Mappingof OMG IDLto Smalltalk 21

Contents

This chapter contains tHellowing sections.

Section Title Page
Smalltalk Overview

“Mapping Summary” 21-2
“Key Design Decisions” 21-3
Mapping of OMG IDL to Smalltalk

“Implementation Constraints” 21-5
“Smalltalk Implementation Requirements” 21-6
“Conversion of Names to Smalltalk Identifiers” 21-7
“Mapping for Interfaces” 21-7
“Memory Usage” 21-7
“Mapping for Objects” 21-8
“Invocation of Operations” 21-8
“Mapping for Attributes” 21-9
“Mapping for Basic Data Types” 21-10
“Mapping for theAny Type” 21-11
“Mapping for Enums” 21-12
“Mapping for Struct Types” 21-13
“Mapping for Fixed Types” 21-13

CORBA V2.2 FeblieDg 21-1

21

Section Title Page
“Mapping for Union Types” 21-13
“Mapping for Sequence Types” 21-14
“Mapping for String Types” 21-15
“Mapping for Wide String Types” 21-15
“Mapping for Array Types” 21-15
“Mapping for Exception Types” 21-15
“Mapping for Ogerations” 21-15
“Implicit Arguments to Operations” 21-16
“Argument Passing Considerations” 21-16
“Handling Exceptions” 21-16
“Exception Values” 21-17

Mapping of Pseudo Objects to Smalltalk

“CORBA::Request’ 21-19
“CORBA::Context” 21-19
“CORBA::Object” 21-20
“CORBA::ORB” 21-21
“CORBA::NamedValue” 21-22
“CORBA::NVList” 21-22
Appendix A, “Glossary Terms” 21-23

21.1 Mapping Summary

Table 21-1 provides a brief description of the mapping of OMG IDL constructs to the
Smalltalk language, and where in this ptea they are discussed.

Table 21-1Summary of this Chapter

OMG IDL Smalltalk Mapping See Section
Construct
Interface Set of messages that Smalltalk objects which ~ “Mapping for Interfaces” on

represent object references mustrespgon@ihe set page 21-7
of messages corresponds to the attribaites

operations defined in the interface and inherited

interfaces.

Object Reference Smalltalk object that represents a CORBA objectMapping for Objects” on
The Smalltalk object must respond to all messagepage 21-8
defined by a CORBA object’s intade.

21-2 CORBAV2.2 February 1998

21

Table 21-1Summary of this ChaptéContinued)

OMG IDL Smalltalk Mapping See Section
Construct
Operation Smalltalk message. “Mapping for Operations”
on page 21-15
Attribute Smalltalk message “Mapping for Attributes” on
page 21-9
Constant Smalltalk objects available in the CORBAConstantdapping for Constants” on
dictionary. page 21-9
Integral Type Smalltalk objects that conform to thieger “Mapping for Basic Data
class. Types” on page 21-10
Floating Point Smalltalk objects which conform to tiéoat “Mapping for Basic Data
Type class. Types” on page 21-10
Boolean Type Smalltalitcue orfalse objects. “Mapping for Basic Data
Types” on page 21-10
Enumeration Type Smalltalk objects which conform to the “Mapping for Enums” on
CORBAEnumrotool. page 21-12
Any Type Smalltalk objects that can be mapped into an OM@Mapping for the Any
IDL type. Type” on page 21-11
Structure Type Smalltalk object that conforms to the “Mapping for Struct Types”
Dictionary class. on page 21-13

Fixed Type

Union Type

Sequence Type
String Type
Wide String Type
Array Type

Exception Type

“Mapping for Fixed Types”
on page 21-13

Smalltalk object that maps to the possible value “Mapping for Union Types”
types of the OMG IDL union or that conform to theon page 21-13
CORBAUnionprotocol.

Smalltalk object _that conforms to the “Mapping for Sequence
OrderedCollection class. Types” on page 21-14
Smalltalk object that conforms to Steing “Mapping for String Types”
class. on page 21-15
“Mapping for Wide String

Types” on page 21-15

Smalltalk object that conforms to theay class. “Mapping for Array Types”
on page 21-15

Smalltalk object that conforms to the “Mapping for Exception
Dictionary class. Types” on page 21-15

21.2 Key Design Decisions

The mapping of OMG IDL tahe Smalltalk programming teyuage was designed with
the following goals in mind:

CORBAV2.2

Kdyesign Decisions February 1998 21-3

21

21-4

» The Smalltalk mappingaks not prescribe a specific implementation. Smalltalk
class names are specified, asdexk since client code will need the class name
when generating instances of datpgs. A minmum set of messages that classes
must support is listed for classes that are not documented in the Smalltalk
Common Base. The inheritance structure of classes is never specified.

« Whenever possible, OMG IDL types are mapped directlgxisting, portable
Smalltalk classes.

» The Smalltalk constructs defined in this mapping rely primandgn classes and
methods described in the Smalltalk Common Base document.

» The Smalltalk mapping only describes the public (client) interface to Smalltalk
classes and objects supporting IDL. Individual IDL compilers or CORBA
implementations might define additional private interfaces.

