
Mapping of OMG IDL to Smalltalk 21
Contents

This chapter contains the following sections.

Section Title Page

Smalltalk Overview

“Mapping Summary” 21-2

“Key Design Decisions” 21-3

Mapping of OMG IDL to Smalltalk

“Implementation Constraints” 21-5

“Smalltalk Implementation Requirements” 21-6

“Conversion of Names to Smalltalk Identifiers” 21-7

“Mapping for Interfaces” 21-7

“Memory Usage” 21-7

“Mapping for Objects” 21-8

“Invocation of Operations” 21-8

“Mapping for Attributes” 21-9

“Mapping for Basic Data Types” 21-10

“Mapping for the Any Type” 21-11

“Mapping for Enums” 21-12

“Mapping for Struct Types” 21-13

“Mapping for Fixed Types” 21-13
 CORBA V2.2 February 1998 21-1

21

e
21.1 Mapping Summary

Table 21-1 provides a brief description of the mapping of OMG IDL constructs to th
Smalltalk language, and where in this chapter they are discussed.

“Mapping for Union Types” 21-13

“Mapping for Sequence Types” 21-14

“Mapping for String Types” 21-15

“Mapping for Wide String Types” 21-15

“Mapping for Array Types” 21-15

“Mapping for Exception Types” 21-15

“Mapping for Operations” 21-15

“Implicit Ar guments to Operations” 21-16

“Argument Passing Considerations” 21-16

“Handling Exceptions” 21-16

“Exception Values” 21-17

Mapping of Pseudo Objects to Smalltalk

“CORBA::Request” 21-19

“CORBA::Context” 21-19

“CORBA::Object” 21-20

“CORBA::ORB” 21-21

“CORBA::NamedValue” 21-22

“CORBA::NVList” 21-22

Appendix A, “Glossary Terms” 21-23

Table 21-1Summary of this Chapter

OMG IDL
Construct

Smalltalk Mapping See Section

Interface Set of messages that Smalltalk objects which
represent object references must respond to. The set
of messages corresponds to the attributes and
operations defined in the interface and inherited
interfaces.

“Mapping for Interfaces” on
page 21-7

Object Reference Smalltalk object that represents a CORBA object.
The Smalltalk object must respond to all messages
defined by a CORBA object’s interface.

“Mapping for Objects” on
page 21-8

Section Title Page
21-2 CORBA V2.2 February 1998

21

21.2 Key Design Decisions

The mapping of OMG IDL to the Smalltalk programming language was designed with
the following goals in mind:

Operation Smalltalk message. “Mapping for Operations”
on page 21-15

Attribute Smalltalk message “Mapping for Attributes” on
page 21-9

Constant Smalltalk objects available in the CORBAConstants
dictionary.

“Mapping for Constants” on
page 21-9

Integral Type Smalltalk objects that conform to the Integer
class.

“Mapping for Basic Data
Types” on page 21-10

Floating Point
Type

Smalltalk objects which conform to the Float
class.

“Mapping for Basic Data
Types” on page 21-10

Boolean Type Smalltalk true or false objects. “Mapping for Basic Data
Types” on page 21-10

Enumeration Type Smalltalk objects which conform to the
CORBAEnum protocol.

“Mapping for Enums” on
page 21-12

Any Type Smalltalk objects that can be mapped into an OMG
IDL type.

“Mapping for the Any
Type” on page 21-11

Structure Type Smalltalk object that conforms to the
Dictionary class.

“Mapping for Struct Types”
on page 21-13

Fixed Type “Mapping for Fixed Types”
on page 21-13

Union Type Smalltalk object that maps to the possible value
types of the OMG IDL union or that conform to the
CORBAUnion protocol.

“Mapping for Union Types”
on page 21-13

Sequence Type Smalltalk object that conforms to the
OrderedCollection class.

“Mapping for Sequence
Types” on page 21-14

String Type Smalltalk object that conforms to the String
class.

“Mapping for String Types”
on page 21-15

Wide String Type “Mapping for Wide String
Types” on page 21-15

Array Type Smalltalk object that conforms to the Array class. “Mapping for Array Types”
on page 21-15

Exception Type Smalltalk object that conforms to the
Dictionary class.

“Mapping for Exception
Types” on page 21-15

Table 21-1Summary of this Chapter (Continued)

OMG IDL
Construct

Smalltalk Mapping See Section
CORBA V2.2 Key Design Decisions February 1998 21-3

21

s

lk

 for
• The Smalltalk mapping does not prescribe a specific implementation. Smalltalk
class names are specified, as needed, since client code will need the class name
when generating instances of datatypes. A minimum set of messages that classe
must support is listed for classes that are not documented in the Smalltalk
Common Base. The inheritance structure of classes is never specified.

• Whenever possible, OMG IDL types are mapped directly to existing, portable
Smalltalk classes.

• The Smalltalk constructs defined in this mapping rely primarily upon classes and
methods described in the Smalltalk Common Base document.

