no longer accessible and that
their values canot be recovered by increasing the sequence length to its original value.

For a bounded sequenedtempting to sethe current length to a value larger than the
maximum length gien in the OMG IDL specification produces undefined behavior.

For each different named OMG IDL sequence type, a comptigsiementation
provides a separate C++geence type. For example:

/I IDL
typedef sequence<long> LongSeg;
typedef sequence<Lo ngSeq, 3> LongSeqSegq;

/I C++
class LongSeq// unbounded sequence
{

public:
LongSeq();// default constructor
LongSeq(ULong max);// maximum constructor
LongSeq(// T *data constructor
ULong max,
ULong length,
Long *value,
Boolean release = FALSE
);
LongSeq(const LongSeq&);
~LongSeq();

)

CORBAV2.2 February 1998

20

class LongSeqSeq// bounded sequence
{

public:
LongSeqSeq();// default constructor
LongSeqSeq(// T *data constructor
ULong length,
LongSeq *value,
Boolean release = FALSE
);
LongSeqSeq(const LongSeqSeq&);
~LongSeqSeq();

%

For both bounded and unbounded sequences, the default construcioov@sinthe
example above) sets the sequence length equal to 0. For bounded sequences, the
maximum length is part of the tymad cannot beet or modified, while for
unbounded sequences, the default constructorsasothe maximum teyth to 0. The

default constructor for Bounded sequence always allocates a contents vector, so it
always sets theelease flag to TRUE

Unbounded sequences provide a constructor that allows oniwitia¢ value of the
maximum length to be set (the “maximum construcaitdwn inthe example above).
This allows applications to contrbbw much bukr space isnitially allocated by the
sequence. This constructor also sets the lengthaindGtherelease flag to TRUE

The “T *data ” constructor (as shown in the example abai&ws the lengttand
contents of a bounded or unbounded sequence to be set. For unbounded sequences, |
also allows the initial value of the maximuength to be set. For this constructor,
ownership of the contents vector is determined byr¢hease parameter-FALSE

means the caller owns the storage, wiAiRUEmeans that the sequence assumes
ownership of the storage. iélease is TRUE the contents vector musave been
allocated using the sequengocbuf function, and thesequence will pass it to

freebuf when finished ith it. Theallocbuf andfreebuf functions are

described on “Additional Memory Management Functions’page 20-40.

The copy caostructor creates a nesequence with the sameaximumand length as
the given sequence, copies eaclit®turrent elementtems zerothroughlength-J,
and sets theelease flag to TRUE

The assignment operator deep-copies its parameter, releasing old storage if necessary.
It behaves as if the original sequence is destroyed via its destructor and then the source
sequence copied using the copy constructor.

If release=TRUE , the destructor destroys each of the current elenfgéataszero
throughlength-).

For an unbounded sequence, ikallocation is necessadge to a change in the length
and the sequenceas created usintpe release=TRUE parameter in its
constructor, the sequence will deallocate the old storageldése is FALSE
under these circumstances, old storage will not be freed beforeatiecation is
performed. After reallocation, thelease flag is always set td RUE

CORBAV2.2 Mapping for Sequence Types February 1998 20-37

20

For an unbounded sequence, thaximum() accessor function returns the total
amount of buffer space currently available. This allows applications to know how many
items they can insert into ambounded sequencéthout causing a reallocation to

occur. For a bounded sequenogaximum() always returns the bound of the
sequence as given its OMG IDL type declaration.

The oveloaded subscript operatorgsgerator]]) return the item at the given
index. The non-const version must return something that can servevaduan(i.e.,
something that allows assignment into the item at thengindex), while the const
version must allow read-only access to the item at thengndex.

The oveloaded subscript operators may notused to access or modify any element
beyond the current sequence length. Before either foropefator(] is used on a
sequence, the length of the sequence misttife set using thiength(ULong)
modifier function, unless the segnce was constructed using fhe*data

constructor.

For stringsand object referencesperator(] for a sequence must return a type
with the same semantics as the typssd for string and object reference members of
structs and arrays, so that assignment to the string or object reference sequence
member viaoperator=() will release old storage when appropriate. Note that
whatever these special return types are, they must honsettng of therelease
parameter in thd *data constructor \ith respect to releasing old storage.

For theT *data sequence constructor, the typeTofor strings and object
references ichar* andT_ptr , respectively. In other ards, string buffers are
passed ashar** and object reference buffers are passed_gar*

20.13.1 Sequence Example

The examplebelow showsfull declarations for both a baded and an unbounded
sequence.

/I IDL
typedef sequence<T> V1, /l'u nbounded sequence
typedef sequence<T, 2>V2; //b ounded sequence

/I C++
class V1// unbounded sequence
{
public:
V1();
V1(ULong max);
V1(ULong max, ULong length, T *data,
Boolean release = FALSE);
V1(const V1&);
~V1();
V1 &operator=(const V1&);

20-38 CORBAV2.2 February 1998

20

ULong maximum() const;

void length(ULong);
ULong length() const;

T &operator[](ULong index);
const T &operator[J(ULong index) const;

h
class V2// bounded sequence

{
public:
V2();
V2(ULong length, T *data, Boolean release = FALSE);
V2(const V2&);
~V2();
V2 &operator=(const V2&);

ULong maximum() const;

void length(ULong);
ULong length() const;

T &operator[](ULong index);
const T &operator[J(ULong index) const;

h

20.13.2 Using the “release” Constructor Parameter

Consider the following example:

/I IDL
typedef sequence< string, 3> St ringSeq;

Il C++

char *static_arr[] = {"one", "two", "three"};
char **dyn_arr = StringSeq::allocbuf(3);
dyn_arr[0] = string_dup("one");
dyn_arr[1] = string_dup("two");
dyn_arr[2] = string_dup("three");

StringSeq seql(3, static_arr);
StringSeq seq2(3, dyn_arr, TRUE);

seql[1] = "2";// no free, no copy

char *str = string_dup("2");
seq2[1] = str;// free old storage, no copy

CORBAV2.2 Mapping for Sequence Types February 1998 20-39

20

In this example, botkeql andseq2 are constructed using user-specified data, but
only seq?2 is told to assume management of the user memory (because of the
release=TRUE parameter in its constructor). When assignnoecurs into

seql[l] , the right-hand side is not copied, nor is anything freed because the
sequence does not manage the user memory. When assignment occagqdfitd |,
however, the old user data must be freed before ownership of the right-hand side can
be assumed, sinceq2 manages the user memory. Whesg2 goes out of scope, it

will call string_free for each of its elements afr@ebuf on the buffer given to

it in its constructor.

When therelease flag is set tofRUEand the sequence element type is either a
string or an object reference type, the sequence will individually releaseskso@nt

before releasing the contents buffer. It will release strings wssimy_free , and it
will release object references using teéease function from theCORBA
namespace.

In general, assignmentauld never take place into a sequence element via
operator(] unlesgelease=TRUE due to the possibility for memory management
errors. In particular, aequence constructed withlease=FALSE should never be
passed as anout parameter because the callee hawagp todetermine the setting of
therelease flag, and thus must always assume tietdase is set toTRUE Code

that creates a sequence withease=FALSE and then knowingly and correctly
manipulates it in that state, alsown withseql in the example above, is compliant,
but care should always be taken to avoid memory leaks under these circumstances.

As with otherout and return valuegyut and return sequences must not be assigned to
by the caller without first copying them. This is more fully explainedéant®n 2020,
“Argument Passing Considerations,” on page 20-62.

When a sequence is constructeithwelease=TRUE , a compliant applicatioshould
make no assumptions about the continugdiine ofthe data buffer passed to the
constructor, since a compliant sequence implementation is fre@ptothe buer and
immediately free the original pointer.

20.13.3 Additional Mmory Management Functions

ORB implementations concerned with single-process interopigyalsith the C
mapping may overloadperator new() andoperator delete() for
sequences so that migmic allocation uses the same mechanism as the C language
dynamic allocation functions. Whether these operators are overloaded by the
implementation or not, compliant programs m& to dynamically allocate
sequences andelete to free them.

Sequences also provi@elditional memory management functions for their buffers. For
a sequence of type T, the followisgatic member functions aprovided in the
sequence class public interface:

20-40 CORBAV2.2 February 1998

20

Il C++
static T *allocbuf(ULong nelems);
static void freebuf(T *);

Theallocbuf function allocates a vector of T elements tbat be passed to tfie
*data constructor. The length of the vector is given byriekems function

argument. Thallocbuf functioninitializes each element using its default
constructor, except fatrings, which arenitialized to null pointersand object
references, which are initialized to suitably-typed nil object references. A null pointer
is returned ifallocbuf ~ for some reason cannot allocate the requested vector. Vectors
allocated byallocbuf should be freed using tHeebuf function. The freebuf
function ensures that the destructor for each element is called before the buffer is
destroyed, except fatring elements, which are freed usisging_free() , and
object reference elements, which are freed ugdtepse() . Thefreebuf function

will ignore null pointers passed to it. Neithetocbuf norfreebuf may throw
CORBA exceptions.

20.13.4 Sequence T_var amdout ypes

In addition to the regular operations defined Torvar andT_out types, the

T _var andT_out for a sequence type also supports an overloagedator|]

that forwards requests to tlogerator]] of the underlying sequencé This
subscript operator should have the same return type as that of the corresponding
operator on the underlying sequence type.

20.14 Mapping For Array Types

Arrays are mapped to the corresponding C++ array definition, valiols the

definition of statically-initialized data using the array. If the array element is a string or
an object reference, then the mapping uses the same type as for structure members.
That is, assignment to an array element will release the storage associated with the old
value.

/I IDL

typedef float F[10];

typedef string V[10];

typedef string M [1][2][3];

void op(out F p1, outV p2, out M p3);

13.Note that sincé_var andT_out types do nothandonst T* , there is no need to
provide the const version operator]] for Sequence_var and
Sequence_out types.

CORBA V2.2 Mapping For Array Types February 1998 20-41

20

20-42

Il C++

typedef CORBA::Float F[10];

typedef ... V[10];// underlying type not shown because
typedef ... M[1][2][3];// it is implementation-dependent
Ffl; F_varf2;

V vl; V_varvz;

M ml1; M_var m2;

f(f2, v2, m2);

f1[0] = f2[1];

v1[1] = v2[1];// free old storage, copy

m1[0][1][2] = m2[0][1][2];// free old storage, copy

In the above example, the laso assignments result in the storage associaitddthe
old value of the left-hand side being automatically released before the value from the
right-hand side is copied.

As shown in “Basic Argument and Result Passing” on page 206 and return

arrays are handled via pointer to arsdige where a slice is an array with all the
dimensions of the original specified except thistione. As a convenience for
application declaration of slice types, the mapping also provides a typedef for each
array slice typeThe rame of the slice typedef consists of the name of the array type
followed bythe suffix “_slice”. For example:

/I DL
typedef long LongArray[4] [5];

/I C++
typedef Long LongArray[4][5];
typedef Long LongArray_slice[5];

Both theT_var type and thél_out type for an array should overload

operator(] instead ooperator-> . The use of arrayisks also means that the

T var type and thd _out type for an array should have a constructor and
assignment operator that each take a pointer to array slice as a parameter, rather than
T*. TheT_var for the previous example would be:

CORBAV2.2 February 1998

20

Il C++
class LongArray_var
{

public:
LongArray_var();
LongArray_var(LongArray_slice*);
LongArray_var(const LongArray_var &);
~LongArray_var();
LongArray_var &operator=(LongArray_slice*);
LongArray_var &operator=(const LongArray_var &);

LongArray_slice &operator[J(ULong index);
const LongArray_slice &operator[](Ulong index) const;

const LongArray_slice* in() const;
LongArray_slice* inout();
LongArray_slice* out();
LongArray_slice* _retn();

/I other conversion operators to support
/I parameter passing

h

Because arrays are mappatb regular C++ arrays, they present special problems for
the type-saf@ny mapping described in “Mapping for thiny Type” onpage 20-46.

To facilitate theiruse with theany mapping, a compliant implementation must also
provide for each array typedastinct C++type whose name consists of the array name
followed bythe suffix _forany. These types must be distinct so asidav functions to

be overloaded on them. Likkrray var types,Array_forany types allow
access to the underlying array type, but unfdeay var , the Array_forany

type does notlelete the storage of the underlying array upon its own destruction.
This is because thAny mapping retains storage ownership, as described in
“Extraction from any” on page 20-49.

The inerface of théArray_forany type is identical to that of tharray_var
type, but it may not be implemented as a typedef tofAthiay_var type by a
compliant implementation since it must be distinguishable from other types for
purposes of function overloading. Also, tAeray forany constructor taking an
Array_slice* parameter also takesBoolean nocopyparameter which
defaults toFALSE

CORBA V2.2 Mapping For Array Types February 1998 20-43

20

Il C++
class Array_forany

{
public:
Array_forany(Array_slice*, Boolean nocopy = FALSE);

}

The nocopyflag allows for a pn-copyinginsertion of anArray_slice* into an
Any.

EachArray_forany type must be defined at the same level of nesting as its
Array type.

For dynamic allocation of arrays, compliant grams must use special functions
defined at the same scope as the array type. For array T, the following functions will be
available to a compliant program:

/I C++

T_slice *T_alloc();

T_slice *T_dup(const T_slice*);
void T_free(T_slice *);

TheT_alloc function dynamically allocates an array, or returns a null pointer if it
cannot perform the allocation. THe dup function dynamically allocates a new array
with the same size ats array argument, copieach element of the argument array

into the new array, and returns a pointer tortbe array. If dbcation fails, a null

pointer is returned. ThE_free function deallocates an array tiveas alocated with

T alloc orT_dup. Passing a null pointer fb_free is acceptable ancsults in

no action being performed. These functiaiesw ORB implementations to uik

special memory management mechanisms for array types if necessary, without forcing
them to replace globaperator new andoperator new[]

TheT alloc , T _dup, andT_free functions may not throw CORBA exceptions.

20.15 Mapping For Typedefs

A typedef creates an alias for a type. If the original type maps to several types in C++,
then the typedef creates the corresponding alias for each type. The ekalople
illustrates the mapping.

20-44 CORBAV2.2 February 1998

20

/I IDL

typedeflong T;

interface A1,

typedef A1 A2;

typedef sequence< long> S1;
typedef S1 S2;

/I C++
typedef Long T;

/I ...definitions for Al...

typedef A1 A2;
typedef A1_ptr A2_ptr;
typedef A1_var A2_var;

/I ...definitions for S1...

typedef S1 S2;
typedef S1_var S2_var;

For a typedef of an IDL type that maps to multiple C++ types, such as arrays, the
typedef maps to all of the same C++ types and functions that its base type requires. For
example:

/I IDL
typedef long array[10];
typedef array another_array;

/I C++

/Il ...C++ code for array not shown...
typedef array another_array;

typedef array_var another_array_var;
typedef array_slice another_array_slice;
typedef array_forany another_array_forany;

inline another_array_slice *another_array_alloc() {
return array_alloc();

}

inline another_array_slice*
another_array_dup(another_array_slice *a) {

return array_dup(a);

}

inline void another_array_free(another_array_slice *a) {
array_free(a);

CORBAV2.2 Mapping For Typedefs February 1998 20-45

20

20.16 Mapping for the Any Type

A C++ mapping for the OMG IDL typany must fulfill two different requirements:
» Handling C++ types in a type-safe manner.
» Handling values whose types are knbwn atimplementation compile time.

The frst itemcovers most normal usage of they type—the conversion of typed
values into and out of aany. The second item covers situations such as those
involving the reception of a request or responsgaioing anany that holds data of a
type urknown tothe receivemwhen it wascreated with a C++ compiler.

20.16.1 Handling Typed Values

To decrease the chances of creatingan with amismatchedTypeCode and value,

the C++ function overladingfacility is utilized. Specifically, foreachdistincttype in

an OMG IDL specification, overloaded functions to ingertl extract values of that
type are provided by each ORB implementation. Overloaded operators are used for
these functions so as to completely avoid any name gpabtdion. The nature of

these functions, which are described in ddteibw, is that the approprialgypeCode

is implied by the C++ type of the value being inserted into or extracted froanthe

Since the type-safany interface described below is based upon C++ function
overloading, it requires C++ types generated from OMG IDL specifications to be
distinct. However, there are special cases in which this requiremeot riset:

» As noted in Section 20.5, “Mapping for Basiafa Types,” on page 20-15, the
boolean , octet, andchar OMG IDL types are not required to map to distinct
C++ types, which means that a separate meadsstifiguishing them from each
other for the purpose of function overloading is neces3dmymeans of
distinguishing these types from each other is described in “Distinguishing
boolean, octet, chawchar, bounded string, and boundesitmng” onpage 20-52.

