Mapping of OMG IDL to Cobol

Contents

This chapter contains tHellowing sections.

Section Title Page
“Overview” 22-2
“Mapping of IDL to COBOL” 22-2
“Scoped Names” 22-3
“Memory Management” 22-4
“Mapping for Interfaces” 22-5
“Mapping for Attributes” 22-6
“Mapping for Constants” 22-7
“Mapping for Basic Data Types” 22-7
“Mapping for Fixed Types” 22-10
“Mapping for Struct Types” 22-10
“Mapping for Union Types” 22-10
“Mapping for Sequence Types” 22-11
“Mapping for Strings” 22-15
“Mapping for Arrays” 22-19
“Mapping for Exception Types” 22-19
“Argument Conventions” 22-19
“Memory Management” 22-23

CORBA V2.2 FeblieDg

22-1

22

22.1 Overview

Section Title Page
“Handling Exceptions” 22-25
“Pseudo djects” 22-29
“Mapping of the Dynamic Skeleton Interface to COBOL" 22-39
“ORB Initialization Operations” 22-44
“Operations for Obtaining Initial Object References” | 22-45
“ORB Suppied Functions for Mapping” 22-46
“Accessor Functions” 22-47
“Extensions to COBOL 85" 22-49
“References” 22-53

This COBOL language mapping provides #islity to access and implement CORBA
objects in programs written in the COBOL programminggleage. The mapping is
based on the digition of the ORB inThe Common Bject Request Broker:
Architectureand $ecification The mapping specifies how CORBA objects (objects
defined by OMG IDL) are mapped to COBOL amaw operations of mapped CORBA
objects are invoketrom COBOL.

Support

The mapping has been designed to support as many C@Bmhilersand ORB
implementations as possible. Additionally, it Heeen designed so that an actual
implementation may be basegon the current ANSI COBOL 85 language standard
for the COBOL programming languagetivsome additional commonly-used
extensions from the next ANSI COBOL language standard.

Currently, the next ANSI COBOL language standard is at a draft stage and will soon
be ratifed. For a description of the syntax taken from the neaft dor use with
standard ANSI COBOL 85¢gfer to “Extensions to COBOL 85" on page 22-49.

22.2 Mapping ofDL to COBOL

22.2.1 Mapping of IDL Identifiers to COBOL

22-2

Mapping IDL Identifiers to a COBOL Name

A COBOL name can only be up to 30 characters in length and may consist of a
combination of letters, digits, aridyphens. The hyphen cannot appear as the first or
last character.

CORBAV2.2 February 1998

22

Where a COBOL name is to be used, the following steps will be taken to convert an
IDL identifier into a formatacceptable to COBOL.

1. Replace each underscore with a hyphen.
2. Strip off any leading atrailing hyphens.

3. When an IDL identifier collides with a COBOL reserwedrd, insert the string
“IDL-" before theidentifier.

4. If the identifier is greater than 30 characters, then truncate right to 30 characters. If
this will result in a duplicate name, truncateck to 27 characters and add a
numeric suffix to make it unique.

For example, the IDL idntifiers:

my_1st_operation_parameter

_another_parameter_

add

a_very very lo ng_operation_parameter_number_1
a_very very lo ng_operation_parameter_number_2

become COBOL identiéirs:

my-1st-operation-parameter
another-parameter

IDL-add
a-very-very-long-operation-par
a-very-very-long-operation-001

Mapping IDL Identifiers to a COBOL Literal

A COBOL literal is a character string consistingaofy allowable character in the
character set and is delimited aith ends by quotation marks (either quotes or
apostrophes).

Where a COBOL literal is to be used, the IDL identifier can be used directly within the
guotes without anyruncation being necessary.

22.3 Scoped Names

The COBOL progammer must always use the global names for an IDL type, constant,
exception, or operation. The COBOL global name corresponding to an IDL global
name is derived as follows:

For IDL names being converted into COB@ientifiers or a COBOL literal, convert

all occurrences of “:;" (except the leading one) into a “-hy@hen) and remove any
leading hyphens. The “::” used to indicate ludb scope will be ignored.

Consider the following example:

CORBAV2.2 ScopedNames February 1998 22-3

22

/I IDL
interface Example {

struct {
long rtn_code;

} return_type;
return_type my_operation();

k

COBOL code that would udgis simple example is as follows:
PROCEDURE DIVISION.

call “Example-my-operation” using
a-Example-object
a-CORBA-environment
a-return-type
if rtn-code in a-return-type NOT =0

end-if

Care should be taken to avoid ambiguity within COB@Hrived fom IDL. Consider
the following example:

typedef long foo_bar;
interface foo {

typedef short bar; /* Valid IDL, but ambiguous in COBOL */
|3

Is foo-bar a short or a long in the above example?

Note —It is strongly recommended that you take great care to avoid the use of
indiscriminate underscores ahgiphens.

22.4 Memory Management

The standard ORB-supplied functions CORBA-alloc and CORBA-free may be used to
allocate and free storage for data types. For furtheilden these functions refer to
“Memory Management’ on page 22-23.

22-4 CORBAV2.2 February 1998

22

22.5 Mapping for Interfaces

22.5.1 Object References

The use of ainterface type in IDL denotes an object reference. Each IDL interface
shall be mapped to theae-known opaque typeC ORBA-Object.

The followingexample illustrates the COBOL mapping for an interface:
interface interfacel {

b

The above willresult in the following COBOL Typedef declaration for theerface:

01 interfacel is typedef type CORBA-Object.

22.5.2 Object References as Arguments

IDL permits specifications in hich arguments, return results, or components of
constructed types may be object references. Consider the following example:

#include “interfacel.idl’ // IDL

interface interface2 {
interfacel op2();

|3
The aboveexample will result in the following COBOL declaration for the interface:

01 interface2 is typedef type CORBA-Object.

The following is asample of COBOL code that may be useadt op2:

WORKING-STORAGE SECTION.

01 interfacel-obj type interfacel.
01 interface2-obj type interface2.

0l ev type CORBA-Environment.

PROCEDURE DIVISION.

call “interface2-op2” using
interface2-obj
ev
interfacel-obj

CORBA V2.2 Mapping for Interfaces February 1998 22-5

22

22.5.3 Inheritance and Interface Names

IDL allows the specification of interfaces that inherit operations from other inéstfac
Consider the following example:

interface interface3 : interfacel {
void op3(in long parm3a, out long parm3b);

>

A call to eitherinterfacel-opl or interface3-oplon the abovénterface3 object will
cause the same actual method to be invoked. Thilsissratedwithin the following
examples.

CORBA clients, written in COBOL, can make calls to tpel operation that was
inherited frominterfacel on aninterface3 object as if it had been directly declared
within theinterface3 interface:

call “interface3-op1” using
interface3-obj
aParmla
aParmlb
ev

CORBA COBOL clients may also malkeaterfacel-oplcalls on thenterface3 object.

call “interfacel-opl” using
interface3-obj
aParmla
aParmlb
ev

22.6 Mapping for Attributes

22-6

IDL attribute declarations are mapped to a pair of simple accessing operatiens,
get the value of thattribute and one to set it. To illustrate this, considerfdiewing
specification:

interface foo {
attribute float balance;

¥
The following code would be used within a CORBA COBGlent to get andsetthe

balanceattribute that is specified in the IDL above:

call foo--get-balance” using
a-foo-object
aCORBA-environment
balance-float

CORBAV2.2 February 1998

22

call “foo--set-balance” using

a-foo-object

balance-float

aCORBA-environment
There are two hyphen characters (“--") used toasate the name of the interface from
the words get’ or “sef’ in the names of the functions.

The functions can return standarccegtions but not user-defined exceptions since the
syntax of attribute declarations does not permit them.

22.7 Mapping for Constants

The concept otonstants does not exist within pure ANSI 85 COBOL. If the
implementor’s COBOL compiledoes not support this concept, then the IDL compiler
will be responsible for the propagation of constants.

Refer to “Extensions to COBOL 85" on page 22-49 details of the Constant syntax
within the next major revision of COBOL.

Constant identifiergan be referenced at any point in trsei’s code where a literal of
that type is legal. In COBOL, these constants may be specified by using the COBOL
>>CONSTANT syntax.

The syntax is used to define a constant-name, whiclsysndolic name representing a
constant value assigned to it.

The following is arexample of this syntax:

>>CONSTANT My-Const-StringlS “This is a string value”.
>>CONSTANT My-Const-NumberlS 100.

22.8 Mapping for Basic Data Types

The basic data types have the mappings shown ifialt@ving table. Implementations
are responsible for providing either COBOL typedefs or COBOL COPY files
(whichever is appropriate for their COBOL environment):

® COBOL typedefs for CORBA-short, CORBA-unsigned-short, etc. are consistent
with OMG IDL requirements for the corresponding data types. (Note: Support for
COBOL Typedefs is an optional extension tbl& 85for this mapping).

CORBA V2.2 Mapping for Constants February 1998 22-7

22

® COBOL COPY files within a COBOL library named CORBA. The COPY files will
contain types that are consistevith OMG IDL requirements for theorresponding
data types. (For further details, refer to “Using COBOL COPY files instead of
Typedefs” on page 22-51).

Table 22-1COBOL COPY files within a COBOL library named CORBA

COBOL CORPY file in

OGM IDL COBOL Typedef a CORBA library
short CORBA-short short
long CORBA-Iong long
long long CORBA-long-long llong
unsigned short CORBA-unsigned-short ushort
unsigned long CORBA-unsigned-long ulong
unsigned long long CORBA-unsigned-long; ullong

long
float CORBA-float float
double CORBA-double double
long double CORBA-long-double Idouble
char CORBA-char char
wchar CORBA-wchar wchar
boolean CORBA-boolean boolean
octet CORBA-octet octet
enum CORBA-enum enum
any CORBA-any any

22.8.1 Boolean

The COBOLmapping ofbooleanis an integer that may have the values CORBA-true
and CORBA-false defined; other values produce undefined behavior. CORBA-boolean
is provided for symmetry with the other basic data type mappings.

The followingconstants will be provided fareting and testindooleantypes:

CORBA-true is 1.
CORBA-false is 0.

