
Mapping of OMG IDL to Cobol 22
Contents

This chapter contains the following sections.

Section Title Page

“Overview” 22-2

“Mapping of IDL to COBOL” 22-2

“Scoped Names” 22-3

“Memory Management” 22-4

“Mapping for Interfaces” 22-5

“Mapping for Attributes” 22-6

“Mapping for Constants” 22-7

“Mapping for Basic Data Types” 22-7

“Mapping for Fixed Types” 22-10

“Mapping for Struct Types” 22-10

“Mapping for Union Types” 22-10

“Mapping for Sequence Types” 22-11

“Mapping for Strings” 22-15

“Mapping for Arrays” 22-19

“Mapping for Exception Types” 22-19

“Argument Conventions” 22-19

“Memory Management” 22-23
 CORBA V2.2 February 1998 22-1

22

on

r
22.1 Overview

This COBOL language mapping provides the ability to access and implement CORBA
objects in programs written in the COBOL programming language. The mapping is
based on the definition of the ORB in The Common Object Request Broker:
Architecture and Specification. The mapping specifies how CORBA objects (objects
defined by OMG IDL) are mapped to COBOL and how operations of mapped CORBA
objects are invoked from COBOL.

Support

The mapping has been designed to support as many COBOL compilers and ORB
implementations as possible. Additionally, it has been designed so that an actual
implementation may be based upon the current ANSI COBOL 85 language standard
for the COBOL programming language with some additional commonly-used
extensions from the next ANSI COBOL language standard.

Currently, the next ANSI COBOL language standard is at a draft stage and will so
be ratified. For a description of the syntax taken from the next draft for use with
standard ANSI COBOL 85, refer to “Extensions to COBOL 85” on page 22-49.

22.2 Mapping of IDL to COBOL

22.2.1 Mapping of IDL Identifiers to COBOL

Mapping IDL Identifiers to a COBOL Name

A COBOL name can only be up to 30 characters in length and may consist of a
combination of letters, digits, and hyphens. The hyphen cannot appear as the first o
last character.

“Handling Exceptions” 22-25

“Pseudo Objects” 22-29

“Mapping of the Dynamic Skeleton Interface to COBOL” 22-39

“ORB Initialization Operations” 22-44

“Operations for Obtaining Initial Object References” 22-45

“ORB Supplied Functions for Mapping” 22-46

“Accessor Functions” 22-47

“Extensions to COBOL 85” 22-49

“References” 22-53

Section Title Page
22-2 CORBA V2.2 February 1998

22

 an

rs. If

the

ant,
l
Where a COBOL name is to be used, the following steps will be taken to convert
IDL identifier into a format acceptable to COBOL.

1. Replace each underscore with a hyphen.

2. Strip off any leading or trailing hyphens.

3. When an IDL identifier collides with a COBOL reserved word, insert the string
“IDL-” before the identifier.

4. If the identifier is greater than 30 characters, then truncate right to 30 characte
this will result in a duplicate name, truncate back to 27 characters and add a
numeric suffix to make it unique.

For example, the IDL identifiers:

my_1st_operation_parameter
_another_parameter_
add
a_very_very_lo ng_operation_parameter_number_1
a_very_very_lo ng_operation_parameter_number_2

become COBOL identifiers:

my-1st-operation-parameter
another-parameter
IDL-add
a-very-very-long-operation-par
a-very-very-long-operation-001

Mapping IDL Identifiers to a COBOL Literal

A COBOL literal is a character string consisting of any allowable character in the
character set and is delimited at both ends by quotation marks (either quotes or
apostrophes).

Where a COBOL literal is to be used, the IDL identifier can be used directly within
quotes without any truncation being necessary.

22.3 Scoped Names

The COBOL programmer must always use the global names for an IDL type, const
exception, or operation. The COBOL global name corresponding to an IDL globa
name is derived as follows:

For IDL names being converted into COBOL identifiers or a COBOL literal, convert
all occurrences of “::” (except the leading one) into a “-” (a hyphen) and remove any
leading hyphens. The “::” used to indicate global scope will be ignored.

Consider the following example:
CORBA V2.2 Scoped Names February 1998 22-3

22

d to
// IDL

interface Example {

struct {
long rtn_code;
...

} return_type;

return_type my_operation();
...

};

COBOL code that would use this simple example is as follows:

PROCEDURE DIVISION.
...
call “Example-my-operation” using

a-Example-object
a-CORBA-environment

 a-return-type
if rtn-code in a-return-type NOT = 0

...
end-if
...

Care should be taken to avoid ambiguity within COBOL derived from IDL. Consider
the following example:

typedef long foo_bar;
interface foo {

typedef short bar; /* Valid IDL, but ambiguous in COBOL */
};

Is foo-bar a short or a long in the above example?

Note – It is strongly recommended that you take great care to avoid the use of
indiscriminate underscores and hyphens.

22.4 Memory Management

The standard ORB-supplied functions CORBA-alloc and CORBA-free may be use
allocate and free storage for data types. For further details on these functions refer to
“Memory Management” on page 22-23.
22-4 CORBA V2.2 February 1998

22

e

:

22.5 Mapping for Interfaces

22.5.1 Object References

The use of an interface type in IDL denotes an object reference. Each IDL interfac
shall be mapped to the well-known opaque type CORBA-Object.

The following example illustrates the COBOL mapping for an interface:

interface interface1 {
...

};

The above will result in the following COBOL Typedef declaration for the interface:

01 interface1 is typedef type CORBA-Object.

22.5.2 Object References as Arguments

IDL permits specifications in which arguments, return results, or components of
constructed types may be object references. Consider the following example:

#include “interface1.idl” // IDL
interface interface2 {

interface1 op2();
};

The above example will result in the following COBOL declaration for the interface

...
01 interface2 is typedef type CORBA-Object.

...

The following is a sample of COBOL code that may be used to call op2:

WORKING-STORAGE SECTION.
...
01 interface1-obj type interface1.
01 interface2-obj type interface2.
01 ev type CORBA-Environment.
...

PROCEDURE DIVISION.
...
call “interface2-op2” using

interface2-obj
ev

interface1-obj
...
CORBA V2.2 Mapping for Interfaces February 1998 22-5

22
22.5.3 Inheritance and Interface Names

IDL allows the specification of interfaces that inherit operations from other interfaces.
Consider the following example:

interface interface3 : interface1 {
void op3(in long parm3a, out long parm3b);

};

A call to either interface1-op1 or interface3-op1 on the above interface3 object will
cause the same actual method to be invoked. This is illustrated within the following
examples.

CORBA clients, written in COBOL, can make calls to the op1 operation that was
inherited from interface1 on an interface3 object as if it had been directly declared
within the interface3 interface:

call “interface3-op1” using
interface3-obj
aParm1a
aParm1b
ev

CORBA COBOL clients may also make interface1-op1 calls on the interface3 object.

call “interface1-op1” using
interface3-obj
aParm1a
aParm1b
ev

22.6 Mapping for Attributes

IDL attribute declarations are mapped to a pair of simple accessing operations; one to
get the value of the attribute and one to set it. To illustrate this, consider the following
specification:

interface foo {
attribute float balance;

};

The following code would be used within a CORBA COBOL client to get and set the
balance attribute that is specified in the IDL above:

call foo--get-balance” using
a-foo-object
aCORBA-environment

 balance-float
22-6 CORBA V2.2 February 1998

22

he

r

OL

t
for
call “foo--set-balance” using
a-foo-object
balance-float
aCORBA-environment

There are two hyphen characters (“--”) used to separate the name of the interface from
the words “get” or “set” in the names of the functions.

The functions can return standard exceptions but not user-defined exceptions since t
syntax of attribute declarations does not permit them.

22.7 Mapping for Constants

The concept of constants does not exist within pure ANSI 85 COBOL. If the
implementor’s COBOL compiler does not support this concept, then the IDL compile
will be responsible for the propagation of constants.

Refer to “Extensions to COBOL 85” on page 22-49 for details of the Constant syntax
within the next major revision of COBOL.

Constant identifiers can be referenced at any point in the user’s code where a literal of
that type is legal. In COBOL, these constants may be specified by using the COB
>>CONSTANT syntax.

The syntax is used to define a constant-name, which is a symbolic name representing a
constant value assigned to it.

The following is an example of this syntax:

>>CONSTANT My-Const-StringIS “This is a string value”.
>>CONSTANT My-Const-NumberIS 100.

22.8 Mapping for Basic Data Types

The basic data types have the mappings shown in the following table. Implementations
are responsible for providing either COBOL typedefs or COBOL COPY files
(whichever is appropriate for their COBOL environment):

• COBOL typedefs for CORBA-short, CORBA-unsigned-short, etc. are consisten
with OMG IDL requirements for the corresponding data types. (Note: Support
COBOL Typedefs is an optional extension to ANSI 85 for this mapping).
CORBA V2.2 Mapping for Constants February 1998 22-7

22

ll

e
lean
• COBOL COPY files within a COBOL library named CORBA. The COPY files wi
contain types that are consistent with OMG IDL requirements for the corresponding
data types. (For further details, refer to “Using COBOL COPY files instead of
Typedefs” on page 22-51).

22.8.1 Boolean

The COBOL mapping of boolean is an integer that may have the values CORBA-tru
and CORBA-false defined; other values produce undefined behavior. CORBA-boo
is provided for symmetry with the other basic data type mappings.