 Since all strings and wide strings are mappechr* andWChar*,
respectively, regardless of whether they arernged or unbounded, another
means of creating areting anany with a boundedtring or wde string value is
necessary. This is described listinguishing booleamctet, char, wchar,
bounded string, and bounded virsg” on page 20-52.

* In C++, arrays within a function argument ligtahy into pointers to theiir$t
elements. This means that function overloading cannot be used to distinguish
between arrays dfifferent sizes. The means for creatingsetting anany when
dealing with arrays is described below and in “Mapping For Array Types” on
page 20-41.

20.16.2 Insertion int@any

To allow a value to be set in @ny in a type-safe fashion, an ORB implementation
mustprovide the following overloaded operatomfition foreach separate OMG IDL
typeT.

20-46 CORBAV2.2 February 1998

20

/I C++
void operator<<=(Any&, T);

This function signature suffices for types that are normally passed by value:

* Short , UShort , Long, ULong, LongLong , ULongLong, Float
Double , LongDouble

® Enumerations
* Unboundedstrings and wide stringsilar* andWChar* passed by value)
® Object referencesl(_ptr)

For values of typd that are too large to be passed by value efficiestigh as structs,
unions, sequences, fixed typdd)y, and exeptions, twdorms of the insertion
function are provided.

/I C++
void operator<<=(Any&, const T&);// copying form
void operator<<=(Any&, T*);// non-copying form

Note that the copyinfprm is largely equivalent to the first forghown, as far athe
caller isconcerned.

These“left-shift-assign” operators aresed to insert a ped value into a@ny as
follows.

/I C++

Long value = 42;
Any a;

a <<= value;

In this case, the version ofperator<<= overloaded for typd.ong must be able
to set both the valuand theTypeCode properly for theany variable.

Setting a value in aany usingoperator<<= means that:

® For the copying version @fperator<<= , the lifetime of the value in theny is
independent of thafétime ofthe value passed wperator<<= . The

implementation of th@ny may not store its value as a reference or pointer to the

value passed toperator<<=

® For the noncopyingersion ofoperator<<= , the inserted™* is consumed by

theany. The caller may not use tA& to access the pointed-to data after insertion,

since theany assumes ownership of it, and it maymediatelycopy the pointed-to
data and destroy the original.

® With both the copying and non-copying version®perator<<= | any previous
value held by thény is properly deallocated. For example, if the
Any(TypeCode_ptr,void*, TRUE) constructor (described in “Handling
Untyped Values” on page 20-56) was called to creatéAthyg, the Any is
responsible for deallocating the memory pointed to byvthie* before copying
the new value.

CORBA V2.2 Mapping for the Any Type February 1998 20-47

20

Copyinginsertion of a string type or wide string type causes one of theviah
functions to be invoked:

/I C++
void operator<<=(Any&, const char*);
void operator<<=(Any&, const WChar*);

Sinceall string types arenapped tochar* , and all wide string types are mapped to
WChar* , these insertion functions assume that the value being inserted are
unbounded. “Distinguishing boolean, octet, char, wchar, bounded string, and bounded
wstring” on page 20-52 describes how bounded stringsbandded wide strings may

be correctly inserted into ahny. Non-copying insertion of both bounded and
unbounded strings can be achieved using/ihg:.from_string helper type.
Similarly, non-copying insertion of baded and unbounded wide strings strings can be
achieved using theny::from_wstring helper type. Both of these helper types

are described in “Distinguishing boolean, octet, char, wchar, bounded string, and
bounded wstring” on page 20-52.

Type-safe insertion of arrays uses fiay_forany types described in “Mapping
For Array Types” on page 20-41. Compliamplementations must provide a version
of operator<<= overloaded for eacArray_forany type. For example:

/I IDL
typedef long LongArray[4] [5];

/I C++

typedef Long LongArray[4][5];
typedef Long LongArray_slice[5];
class LongArray forany { ... };

void operator<<=(Any &, const LongArray_forany &);

The Array_forany types are always passeddperator<<= by reference to
const. Thenocopyflag in theArray_forany constructor is used to control whether
the inserted value is copieddcopy== FALSE) or consumedrocopy==TRUBE.
Because theocopyflag defaults toFALSE, copyinginsertion is the default.

Because of the type ambiguity between an arrall ahd aT*, it is highly
recommaded that portable code eiqilly* use the appropriatarray_forany
type when inserting an array into any :

14.A mapping implementor may use the new C++ key word “explicit” to prevent implicit con-
versions through tharray_forany constructor, but this feature is not yet widely available
in current C++ compilers.

20-48 CORBAV2.2 February 1998

20

/I IDL

struct S{... };
typedef S SA[5];
Il C++

struct S{... };

typedef S SA[5];
typedef S SA_slice;
class SA_forany{... };

SAs;

/I ...initialize s...

Any a;

a<<=s; /l'line 1
a <<= SA_forany(s); /l'line 2

Line 1results in the invocation of the noncopyiogerator<<=(Any&, S*)

due to the decay of tH8A array type into a pointer to its first element, rather than the
invocation of the copyin@A_forany insertion operator. Line 2 explicitly constructs
theSA_forany type and thusesults in the desired insertion operator beingled.

The noncopying version aperator<<= for object references takes the address of
theT_ptr type.

/I IDL

interface T{ ... };

Il C++
void operator<<=(Any&, T_ptr); /Il copying
void operator<<=(Any&, T_ptr*); // non-copying

The noncopying bject reference insertion consumes the object reference pointed to by
T _ptr* ; therefore after insertion the caller may not access the object referred to by
T _ptr since theany may have duplicated and then indigely released the original
object referenceThe caler maintains ownership of the storage for Theptr itself.

The copying ersion ofoperator<<= s also supported on theny var type.

Note that due to the conversion operators that colMeyt var to Anyé& for
parameter passingnly thoseoperator<<= functions defined as member functions
of any need to bexplicitly defined forAny_var .

20.16.3 Extraction fronany

To allow type-safe retrieval of a value from any, the mapping provides the
following operators for each OMG IDL typE

/I C++
Boolean operator>>=(const Any&, T&);

CORBA V2.2 Mapping for the Any Type February 1998 20-49

20

This function signature suffices foripritive types that are normally passed by value.
For values of typd that are too large to be passed by value efficiestigh as structs,
unions, sequences, fixed typdd)y, and exeptions, this function may be protpsd

as follows:

/I C++
Boolean operator>>=(const Any&, T*&);

The frst form of thisfunction is used only for thisllowing types:

* Boolean , Char, Octet , Short , UShort , Long, ULong, LongLong ,
ULongLong , Float , Double , LongDouble

® Enumerations

® Unbounded stringsand wide stringsh@r* andWChar* passed by reference,
i.e., char*& andWChar*&)

® Object referencesl(_ptr)
For all other types, theecond form of the fuction isused.

All versions ofoperator>>= implemented as member functions of clédsyy,
such as those fgrimitive types, should be marked esnst .

This “right-shift-assign” operator is used to extract a typed value froangnas
follows:

/I C++
Long value;
Any a;
a <<= Long(42);
if (a >>=value) {
/... use the value ...

}

In this case, the version operator>>= for typeLong must be able to determine
whether theAny truly does contain a value of typ®ng and, if so, copyts value
into the reference variable provided by the caller and ref&RbE If the Any does
not contain a value of typkeong, the value of thealler’s reference variable is not
changed, andperator>>= returnsFALSE

For non-pninitive types, such as struct, union, sequence, excepiioy, and fixed
types, extraction is done by pointer. For example, consideobtiogving IDL struct:

/I IDL

struct My Struct {
long Imem;
short smem;

|

Such astruct could be extracted from amy as follows:

20-50 CORBAV2.2 February 1998

20

Il C++
Any a;
/... aiis somehow given a value of type MyStruct ...
MyStruct *struct_ptr;
if (a >>= struct_ptr) {
/I ... use the value ...

}

If the extraction is successful, tealler's pointer will point to storagmanaged by the
any, andoperator>>= will return TRUE The caller must not try tdelete or
otherwise release this storage. The caller also should not use the storage after the
contents of th@ny variable are replaced via assignmémsgertion, or theeplace
function, or after th@ny variable is destroyed. Caneust betaken to avoid using

T var types with these extraction operators, since they will try to assume
responsibility for deleting the storage m&d by theany.

If the extraction is not successful, the value of ¢hder’s pointer is setqual to the
null pointer, andbperator>>= returnsFALSE

Correct extraction of array types relies on fgay_forany types described
in“Mapping For Array Types” on page 20-41.

/I IDL
typedef long A[20];
typedef A B[30][40][50];

/I C++

typedef Long A[20];
typedef Long A_slice;
class A forany{...};
typedef A B[30][40][50];
typedef A B_slice[40][50];
class B forany {... };

Boolean operator>>=(const Any &, A _forany&);// for type A
Boolean operator>>=(const Any &, B_forany&);// for type B

The Array_forany types are always passeddperator>>= by reference.

For strings, wide strings, and arrays, applications are responsible for checking the
TypeCode of theany to be sure that they do not overstep the bounds of the array,
string, or widestringobject when using the extracted value.

The operator>>= s also supported on theny_var type. Note that due to the
conversion operators that convAmy var toconst Any& for parameter passing,
only thoseoperator>>= functions defined as member functionsaofy need to be
explicitly defined forAny_var .

CORBA V2.2 Mapping for the Any Type February 1998 20-51

20

20.16.4 Distinguishing boolean, octet, char, wchar, bourstedg, and
bounded wstring

Since theboolean , octet , char , andwchar OMG IDL types are not required
to map to distinct C++ types, another meansisfinguishing them from each other is
necessary so that they can be used with the typeasgfenterface.Similarly, since
both bounded and unboundstlings map tachar* , and both bounded and
unbounded widstrings map toVChar*, another means of disgmishing them must
be provided. This is done bgwtroducing severahew helpettypes nested in thany
class interfacelFor example, this can be accomplishedsl@vnnext.

/I C++
class Any
{
public:
/I special helper types needed for boolean, octet, char,
/I and bounded string insertion
struct from_boolean {
from_boolean(Boolean b) : val(b) {}
Boolean val;
2
struct from_octet {
from_octet(Octet 0) : val(o) {}
Octet val;
2
struct from_char {
from_char(Char c) : val(c) {}
Char val;
2
struct from_wchar {
from_wchar(WChar wc) : val(wc) {}
WChar val;
2
struct from_string {
from_string(char* s, ULong b,
Boolean nocopy = FALSE) :
val(s), bound(b) {}
char *val;
ULong bound;
2
struct from_wstring {
from_wstring(WChar* s, ULong b,
Boolean nocopy = FALSE) :
val(s), bound(b) {}
WChar *val;
ULong bound;

20-52 CORBAV2.2 February 1998

20

h

void operator<<=(from_boolean);
void operator<<=(from_char);
void operator<<=(from_wchar);
void operator<<=(from_octet);
void operator<<=(from_string);
void operator<<=(from_wstring);

/I special helper types needed for boolean, octet,
/I char, and bounded string extraction
struct to_boolean {
to_boolean(Boolean &b) : ref(b) {}
Boolean &ref;
h
struct to_char {
to_char(Char &c) : ref(c) {}
Char &ref;
h
struct to_wchar {
to_wchar(WChar &wc) : ref(wc) {}
WChar &ref;
h
struct to_octet {
to_octet(Octet &0) : ref(o) {}
Octet &ref;
h
struct to_string {
to_string(char *&s, ULong b) : val(s), bound(b) {}
char *&val;
ULong bound;
h
struct to_wstring {
to_wstring(WChar *&s, ULong b) : val(s), bound(b) {}
WChar *&val;
ULong bound;

h

Boolean operator>>=(to_boolean) const;
Boolean operator>>=(to_char) const;

CORBA V2.2 Mapping for the Any Type February 1998 20-53

20

Boolean operator>>=(to_wchar) const;
Boolean operator>>=(to_octet) const;
Boolean operator>>=(to_string) const;
Boolean operator>>=(to_wstring) const;

/I other public Any details omitted

private:
/I these functions are private and not implemented
// hiding these causes compile-time errors for
[/l unsigned char
void operator<<=(unsigned char);
Boolean operator>>=(unsigned char &) const;

h

An ORB implementation provides the overloadggerator<<= and
operator>>= functions for these special helper types. These helper types are used
as showmext.

/I C++

Boolean b = TRUE;

Any any;

any <<= Any::from_boolean(b);
...

if (any >>= Any::to_boolean(b)) {
/I ...any contained a Boolean...
}

char* p = "bounded";
any <<= Any::from_string(p, 8);
...
if (any >>= Any::to_string(p, 8)) {
/I ...any contained a string<8>...
}

A bound value of zero passed to the appropriate helperngpesates arunbounded
string or wide string.

For noncopying insertion of a bounded or unbounded sitntoganany , thenocopy
flag on thefrom_string constructor should be set TRUE

/I C++

char* p = string_alloc(8);

/I ...initialize string p...

any <<= Any::from_string(p, 8, 1); // any consumes p

The sameaules apply forbounded and unbounded wide strings and the
from_wstring helper type.

20-54 CORBAV2.2 February 1998

20

Assuming thaboolean , char , andoctet all map the C++ typeinsigned
char , the private and unimplementegherator<<= andoperator>>=
functions forunsigned char will cause a compile-time error if straigimsertion
or extraction ofany of theboolean , char , oroctet types isattempted.

/I C++

Octet oct = 040;

Any any;

any <<= oct;// this line will not compile

any <<= Any::from_octet(oct);// but this one will

It is important to note that the previous example is only one possiplementation
for these helpers, not a mandated one. Otberpliant implementations are possible,
such as providing them via in-linedaticany member functions iboolean ,

char , andoctet are in fact mapped to distinct C++ types. All compliant C++
mapping implementations must provide these helpers, however, for purposes of
portability.

20.16.5 Widening to Object

Sometimes it is desirable to extract an object reference froAngnas the base
Object type. This can be accomplished using a helper typé#sasito those required
for extractingBoolean , Char, andOctet :

/I C++
class Any

{
public:

struct to_object {
to_object(Object_ptr &obj) : ref(obj) {}
Object_ptr &ref;

I3

Boolean operator>>=(to_object) const;

2

Theto_object helper type is used to extract an object refeeefrom anAny as

the baseObject type. If theAny contains a value of an object reference type as
indicated by itsTypeCode , the extraction function

operator>>=(to_object) explicitly widens its contained object reference to
Object and returns true, otherwise it returns false. This is the only object reference
extraction function that performs wading on the extracted object reference. As with

regular object reference extraction, no duplication of the object reference is performed
by theto_object extraction operator.

CORBA V2.2 Mapping for the Any Type February 1998 20-55

20

20-56

20.16.6 Handling Untyped Values

Under some circumstances the type-safe interfadaiois not sufficient. An example

is a situation in which data types are read from a file in binary form and used to create
values of typeAny. For these cases, t#y class provides a constructor with an
explicit TypeCode and generigointer:

/I C++
Any(TypeCode_ptr tc, void *value, Boolean release = FALSE);

The constructor is responsible for duplicating the giigrpeCode pseudo object
reference. If therelease parameter iTRUE then theAny object assumes
ownership of the storage pointed to by tsdue parameter. A compliant application
should make no assumptions about the caetllifetime of thevalue parameter
once it has been handed toAny with release=TRUE , since a complianAny
implementation is allowed to copy tvalue parameter andvimediately free the
original pointer. If therelease parameter i$~ALSE (the default case), then the
Any object assumes the caller will manage the memory pointed ¥albyg . The
value parameter can be a nulbinter.