• The Smalltalk mapping only describes the public (client) interface to Smallta
classes and objects supporting IDL. Individual IDL compilers or CORBA
implementations might define additional private interfaces.

• The implementation of OMG IDL interfaces is left unspecified. Implementations
may choose to map each OMG IDL interface to a separate Smalltalk class;
provide one Smalltalk class to map all OMG IDL interfaces; or allow arbitrary
Smalltalk classes to map OMG IDL interfaces.

• Because of the dynamic nature of Smalltalk, the mapping of the any and union
types is such that an explicit mapping is unnecessary. Instead, the value of the
any and union types can be passed directly. In the case of the any type, the
Smalltalk mapping will derive a TypeCode which can be used to represent the
value. In the case of the union type, the Smalltalk mapping will derive a
discriminator which can be used to represent the value.

• The explicit passing of environment and context values on operations is not
required.

• Except in the case of object references, no memory management is required
data parameters and return results from operations. All such Smalltalk objects
reside within Smalltalk memory, so garbage collection will reclaim their storage
when they are no longer used.

• The proposed language mapping has been designed with the following vendor's
Smalltalk implementations in mind: VisualWorks; Smalltalk/V; and VisualAge.

21.2.1 Consistency of Style, Flexibility and Portability of Implementation

To ensure flexibility and portability of implementations, and to provide a consistent
style of language mapping, the Smalltalk chapters use the programming style and
naming conventions as described in the following documents:

• Goldberg, Adele and Robson, David. Smalltalk-80: The Language. Addison-
Wesley Publishing Company, Reading, MA. 1989.

• Smalltalk Portability: A Common Base. ITSC Technical Bulletin GG24-3093,
IBM, Boca Raton, FL. September 1992.

(Throughout the Smalltalk chapters, Smalltalk Portability: A Common Base is referred
to as Smalltalk Common Base.)

The items listed below are the same for all Smalltalk classes used in the Smalltalk
mapping:
21-4 CORBA V2.2 February 1998

21

d in

alk

ler to

tually
• If the class is described in the Smalltalk Common Base document, the class must
conform to the behavior specified in the document. If the class is not describe
the Smalltalk Common Base document, the minimum set of class and instance
methods that must be available is described for the class.

• All data types (except object references) are stored completely within Smallt
memory, so no explicit memory management is required.

The mapping is consistent with the common use of Smalltalk. For example, sequence
is mapped to instances of OrderedCollection , instead of creating a Smalltalk
class for the mapping.

21.3 Implementation Constraints

This section describes how to avoid potential problems with an OMG IDL–to–
Smalltalk implementation.

21.3.1 Avoiding Name Space Collisions

There is one aspect of the language mapping that can cause an OMG IDL compi
map to incorrect Smalltalk code and cause name space collisions. Because Smalltalk
implementations generally only support a global name space, and disallow underscore
characters in identifiers, the mapping of identifiers used in OMG IDL to Smalltalk
identifiers can result in a name collision. See “Conversion of Names to Smalltalk
Identifiers” on page 21-7 for a description of the name conversion rules.

As an example of name collision, consider the following OMG IDL declaration:
interface Example {

void sample_op () ;
void sampleOp () ;
};

Both of these operations map to the Smalltalk selector sampleOp . In order to prevent
name collision problems, each implementation must support an explicit naming
mechanism, which can be used to map an OMG IDL identifier into an arbitrary
Smalltalk identifier. For example, #pragma directives could be used as the
mechanism.

21.3.2 Limitations on OMG IDL Types

This language mapping places limitations on the use of certain types defined in OMG
IDL.

For the any and union types, specific integral and floating point types may not be
able to be specified as values. The implementation will map such values into an
appropriate type, but if the value can be represented by multiple types, the one ac
used cannot be determined.1 For example, consider the union definition below.

union Foo swi tch (long) {
 case 1: long x;
CORBA V2.2 Implementation Constraints February 1998 21-5

21

 case 2: short y;
};
When a Smalltalk object corresponding to this union type has a value that fits in both
a long and a short , the Smalltalk mapping can derive a discriminator 1 or 2, and map
the integral value into either a long or short value (corresponding to the value of the
discriminator determined).

21.4 Smalltalk Implementation Requirements

This mapping places requirements on the implementation of Smalltalk that is being
used to support the mapping. These are:

• An integral class, conforming to the Integer class definition in the Smalltalk
Common Base.

• A floating point class, conforming to the Float class definition in the Smalltalk
Common Base.

• A class named Character conforming to the Character class definition in
the Smalltalk Common Base.

• A class named Array conforming to the Array class definition in the Smalltalk
Common Base.

• A class named OrderedCollection conforming to the
OrderedCollection class definition in the Smalltalk Common Base.

• A class named Dictionary conforming to the Dictionary class definition
in the Smalltalk Common Base.

• A class named Association conforming to the Association class definition
in the Smalltalk Common Base.

• A class named String conforming to the String class definition in the
Smalltalk Common Base.

• Objects named true , false conforming to the methods defined for Boolean
objects, as specified in the Smalltalk Common Base.