>>CONSTANT
>>CONSTANT

22.8.2 enum

The COBOL mapping oénum is an unsignedéhteger capable of representing 2**32
enumerations. Eadldentifier in an enum has a COBOL condition defined with the
appropriate unsigned integer value conforming to the ordering constraints.

22-8 CORBAV2.2 February 1998

22

Consider the following example:

interface Example { /I \DL
enum temp{cold, warm, hot}

k

The aboveexample will result in the following COBOL declarations:

01 Example-temp is typedef type CORBA-enum.
88 Example-cold value 0.
88 Example-warm value 1.
88 Example-hot value 2.

COBOL code that would udéis simple example is as follows:
WORKING-STORAGE SECTION.

01 Exé‘r‘nple-temp-value type Example-temp.
PROC.I.E.DURE DIVISION.

evaluate TRUE
when Example-cold of Example-temp-value

when Example-warm of Example-temp-value
when Example-hot of Example-temp-value

end-evaluate

22.8.3 any

The IDL any type permits the specification of values that can expegdDL type.
The any IDL typewill generate the following COBOL groupeim:

01 CORBA-any is typedef.
03 any-type type CORBA-TypeCode.
03 any-value usage pointer.

For details of ypeCodesrefer toThe Common Object Request Broker: Architecture
and Specification The IDL-valueelement of the grougem is a pointer to the actual
value of the datum.

CORBA V2.2 Mapping for Basic Data Types February 1998 22-9

22

22.9 Mapping for Fixed Types

For COBOL, the IDLfixed type is mapped to the native fixed-point decimal type. The
IDL syntaxfixed<digits,scale>will generate a COBOL typedef that maps directly to
the native fixed-point decimaype.

Consider the following example:
typedef fixed<9,2> money;

The above eample describes a fixed point decimal type that contains 9 digitas
a scale of 2 digits (9,99999.99). It willresult in the following COBOL declarations:

01 money is typedef [COBOL fixed point type]

22.10 Mapping for Struct Types

IDL structures map directlpnto COBOL group items. The following is an example of
an IDL declaration of a structure:

struct example {

long memberl, member2;
boolean memb er3;
|3
Would map to the following COBOL:
01 <scope>-example is typedef.
03 memberl type CORBA-long.
03 member2 type CORBA-long.
03 member3 type CORBA-boolean.

22.11 Mapping for Union Types

22-10

IDL discriminated unions are mppd onto COBOL groupgems with the
REDEFINES clause. The following is aexample of an IDL declaration of a
discriminated union:

union example switch(long) {

case 1: char first_case;
case 2: long second_case;
default; double other_case;
|3
Would map to the following COBOL.:
01 <scope>-example is typedef.
03d type CORBA-long.
03 u.
CORBAV2.2 February 1998

22

05 default-case type CORBA-double.
03 filler redefines u.

05 second-case type CORBA-long.
03 filler redefines u.

05 first-case type CORBA-char.

The discriminator in thegroupitem isalways referred to ad; the union tems are
contained within the groupem that is ahays referred to as.

Reference to unioelements islone using standard COBOL.itWin the following
example, the COBOL “evaluatestatement is sed to test the discriminator:

evaluate d in <scope>-example
when 1
display “Char value = “ first-case in <scope>-example
when 2
display “Long value = “ second-case in <scope>-example
when other
display “Double value = “ other-case in <scope>-
example
end-evaluate

Note —The ANSI 85 COBOL REDEFINES clause can only be used to specify a
redefinition whose actual storage is either the same size or smaller than the area being
redefined. As a result, thenion elements need to be sorted such that the largest is
issued first within thgenerated COBOL structure and theafiest is last (as

illustrated within the above example).

22.12 Mapping for Sequence Types

The IDL data typesequencepermitspassing of bounded and unbounded arrays
between objects.

Boundedsequencesre mapped to a typedef that contains an occurs clause up to the
specified imit.

For unboundedequencesa pointer to the unbounded array of sequertements is
generated along with a typedef for one sequence element. To access unbounded
sequences, two accessor functions are provided EXAsequence-element-get and
CORBA-sequence-element-set).

22.12.1 Bounded Sequence

Consider the following banded IDLsequence
typedef sequence< longfloat,10> vecl0;

In COBOL, this is mapped to:

CORBA V2.2 Mapping for Sequence Types February 1998 22-11

22

22-12

01 <scope>-veclO is typedef.
03 seg-maximum type CORBA-long.
03 seg-length type CORBA-long.
03 seg-buffer usage POINTER.
03 seg-value occurs 10 type CORBA-float.

For boundedequencesthe seq-buffer pointershould be set to the address of sleg-
value item.

22.12.2 Unbounded Sequence

Consider the following umounded IDLsequence
typedef sequence< long> vec;

In COBOL, this is mapped to the following two typedefs:

01 <scope>-vec-t is typedef type CORBA-long.

01 <scope>-vec is typedef.
03 seg-maximum type CORBA-long.
03 seg-length type CORBA-long.
03 seg-buffer usage POINTER. [to <scope>-vec-]

In this case the sequenceursbounded; therefore,\&ec-ttypedef is used to specify
one specific instance of the sequae. Theseqg-bufferitem should be set to the address
of a variable length array of the sequence type.

To access thelementswithin an unbounded sequen@mplication developers may
either:

® Set up a table of elements of the sequence type within the linkage section using the
IDL generated sequence element typedef. Set the table address to the galge in
buffer and use normal table processing logic to step through the elements.

® Use the ORB suppliedequenceelement accessor functie.

22.12.3 Sequence Element Accessor Functions

The following ORB supplied roimes may be used to get or set specific elements
within a sequence:

call “CORBA-sequence-element-get” using
a-CORBA-sequence
a-CORBA-unsigned-long
a-element-type

call “CORBA-sequence-element-set” using
a-CORBA-sequence
a-CORBA-long
a-element-type

CORBAV2.2 February 1998

22

For further details of theb®mve accessor functionsfer to “Accessor Functions” on
page 22-47.

The following is an example of some code thtaps through sequence elements using
the above “CORBA-sequence-element-getitine:

WORKING-STORAGE SECTION.

01 a-Sequence type <scope>-vec.
01 ws-vec-element type <scope>-vec-t.
01 ws-num type CORBA-long.

PROCEDURE DIVISION.

PERFORM VARYING ws-num FROM 1 BY 1
UNTIL ws-num > seg-length IN a-Sequence
call “"CORBA-sequence-element-get” using
a-Sequence
ws-num
ws-vec-element
PERFORM process-current-element
END-PERFORM

22.12.4 Nested Sequences

The typespecified within a sequence may be another sequence. In this instance, the
generated COBOL declarations are also nested. For example:

typedef sequence<seq uence<long> > seq_type;
will be mapped to the following COBOL:
01 <scope>-seq-type-t-t is typedef type CORBA-long.
01 <scope>-seq-type-t is typedef.
03 seg-maximum type CORBA-long.
03 seg-length type CORBA-long.
03 seg-buffer usage POINTER.[to <scope>-seq-type-t-t]
01 <scope>-seq-type is typedef.
03 seg-maximum type CORBA-long.

03 seg-length type CORBA-long.
03 seg-buffer usage POINTER. [to <scope>-seq-type-t]

CORBA V2.2 Mapping for Sequence Types February 1998 22-13

22

22.12.5 Sequengearameter passing considerations

Passing a Sequence asiaparameter

When passing a Sequence asraparameter, the COBOL programmer must:

® set thebuffer member to point to an array of the specified data type item to point at
the allocated storage (or NULL if it is a bounded sequence), and

* set thelength member to the actual number of elements to transmit.

Passing a Sequence as an out parameter or return

The programmer should pass a pointer (there is no neadtigize it). Once the call
has been made, the ORB will have allocated storage for the sequence returned by the
object. Upon successful retufrom the call:

* Themaximum itemwill contain the size of the allocated array.

* Thebuffer item will point at the allocated storage (or NULL if it is aumded
sequence).

®* The length item will contain the actual number of values Wet returned in the
sequence

The client isresponsible for freeing the allocated sequence by making a call to
“CORBA-free” when the returned sequence is no longer required.

Passing a Sequence asianout parameter

The prgrammer should pass a pointer teemuencehat has been allocated using the
CORBA-allocroutine.

Before passing a sequence asrarut parameter, the programmer must:

® set thebuffer item to point to an array buffer (or NULL if it is aobnded
sequence), and

® set the length item to the actual number of elements that are to be transmitted.

The CORBAalloc routine musbe used. Thisllows the callee to deallocate the
original sequenceusing a call to “CORA-free.” If more datamust be returned, then
the original sequence can hold and assigw storage.

Upon successful return from the invocation, kegth member will contain the
returning number of values within the sequence.

For bounded sequences, it is an errasebthelength or maximum item to a value
larger than the specified bound.

22-14 CORBAV2.2 February 1998

22

22.13 Mapping for Strings
22.13.1 How strings mapped to COBOL

Bourded strings

Bounded IDL strings are mapped directly to a COBOL PIC X of the specified IDL
length. The ORB will beotally responsible for handling the nblyte, as required.
Inboundstrings will have the null bytautomatically stripped off by the OR&hd
outboundstrings will automaticaljhave a null byte appended by the ORB.

Consider the following IDL declarations:
typedef string<10> string_1;
In COBOL, this is mapped directly to:

01 string-1 is typedef pic x(10).

Uhbounded strings

An unbounded IDL string cannot be mappbkctly to a COBOLPIC X of aspecific
size, as bounded strings are. Instead, it is mapped to a pointer that is accessed via a s
of accessor functions (CORBgtring-getand CORBAstring-set).

Consider the following IDL declarations:

typedef string string_2;

In COBOL, this is converted to:

01 string-2 is typedef usage POINTER.

The following ORB supplied accessmutines may be used to get or set the actual
string value:

call “CORBA-string-get” using
a-CORBA-unbounded-string
a-CORBA-unsigned-long
a-COBOL-text

call “CORBA-string-set” using
a-CORBA-unbounded-string
a-CORBA-unsigned-long
a-COBOL-text

The CORBA-string-set routine will be responsible for allocating the storage required
and will set the pointer to point to a null terminastdng.