The Any class also defines three unsafe operations:

/I C++

void replace(
TypeCode_ptr,

void *value,

Boolean release = FALSE
);

TypeCode_ptr type() const;
const void *value() const;

Thereplace function is intended to be used with types that cannot be used with the
type-safe insertion interfacand so issimiar to the constructor describetbove. The
existing TypeCode is released and value storadgallocated, if necessafhe
TypeC ode function parameter is duplicated. If thedlease parameter iFRUE then
the Any object assumes ownership for the storage pointed to bxathe parameter.
A compliant application should make no assumptions about the contifet#de of
thevalue parameter once it has beleanded to thédny::replace function with
release=TRUE , since a complianAny implementation is allowed to copy the
value parameter andrimediately free the original pointer. If tielease
parameter id~ALSE (the default case), then tey object assumes the caller will
manage the memory occupied by the value. idlele parameter of theeplace
function can be a null pointer.

For C++ mappingmplementations that udenvironment parameters to pass
exception information, the defauktlease argument can bsimulated byproviding
two overloadedeplace functions, one that takes a non-defaultettase
parameteand one that takes nmelease parameter. The second function simply
invokes thefirst with therelease parameter set tBALSE

CORBAV2.2 February 1998

20

Note that neither the constructor shown abwethereplace function is type-safe.

In particular, no guarantees are made by the compiler or runtime as to the consistency
between thdypeCode and the actual type of thwdid* argument. The behavior of

an ORB implementain when presented with ahny that is constructed with a
mismatchedTypeCode and value is not defined.

Thetype function returns &ypeCode_ptr pseudo-object reference to the
TypeCode associated with thAny. Like all object reference return values, the caller
must release the reference when it idorger needed, or assign it to a
TypeCode_var variable for automatic management.

Thevalue function returns a pointer to the data stored in&hg. If the Any has no
associated value, thealue function returns a null pointer. The type to which the

void* returned by thealue function may be cast depends on the ORB
implementation; thus, use of tMalue function is not portable across ORB
implementations and its usage is therefore deprecated. Note that ORB implementations
are allowed to mke stronger guarantees aboutYieéd* returned from the/alue

function, if so desired.

20.16.7 Any Constructors, Destructor, Assignment Operator

The default constructor creates &my with aTypeCode of typetk_null , and no
value. The copy constructealls _duplicate on theTypeCode_ptr of its
Any parameter and deep-copies the parametetise. The assignment operator
releases its owdypeCode_ptr and ceallocates stmge for the current value if
necessary, then duplicates thgpeCode_ptr of its Any parameterand deep-
copies the parameter’s value. The destructor celsase on the
TypeCode_ptr and deallocates storage for the value, if necessary.

Other constructors are described in Section 20.16.6, “Handling Untyped Values,” on
page 20-56.

ORB implementations concerned with single-process interopi¢yabith the C

mapping may overloadperator new() andoperator delete() for

Anys so that dynamic allocation uses the same mechanism as the C language dynamic
allocation functions. Whether these operators are overloaded by the implementation or
not, compliant programs usew to dynamically allocate anyenddelete to free

them.

20.16.8 The Any Class

The full defnition of the Any class can be fmd in “The AnyClass” on page 20-57.

20.16.9 The Any var Class

SinceAnys are returned via pointer ast and return parameters (see Table 20-2 on
page 20-66), there ests anAny_var classsimilar to theT _var classes for object
references.Any_var obeys the rules fof_var classes described in “Mapping for

CORBA V2.2 Mapping for the Any Type February 1998 20-57

20

Structured Types” on page 20-21, callidglete on itsAny* when it goes out of
scope or is otherwise destewy. Thefull interface ofthe Any_var class isshown in
“Any_var Class” on page 20-107.

20.17 Mapping for Excepn Types

20-58

An OMG IDL exception is mapped to a C++ class that derives from the standard
UserException class defined in thEORBA module (see “CORBA Module” on

page 20-5). The generated class is like a variable-length struct, regardless of whether or
not the exception holds any variable-length members. Just as for variable-length
structs, each exception member must be self-managing with respiscstmrage.

The copy castructor, assignment operator, and destructor automatically copy or free
the storage associated with the exception. For convenience, the mapping also defines &
constructor with one parameter for each exception member—this constructor initializes
the exception members to the given values. For exception types that have a string
member, this constructor should take@nst char* parameter, since the

constructor mustopy thestring argiment. Similarly, constructors for exception types

that have an object reference memimerst call_duplicate on the corresponding

object reference constructor parameter. The default constructor performs no explicit
member initialization.

/I C++
class Exception

{
public:
virtual ~Exception();

virtual void _raise() = 0;

h

The Exception base class is abstract and may not be instantiated except as part of
an instance of a derived class. It supplies one pinteal function tothe exception
hierarchy: the raise() function which can be used to tell an exception instance to
throw itself so that &atch clause can catch it by a more derived type. Each class
derived fom Exception shall implement raise() as follows:

/I C++
void SomeDerivedException::_raise()

{

throw *this;

}

For environments that do not support exception handling, please refer to “Without
Exception Hadling” on page 20-116 for iformation about the raise() function.

The UserException class is derived from a bakxception class, which is
also defined in th€ORBA module.

CORBAV2.2 February 1998

20

All standard exceptions are derived frorBystemException class, also defined in
the CORBA module. LikeUserException , SystemException s derved
from the basd&Exception class.The SystemException class interface is
shownbelow.

/I C++

enum CompletionStatus {
COMPLETED_YES,
COMPLETED_NO,
COMPLETED_MAYBE

3

class SystemException : public Exception
{
public:
SystemException();
SystemException(const SystemException &);
SystemException(ULong minor, CompletionStatus status);
~SystemException();
SystemException &operator=(const SystemException &);

ULong minor() const;
void minor(ULong);

void _raise();

CompletionStatus completed() const;
void completed(CompletionStatus);

3

The default constructor foSystemException causesminor() to return 0 and
completed() to returnCOMPLETED_NO.

Eachspecific systenexception (described in “Exceptions” on page 19-4) isvadri
from SystemException

/I C++

class UNKNOWN : public SystemException{ ... };
class BAD_PARAM : public SystemException { ... };
Il etc.

All specific system exceptions are defined within @@RBA module.

This exception hierarchgllows any exception to be caught by simply catching the
Exception type:

CORBA V2.2 Mapping for Exception Types February 1998 20-59

20

/I C++
try {

} catch (const Exception &exc) {

Alternatively, all useexceptions can be caught by catching ltfserException
type, and all system exceptions can be caught by catchirfgyiemEXxception

type:

/| C++
try {

} catch (const UserException &ue) {

} catch (const SystemException &se) {

Naturally, more specific types can also appeagdtch clauses.

Exceptions ar@mormally thrown by value and caught bgference. This approackets
the exception destructor release storage automatically.

The Exception class provides for narrowing within the exception hierarchy:

/I C++
class UserException : public Exception
{
public:
static UserException *_narrow(Exception *);
...

h

class SystemException : public Exception

{

public:
static SystemException *_narrow(Exception *);
...

h

Each exceptiorlass supports a static member function namedrrow . The
parameter to thenarrow call is a pointer to thease clas&Exception . If the
parameter is a null pointer, the return type narrow is a null pointer. If the actual
(runtime) type of the parameter exceptian be widened to the requested exception’s
type, then_narrow will return a valid pointer to the parametexception
Otherwise,_narrow will return a null pointer.

20-60 CORBAV2.2 February 1998

20

Unlike the_narrow operation on object referees, the_narrow operation on
exceptions returns suitably-typed pointer to the samgception parameter, not a

pointer to a new exception. If the original exception goes out of scope or is otherwise
destroyed, the pointer returned bparrow is no longer valid.

For application portability, conforming C++ mapping implementations built using C++
compilers that support the standard C++ Run Time Type Information (RTTI)
mechanisms still need to support narrowing for Bxeeption hierarchy. RTTI
supports, among other thingdetermination of the run-time type of a C++ object. In
particular, thedynamic_cast<T*> operatot® allows for narrowing from a base
pointer to a more desed pointer if the object pointed toeally is of the more dered
type. This operator is not useful for narrowing object references, since it cannot
determine the actual type of remote objects, boaiit be used by the C++ mapping
implementation to narrow within the exception hierarchy.

Request invocations made through the DIl mesult in user-defined exceptions that
cannot bdully represented in the calling program because the specific exception type
was not known atompile-time. The mapping provides the

UnknownUserException so that such exceptions can be represented in the
calling process:

/I C++
class UnknownUserException : public UserException

{
public:
Any &exception();

As shown herenknownUserException is derived fromUserException
It provides theexception() accessor that returns &my holding the actual
exception. Ownership of the returnAay is maintained by the

UnknownUserException —theAny merely allows access to the exception data.
Conforming applications should never eiqilly throw exceptions of type
UnknownUserException —it is intended for use with the DII.

20.18 Mapping For Operations and Attributes

An operation maps to a C++ functiontlvthe same name as the operatiBachread-

write attribute maps to a pair of overloaded C++ functions (both with the same name),
one to set thattribute’s valueand one to get thattribute’s value. Theetfunction

takes arin parameter with the same type as dtigibute, while thegetfunction takes

no parameters and returns the same type as the attribusdtiBate marked

readonly maps to only one C++ function, to get theibtite’s value. Parameters and
return types for attribute functions obey the same parameter passing rules as for regular
operations.

15.1tis unlikely that a compiler would support RTTI without supporting exceptions, since much
of a C++ exception handling implementation is based on RTTI mechanisms.

CORBA V2.2 Mapping For Operations and Attributes February 1998 20-61

20

OMG IDL oneway operations are nmped the same as other operatidhat is, there
is no way to know byooking at the C++ whether an operatioroiseway or not.

The mapping does not deé whether exceptions specified for an OMG IDL operation
are part of the generated operation’s type signature or not.

/I IDL

interface A

{
void f();
oneway void g();
attribute long x;

h

/I C++

A _var a,;

a->f();

a->g();

Long n = a->x();
a->x(n + 1);

Unlike the C mapping, C++ operations do not require an additBmaronment
parameter for passing exception informatioreal C++exceptions are used for this
purpose. See “Mapping for Exception Types” on page 20-58 for dmtgsls.

20.19 Implicit Arguments to Operations

If an operation in an OMG IDL specificatidms a context specification, then a
Context_ptr input parameter (see “Context Interface” on page 20-80) folldivs
operation-specific arguments. In an implementationdibas not supporeal C++
exceptions, an outp@nvironment parameter is the last argument, following all
operation-specific arguments, and following the context argument if present. The
parameter passing mode fénvironment is described in “Without Exception
Handling” on page 20-116.

20.20 Argument Passing Considerations

The mapping oparameter passing modes attempts to balance the need for both
efficiency and snplicity. For primitive types, enumerations, and objeeferances, the
modes are straightforward, passing the tiyder primitives and enumeratiorssd the
type A_ptr for an interface typé.

Aggregate types are complicated by the questiont@nnand howarameter memory

is allocated andleallocated. Mappin parameters is straightfoard because the
parameter storage is caller-allocated and read-dikmapping forout andinout
parameters is more problematic. For variable-length types;atiee must allocate

some if not all of the storagEor fixed-length types, such asPainttype represented

as a struct containing three floating point members, caller allocation is preferable (to
allow stack allocation).

20-62 CORBAV2.2 February 1998

20

To accommodate both kinds of alltion,avoid the poterdl confusion of split

allocation, anceliminateconfusion with respect to when copying occurs, the mapping

is T& for a fixed-length aggregafe and T*& for a variable-lengti. This approach

has the unfortunate consequence that usage for structs depends on whether the struct |
fixed- or variable-length; however, the mapping is consistehtlyar& if the caller

uses the managed tyde var .

The mappindor out andinout parameters additionally requireapport for

deallocating any previous variable-length data in the parameter whewaa is

passed. Even thougdheir initial values areot sent to the operation, we includet
parameters because the parameter could contain the result from a previous call. There
are many ways to implemetitis support. Themapping does not require a specific
implementation, but a compliant implementation must free the inaccessible storage
associated with a parameter passed &svar managed type. The provision of the

T out types is intended to give implementations the hooks necessary to free the
inaccessible storage while converting from Thevar types. The following examples
demonstrate the compliant behavior:

/I DL
struct S { string name; float age; };
void f(out S p);

Il C++

S vars;

f(s);

/luse s

f(s); // first result will be freed

S *sp; // need not initialize before passing to out

f(sp);

/[use sp

delete sp; // cannot assume next call will free old value

f(sp);

Note that implicit deallocation of previowalues forout andinout parameters works
only with T_var types, not with other types:

/I DL
void g(out string s);

/I C++

char *s;

for (inti=0;i<10; i++)
q(s);// memory leak!

Eachcall to theq function in the loop results in a memory ldadgcause thealler is
not invokingstring_free on theout result. There are two ways to fix this, as
shownbelow:

CORBAV2.2 Argumenassing Considerations February 1998 20-63

20

20-64

Il C++

char *s;

String_var svar;

for (inti=0;i<10;i++){

a(s);

string_free(s);// explicit deallocation
/l OR:

g(svar);// implicit deallocation

}

Using a plainchar* for theout parameter means that the caller must explicitly
deallocate its memory before each reuse of the variable @st grarameter, while
using aString_var means that angleallocation is performeinplicitly uponeach
use of the variable as aut parameter.

Variable-length data must be explicitly released before being overwritten. For example,
before assigning to anout string parameter, the implementor of an operation may
first delete theold character data. ®ilarly, aninout interface parameter should be
released before being reassigned. One way to ensure that the parameter storage is
released is to assign it to a lodalvar variable with an automatic release, as in the
following example:

/I DL
interface A;
void f(inout string s, inout A obj);

/I C++

void Aimpl::f(char *&s, A_ptr &obj) {
String_var s_tmp = s;

s = /[* new data */;

A_var obj_tmp = obj;

obj = /* new reference */

}

To allow the callee the freedom to allocate a sirglatiguous area of storage for all
the data associated with a parameteradept the policy that theallee-allocated
storage is not modifiable by the callerowever, trying to enforcthis policy by

returning aconst type in C++ is problematic, since the caller is required to release
the storage, and callingelete on aconst object is an erdf. A compliant
mapping therefore is not required to detect this error.

For parameters that are passed or returned as a pdifitepi(reference to pointer
(T*&), a compliant program is not allowed to pass or return a null pointer; the result
of doing so is undefined. In particular, a caller may not pass a null poirder any of

the following circumstances:

16.The upcoming ANSI/ISO C++ standard alldl@lete on a pointer t€onst object,
but many C++ compilers do not yet support this feature.

CORBAV2.2 February 1998

20

* in andinout string
* in andinout array (pointer to first element)

A caller maypass a reference to a pointer with a null valueotdr parameters,
however, since the callee does not examine the value but jatheverwries it. A
callee maynot return a null pointer under any of tfidlowing circumstances:

» out and return variable-length struct

e out and return variable-length union

* out and returrstring

» out and return sequence

» out and return variable-length array, return fixed-length array
» out and return any

Since OMG IDL has no concept of pointers in general or null pointers in particular,
allowing the passage of null pointers to or from an operation would project C++
semantics nto OMG IDL opeations!’ A compliant implementation islalved but not
required to raise 8AD_PARAM exception if it detects such an error.

20.20.1 Operation Parameters and Signatures

Table 20-2 on page 20-66 displays the mapping for the basic OMG IDL parameter
passing modes and return type according to the type being passed or rethiteed, w
Table 20-3 on page 20-66 displays the same information fear types. “T_var
Argument and Result Passing” is merely for informational purposes; it is expected that
operation signatures for both clients and servers will be writtéarins ofthe

parameter passing modsisown in Bble 20-2 on page 20-66, with the exception that
theT_out types will be used as the actual parameter types faublpbarameters. It

is also expected thdt_var types will support the necessamgnversion operators to
allow them to be passed directly. Callers shaldays pass instances of either

T var types or the base types shown in Table 20-2 on page 20-66, and callees should
treat theirT_out parameters as if thayere actually the corresponding underlying
typesshown in “Basic Argument and Result Passing”.

In Table 20-2 on page 20-66, fixed-length arrays are the only case where the type of an
out parameter differs from a return value, which is necessary because C++ does not
allow a function to return an arrayhe mappingeturns a pointer to slice of the

array, where a slice is an array wih the dimensions of the original specified except

the first one. A caller is sponsible for providing storage for all argumepéssed as

in arguments.

17 When real C++ exceptions are not available, however, it is important that null pointers are
returned whenever danvironment containing an exception is returned; see “Without
Exception Handling” on page 20-116r more details.