» The implementadbn of OMG IDL interfaces is leftinspecified. Implementations
may choose to map each OMG IDhterface to a separate Smalltalk class;
provide one Sultalk class to map all OMG IDL interfaces; or allow arbitrary
Smalltalk classes tmap OMG IDL interfaces.

» Because of the dynamic natureSQrhalltalk, the mapping of theny andunion
types is such that an explicit mappinguisnecessary. Instead, the value of the
any andunion types can be passed directly. In the case oatlyetype, the
Smalltalk mapping will derive alypeCode which can be used to represent the
value. In the case of thenion type, theSmalltalk mapping will derive a
discriminator vhich can be used to represent the value.

» The explicit passing of environment and context values on operations is not
required.

» Except in the case of object references, no memory management is required for

data parameters and return results from operations. All Soddlltalk objects
reside wthin Smallalk memory, so garbage collection wiiclaim their storage
when they are no longer used.

» The proposed language mapping has been designed witblltveing vendor's
Smalltalk implementations in mind:isualWorks; Smalltalk/Vand VisualAge.

21.2.1 Consistency of Style, Flexibility and Portabilityrople mentation

To ensure flexibilityand portality of implementationsand to provide a consistent
style of language mapping, tiSmalltalk chaptersise the programming style and
naming conventions as described in théofwing documents:
» Goldberg, Adele and RobsobBavid. Smalltalk-80: The Laguage.Addison-
Wesley Publishing Company, Reading, MA. 1989.
e Smalltalk Portability: A Commondse.ITSC Technical Bulletin GG2-3093,
IBM, Boca Raton, FL. September 1992.

(Throughout the Smalltalk chapte@malltalk Portability: A Common Base referred
to asSmalltalk Common Bage

The temslisted below are the same fall Smalltalk classessed in theSmalltalk
mapping:

CORBAV2.2 February 1998

21

« If the class is described in the Smalltalk Comma@sd&document, the clasaist
conform tothe behavior specified in the document. If the class is not described in
the Smalltalk Common Bas#cument, theninimum set ofclass and instance
methods that must be available is described for the class.

 All data types (except object references) are stored completely within Smalltalk
memory, S0 no explicit memory management is required.

The mapping is consistent with tctemmonuse of Smalltalk. For exampleequence
is mapped to instances @fderedCollection , instead of creating a Smalltalk
class for the mapping.

21.3 Implementation Constraints

This section describes how to avoid potential problems with an OMG IDL—to—
Smalltalk implementation.

21.3.1 Avoiding Name Space®l{isions

There is one aspect of the language mapping that can cause an OMG IDL compiler to
map to incorrect Smalltalkode and cause name spachisions. Because Smalltalk
implementations generally only support a global name spacejisaltbw underscore
characters in identifiers, the maing of identifiersused in OMG IDL to Smalltalk
identifierscan result in a name Iltigion. See “Conversion dlames to Smalltalk
Identifiers” onpage 21-7 for a description of the name conversion rules.

As an example of name collision, consider tbikowing OMG IDL declaration:
interface Example {
void sample_op () ;
void sampleOp () ;
|3

Both of these operations map to the StatdiselectoisampleOp . In order to prevent
name collision problems, each implementation muppstt an explicit naming
mechanism, which can be used to map an OMG IDL identifier into an arbitrary
Smalltalk identifier. For examplé{pragma directives could be used as the
mechanism.

21.3.2 Limitations on OMG IDL Types

This language mapping places limitations on the useedéin types defined in OMG
IDL.

For theany andunion types, specific integral and floating point types may not be

able to be specified as values. The implementation will e values into an
appropriate type, but if the value can be represented by multiple types, the one actually
used cannot bdetermined: For example, consider thenion definition below.

union Foo swi tch (long) {
case 1: long x;

CORBA V2.2 Implementation Constraints February 1998 21-5

21

case 2: shorty;

|3

When a Smalltalk object correspondingthds union type has a value that fits in both
along and ashort, the Smalltalkmapping carderive a discriminator 1 or 2nd map
the integral value into eitherlang or short value (corresponding to the value of the
discriminator determined).

21.4 Smalltalk Implementation Requirements

This mapping places requirements onithplementabn of Smalltalk that isbeing
used to support the mapping. These:

» An integral class, conforimg to thelnteger class dehition in the Smalltalk
Common Base.

A floating point class, conforming to tHdoat class dahition in the Smalltalk
Common Base.

* A class nameharacter conforming to theCharacter class definition in
the Smalltalk Common Base.

» A class namedrray conforming to théArray class dehition in the Smalltalk
Common Base.

* A class namedrderedCollection conforming to the
OrderedCollection class dehition in the Smalltalk Common Base.

» A class namedictionary conforming to theDictionary class definition
in the Smalltalk Common Base.

» A class namedssociation conforming to theAssociation class definition
in the Smalltalk Common Base.

» A class namedbtring conforming to theString class definition in the
Smalltalk Common Bse.