CORBA V2.2 Mapping for Strings February 1998 22-15

22

The CORBA-string-get routine does not release the storage within thiater;
therefore, it may be used more than once to access the same string.

The following is arexample of string manipulation using the above routines.

WORKING-STORAGE SECTION.
01 my-COBOL-text pic x(16) value “some random text".
01 my CORBA-string type string-2.

PROCEDURE DIVISION

call “CORBA-string-set” using
my-CORBA-string
LENGTH OF my-COBOL-text
my-COBOL-text

call “CORBA-string-get” using
my-CORBA-string
LENGTH OF my-COBOL-text
my-COBOL-text

For further details of the string accessor routines, refer to “AccessatiGns” on
page 22-47.

22.13.2 How wstrings mapped to COBOL

Bourded wstrings

Bounded IDL vstringsare mapped directly to an array of wchar’s of the specified IDL
length. The ORB will beotally responsible for handling the niblyte, as required.
Inbound wstringswill have the nuliterminator automatally stripped off by the ORB
and outbound wtrings willautomatically have a null teimator appended by the ORB.

Consider the following IDL declarations:
typedef wstring<10> wstring_1;
In COBOL, this is mapped to:

01 wstring-1-t is typedef.
03 filler type CORBA-wchar occurs 10.

Unbounded wstrings

An unbounded IDL wstring cannot be mappexkdily to a specific sized area as
bounded wstrings are. Instead, it is mapped to a pointer that is accessesbtvae a
accessor functions (CORBA-wstring-get and CORBA-wstring-set).

22-16 CORBAV2.2 February 1998

22

Consider the following OMG IDL declarations:

typedef wstring wst ring_2

In COBOL, this is converted to:

01 wstring-2 is typedef usage POINTER.

The following ORB supplied accessmutines may be used to handle variable length
null terminated wstrings:

call “CORBA-wstring-get” using
a-CORBA-wstring
a-CORBA-unsigned-long
a-COBOL-wtext

call “CORBA-wstring-set” using
a-CORBA-wstring
a-CORBA-unsigned-long
a-COBOL-wtext

The CORBA-wstring-set routine will be responsible for allocating the storage
required and will return a pointer to a null terminated wstring within the pointer.

The CORBA-wstrin g-getroutine does not release the storage within the pointer;
therefore, it may be used more than once to access the same wstring.

The following is arexample of wstring manipulation using the above routines:

WORKING-STORAGE SECTION.
01 my-COBOL-wtext.

03 filler type CORBA-wchar occurs 10.
01 my-CORBA-wstring type wstring-2.

PROCEDURE DIVISION

call “CORBA-wstring-set” using
my-CORBA-wstring
length of my-COBOL-wtext
my-COBOL-wtext

call “CORBA-wstring-get” using
my-CORBA-wstring
length of my-COBOL-wtext
my-COBOL-wtext

For further details of the string accessor routines, refer to “Accessatiéus” on
page 22-47.

CORBA V2.2 Mapping for Strings February 1998 22-17

22

22.13.3 string / wstringrgument passing considerations

Passing a string or wstring as amparameter

If the string /wstring is bounded, then the COBOL text (or array of double bytes) may
be passed directly as &n parameter.

If the string /wstring is unbounded, a pointer to the ntdrminatedstring/wstring
that was estalshed with theCORBA-string-set (or CORBA -wstring-sef) accessor
function is passed.

The accessor function is responsifie the allocation of the storage that the pointer
points to. The ORB will beesponsible for releasing that storage once it has completed
processing thén parameter.

The caller is not allowed to pass a null pointer as the string/wstring argument.

Passing a string or wstring as an out parameter or return

If the string /wstring is bounded, then the COBOL text (or array of double bytes) is
passed back into a COBOL text area supplied by the caller. If necessary, the ORB will
be responsible for padding the storage with spaces.

If the string /wstring is unbounded, then the pointer to the null terminated

strin g/wstring is passed to thealler. The calleruses the appropriate accessor function
to obtain the COBOL text value€ORBA-strin g-get or CORBA -wstring-gef). The

caller is responsible for freeirtbe allocated storage pointed to by the returned pointer
using CORBA-free.

Passing a string or wstring as an inout parameter

If the string /wstring is bounded, then the COBOL text (or array of double bytes) is
passed directly as an parameter. The ORB will be responsible Fandling the null
termination on the user’s behalfpbh return, the COBOL texXbr array of double
bytes) is passed back to the same area of storage.

The ORB isprohibited from deallocating and reallocating storage farred
strin g/wstring (the storage is supplied by and belongs to the caller).

If the string /wstring is unbounded, thealler must pass a pointer to a null terminated
strin g/wstring. Thestorage is allocated and the value is established within it by using
the appropriate accessor functidd@RBA -string-set or CORBA -wstring-set).

The ORB may deallocate ameallocate the buffer if the current buffer size is not large
enough to hold the returning string. Upon return, the pointer to the null terminated
string/wstring is passed to thealler. Toobtain the COBOL text value, the caller uses
the appropriate accessor functidd@RBA -string-get or CORBA-wstring-get). The
caller is then responsible for freeing the allocated stopag&ed to by the returned
pointer usingCORBA-free.

22-18 CORBAV2.2 February 1998

22

22.14 Mapping for Arrays

IDL arrays map to the COBOL OCCURS clause. For example, given the following
IDL definition:

typedef short ShortArray[2][3][4][5];
The COBOL mapping will gnerate the following:

01 <scope>-ShortArray is typedef.

03 filler occurs 2.
05 filler occurs 3.
07 filler occurs 4.
09 filler occurs 5.
11 ShortArray-v type CORBA-short.

22.15 Mapping for Excepn Types

Each defined exception type is mapped to a COB@iup-item along with a constant
name that provides a uniqueeittifier for it. Theunique icentifier forthe exception
will be in a string literal form.

For example:

exception foo {
long a_supplied_value;

¥
will produce thefollowing COBOL declarations:

01 <scope>-foo is typedef.
03 a-supplied-value type CORBA-long.
>>CONSTANT ex-foo IS “<unique identifier for exception>*.

Theidentifier for theexception uniquely ientifies this exception pe. For eample, it
could be the exception’s Interface Repository identifier.

Since IDL exceptions are allowed to have no members, but COBOL groups must have
at leastoneitem, IDL exceptions with no members map to COBOL groups wii
member. This member is opaque to applications. Both theaygehe name of the

single member are implementation-specific.

22.16 Argument Conventions

22.16.1 Implicit Arguments to Ogions

From the COBOL programer’s point of view, albperations declared in an IDL
interface have implicit parameters in addition to the actual explicitly declared operation
specific parameters. These are as follows:

CORBA V2.2 Mapping for Arrays February 1998 22-19

22

® Each operation has amplicit CORBA-Object input parameter as thigst
parameter; this designates the object that is to process the request.

® Each operation has amplicit pointer to a CORBA-Environment output parameter
that permits the return @xceptioninformation. It is placed afteany geration
specific arguments.

® |f an operation in an IDL specification has a context specificatitan there is
another mplicit input parameter which iIEORBA-Context. If present, this is
placed between the operation specific arguments an@@eBA-Environment
parameter.

® ANSI 85 COBOL does not support a RETURNING clause, so any return values
will be handled as an out parameter and placed at the end of the argunediedist
CORBA-Environment.

Given the following IDLdeclaration of an operation:

interface examplel

{
float op1(
in short arg1,
in long arg2
);
|3

The following COBOLcall should be used:

call “examplel-opl1” using
a-CORBA-Object
a-CORBA-short
a-CORBA-long
a-CORBA-Environment
a-CORBA-float

22.16.2 Argument passing Considerations

All parameters are passed BY REFERENCE.

in parameters

All types are passed directly.

inout parameters

bounded and fixed length parameters

All basic types, fixed length structures, and unions (regardless of whether they were
dynamically allocated or specified within WORKING STORAGE) passed directly.
They do not have to chang&e in memory.

22-20 CORBAV2.2 February 1998

22

unbounded and variable length paraaters

All types that may have a different size upon return are passed indirectly. Instead of the
actual parameter being passed, a pointer to éinanpeter will be assed. When there is
a type whose length may change in size, some specialdayations are required.

Example A user wants to pass in a 10 byte unbourgteidg as arinout parameter. To

do this, the address of a storage area that is initially large enough to hold the 10
characters is passed to the ORB. However, upon completion of the operation, the ORB
may find that it has a 20 byte string to pass back tadlier. To enable it to achieve

this, the ORB will need taoleallocate the area pointed to by the address it received, re-
allocate a larger area, then place the larger value intoetvéarger storage area. This

new adiress will then be passed back to tiader.

For all variable length structures, unions, and strings that chapge irsize:

1. Initially, the caller must dynamically allocate storage using the CORBA-alloc
function andinitialize it directly oruse an appropriate accessor function that will
dynamically allocate storage (CBR-xxx-set, wherexxx is the type beinget up).

2. The pointer to thénout parameter is passed.

3. When thecall has completed and the user has finished with the returned parameter
value, the caller is responsible for deallocating the storage. Tanis by making
a call to the “CORBA-free” ORB function with the current address in the
POINTER.

out and return parameters

Bounded

The caller willinitially pass the parameter area into whichadbe (or return) value is
to be placed upon return.

Unbounded
For all sequences and variable length structures, unions, éngsst

1. The caller passesROINTER.

2. The ORB will allocate storage for the data type out or return value being returned
and then place its address into the pointer.

3. The caller is responsible for releasing the returned stavhga it is ndonger
required by using a call to the “CORBA-free” ORB function to deallocate it.

CORBAV2.2 Argume@bnventions February 1998 22-21

22

22.16.3 Summary of Argument/Resuas$ing

Thefollowing table is used to illustrate the parameter passing conventsausforin,
inout, out, andreturn parameters. Following the table is a key that explains the
clauses used within the table.