CORBAV2.2 Argumenassing Considerations February 1998 20-65

20

20-66

Table 20-2 Basic Argument and Result Passing

Data Type In Inout Out Return
short Short Short& Short& Short
long Long Long& Long& Long
long long LongLong LongLong& LongLong& LongLong
unsigned short UShort UShort& UShort& UShort
unsigned long ULong ULong& ULong& ULong
unsigned long long ULongLong ULongLong& ULongLong& ULongLong
float Float Float& Float& Float
double Double Double& Double& Double
long double LongDouble LongDouble& LongDouble& LongDouble
boolean Boolean Boolean& Boolean& Boolean
char Char Char& Char& Char
wchar WChar WChar& WChar& WChar
octet Octet Octet& Octet& Octet
enum enum enumé& enumé& enum
object reference ptr! objref_ptr objref_ptr& objref_ptr& objref_ptr
struct, fixed const struct& struct& struct& struct
struct, variable const struct& struct& struct*& struct*
union, fixed const union& union& union& union
union, variable const union& union& union*& union*
string const char* char*& char*& char*
wstring const WChar* WChar*& WChar*& WChar*
sequence const sequence& sequence& sequence*& sequence*
array, fixed const array array array array slice*?
array, variable const array array array slice*&2 array slice*?
any const any& any& any*& any*
fixed const fixed& fixed& fixed& fixed&

1. Including pseudo-object references.

2. Asliceis an array with all the dimensions of the original except the first one.

Table 20-3T_var Argument and Result Passing

Data Type In Inout Out Return
object reference varl const objref_var& objref_var& objref_var& objref_var
struct_var const struct_var& struct_var& struct_var& struct_var
union_var const union_varé& union_var& union_varé& union_var
string_var const string_var& string_var& string_var& string_var
sequence_var const sequence_var& sequence_var& sequence_var& sequence_var

CORBAV2.2

February 1998

20

Table 20-3T_var Argument and Result Passing

Data Type In Inout Out Return
array_var const array_var& array_var& array_var& array_var
any_var const any_var& any_var& any_var& any_var

1.Including pseudo-object references.

Table 20-4 on page 20-67 and Table 20-5 on page 20e686rithe the caller’s
responsibility for storage associated witbut andout parameters and for return
results

Table 20-4Caller Argument Storage Responsibilities

Inout Out Return
Type Param Param Result
short 1 1 1
long
long long

unsigned short
unsigned long
unsigned long long
float

double

long double
boolean

char

wchar

octet

enum

object reference ptr
struct, fixed
struct, variable
union, fixed
union, variable
string

wstring
sequence
array, fixed
array, variable
any

P O R P O NDMRPRPRRREPENRRRRRRPRPPRRRPRP R PR
P WO R WWWWR WERE NRPRRRRRRPRPRRRPR R PR
P WO WwWwWwWR WERE NRRRRRRRRRRRP R R

fixed

CORBAV2.2 Argumenassing Considerations February 1998 20-67

20

Table 20-5Argument Passing Cases

Case

1 Caller allocates all necessary storage, except that which may be encapsulated and managed
within the parameter itself. For inout parameters, the caller provides the initial value, and the
callee may change that value. For out parameters, the caller allocates the storage but need not
initialize it, and the callee sets the value. Function returns are by value.

2 Caller allocates storage for the object reference. For inout parameters, the caller provides an ini-
tial value; if the callee wants to reassign the inout parameter, it will first call CORBA::release on
the original input value. To continue to use an object reference passed in as an inout, the caller
must first duplicate the reference. The caller is responsible for the release of all out and return
object references. Release of all object references embedded in other structures is performed
automatically by the structures themselves.

3 For out parameters, the caller allocates a pointer and passes it by reference to the callee. The
callee sets the pointer to point to a valid instance of the parameter’s type. For returns, the callee
returns a similar pointer. The callee is not allowed to return a null pointer in either case. In both
cases, the caller is responsible for releasing the returned storage. To maintain local/remote
transparency, the caller must always release the returned storage, regardless of whether the
callee is located in the same address space as the caller or is located in a different address
space. Following the completion of a request, the caller is not allowed to modify any values in
the returned storage—to do so, the caller must first copy the returned instance into a new
instance, then modify the new instance.

4 For inout strings, the caller provides storage for both the input string and the char* or wchar*
pointing to it. Since the callee may deallocate the input string and reassign the char* or
wchar* to point to new storage to hold the output value, the caller should allocate the input
string using string_alloc() or wstring_alloc() . The size of the out string is
therefore not limited by the size of the in string. The caller is responsible for deleting the storage
for the out using string_free() or wstring_free() . The callee is not allowed to return
a null pointer for an inout, out, or return value.

5 For inout sequences and anys, assignment or modification of the sequence or any may cause
deallocation of owned storage before any reallocation occurs, depending upon the state of the
Boolean release parameter with which the sequence or any was constructed.

6 For out parameters, the caller allocates a pointer to an array slice, which has all the same
dimensions of the original array except the first, and passes the pointer by reference to the
callee. The callee sets the pointer to point to a valid instance of the array. For returns, the callee
returns a similar pointer. The callee is not allowed to return a null pointer in either case. In both
cases, the caller is responsible for releasing the returned storage. To maintain local/remote
transparency, the caller must always release the returned storage, regardless of whether the
callee is located in the same address space as the caller or is located in a different address
space. Following completion of a request, the caller is not allowed to modify any values in the
returned storage—to do so, the caller must first copy the returned array instance into a new
array instance, then modify the new instance.

20.21 Mapping of Pseuddbjectsto C++

CORBA pseudo objects may be implemented either as normal CORBA objects or as
serverless objectsn the CORBA specification, the fundamental differences eetw
thesestratgies are:

20-68 CORBAV2.2 February 1998

20

20.22 Usage

« Serverless object types do not inherit frif®RBA::Object
* Individual serverless objects are not registered with any ORB

» Serverless objects do not necessdidllow the same memory management rules
as for regular IDL types.

References to serverless objects are not necessarily valid across computational
contexts; for example, address spaces. Instead, references to serverless objects that al
passed as parameters may result in the construction of independent functionally-
identical copies of objects used by receivers of these references. To support this, the
otherwise hidden representational properties (such as data layout) of serverless objects
are madeknown tothe ORB. Specifications for achieving tlase not contained in this
chapter: making serverless objects known to the ORB is an implementation detail.

This chapter provides a standard mapping algorithm forsalugo dject types. This
avoids the need for piecemeal mappings for each of the nine CORBA pseudo object
types, and accommodates any pseudo object types that may be proposed in future
revisions of CORBA.It also avoids representation dependence in the C mapping while
still allowing implementations that rely on C-compatible representations.

Rather than C-PIDL, this mapping uses an augmented form of full OMG IDL to
describe serverless object types. Interfacep$eudo object types follow the exact
same rules as normal OMG IDL interfacesthwthe following exceptions:

» They are prefaced by theyword pseudo.

« Their declarations may refer to oth®serverless object types that are not
otherwise necessarily allowed in OMG IDL.

As explained in “Beudo-objects” on pad®-29, thepseudo prefix means that the
interface may be implemented in either a normal or serverless fashion. That is, apply
either the rules described in the following sections or the normal mapping rules
described in this chapter.

20.23 Mapping Rules

Serverless objects are mapped in the same asnormal interfaces, except for the
differences outlined in this section.

Classes representing serverless object typesaibclasses dEORBA::Object ,
and are not neces#grsubclasses adny other C++ class. Thus, they do not
necessarily support, for example, Odject::create_request operation.

For each class representing a serverless object type T, overloaded versions of the
following functions are provided in th e ORBAnamespace:

18.In particularexception used as a data type and a function name.

CORBA V2.2 Usage February 1998 20-69

20

/I C++
void release(T_ptr);
Boolean is_nil(T_ptr p);

The mapped C+<€lasses are not guaranteed to be usefully subclassable by users,
although subclasses can be providedmyglémentations. Implementations are allowed
to make assumptions about internal representations and trafspoats that may not
apply to subclasses.

The nember functions of classes representing serverless object types do not
necessarily obey the normal memory management rules. This is duefactttieat

some serverless objects, suchGCBRBA::NVList , are essentially just containers

for several levels of other serverless objects. Requiring callers to explicitly free the
values returned from accessor functions for the contained serverless objects would be
counter to their intended usage.

All other elements of the mapping are the same. In particular:

1. The types of references to serverless objdctpir , may or may not simply be a
typedef of T*.

2. Each mapped class supports the followstafic member functions:

/I C++

static T_ptr _duplicate(T_ptr p);

static T_ptr _nil();

Legal implementatins of _duplicate include simply returning the
argument or constructing references to a newricstandividual
implementations may provide stronger guarantees about behavior.

3. The corresponding C++ classes may or may not be directly instantiable or have
other instantiation constraints. For portability, users should invoke the ajsteopr
constructive operatits.

4. As with normal interfaces, assignment operators are not supported.

5. Although they can transparently employ “copy-style” rather than “reference-style”
mechanics, parameter passing signataresrules as well as memory management
rules are identical to those for normal objects, unless otherwise noted.

20.24 Relabnto the C PIDL Mapping

20-70

All serverless object interfacesmd declarations that rely on them have direct analogs
in the C mappingThe mapped C+<lasses can, but need not be, implemented using
representations compatible to those chosen for the C mapping. Differences between the
pseudo objecspecifications for C-PIDland C++ PIDL are afllows:
» C++-PIDL calls for removal of representation dependencies through the use of
interfaces rather than structs and typedefs.
» C++-PIDL calls for placement of operations on pseudo objects in their interfaces,
including a few cases of redesignafedctionality as noted.

CORBAV2.2 February 1998

20

20.25 Environment

e In C++-PIDL, therelease performs the role of the associatiede and
delete operations in the C mapping, unless otherwise noted.

Brief descriptions and listings of each pseudo-interface and its C++ mapping are
provided in thefollowing sections. Further details, including definitions of types
referenced but not defined below, may be found inrlevant sections of this
document.

Environment provides a vehicle for dealing with exceptions in thoages where true
exception mechanics are unavailable or undesirable (for example in the DII). They may
be set and inspected using #heeption attribute.

As with normal OMG IDL attributes, thexception attrbute is mapped into a pair of
C++ functionsused to seand get the exceptiohe semarndts of theset andget
functions, however, are somewhat different than those for normal OMGttDhutes.
Theset C++ function assumes ownership of thgception pointer passed to it.
The Environment will eventually calldelete on this pointer, so the
Exception it points to must be dynamically allocated by the caller. &
function returns a pointer to tlkexception , just as an attribute for a variable-length
struct would, but the pointeefers to memory owned by tlienvironment . Once
the Environment is destroyed, the pointer is no longer valithe caller must not
call delete on theException pointer returned by thget function. The
Environment is responsible for deallocating aBxception it holds when it is
itself destroyed. If thé&nvironment holds no exception, thget function returns
a null pointer.

Theclear() function causes thenvironment todelete anyException

it is holding. It is not an error to cadlear() on anEnvironment holding no
exception. Passing a null pointer to 8&t exception function is equivalent to calling
clear() .If anEnvironment contains exception information, the caller is
responsible for callinglear() on it before passing it to an operation.

20.25.1 Environment Interface

/I IDL
pseudo interface Envir onment
{ attribute exception except ion;

void clear();

h

CORBAV2.2 Envirorent February 1998 20-71

20

20.25.2 Environment C+<lass

/I C++
class Environment

{

public:
void exception(Exception*);
Exception *exception() const;
void clear();

h

20.25.3 Differences from C-PIDL

The C++-PIDL spcification differs from theC-PIDL spedication as follows:
» Defines an interface rather than a struct.

e Supports an attribute allowing operationsexteption values as a whole rather
than on major numbers and/or identification strings.

« Supports xlear() function that is used to destroy abByception the
Environment may be holding.

» Supports a default constructor that initializes it addno exception information.

20.25.4 Memory Management

Environment has thefollowing special memory enagement rules:

* Thevoid exception(Exception®) member functioradopts the
Exception* given to it.

* Ownership of the return value of tiexception *exception() member
function is maintained by thEnvironment ; this return value must not be freed
by the caller.

20.26 NamedValue

NamedValue is used only as aelement ofNVList, especially in the DII.
NamedValue maintains an (optional) name, any value, and labelling flags. Legal
flag values arddRG_IN, ARG_OUT, andARG_INOUT.

The value in &NamedValue may be manipulated via standard operationgron

20-72 CORBAV2.2 February 1998

20

20.26.1 NamedValue Interface

/I IDL
pseudo interface N amedValue

{

readonly attribute Identif ier name;
readonly attribute any value;
readonly attribute Flags flags;

>

20.26.2 NamedValue C++ Class

/| C++
class NamedValue

{
public:
const char *name() const;
Any *value() const;
Flags flags() const;

3

20.26.3 Differences from C-PIDL

The C++-PIDL sgcification differs from theC-PIDL spedication as follows:
» Defines an interface rather than a struct.
 Provides no analog of tHen field.

20.26.4 Memory Management

NamedValue has the following special memory managemeihs:

* Ownership of the return values of thame() andvalue() functions is
maintained by thdNamedValue ; these return values must not be freed by the
caller.

20.27 NVList

NVList is a list ofNamedValue s. A newNVList is constructed using the
ORB::create_list operation (see “ORB” on pa@®-83). NewNamedValue s may be
constructed as part of afVList, in any of three ways:

® add—creates an unnamed valuitializing only the flags.
» add_item —initializes name and flags.
e add_value —initializes name, value, and flags.

» add_item_consume —initializes name and flags, taking over memory
management responsibilities for tblear * name parameter.

CORBAV2.2 NVList February 1998 20-73

20

20-74

» add_value_consume —initializes nameyalue, and flags, taking over memory
management responsibilities for both dier* name parameteand theAny*
value parameter.&ch of these operations returns tieavitem.

Elements may be accessed and deleted via zero-based indexiregldT fzld_item ,

add_value , add_item_consume , andadd_value_consume functions lengthen

theNVList to hold the new element eatime they are calledTheitem function can
be used to access existing elements.

20.27.1 NVListnterface

/I IDL
pseudo interface NVList
{
readonly attribute unsigned long count;
NamedValue add(in Fl ags flags);
NamedValue add_i tem(in Identifier item_name, in Flags flags);
NamedValue add_v alue(
in Identifier item_name,
in any val,
in Flags flags
);

NamedValue it em(in unsigned long i ndex) raises(Bounds);

Status remove(in unsigned long index) raises(Bounds);

|

20.27.2 NVList C++ Class

/I C++
class NVList
{
public:
ULong count() const;
NamedValue_ptr add(Flags);
NamedValue_ptr add_item(const char*, Flags);
NamedValue_ptr add_value(
const char*,
const Any&,
Flags
);
NamedValue_ptr add_item_consume(
char*,
Flags
);

CORBAV2.2 February 1998

20

NamedValue_ptr add_value_consume(
char*,

Any *,

Flags

);

NamedValue_ptr item(ULong);

Status remove(ULong);

h

20.27.3 Differences from C-PIDL

The C++-PIDL spcification differs from theC-PIDL spedication as follows:
» Defines an interface rather than a typedef
» Provides different signatures for operations that add items in order to avoid
representation dependencies
* Provides indexed access methods

20.27.4 Memory Management

NVList has theollowing special memory mnagement rules:

* Ownership of the return values of tadd, add_item , add_value
add_item_consume , add_value_consume , anditem functions is
maintained by théNVList ; these return values must not be freed by the caller.

* Thechar* parameters to thadd item_consume and
add_value_consume functions and thé\ny* parameter to the
add_value_consume function are consumed by tiN/List . The cder may
not access these data after they hawen passed to thesenfitionsbecause the
NVList may copythem and destroy the originals immediatdlie caller slould
use theNamedValue::value() operation in order to modify thealue
attibute of the underlyindNamedValue , if desired.

* Theremove function also callCORBA:: release on the removed
NamedValue .