The following constants will be provided for setting and testing boolean types:

>>CONSTANT CORBA-true is 1.
>>CONSTANT CORBA-false is 0.

22.8.2 enum

The COBOL mapping of enum is an unsigned integer capable of representing 2**32
enumerations. Each identifier in an enum has a COBOL condition defined with the
appropriate unsigned integer value conforming to the ordering constraints.

Table 22-1COBOL COPY files within a COBOL library named CORBA

OGM IDL COBOL Typedef
COBOL COPY file in
a CORBA library

short CORBA-short short

long CORBA-long long

long long CORBA-long-long llong

unsigned short CORBA-unsigned-short ushort

unsigned long CORBA-unsigned-long ulong

unsigned long long CORBA-unsigned-long-
long

ullong

float CORBA-float float

double CORBA-double double

long double CORBA-long-double ldouble

char CORBA-char char

wchar CORBA-wchar wchar

boolean CORBA-boolean boolean

octet CORBA-octet octet

enum CORBA-enum enum

any CORBA-any any
22-8 CORBA V2.2 February 1998

22

Consider the following example:

interface Example { // IDL
enum temp{cold, warm, hot}
...

};

The above example will result in the following COBOL declarations:

01 Example-temp is typedef type CORBA-enum.
88 Example-cold value 0.
88 Example-warm value 1.
88 Example-hot value 2.

COBOL code that would use this simple example is as follows:

WORKING-STORAGE SECTION.
...

01 Example-temp-value type Example-temp.
...

PROCEDURE DIVISION.
...
evaluate TRUE

when Example-cold of Example-temp-value
...

when Example-warm of Example-temp-value
...

when Example-hot of Example-temp-value
...

end-evaluate
...

22.8.3 any

The IDL any type permits the specification of values that can express any IDL type.
The any IDL type will generate the following COBOL group item:

01 CORBA-any is typedef.
03 any-type type CORBA-TypeCode.
03 any-value usage pointer.

For details of TypeCodes, refer to The Common Object Request Broker: Architecture
and Specification. The IDL-value element of the group item is a pointer to the actual
value of the datum.
CORBA V2.2 Mapping for Basic Data Types February 1998 22-9

22

e

f
22.9 Mapping for Fixed Types

For COBOL, the IDL fixed type is mapped to the native fixed-point decimal type. Th
IDL syntax fixed<digits,scale> will generate a COBOL typedef that maps directly to
the native fixed-point decimal type.

Consider the following example:

typedef fixed<9,2> money;

The above example describes a fixed point decimal type that contains 9 digits and has
a scale of 2 digits (9,999,999.99). It will result in the following COBOL declarations:

01 money is typedef [COBOL fixed point type]

22.10 Mapping for Struct Types

IDL structures map directly onto COBOL group items. The following is an example o
an IDL declaration of a structure:

struct example {
long member1, member2;
boolean memb er3;

};

Would map to the following COBOL:

01 <scope>-example is typedef.
03 member1 type CORBA-long.
03 member2 type CORBA-long.
03 member3 type CORBA-boolean.

22.11 Mapping for Union Types

IDL discriminated unions are mapped onto COBOL group items with the
REDEFINES clause. The following is an example of an IDL declaration of a
discriminated union:

union example switch(long) {
case 1: char first_case;
case 2: long second_case;
default: double other_case;

};

Would map to the following COBOL:

01 <scope>-example is typedef.
03 d type CORBA-long.
03 u.
22-10 CORBA V2.2 February 1998

22

 being

 the

05 default-case type CORBA-double.
03 filler redefines u.

05 second-case type CORBA-long.
03 filler redefines u.

05 first-case type CORBA-char.

The discriminator in the group item is always referred to as d; the union items are
contained within the group item that is always referred to as u.

Reference to union elements is done using standard COBOL. Within the following
example, the COBOL “evaluate” statement is used to test the discriminator:

evaluate d in <scope>-example
when 1

 display “Char value = “ first-case in <scope>-example
 when 2
 display “Long value = “ second-case in <scope>-example
 when other
 display “Double value = “ other-case in <scope>-

example
end-evaluate

Note – The ANSI 85 COBOL REDEFINES clause can only be used to specify a
redefinition whose actual storage is either the same size or smaller than the area
redefined. As a result, the union elements need to be sorted such that the largest is
issued first within the generated COBOL structure and the smallest is last (as
illustrated within the above example).

22.12 Mapping for Sequence Types

The IDL data type sequence permits passing of bounded and unbounded arrays
between objects.

Bounded sequences are mapped to a typedef that contains an occurs clause up to
specified limit.

For unbounded sequences, a pointer to the unbounded array of sequence elements is
generated along with a typedef for one sequence element. To access unbounded
sequences, two accessor functions are provided (CORBA-sequence-element-get and
CORBA-sequence-element-set).

22.12.1 Bounded Sequence

Consider the following bounded IDL sequence:

typedef sequence< longfloat,10> vec10;

In COBOL, this is mapped to:
CORBA V2.2 Mapping for Sequence Types February 1998 22-11

22

s

g the
n
01 <scope>-vec10 is typedef.
03 seq-maximum type CORBA-long.
03 seq-length type CORBA-long.
03 seq-buffer usage POINTER.
03 seq-value occurs 10 type CORBA-float.

For bounded sequences, the seq-buffer pointer should be set to the address of the seq-
value item.

22.12.2 Unbounded Sequence

Consider the following unbounded IDL sequence:

typedef sequence< long> vec;

In COBOL, this is mapped to the following two typedefs:

01 <scope>-vec-t is typedef type CORBA-long.

01 <scope>-vec is typedef.
03 seq-maximum type CORBA-long.
03 seq-length type CORBA-long.
03 seq-buffer usage POINTER. [to <scope>-vec-t]

In this case the sequence is unbounded; therefore, a vec-t typedef is used to specify
one specific instance of the sequence. The seq-buffer item should be set to the addres
of a variable length array of the sequence type.

To access the elements within an unbounded sequence, application developers may
either:

• Set up a table of elements of the sequence type within the linkage section usin
IDL generated sequence element typedef. Set the table address to the value iseq-
buffer and use normal table processing logic to step through the elements.

• Use the ORB supplied sequence element accessor functions.

22.12.3 Sequence Element Accessor Functions

The following ORB supplied routines may be used to get or set specific elements
within a sequence:

call “CORBA-sequence-element-get” using
a-CORBA-sequence
a-CORBA-unsigned-long

a-element-type

call “CORBA-sequence-element-set” using
a-CORBA-sequence
a-CORBA-long
a-element-type
22-12 CORBA V2.2 February 1998

22

g

the
For further details of the above accessor functions, refer to “Accessor Functions” on
page 22-47.

The following is an example of some code that steps through sequence elements usin
the above “CORBA-sequence-element-get” routine:

WORKING-STORAGE SECTION.

01 a-Sequence type <scope>-vec.
01 ws-vec-element type <scope>-vec-t.
01 ws-num type CORBA-long.

...
PROCEDURE DIVISION.

...
PERFORM VARYING ws-num FROM 1 BY 1

UNTIL ws-num > seq-length IN a-Sequence
call “CORBA-sequence-element-get” using

 a-Sequence
 ws-num

m ws-vec-element
PERFORM process-current-element

END-PERFORM
...

22.12.4 Nested Sequences

The type specified within a sequence may be another sequence. In this instance,
generated COBOL declarations are also nested. For example:

typedef sequence<seq uence<long> > seq_type;

will be mapped to the following COBOL:

01 <scope>-seq-type-t-t is typedef type CORBA-long.

01 <scope>-seq-type-t is typedef.
03 seq-maximum type CORBA-long.
03 seq-length type CORBA-long.
03 seq-buffer usage POINTER.[to <scope>-seq-type-t-t]

01 <scope>-seq-type is typedef.
03 seq-maximum type CORBA-long.
03 seq-length type CORBA-long.
03 seq-buffer usage POINTER. [to <scope>-seq-type-t]
CORBA V2.2 Mapping for Sequence Types February 1998 22-13

22

t at

y the

.

22.12.5 Sequence parameter passing considerations

Passing a Sequence as an in parameter

When passing a Sequence as an in parameter, the COBOL programmer must:

• set the buffer member to point to an array of the specified data type item to poin
the allocated storage (or NULL if it is a bounded sequence), and

• set the length member to the actual number of elements to transmit.

Passing a Sequence as an out parameter or return

The programmer should pass a pointer (there is no need to initialize it). Once the call
has been made, the ORB will have allocated storage for the sequence returned b
object. Upon successful return from the call:

• The maximum item will contain the size of the allocated array.

• The buffer item will point at the allocated storage (or NULL if it is a bounded
sequence).

• The length item will contain the actual number of values that were returned in the
sequence.

The client is responsible for freeing the allocated sequence by making a call to
“CORBA-free” when the returned sequence is no longer required.

Passing a Sequence as an inout parameter

The programmer should pass a pointer to a sequence that has been allocated using the
CORBA-alloc routine.

Before passing a sequence as an inout parameter, the programmer must:

• set the buffer item to point to an array buffer (or NULL if it is a bounded
sequence), and

• set the length item to the actual number of elements that are to be transmitted

The CORBA-alloc routine must be used. This allows the callee to deallocate the
original sequence using a call to “CORBA-free.” If more data must be returned, then
the original sequence can hold and assign new storage.