Table 22-2Parameter Passing Conventions

Data Type in parameter inout parameter | out parameter Return result
short <type> <type> <type> <type>
long <type> <type> <type> <type>
long long <type> <type> <type> <type>
unsigned short <type> <type> <type> <type>
unsigned long <type> <type> <type> <type>
unsigned long long <type> <type> <type> <type>
float <type> <type> <type> <type>
double <type> <type> <type> <type>
long double <type> <type> <type> <type>
boolean <type> <type> <type> <type>
char <type> <type> <type> <type>
wchar <type> <type> <type> <type>
octet <type> <type> <type> <type>
enum <type> <type> <type> <type>
fixed <type> <type> <type> <type>
object <type> <type> <type> <type>
struct (fixed) <type> <type> <type> <type>
struct (variable) <type> ptr ptr ptr
union (fixed) <type> <type> <type> <type>
union (variable) <type> ptr ptr ptr
string (bounded) | <text> <text> <text> <text>
string (unbounded) <string> <string> <string> <string>
wstring (bounded) | <wtext> <wtext> <wtext> <wtext>
wstring <wstring> <wstring> <wstring> <wstring>
(unbounded)

sequence <type> ptr ptr ptr

22-22 CORBAV2.2 February 1998

22

Table 22-2Parameter Passing Conventions

array (fixed) <type> <type> <type> <type>
array (variable) <type> ptr ptr ptr
any <type> ptr ptr ptr
Table Key:
Key Description
<type> Parameter is passed BY REFERENCE
ptr Pointer to parameter is passed BY REFERENCE
Forinout, the pointer must be initialized prior to the call to point
to the data type.
For out andreturn, the pointer does not have to ibéialized
before the call and will be passed into the call unintialized. The
ORB will then initialize the pointer before control is returned|to
the caller.
<text> Fixed length COBOL text (natull terminated)
<string> Pointer to a variable length NULlerminated string
<wtext> COBOL wtext (not null terminated)
<wstring> Pointer to a variable length NULilerminatedwstring

22.17 Memory Management

22.17.1 Summary of Parameter Storage Responsibilities

The followingtable is used to illustrate the storage responsdsliforin, inout, out,
andreturn parameters. Following the table ikey that explains thaumerics used
within the table.

Table 22-3Parameter Storage Responsibilities

Data Type in parameter inout parameter out parameter Return result
short 1 1 1 1
long 1 1 1 1
long long 1 1 1 1
unsigned short 1 1 1 1
unsigned long 1 1 1 1

CORBA V2.2 Memory Management February 1998 22-23

22

22-24

Table 22-3Parameter Storage Responsibilities

unsigned long long | 1 1 1 1
float 1 1 1 1
double 1 1 1 1
long double 1 1 1 1
boolean 1 1 1 1
char 1 1 1 1
wchar 1 1 1 1
octet 1 1 1 1
enum 1 1 1 1
fixed 1 1 1 1
object 2 2 2 2
struct (fixed) 1 1 1 1
struct (variable) 1 3 3 3
union (fixed) 1 1 1 1
union (variable) 1 3 3 3
string (bounded) 1 1 1 1
string (unbounded) | 1 3 3 3
wstring (bounded) 1 1 1 1
wstring (unbounded)| 1 3 3 3
sequence 1 3 3 3
array (fixed) 1 1 1 1
array (variable) 1 3 3 3
any 1 3 3 3
Table Key:
Case Description
1 Caller may choose to define data type in WORKING STORAGE or

dynamically allocate it.

Forinout parametes, thecaller provides the initial value artde callee
may change that valu@ut not the size of the storage aresd to hold
the value).

For out andreturn parameters, the caller does not have to initidtize
only provide the storage required. The callee sets the actual value

CORBAV2.2 February 1998

22

2 Caller defines CORBA-Object in WORKING STORAGE or within
dynamic storage.

For inout parameters, the caller passes an initial value. If the ORB
wants to reassign the parameter, it will first call “CORBA-Object-

release” on the original input value. To continue to use the original
object reference passed in as an inout, the caller must first duplicate the
object reference by calling “CORBA-Object-duplicate.”

The client is responsible for the release of ALL specific out and return
object referenes. Rebase of all object references embedded in other|out
and return structures is performed automatically as a result of calling
“CORBA-free.” Toexplicitly release a specific object reference that jis
not contained within some other structure, the user should use an
explicit call to “CORBA-Object-release.”

3 Forinout parameters, the caller provides a POINTER that points tg
dynamically allocated storage. The storage is dynamically allocated by a
call to “CORBA-alloc.”

=

The ORB may deallocate the storage and reallocate a larger/smalle
storage area, then return that to the caller.

For out andreturn parameters, the caller provides an unitialized
pointer. The ORB will return the address of dynamically allocated
storage containing the out or return value within the pointer.

In all cases, the ORB is not allowed to return a null poirtkso, the
caller is always responsible for releasing storage. This is done by using
a call to “CORBA-free.”

22.18 Handling Exceptions

On everycall to an interfac@peration there are implicit parametaieng with the
explicit parameters specified by the user. For further details, refer to “Argument
Conventions” on page 22-19. One of ihglicit parameters is theCORBA-
Environment” parameter which isised to pass back @ption information to the
caller.

22.18.1 Passingxceptiondetails back to the caller

The CORBA-Environment type is partiallyopaque. The COBOL declaration will
contain at least the following:

01 CORBA-exception-type is typedef type CORBA-enum.
88 CORBA-no-exception value 0.
88 CORBA-user-exception value 1.
88 CORBA-system-exception value 2.

01 CORBA-Environment is typedef.

CORBA V2.2 Handling Exceptions February 1998 22-25

22

22-26

03 major type CORBA-exception-type.

When a user has return&édm a call to an object, theajor field within thecall’s
environment parameter will have been set to indicate whether the call completed
successfully or not. It will be set to one of the valid typesmittedwithin the field
CORBA-no-exception CORBA-user-exception, or CORBA-system-exception|f

the value is one of thlasttwo, then any exceptioparameters signalled by the object
can be accessed.

22.18.2 Exception Handling Functions

The following functions are defined for handling exception information within- flteeC ORBA-
Environment structure:

CORBA-exception-set

CORBA-exception-setallows a method implementation to raise an excepfitre.
a-CORBA-environment parameter is the environment parameter passed into the
method. Thecaller must supply a value for the extion-type parameter.

* COBOL
call “CORBA-exception-set” using
a-CORBA-Environment-
a-CORBA-exception-type-
a-CORBA-repos-id-string
a-param

The value of thexxeption-type parameter constrains the othearpaters in the call as follows:

® |f the parameter has the val@®RBA-NO-EXCEPTION, this is a normal
outcome to the operation. In this case, b@hos-id-string andparam must be
NULL. Note that it isnotnecessary to invokE ORBA-exception-setto indicate
a normal outcome,; it is the default behavior if the method simply returns.

® For any other valudt specifies either a user-defined or system exception. The
repos_id parameter is the repository ID representing the exception type. If the
exception is declared to have members,ghgam parameter must be the

exception group item containing the parameters according to the COBOL language

mapping. If the exception takes no parametpegam must be NULL.

If the CORBA-Environment argument tdCORBA-exception-setalready has an
exception set in it, that exception is properly freed before the new exception infor-
mation is set.

CORBAV2.2 February 1998

22

CORBA-exception-id

CORBA-exception-id returns a pointer to the character string identifying the
exception. Theharacter string contains the repository ID thoe exception. If invoked
on anenvironment that identifies a non-exception, a NULL pointer is returned. Note
that ownership of the returned pointer does not transfer to the ¢afitgd, the

pointer remains valid uniCORBA-exception-free()is called.

call “CORBA-exception-id” using
a-CORBA-environment
a-pointer

CORBA-exception-value

CORBA-exception-valuereturns a pointer to the structure corresponding to this
exception. If invoked on aenvironment which identifies a non-exception, a NULL
pointer is returned. Note that ownership of the returned pointer does not transfer to the
caller; instead, the pointer remains valid uGBI@RBA-exception-free()is called.

call “CORBA-exception-value” using
a-CORBA-environment
a-pointer

CORBA-exception-free

CORBA-exception-free returns any storage thatas alocated in the construction of
the environment exception. It is permissible to invoke this regardless of the value of
the IDL-major field.

call “CORBA-exception-free” using
a-CORBA-environment

CORBA-exception-as-any

CORBA-exception-as-any()returns a pointer to @ORBA-any containing the
exception. Thisallows a COBOL application to deal with exceptions for whichais
no static (compile-time) information. Ifwoked on a&CORBA-Environment which
identifies a non-exception, a null pointer is returned. Note that ownership of the
returned pointer does not transfer to the caltestead, the pointer remains valichtil
CORBA-exception-free() is called.

call “CORBA-exception-as-any” using
a-CORBA-environment
a-CORBA-any-rtn

22.18.3 Example of how to handle the CORBkception parameter

The followingexample is a segment of a COBOL application that illustrates how the
Environment functions described above may be used within a COBOL context
application to handle an exception.

CORBA V2.2 Handling Exceptions February 1998 22-27

22

For the following IDL dehition:

interface Mylnterface {
exception examplel{long reason, ...};
exception example2(...);

void MyOperation(long ar gumentl)
raises(examplel, example2, ...);

}
The following would be gnerated:
01 Myinterface is typedef type CORBA-Obiject.
01 Mylinterface-examplel is typedef.
03 reason type CORBA-long
>>CONSTANT ex-examplel is “<unique examplel identifier>*.
01 Mylinterface-example2 is typedef.
>>CONSTANT ex-example2 is “<unique example2 identifier>".

The following code checks for exceptions and handles them.

WORKING-STORAGE SECTION.

01 MyInterface-Object type Mylnterface

0l ev type CORBA-environment.
01 argumentl type CORBA-long

01 ws-exception-ptr POINTER.

01 ws-examplel-ptr POINTER.

LINKAGE SECTION.
01 Is-exception type CORBA-exception-id.
01 Is-examplel type Mylinterface-examplel.