20.28 Request

Request provides the primary support for DIl. Aew reqiest on a particular target
object may be constructed using the short version of the request creation operation
shown in “Cbject” on page 20-86:

/I C++
Request_ptr Object::_request(ldentifier operation);

Arguments and contexts may be adedigr construction via theorresponding
attributes in theRequest interface. Results, output arguments, andegxions are
similarly obtained after invocation. The following Cbde llustrates usage:

CORBA V2.2 Request February 1998 20-75

20

20-76

Il C++

Request_ptr req = anObj->_request("anOp");
*(req->arguments()->add(ARG_IN)->value()) <<= anArg;
...

reg->invoke();

if (reg->env()->exception() == NULL) {
*(req->result()->value()) >>= aResult;

}

While this exampleshows thesemantics of thattribute-based accessor functions, the
following exampleshows that it is muchkasier and preferable to use the equivalent
argument manipulation helper functions:

/I C++

Request_ptr req = anObj->_request("anOp");
reg->add_in_arg() <<= anArg;

...

reg->invoke();

if (reg->env()->exception() == NULL) {
reg->return_value() >>= aResult;

}

Alternatively, requests can be constructed using one of the long forms of the creation
operationshown inthe Object interface in “Object” on page 20-86:

Il C++

Status Object::_create_request(
Context_ptr ctx,

const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
Request_out request,

Flags req_flags

);

Status Object::_create_request(
Context_ptr ctx,

const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
ExceptionList_ptr,
ContextList_ptr,

Request_out request,

Flags req_flags

Usage ighe same as for the short form except that alb¢ation parameters are
established on construction. Note that @dT_LIST_MEMORY and
IN_COPY_VALUE flags can be set as flags in tteg|_flags parameter, but they
are meaningless and thus ignored because argunsemtionand extraction are done
via theAny type.

CORBAV2.2 February 1998

20

Request also allows the application to iy all information necessary for it to be
invoked without requiring the ORB tatilize the InterfacdRepostiory. In order to
deliver a requesind return the response, the ORRjuires:

* a target object reference
* an operation name
* a list of arguments (optional)
» a place to put the result (optional)
» a place to put any returned exceptions
® aContext (optional)
« a list of the user-defineexceptions that can be thrown (optional)

® alist of Context strings that must be sent with the operation (optional)

Since theObject:: create_request operation allows all of these except the last two to
be specified, an ORB may have to utilize the Interface Repository in order to discover
them. Some applicationBpwever, may not want the ORB performing poiaht

expensive Interface Repository lookups during a request invocation, so two new
serverless objects have been added to allow the application to ghéxifyformation
instead:

® ExceptionList : allows an application tprovide a list ofTypeCode s for all user-
defined exceptions that may result when Regjuest is invoke.

® ContextList : allows an application to provideliat of Context strings that must
be supplied with th&®equest invocation.

TheContextList differs from theContext in that the former supplies only the context
strings whose values are to be looked up and sent with the request invocation (if
applicable), while théatter iswhere those values are obtained.

The IDL descriptions folExceptionList , ContextList , andRequest are shown
below.

20.28.1 Request Interface

/I DL
pseudo interface ExceptionList
{
readonly attri bute unsigned long count;
void add(in Type Code exc);
TypeC ode item(in unsigned long index) raises(Bounds);
Status remove(in unsigned long index) raises(Bounds);

h

pseudo interface ContextList

{

readonly attri bute unsigned long count;
void add(in string ctxt);

CORBA V2.2 Request February 1998 20-77

20

string item(in unsigned long index) raises(Bounds);
Status remove(in unsigned long index) raises(Bounds);

|3

pseudo interface R equest

{
readonly attri bute Object target;
readonly attribute Identif ier o peration;
readonly attribute NVList arguments;
readonly attribute NamedV alue result;
readonly attribute Environment env;
readonly attri bute ExceptionList exceptions;
readonly attri bute ContextList contexts;
attribute context ctx;
Status invoke();
Status s end_one way();
Status send_deferred();
Status get_re sponse();
boolean poll_response();

|3

20.28.2 Request C++l@ss

/I C++
class ExceptionList
{
public:
ULong count();
void add(TypeCode_ptr tc);
void add_consume(TypeCode_ptr tc);
TypeCode_ptr item(ULong index);
Status remove(ULong index);

h

class ContextList
{

public:
ULong count();
void add(const char* ctxt);
void add_consume(char* ctxt);
const char* item(ULong index);
Status remove(ULong index);

3

20-78 CORBAV2.2 February 1998

20

class Request

{

public:
Object_ptr target() const;
const char *operation() const;
NVList_ptr arguments();
NamedValue_ptr result();
Environment_ptr env();
ExceptionList_ptr exceptions();
ContextList_ptr contexts();

void ctx(Context_ptr);
Context_ptr ctx() const;

/I argument manipulation helper functions
Any &add_in_arg();

Any &add_in_arg(const char* name);
Any &add_inout_arg();

Any &add_inout_arg(const char* name);
Any &add_out_arg();

Any &add_out_arg(const char* name);
void set_return_type(TypeCode_ptr tc);
Any &return_value();

Status invoke();

Status send_oneway();

Status send_deferred();

Status get_response();

Boolean poll_response();

h

20.28.3 Differences from C-PIDL

The

C++-PIDL sgcification differs from theC-PIDL spedication as follows:
Replacement oddd_argument , and so forth, wh attibute-based accessors.
Use ofenv attribute to accessxceptions raised in Didalls.

Theinvoke operation does not take a flag argument, since there are no flag
values that are listed as legalGORBA

Thesend_oneway andsend deferred operations replace the singlend
operation vith flag values, in order to clarify usage.

Theget_response operation does not take a flag argument, and an operation
poll_response is defined to immediately return with an indication of whether
the operation has completed. Thias done because @®ORBA,if the type

Status isvoid , the versionith RESP_NO_WAIT does not enable thealler to
determine if the operation has completed.

Theadd_* arg, set_return_type , andreturn_value member functions are
added as shortcuts for using the attribute-based accessors.

CORBA V2.2 Request February 1998 20-79

20

20.28.4 Memory Management

Request has the following special memory management rules:
« Ownership of the return values of ttarget , operation , arguments |,
result |, env, exceptions ,contexts ,andctx functions is maintained
by theRequest ; these return values must not be freed by the caller.

ExceptionList has the following special memory management rules:

» Theadd_consume function consumes itfypeCode_ptr argument. The
caller may not access the object referred to byTtyeeCode_ptr after it has
been passed in because @tk _consume function may copy it and release the
original immediately.

» Ownership of the return value of titem function is maintained by the
ExceptionList ; this return value must not be released by the caller.

ContextList has thefollowing special memory mnagement rules:
» Theadd_consume function consumes itshar* argument. The clar may
not access the memory referred to by thar* after it hasbeen passed in
because thadd_consume function may copy iind free the original

immediately.
» Ownership of the return value of titem function is maintained by the
ContextList ; this return value must not be released by the caller.

20.29 Context

A Context supplies optional context information associated with a method invocation.

20.29.1 Context Interface

/I IDL

pseudo interface Context

{
readonly attribute Identif ier c ontext_name;
readonly attri bute context parent;

Status creat e_child(in Identifier chi Id_ctx_name, out Context child_ctx);

Status set_one_value(in Identifier propname, in any propvalue);
Status set _values(in NVList values);
Status delete_values(in Identi fier propname);
Status get_values(
in Identifier sta rt_scope,
in Flags op_flags,
in Identifier pattern,
out NVList values

20-80 CORBAV2.2 February 1998

20

20.29.2 Context C++ Class

/I C++
class Context
{
public:
const char *context_name() const;
Context_ptr parent() const;

Status create_child(const char *, Context_out);

Status set_one_value(const char *, const Any &);
Status set_values(NVList_ptr);

Status delete_values(const char *);

Status get_values(

const char*,

Flags,

const char*,

NVList_out

);

3

20.29.3 Differences from C-PIDL

The C++-PIDL spcification differs from theC-PIDL spedication as follows:
Introduction ofattiibutes for context name and parent.
The signatures for values are uniformly seany.

In the C mappingset_one_value used strings, while others used
NamedValue s containingany. Even thoughmplementationsieed only support
strings as values, the signatures now uniforallgw alternaties.

Therelease operation frees child contexts.

20.29.4 Memory Management

20.30 TypeCode

Context has the following special memory management rules:

® Ownership of the return values of thentext hame andparent functions is

maintained by th€Context ; these return values must not be freed by the caller.

A TypeCode represents OMG IDL type information.

No constructors fofypeCode s are defined. However, in addition to the meqg
interface, for each basic and defined OMG IDL typeinaplementation provides
access to dypeCode pseudo objecteference (TypeCode_ptr) of the form
tc<type> that may be used to set typesAiny, as arguments farqual, and so

CORBAV2.2 ypeCode February 1998 20-81

20

on. In the names of the3gpeCode reference constantstype> refer to the local
name of the type within its defining scofigach C++ _tc_<type> constant must be
defined at the same scoping level as its matching type.

In all C++ TypeCode pseudo object reference constants, the prefix “_tc_" should be
used instead of the “TC_" prefix prescribed in “Tgmale” on page 20-81.his is to
avoid name clashes for CORBA applications #®iatultaneaisly use both the C and
C++ mappings.

Like all other serverless objects, the C++ mappingligreCode provides a nil()

operation that returns a nil object reference fdiypeCode . This operatiorcan be

used toinitialize TypeCode references embedded within constructed types. However,

a nil TypeCode reference may never be passed as an argument to an operation, since
TypeCode s are effectiely passed as values, not as object references.

20.30.1 TypeCode Interface

The TypeCode IDL interface is fully defined in The TypeCodénterface” on
page 8-36 and is thus is not duplicated here.

20.30.2 TypeCode C++ Class

/I C++
class TypeCode

{

public:
class Bounds { ... };
class BadKind { ... };

Boolean equal(TypeCode_ptr) const;
TCKind kind() const;

const char* id() const;
const char* name() const;

ULong member_count() const;
const char* member_name(ULong index) const;

TypeCode_ptr member_type(ULong index) const;

20-82 CORBAV2.2 February 1998

20

Any *member_label(ULong index) const;
TypeCode_ptr discriminator_type() const;

Long default_index() const;

ULong length() const;

TypeCode_ptr content_type() const;

UShort fixed_digits() const;
Short fixed_scale() const;

Long param_count() const;
Any *parameter(Long) const;

}

20.30.3 Differences from C-PIDL

For C++, use of prefix “_tc_" instead of “TC_" for constants.

20.30.4 Memory Management

TypeCode has the following special memory management rules:

20.31 ORB

» Ownership of the return values of titk, name, andmember_name functions
is maintained by th&ypeCode ; these return values musot be freed by the
caller.

An ORB is the programmer interface to the ObjRetjuest Broker.

20.31.1 ORB Interface

/I IDL
pseudo interface ORB

{

typedef sequence<R equest> R equestSeq;

string object_to_string(in Object obj);

Object string_to_obj ect(in string str);

Status create_list(in long count, out N VList new_| ist);

Status create_operation_list (in Operatio nDef oper, out NVList ne w_list);
Status create_named_value(out NamedValue nmval);

Status create_exception_list(out Except ionList exclist);

Status create_context_list(out ContextList ctxtli st);

Status get_default_context(out Context ctx);
Status create_environment(out Environment new_env);

Status send_mul tiple_req uests_oneway(in RequestSeq req);

CORBAV2.2 ORB February 1998 20-83

20

20-84

k

Status send_mul tiple_req uests_deferred(in RequestSeq req);
boolean poll_next_response();

Status get_next_response(out Req uest req);

Boolean work_pending();

void perform_work();

void shutdown(in Boolean wait_for_completion);
void run();

Boolean get_service_information (
in ServiceType service_type,
out Servicelnformation service_information

20.31.2 ORB C++Class

/I C++
class ORB

{

public:

class RequestSeq {...};

char *object_to_string(Object_ptr);
Object_ptr string_to_object(const char *);
Status create_list(Long, NVList_out);
Status create_operation_list(
OperationDef_ptr,

NVList_out

);

Status create_named_value(NamedValue_out);
Status create_exception_list(ExceptionList_out);
Status create_context_list(ContextList _out);

Status get_default_context(Context_out);
Status create_environment(Environment_out);

Status send_multiple_requests_oneway(
const RequestSeq&

);

Status send_multiple_requests_deferred(
const RequestSeq &

);

Boolean poll_next_response();
Status get_next_response(Request_out);

Boolean work_pending();

void perform_work();

void shutdown(Boolean wait_for_completion);
void run();

CORBAV2.2 February 1998

20

Boolean get_service_information(
ServiceType svc_type,
Servicelnformation_out svc_info
);

%

20.31.3 Differences from C-PIDL

» Addedcreate_environment . Unlike the struct versiorgEnvironment requires
a construction operation. (Since this is overly constraining for implementations
that do not support real C++ exceptions, thegglémentations may allow
Environment to be declared on the stack. See “Without Exception Handling”
on page 20-116 fodetails.)

» Assigned multiple request support to ORB, made usggenetrical \ith that in
Request, and used a sequence type rather than otkeriNegal utbounded
arrays in signatures.

» Addedcreate_named_value , which is required for creatinjamedValue
objects to be used as return value parameters foDllect::.create_request
operation.

» Addedcreate_exception_list andcreate_context list (see “Request’ on
page 20-75 for more details).

20.31.4 Mapping of ORB Initialization Operations

Thefollowing PIDL specifies initializabn operations for an ORB; this PIDL is part of
the CORBA module (not the ORB interface) and is described in “GiRRlization”
on page 4-8.

/I PIDL
module CORBA {

typedef string ORBId;

typedef sequence <string> arg_list;

ORB ORB _init (inout arg_| ist argv, in ORBId orb_identi fier);
|3

The mapping of the precedi®JDL operaibns to C++ is a$ollows:

CORBAV2.2 ORB February 1998 20-85

20

20.32 Object

20-86

/I C++

namespace CORBA {
typedef char* ORBId;
static ORB_ptr ORB_init(
int& argc,

char** argv,

const char* orb_identifier =
);

}

The C++ mapping foORB_init deviates from the OMG IDL PIDL in its handling of
the arg_list parameter. This is inteled to provide a meaningf@IDL definition of
theinitialization interfice, which has a natural C++ binding. To #ngl, thearg_list
structure is replaced witargv andargc parameters.

Theargv parameter is defined as anbound array of stringsljar **) and the
number of strings in the array is passed inahgc (int &) parameter.

If an empty ORBId string is used then argc arguments can be used to determine which
ORB should be returned. This is achieved by searchingripe parameters for one
taggedORBId, e.g.,-ORBid "ORBid_example.'If an empty ORBId string is used and

no ORB is indicated by thargv parameters, the default ORB is returned.

Regardless of whether an empty or non-empty ORRBidg ispassed t®©RB_init
theargv arguments are examined to determine if any ORB parameters are given. If
a non-empty ORBId string is passed@&B _init , all -ORBid parameters in the

argv are ignored. All othetORB<suffix>parameters may be of significance during
the ORBinitialization process.

For C++, the order of consumption @fgv parameters may be significant to an
application. In order to ensure that applications are not required to rangie
parameters they do not recognize the ORB initialization function musilteel before

the remainder of the parameters are consumed. Therefore, af@RBeinit call
theargv andargc parameters will haveeen modified to remove the ORB
understood arguments. Itis important to note that the ORB_init call can only reorder or
remove references to parametimn the argv list, this restriction is madedrder to

avoid potential memory management problems caused by trying to free parts of the
argv list or extending the argv list of parameters. This is &gy is passed as a
char** and not achar**&

The rules inthis section apply to OMG IDL interfad@bject, the base of the OMG
IDL interface hierarchy. Interfac®bject defines a normal CORBA object, not a
pseudo object. However, it is included here because it references other pseudo objects

CORBAV2.2 February 1998

20

20.32.1 Object Interface

/I IDL
interface Object
{
boolean is_nil();
Object duplicate();
void release();
Implementat ionDef get_i mplementation();
InterfaceDef get_inter face();
boolean is_a(in string logical _type_id);
boolean non_ existent();
boolean is_equivalent(in Object other_object);
unsigned long hash(in unsigned long maxi mum);
Status create_requ est(
in Context ctx,
in Identifier operation,
in NVListarg_| ist,
in NamedValue result,
out R equest request,
in Flags req_flags
);
Status create_request2(
in Context ctx,
in Identifier operation,
in NVListarg_| ist,
in NamedValue result,
in ExceptionList exclist,
in Context List ctxtlist,
out R equest request,
in Flags req_flags
);
Policy_ptr get_policy(in PolicyType policy_type);
DomainManagerList get_domain_managers();
Object set_policy_override(in PolicyList policies,
in SetOverrideType set_or_add);
|3

20.32.2 Object C++ @&ss

In addition to other rules, all operation names in interfAbgect have leading
underscores in the mapped C++ class. Also, the mappiraydate _request is split

into three forms, corresponding to the usage styles described in “create_request” on
page 5-5 and in“Request’ on page 20-75h$ document. Thés_nil andrelease
functions are provided in th e ORBAnamespace, as described in “Object Reference
Operations” on page 20-8.