Upon successful return from the invocation, the length member will contain the
returning number of values within the sequence.

For bounded sequences, it is an error to set the length or maximum item to a value
larger than the specified bound.
22-14 CORBA V2.2 February 1998

22

ia a set

d
22.13 Mapping for Strings

22.13.1 How string is mapped to COBOL

Bounded strings

Bounded IDL strings are mapped directly to a COBOL PIC X of the specified IDL
length. The ORB will be totally responsible for handling the null byte, as required.
Inbound strings will have the null byte automatically stripped off by the ORB and
outbound strings will automatically have a null byte appended by the ORB.

Consider the following IDL declarations:

typedef string<10> string_1;

In COBOL, this is mapped directly to:

01 string-1 is typedef pic x(10).

Unbounded strings

An unbounded IDL string cannot be mapped directly to a COBOL PIC X of a specific
size, as bounded strings are. Instead, it is mapped to a pointer that is accessed v
of accessor functions (CORBA-string-get and CORBA-string-set).

Consider the following IDL declarations:

typedef string string_2;

In COBOL, this is converted to:

01 string-2 is typedef usage POINTER.

The following ORB supplied accessor routines may be used to get or set the actual
string value:

call “CORBA-string-get” using
a-CORBA-unbounded-string
a-CORBA-unsigned-long

m a-COBOL-text

call “CORBA-string-set” using
a-CORBA-unbounded-string
a-CORBA-unsigned-long
a-COBOL-text

The CORBA-string-set routine will be responsible for allocating the storage require
and will set the pointer to point to a null terminated string.
CORBA V2.2 Mapping for Strings February 1998 22-15

22

L

.

The CORBA-string-get routine does not release the storage within the pointer;
therefore, it may be used more than once to access the same string.

The following is an example of string manipulation using the above routines.

WORKING-STORAGE SECTION.
01 my-COBOL-text pic x(16) value “some random text”.
01 my CORBA-string type string-2.

...

PROCEDURE DIVISION
...
call “CORBA-string-set” using

 my-CORBA-string
 LENGTH OF my-COBOL-text
 my-COBOL-text

...
call “CORBA-string-get” using

 my-CORBA-string
 LENGTH OF my-COBOL-text

m my-COBOL-text
...

For further details of the string accessor routines, refer to “Accessor Functions” on
page 22-47.

22.13.2 How wstring is mapped to COBOL

Bounded wstrings

Bounded IDL wstrings are mapped directly to an array of wchar’s of the specified ID
length. The ORB will be totally responsible for handling the null byte, as required.
Inbound wstrings will have the null terminator automatically stripped off by the ORB
and outbound wstrings will automatically have a null terminator appended by the ORB

Consider the following IDL declarations:

typedef wstring<10> wstring_1;

In COBOL, this is mapped to:

01 wstring-1-t is typedef.
03 filler type CORBA-wchar occurs 10.

Unbounded wstrings

An unbounded IDL wstring cannot be mapped directly to a specific sized area as
bounded wstrings are. Instead, it is mapped to a pointer that is accessed via a set of
accessor functions (CORBA-wstring-get and CORBA-wstring-set).
22-16 CORBA V2.2 February 1998

22

h
Consider the following OMG IDL declarations:

typedef wstring wst ring_2

In COBOL, this is converted to:

01 wstring-2 is typedef usage POINTER.

The following ORB supplied accessor routines may be used to handle variable lengt
null terminated wstrings:

call “CORBA-wstring-get” using
 a-CORBA-wstring
 a-CORBA-unsigned-long

 ma-COBOL-wtext

call “CORBA-wstring-set” using
 a-CORBA-wstring
 a-CORBA-unsigned-long
 a-COBOL-wtext

The CORBA-wstring-set routine will be responsible for allocating the storage
required and will return a pointer to a null terminated wstring within the pointer.

The CORBA-wstrin g-get routine does not release the storage within the pointer;
therefore, it may be used more than once to access the same wstring.

The following is an example of wstring manipulation using the above routines:

WORKING-STORAGE SECTION.
01 my-COBOL-wtext.

03 filler type CORBA-wchar occurs 10.
01 my-CORBA-wstring type wstring-2.

...
PROCEDURE DIVISION

...
call “CORBA-wstring-set” using

 my-CORBA-wstring
 length of my-COBOL-wtext
 my-COBOL-wtext

...
call “CORBA-wstring-get” using

 my-CORBA-wstring
 length of my-COBOL-wtext

m my-COBOL-wtext
...

For further details of the string accessor routines, refer to “Accessor Functions” on
page 22-47.
CORBA V2.2 Mapping for Strings February 1998 22-17

22

ay

ted

is
 will

n

ter

is

d
ing

e
d
s
22.13.3 string / wstring argument passing considerations

Passing a string or wstring as an in parameter

If the string /wstring is bounded, then the COBOL text (or array of double bytes) m
be passed directly as an in parameter.

If the string /wstring is unbounded, a pointer to the null terminated string/wstring
that was established with the CORBA-string-set (or CORBA-wstring-set) accessor
function is passed.

The accessor function is responsible for the allocation of the storage that the pointer
points to. The ORB will be responsible for releasing that storage once it has comple
processing the in parameter.

The caller is not allowed to pass a null pointer as the string/wstring argument.

Passing a string or wstring as an out parameter or return

If the string /wstring is bounded, then the COBOL text (or array of double bytes)
passed back into a COBOL text area supplied by the caller. If necessary, the ORB
be responsible for padding the storage with spaces.

If the string /wstring is unbounded, then the pointer to the null terminated
strin g/wstring is passed to the caller. The caller uses the appropriate accessor functio
to obtain the COBOL text value (CORBA-strin g-get or CORBA-wstring-get). The
caller is responsible for freeing the allocated storage pointed to by the returned poin
using CORBA-free.

Passing a string or wstring as an inout parameter

If the string /wstring is bounded, then the COBOL text (or array of double bytes)
passed directly as an in parameter. The ORB will be responsible for handling the null
termination on the user’s behalf. Upon return, the COBOL text (or array of double
bytes) is passed back to the same area of storage.

The ORB is prohibited from deallocating and reallocating storage for bounded
strin g/wstring (the storage is supplied by and belongs to the caller).

If the string /wstring is unbounded, the caller must pass a pointer to a null terminate
strin g/wstring. The storage is allocated and the value is established within it by us
the appropriate accessor function (CORBA-string-set or CORBA-wstring-set).

The ORB may deallocate and reallocate the buffer if the current buffer size is not larg
enough to hold the returning string. Upon return, the pointer to the null terminate
strin g/wstring is passed to the caller. To obtain the COBOL text value, the caller use
the appropriate accessor function (CORBA-string-get or CORBA-wstring-get). The
caller is then responsible for freeing the allocated storage pointed to by the returned
pointer using CORBA-free.
22-18 CORBA V2.2 February 1998

22

have

tion
22.14 Mapping for Arrays

IDL arrays map to the COBOL OCCURS clause. For example, given the following
IDL definition:

typedef short ShortArray[2][3][4][5];

The COBOL mapping will generate the following:

01 <scope>-ShortArray is typedef.
03 filler occurs 2.

05 filler occurs 3.
 07 filler occurs 4.

09 filler occurs 5.
 11 ShortArray-v type CORBA-short.

22.15 Mapping for Exception Types

Each defined exception type is mapped to a COBOL group-item along with a constant
name that provides a unique identifier for it. The unique identifier for the exception
will be in a string literal form.

For example:

exception foo {
long a_supplied_value;

};

will produce the following COBOL declarations:

01 <scope>-foo is typedef.
03 a-supplied-value type CORBA-long.

>>CONSTANT ex-foo IS “<unique identifier for exception>“.

The identifier for the exception uniquely identifies this exception type. For example, it
could be the exception’s Interface Repository identifier.

Since IDL exceptions are allowed to have no members, but COBOL groups must
at least one item, IDL exceptions with no members map to COBOL groups with one
member. This member is opaque to applications. Both the type and the name of the
single member are implementation-specific.

22.16 Argument Conventions

22.16.1 Implicit Arguments to Operations

From the COBOL programmer’s point of view, all operations declared in an IDL
interface have implicit parameters in addition to the actual explicitly declared opera
specific parameters. These are as follows:
CORBA V2.2 Mapping for Arrays February 1998 22-19

22

r

s

ere
• Each operation has an implicit CORBA-Object input parameter as the first
parameter; this designates the object that is to process the request.

• Each operation has an implicit pointer to a CORBA-Environment output paramete
that permits the return of exception information. It is placed after any operation
specific arguments.

• If an operation in an IDL specification has a context specification, then there is
another implicit input parameter which is CORBA-Context. If present, this is
placed between the operation specific arguments and the CORBA-Environment
parameter.

• ANSI 85 COBOL does not support a RETURNING clause, so any return value
will be handled as an out parameter and placed at the end of the argument listafter
CORBA-Environment.