PROCEDURE DIVISION.

call MylInterface-MyOperation” using
Mylnterface-Object
argumentl
ev
evaluate major in ev
when CORBA-NO-EXCEPTION
continue

when CORBA-USER-EXCEPTION

call "CORBA-exception-id" using ev
ws-exception-ptr

22-28 CORBAV2.2 February 1998

22

set address of Is-exception
to ws-exception-ptr
evaluate Is-exception
when ex-examplel
call "CORBA-exception-value" using ev
ws-examplel-ptr
set address of Is-examplel
to ws-examplel-ptr
display "xxxx call failed : "
"examplel exception raised - "
"reason code ="
reason IN Is-examplel

when ex-example2

end-evaluate
call "CORBA-exception-free" using ev

when CORBA-SYSTEM-EXCEPTION
call "CORBA-exception-free" using ev

end-evaluate
call "CORBA-exception-free" using ev

22.19 Pseudo Objects

Within the CORBA specification are several interfaces thapaeaido-objects. The
differences between a real CORBAjectand a pseudo object are as follows:

® There are no servers associated with pseudo objects.
®* They are not registered with an ORB.

* References to pseudo-objects are not necessality across computational
boundaries.

Pseudo Objects are used by the programmer as if they were ordinary CORBA objects.
Because of this, some implentations may choose to implement some of them as real
CORBA objects.

22.19.1 Mapping Pseudo Objects to COBOL

Pseudo-objects are mapped from the pseudo-IDL according to the rules specified in the
preceding sections of this specification. There are no exceptions to these general
mapping rules.

CORBA V2.2 Pseudo Objects February 1998 22-29

22

22.19.2 Pseudo-Object mappiergample

This section contains a brief example of the mappingsefudo-IDL to COBOL.

The following pseudo IDL:
module CORBA {

pseudo interface ORB

{
string object_to_string(
in Object obj
)i

}
would be mapped to COBOL, as follows:

CORBA-ORB-object-to-string (used to translate an object refere into a string)

call “CORBA-ORB-object-to-string” using
a-CORBA-ORB
a-CORBA-Object
a-CORBA-Environment
a-CORBA-string

22.20 Mapping for Object Implementations

This section describes the details of the OMG&-D-COBOL language mapping that

apply spedically to the Portable Object Adaptesuch ashow the impémentation
methods are connected to the skeleton.

22.20.1 Operation-specific Details

This chapter definemost of the details of binding methods to skeletons, naming of

parameter types, and parameter passing conventionerd@lignfor those parameters

that are operation-specific, the method implementing the operation appears to receive

the same values that would be passed to the stubs.

22.20.2 PortableServer Functions

Objects registered with POAs use sequences of octet, specifically the
PortableServer::POA::Objectld type, as object identifiers. However, because

COBOL programmers will often want to use strings as object identifiers, the COBOL

mapping provides several conversion functions that costengs toObjectld and
vice-versa:

22-30 CORBAV2.2 February 1998

22

* COBOL
call “PortableServer-Objectld-to-str” using
a-PortableServer-Objectld
a-CORBA-Environment
a-CORBA-string-rtn

call "PortableServer-Objectld-to-wst” using
a-PortableServer-Objectld
a-CORBA-Environment
a-CORBA-wstring-rtn

call “PortableServer-str-to-Objectld” using
a-CORBA-string
a-CORBA-Environment
a-PortableServer-Objectld-rtn

call "PortableServer-wst-to-Objectld” using
a-CORBA-wstring
a-CORBA-Environment
a-PortableServer-Objectld-rtn

These functions follow the normal COBOL mapping rules foapeter passingnd memory
management. If conversion of @bjectld to a string wouldesult in illegal charders in the
string (such as a NUL), the first two fuins raise th€ ORBA_BAD_PARAM exception.

22.20.3 Mapping for PortableSexk:ServantLocator::Cookie

SincePortableServer::ServantLocator::Cookie is an IDLnative type,its type must
be specified by each language mapping. In COBQhgkie maps topointer

* COBOL
01 Cookie is typedef usage POINTER
For the COBOL mapping of the
PortableServer::ServantLocator::preinvoke() and postinvoke()
operations, the Cookie parameter is used as defined
above.ServLoc-preinvoke” using
a-PortableServer-Objectld
a-PortableServer-POA
a-CORBA-Identifier
a-Cookie

call “PortableSrv-ServLoc-postinvoke” using
a-PortableServer-Objectld
a-PortableServer-POA
a-CORBA-Identifier

CORBA V2.2 Pseudo Objects February 1998 22-31

22

22-32

a-Cookie
a-PortableServer-Servant

22.20.4 Servant Mapping

A servant is a language-specific entity that can incarnate a CORBA object. In COBOL,
a servant is composed of a data structure that holds the state of the object along with a
collection of method functions that manipulate that state in order to implement the
CORBA object.

The PortableServer::Servanttype maps into COBOL as follows:

* COBOL
01 PortableServer-Servant is typedef usage pointer

Associated with a servant is a table of pointers to methoctitins. This table igalled
anentry point vectqgror EPV. The EPV has the same name as the servant type with
“ __epv” appended (note the double underscore). The EPRdidableServer-Servant

is defined as follows:

* COBOL
01 PortableServer-ServantBase-epv is typedef.
03 private usage pointer.
03 finalize usage procedure-pointer.
03 default-POA usage procedure-pointer.

* The signatures for the functions are as follows
call “finalize” using
a-PortableServer-Servant
a-CORBA-Environment

call “default-POA” using
a-PortableServer-Servant
a-CORBA-Environment
a-PortableServer-POA

The PortableServer-ServantBase-epvprivate” member, which is paque to
applications, is provided tallow ORB implemerdtions to associate data with each
ServantBaseEPV. Since it is expected that EPVs will be shared anmonigple

servants, this member is not suitable for per-servant data. The second member is a
pointer to the finalization functiofor the servant, which is invoked when the servant is
etherial-ized.The other function pointers correspond to the ussrvant operatins.

The actualPortableServer-ServantBasestructure combines an EPV with per-servant
data, as shown below:

* COBOL

* (vepv is a pointer to the epv)
01 PortableServer-ServantBase-vepv is typedef pointer.

CORBAV2.2 February 1998

22

01 PortableServer-ServantBase is typedef.
03 privateusage pointer.
03 vepv type PortableServer-ServantBase-vepv.

The irst member is @ointer that points to data specific to each ORB implementation.
This memberwhich allows ORB irplementations to keep per-servant dataypaque

to applications. The second member is a pointer to a pointePtotableServer-
ServantBase-epyv The reasoffor the double level of indirection is that servants for
derived classes contamultiple EPV pointerspne for each base interface as well as
one for the interface itself. (This ismained further in thee next section). Tir@me of
the second membétvepy,” is standardized to allow portable access through it.

22.20.5 Interface Skeletons

All COBOL skeletons for IDL interfaces have essentially the same structure as
ServantBase, with the exception that the second member has a type that allows acces:
to all EPVs for the servant, including those for base interfaces as well as foosie
derived interface.

For example, consider tHellowing IDL interface:

/I DL
interface Counter {
long add(in long v al);

|

The servant skeleton generated by the IDL compiler for this interface appears as
follows (thetype of the second member is defined further below):

* COBOL
01 POA-Counter is typedef.
03 private usage pointer.
03 vepv type POA-Counter-vepv.

As with PortableServer-ServantBasethe name of the second member is standardized
to "vepv"for portablity.

The EPV geprated for the skeleton is a bit more interestiay. theCounter interface
defined above, it appears fadlows:

* COBOL
01 POA-Counter-epv is typedef.
03 private usage pointer.
03 add usage procedure-pointer.

Sinceall servants are effectively deed fromPortableServer-ServantBasethe
complete set of entry points has to include EPVs for PatttableServer-
ServantBaseand forCounter itself:

CORBA V2.2 Pseudo Objects February 1998 22-33

22

* COBOL

01 POA-Counter-vepv is typedef.
03 base-epv usage pointer.
03 Counter-epvusage pointer.

The frst member of thPOA-Counter-vepv struct is a pointer to theortableServer-
ServantBaseEPV. To ensure ptability of initializationand access code, this member
is always named "base_epv."niust always be ther§t memberThe second ember

is a pointer to @20A-Counter-epV.

The pointers to PVs inthe VEPV structure are in the order that the IDL interfaces
appear in a top-to-bottomeft-to-right traversal of the inheritance hierarchy of the
most-deived interface. Théase of this hierarchy, as far as servants are concerned, is
alwaysPortableServer-ServantBaseFor example, consider the following

complicated integce hierarchy:

/I DL
interface A {};
interface B : A {};
interface C : B {};
interface D : B {};
interface E : B, C {};
interface F {};
interface G : E, F {
void foo();

ki

The VEPV strature for interfaceG shall be generated as follows:

* COBOL
01 POA-G-epv is typedef.
03 private usage pointer.
03 foo usage procedure-pointer.

01 POA-G-vepv is typedef.
03 base-epv usage pointer.

03 A-epv usage pointer.
03 B-epv usage pointer.
03 C-epv usage pointer.
03 D-epv usage pointer.
03 E-epv usage pointer.
03 F-epv usage pointer.
03 G-epv usage pointer.

Note that each member other than the "base-epv" member is nhamed by appending "-
epv" to theinterface name whose EPV the member points to. These names are
standarized to allow for portable access to thesmas.

22-34 CORBAV2.2 February 1998

22

22.20.6 Servant Structure Initialization

Eachservant requiremitialization and etherialization, oirfalization, functionsFor
PortableServer-ServantBasethe ORB implementation shall provide the following
functions:

* COBOL
call “PortableServer-ServantBaselnit” using
PortableServer-Servant
CORBA-Environment

call “PortableServer-ServantBaseFini” using
PortableServer-Servant
CORBA-Environment

These functions are named by appendimi" and "Fini" to the name of the servant,
respectively.

The firstargument to the init function shall be a véldrtableServer-Servantwhose
"vepv" member has already been initialized to point to a VEPV structime init
function shall perform ORB-specifioitialization of thePortable Server-

ServantBase and shalinitialize the "finalize" struct member of the pointed-to
PortableServer-ServantBase-epvo point to thePortableServer-ServantBaseFini()
function if the "finalize" member is NULL. If the "finalize" member is not NULL, it is
presumed that it has already been corrdoiljalized by the application, and fhus

not modified. Similarly, if the thelefault-POA member of thePortableServer-
ServantBase-epstructure is NULL when the init function is called, its value is set to
point to the-default-POA- function, which returns an object reference to the root
POA.