• An object named nil , representing an object without a value.

• A global variable named Processor , which can be sent the message
activeProcess to return the current Smalltalk process, as defined in the
document Smalltalk-80: The Language. This Smalltalk process must respond to
the messages corbaContext: and corbaContext .

• A class which conforms to the CORBAParameter protocol. This protocol
defines Smalltalk instance methods used to create and access inout and out
parameters. The protocol must support the following instance messages:

value
Answers the value associated with the instance

1. To avoid this limitation for union types, the mapping allows programmers to specify an
explicit binding to retain the value of the discriminator. See “Mapping for Union Types” on
page 21-13 for a complete description.
21-6 CORBA V2.2 February 1998

21

 have

 that

 pure
stem
value: anObject
Resets the value associated with the instance to anObject

To create an object that supports the CORBAParameter protocol, the message
asCORBAParameter can be sent to any Smalltalk object. This will return a
Smalltalk object conforming to the CORBAParameter protocol, whose value will be
the object it was created from. The value of that CORBAParameter object can be
subsequently changed with the value : message.

21.5 Conversion of Names to Smalltalk Identifiers

The use of underscore characters in OMG IDL identifiers is not allowed in all
Smalltalk language implementations. Thus, a conversion algorithm is required to
convert names used in OMG IDL to valid Smalltalk identifiers.

To convert an OMG IDL identifier to a Smalltalk identifier, remove each underscore
and capitalize the following letter (if it exists). In order to eliminate possible
ambiguities which may result from these conventions, an explicit naming mechanism
must also be provided by the implementation. For example, the #pragma directive
could be used.

For example, the OMG IDL identifiers:

add_to_copy_map
describe_contents

become Smalltalk identifiers

addToCopyMap
describeContents

Smalltalk implementations generally require that class names and global variables
an uppercase first letter, while other names have a lowercase first letter.

21.6 Mapping for Interfaces

Each OMG IDL interface defines the operations that object references with that
interface must support. In Smalltalk, each OMG IDL interface defines the methods
object references with that interface must respond to.

Implementations are free to map each OMG IDL interface to a separate Smalltalk
class, map all OMG IDL interfaces to a single Smalltalk class, or map arbitrary
Smalltalk classes to OMG IDL interfaces.

21.7 Memory Usage

One of the design goals is to make every Smalltalk object used in the mapping a
Smalltalk object: namely datatypes used in mappings do not point to operating sy
defined memory. This design goal permits the mapping and users of the mapping to
CORBA V2.2 Conversion of Names to Smalltalk Identifiers February 1998 21-7

21

ge
ers

t's

A

rs
sult

f an

 class
ignore memory management issues, since Smalltalk handles this itself (via garba
collection). Smalltalk objects which are used as object references may contain point
to operating system memory, and so must be freed in an explicit manner.

21.8 Mapping for Objects

A CORBA object is represented in Smalltalk as a Smalltalk object called an object
reference. The object must respond to all messages defined by that CORBA objec
interface.

An object reference can have a value which indicates that it represents no CORB
object. This value is the standard Smalltalk value nil .

21.9 Invocation of Operations

OMG IDL and Smalltalk message syntaxes both allow zero or more input paramete
to be supplied in a request. For return values, Smalltalk methods yield a single re
object, whereas OMG IDL allows an optional result and zero or more out or inout
parameters to be returned from an invocation. In this binding, the non-void result o
operation is returned as the result of the corresponding Smalltalk method, whereas out
and inout parameters are to be communicated back to the caller via instances of a
conforming to the CORBAParameter protocol, passed as explicit parameters.

For example, the following operations in OMG IDL:

boolean definesProperty(in string key);
void defines_property(
in string key,
out boolean is_defined);

are used as follows in the Smalltalk language:

aBool := self definesProperty: aString.

self
definesProperty: aString
isDefined: (aBool := nil asCORBAParameter).

As another example, these OMG IDL operations:

boolean has_property_protection(in string key,
out Protection pv al);

ORBStatus create_request (in Context ctx,
in Identifier operation,
in NVList arg_l ist,
inout DynamicInvocation::N amedValue result,
out R equest request,
in Flags req_flags);

would be invoked in the Smalltalk language as:
21-8 CORBA V2.2 February 1998

21

ce

he
aBool := self
hasPropertyProtection: aString
pval: (protection := nil asCORBAParameter).

aStatus := ORBObject
createRequest: aContext
operation: anIdentifier
argList: anNVList
result: (result := aNamedValue asCORBAParameter)
request: (request := nil asCORBAParameter)
reqFlags: aFlags.

The return value of OMG IDL operations that are specified with a void return type is
undefined.

21.10 Mapping for Attributes

OMG IDL attribute declarations are a shorthand mechanism to define pairs of simple
accessing operations; one to get the value of the attribute and one to set it. Such
accessing methods are common in Smalltalk programs as well, thus attribute
declarations are mapped to standard methods to get and set the named attribute value,
respectively.