» Objects namettue , false conforming to the methods defined Boolean
objects, as specified in the <talk Common Bse.

* An object nameahil , representing an object without a value.

A global variable nameé@rocessor , which can be sent the message
activeProcess to return the current Smalltaficocess, as defined in the
documentSmalltalk-80: The Languagé&his Smalltalk process musgspond to
the messagesorbaContext: andcorbaContext

» A class which conforms to th€ORBAParameter protocol. This protocol
defines Sralltalk instance methods used to create and adoes$ andout
parameters. The protocol must support the followirglance messages:

value
Answers the valuassociated with the instance

1. To avoid this limitation for union types, the mapping allows programmers to specify an
explicit binding to retain the value of the discriminator. See “Mapping for Union Types” on
page 21-13 for a complete description.

21-6 CORBAV2.2 February 1998

21

value: anObject
Resets the value associated with the instan@@bject

To create an object that supports ®@RBAParameter protocol, the message
asCORBAParameter can be sent to any Smalltalk object. Tividl return a
Smalltalk object conforming to theORBAParameter protocol, whose value will be
the object it was created from. The value of t@&@RBAParameter object can be
subsegently changed with thealue : message.

21.5 Conversion of Names to Smalltalk Identifiers

The use of underscore @facters in OMG IDL identifiers is not allowed in all
Smalltalk languagémplementatims. Thus, a conversion algthin is required to
convert names used in OMG IDL walid Smalltalk idenfiers.

To convert an OMG IDL idntifier to a Smalltalk identifier, remoweach underscore
and @pitalize the fdbwing leter (if it exists). Inorder toeliminate possible
ambiguities which may result from thesenventions, an exgit naming mechanism
must also be provided by the implementation. For examplefptegma directive
could be used.

For example, the OMG IDldentifiers:

add_to_copy_map
describe_contents

become Smalltalk idenidrs

addToCopyMap
describeContents

Smalltalk implementations generally require that class names and global variables have
an uppercase firdetter, while other names have a lowercase first letter.

21.6 Mapping for Interfaces

Each OMG IDLinterface defines the operations that object references with that
interface must support. In Smalltalk, each OMG IDL interface defines the methods that
object references with that interface meetpond to.

Implementations are free to map each OMG IDL interface to a sef@rathtalk
class, map all OMG IDL interfaces to a single Smalltalk class, or map arbitrary
Smalltalk classes to OMG IDL interfaces.

21.7 Memory Usage
One of the design goals is to make every Smalltalk object used in the mapping a pure

Smalltalk object: namely datatypes used in mappings do not point to operating system
defined memory. This design goal permits the mappimd) users of the mapping to

CORBA V2.2 Conversion of Names to Smalltalk Identifiers February 1998 21-7

21

ignore memory management issues, since Smalltalk handles this itself (via garbage
collection). Smalltalk objectarhich are used as object references may contain pointers
to operating system memory, and so must be freed in an explicit manner.

21.8 Mapping for Objects

A CORBA object is represented in Smalltalk as a Smalltalk object calletjeat
reference The object must respond to all messages defined by that CORBA object's
interface.

An object reference can have a value which indicates that it represents no CORBA
object. This value is the standard Smalltalk vatile .

21.9 Invocation of Operations

21-8

OMG IDL and Smalltalk mesage syntaxes both allow zero or more input parameters

to be supplied in a request. For return values, Smalltalk methods yield a single result
object, whereas OMG IDL allows an optional resaritl zero or more out or inout
parameters to be returned from an invocation. In this binding, the non-void result of an
operation is returned as the result of the corresponding Smalltallodpetinereas out

and inout parameters are to be communicated back to the caller via instances of a class
conforming to theCORBAParameter protocol, passed as explicit parameters.

For example, the following operations in OMG IDL:

boolean definesProperty(in string key);
void defines_property(
in string key,
out boolean is_defined);

are used a®llows in the Smalltalk language:
aBool := self definesProperty: aString.

self
definesProperty: aString
isDefined: (aBool := nil asCORBAParameter).

As another example, these OMG IDL operations:

boolean has_property protection(in string key,
out Protection pv al);

ORBStatus create_request (in Context ctx,
in Identifier operation,
in NVListarg_| ist,
inout Dynamiclnvocation::N amedValue result,
out R equest request,
in Flags req_flags);

would be invoked in the Safitalk language as:

CORBAV2.2 February 1998

21

aBool := self
hasPropertyProtection: aString
pval: (protection := nil asCORBAParameter).

aStatus := ORBObject

createRequest: aContext

operation: anldentifier

argList: anNVList

result: (result := aNamedValue asCORBAParameter)
request: (request := nil asCORBAParameter)
regFlags: aFlags.

The return value of OMG IDL merations that are specified withvaid return type is
undefined.

21.10 Mapping for Attributes

OMG IDL attribute declarations are a shentld mechanism to defingairs of simple
accessing operationsne to get the value of thet@bute and one to set it. Such
accessing methods are common in Smalltalk programs as well, thus attribute
declarations are mapped to standard methods targktet the namedttibute value,
respectively.