If a servant pointed to by tHeortable Server-Servantpassed to an init function has a
NULL "vepv" member, or if théortableServer-Servantargument itself is NULL, no
initialization of the servant is performednd theCORBA::BAD_PARAM standard
exception is raised via tH@ORBA-Environment parameter. This also applies to
interface-specific init functions, which are described below.

The Fini function only cleans up OR&pecific private data. It is the default
finalization function for servants. ttoes not make any assumptions about where the
servant is allocated, such as assuming that the servant is heap-alfowateying to

call CORBA-free on it. Applications are allowed to "override" the fini function for a
given servant by itializing the PortableServer-ServantBase-epvfinalize" pointer

with a pointer to dinalization function made spediflly for that servanthowever,

any such overriding functiomust always ensure that tRertableServer-
ServantBaseFinifunction is invoked for that servant as part of its implementation. The
results of a finalization function failing tmvoke PortableServer-ServantBaseFini
areimplementation-specifidgut may include memory leaks or faults that could crash
the application.

CORBA V2.2 Pseudo Objects February 1998 22-35

22

22-36

If a servant passed to a finirfationhas a NULL "epv'member, or if the
PortableServer-Servantargument itself is NULL, no finalization of the servant is
performed, and th€EORBA::BAD_PARAM standard exception is raised via the
CORBA-Environment parameter. This also applies to interface-specific fini functions,
which are described below.

Normally, thePortableServer-ServantBaselniandPortableServer-ServantBaseFini
functions are not invoked mictly by applications, but rather by interface-specific
initialization and finalization functions generated by an IDL compiler. For example, the
init and fini functionsgenerated for th€ounter skeleton are defined dsllows:

* COBOL
IDENTIFICATION DIVISION.
PROGRAM ID. POA-Counter-init.

PROCEDURE DIVISION USING
a-POA-Counter
a-CORBA-environment

*

* first call immediate base interface init
* functions in the left-to-right order of

* inheritance
*

call “PortableServer-ServantBaselnit” using
a-POA-Counter
a-CORBA-environment

*

* now perform POA_Counter initialization
*

END-PROGRAM.

IDENTIFICATION DIVISION.
PROGRAM ID. POA-Counter-fini.

PROCEDURE DIVISION USING
a-POA-Counter
a-CORBA-environment

*

* first perform POA_Counter cleanup
*

*

* then call immediate base interface fini
* functions in the right-to-left order of
* inheritance

CORBAV2.2 February 1998

22

call “PortableServer-ServantBaseFini” using
a-POA-Counter
a-CORBA-environment
END-PROGRAM.

The address of servant shall be passed to the init function before the servant is
allowed to be actated or registered with the POA in any way. The results of failing to
properlyinitialize a servant via the appropriate init functioefore registering it or
allowing it to be activated are implementation-specific, but could include memory
access violations that could crash the application.

22.20.7 Application Servants

It is expected that applications will create their own servant structures so thatathey
addtheir own servant-specific data members to store object state. FGother
exampleshown above, aapplication servant would probably have a data member used
to store the counter value:

* COBOL

01 AppServant is typedef.
03 base type PAO-Counter.
03 value type CORBA-long.

The application might contain the following implementation
of the Counter::add operation:

* COBOL
IDENTIFICATION DIVISION.
PROGRAM ID. app-servant-add.

LINKAGE SECTION.
01 a-AppServant type AppServant.

PROCEDURE DIVISION USING

a-AppServant

a-CORBA-long

a-CORBA-env

a-CORBA-long-rtn

add a-CORBA-long to value in a-AppServant
move value in a-AppServant to a-CORBA-long-rtn
exit program

The application could irtialize the servant dynaitelly as follows:

* COBOL

WORKING-STORAGE SECTION.

01 base-epv type PortableServer-ServantBase-epv.
01 counter-epv type POA-Counter-epv.

CORBA V2.2 Pseudo Objects February 1998 22-37

22

01 counter-vepv type POA-Counter-vepv.
01 my-base type POA-Counter.
01 my-servant type AppServant.

* |nitialize Base-epv
set private in base-epv to NULL
set finalize in base-epvto NULL
set default-POA in base-epv
to ENTRY “my-default-POA”

* |nitialize counter-epv
set private in counter-epvto NULL
set add in counter-epv
to ENTRY “app-servant-add”

* |nitialize counter-vepv
set base-epv in counter-vepv
to address of base-epv
set counter-epv in counter-vepv
to address of counter-epv

* |nitialize my-base
set private in my-baseto NULL
set vepv in my-base
to address of counter-vepv

* |nitialize my-servant
set base in my-servant
to address of my-base
set value in my-servantto 0

Before registering or activating this servant, the application shall call:

* COBOL
call “POA-Counter-init” using
my-servant
a-CORBA-environment

If the application requires a special destruction functiomfgsservant, it shall set the
value of thePortableServer-ServantBase-epvfinalize" member either before or after
calling POA-Counter-init() :

* COBOL
set finalize in base-epv
to ENTRY “my-finalizer-func”

Note that if the application statically initializete "finalize" member beforealling
the servantnitialization function, explicit assignment to the "finalize” member as
shown lere is not necessary, since fartableServer-ServantBaselnit(Jfunction will
not modify it if it is non-NULL.

22-38 CORBAV2.2 February 1998

22

22.20.8 Method Signatures

With the POA, implementation methods have signatures that are identical to the stubs
except for thdirst agument. If thefollowing interface is defined in OMG IDL:

/I IDL
interface example4 {

long op5(in long arg6);
|3

a COBOL program for thep5 operation mushave the following signature:

* COBOL
IDENTIFICATION DIVISION.
PROGRAM ID. op5.

PROCEDURE DIVISION USING
servant
arg6b
env
rtn

The Servant parameter (which is an instance of PortableServer-Servant) is the servant
incarnating the CORBA object on which the request waskied. The method can

obtain the object reference for the target CORBA object by usin@@#eCurrent

object. Theenv parameter is used foaisingexceptions. Note that the names of the
servantandenv parameters are standardized to allow the bodies of method functions
to refer to them portably.

The nethodterminatessuccessfully by executing &XIT PROGRAM statement
after setting the declared operation return value. Prior to returning the result of a
successful invocation, the method cadast assign legal values to alit andinout
parameters.

The nethodterminates vth an error by executing tHeORBA -exception-set
operation (described in 5.17.2 Exception Handling Functiorie) o executing an
EXIT PROGRAM statement. When raising an exception, the method code is not
required to assign legal values to aut or inout parameters. Due to restrictions in
COBOL, it must return a legal function value.

22.21 Mapping of the Dynamic Skeleton Interface to COBOL

Refer to the Dypamic Skeleton Interface chaptéar general information about the
Dynamic Skeleton Interface (DSI) and its mapping to programming languages.

The followingsection covers these topics:
®* Mapping the ServerRequest Pseudgedt to COBOL
®* Mapping the Dynami¢mplementationRoutine to COBOL

CORBA V2.2 Mapping ofthe Dynamic Skeleton Interface to COBOL February223®

22

22.21.1 Mapping of the ServerRequesCtOBOL

The pseudo IDLfor the Dynamic Skeleton Interface’s Servetest is afollows:

module CORBA {
interface ServerRequest {
Identifier operation();
Context ctx();
void arguments(inout NVList parms);
Any set result(any value);
void set exception(
exception_type major,
any value
);
}
}

The above ServerRequest pseudo IDimepped to COBOL, afllows.

operation

This function returns the name of the operation being performeshoaen inthe
operation’s OMG IDL specification.

call “"CORBA-ServerRequest-operation” using
a-CORBA-ServerRequest
a-CORBA-Environment
m a-CORBA-Identifier

CtXx

This function may be used to determine any context values passed as part of the
operation. Context will only be available to the extent defined in the operation’s OMG
IDL definition (for example, attribute operations have none).

call “CORBA-ServerRequest-ctx” using
a-CORBA-ServerRequest
a-CORBA-Environment
m a-CORBA-Context

arguments

This function is used to retrieve parameters from the ServerReana$o find the
addresses used to pass pointers to result values to the ORB. It must always be called by
each Dynamic Implementation Routifl2IR), even wherthere are no parameters.

The caller passes ownership of the parameter’s NVList to the ORB. Before this routine
is called, that NVList should hiaitialized with the T/peCodes andirection flags for
each of the parameters to the operation being implemented: in, out, and inout

22-40 CORBAV2.2 February 1998

22

parameters inclugé. When thecall returns, the parameter’s NVList is still usable by
the DIR and all in and inoygarameters will have been unmarshaled. Pointers to those
parameter values will at that point also be accessible through the parameter’'s NVList.

The mplementation routine will then process the call, producing any result values. If
the DIR does not have to report an exceptiowjlitreplace pointers to inout values in
parameters with the values to be returreatj assign parameters to out values in that
NVList appropriately as well. When the DIR returadl,the parameter memory is

freed as appropriate and the NVLiself is feed by the ORB.

call “CORBA-ServerRequest-argumentsparams” using
a-CORBA-ServerRequest
a-CORBA-NVList
a-CORBA-Environment

set-result

This function is used toeport any result value for an emtion. If the operation has no
result, it must either be called with a tk-voigpECodestored invalue, or not be
called at all.

call “CORBA-ServerRequest-set-result” using
a-CORBA-ServerRequest
a-CORBA-Any
a-CORBA-Environment

set-exception
This function is used to report exceptions, both user and system, to the client who
made the original invocation.

call “CORBA-ServerRequest-set-exception” using
a-CORBA-ServerRequest
a-CORBA-exception-type
a-CORBA-any
a-CORBA-Environment

The parameters are as follows:
®* The exception-type indicates whether it is a USER or aTEXS exception.

®* The CORBA-any is the value of the exception (including the exceptipeQgle).