CORBAV2.2 Object February 1998 20-87

20

Il C++
class Object
{
public:
static Object_ptr _duplicate(Object_ptr obj);
static Object_ptr _nil();
ImplementationDef_ptr _get_implementation();
InterfaceDef_ptr _get_interface();
Boolean _is_a(const char* logical_type_id);
Boolean _non_existent();
Boolean _is_equivalent(Object_ptr other_object);
ULong _hash(ULong maximum);
Status _create_request(
Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
Request_out request,
Flags req_flags
);
Status _create_request(
Context_ptr ctx,
const char *operation,
NVList_ptr arg_list,
NamedValue_ptr result,
ExceptionList_ptr,
ContextList_ptr,
Request_out request,
Flags req_flags
);

Request_ptr _request(const char* operation);

Policy_ptr _get_policy(PolicyType policy_type);
DomainManagerList* _get_domain_managers();

Object_ptr _set_policy_override(

const PolicyList&,

SetOverrideType
%

20.33 Server-Side Mapping

20-88

Server-side mapping refers to the portability constraints for an dbjpéémentabn

written in C++. Theermserveris not meant toestrict implementations to situems

in which method invocations cross address space or machine boundaries. This mapping
addresses any implementation of an OMG IDL interface.

CORBAV2.2 February 1998

20

20.34 Implementing Interfaces

To define an implementation in C++, one defines a C++ class with any valid C++
name. For each @pation in the interface, the class defines a non-static member
function with the mapped name of the operation (the mapped name is the same as the
OMG IDL identifier except when the identifier is a Ckeyword, in whichcase the

string “_cxx_" is prepended to thdentifier, as noted in “Preliminary Information” on

page 20-3). Note that the ORBplementation may allowwne implementation class to
derive from another, so the statement “the class defines a mé&mioéion” does not

mean the class must explicitly define the member function—it could inherit the
function.

The mapping spefiés two aternative relationships beagn the application-supplied
implementation class and the generated class or classes for the interface. Specifically,
the mapping requires support for batieritance-basedelationships andlelegation-
basedrelationships. CORBA-compliant ORB implementations are required to provide
both of thesalternatives. Conforming applications mage either or both of these
alternatives.

20.34.1 Mapping of PortableSeaw:Servant

ThePortableServer module for the Portable Object Adapter (POA) defines the native
Servant type. The C++mapping forServant is as follows:

/I C++
namespace PortableServer

{

class ServantBase
{
public:
virtual ~ServantBase();

ServantBase& operator=(const ServantBaseg&);
virtual POA_ptr _default POA();

protected:
ServantBase();
ServantBase(const ServantBase&);
/I ...all other constructors...
3
typedef ServantBase* Servant;

}

The ServantBase destructor is public and virtual to ensure that skeleton classes
derived fom it can be properly destroyetihe default constetor, along with other
implementation-specific constructors, must be protected so that instances of
ServantBase cannot be created except as sub-objects of instancksiodd

classes. A default constructor (a constructor that either takes no arguments or takes
only arguments with default values) must be provided so that derived secsartie

CORBA V2.2 Implementing Interfaces February 1998 20-89

20

constructed portably. Both copy construction and a public default assignment operator
must besupported so that applicationespfic servants can be copied if necessary. Note
that copying a servant that is alreaéygistered with the object adapter, either by
assignment or by construction, does not mean that the target of the assignment or copy
is also registered with the object adapS&milarly, assigning to &ervantBase or

a class devied from it that is already registered with the objectpadr does not in any

way change itsegistration.

The only ogration supplied by th8ervantBase class is the

_default_POA() function. The default implementation of this function, provided
by ServantBase |, returns an object reference to the root POA of the default ORB in
this process — the same as the return value of an invocation of
ORB::resolve_initial_references("RootPOA") on the default ORB.
Classes derived frof8ervantBase can override this definition to return the POA
of their choice, if desired.

20.34.2 Skeleton Operations

All skeleton classes provide dhis() ~ member function. This member function has
three purpses:

1. Within the context of a request iroation on the target objempresented by the
servant, it allows the servant to obtain the object reference for the target CORBA
object it is incarnating for that request. This is true even if the servant incarnates
multiple CORBA objects. In this contextthis() can be called regardless of the
policies the dispatching PO#as created with.

2. Outside the context of a requestdoation on the target object represented by the
servant, it allows a servant to bepiigitly activated if itsPOA allows inplicit
activation. This requires the aating POA to have been created with the
IMPLICIT_ACTIVATION policy. If the POA was not created with the
IMPLICIT_ACTIVATION policy, thePortableServer ::Wron gPolicy exception
is thrown.

3. Outside the context of a requestdoation on the target object represented by the
servant, it will return the object reference for a servant that has already been
activated, as long as the servant is not incarnating multiple CORBA objects. This
requires the POA with which the servantisiated to have been created with the
UNIQUE_ID and RETAINpolicies. If the POAvascreated with the
MULTIPLE_ID or NON_RETAIN policies, thePortableServer ::WrongPolicy
exception is thrown.

20-90 CORBAV2.2 February 1998

20

For example, usingnterface A

/I DL
interface A
{
short op1();
void op2(in long val);

k

The return value of this() is a typed object reference for the interface type
corresponding to the skeleton class. For example, this() function for the
skeleton for interfacé would be defined as follows:

/I C++
class POA_A : public virtual ServantBase
{
public:
A_ptr _this();

2
The _this() function follows the normal C++ mapping rules for returned object

references, so the caller assumes ownership of the returned object refanehmast
eventually calCORBA::release() on it.

The _this() function can bevirtual if the C++ environment supports covariant
return types, otherwise the function must be non-virtual so the returrcaypbe
correctly specified without compiler errors. Applications usleis() the same way
regardless of which of these implementation approaches is taken.

AssumingA_impl is a class deriveftom POA_Athat implements thé interface,
and assuming that the servant's P@As created witlthe appropriate policies, a
servant of typeA_impl can be created and implicitctivated as follows:

/I C++
A_impl my_a;
A_vara=my_a._this();

20.34.3 Inheritance-Based Interface Implenaéinoh

Implementation classes can therived from a generated base class based on the OMG
IDL interface definition.The generated base classeskam@wvn asskeleton classesnd

the derived classes are knownimplenmentation classesEach @eration of the

interface has a corresponding virtual member function declared in the skeleton class.
The signature ofhe member function is identical to that of the generated client stub
class. The implementation class provides implementations for these member functions.
The object adapter typically invokes the methods eadls to the virtual functions of

the skeleton class.

Assume that IDL interfacA is defined as follows:

CORBA V2.2 Implementing Interfaces February 1998 20-91

20

// IDL
interface A
{
short op1();
void op2(in long val);

k

For IDL interfaceA as shown above, the IDtompiler generates an interface cléss
This class cotains the C++ definitions for the typedefs, constatseptions,
attributes, and operations in the OMG IDL interface. It has a form similar to the
following:

/I C++
class A : public virtual CORBA::Object

{
public:
virtual Short op1() = 0;
virtual void op2(Long val) = 0;

2
Some ORB implementations might not use puliitual inheritance from

CORBA::Object , andmight not make the operations pure virtual, but the
signhatures of the operations will be the same.

On the server side, a skeleton class is generated. This class is papgajbedo the
programmer, though it will contain a member function corresponding to eachtiom

in the interfee. For the POA, the name of the skeleton class is formed by prepending
the string“POA_" to thefully-scoped name afhe corresponding interface, and the

class is either directly or indirectly deed fom the servant base class
PortableServer::ServantBase . The

PortableServer::ServantBase class must be a virtuabhse class of the

skeleton to allow portable implementations to multiply inherit flwoth skeleton

classes and implementation classes for other base interfaces without error or ambiguity.

The skeleton class for interfad® shown above would @ear as follows:

/I C++
class POA_A : public virtual PortableServer::ServantBase
{
public:
/I ...server-side implementation-specific detalil
/I goes here...
virtual Short op1() throw(SystemException) = 0;
virtual void op2(Long val) throw(SystemException) = 0;

2
If interface A were defined vthin a modile rather than at global scopeg, Mod::A ,

the name of its skeleton class would®®A_Mod::A. This helps to separate server-
side skeleton declarations and definitions from C++ code generated for the client.

20-92 CORBAV2.2 February 1998

20

To implementliis interface using inheritae, a programmer must derive from this
skeleton class and implement each of the operations in the OMG IDL interface. An
implementation class declaration for interfafcevould take thdorm:

/I C++
class A_impl : public POA_A
{
public:
Short op1() throw(CORBA::SystemException);
void op2(Long val) throw(CORBA::SystemException);

3

Note that the presence of ththis() functionimplies that C++servants must only
be derived directly from a single skeleton class. Direct derivation from multiple
skeleton classes could result in ambiguity erdus tomultiple definitions of

_this() . This should not be a limitanh, since CORBA objects have only a single
most-deived interface. Servants that are intended to suppattiple interface types
can utilize the delegation-based interface implementajimoach, described below in
“Delegation-Based Interfadenplementation”, orcan be registered as DSI-based
servants, as described in “Mapping of Dynamic Skeleton Interface to C++" on
page 20-99.

20.34.4 Delegation-Based Interface Impleriadion

Inheritance is not always the best solution for implementing sendsitsg

inheritance from the OMG IDL—generated classes forces a C++ infeitsierarchy

into the application. Sometimes, the overhead of suiclritance is todigh, or it may

be impossible to compile correctly due to defects in the C++ compiler. For example,
implementing objects using existing legasryde might be impossible ifheritance

from some global class were required, due to thasime nature of the inheritance.

In some cases delegation can be used to solve this problem. Rather than inheriting
from a skeleton class, the implementation can be coded as required for the application,
and a wrapper object will delegatpaalls to that implementation. This section

describes how this can be achieved in a type-safe manner using C++ templates.

For the examples in this section, the OMG IDL interface from “Inheritance-Based
Interface Implementation” on page 20-@ll again be used:

/I DL
interface A

short op1();

void op2(in long val);

>

CORBA V2.2 Implementing Interfaces February 1998 20-93

20

20-94

In addition to generating a skeleton class, the IDL compiler generates a delegating
class called aie. This class igartially opaque to the jgplication programmethough

like the skeleton, it provides a method correspondireptth OMG IDL opeation. The

name of the generated tie class is the same as the generated skeleton class with the
addition that the string “_tie” iappended to the end of the name. For gtam

/I C++
template<class T>
class POA_A tie : public POA_A

{
public:

2

An instance of this template class performs the task of delegation. When the template
is instantiated with a class type that provides the operatioAstbén thePOA_A tie

class will delegate all operations to an instance of that implementation class. A
reference or pointer to the actual implementation object is passed to the aat@ digr
constructor when an instance of the tie class is created. When a request is invoked on

it, the tie servant will just delegate the request byintalthe corresponding method in
theimplemenation object.

/I C++
template <class T>
class POA_A tie : public POA_A
{

public:
POA_A_tie(T& t)
: _ptr(&t), _poa(POA::_nil()), _rel(0) {}
POA_A tie(T& t, POA_ptr poa)
. _ptr(&t),
_poa(POA::_duplicate(poa)), _rel(0) {}
POA_A tie(T* tp, Boolean release = 1)
. _ptr(tp), _poa(POA::_nil()), _rel(release) {}
POA_A tie(T* tp, POA_ptr poa,
Boolean release = 1)
. _ptr(tp), _poa(POA::_duplicate(poa)),
_rel(release) {}
~POA_A_tie()
{
CORBA::release(_poa);
if (_rel) delete _ptr;
}

CORBAV2.2 February 1998

20

/I tie-specific functions
T* _tied_object() { return _ptr; }
void _tied_object(T& obj)

{

if (_rel) delete _ptr;
_ptr = &obj;
_rel=0;

}

void _tied_object(T* obj, Boolean release = 1)
{

if (_rel) delete _ptr;
_ptr = obj;

_rel = release;

}

Boolean _is_owner() { return _rel; }
void _is_owner(Boolean b) { _rel =b;}

/I DL operations
Short op1() throw(SystemException)

{
return _ptr->op1();

void op2(Long val) throw(SystemException)

{
_ptr->op2(val);
}

/I override ServantBase operations
POA_ptr _default_POA()

{

if /CORBA::is_nil(_poa)) {

return _poa;

}else {

/ return root POA

}
}

private:
T* _ptr;
POA_ptr _poa,;
Boolean _rel,

/I copy and assignment not allowed
POA_A tie(const POA_A_tie&);
void operator=(const POA_A _tie&);
h

It is important to note that the tie examgleown above @ntains sample
implementations for all of the required functions. A conforming implementation is free

to implement these @pations as it sees fit, as longthey conform to the semantics in
the paragraphs described below. A conforming implementation is also allowed to

CORBA V2.2 Implementing Interfaces February 1998

20-95

20

20-96

include additional implementation-specific functions if it wishes.

The T& constructors cause the tie servant to delegate all calls to the C++ object bound
to referencd . Ownership for the object referred to bydoes not become the
responsibility of the tie servant.

The T* constructors cause the tie servant to delegate all calls to the C++ object
pointed to bytp . Therelease parameter dictates whether the tie takes on
ownership of the C++ object pointed to tiy ; if release is TRUE the tie adopts

the C++ object, otherwise it does not. If the tie adopts the C++ object being delegated
to, it will delete it whenits own destructor is iroked, as shown above in the
~POA_A tie() destructor.

The _tied_object() accessor function allowsallers toaccess the C++ object
being delegated to. If thée was constructed t@ke ownership of the C++ object
(release wasTRUEin theT* constructor), the caller oftied _object()

should nevedelete the return value.

The frst _tied_object() modifier function callgdelete on the current tied

object if the tie's release flag BRUE and then points to the new tie object passed in.
The tie’srelease flag is set tBALSE The second tied_object() modifier

function does the same, except that the final state of the tie’s release flag is determined
by the value of theelease argument.

The_is_owner() accessor function returffRUEif the tie owns the C++ object it

is delegating to, oFALSE if it does not. The is_owner() modifier function

allows the state of thge’s release flag to be changed. This is useful for ensuring that
memory leaks do not occur when transferring ownership of tied objects from one tie to
another, or when changing the tied objetieadelegates to.

For delegation-basednplementations it is important to note that the servant is the tie
object, not the C++ object being delegated to bytitn@bject. This means that the tie
servant is used as the argument to those POA operations that reGeineant

argument. This also means that any operations that the POA calls on the servant, such
asServantBase::_default POA() , are provided by the tie servant, as shown by

the example abové he value returned bydefault POA() is supplied to the tie
constructor.

It is also important to note that by default, a delegation-based implementation (the
“tied” C++ instance) has no access to tlleis() function, which is available only

on the tie. One wafor this access to be provided is by informing the delegation object
of its associated tie object. This way, theh@dds a pointer to the delegation object,
and vice-versa. Howevehis approach onlyorks if thetie and the delegation object
have a one-to-oneelatiorship. For a delegation object tied into ltiple tie objects,

the object reference by whichvitas invoked can be obtainedtinn the context of a
request invocation byatling PortableServer::Current::

get_object_id() , passing its return value RortableServer::POA::
id_to_reference() , and then narrowing the returned object reference
appropriately.

CORBAV2.2 February 1998

20

In the tie classhown above, all theperations are shown as being inline. In practice,
it is likely that they will be defined out of line, especially for those functions that
override inherited virtual functits. Either approach is allowed by conforming
implementations.