Given the following IDL declaration of an operation:

interface example1
{

float op1(
in short arg1,
in long arg2

);
};

The following COBOL call should be used:

call “example1-op1” using
a-CORBA-Object
a-CORBA-short
a-CORBA-long
a-CORBA-Environment

m a-CORBA-float

22.16.2 Argument passing Considerations

All parameters are passed BY REFERENCE.

in parameters

All types are passed directly.

inout parameters

bounded and fixed length parameters

All basic types, fixed length structures, and unions (regardless of whether they w
dynamically allocated or specified within WORKING STORAGE) are passed directly.
They do not have to change size in memory.
22-20 CORBA V2.2 February 1998

22

f the

 ORB

, re-

eter

ned
unbounded and variable length parameters

All types that may have a different size upon return are passed indirectly. Instead o
actual parameter being passed, a pointer to the parameter will be passed. When there is
a type whose length may change in size, some special considerations are required.

Example: A user wants to pass in a 10 byte unbounded string as an inout parameter. To
do this, the address of a storage area that is initially large enough to hold the 10
characters is passed to the ORB. However, upon completion of the operation, the
may find that it has a 20 byte string to pass back to the caller. To enable it to achieve
this, the ORB will need to deallocate the area pointed to by the address it received
allocate a larger area, then place the larger value into the new larger storage area. This
new address will then be passed back to the caller.

For all variable length structures, unions, and strings that may change in size:

1. Initially, the caller must dynamically allocate storage using the CORBA-alloc
function and initialize it directly or use an appropriate accessor function that will
dynamically allocate storage (CORBA-xxx-set, where xxx is the type being set up).

2. The pointer to the inout parameter is passed.

3. When the call has completed and the user has finished with the returned param
value, the caller is responsible for deallocating the storage. This is done by making
a call to the “CORBA-free” ORB function with the current address in the
POINTER.

out and return parameters

Bounded

The caller will initially pass the parameter area into which the out (or return) value is
to be placed upon return.

Unbounded

For all sequences and variable length structures, unions, and strings:

1. The caller passes a POINTER.

2. The ORB will allocate storage for the data type out or return value being retur
and then place its address into the pointer.

3. The caller is responsible for releasing the returned storage when it is no longer
required by using a call to the “CORBA-free” ORB function to deallocate it.
CORBA V2.2 Argument Conventions February 1998 22-21

22
22.16.3 Summary of Argument/Result Passing

The following table is used to illustrate the parameter passing conventions used for in ,
inout, out, and return parameters. Following the table is a key that explains the
clauses used within the table.

Table 22-2Parameter Passing Conventions

Data Type in parameter inout parameter out parameter Return result

short <type> <type> <type> <type>

long <type> <type> <type> <type>

long long <type> <type> <type> <type>

unsigned short <type> <type> <type> <type>

unsigned long <type> <type> <type> <type>

unsigned long long <type> <type> <type> <type>

float <type> <type> <type> <type>

double <type> <type> <type> <type>

long double <type> <type> <type> <type>

boolean <type> <type> <type> <type>

char <type> <type> <type> <type>

wchar <type> <type> <type> <type>

octet <type> <type> <type> <type>

enum <type> <type> <type> <type>

fixed <type> <type> <type> <type>

object <type> <type> <type> <type>

struct (fixed) <type> <type> <type> <type>

struct (variable) <type> ptr ptr ptr

union (fixed) <type> <type> <type> <type>

union (variable) <type> ptr ptr ptr

string (bounded) <text> <text> <text> <text>

string (unbounded) <string> <string> <string> <string>

wstring (bounded) <wtext> <wtext> <wtext> <wtext>

wstring
(unbounded)

<wstring> <wstring> <wstring> <wstring>

sequence <type> ptr ptr ptr
22-22 CORBA V2.2 February 1998

22
Table Key:

22.17 Memory Management

22.17.1 Summary of Parameter Storage Responsibilities

The following table is used to illustrate the storage responsibilities for in, inout, out,
and return parameters. Following the table is a key that explains the numerics used
within the table.

array (fixed) <type> <type> <type> <type>

array (variable) <type> ptr ptr ptr

any <type> ptr ptr ptr

Key Description

<type> Parameter is passed BY REFERENCE

ptr Pointer to parameter is passed BY REFERENCE

For inout, the pointer must be initialized prior to the call to point
to the data type.

For out and return , the pointer does not have to be initialized
before the call and will be passed into the call unintialized. The
ORB will then initialize the pointer before control is returned to
the caller.

<text> Fixed length COBOL text (not null terminated)

<string> Pointer to a variable length NULL terminated string

<wtext> COBOL wtext (not null terminated)

<wstring> Pointer to a variable length NULL terminated wstring

Table 22-3Parameter Storage Responsibilities

Data Type in parameter inout parameter out parameter Return result

short 1 1 1 1

long 1 1 1 1

long long 1 1 1 1

unsigned short 1 1 1 1

unsigned long 1 1 1 1

Table 22-2Parameter Passing Conventions
CORBA V2.2 Memory Management February 1998 22-23

22
Table Key:

unsigned long long 1 1 1 1

float 1 1 1 1

double 1 1 1 1

long double 1 1 1 1

boolean 1 1 1 1

char 1 1 1 1

wchar 1 1 1 1

octet 1 1 1 1

enum 1 1 1 1

fixed 1 1 1 1

object 2 2 2 2

struct (fixed) 1 1 1 1

struct (variable) 1 3 3 3

union (fixed) 1 1 1 1

union (variable) 1 3 3 3

string (bounded) 1 1 1 1

string (unbounded) 1 3 3 3

wstring (bounded) 1 1 1 1

wstring (unbounded) 1 3 3 3

sequence 1 3 3 3

array (fixed) 1 1 1 1

array (variable) 1 3 3 3

any 1 3 3 3

Case Description

1 Caller may choose to define data type in WORKING STORAGE or
dynamically allocate it.

For inout parameters, the caller provides the initial value and the callee
may change that value (but not the size of the storage area used to hold
the value).

For out and return parameters, the caller does not have to initialize it,
only provide the storage required. The callee sets the actual value.

Table 22-3Parameter Storage Responsibilities
22-24 CORBA V2.2 February 1998

22
22.18 Handling Exceptions

On every call to an interface operation there are implicit parameters along with the
explicit parameters specified by the user. For further details, refer to “Argument
Conventions” on page 22-19. One of the implicit parameters is the “CORBA-
Environment” parameter which is used to pass back exception information to the
caller.

22.18.1 Passing Exception details back to the caller

The CORBA-Environment type is partially opaque. The COBOL declaration will
contain at least the following:

01 CORBA-exception-type is typedef type CORBA-enum.
88 CORBA-no-exception value 0.

88 CORBA-user-exception value 1.
88 CORBA-system-exception value 2.

01 CORBA-Environment is typedef.

2 Caller defines CORBA-Object in WORKING STORAGE or within
dynamic storage.

For inout parameters, the caller passes an initial value. If the ORB
wants to reassign the parameter, it will first call “CORBA-Object-
release” on the original input value. To continue to use the original
object reference passed in as an inout, the caller must first duplicate the
object reference by calling “CORBA-Object-duplicate.”

The client is responsible for the release of ALL specific out and return
object references. Release of all object references embedded in other out
and return structures is performed automatically as a result of calling
“CORBA-free.” To explicitly release a specific object reference that is
not contained within some other structure, the user should use an
explicit call to “CORBA-Object-release.”

3 For inout parameters, the caller provides a POINTER that points to
dynamically allocated storage. The storage is dynamically allocated by a
call to “CORBA-alloc.”

The ORB may deallocate the storage and reallocate a larger/smaller
storage area, then return that to the caller.

For out and return parameters, the caller provides an unitialized
pointer. The ORB will return the address of dynamically allocated
storage containing the out or return value within the pointer.

In all cases, the ORB is not allowed to return a null pointer. Also, the
caller is always responsible for releasing storage. This is done by using
a call to “CORBA-free.”
CORBA V2.2 Handling Exceptions February 1998 22-25

22

t

e

age

-

03 major type CORBA-exception-type.
...

When a user has returned from a call to an object, the major field within the call’s
environment parameter will have been set to indicate whether the call completed
successfully or not. It will be set to one of the valid types permitted within the field
CORBA-no-exception, CORBA-user-exception, or CORBA-system-exception. If
the value is one of the last two, then any exception parameters signalled by the objec
can be accessed.

22.18.2 Exception Handling Functions

The following functions are defined for handling exception information within from the CORBA-
Environment structure:

CORBA-exception-set

CORBA-exception-set allows a method implementation to raise an exception. The
a-CORBA-environment parameter is the environment parameter passed into th
method. The caller must supply a value for the exception-type parameter.

* COBOL
call “CORBA-exception-set” using

a-CORBA-Environment-
a-CORBA-exception-type-
a-CORBA-repos-id-string
a-param

The value of the exception-type parameter constrains the other parameters in the call as follows:

• If the parameter has the value CORBA-NO-EXCEPTION , this is a normal
outcome to the operation. In this case, both repos-id-string and param must be
NULL. Note that it is not necessary to invoke CORBA-exception-set to indicate
a normal outcome; it is the default behavior if the method simply returns.

• For any other value, it specifies either a user-defined or system exception. The
repos_id parameter is the repository ID representing the exception type. If the
exception is declared to have members, the param parameter must be the
exception group item containing the parameters according to the COBOL langu
mapping. If the exception takes no parameters, param must be NULL.