22.21.2 Mapping of Dynamic Implementation Routine to COBOL

A COBOL Dynamic Implementation Routine will be as follows:
PROCEDURE DIVISION USING

a-PortableServer-Servant
a-CORBA-ServerRequest

CORBA V2.2 Mapping ofthe Dynamic Skeleton Interface to COBOL February2®98

22

22-42

Such afunction will be irvoked by the Portable lffect Adapter when an irocation is
receved on an object reference whosgplementation has registered a dynamic
skeleton.

servantis the COBOL implementation object incarnating the CORBA objecthictw
the invocation is directed.

requestis the ServerRequest used to access @kplarametersand report results (and
exceptions).

Unlike other COBOL object implementations, the DIR does not receiV®RBA-
Environment parameterand so theCORBA-exception-setAPI is not used. Instead,
CORBA-ServerRequest-set-exceptioris used; this provides the ggCodefor the
exception to the ORB, so it does not need to consult the Interface Repository (or rely
on compiled stubs) to marshal the exception value.

To register a Dynamic Implementation Routine with a POA, the proper EPV structure
and servaninust first be created. DSI servants are expected to supply EPWetfor
PortableServer-ServantBaseand forPortableServer-Dynamicimpl, which is
conceptuallyderived from PortableServer-ServantBasgas shown below.

* COBOL

01 PortableServer-Dynamiclmpl-epv is typedef.
03 privateusage pointer.
03 invoketype PortableServer-DynamicimplRoutine.
03 primary-interface usage procedure-pointer.

* (Primary-interface signature is as follows ...)
call “primary-interface” using
a-PortableServer-Servant
a-PortableServer-Obijectld
a-PortableServer-POA
a-CORBA-Environment
a-CORBA-Repositoryld-rtn

01 PortableServer-Dynamiclmpl-vepv is typedef.
03 base_epv usage pointer
03 PortableServer-Dynamiclmpl-epvusage pointer.

01 PortableServer-Dynamiclmpl is typedef.
03 private usage pointer.
03 vepv usage pointer.

As for other servantsnitialization and finalizatiorfunctions forPortableServer-
Dynamiclmpl are also provided, and must be&dked as described in “Servant
Structurelnitialization” in

section 5.9.6. REV???

CORBAV2.2 February 1998

22

To properly initialize the EPVs, the application must provide implementations of the
invoke and theprimary-interface functions required by thBortableServer-
Dynamiclmpl EPV. Theinvoke method, which is the DIRgceives requests issued to
any CORBA object it represents apdrforms the processing necessary to execute the
request.

The primary-interface method receives aB®bjectld value and a POA as input
parameterand returns a valid Interface Repository Id representingnibst-denved
interface for thabid.

It is expected that these methods will be only invoked by A, Ffn the context of
serving a CORBA request. Invoking these methods in other circumstances may lead to
unpredictable results.

An example of a DSI-based servansiownbelow:

* COBOL
IDENTIFICATION DIVISION.
PROGRAM ID. my-invoke.

PROCEDURE DIVISION USING
a-PortableServer-Servant
a-CORBA-ServerRequest

END-PROGRAM.

IDENTIFICATION DIVISION.
PROGRAM ID. my-prim-intf.

PROCEDURE DIVISION USING
a-PortableServer-Servant
a-PortableServer-Objectld
a-PortableServer-POA
a-CORBA-Environment
a-CORBA-Repositoryld-rtn

END-PROGRAM.
[* Application-specific DSI servant type */
01 MyDSIServant is typedef.

03 base type POA-Dynamiclmpl.

<other application specific data items>

01 base-epv type PortableServer-
ServantBase-epv.
01 Dynamiclmpl-epv type PortableServer-

Dynamiclmpl-epv.

CORBA V2.2 Mapping ofthe Dynamic Skeleton Interface to COBOL February 2298

22

01 Dynamiclmpl-vepv type PortableServer-
Dynamiclmpl-vepv.
01 my-servant type MyDSIServant.

* |nitialize Base-epv
set private in base-epv to NULL.
set finalize in base-epvto NULL.
set default-POA in base-epvto NULL.

* |nitialize Dynamiclmpl-epv
set private in Dynamiclmpl-epvto NULL.
set invoke in Dynamiclmpl-epv
to ENTRY “my-invoke”.
set primary-interface in Dynamiclmpl-epv
to ENTRY “my-prim-intf”.

* |nitialize Dynamiclmpl-vepv
set base-epv in Dynamiclmpl-vepv
to address of base-epv.
set PortableServer-Dynamiclmpl-epv in
Dynamiclmpl-vepv
to address of Dynamiclmpl-
epv.

* |nitialize my-servant
set private IN base IN my-servantto NULL.
setvepv IN base IN my-servant.
to address of Dynamiclmpl-
vepv.

Registration of theny-servant data structure via thBortableServer-POA-set-
servant function on asuitably initialized POAmakes themy-invoke DIR function
available to handle DSI requests.

22.22 ORB Initializatio®Operations

22.22.1 ORB Inialization

Thefollowing PIDL specifies initializabn operations for an ORB; this PIDL is part of
the CORBA module (not the ORB interface) and is describecatié 7.4, “ORB
Initialization,” on page 7-6.

/I PIDL
module CORBA {
typedef string ORBId;
typedef sequence <string> arg_list;

22-44 CORBAV2.2 February 1998

22

ORB ORB _init (inout arg_| ist argv, in ORBId orb_identi fier);
|3

The mapping of the precedi®jDL operaibns to COBOL is as follows:

* COBOL
01 CORBA-ORBId is typedef type CORBA-string.

01 CORBA-arg-list-t is typedef type CORBA-string.

01 CORBA-arg-list is typedef.
03 seg-maximumtype CORBA-long.
03 seg-length type CORBA-long.
03 seq-buffer usage POINTER.
[to CORBA-arg-list-t]

call “CORBA-ORB-init” using
a-CORBA-arg-list
a-CORBA-ORBiId
a-CORBA-environment
a-CORBA-ORB

If an empty ORBId string is used thang-list arguments can hesed to determine

which ORB should be returned. This is achieved by searching the parameter sequence
for one tagged ORBIid (e.g., -ORBid "ORBid_example”). If an empty ORRidg is

used and no ORB is indicated by they-list parameters, the default ORB is returned.

Regardless of whether an empty or non-empty ORBidg ispassed t@®RB _init,
theargv arguments are examined to determinany ORB @mrameters are given. If a
non-empty ORBId string is passed@®&®B_init, all -ORBid parameters in thergv are
ignored. All other -ORB<suffix> parameters may be of significance during the ORB
initialization process.

22.23 Operations for Obtaining limal Object References

The following PIDL spedies the operations (in the ORB interface) that allow
applications to get pseudo object references for the Interface Repository and Object
Services. It is described irethil in Sedbn 7.6, “Obtaining Initial Object References,”
on page 7-10.

CORBA V2.2 Operations for Obtaining Initial Object References February 19982-45

22

/I PIDL
module CORBA {
interface ORB {
typedef str ing Objectld;
typedef sequence < Objectld> ObjectldList;
exception InvalidName {};
ObjectldList list_initial_services ();
Object resolve_initial_references (in Objectld identif ier)
raises (InvalidName);
b

b
The mapping of the precedi®DL to COBOL is as follows :

* COBOL
01 CORBA-ORB-Objectld is typedef
type CORBA-string.

01 CORBA-ORB-ObjectldList-t is typedef
type CORBA-string.

01 CORBA-ORB-ObjectldList is typedef.
03 seg-maximumtype CORBA-long.
03 seg-length type CORBA-long.
03 seg-buffer usage POINTER.
[to CORBA-ORB-ObjectldList-t]

01 CORBA-ORB-InvalidName is typedef.
03 fillerimplementation defined]

call “CORBA-ORB-list-initial-service” using
a-CORBA-ORB
a-CORBA-environment
a-CORBA-ORB-ObjectldList-rtn

call “CORBA-ORB-resolve-initial-refe” using
a-CORBA-ORB
a-CORBA-ORB-Objectld

a-CORBA-environment
a-CORBA-Object-rtn

22.24 ORB Supplied Functions for Mapping
22.24.1 Memory Management routines
CORBA-alloc

The ORB spplied CORBA -alloc routine may be used to dynamically allocate storage
for any of the COBOL data types.

22-46 CORBAV2.2 February 1998

22

call “CORBA-alloc” using
CORBA-unsigned-long

m POINTER
CORBA-unsigned-long Specifies the number of bytes of storage to be
allocated.
POINTER Returns address of allocated storage.
CORBA-free

The ORB supplie ORBA-free routine may be used to free storage that has
previously been dynamically allocated by either the user or the ORB.

call “CORBA-free” using
POINTER

‘ POINTER Address of allocated storage that is to be deallocat%d.

22.25 Accessorimnctions

22.25.1 CORBA-sequence-element-get and CORBA-sequence-element-set

The following ORB supplied roines may be used to get or set specific elements
within a sequence

CORBA-sequence-element-get

call “CORBA-sequence-element-get” using
CORBA-sequence
CORBA-unsigned-long

m element-type

CORBA-sequence The CORBA-sequence from which a specific element
is to be extracted.

CORBA-unsigned-long An index that identifies the particular element required
(1 for the 1st, 2 for the 2nd, etc.).

element-type An area into which the requested element is to be
placed.

CORBA-sequence-element-set

call “CORBA-sequence-element-set” using
CORBA-sequence

CORBA V2.2 Accessor Functions February 1998 22-47

22

CORBA-unsigned-long
melement-type

CORBA-sequence The CORBA-sequence into which a specific element is
to be placed.
CORBA-unsigned-long An index that identifies the particular element

(1 for the 1st, 2 for the 2nd, etc.).

element-type The specific element that is to be inserted into the
CORBA-sequence.

22.25.2 CORBA-string-get and CORBA-string-set

The following ORB supplied accessautines may be used to handle variable length
null terminated strings.

CORBA-string-get

call “CORBA-string-get” using
CORBA-unbounded-string
CORBA-unsigned-long
mCOBOL-text

CORBA-unbounded-string A pointer to a null terminated string.