For example:

attribute string title;
readonly attri bute string my_name;

means that Smalltalk programmers can expect to use title and title: methods to
get and set the title attribute of the CORBA object, and the myName method to
retrieve the my_name attribute.

21.10.1 Mapping for Constants

OMG IDL allows constant expressions to be declared globally as well as in interfa
and module definitions. OMG IDL constant values are stored in a dictionary named
CORBAConstants under the fully qualified name of the constant, not subject to t
name conversion algorithm. The constants are accessed by sending the at: message
to the dictionary with an instance of a String whose value is the fully qualified
name.

For example, given the following OMG IDL specification,

module Applicat ionBasics{
const CopyDepth shallow_cpy = 4;
};

the Applicatio nBasi cs::shallow_cpy constant can be accessed with the following
Smalltalk code
CORBA V2.2 Mapping for Attributes February 1998 21-9

21

ase

sses

value := CORBAConstants at:
'::ApplicationBasics::shallow_cpy'.

After this call, the value variable will contain the integral value 4.

21.11 Mapping for Basic Data Types

The following basic datatypes are mapped into existing Smalltalk classes. In the c
of short , unsigned short , long , unsigned long , long long , unsigned long
long , float , double , long double and octet , the actual class used is left up to the
implementation, for the following reasons:

• There is no standard for Smalltalk that specifies integral and floating point cla
and the valid ranges of their instances.

• The classes themselves are rarely used in Smalltalk. Instances of the classes are
made available as constants included in code, or as the result of computation.

The basic data types are mapped as follows:

short

An OMG IDL short integer falls in the range [-215,215-1]. In Smalltalk, a short is
represented as an instance of an appropriate integral class.

long

An OMG IDL long integer falls in the range [-231,231-1]. In Smalltalk, a long is
represented as an instance of an appropriate integral class.

long long

An OMG IDL long long integer falls in the range [-263,263-1]. In Smalltalk, a long
long is represented as an instance of an appropriate integral class.

unsigned short

An OMG IDL unsigned short integer falls in the range [0,216-1]. In Smalltalk, an
unsigned short is represented as an instance of an appropriate integral class.

unsigned long

An OMG IDL unsigned long integer falls in the range [0,232-1]. In Smalltalk, an
unsigned long is represented as an instance of an appropriate integral class.

unsigned long long

An OMG IDL unsigned long long integer falls in the range [0,264-1]. In Smalltalk,
an unsigned long long is represented as an instance of an appropriate integral class.
21-10 CORBA V2.2 February 1998

21

nce

t

nce

)

ined

ure
float

An OMG IDL float conforms to the IEEE single-precision (32-bit) floating point
standard (ANSI/IEEE Std 754-1985). In Smalltalk, a float is represented as an insta
of an appropriate floating point class.

double

An OMG IDL double conforms to the IEEE double-precision (64-bit) floating point
standard (ANSI/IEEE Std 754-1985). In Smalltalk, a double is represented as an
instance of an appropriate floating point class.

long double

An OMG IDL long double conforms to the IEEE double extended (a mantissa of a
least 64 bits, a sign bit, and an exponent of at least 15 bits) floating point standard
(ANSI/IEEE Std 754-1985). In Smalltalk, a long double is represented as an insta
of an appropriate floating-point class.

char

An OMG IDL character holds an 8-bit quantity mapping to the ISO Latin-1 (8859.1
character set. In Smalltalk, a character is represented as an instance of Character .

wchar

An OMG IDL wchar defines a wide character from any character set. A wide
character is represented as an instance of the Character class.

boolean

An OMG IDL boolean may hold one of two values: TRUE or FALSE. In Smalltalk, a
boolean is represented by the values true or false , respectively.

octet

An OMG IDL octet is an 8-bit quantity that undergoes no conversion during
transmission. In Smalltalk, an octet is represented as an instance of an appropriate
integral class with a value in the range [0,255].

21.12 Mapping for the Any Type

Due to the dynamic nature of Smalltalk, where the class of objects can be determ
at runtime, an explicit mapping of the any type to a particular Smalltalk class is not
required. Instead, wherever an any is required, the user may pass any Smalltalk object
which can be mapped into an OMG IDL type. For instance, if an OMG IDL struct
CORBA V2.2 Mapping for the Any Type February 1998 21-11

21

hm.

rs are
type is defined in an interface, a Dictionary for that structure type will be mapped.
Instances of this class can be used wherever an any is expected, since that Smalltalk
object can be mapped to the OMG IDL structure.

Likewise, when an any is returned as the result of an operation, the actual Smalltalk
object which represents the value of the any data structure will be returned.

21.13 Mapping for Enums

OMG IDL enumerators are stored in a dictionary named CORBAConstants under the
fully qualified name of the enumerator, not subject to the name conversion algorit
The enumerators are accessed by sending the at: message to the dictionary with an
instance of a String whose value is the fully qualified name.