If the CORBA-Environment argument to CORBA-exception-set already has an
exception set in it, that exception is properly freed before the new exception infor
mation is set.
22-26 CORBA V2.2 February 1998

22

te

o the

of

he
CORBA-exception-id

CORBA-exception-id returns a pointer to the character string identifying the
exception. The character string contains the repository ID for the exception. If invoked
on an environment that identifies a non-exception, a NULL pointer is returned. No
that ownership of the returned pointer does not transfer to the caller; instead, the
pointer remains valid unitl CORBA-exception-free() is called.

call “CORBA-exception-id” using
a-CORBA-environment
a-pointer

CORBA-exception-value

CORBA-exception-value returns a pointer to the structure corresponding to this
exception. If invoked on an environment which identifies a non-exception, a NULL
pointer is returned. Note that ownership of the returned pointer does not transfer t
caller; instead, the pointer remains valid unitl CORBA-exception-free() is called.

call “CORBA-exception-value” using
a-CORBA-environment
a-pointer

CORBA-exception-free

CORBA-exception-free returns any storage that was allocated in the construction of
the environment exception. It is permissible to invoke this regardless of the value
the IDL-major field.

call “CORBA-exception-free” using
a-CORBA-environment

CORBA-exception-as-any

CORBA-exception-as-any() returns a pointer to a CORBA-any containing the
exception. This allows a COBOL application to deal with exceptions for which it has
no static (compile-time) information. If invoked on a CORBA-Environment which
identifies a non-exception, a null pointer is returned. Note that ownership of the
returned pointer does not transfer to the caller; instead, the pointer remains valid until
CORBA-exception-free() is called.

call “CORBA-exception-as-any” using
a-CORBA-environment
a-CORBA-any-rtn

22.18.3 Example of how to handle the CORBA-Exception parameter

The following example is a segment of a COBOL application that illustrates how t
Environment functions described above may be used within a COBOL context
application to handle an exception.
CORBA V2.2 Handling Exceptions February 1998 22-27

22
For the following IDL definition:

interface MyInterface {
exception example1{long reason, ...};
exception example2(...);

void MyOperation(long ar gument1)
raises(example1, example2, ...);

...
}

The following would be generated:

01 MyInterface x is typedef type CORBA-Object.

01 MyInterface-example1 is typedef.
03 reason type CORBA-long

>>CONSTANT ex-example1 is “<unique example1 identifier>“.
01 MyInterface-example2 is typedef.
>>CONSTANT ex-example2 is “<unique example2 identifier>“.

The following code checks for exceptions and handles them.

WORKING-STORAGE SECTION.
01 MyInterface-Object type MyInterface
01 ev type CORBA-environment.
01 argument1 type CORBA-long
01 ws-exception-ptr POINTER.

01 ws-example1-ptr POINTER.
...

LINKAGE SECTION.
01 ls-exception type CORBA-exception-id.
01 ls-example1 type MyInterface-example1.

...

PROCEDURE DIVISION.
...
call MyInterface-MyOperation” using

MyInterface-Object
argument1
ev

evaluate major in ev
mm when CORBA-NO-EXCEPTION

continue

when CORBA-USER-EXCEPTION
call "CORBA-exception-id" using ev
 mws-exception-ptr
22-28 CORBA V2.2 February 1998

22

jects.
al

in the
l
set address of ls-exception
 to ws-exception-ptr

evaluate ls-exception
when ex-example1

 call "CORBA-exception-value" using ev
ws-example1-ptr

set address of ls-example1
mm to ws-example1-ptr

display "xxxx call failed : "
 "example1 exception raised - "
 "reason code = "
reason IN ls-example1

when ex-example2
....

end-evaluate
call "CORBA-exception-free" using ev

when CORBA-SYSTEM-EXCEPTION
 ...
call "CORBA-exception-free" using ev

end-evaluate
call "CORBA-exception-free" using ev

22.19 Pseudo Objects

Within the CORBA specification are several interfaces that are pseudo-objects. The
differences between a real CORBA object and a pseudo object are as follows:

• There are no servers associated with pseudo objects.

• They are not registered with an ORB.

• References to pseudo-objects are not necessarily valid across computational
boundaries.

Pseudo Objects are used by the programmer as if they were ordinary CORBA ob
Because of this, some implementations may choose to implement some of them as re
CORBA objects.

22.19.1 Mapping Pseudo Objects to COBOL

Pseudo-objects are mapped from the pseudo-IDL according to the rules specified
preceding sections of this specification. There are no exceptions to these genera
mapping rules.
CORBA V2.2 Pseudo Objects February 1998 22-29

22

f

ceive

OL
22.19.2 Pseudo-Object mapping example

This section contains a brief example of the mapping of Pseudo-IDL to COBOL.

The following pseudo IDL:

module CORBA {

pseudo interface ORB
{

string object_to_string(
in Object obj

);
...

}

{
}

would be mapped to COBOL, as follows:

CORBA-ORB-object-to-string (used to translate an object reference into a string)

call “CORBA-ORB-object-to-string” using
 a-CORBA-ORB

a-CORBA-Object
a-CORBA-Environment

a-CORBA-string

22.20 Mapping for Object Implementations

This section describes the details of the OMG IDL-to-COBOL language mapping that
apply specifically to the Portable Object Adapter, such as how the implementation
methods are connected to the skeleton.

22.20.1 Operation-specific Details

This chapter defines most of the details of binding methods to skeletons, naming o
parameter types, and parameter passing conventions. Generally, for those parameters
that are operation-specific, the method implementing the operation appears to re
the same values that would be passed to the stubs.

22.20.2 PortableServer Functions

Objects registered with POAs use sequences of octet, specifically the
PortableServer::POA::ObjectId type, as object identifiers. However, because
COBOL programmers will often want to use strings as object identifiers, the COB
mapping provides several conversion functions that convert strings to ObjectId and
vice-versa:
22-30 CORBA V2.2 February 1998

22
* COBOL
call “PortableServer-ObjectId-to-str” using

a-PortableServer-ObjectId
a-CORBA-Environment

 a-CORBA-string-rtn
....

call ”PortableServer-ObjectId-to-wst” using
a-PortableServer-ObjectId
a-CORBA-Environment

 a-CORBA-wstring-rtn
....

call “PortableServer-str-to-ObjectId” using
a-CORBA-string
a-CORBA-Environment

a-PortableServer-ObjectId-rtn
....

call ”PortableServer-wst-to-ObjectId” using
a-CORBA-wstring
a-CORBA-Environment

a-PortableServer-ObjectId-rtn
....

These functions follow the normal COBOL mapping rules for parameter passing and memory
management. If conversion of an ObjectId to a string would result in illegal characters in the
string (such as a NUL), the first two functions raise the CORBA_BAD_PARAM exception.

22.20.3 Mapping for PortableServer::ServantLocator::Cookie

Since PortableServer::ServantLocator::Cookie is an IDL native type, its type must
be specified by each language mapping. In COBOL, Cookie maps to pointer

* COBOL
01 Cookie is typedef usage POINTER
For the COBOL mapping of the
PortableServer::ServantLocator::preinvoke() and postinvoke()
operations, the Cookie parameter is used as defined
above.ServLoc-preinvoke” using

a-PortableServer-ObjectId
a-PortableServer-POA
a-CORBA-Identifier
a-Cookie

...
call “PortableSrv-ServLoc-postinvoke” using

a-PortableServer-ObjectId
a-PortableServer-POA
a-CORBA-Identifier
CORBA V2.2 Pseudo Objects February 1998 22-31

22

OL,
with a
e

th

 a
is

t
a-Cookie
a-PortableServer-Servant

22.20.4 Servant Mapping

A servant is a language-specific entity that can incarnate a CORBA object. In COB
a servant is composed of a data structure that holds the state of the object along
collection of method functions that manipulate that state in order to implement th
CORBA object.

The PortableServer::Servant type maps into COBOL as follows:

* COBOL
01 PortableServer-Servant is typedef usage pointer

Associated with a servant is a table of pointers to method functions. This table is called
an entry point vector, or EPV. The EPV has the same name as the servant type wi
“__epv” appended (note the double underscore). The EPV for PortableServer-Servant
is defined as follows:

* COBOL
01 PortableServer-ServantBase-epv is typedef.

03 private usage pointer.
03 finalize usage procedure-pointer.

03 default-POA usage procedure-pointer.

* The signatures for the functions are as follows
call “finalize” using

a-PortableServer-Servant
a-CORBA-Environment

call “default-POA” using
a-PortableServer-Servant
a-CORBA-Environment
a-PortableServer-POA

The PortableServer-ServantBase-epv “private” member, which is opaque to
applications, is provided to allow ORB implementations to associate data with each
ServantBase EPV. Since it is expected that EPVs will be shared among multiple
servants, this member is not suitable for per-servant data. The second member is
pointer to the finalization function for the servant, which is invoked when the servant
etherial-ized. The other function pointers correspond to the usual Servant operations.

The actual PortableServer-ServantBase structure combines an EPV with per-servan
data, as shown below:

* COBOL

* (vepv is a pointer to the epv)
01 PortableServer-ServantBase-vepv is typedef pointer.
22-32 CORBA V2.2 February 1998

22

n.

ccess

ed
01 PortableServer-ServantBase is typedef.
03 privateusage pointer.
03 vepv type PortableServer-ServantBase-vepv.