The use otemplates for tie classes allows the application developgrotode
specializations for some or all of the template’s member functions for a given
instantiation of the template. Thadlows the application to control how the tied object
is invoked. For example, tHeOA_A_tie<T>::0p2() operation is normally defined
as follows:

/I C++

template<class T>

void

POA_A tie<T>::0p2(Long val) throw(SystemException)

{
_ptr->op2(val);
}

This implementation assumes that the tied object suppomp2(h operation with

the same signature and takility to throw CORBA systeraxceptions. However, if the
application wants to use legacy classes for tied object types, it is unlikely they will
support these capabilities. In that case, the application can provide its own
specialization. For example, if the application already has a class riegoetthat
supports dog_value() function, the tie classp2() function can be made to call
it if the following specialization is provided:

/I C++

void

POA_A tie<Foo>::0p2(Long val) throw(SystemException)
{

_tied_object()->log_value(val);

}

Portable specializations like the oslgown above should not tie class data
members directly, since the names of those data members are not standardized.

20.35 Implementing Operations

The signature of an iphementation member function is the mapped signature of the
OMG IDL operation. Unlike the client side, the server-side mapping requires that the
function header include the appropriate excepttbmogv) specification. This
requirement allows the compiler to detect when an invalid exception is raised, which is
necessary in the case of a local C++-to-C++ libaly (otherwise the call would have

to go through a wrapper that checlked a valid exception). For example:

CORBA V2.2 Implementing Operations February 1998 20-97

20

20-98

/I IDL
interface A
{
exception B {};
void f() raises(B);
k

/I C++
class MyA : public virtual POA_A
{
public:
void f() throw(A::B, CORBA::SystemException);

h

Sinceall operationsand atributes may throw CORBA system excepso
CORBA::SystemException must appear in all exception specifications, even
when an operation has maises clause.

Within a nember functionthe “this” pointer refers to the implementation object’s data
as defined by the class. In addition to accessing the data, a member function may
implicitly call another member function defined by the same class. For example:
/I'IDL

interface A

void f();
void g();
|3

/I C++
class MyA : public virtual POA_A
{
public:
void f() throw(SystemException);
void g() throw(SystemException);
private:
long x_;

h

void

MyA::f() throw(SystemException)
{

this->x_ = 3;

this->g();

}

CORBAV2.2 February 1998

20

However, when a servant member function is invoked in this manner, it is being called
simply as a C++ member function, not as the implementation of an operation on a
CORBA object. In such a context, any information available viaP@& Current

object refers to the CORBA request invocation that performed the C++ member
function invocation, not to the member function invocation itself.

20.35.1 Skeleton Derivation From Object

In several existing ORB implementations, each skeleton class derives from the
correspondindnterface class. For example, for interfaded::A , the skeleton class
POA_Mod::A is derved fom classMod::A . These systems therefaaiow an

object reference for a servant to be implicitly obtained via normal C++ derived-to-base
conversion rules:

/I C++

MylmplOfA my_a;// declare impl of A

A_ptr a = &my_a;// obtain its object reference
/I by C++ derived-to-base

/I conversion

Such code can be supported by a conforming QRfdeémentation, but it is not
required, and is thus not portable. The equivalent portable code invithed§ on
theimplemenétion object in order tamplicitly register it if it hasot yet been
registered, and to get its object reference:

/I C++

MyImplOfA my_a;// declare impl of A

A_ptra=my_a._this();// obtain its object
Il reference

20.36 Mapping of Dynamic Skeleton Interface to C++

“DSI: Language Mapping” on page 6-4 contains geniafarmation about mapping
the Dynamic Skeleton Interface to programming languages.

This section contains the following information:

® Mapping of the Dynamic Skeleton Interfac&srverRequest to C++
®* Mapping of the Portable Object Adapter's Dynamic Implementation Routine to C++

20.36.1 Mapping of ServerRequest to C++

The ServerRequest pseudo bject maps to a C++ class in ti©RB Avamespace
which supports the following operations and signatures:

CORBA V2.2 Mapping of Dynamic Skeleton Interface to C++ February 1998 20-99

20

20-100

/I C++
class ServerRequest

public:
const char* operation() const;
void arguments(NVList_ptr& parameters);
Context_ptr ctx();
void set_result(const Any& value);
void set_exception(const Any& value);

3

Note that, as with theest of the C++ maping, ORB implementations are free to make
such gerations virtuahnd modify the inheritance as needed.

All of these operations follow the normal memory management rules for data passed
into skeletons by the ORB. That is, the DIR is not allowed to modify or change the
string returned byperation() , In parameters in thBlIVList returned from
arguments() , or theContext returned byctx() . Similarly, data allocated by

the DIR and handed to the ORB (tN&/List parameters, the result value, and
exception values) are freed by the ORB rather than by the DIR.

20.36.2 Handling Operation Parameters and Results

The ServerRequest provides parameter values when the DIR invokes the
arguments() operation. TheNVList provided by the DIR to the ORB includes

the TypeCodes and directionFlags (insideNamedValues) for all parameters,
includingout ones for the operation. Thidlows the ORB to verify that the correct
parameter types have been provided before filling their values in, but does not require
it to do so. It alsagelieves the ORB of all responsibility to consult an Interface
Repository, promoting high performance implementations.

The NVList provided to the ORB then becomes owned by the ORB. It will not be
deallocated until after the DIR returns. This allows the DIR to paseuhevalues,
including the return side d@fiout values, to the ORB by modifying tidVList after
arguments() has been called. Therefore, if the DIR storesNMist_ptr

into anNVList_var , it should pass it to therguments() function by invoking
the_retn() function on it, in order to force it to release ownership of its internal
NVList_ptr to the ORB.

20.36.3 Mapping of PortableServer Dynamic Implementation Routine

In C++, DSI servants inherit from the stand&rgnamiclmplementation class.
This class inhdts from theServantBase class and is also defined in the
PortableServer namespace. The Dynamic Skeleton Interface (DSI) is
implemented through servants that exembers of classes that inherit from dynamic
skeleton classes.

CORBAV2.2 February 1998

20

/I C++
namespace PortableServer
{
class Dynamiclmplementation : public virtual ServantBase
{
public:
CORBA::Object_ptr _this();
virtual void invoke(
CORBA::ServerRequest_ptr request
)=0;
virtual CORBA::Repositoryld
_primary_interface(
const Objectld& oid,
POA_ptr poa
)=0;
3
}

The _this() function returns £ORBA::Object_ptr for the target object.
Unlike _this() for staticskeletons, its return type is not interface-spedificause

a DSI servant may veryell incarnatemultiple CORBAobjects of different types. If
Dynamiclmplementation::_this() is invoked outside of the context of a
request invocation on a target object being served by the DSI servant, it raises the
PortableSe rver::WrongPolicy exception.

Theinvoke() method receives requests issuedny CORBA object incarnated by
the DSI servant angderforms the processing necessary to execute the request.

The _primary_interface() method receives a@bjectld value and a
POA ptr as input parameters and returns a vRlgpositoryld representing the
most-deived interface for thaoid .

It is expected that thinvoke() and_primary_interface() methods will
be only invoked by th®OA inthe context of serving a CORBA request. Invoking this
method in other circumstances may lead to unpredictable results.

20.37 PortableServer Functions

Objects registered with POAs use sequences of octet, specifically the

PortableSe rver::POA::Objectld type, as objeddentifiers. However, because C++
programmers will often want to use strings as object identifiers, the C++ mapping
provides several conversion functions that convert strin@3tjectld and vice-
versa:

CORBAV2.2 drtableServer Functions February 1998 20-101

20

Il C++
namespace PortableServer

{
char* Objectld_to_string(const Objectld&);

wchar_t* Objectld_to_wstring(const Objectld&);

Objectld* string_to_Objectld(const char*);
Objectld* wstring_to_Objectld(const wchar_t*);

}

These function$ollow the normal C++ mapping rules for parameter pasaimd
memory management.

If conversion of arObjectld to a string would result idlégal characters in the
string (such as a NUL), the first two functiotmsow the CORBA::BAD_PARAM
exception.

20.38 Mapping for PortableServer::ServantManager

20.38.1 Mapping for Cookie

SincePortableServer::ServantLocator::Cookie is an IDLnative type, its type
must be specified by eadtinguage mapping. In C+€ookie maps tovoid* :

/I C++
namespace PortableServer

{

class ServantLocator {

typedef void* Cookie;

¥

}

For the C++ mapping of theortableServer::ServantLocator::preinvoke()

operation, theCookie parameter maps to@ookie& , while for thepostinvoke()
operation, it is passed agCaokie .

20.38.2 ServantManagers and AdapterActivators

Portable servants thahplement the

PortableServer::AdapterActivator , the
PortableServer::ServantActivator , or
PortableServer::ServantLocator interfaces are implemented just like
any other servant. They may usieher the inheritance-based approach or the tie
approach.

20-102 CORBAV2.2 February 1998

20

20.39 C++ Definitiondor CORBA

This section provides a complete set of C++irdédns for the CORBA module. The
definitions appear within the C++ namespace na@&RBA

/I C++
namespace CORBA{ ... }

Any implementaibns shownhere are merely sampimplementationsthey are not the
required definitions for these types.

20.39.1 Primitive Types

typedef unsigned charBoolean;
typedef unsigned charChar;
typedef wchar_tWChar;

typedef unsigned charOctet;
typedef shortShort;

typedef unsigned shortUShort;
typedef longLong;

typedef ...LongLong;

typedef unsigned longULong;
typedef ...ULongLong;

typedef floatFloat;

typedef doubleDouble;

typedef long doubleLongDouble;
typedef Boolean&Boolean_out;
typedef Char&Char_out;

typedef WChar&WChar_out;
typedef Octet&Octet_out;

typedef Short&Short_out;

typedef UShort&UShort_out;
typedef Long&Long_out;

typedef LongLong&LonglLong_out;
typedef ULong&ULong_out;
typedef ULongLong&ULonglLong_out;
typedef Float&Float_out;

typedef Double&Double_out;
typedef LongDouble&LongDouble_out;

CORBAV2.2 C+Definitions for CORBA February 1998 20-103

20

20-104

20.39.2 String_var and String_out Class

class String_var
{

public:
String_var();
String_var(char *p);
String_var(const char *p);
String_var(const String_var &s);
~String_var();

String_var &operator=(char *p);
String_var &operator=(const char *p);
String_var &operator=(const String_var &s);

operator char*();

operator const char*() const;
const char* in() const;
char*& inout();

char*& out();

char* _retn();

char &operator[](ULong index);
char operator[](ULong index) const;

class String_out
{

public:
String_out(char*& p);
String_out(String_var& p);
String_out(String_out& s);
String_out& operator=(String_out& s);
String_out& operator=(char* p);
String_out& operator=(const char* p)

operator char*&();
char*& ptr();

private:
/[assignment from String_var disallowed
void operator=(const String_var&);

h

20.39.3 WString_var and WString_out

TheWString_var andWString_out types are identical t8tring_var
String_out , respectively, except that they operate on wide stimlwide
character types.

CORBAV2.2 February 1998

and

20

20.39.4 Any G@ss

class Any
{

public:
Any();
Any(const Any&);
Any(TypeCode_ptr tc, void *value,
Boolean release = FALSE);

~Any();
Any &operator=(const Any&);

void operator<<=(Short);
void operator<<=(UShort);
void operator<<=(Long);
void operator<<=(ULong);
void operator<<=(Float);

void operator<<=(Double);

void operator<<=(const Any&);// copying
void operator<<=(Any*);// non-copying
void operator<<=(const char®);

Boolean operator>>=(Short&) const;
Boolean operator>>=(UShort&) const;
Boolean operator>>=(Long&) const;
Boolean operator>>=(ULong&) const;
Boolean operator>>=(Float&) const;
Boolean operator>>=(Double&) const;
Boolean operator>>=(Any*&) const;
Boolean operator>>=(char*&) const;

/I special types needed for boolean, octet, char,
/I and bounded string insertion

/I these are suggested implementations only
struct from_boolean {
from_boolean(Boolean b) : val(b) {}

Boolean val,

I3

struct from_octet {

from_octet(Octet o) : val(o) {}

Octet val;

2

struct from_char {

from_char(Char c) : val(c) {}

Char val,

¥

struct from_wchar {

from_char(WChar c) : val(c) {}

CORBAV2.2 C+Definitions for CORBA February 1998 20-105

20

20-106

WChar val;

%

struct from_string {
from_string(char* s, ULong b,
Boolean nocopy = FALSE) :
val(s), bound(b) {}

char *val;

ULong bound;

2

struct from_wstring {
from_wstring(WChar* s, ULong b,
Boolean nocopy = FALSE) :
val(s), bound(b) {}

WChar *val,

ULong bound;

h

void operator<<=(from_boolean);
void operator<<=(from_char);
void operator<<=(from_wchar);
void operator<<=(from_octet);
void operator<<=(from_string);
void operator<<=(from_wstring);

/I special types needed for boolean, octet,

/I char extraction

/I these are suggested implementations only

struct to_boolean {
to_boolean(Boolean &b) : ref(b) {}
Boolean &ref;

%

struct to_char {

to_char(Char &c) : ref(c) {}

Char &ref;

I3

struct to_wchar {
to_wchar(WChar &c) : ref(c) {}
WChar &ref;

2

struct to_octet {

to_octet(Octet &0) : ref(o) {}
Octet &ref;

2

struct to_object {
to_object(Object_ptr &obj) : ref(obj) {}
Object_ptr &ref;

%

struct to_string {

CORBAV2.2

February 1998

20

to_string(char *&s, ULong b) : val(s), bound(b) {}
char *&val;

ULong bound;

h

struct to_wstring {

to_wstring(WChar *&s, ULong b)

: val(s), bound(b) {}

WChar *&val;

ULong bound;

h

Boolean operator>>=(to_boolean) const;
Boolean operator>>=(to_char) const;
Boolean operator>>=(to_wchar) const;
Boolean operator>>=(to_octet) const;
Boolean operator>>=(to_object) const;
Boolean operator>>=(to_string) const;
Boolean operator>>=(to_wstring) const;

void replace(TypeCode_ptr, void *value,
Boolean release = FALSE);

TypeCode_ptr type() const;
const void *value() const;

private:
/Il these are hidden and should not be implemented
/I so as to catch erroneous attempts to insert
/I or extract multiple IDL types mapped to unsigned char
void operator<<=(unsigned char);
Boolean operator>>=(unsigned char&) const;

h

20.39.5 Any var Class

class Any_var
{

public:
Any_var();
Any var(Any *a);
Any_var(const Any_var &a);
~Any_var();

Any_var &operator=(Any *a);
Any_var &operator=(const Any_var &a);

Any *operator->();

const Any& in() const;
Any& inout();

CORBAV2.2 C+Definitions for CORBA February 1998

20-107

20

Any*& out();
Any* _retn();

/I other conversion operators for parameter passing

h

20.39.6 Exception Class

/I C++
class Exception
{
public:
Exception(const Exception &);
virtual ~Exception();
Exception &operator=(const Exception &);

virtual void _raise() = 0;

protected:
Exception();
3

20.39.7 SystemException Class

/I C++
enum CompletionStatus { COMPLETED_YES, COMPLETED_NO,
COMPLETED_MAYBE };
class SystemException : public Exception
{
public:
SystemException();
SystemException(const SystemException &);
SystemException(ULong minor, CompletionStatus status);
~SystemException();
SystemException &operator=(const SystemException &);

ULong minor() const;
void minor(ULong);

CompletionStatus completed() const;
void completed(CompletionStatus);

static SystemException* _narrow(Exception*);

3

20.39.8 UserExcdn Class

Il C++
class UserException : public Exception

{

20-108 CORBAV2.2 February 1998

20

public:
UserException();
UserException(const UserException &);
~UserException();
UserException &operator=(const UserException &);

static UserException* _narrow(Exception®*);

h

20.39.9 UnknownUserException Class

/I C++
class UnknownUserException : public UserException
{
public:
Any &exception();

static UnknownUserException* _narrow(Exception®);
virtual void raise();

h

20.39.10 release and_nil

/I C++

namespace CORBA {

void release(Object_ptr);

void release(Environment_ptr);
void release(NamedValue_ptr);
void release(NVList_ptr);

void release(Request_ptr);
void release(Context_ptr);
void release(TypeCode_ptr);
void release(POA_ptr);

void release(ORB_ptr);