These enumerator Smalltalk objects must support the CORBAEnum protocol, to allow
enumerators of the same type to be compared. The order in which the enumerato
named in the specification of an enumeration defines the relative order of the
enumerators. The protocol must support the following instance methods:

< aCORBAEnum

Answers true if the receiver is less than aCORBAEnum, otherwise answers false .
<= aCORBAEnum

Answers true if the receiver is less than or equal to aCORBAEnum, otherwise
answers false .

= aCORBAEnum
Answers true if the receiver is equal to aCORBAEnum, otherwise answers false .

> aCORBAEnum
Answers true if the receiver is greater than aCORBAEnum, otherwise answers
false .

>= aCORBAEnum
Answers true if the receiver is greater than or equal to aCORBAEnum, otherwise
answers false .

For example, given the following OMG IDL specification,

module Graphics{
enum ChartStyle

{lineCh art, barChart, stackedBarChart, pieC hart};
};

the Graphics::lineChart enumeration value can be accessed with the following
Smalltalk code

value := CORBAConstants at: '::Graphics::lineChart'.

After this call, the value variable is assigned to a Smalltalk object that can be
compared with other enumeration values.
21-12 CORBA V2.2 February 1998

21

s

es

tics

 for

,
21.14 Mapping for Struct Types

An OMG IDL struct is mapped to an instance of the Dictionary class. The key for
each OMG IDL struct member is an instance of Symbol whose value is the name of
the element converted according to the algorithm in Section 21.5. For example, a
structure with a field of my_field would be accessed by sending the at: message
with the key #myField .

For example, given the following OMG IDL declaration:

struct Binding {
Name binding_name;
BindingType binding_type;
};

the binding_name element can be accessed as follows:

aBindingStruct at: #bindingName

and set as follows:

aBindingStruct at: #bindingName put: aName

21.15 Mapping for Fixed Types

An OMG IDL fixed is represented as an instance of an appropriate fractional clas
with a fixed denominator.

21.16 Mapping for Union Types

For OMG IDL union types, two binding mechanisms are provided: an implicit binding
and an explicit binding.2 The implicit binding takes maximum advantage of the
dynamic nature of Smalltalk and is the least intrusive binding for the Smalltalk
programmer. The explicit binding retains the value of the discriminator and provid
greater control for the programmer.

Although the particular mechanism for choosing implicit vs. explicit binding seman
is implementation specific, all implementations must provide both mechanisms.

Binding semantics is expected to be specifiable on a per-union declaration basis,
example using the #pragma directive.

2. Although not required, implementations may choose to provide both implicit and explicit
mappings for other OMG IDL types, such as structs and sequences. In the explicit mapping
the OMG IDL type is mapped to a user specified Smalltalk class.
CORBA V2.2 Mapping for Struct Types February 1998 21-13

21

alues

alk
21.16.1 Implicit Binding

Wherever a union is required, the user may pass any Smalltalk object that can be
mapped to an OMG IDL type, and whose type matches one of the types of the v
in the union. Consider the following example:

structure S { long x; long y; };

union U switch (short) {
case 1: S s;
case 2: long l;
default: char c;
};

In the example above, a Dictionary for structure S will be mapped. Instances of
Dictionary with runtime elements as defined in structure S, integral numbers, or
characters can be used wherever a union of type U is expected. In this example,
instances of these classes can be mapped into one of the S, long, or char types, and
an appropriate discriminator value can be determined at runtime.

Likewise, when an union is returned as the result of an operation, the actual Smallt
object which represents the value of the union will be returned.

21.16.2 Explicit Binding

Use of the explicit binding will result in specific Smalltalk classes being accepted and
returned by the ORB. Each union object must conform to the CORBAUnion protocol.
This protocol must support the following instance methods:

discriminator
Answers the discriminator associated with the instance.

discriminator: anObject
Sets the discriminator associated with the instance.

value
Answers the value associated with the instance.

value: anObject
Sets the value associated with the instance

To create an object that supports the CORBAUnion protocol, the instance method
asCORBAUnion: aDiscriminator can be invoked by any Smalltalk object. This
method will return a Smalltalk object conforming to the CORBAUnion protocol,
whose discriminator will be set to aDiscriminator and whose value will be set to
the receiver of the message.

21.17 Mapping for Sequence Types

Instances of the OrderedCollection class are used to represent OMG IDL
elements with the sequence type.
21-14 CORBA V2.2 February 1998

21

th

d to
tion,
 of

21.18 Mapping for String Types

Instances of the Smalltalk String class are used to represent OMG IDL elements
with the string type.

21.19 Mapping for Wide String Types

An OMG IDL wide string is represented as an instance of an appropriate Smalltalk
string class.

21.20 Mapping for Array Types

Instances of the Smalltalk Array class are used to represent OMG IDL elements wi
the array type.

21.21 Mapping for Exception Types

Each defined exception type is mapped to an instance of the Dictionary class. See
“Handling Exceptions” on page 21-16 for a complete description.