The first member is a pointer that points to data specific to each ORB implementatio
This member, which allows ORB implementations to keep per-servant data, is opaque
to applications. The second member is a pointer to a pointer to a PortableServer-
ServantBase-epv. The reason for the double level of indirection is that servants for
derived classes contain multiple EPV pointers, one for each base interface as well as
one for the interface itself. (This is explained further in thee next section). The name of
the second member, “vepv,” is standardized to allow portable access through it.

22.20.5 Interface Skeletons

All COBOL skeletons for IDL interfaces have essentially the same structure as
ServantBase, with the exception that the second member has a type that allows a
to all EPVs for the servant, including those for base interfaces as well as for the most-
derived interface.

For example, consider the following IDL interface:

// IDL
interface Counter {

long add(in long v al);
};

The servant skeleton generated by the IDL compiler for this interface appears as
follows (the type of the second member is defined further below):

* COBOL
01 POA-Counter is typedef.

03 private usage pointer.
03 vepv type POA-Counter-vepv.

As with PortableServer-ServantBase, the name of the second member is standardiz
to "vepv" for portability.

The EPV generated for the skeleton is a bit more interesting. For the Counter interface
defined above, it appears as follows:

* COBOL
01 POA-Counter-epv is typedef.

03 private usage pointer.
03 add usage procedure-pointer.

Since all servants are effectively derived from PortableServer-ServantBase, the
complete set of entry points has to include EPVs for both PortableServer-
ServantBase and for Counter itself:
CORBA V2.2 Pseudo Objects February 1998 22-33

22

r

, is

g "-
* COBOL
01 POA-Counter-vepv is typedef.

03 base-epv usage pointer.
03 Counter-epvusage pointer.

The first member of the POA-Counter-vepv struct is a pointer to the PortableServer-
ServantBase EPV. To ensure portability of initialization and access code, this membe
is always named "base_epv." It must always be the first member. The second member
is a pointer to a POA-Counter-epv.

The pointers to EPVs in the VEPV structure are in the order that the IDL interfaces
appear in a top-to-bottom left-to-right traversal of the inheritance hierarchy of the
most-derived interface. The base of this hierarchy, as far as servants are concerned
always PortableServer-ServantBase. For example, consider the following
complicated interface hierarchy:

// IDL
interface A {};
interface B : A {};
interface C : B {};
interface D : B {};
interface E : B, C {};
interface F {};
interface G : E, F {

void foo();
};

The VEPV structure for interface G shall be generated as follows:

* COBOL
 01 POA-G-epv is typedef.

03 private usage pointer.
03 foo usage procedure-pointer.

 01 POA-G-vepv is typedef.
03 base-epv usage pointer.
03 A-epv usage pointer.
03 B-epv usage pointer.
03 C-epv usage pointer.
03 D-epv usage pointer.
03 E-epv usage pointer.
03 F-epv usage pointer.
03 G-epv usage pointer.

Note that each member other than the "base-epv" member is named by appendin
epv" to the interface name whose EPV the member points to. These names are
standarized to allow for portable access to these items.
22-34 CORBA V2.2 February 1998

22

to

e

he

h
22.20.6 Servant Structure Initialization

Each servant requires initialization and etherialization, or finalization, functions. For
PortableServer-ServantBase, the ORB implementation shall provide the following
functions:

* COBOL
call “PortableServer-ServantBaseInit” using

PortableServer-Servant
CORBA-Environment

call “PortableServer-ServantBaseFini” using
PortableServer-Servant
CORBA-Environment

These functions are named by appending "Init" and "Fini" to the name of the servant,
respectively.

The first argument to the init function shall be a valid PortableServer-Servant whose
"vepv" member has already been initialized to point to a VEPV structure. The init
function shall perform ORB-specific initialization of the PortableServer-
ServantBase, and shall initialize the "finalize" struct member of the pointed-to
PortableServer-ServantBase-epv to point to the PortableServer-ServantBaseFini()
function if the "finalize" member is NULL. If the "finalize" member is not NULL, it is
presumed that it has already been correctly initialized by the application, and is thus
not modified. Similarly, if the the default-POA member of the PortableServer-
ServantBase-epv structure is NULL when the init function is called, its value is set
point to the -default-POA- function, which returns an object reference to the root
POA.

If a servant pointed to by the PortableServer-Servant passed to an init function has a
NULL "vepv" member, or if the PortableServer-Servant argument itself is NULL, no
initialization of the servant is performed, and the CORBA::BAD_PARAM standard
exception is raised via the CORBA-Environment parameter. This also applies to
interface-specific init functions, which are described below.

The Fini function only cleans up ORB-specific private data. It is the default
finalization function for servants. It does not make any assumptions about where th
servant is allocated, such as assuming that the servant is heap-allocated and trying to
call CORBA-free on it. Applications are allowed to "override" the fini function for a
given servant by initializing the PortableServer-ServantBase-epv "finalize" pointer
with a pointer to a finalization function made specifically for that servant; however,
any such overriding function must always ensure that the PortableServer-
ServantBaseFini function is invoked for that servant as part of its implementation. T
results of a finalization function failing to invoke PortableServer-ServantBaseFini
are implementation-specific, but may include memory leaks or faults that could cras
the application.
CORBA V2.2 Pseudo Objects February 1998 22-35

22

s,

the
If a servant passed to a fini function has a NULL "epv" member, or if the
PortableServer-Servant argument itself is NULL, no finalization of the servant is
performed, and the CORBA::BAD_PARAM standard exception is raised via the
CORBA-Environment parameter. This also applies to interface-specific fini function
which are described below.

Normally, the PortableServer-ServantBaseInit and PortableServer-ServantBaseFini
functions are not invoked directly by applications, but rather by interface-specific
initialization and finalization functions generated by an IDL compiler. For example,
init and fini functions generated for the Counter skeleton are defined as follows:

* COBOL
IDENTIFICATION DIVISION.

PROGRAM ID. POA-Counter-init.
...

PROCEDURE DIVISION USING
a-POA-Counter
a-CORBA-environment

*
* first call immediate base interface init
* functions in the left-to-right order of
* inheritance
*

call “PortableServer-ServantBaseInit” using
a-POA-Counter
a-CORBA-environment

*
* now perform POA_Counter initialization
*

...
END-PROGRAM.

IDENTIFICATION DIVISION.
PROGRAM ID. POA-Counter-fini.
...

PROCEDURE DIVISION USING
a-POA-Counter
a-CORBA-environment

*
* first perform POA_Counter cleanup
*

...

*
* then call immediate base interface fini
* functions in the right-to-left order of
* inheritance
22-36 CORBA V2.2 February 1998

22

 to

ed
*
call “PortableServer-ServantBaseFini” using

a-POA-Counter
a-CORBA-environment

END-PROGRAM.

The address of a servant shall be passed to the init function before the servant is
allowed to be activated or registered with the POA in any way. The results of failing
properly initialize a servant via the appropriate init function before registering it or
allowing it to be activated are implementation-specific, but could include memory
access violations that could crash the application.

22.20.7 Application Servants

It is expected that applications will create their own servant structures so that theycan
add their own servant-specific data members to store object state. For the Counter
example shown above, an application servant would probably have a data member us
to store the counter value:

* COBOL
 01 AppServant is typedef.

03 base type PAO-Counter.
03 value type CORBA-long.

The application might contain the following implementation
of the Counter::add operation:

* COBOL
IDENTIFICATION DIVISION.

PROGRAM ID. app-servant-add.
...

LINKAGE SECTION.
01 a-AppServant type AppServant.

...
PROCEDURE DIVISION USING

a-AppServant
a-CORBA-long
a-CORBA-env

a-CORBA-long-rtn
add a-CORBA-long to value in a-AppServant
move value in a-AppServant to a-CORBA-long-rtn
exit program
.

The application could initialize the servant dynamically as follows:

* COBOL
WORKING-STORAGE SECTION.
01 base-epv type PortableServer-ServantBase-epv.
01 counter-epv type POA-Counter-epv.
CORBA V2.2 Pseudo Objects February 1998 22-37

22

01 counter-vepv type POA-Counter-vepv.
01 my-base type POA-Counter.
01 my-servant type AppServant.

...
* Initialize Base-epv

set private in base-epv to NULL
set finalize in base-epvto NULL
set default-POA in base-epv

to ENTRY “my-default-POA”
...

* Initialize counter-epv
set private in counter-epvto NULL
set add in counter-epv

to ENTRY “app-servant-add”
...

* Initialize counter-vepv
set base-epv in counter-vepv

to address of base-epv
set counter-epv in counter-vepv

to address of counter-epv
...

* Initialize my-base
set private in my-baseto NULL
set vepv in my-base

to address of counter-vepv
...

* Initialize my-servant
set base in my-servant

to address of my-base
set value in my-servantto 0
.

Before registering or activating this servant, the application shall call:

* COBOL
 call “POA-Counter-init” using

my-servant
a-CORBA-environment

If the application requires a special destruction function for my-servant, it shall set the
value of the PortableServer-ServantBase-epv "finalize" member either before or after
calling POA-Counter-init() :

* COBOL
set finalize in base-epv

to ENTRY “my-finalizer-func”

Note that if the application statically initialized the "finalize" member before calling
the servant initialization function, explicit assignment to the "finalize" member as
shown here is not necessary, since the PortableServer-ServantBaseInit() function will
not modify it if it is non-NULL.
22-38 CORBA V2.2 February 1998

22

tubs

vant

ons

22.20.8 Method Signatures

With the POA, implementation methods have signatures that are identical to the s
except for the first argument. If the following interface is defined in OMG IDL:

// IDL
interface example4 {

long op5(in long arg6);
};

a COBOL program for the op5 operation must have the following signature:

* COBOL
IDENTIFICATION DIVISION.