For example:

attribute string title;
readonly attribute string my_name,;

means that Smalltalk programmers can expect tdillge andtitle: methods to
get andset thetitle attribute of the CORBA object, and theyNamemethod to
retrieve themy name attibute.

21.10.1 Mapping for Constants

OMG IDL allows constant expressions to be declared globally as well as in interface
and modulaefinitions. OMG IDL constant values are stored in a dictionary named
CORBAConstants under the fully qualified name of the constant, not subject to the
name conversion algorithm. The constants are accessed by sendaty tmeessage

to the dictionary with an instance ofSiring whose value is the fullyuglified

name.

For example, given the following OMG IDL spécation,

module Applicat ionBasics{
const CopyDepth shallow_cpy = 4;

|

the Applicatio nBasics::shallow_cpy constant can be accesseihvwthe following
Smalltalk code

CORBA V2.2 Mapping for Attributes February 1998 21-9

21

value := CORBAConstants at:
"::ApplicationBasics::shallow_cpy'.

After this call, thevalue variable will contain the integral value 4.

21.11 Mapping for Basic Data Types

The followingbasic datatypes are mapped into existing Smalltalk classes. In the case
of short, unsigned short , long, unsigned long , long long , unsigned long

long, float, double , long double andoctet, the actual class usedl&ft up to the
implementation, for the folloimg reasons:

» There is no standard for Smalltalk that specifies integral and floating point classes
and the valid ranges of their instances.

» The classes themselves are rarely used iallgatk. Instances of the classes are
made available as constants included in code, or agshidt of computation.

The basic data types are mapped as follows:

short
An OMG IDL short integer falls in the range [}22'°-1]. In Smalltalk, a short is

represented as an instance of an appropriate integral class.

long

An OMG IDL long integer falls in the nage [-2%2%%-1]. In Smalltalk, a long is
represented as an instance of an appropriate integral class.

long long

An OMG IDL long long integer falls in the range [£32%%1]. In Smalltalk, a long
long is represented as an instance of an appropriate integral class.
unsigned short

An OMG IDL unsigned short integer falls in the range [3,21]. In Smalltalk, an
unsigned short is represented as an instance of an appropegtel class.
unsigned long

An OMG IDL unsigned long integerfalls in the range [0,%-1]. In Smalltalk, an
unsigned long is represented as an instance of an appropriate integral class.
unsigned long long

An OMG IDL unsigned long long integer falls in the range [P21]. In Smalltalk,
an unsigned long long is represented asatance of an appropriate integral class.

21-10 CORBAV2.2 February 1998

21

float

An OMG IDL float conforms to the IEEE single-precision (32-bit) floating point
standard (ANSI/IEEE Std 754-1985). In Smalltalk, a float is represented as an instance
of an appropriate floating point class.

double

An OMG IDL double conforms to theEEE doible-precision (64-bit) floating point
standard (ANSI/IEEE Std 754-1985). 8malltalk, a dable is represented as an
instance of an appropriate floatingomt class.

long double

An OMG IDL long double conforms to thdEEE dowble extended (a mantissa of at
least 64 bits, a sign bit, and an exgent of at least 15 bits) floating point standard
(ANSI/IEEE Std 754-1985). In Smalltalk, a long double is represented as an instance
of an appropriate floating-point class.

char

An OMG IDL character holds an 8-bit quantity mapping to the 1ISO Latin-1 (8859.1)
character set. In Smalltalk, a character is represented as an inst&icaratter

wchar

An OMG IDL wchar defines a wide dracter fromany character set. A wide
character is represented as an instance ofttazacter class.

boolean

An OMG IDL boolean may hold one of two values: TRUE or FALSE. In&halk, a
boolean is represented by the valtree or false |, respectively.

octet

An OMG IDL octet is an 8-bit quatity that undergoes no conversion during
transmission. In Smalltalk, an octet is represented as an instancepprapriate
integral class with a value in the range2feb].

21.12 Mapping for the Any Type

Due to the dynamic nature of Smalltalk, where the class of objects can be determined
at runtime, an explicimapping of theany type to a particulaBmalltalk class isiot
required. Instead, wherever any is required, the user may pass &mwalltalk object

which can be mapped into an OMG IDL type. For instance, if an OMG IDL structure

CORBA V2.2 Mapping for the Any Type February 1998 21-11

21

type is defined in an interface Dactionary for that structure type will be mapg.
Instances of this class can be used wherevangns expected, since that Smalltalk
object can be mapped to the OMG IDL structure.

Likewise, when armany is returned as the result of an operation, the actuall@ik
object which represents the value of the any data structure will be returned.

21.13 Mapping for Enums

21-12

OMG IDL enumerators are stored in a dictionary na@@dRBAConstants under the

fully qualified name of the enumerator, not subject to the name conversion algorithm.
The enumerators are accessed by sendin@the message to the dictionary with an
instance of aString whose value is the fullyuglified name.