21.22 Mapping for Operations

OMG IDL operations having zero parameters map directly to Smalltalk unary
messages, while OMG IDL operations having one or more parameters correspon
Smalltalk keyword messages. To determine the default selector for such an opera
begin with the OMG IDL operation identifier and concatenate the parameter name
each parameter followed by a colon, ignoring the first parameter. The mapped selector
is subject to the identifier conversion algorithm. For example, the following OMG IDL
operations:

void add_to_copy_map(
in CORBA::ORBId id,
in LinkSet link_set);

void connect_push_s uppli er(
in EventComm::Pu shSuppl ier p ush_su pplier);

void add_to_delete_map(
in CORBA::ORBId id,
in LinkSet link_set);

become selectors:

addToCopyMap:linkSet:
connectPushSupplier:
addToDeleteMap:linkSet:
CORBA V2.2 Mapping for String Types February 1998 21-15

21

text
t

So
n

ding

ers
icitly

s are

orm
21.23 Implicit Arguments to Operations

Unlike the C mapping, where an object reference, environment, and optional con
must be passed as parameters to each operation, this Smalltalk mapping does no
require these parameters to be passed to each operation.

The object reference is provided in the client code as the receiver of a message.
although it is not a parameter on the operation, it is a required part of the operatio
invocation.

This mapping defines the CORBAExceptionEvent protocol to convey exception
information in place of the environment used in the C mapping. This protocol can
either be mapped into native Smalltalk exceptions or used in cases where native
Smalltalk exception handling is unavailable.

A context expression can be associated with the current Smalltalk process by sen
the message corbaContext: to the current process, along with a valid context
parameter. The current context can be retrieved by sending the corbaContext
message to the current process.

The current process may be obtained by sending the message activeProcess to
the Smalltalk global variable named Processor .

21.24 Argument Passing Considerations

All parameters passed into and returned from the Smalltalk methods used to invoke
operations are allocated in memory maintained by the Smalltalk virtual machine. Thus,
explicit free()ing of the memory is not required. The memory will be garbage
collected when it is no longer referenced.

The only exception is object references. Since object references may contain point
to memory allocated by the operating system, it is necessary for the user to expl
free them when no longer needed. This is accomplished by using the operation
release of the CORBA:: Object interface.

21.25 Handling Exceptions

OMG IDL allows each operation definition to include information about the kinds of
run-time errors which may be encountered. These are specified in an exception
definition which declares an optional error structure which will be returned by the
operation should an error be detected. Since Smalltalk exception handling classe
not yet standardized between existing implementations, a generalized mapping is
provided.

In this binding, an IDL compiler creates exception objects and populates the
CORBAConstants dictionary. These exception objects are accessed from the
CORBAConstants dictionary by sending the at: message with an instance of a
String whose value is the fully qualified name. Each exception object must conf
to the CORBAExceptionEvent protocol. This protocol must support the
following instance methods:
21-16 CORBA V2.2 February 1998

21

he

 are

corbaHandle: aHandlerBlock do: aBlock

Exceptions may be handled by sending an exception object the message
corbaHandle:do: with appropriate handler and scoping blocks as parameters. T
aBlock parameter is the Smalltalk block to evaluate. It is passed no parameters. The
aHandlerBlock parameter is a block to evaluate when an exception occurs. It has
one parameter: a Smalltalk object which conforms to the CORBAExceptionValue
protocol.

corbaRaise

Exceptions may be raised by sending an exception object the message corbaRaise .

corbaRaiseWith: aDictionary

Exceptions may be raised by sending an exception object the message
corbaRaiseWith :. The parameter is expected to be an instance of the Smalltalk
Dictionary class, as described below.

For example, given the following OMG IDL specification,

interface NamingContext {
...

exception NotEmpty {};
void destroy ()

raises (NotEmpty);
...

};

the NamingContext::NotEmpty exception can be raised as follows:

(CORBAConstants at: '::NamingContext::NotEmpty')
corbaRaise.

The exception can be handled in Smalltalk as follows:

(CORBAConstants at: '::NamingContext::NotEmpty')
corbaHandle: [:ev | "error handling logic here"]
do: [aNamingContext destroy].

21.26 Exception Values

OMG IDL allows values to be returned as part of the exception. Exception values
constructed using instances of the Smalltalk Dictionary class. The keys of the
dictionary are the names of the elements of the exception, the names of which are
converted using the algorithm in “Conversion of Names to Smalltalk Identifiers” on
page 21-7. The following example illustrates how exception values are used:
CORBA V2.2 Exception Values February 1998 21-17

21

ment

s
interface NamingContext {
 ...
 exception CannotProceed {

NamingContext cxt;
Name rest_of_name;

};
Object resolve (in Name n)

raises (CannotProceed);
 ...
};

would be raised in Smalltalk as follows:

(CORBAConstants at: '::NamingContext::CannotProceed')
corbaRaiseWith: (Dictionary

with: (Association key: #cxt value:
aNamingContext)

with: (Association key: #restOfName value:
aName)).

21.26.1 The CORBAExceptionValue Protocol

When an exception is raised, the exception block is evaluated, passing it one argu
which conforms to the CORBAExceptionValue protocol. This protocol must
support the following instance messages:

corbaExceptionValue

Answers the Dictionary the exception was raised with.