PROGRAM ID. op5.
...

PROCEDURE DIVISION USING
servant
arg6
env

 rtn
...

The Servant parameter (which is an instance of PortableServer-Servant) is the ser
incarnating the CORBA object on which the request was invoked. The method can
obtain the object reference for the target CORBA object by using the POA-Current
object. The env parameter is used for raising exceptions. Note that the names of the
servant and env parameters are standardized to allow the bodies of method functi
to refer to them portably.

The method terminates successfully by executing an EXIT PROGRAM statement
after setting the declared operation return value. Prior to returning the result of a
successful invocation, the method code must assign legal values to all out and inout
parameters.

The method terminates with an error by executing the CORBA-exception-set
operation (described in 5.17.2 Exception Handling Functions) prior to executing an
EXIT PROGRAM statement. When raising an exception, the method code is not
required to assign legal values to any out or inout parameters. Due to restrictions in
COBOL, it must return a legal function value.

22.21 Mapping of the Dynamic Skeleton Interface to COBOL

Refer to the Dynamic Skeleton Interface chapter for general information about the
Dynamic Skeleton Interface (DSI) and its mapping to programming languages.

The following section covers these topics:

• Mapping the ServerRequest Pseudo Object to COBOL

• Mapping the Dynamic Implementation Routine to COBOL
CORBA V2.2 Mapping of the Dynamic Skeleton Interface to COBOL February 199822-39

22

MG

lled by

tine
22.21.1 Mapping of the ServerRequest to COBOL

The pseudo IDL for the Dynamic Skeleton Interface’s ServerRequest is as follows:

module CORBA {
interface ServerRequest {

Identifier operation();
Context ctx();
void arguments(inout NVList parms);
Any set result(any value);
void set except ion(

exception_type major,
any value

);
}

}

The above ServerRequest pseudo IDL is mapped to COBOL, as follows.

operation

This function returns the name of the operation being performed, as shown in the
operation’s OMG IDL specification.

call “CORBA-ServerRequest-operation” using
a-CORBA-ServerRequest
a-CORBA-Environment

m a-CORBA-Identifier

ctx

This function may be used to determine any context values passed as part of the
operation. Context will only be available to the extent defined in the operation’s O
IDL definition (for example, attribute operations have none).

call “CORBA-ServerRequest-ctx” using
a-CORBA-ServerRequest
a-CORBA-Environment

m a-CORBA-Context

arguments

This function is used to retrieve parameters from the ServerRequest and to find the
addresses used to pass pointers to result values to the ORB. It must always be ca
each Dynamic Implementation Routine (DIR), even when there are no parameters.

The caller passes ownership of the parameter’s NVList to the ORB. Before this rou
is called, that NVList should be initialized with the TypeCodes and direction flags for
each of the parameters to the operation being implemented: in, out, and inout
22-40 CORBA V2.2 February 1998

22

ose
List.

. If

t

o
parameters inclusive. When the call returns, the parameter’s NVList is still usable by
the DIR and all in and inout parameters will have been unmarshaled. Pointers to th
parameter values will at that point also be accessible through the parameter’s NV

The implementation routine will then process the call, producing any result values
the DIR does not have to report an exception, it will replace pointers to inout values in
parameters with the values to be returned, and assign parameters to out values in tha
NVList appropriately as well. When the DIR returns, all the parameter memory is
freed as appropriate and the NVList itself is freed by the ORB.

call “CORBA-ServerRequest-argumentsparams” using
a-CORBA-ServerRequest
a-CORBA-NVList
a-CORBA-Environment

set-result

This function is used to report any result value for an operation. If the operation has no
result, it must either be called with a tk-void TypeCode stored in value, or not be
called at all.

call “CORBA-ServerRequest-set-result” using
a-CORBA-ServerRequest
a-CORBA-Any
a-CORBA-Environment

set-exception

This function is used to report exceptions, both user and system, to the client wh
made the original invocation.

call “CORBA-ServerRequest-set-exception” using
a-CORBA-ServerRequest
a-CORBA-exception-type
a-CORBA-any
a-CORBA-Environment

The parameters are as follows:

• The exception-type indicates whether it is a USER or a SYSTEM exception.

• The CORBA-any is the value of the exception (including the exception TypeCode).

22.21.2 Mapping of Dynamic Implementation Routine to COBOL

A COBOL Dynamic Implementation Routine will be as follows:

PROCEDURE DIVISION USING
a-PortableServer-Servant
a-CORBA-ServerRequest
CORBA V2.2 Mapping of the Dynamic Skeleton Interface to COBOL February 199822-41

22

 rely

ture
Such a function will be invoked by the Portable Object Adapter when an invocation is
received on an object reference whose implementation has registered a dynamic
skeleton.

servant is the COBOL implementation object incarnating the CORBA object to which
the invocation is directed.

request is the ServerRequest used to access explicit parameters and report results (and
exceptions).

Unlike other COBOL object implementations, the DIR does not receive a CORBA-
Environment parameter, and so the CORBA-exception-set API is not used. Instead,
CORBA-ServerRequest-set-exception is used; this provides the TypeCode for the
exception to the ORB, so it does not need to consult the Interface Repository (or
on compiled stubs) to marshal the exception value.

To register a Dynamic Implementation Routine with a POA, the proper EPV struc
and servant must first be created. DSI servants are expected to supply EPVs for both
PortableServer-ServantBase and for PortableServer-DynamicImpl, which is
conceptually derived from PortableServer-ServantBase, as shown below.

* COBOL
01 PortableServer-DynamicImpl-epv is typedef.

03 privateusage pointer.
03 invoketype PortableServer-DynamicImplRoutine.
03 primary-interface usage procedure-pointer.

* (Primary-interface signature is as follows ...)
call “primary-interface” using

a-PortableServer-Servant
a-PortableServer-ObjectId
a-PortableServer-POA
a-CORBA-Environment

a-CORBA-RepositoryId-rtn

01 PortableServer-DynamicImpl-vepv is typedef.
03 base_epv usage pointer
03 PortableServer-DynamicImpl-epvusage pointer.

01 PortableServer-DynamicImpl is typedef.
03 private usage pointer.
03 vepv usage pointer.

As for other servants, initialization and finalization functions for PortableServer-
DynamicImpl are also provided, and must be invoked as described in “Servant
Structure Initialization” in

section 5.19.6. REV???
22-42 CORBA V2.2 February 1998

22

e

he

ad to
To properly initialize the EPVs, the application must provide implementations of th
invoke and the primary-interface functions required by the PortableServer-
DynamicImpl EPV. The invoke method, which is the DIR, receives requests issued to
any CORBA object it represents and performs the processing necessary to execute t
request.

The primary-interface method receives an ObjectId value and a POA as input
parameters and returns a valid Interface Repository Id representing the most-derived
interface for that oid.

It is expected that these methods will be only invoked by the POA, in the context of
serving a CORBA request. Invoking these methods in other circumstances may le
unpredictable results.

An example of a DSI-based servant is shown below:

* COBOL
IDENTIFICATION DIVISION.

PROGRAM ID. my-invoke.
...

PROCEDURE DIVISION USING
a-PortableServer-Servant
a-CORBA-ServerRequest

...
END-PROGRAM.

IDENTIFICATION DIVISION.
PROGRAM ID. my-prim-intf.
...

PROCEDURE DIVISION USING
a-PortableServer-Servant
a-PortableServer-ObjectId
a-PortableServer-POA
a-CORBA-Environment
a-CORBA-RepositoryId-rtn

...
END-PROGRAM.

/* Application-specific DSI servant type */
01 MyDSIServant is typedef.

03 base type POA-DynamicImpl.
....
<other application specific data items>
....

01 base-epv type PortableServer-
ServantBase-epv.
01 DynamicImpl-epv type PortableServer-
DynamicImpl-epv.
CORBA V2.2 Mapping of the Dynamic Skeleton Interface to COBOL February 199822-43

22

f
01 DynamicImpl-vepv type PortableServer-
DynamicImpl-vepv.
01 my-servant type MyDSIServant.

...
* Initialize Base-epv

set private in base-epv to NULL.
set finalize in base-epvto NULL.
set default-POA in base-epvto NULL.

...
* Initialize DynamicImpl-epv

set private in DynamicImpl-epvto NULL.
set invoke in DynamicImpl-epv

to ENTRY “my-invoke”.
set primary-interface in DynamicImpl-epv

to ENTRY “my-prim-intf”.
...

* Initialize DynamicImpl-vepv
set base-epv in DynamicImpl-vepv

to address of base-epv.
set PortableServer-DynamicImpl-epv in

DynamicImpl-vepv
to address of DynamicImpl-

epv.
...

* Initialize my-servant
set private IN base IN my-servantto NULL.
set vepv IN base IN my-servant.

to address of DynamicImpl-
vepv.

....

Registration of the my-servant data structure via the PortableServer-POA-set-
servant function on a suitably initialized POA makes the my-invoke DIR function
available to handle DSI requests.