These enumerat@malltalk objects mustupport theCORBAEnumrotocol, to allow
enumerators of the same type to be compared. The order in which the enumerators are
named in the specification of an enumeration defines the relative order of the
enumerators. The protocol must support the following instance methods:

< aCORBAEnum

Answerstrue if the receiver is less thaaCORBAEnumotherwise answeralse
<= aCORBAEnum

Answerstrue if the receiver is less than or equalatdORBAEnumotherwise
ansversfalse

= aCORBAEnum
Answerstrue if the receiver is equal taCORBAENumotherwiseanswersfalse

> aCORBAENnum
Answerstrue if the receiver is greater th&CORBAEnNuimotherwise ansers
false

>= aCORBAEnum
Answerstrue if the receiver is greater than or equab@ORBAEnupotherwise
answersfalse

For example, given the following OMG IDL spécation,

module Graphics{
enum ChartStyle
{lineCh art, barChart, stackedBarChart, pieC hart};

|

the Graphics:lineChart enumeration value can be accessét ¥he following
Smalltalk code

value := CORBAConstants at: "::Graphics::lineChart'.

After this call, thevalue variable is assigned to a Smalltalk object that can be
compared with other enumeration values.

CORBAV2.2 February 1998

21

21.14 Mapping for Struct Types

An OMG IDL struct is mapped to an instance of Bietionary class. The key for
each OMG IDL struct member is an instanceSgimbol whose value is the name of
the element converted according to the algorithm in Se2tlob. For example, a
structure with a field ofmy_field would be accessed by sending #te message
with the key#myField

For example, given the following OMG IDL dechtion:

struct Binding {
Name binding_name;
BindingType binding_type;
|3
the binding_name element can be accesséddllas/s:
aBindingStruct at: #bindingName

and set asollows:

aBindingStruct at: #bindingName put: aName

21.15 Mapping for Fixed Types

An OMG IDL fixed is represented as an instance of an appropriate fractional class
with a fixed denominator.

21.16 Mapping for Union Types

For OMG IDL union types, two binding mechanisms are providedmaticit binding

and anexplicit binding? The implicitbinding takes maximum advantage of the
dynamic nature of Smalltaland is the leasnhtrusive binding for the Smalitalk
programmer. The explicit binding retains the value of the discriminator and provides
greater control for the programmer.

Although the particular mechanism for choosing implicit vs. explicit binding semantics
is implementation specific, all implementations mpisivide both mechanisms.

Binding semantics is expected to be specifiable on a per-union declaration basis, for
example using thé&pragma directive.

2. Although not required, implementations may choose to provide both implicit and explicit
mappings for other OMG IDL types, such as structs and sequences. In the explicit mapping,
the OMG IDL type is mapped to a user specified Smalltalk class.

CORBA V2.2 Mapping for Struct Types February 1998 21-13

21

21.16.1 Implicit Binding

Wherever aunion is required, the user may pass @malltalk object thatan be
mapped to an OMG IDL type, and whose type matches one of the types of the values
in the union. Consider the following example:

structure S {long x; long y; };

union U switch (short) {
case 1:Ss;
case 2:long |;
default: char c;

|

In the example above, Rictionary for structure S will be mapped. Instances of
Dictionary with runtime elements as defined in struct8rantegral numbers, or
characters can be used wherever a union of e expected. In this example,
instances of these classes can be mapped into one & tbag, orchar types, and
an appropriate discriminator value can be determined at runtime.

Likewise,when anunion is returned as the result of an operation, the actual Smalltalk
object which represents the value of threon will be returned.

21.16.2 Explicit Binding

Use ofthe explicitbinding will result in specifiSmalltalk classes beingeepted and
returned by the ORB. Each union object must conform t€C&BAUnion protocol.
This protocolmustsupport the following instance methods:

discriminator
Answers the discriminator associated with the instance.

discriminator: anObject
Sets the dicriminatorassociated with the instance.

value
Answers the value associated with the instance.

value: anObiject
Sets the value associated with the instance

To create an object that supports @RBAUnion protocol, the instance method
asCORBAUnion: aDiscriminator can be invoked by angmalltalk object. This
method will return a Smalltalk object conforming to t6&®RBAUnion protocol,
whosediscriminator will be set t@Discriminator and whose value will bget to
the receiver of the message.

21.17 Mapping for Sequence Types

21-14

Instances of th@©rderedCollection class are used to represent OMG IDL
elements \ith thesequence type.

CORBAV2.2 February 1998

21

21.18 Mapping for String Types

Instances of the Smalltalktring class are used to represent OMG IBlements
with the string type.

21.19 Mapping for Wide String Types

An OMG IDL wide string is represented as an instance of an appropriatdtain
string class.

21.20 Mapping for Array Types

Instances of the Smalltalkrray class are used to represent OMG IDL elements with
thearray type.

21.21 Mapping for Excejmn Types

Each defined exception type is mapped to an instance d@ittienary class. See
“Handling Exceptions” orpage 21-16 for a complete description.