Boolean is_nil(Object_ptr);
Boolean is_nil(Environment_ptr);
Boolean is_nil(NamedValue_ptr);
Boolean is_nil(NVList_ptr);
Boolean is_nil(Request_ptr);
Boolean is_nil(Context_ptr);
Boolean is_nil(TypeCode_ptr);
Boolean is_nil(POA_ptr);
Boolean is_nil(ORB_ptr);

CORBAV2.2 C+Definitions for CORBA February 1998

20-109

20

20.39.11 Object lass

/I C++

class Object

{

public:

static Object_ptr _duplicate(Object_ptr obj);

static Object_ptr _nil();

InterfaceDef_ptr _get interface();

Boolean _is_a(const char* logical_type _id);

Boolean _non_existent();

Boolean _is_equivalent(Object_ptr other_object);

ULong _hash(ULong maximum);

Status _create_request(

Context_ptr ctx,

const char *operation,

NVList_ptr arg_list,

NamedValue_ptr result,

Request_out request,

Flags req_flags

);

Status _create_request(

Context_ptr ctx,

const char *operation,

NVList_ptr arg_list,

NamedValue_ptr result,

ExceptionList_ptr,

ContextList_ptr,

Request_out request,

Flags req_flags

Request_ptr _request(const char* operation);

Policy_ptr _get_policy(PolicyType policy_type);
DomainManagerList* _get_domain_managers();
Object_ptr _set_policy_override(

const PolicyList& policies,
SetOverrideType set_or_add

20-110 CORBAV2.2 February 1998

20

20.39.12 Environment Class

/I C++
class Environment
{

public:
void exception(Exception*);
Exception *exception() const;
void clear();

static Environment_ptr _duplicate(Environment_ptr ev);
static Environment_ptr _nil();

h

20.39.13 NamedValue Class

/I C++
class NamedValue
{
public:
const char *name() const;
Any *value() const;
Flags flags() const;

static NamedValue_ptr _duplicate(NamedValue_ptr nv);
static NamedValue_ptr _nil();

3

20.39.14 NVList Class

/I C++
class NVList
{
public:
ULong count() const;
NamedValue_ptr add(Flags);
NamedValue_ptr add_item(const char*, Flags);
NamedValue_ptr add_value(const char*, const Any&,
Flags);
NamedValue_ptr add_item_consume(
char*,
Flags
);
NamedValue_ptr add_value_consume(
char*,
Any *,
Flags
);
NamedValue_ptr item(ULong);
Status remove(ULong);

CORBAV2.2 C+Definitions for CORBA February 1998

20-111

20

20-112

static NVList_ptr _duplicate(NVList_ptr nv);

static NVList_ptr _nil();
h

20.39.15 ExceptionList Class

/I C++
class ExceptionList

{
public:
ULong count();
void add(TypeCode_ptr tc);

void add_consume(TypeCode_ptr tc);

TypeCode_ptr item(ULong index);
Status remove(ULong index);

h

20.39.16 ContextList Class

class ContextList

{

public:
ULong count();
void add(const char* ctxt);
void add_consume(char* ctxt);
const char* item(ULong index);
Status remove(ULong index);

3

20.39.17 Requestl&ss

/I C++
class Request

{

public:
Object_ptr target() const;
const char *operation() const;
NVList_ptr arguments();
NamedValue_ptr result();
Environment_ptr env();
ExceptionList_ptr exceptions();
ContextList_ptr contexts();

void ctx(Context_ptr);
Context_ptr ctx() const;

Any& add_in_arg();

Any& add_in_arg(const char* name);

Any& add_inout_arg();

CORBAV2.2

February 1998

20

Any& add_inout_arg(const char* name);
Any& add_out_arg();

Any& add_out_arg(const char* name);
void set_return_type(TypeCode_ptr tc);
Any& return_value();

Status invoke();

Status send_oneway();

Status send_deferred();

Status get_response();

Boolean poll_response();

static Request_ptr _duplicate(Request_ptr req);
static Request_ptr _nil();

h

20.39.18 Context Class

/I C++
class Context
{
public:
const char *context_name() const;
Context_ptr parent() const;

Status create_child(const char*, Context_out);

Status set_one_value(const char*, const Any&);
Status set_values(NVList_ptr);

Status delete_values(const char*);

Status get_values(const char*, Flags, const char*,
NVList_out);

static Context_ptr _duplicate(Context_ptr ctx);
static Context_ptr _nil();

h

20.39.19 TypeCode Class

/I C++
class TypeCode

{

public:
class Bounds{ ... };
class BadKind { ... };

TCKind kind() const;
Boolean equal(TypeCode_ptr) const;

const char* id() const;
const char* name() const;

CORBAV2.2 C+Definitions for CORBA February 1998

20-113

20

20-114

ULong member_count() const;
const char* member_name(ULong index) const;

TypeCode_ptr member_type(ULong index) const;

Any *member_label(ULong index) const;
TypeCode_ptr discriminator_type() const;
Long default_index() const;

ULong length() const;
TypeCode_ptr content_type() const;

UShort fixed_digits() const;
Short fixed_scale() const;

Long param_count() const;
Any *parameter(Long) const;

static TypeCode_ptr _duplicate(TypeCode_ptr tc);
static TypeCode_ptr _nil();

h

20.39.20 ORB Class

/I C++
class ORB
{
public:
typedef sequence<Request_ptr> RequestSeq;
char *object_to_string(Object_ptr);
Object_ptr string_to_object(const char*);
Status create_list(Long, NVList_out);
Status create_operation_list(OperationDef_ptr,
NVList_out);
Status create_named_value(NamedValue_out);
Status create_exception_list(ExceptionList_out);
Status create_context_list(ContextList _out);

Status get_default_context(Context_out);
Status create_environment(Environment_out);

Status send_multiple_requests_oneway(
const RequestSeq&

);

Status send_multiple_requests_deferred(
const RequestSeq&

).

Boolean poll_next_response();

CORBAV2.2 February 1998

20

Status get_next_response(Request_out);

// Obtaining initial object references
typedef char* Objectld;

class ObjectldList {...};

class InvalidName {...};

ObjectldList *list_initial_services();
Object_ptr resolve_initial_references(
const char *identifier

);

Boolean work_pending();

void perform_work();

void shutdown(Boolean wait_for_completion);
void run();

Boolean get_service_information(
ServiceType svc_type,
Servicelnformation_out svc_info

);

static ORB_ptr _duplicate(ORB_ptr orb);
static ORB_ptr _nil();

h

20.39.21 ORB Inidlization

/I C++

typedef char* ORBId;
static ORB_ptr ORB_init(
int& argc,

char** argv,

const char* orb_identifier =

);

20.39.22 GeneralT_out pes

/I C++
class T_out

{

public:
T out(T*& p) : ptr_(p) {ptr_=0;}
T out(T_var& p) : ptr_(p.ptr_) {

delete ptr_;
ptr_=0;
}

T out(T_out& p) : ptr_(p.ptr) {}
T_out& operator=(T_out& p) {

ptr_ = p.ptr_;
return *this;

CORBAV2.2 C+Definitions for CORBA February 1998

20-115

20

}
T_out& operator=(T* p) { ptr_ = p; return *this; }

operator T*&() { return ptr_; }
T*& ptr() { return ptr_; }

T* operator->() { return ptr_; }

private:
T*& ptr_;

/I assignment from T_var not allowed
void operator=(const T_var&):

h

20.40 Alternative Mappings For C++ Dialects

20-116

20.40.1 Without Namespaces

If the target environment does not supportrtaenespace construcbut does support

nested classes, then a module should be mapped to a C++ class. If the environment does
not support nested classes, then the mapping for modules should be the same as for the
CORBA C mapping (concatenating identifiers using an underscore (“_") character as the
separator).

Note that module constants map to file-scope constants on systems that support
namespaces and class-scope constants on systems that map modules to classes.

20.40.2 Without Exception Handling

For those C++ environments that do not suppat €++ &ception handling, referred to
here ason-exception handlingion-EH) C++ environmentsanEnvironment
parameter pagd to each operation is used to convey exception information to the caller.

As shown in “Environment” on page 20-71, faRavironment class supports the abil-
ity to access and modify thexception it holds.

As shown in Mapping for Exception Types” on page 20-58, both user-deinddsystem
exceptions form an inheritance hierarchy that normally allow types to be caught either by
their actual type or by a more general base type. When usehimiEH C++ envbn-

ment, the narrowing functions provided by this hierarchy allow for axaion and
manipulation of exceptions:

/I IDL
interface A

{

exception Broken { ... };

CORBAV2.2 February 1998

20

void op() raises(Broken);

k

Il C++
Environment ev;
A_ptrobj = ...
obj->op(ev);
if (Exception *exc = ev.exception()) {
if (A::Broken *b = A::Broken::_narrow(exc)) {
/Il deal with user exception
}else {
/I must have been a system exception
SystemException *se = SystemException::_narrow(exc);

}
}
“ORB” on page 20-83 specifies thanvironment must be created using
ORB::create_environment , but this is overly constraining for impleme nbeiis

requiring arEnvironment to be passed as an argument to each method invocation.
For implementations that dwt support real C++ exceptiorisnvironment may be
allocated as a static, automaticheap variable. For example, all of the following are
legal declarations on a non-EH C++ environment:

/I C++
Environment global_env; I/ global
static Environment static_env;// file static

class MyClass

{
public:

private:
static Environment class_env; /I class static

h

void func()

{

Environment auto_env; Il auto
Environment *new_env = new Environment; /l heap

}

For ease of us&nvironment parameterare passed by reference in non-EH environ-
ments:

/I IDL
interface A

{

exception Broken { ... };
void op() raises(Broken);

CORBA V2.2 Alternative Mappings For C++ Dialects February 1998 20-117

20

20.41 C++ Keywords

20-118

k

/I C++
class A ...

{
public:

void op(Environment &);

h

For additional ease of userion-EH enwionmentsEnvironment
copy constructiomnd asgnment from otheEnvironment

should support
objects. These additional

features are helpful for propagating exceptions fromkmgronment to another
under non-EH iccumstnces.

When an exception is “thrown” inreon-EH enwionment, object implemerts and ORB
runtimes must ensure that alit and return pointers are returned to the caller as null
pointers. If non-initialied or “garbage” pater values are returnedijesit application
code could experience runtime errors due to the assignment of bad poirtev@to
types. When & _var goes out of scope, it atemptgelete
pointer value is garbage, a runtime error will almost certainly occur.

theT* given to it; if this

Exceptions imon-EH erironments need not support thetval _raise() function,
since the only useful implementation of itsach an environment would be to abort the

program.

Table 20-6 listaall C++ keywordsfrom the 2 December 1996 Working Paper of the
ANSI (X3J16) C++ Language Standardizati@Gommittee.

Table 20-6 C++ Keywords

and and_eq asm auto bitand
bitor bool break case catch
char class compl const const_cast
continue default delete do double
dynamic_cast else enum explicit extern
false float for friend goto
if inline int long mutable
namespace new not not_eq operator
or or_eq private protected public
register reinterpret_cast return short signed
sizeof static static_cast struct switch
template this throw true try
typedef typeid typename union unsigned
using virtual void volatile wchar_t
while xor Xor_eq

CORBAV2.2 February 1998

	Mapping of OMG IDL to C++
	20.1 Preliminary Information
	20.1.1 Overview
	20.1.2 Scoped Names
	20.1.3 C++ Type Size Requirements
	20.1.4 CORBA Module

	20.2 Mapping for Modules
	20.3 Mapping for Interfaces
	20.3.1 Object Reference Types
	20.3.2 Widening Object References
	20.3.3 Object Reference Operations
	20.3.4 Narrowing Object References
	20.3.5 Nil Object Reference
	20.3.6 Object Reference Out Parameter
	20.3.7 Interface Mapping Example

	20.4 Mapping for Constants
	20.5 Mapping for Basic Data Types
	20.6 Mapping for Enums
	20.7 Mapping for String Types
	20.8 Mapping for Wide String Types
	20.9 Mapping for Structured Types
	20.9.1 T_var Types
	20.9.2 T_out Types

	20.10 Mapping for Struct Types
	20.11 Mapping for Fixed
	20.11.1 Fixed T_var and T_out Types

	20.12 Mapping for Union Types
	20.13 Mapping for Sequence Types
	20.13.1 Sequence Example
	20.13.2 Using the “release” Constructor Parameter
	20.13.3 Additional Memory Management Functions
	20.13.4 Sequence T_var and T_out Types

	20.14 Mapping For Array Types
	20.15 Mapping For Typedefs
	20.16 Mapping for the Any Type
	20.16.1 Handling Typed Values
	20.16.2 Insertion into any
	20.16.3 Extraction from any
	20.16.4 Distinguishing boolean, octet, char, wchar, bounded string, and bounded wstring
	20.16.5 Widening to Object
	20.16.6 Handling Untyped Values
	20.16.7 Any Constructors, Destructor, Assignment Operator
	20.16.8 The Any Class
	20.16.9 The Any_var Class

	20.17 Mapping for Exception Types
	20.18 Mapping For Operations and Attributes
	20.19 Implicit Arguments to Operations
	20.20 Argument Passing Considerations
	20.20.1 Operation Parameters and Signatures

	20.21 Mapping of Pseudo Objects to C++
	20.22 Usage
	20.23 Mapping Rules
	20.24 Relation to the C PIDL Mapping
	20.25 Environment
	20.25.1 Environment Interface
	20.25.2 Environment C++ Class
	20.25.3 Differences from C-PIDL
	20.25.4 Memory Management

	20.26 NamedValue
	20.26.1 NamedValue Interface
	20.26.2 NamedValue C++ Class
	20.26.3 Differences from C-PIDL
	20.26.4 Memory Management

	20.27 NVList
	20.27.1 NVList Interface
	20.27.2 NVList C++ Class
	20.27.3 Differences from C-PIDL
	20.27.4 Memory Management

	20.28 Request
	20.28.1 Request Interface
	20.28.2 Request C++ Class
	20.28.3 Differences from C-PIDL
	20.28.4 Memory Management

	20.29 Context
	20.29.1 Context Interface
	20.29.2 Context C++ Class
	20.29.3 Differences from C-PIDL
	20.29.4 Memory Management

	20.30 TypeCode
	20.30.1 TypeCode Interface
	20.30.2 TypeCode C++ Class
	20.30.3 Differences from C-PIDL
	20.30.4 Memory Management

	20.31 ORB
	20.31.1 ORB Interface
	20.31.2 ORB C++ Class
	20.31.3 Differences from C-PIDL
	20.31.4 Mapping of ORB Initialization Operations

	20.32 Object
	20.32.1 Object Interface
	20.32.2 Object C++ Class

	20.33 Server-Side Mapping
	20.34 Implementing Interfaces
	20.34.1 Mapping of PortableServer::Servant
	20.34.2 Skeleton Operations
	20.34.3 Inheritance-Based Interface Implementation
	20.34.4 Delegation-Based Interface Implementation

	20.35 Implementing Operations
	20.35.1 Skeleton Derivation From Object

	20.36 Mapping of Dynamic Skeleton Interface to C++
	20.36.1 Mapping of ServerRequest to C++
	20.36.2 Handling Operation Parameters and Results
	20.36.3 Mapping of PortableServer Dynamic Implementation Routine

	20.37 PortableServer Functions
	20.38 Mapping for PortableServer::ServantManager
	20.38.1 Mapping for Cookie
	20.38.2 ServantManagers and AdapterActivators

	20.39 C++ Definitions for CORBA
	20.39.1 Primitive Types
	20.39.2 String_var and String_out Class
	20.39.3 WString_var and WString_out
	20.39.4 Any Class
	20.39.5 Any_var Class
	20.39.6 Exception Class
	20.39.7 SystemException Class
	20.39.8 UserException Class
	20.39.9 UnknownUserException Class
	20.39.10 release and is_nil
	20.39.11 Object Class
	20.39.12 Environment Class
	20.39.13 NamedValue Class
	20.39.14 NVList Class
	20.39.15 ExceptionList Class
	20.39.16 ContextList Class
	20.39.17 Request Class
	20.39.18 Context Class
	20.39.19 TypeCode Class
	20.39.20 ORB Class
	20.39.21 ORB Initialization
	20.39.22 General T_out Types

	20.40 Alternative Mappings For C++ Dialects
	20.40.1 Without Namespaces
	20.40.2 Without Exception Handling

	20.41 C++ Keywords