Given the NamingContext interface defined in the previous section, the following
code illustrates how exceptions are handled:

(CORBAConstants at: '::NamingContext::NotEmpty')
corbaHandle:[:ev |
cxt:=ev corbaExceptionValue at: #cxt.
restOfName :=ev corbaExceptionValue at:
#restOfName]
do:[aNamingContext destroy].

In this example, the cxt and restOfName variables will be set to the respective
values from the exception structure, if the exception is raised. Pseudo-Objects Mapping
Overview

CORBA defines a small set of standard interfaces which define types and operations
for manipulating object references, for accessing the Interface Repository, and for
Dynamic Invocation of operations. Other interfaces are defined in pseudo OMG IDL
(PIDL) to represent in a more abstract manner programmer access to ORB service
which are provided locally. These PIDL interfaces sometimes resort to non-OMG IDL
21-18 CORBA V2.2 February 1998

21

. This

.

constructs, such as pointers, which have no meaning to the Smalltalk programmer
chapter specifies the minimal requirements for the Smalltalk mapping for PIDL
interfaces. The operations are specified below as protocol descriptions.

Parameters with the name aCORBAObject are expected to be Smalltalk objects,
which can be mapped to an OMG IDL interface or data type.

Unless otherwise specified, all messages are defined to return undefined objects

21.27 CORBA::Request

The CORBA::Request interface is mapped to the CORBARequest protocol, which
must include the following instance methods:

addArg: aCORBANamedValue
Corresponds to the add_arg operation.

invoke
Corresponds to the invoke operation with the invoke_flags set to 0.

invokeOneway
Corresponds to the invoke operation with the invoke_flags set to
CORBA::INV_NO_RESPONSE.

send
Corresponds to the send operation with the invoke_flags set to 0.

sendOneway
Corresponds to the send operation with the invoke_flags set to
CORBA::INV_NO_RESPONSE.

pollResponse
Corresponds to the get_response operation, with the response_flags set to
CORBA::RESP_NO_WAIT. Answers true if the response is complete, false
otherwise.

getResponse
Corresponds to the get_response operation, with the response_flags set to 0.

21.28 CORBA::Context

The CORBA::Context interface is mapped to the CORBAContext protocol, which
must include the following instance methods:

setOneValue: anAssociation
Corresponds to the set_one_value operation.

setValues: aCollection
Corresponds to the set_values operation. The parameter passed in should be a
collection of Association s.
CORBA V2.2 CORBA::Request February 1998 21-19

21

getValues: aString
Corresponds to the get_values operation without a scope name and op_flags =
CXT_RESTRICT_SCOPE. Answers a collection of Association s.

getValues: aString propName: aString
Corresponds to the get_values operation with op_flags set to
CXT_RESTRICT_SCOPE. Answers a collection of Association s.

getValuesInTree: aString propName: aString
Corresponds to the get_values operation with op_flags set to 0. Answers a collection
of Association s.

deleteValues: aString
Corresponds to the delete_values operation.

createChild: aString
Corresponds to the create_child operation. Answers a Smalltalk object conforming to
the CORBAContext protocol.

delete
Corresponds to the delete operation with flags set to 0.

deleteTree
Corresponds to the delete operation with flags set to CTX_DELETE_DESCENDENTS.

21.29 CORBA::Object

The CORBA::Object interface is mapped to the CORBAObject protocol, which must
include the following instance methods:

getImplementation
Corresponds to the get_implementation operation. Answers a Smalltalk object
conforming to the CORBAImplementationDef protocol.

getInterfac e
Corresponds to the get_interface operation. Answers a Smalltalk object conforming
to the CORBAInterfaceDef protocol.

isNil
Corresponds to the is_nil operation. Answers true or false indicating whether or
not the object reference represents an object.

createRequest: aCORBAContext
operation: aCORBAIdentifier
argList: aCORBANVListOrNil
result: aCORBAParameter
request: aCORBAParameter
reqFlags: flags

Corresponds to the create_request operation.
21-20 CORBA V2.2 February 1998

21

 to

duplicate
Corresponds to the duplicate operation. Answers a Smalltalk object representing an
object reference, conforming to the interface of the CORBA object.

release 3

Corresponds to the release operation.