21.22 Mapping for Operations

OMG IDL operations having zero parameters rdapctly to Smalltalkunary

messages, while OMG IDL operations having one or more parameters correspond to
Smalltalk keyword messages. To determine the default selector for such an operation,
begin with the OMG IDL operation identifier and concatenate the parameter name of
each parameter followed by a colon, ignoring ih& parameter. Thmapped selector

is subject to the idefiier conversion algorithm. For example, the following OMG IDL
operations:

void add_to_copy_map(
in CORBA::ORBId id,
in LinkSet link_set);

void connect_push_s uppli er(
in EventComm:Pu shSuppl ier p ush_su pplier);

void add_to_delete_map(
in CORBA::ORBId id,
in LinkSet link_set);

become selectors:

addToCopyMap:linkSet:
connectPushSupplier:
addToDeleteMap:linkSet:

CORBA V2.2 Mapping for String Types February 1998 21-15

21

21.23 Implicit Arguments to Operations

Unlike the C mapping, where an object reference, environment, and optional context
must bepassed as parameters to each operation, this Smalltalk mapping does not
require these parameters to be passed to each operation.

The object reference is provided in the client code as the receiver of a message. So
although it is not garameter on the operation, it is a required part of the operation
invocation.

This mapping defines th€E ORBAEXxceptionEvent protocol to convey exception
information in place of the environment used in the C mapping. This pratacol
either be mapped into native Smalltatkceptions or used in cases where native
Smalltalk exception handling is unavailable.

A context expression can be associated with the current Smalltalk process by sending
the messageorbaContext: to the current process, along witlvalid context
parameterThe current context can betrieved by sending theorbaContext

message to the current process.

The current process may be obtained by sending the messdiyeProcess to
the Smalltalk global variableamedProcessor

21.24 Argument Passing Considerations

All parameters passed into and returfieon the Smalltalk mettods used to invoke
operations are allocated in memory maintained by thallatk virtual machine. Thus,
explicit free()ing of the memory is not required. The memory will be garbage
collected vhen it is no longer referenced.

The only exception isbject references. Since object references may contain pointers
to memory allocated by the operating system, it is necessary for the user to explicitly
free them when no longer needed. This is accomplished by using the operation
release of the CORBA:: Object interface.

21.25 Handling Exceptions

21-16

OMG IDL allows each operation definition to includdormation about the kinds of
run-time errors which may be encounter&€tese are specified in an exception

definition which declares an optional error structutgch will be returned by the
operation should an error be detected. Since Smalltalk exception handling classes are
not yet standardizebetween existingmplementaibns, a generalized rping is

provided.

In this binding, an IDL compiler creates exception objects and populates the
CORBAConstants dictionary. These exception objects are accedseah the
CORBAConstants dictionary by sending that.: message with an instance of a
String whose value is the fully qualified name. Each exception object must conform
to the CORBAEXxceptionEvent protocol. This protocol must support the

following instance methods:

CORBAV2.2 February 1998

21

corbaHandle: aHandlerBlock do: aBlock

Exceptions may be handled by sending an exception object the message
corbaHandle:do: with appropriatehandler and scoping blocks as parameters. The
aBlock parameter is the Smalltalock to evaluate. It is passed narametersThe
aHandlerBlock parameter is a block to evaluatden anexception occurs. It has
one mrameter: a Smalltalk object which conforms to @@RBAEXxceptionValue
protocol.

corbaRaise
Exceptions may be raised by sending an exception object the messhgRaise
corbaRaiseWith: aDictionary

Exceptions may be raised by sending an exception object the message
corbaRaiseWith .. The parameter is expected to be an instance of the Smalltalk
Dictionary class, as described below.

For example, given the following OMG IDL spécation,

interface NamingContext {

exception NotEmpty {};
void destroy ()
raises (NotEmpty);

k

the NamingContext::NotEmpty exception can be raised as follows:

(CORBACoOnstants at: "::NamingContext::NotEmpty")
corbaRaise.

The exeption can be handled in Smalltalk as follows:

(CORBACoOnstants at: '::NamingContext::NotEmpty")
corbaHandle: [:ev | "error handling logic here"]
do: [aNamingContext destroy].

21.26 Exception Values

OMG IDL allows values to be returned as part of the exception. Exception values are
constructed using instances of the Smalligtionary class. The keys of the
dictionary are the names of the elements ofetkeeption, the names of which are
converted using the algorithm in “Conversion of Names to Smalltalk Identifiers” on
page 21-7. The following examplbuistrateshow exeption values are used:

CORBA V2.2 Exception Values February 1998 21-17

21

21-18

interface NamingContext {

exception CannotProceed {
NamingContext cxt;
Name rest_of name;
}
Object resolve (in Name n)
raises (CannotProceed);

};...

would be raised in Smalltalk as follows:

(CORBACoOnstants at: '::NamingContext::CannotProceed’)
corbaRaiseWith: (Dictionary
with: (Association key: #cxt value:
aNamingContext)
with: (Association key: #restOfName value:
aName)).

21.26.1 The CORBAEXxceptionValue Protocol

When an exception is raised, the exception block is evaluated, passing it one argument
which conforms to th&CORBAEXxceptionValue protocol. This protocol must
support the following instance messages:

corbaExceptionValue
Answers theDictionary the exception was raised with.