CORBA-unsigned-long The length of the COBOL text area into which the text
is to be inserted. The returned value will be truncated (if
larger than the return area) or space padded (if smaller
than the return area).

COBOL-text An area into which the requested text is to be placed.

o

CORBA-string-set

call “CORBA-string-set” using
CORBA-unbounded-string
CORBA-unsigned-long
COBOL-text

CORBA-unbounded-string An unintialized pointer into which a null terminated string
will be placed by this routine. This routine will use
CORBA-alloc to allocate the required storage.

CORBA-unsigned-long The length of the COBOL text area from which the text is
to be extracted. Trailing spaces will be stripped off.
COBOL-text An area from which the requested text is to be extracted.

22-48 CORBAV2.2 February 1998

22

22.25.3 CORBA-wstring-get & CORBA-wstring-set

The following ORB supplied accessmutines may be used to handle variable length
null terminated wstrings.

CORBA-wstring-get
call “CORBA-wstring-get” using
CORBA-unbounded-wstring
CORBA-unsigned-long
mCOBOL-wchar-values

CORBA-unbounded-wstring A pointer to a null terminated wstring.

CORBA-unsigned-long The length of the area into which the array of wchars is
to be inseted. Thereturned value will be truncated (if
larger than the return area) or padded (if smaller tha
the return area).

=

COBOL-wchar-values An area into which the requested COBOL wetnarto
be placed.

CORBA-wstring-set

call “CORBA-wstring-set” using
CORBA-unbounded-string
CORBA-unsigned-long
COBOL-wchar-values

CORBA-unbounded-wstring An unintialized pointer into which a null terminated
wstring will be placed by this routine. This routine
will use CORBA-alloc to allocate the required

storage.
CORBA-unsigned-long The length of the COBOL area from which the
wchars are to be extracted.
COBOL-wchar-values An area from which the requested wchars are to|be
extracted.

22.26 Extensionsto COBOL 85

The following extensions to COBOL & emandatory within this submission:

® Untyped pointerand minter manipulation

® Floating point

The following extensions to COBOL &Feoptional within this submission:

CORBA V2.2 Extensionsto COBOL 85 February 1998 22-49

22

® Constants

* Typedefs
22.26.1 Untyped dinters and Pointer manipulation

Untyped Pointers

COBOL 85 does not define an untyped pointer data type. However, the following
syntax has been defined within the next major revision of COBOL 85 and has already
been implemented in current COB@bmpilers.

[USAGE IS] POINTER

No PICTURE clause allowed.

22.26.2 Pointer Manipulation

COBOL 85 does not define any syntax for the manipulation ofpattypointers.
However, the following syntax hasén defined within the next majogvision of
COBOL 85 and has already been implemented in many current COBOL compilers.

{ADDRESS OFidentifier }

SET {ADDRESS OFidentifier} TO {identifier }
{identifier } {NULL }
{NULLS }
{identifier }
SET { identifier{UP} } BY {integer }
{DOWN} {LENGTH OF identifier }

22.26.3 Floating point

Currently COBOL 85 does not support floating point data types. Thereimsicit
use of floating point within this mapping. The OMG IDL floating-point types are
specified agollows within CORBA:

®* Float represents single precision floating point numbers.
® double represents double-precision floating point numbers.

® long doublerepresents long-double-precision floating point numbers.

The above IDL types should be mapped to the native floating point type. The ORB wiill
then be responsible for converting the native floating pojpegyto the Common Data
Representation (CDR) transfer syntax specified for the OMG IDL floating-point types.

22-50 CORBAV2.2 February 1998

22

22.26.4 Constants

Currently COBOL 85 does not define any syntax for COBOL constants. The next
major revision of COBOL 85 defines the syntax belowtkis functionality.

To ensure that a complete mapping of CORBA IDL can be accomplished within a
COBOL application, it will be necessary to map CORBA IDL constants to some form
of COBOL constant.

>>CONSTANT constant-name IS literal
integer

22.26.5 Typedefs

Currently COBOL 85 does not define any syntax for COBOL typedefsn&kemajor
revision of COBOL 85 defines the syntax below for this functionality.

A typedef is defined using the IS TYPEDEF clause on a standard data entry. It
identifies it as a typedefnd will have no storage associated with it. liaket used in
conjunction with the TYPE clause to identify a user defined data typefolibeing
is an example of this syntax.

* (defines a typedef)

01 my-message-area-type IS TYPEDEF.
02 ws-length USAGE pic 9(4) comp.
02 ws-text USAGE pic x(40).

* (Using types in storage definitions)
01 ws-messagel TYPE my-msg-area-type.
01 ws-message?2 TYPE my-msg-area-type.

* (Manipulate data as required)

PROCEDURE DIVISION.
move 12 TO ws-length IN ws-messagel.
move msgl TO ws-text IN ws-messagel.

Using COBOL COPY Igs instead of Typedefs

Because COBOL typedefs are an optional part of this language mappingraatak

to the functionality provided by them is part of this COBOL language mapping. While

it is recognized that support for COBOL Typedefs is very desirabheust also be
recognized that such support is not yet available from some of the older COBOL
compilers deployed on some platforms. It is highlgpommemed that, if atll

possible, COBOL Typedefs should be used because no other alternative offers the same
flexibility.

CORBA V2.2 Extensionsto COBOL 85 February 1998 22-51

22

22-52

For compilers that do not support COBOL Typedefs, libraries of COBOL COPY files
will be used insteadeach library will contain @et of COPY files for eacimterface,

and eachindividual COPY file will act as a type template for defined IDL data types.
When used in conjunction with the COPY REAZING syntax, the COPY files may

be used to create specific instances of types.

How do libraries of COBOL COPY files containing IDL data type templates work?

For basic types, such &g, a COPY file calledong will be supplied as part of a
CORBA library and its contents would resemble the following:

long-type usage (local long type).

The user would usthe above long copy file to create instances of the basic long type,
as follows:

WORKING STORAGE section.

01 COPY LONG IN CORBA

REPLACING long-type WITH ws-long-1.
01 COPY LONG IN CORBA

REPLACING long-type WITH ws-long-2.

Eachspecific IDL file will resultin a library of COPY files for all the types specified
within the interface file.

For example, the following IDL:

/I IDL
interface Example {

struct {
long a_long_value;
float a_float_value;
} struct_1;

struct {
struct_1 a_struct_1 value;
long another_long;

} struct_2;

¥

Would result in COPY files calledtruct-1 andstruct-2 being created in a library
called Example.

The following ilustrates the contents of te&ruct-1 copy file:
struct-1-type.

05 COPY long IN corba
REPLACING long-type WITH a-long-value.

CORBAV2.2 February 1998

22

05 COPY float IN corba
REPLACING float-type WITH a-float-value.

One problem with COPY file templates is that it is not possible to embed a struct
template within another struct because of level number resolution problems. Within a
user application, it will only be possible to create level 01 instances of structures. This
is resolved by generating the actual definitiaighe waydown tobasic types within

each generated COPY file. From the above IDL, the following exam&waft 2
illustrates this:

struct-2-type
05 struct-1-value.
07 COPY long IN corba
REPLACING long-type WITH a-long-value.
07 COPY float IN corba
REPLACING float-type ~ WITH a-float-value.
05 COPY long IN corba
REPLACING long-type WITH another-long.

22.27 References
COBOL 85ANSI X3.23-1985 / ISO 1989-1985

CORBAV2.2 References February 1998 22-53

22

22-54 CORBAV2.2 February 1998

	Mapping of OMG IDL to Cobol
	22.1 Overview
	22.2 Mapping of IDL to COBOL
	22.2.1 Mapping of IDL Identifiers to COBOL

	22.3 Scoped Names
	22.4 Memory Management
	22.5 Mapping for Interfaces
	22.5.1 Object References
	22.5.2 Object References as Arguments
	22.5.3 Inheritance and Interface Names

	22.6 Mapping for Attributes
	22.7 Mapping for Constants
	22.8 Mapping for Basic Data Types
	22.8.1 Boolean
	22.8.2 enum
	22.8.3 any

	22.9 Mapping for Fixed Types
	22.10 Mapping for Struct Types
	22.11 Mapping for Union Types
	22.12 Mapping for Sequence Types
	22.12.1 Bounded Sequence
	22.12.2 Unbounded Sequence
	22.12.3 Sequence Element Accessor Functions
	22.12.4 Nested Sequences
	22.12.5 Sequence parameter passing considerations

	22.13 Mapping for Strings
	22.13.1 How string is mapped to COBOL
	22.13.2 How wstring is mapped to COBOL
	22.13.3 string / wstring argument passing considerations

	22.14 Mapping for Arrays
	22.15 Mapping for Exception Types
	22.16 Argument Conventions
	22.16.1 Implicit Arguments to Operations
	22.16.2 Argument passing Considerations
	22.16.3 Summary of Argument/Result Passing

	22.17 Memory Management
	22.17.1 Summary of Parameter Storage Responsibilities

	22.18 Handling Exceptions
	22.18.1 Passing Exception details back to the caller
	22.18.2 Exception Handling Functions
	22.18.3 Example of how to handle the CORBA-Exception parameter

	22.19 Pseudo Objects
	22.19.1 Mapping Pseudo Objects to COBOL
	22.19.2 Pseudo-Object mapping example

	22.21 Mapping of the Dynamic Skeleton Interface to COBOL
	22.21.1 Mapping of the ServerRequest to COBOL
	22.21.2 Mapping of Dynamic Implementation Routine to COBOL

	22.22 ORB Initialization Operations
	22.23 Operations for Obtaining Initial Object References
	22.24 ORB Supplied Functions for Mapping
	22.24.1 Memory Management routines

	22.25 Accessor Functions
	22.25.1 CORBA-sequence-element-get and CORBA-sequence-element-set
	22.25.2 CORBA-string-get and CORBA-string-set
	22.25.3 CORBA-wstring-get & CORBA-wstring-set

	22.26 Extensions to COBOL 85
	22.26.1 Untyped Pointers and Pointer manipulation
	22.26.2 Pointer Manipulation
	22.26.3 Floating point
	22.26.4 Constants
	22.26.5 Typedefs

	22.27 References