21.30 CORBA::ORB

The CORBA::ORB interface is mapped to the CORBAORB protocol, which must
include the following instance methods:

objectToString: aCORBAObject
Corresponds to the object_to_string operation. Answers an instance of the String
class.

stringToObject: aString
Corresponds to the string_to_object operation. Answers an object reference, which
will be an instance of a class which corresponds to the Interf aceDef of the CORBA
object.

createOperationList: aCORBAOperationDef
Corresponds to the create_operation_list operation. Answers an instance of
OrderedCollection of Smalltalk objects conforming to the CORBANamedValue
protocol.

getDefaultContext
Corresponds to the get_default_context operation. Answers a Smalltalk object
conforming to the CORBAContext protocol.

sendMultipleRequests: aCollection
Corresponds to the send_multiple_requests operation with the invoke_flags set to
0.The parameter passed in should be a collection of Smalltalk objects conforming
the CORBARequest protocol.

sendMultipleRequestsOneway: aCollection
Corresponds to the send_multiple_requests operation with the invoke_flags set to
CORBA::INV_NO_RESPONSE. The parameter passed in should be a collection of
Smalltalk objects conforming to the CORBARequest protocol.

pollNextResponse
Corresponds to the get_next_response operation, with the response_flags set to
CORBA::RESP_NO_WAIT. Answers true if there are completed requests pending,
false otherwise.

getNextResponse
Corresponds to the get_next_response operation, with the response_flags set to 0.

3. The semantics of this operation will have no meaning for those implementations that rely
exclusively on the Smalltalk memory manager.
CORBA V2.2 CORBA::ORB February 1998 21-21

21

21.31 CORBA::NamedValue

PIDL for C defines CORBA::NamedValue as a struct while C++-PIDL specifies it as
an interface. CORBA::NamedValue in this mapping is specified as an interface that
conforms to the CORBANamedValue protocol. This protocol must include the
following instance methods:

name
Answers the name associated with the instance.

name: aString
Resets the name associated with instance to aString .

value
Answers the value associated with the instance.

value: aCORBAObject
Resets the value associated with instance to aCORBAObject .

flags
Answers the flags associated with the instance.

flags: argModeFlags
Resets the flags associated with instance to argModeFlags .

To create an object that supports the CORBANamedValue protocol, the instance
method asCORBANamedValue: aName flags: argModeFlags can be
invoked by any Smalltalk object. This method will return a Smalltalk object
conforming to the CORBANamedValue protocol, whose attributes associated with
the instance will be set appropriately.

21.32 CORBA::NVList

The CORBA::NVList interface is mapped to the equivalent of the OMG IDL
definition
typedef sequence<NamedValue> NVList;

Thus, Smalltalk objects representing the NVList type should be instances of the
OrderedCollection class, whose elements are Smalltalk objects conforming to
the CORBANamedValue protocol.
21-22 CORBA V2.2 February 1998

21

ted
 given

ith.
Appendix A- Glossary

This appendix includes a list of Smalltalk terms.

A.1 Glossary Terms

Smalltalk object An object defined using the Smalltalk language.

Message Invocation of a Smalltalk method upon a Smalltalk object.

Message Selector The name of a Smalltalk message. In this document, the message selectors are deno
by just the message name when the class or protocol they are associated with is
in context, otherwise the notation class >>method or protocol >>method
will be used to explicitly denote the class or protocol the message is associated w

Method The Smalltalk code associated with a message.

Class A Smalltalk class.

Protocol A set of messages that a Smalltalk object must respond to. Protocols are used to
describe the behavior of Smalltalk objects without specifying their class.

CORBA Object An object defined in OMG IDL, accessed and implemented through an ORB.

Object Reference A value which uniquely identifies an object.

IDL compiler Any software that accesses OMG IDL specifications and generates or maps Smalltalk
code that can be used to access CORBA objects.
CORBA V2.2 CORBA::NVList February 1998 21-23

21
21-24 CORBA V2.2 February 1998

21
Glossary Terms 21-25

21
21-26 CORBA V2.2 February 1998

	Mapping of OMG IDL to Smalltalk
	21.1 Mapping Summary
	21.2 Key Design Decisions
	21.2.1 Consistency of Style, Flexibility and Portability of Implementation

	21.3 Implementation Constraints
	21.3.1 Avoiding Name Space Collisions
	21.3.2 Limitations on OMG IDL Types

	21.4 Smalltalk Implementation Requirements
	21.5 Conversion of Names to Smalltalk Identifiers
	21.6 Mapping for Interfaces
	21.7 Memory Usage
	21.8 Mapping for Objects
	21.9 Invocation of Operations
	21.10 Mapping for Attributes
	21.10.1 Mapping for Constants

	21.11 Mapping for Basic Data Types
	21.12 Mapping for the Any Type
	21.13 Mapping for Enums
	21.14 Mapping for Struct Types
	21.15 Mapping for Fixed Types
	21.16 Mapping for Union Types
	21.16.1 Implicit Binding
	21.16.2 Explicit Binding

	21.17 Mapping for Sequence Types
	21.18 Mapping for String Types
	21.19 Mapping for Wide String Types
	21.20 Mapping for Array Types
	21.21 Mapping for Exception Types
	21.22 Mapping for Operations
	21.23 Implicit Arguments to Operations
	21.24 Argument Passing Considerations
	21.25 Handling Exceptions
	21.26 Exception Values
	21.26.1 The CORBAExceptionValue Protocol

	21.27 CORBA::Request
	21.28 CORBA::Context
	21.29 CORBA::Object
	21.30 CORBA::ORB
	21.31 CORBA::NamedValue
	21.32 CORBA::NVList