Given theNamingContext interface defined in the previous section, the following
code ilustrateshow exe@ptions are handled:

(CORBACoOnstants at: '::NamingContext::NotEmpty")
corbaHandle:[:ev |

cxt:=ev corbaExceptionValue at: #cxt.

restOfName :=ev corbaExceptionValue at:
#restOfName]

do:[aNamingContext destroy].

In this example, thext andrestOfName variables will be set to the respective
values from the exception structure, if the exception is raRselido-Objects Mapping
Overview

CORBA defines a small set of standard interfagbich define types and operations
for manipulating object references, for accessing the Interface Repoaiadrjor
Dynamic Invocation of operatis. Otherinterfaces are defined in psgo OMG IDL
(PIDL) to represent in enore abstract manner programmer access to ORB services
which are provided locally. These PlDhterfaces sometimes resort tomOMG DL

CORBAV2.2 February 1998

21

constructs, such as pointers, which have no meaning to the Smalltalk programmer. This
chapter specifies thainimal requirements for the Smalitalk mapping for PIDL
interfaces. The operatiorse specified below as protocatgtriptions.

Parameters with the nana®ORBAODbject are expected to be Smalltalk objects,
which can be mapped to an OMG |Dhterface or data type.

Unless otherwise specified, all messages are defined to return undefined objects.

21.27 CORBA::Request

The CORBARequest interface is mapped to GORBARequest protocol, which
must include the following instance methods:

addArg: aCORBANamedValue
Corresponds to thadd_arg operation.

invoke
Corresponds to thimvoke operation with thenvoke flagsset to 0.

invokeOneway
Corresponds to thmvoke operation with thenvoke flagsset to
CORBA::INV_NO_RESPONSE

send
Corresponds to theend operation with thenvoke flagsset to 0.

sendOneway
Corresponds to theend operation with thénvoke_flagsset to
CORBA::INV_NO_RESPONSE

pollIResponse

Corresponds to thget responseoperation, with theesponse_flagset to
CORBA::RESP_NO_WAITAnswerstrue if the response is completialse
otherwise.

getResponse
Corresponds to thget responseoperation, with theesponse_flagset to 0.

21.28 CORBA::Context

The CORBA::Contextnterface is mpped to theCORBAContext protocol, which
must include thdollowing instance methods:

setOneValue: anAssociation
Corresponds to thset_one_valueoperation.

setValues: aCollection
Corresponds to thset_valuesoperation. The parameter passed in should be a
collection ofAssociation s.

CORBA V2.2 CORBA:Request February 1998 21-19

21

getValues: aString
Corresponds to thget valuesoperation without a scope name and op_flags =
CXT_RESTRICT_SCOPEAnswers a collectionof Association s.

getValues: aString propName: aString
Corresponds to thget_values operation with op_flags set to
CXT_RESTRICT_SCOPEAnswers aollection ofAssociation s.

getValuesinTree: aString propName: aString
Corresponds to thget_valuesoperation with op_flags set tb Answers a collection
of Association s.

deleteValues: aString
Corresponds to thdelete_valuesoperation.

createChild: aString
Corresponds to thereate_child operation.Answers a Smalltalk object conforming to
the CORBAContext protocol.

delete
Corresponds to thdelete operation with flags set t0.

deleteTree
Corresponds to thdelete operation with flags set t6TX _DELETE_DESCENDENTS

21.29 CORBA::Object

21-20

The CORBA::(bject interfice is mapped to theORBAObject protocol, which must
include the followinginstance methods:

getimplementation
Corresponds to thget_implementation operation.Answers a Smalltalk object
conforming to theCORBAImplementationDef protocol.

getinterfac e

Corresponds to thget_interface operation. Answers a Smalltalk object conforming
to the CORBAInterfaceDef protocol.

isNil

Corresponds to this_nil operation. Aswerstrue or false indicating whether or
not the object reference represents an object.

createRequest: aCORBAContext
operation: aCORBAldentifier
argList: aCORBANVListOrNil
result: aCORBAParameter
request: aCORBAParameter
regFlags: flags

Corresponds to thereate_requestoperation.

CORBAV2.2 February 1998

21

duplicate

Corresponds to thduplicate operation. Answers a Smalltalk object representing an
object reference, conforming to the interface of the CORBA object.

release 3

Corresponds to theeleaseoperation.

21.30 CORBA:ORB

The CORBA::ORBinterface is mapped to tteORBAORPBrotocol, which must
include the followinginstance methods:

objectToString: aCORBAObject
Corresponds to thebject_to_string operation. Answers an instance of Steing
class.

stringToObject: aString

Corresponds to thstring_to_object operation. Answers an object reference, which
will be an instance of a class which corresponds tdrteef aceDefof the CORBA
object.

createOperationList: aCORBAOperationDef

Corresponds to thereate_operation_listoperation. Answers an instance of
OrderedCollection of Smalltalk objects conforming to theORBANamedValue
protocol.

getDefaultContext
Corresponds to thget default _contextoperation. Answers a Smalltalk object
conforming to theCORBAContext protocol.

sendMultipleRequests: aCollection

Corresponds to theend_multple_requestsoperation with thénvoke flags set to

0.The parameter passed in should be a collection of Smalltalk objects conforming to
the CORBARequest protocol.

sendMultipleRequestsOneway: aCollection

Corresponds to theend_multiple_requests operation with theénvoke_flagsset to
CORBA::INV_NO_RESPONSEThe parameter passed in should be a collection of
Smalltalk objects conforming to theORBARequest protocol.

polINextResponse

Corresponds to thget next_respons@peration, with theesponse_flagset to
CORBA::RESP_NO_WAITAnswerstrue if there are completed requests pending,
false otherwise.

getNextResponse
Corresponds to thget _next_respons@peration, with theesponse_flagset to0.

3. The semantics of this operation will have no meaning for those implementations that rely
exclusively on the Smalltalk memory manager.

CORBAV2.2 CORBA:ORB February 1998 21-21

21

21.31 CORBA::NamedValue

PIDL for C definesCORBA::NamedValue as a struct while €+-PIDL specifies it as
an interfaceCORBA::NamedValue in this mapping is specified as an interface that
conforms to theCORBANamedValueprotocol. This protocol must include the
following instance methods:

name
Answers the name associated with the instance.

name: aString
Resets the name associated with instan@Stang

value
Answers the value associated with the instance.

value: aCORBAObject
Resets the value associated with instancEXORBAODbject .

flags
Answers the flags associated with the instance.

flags: argModeFlags
Resets the flags associated with instancargdlodeFlags

To create an object that supports ®@&@RBANamedValueprotocol, the instance
methodasCORBANamedValue: aName flags: argModeFlags can be
invoked by anySmalltalk object. This method will return a Smalltalk object
conforming to theCORBANamedValue protocol, whosattibutes associated with
the instance will be set appropriately.

21.32 CORBA::NVList

21-22

The CORBA::NVList interface is mapped to the equivalent of the OMG IDL
definition
typedef sequence<NamedValue> NVList;

Thus, Smalltalk objects representing théList type should be instances of the
OrderedCollection class, whose elements are Smalltalk objects conforming to
the CORBANamedValueprotocol.

CORBAV2.2 February 1998

21

Appendix A- Glossary

This appendix includes lést of Smallalk terms.

A.1 Glossary Terms

Smalltalk object An object defined using the Smalltdbknguage.
Message Invocation of aSmalltalk method upon a Smalltalk object.
Message Selector The name of a Smalltalk messagethis document, the message selectors are denoted

by just the message name when the class or protocol they are associated with is given
in context, otherwise the notatimtass >>method or protocol >>method
will be used to explicitly denote the class or protocol the message is associated with.

Method The Smalltalk codassociated with a message.

Class A Smalltalk class.

Protocol A set of messages that a Smalltalk object mustamspo. Protocols are used to
describe the behavior of Smalltalk objects without specifying their class.

CORBA Object An object defined in OMG IDL, accessed and implementedutiitran ORB.

Object Reference A value which uniquely identifies an object.

IDL compiler Any software that accesses OMG IDL specificatiamsl generates or maps SredK

code that can be used to access CORBjas.

CORBAV2.2 CORBA:NVList February 1998 21-23

21

21-24 CORBAV2.2 February 1998

21

Glossary Terms 21-25

21

21-26 CORBAV2.2 February 1998

	Mapping of OMG IDL to Smalltalk
	21.1 Mapping Summary
	21.2 Key Design Decisions
	21.2.1 Consistency of Style, Flexibility and Portability of Implementation

	21.3 Implementation Constraints
	21.3.1 Avoiding Name Space Collisions
	21.3.2 Limitations on OMG IDL Types

	21.4 Smalltalk Implementation Requirements
	21.5 Conversion of Names to Smalltalk Identifiers
	21.6 Mapping for Interfaces
	21.7 Memory Usage
	21.8 Mapping for Objects
	21.9 Invocation of Operations
	21.10 Mapping for Attributes
	21.10.1 Mapping for Constants

	21.11 Mapping for Basic Data Types
	21.12 Mapping for the Any Type
	21.13 Mapping for Enums
	21.14 Mapping for Struct Types
	21.15 Mapping for Fixed Types
	21.16 Mapping for Union Types
	21.16.1 Implicit Binding
	21.16.2 Explicit Binding

	21.17 Mapping for Sequence Types
	21.18 Mapping for String Types
	21.19 Mapping for Wide String Types
	21.20 Mapping for Array Types
	21.21 Mapping for Exception Types
	21.22 Mapping for Operations
	21.23 Implicit Arguments to Operations
	21.24 Argument Passing Considerations
	21.25 Handling Exceptions
	21.26 Exception Values
	21.26.1 The CORBAExceptionValue Protocol

	21.27 CORBA::Request
	21.28 CORBA::Context
	21.29 CORBA::Object
	21.30 CORBA::ORB
	21.31 CORBA::NamedValue
	21.32 CORBA::NVList