22.22 ORB Initialization Operations

22.22.1 ORB Initialization

The following PIDL specifies initialization operations for an ORB; this PIDL is part o
the CORBA module (not the ORB interface) and is described in Section 7.4, “ORB
Initialization,” on page 7-6.

// PIDL
module CORBA {

typedef string ORBid;
typedef sequence <string> arg_list;
22-44 CORBA V2.2 February 1998

22

uence

d.

B

ect

ORB ORB_init (inout arg_l ist argv, in ORBid orb_identi fier);
};

The mapping of the preceding PIDL operations to COBOL is as follows:

* COBOL
01 CORBA-ORBid is typedef type CORBA-string.

01 CORBA-arg-list-t is typedef type CORBA-string.

01 CORBA-arg-list is typedef.
03 seq-maximumtype CORBA-long.
03 seq-length type CORBA-long.
03 seq-buffer usage POINTER.

[to CORBA-arg-list-t]

 call “CORBA-ORB-init” using
a-CORBA-arg-list
a-CORBA-ORBid
a-CORBA-environment
 a-CORBA-ORB

If an empty ORBid string is used then arg-list arguments can be used to determine
which ORB should be returned. This is achieved by searching the parameter seq
for one tagged ORBid (e.g., -ORBid "ORBid_example”). If an empty ORBid string is
used and no ORB is indicated by the arg-list parameters, the default ORB is returne

Regardless of whether an empty or non-empty ORBid string is passed to ORB_init ,
the argv arguments are examined to determine if any ORB parameters are given. If a
non-empty ORBid string is passed to ORB_init , all -ORBid parameters in the argv are
ignored. All other -ORB<suffix> parameters may be of significance during the OR
initialization process.

22.23 Operations for Obtaining Initial Object References

The following PIDL specifies the operations (in the ORB interface) that allow
applications to get pseudo object references for the Interface Repository and Obj
Services. It is described in detail in Section 7.6, “Obtaining Initial Object References,”
on page 7-10.
CORBA V2.2 Operations for Obtaining Initial Object References February 199822-45

22

e
// PIDL
module CORBA {

interface ORB {
 typedef str ing ObjectId;
 typedef sequence < ObjectId> ObjectIdList;

exception InvalidName {};
 ObjectIdList list_initial_services ();
 Object resolve_initial_references (in ObjectId identif ier)

raises (InvalidName);
} ;

} ;

The mapping of the preceding PIDL to COBOL is as follows :

* COBOL
01 CORBA-ORB-ObjectId is typedef

type CORBA-string.

01 CORBA-ORB-ObjectIdList-t is typedef
type CORBA-string.

01 CORBA-ORB-ObjectIdList is typedef.
03 seq-maximumtype CORBA-long.
03 seq-length type CORBA-long.
03 seq-buffer usage POINTER.

[to CORBA-ORB-ObjectIdList-t]

01 CORBA-ORB-InvalidName is typedef.
03 filler[implementation defined]

 call “CORBA-ORB-list-initial-service” using
a-CORBA-ORB
a-CORBA-environment

a-CORBA-ORB-ObjectIdList-rtn

call “CORBA-ORB-resolve-initial-refe” using
a-CORBA-ORB
a-CORBA-ORB-ObjectId
a-CORBA-environment

a-CORBA-Object-rtn

22.24 ORB Supplied Functions for Mapping

22.24.1 Memory Management routines

CORBA-alloc

The ORB supplied CORBA-alloc routine may be used to dynamically allocate storag
for any of the COBOL data types.
22-46 CORBA V2.2 February 1998

22

et
call “CORBA-alloc” using
CORBA-unsigned-long

m POINTER

CORBA-free

The ORB supplied CORBA-free routine may be used to free storage that has
previously been dynamically allocated by either the user or the ORB.

call “CORBA-free” using
POINTER

22.25 Accessor Functions

22.25.1 CORBA-sequence-element-get and CORBA-sequence-element-s

The following ORB supplied routines may be used to get or set specific elements
within a sequence.

CORBA-sequence-element-get

call “CORBA-sequence-element-get” using
CORBA-sequence
CORBA-unsigned-long

m element-type

CORBA-sequence-element-set

call “CORBA-sequence-element-set” using
CORBA-sequence

CORBA-unsigned-long Specifies the number of bytes of storage to be
allocated.

POINTER Returns address of allocated storage.

POINTER Address of allocated storage that is to be deallocated.

CORBA-sequence The CORBA-sequence from which a specific element
is to be extracted.

CORBA-unsigned-long An index that identifies the particular element required
(1 for the 1st, 2 for the 2nd, etc.).

element-type An area into which the requested element is to be
placed.
CORBA V2.2 Accessor Functions February 1998 22-47

22

h

CORBA-unsigned-long
melement-type

22.25.2 CORBA-string-get and CORBA-string-set

The following ORB supplied accessor routines may be used to handle variable lengt
null terminated strings.

CORBA-string-get

call “CORBA-string-get” using
CORBA-unbounded-string
CORBA-unsigned-long

mCOBOL-text

CORBA-string-set

call “CORBA-string-set” using
CORBA-unbounded-string
CORBA-unsigned-long
COBOL-text

CORBA-sequence The CORBA-sequence into which a specific element is
to be placed.

CORBA-unsigned-long An index that identifies the particular element
(1 for the 1st, 2 for the 2nd, etc.).

element-type The specific element that is to be inserted into the
CORBA-sequence.

CORBA-unbounded-string A pointer to a null terminated string.

CORBA-unsigned-long The length of the COBOL text area into which the text
is to be inserted. The returned value will be truncated (if
larger than the return area) or space padded (if smaller
than the return area).

COBOL-text An area into which the requested text is to be placed.

CORBA-unbounded-string An unintialized pointer into which a null terminated string
will be placed by this routine. This routine will use
CORBA-alloc to allocate the required storage.

CORBA-unsigned-long The length of the COBOL text area from which the text is
to be extracted. Trailing spaces will be stripped off.

COBOL-text An area from which the requested text is to be extracted.
22-48 CORBA V2.2 February 1998

22

h

22.25.3 CORBA-wstring-get & CORBA-wstring-set

The following ORB supplied accessor routines may be used to handle variable lengt
null terminated wstrings.

CORBA-wstring-get
call “CORBA-wstring-get” using

CORBA-unbounded-wstring
CORBA-unsigned-long

mCOBOL-wchar-values

CORBA-wstring-set

call “CORBA-wstring-set” using
CORBA-unbounded-string
CORBA-unsigned-long
COBOL-wchar-values

22.26 Extensions to COBOL 85

The following extensions to COBOL 85 are mandatory within this submission:

• Untyped pointers and pointer manipulation

• Floating point

The following extensions to COBOL 85 are optional within this submission:

CORBA-unbounded-wstring A pointer to a null terminated wstring.

CORBA-unsigned-long The length of the area into which the array of wchars is
to be inserted. The returned value will be truncated (if
larger than the return area) or padded (if smaller than
the return area).

COBOL-wchar-values An area into which the requested COBOL wchars are to
be placed.

CORBA-unbounded-wstring An unintialized pointer into which a null terminated
wstring will be placed by this routine. This routine
will use CORBA-alloc to allocate the required
storage.

CORBA-unsigned-long The length of the COBOL area from which the
wchars are to be extracted.

COBOL-wchar-values An area from which the requested wchars are to be
extracted.
CORBA V2.2 Extensions to COBOL 85 February 1998 22-49

22

ady

s.

 will

es.
• Constants

• Typedefs

22.26.1 Untyped Pointers and Pointer manipulation

Untyped Pointers

COBOL 85 does not define an untyped pointer data type. However, the following
syntax has been defined within the next major revision of COBOL 85 and has alre
been implemented in current COBOL compilers.

[USAGE IS] POINTER

No PICTURE clause allowed.

22.26.2 Pointer Manipulation

COBOL 85 does not define any syntax for the manipulation of untyped pointers.
However, the following syntax has been defined within the next major revision of
COBOL 85 and has already been implemented in many current COBOL compiler

22.26.3 Floating point

Currently COBOL 85 does not support floating point data types. There is an implicit
use of floating point within this mapping. The OMG IDL floating-point types are
specified as follows within CORBA:

• Float represents single precision floating point numbers.

• double represents double-precision floating point numbers.

• long double represents long-double-precision floating point numbers.

The above IDL types should be mapped to the native floating point type. The ORB
then be responsible for converting the native floating point types to the Common Data
Representation (CDR) transfer syntax specified for the OMG IDL floating-point typ

{ADDRESS OF identifier }

SET {ADDRESS OF identifier} TO {identifier }

zzzzz {identifier zzzzzzzzzz } {NULL }

{NULLS }

{identifier }

SET { identifier{UP} zz } BY {integer }

zzzzzzzzz {DOWN} {LENGTH OF identifier }
22-50 CORBA V2.2 February 1998

22

rm

ile

 same
22.26.4 Constants

Currently COBOL 85 does not define any syntax for COBOL constants. The next
major revision of COBOL 85 defines the syntax below for this functionality.

To ensure that a complete mapping of CORBA IDL can be accomplished within a
COBOL application, it will be necessary to map CORBA IDL constants to some fo
of COBOL constant.

>>CONSTANT constant-name IS literal
integer

22.26.5 Typedefs

Currently COBOL 85 does not define any syntax for COBOL typedefs. The next major
revision of COBOL 85 defines the syntax below for this functionality.

A typedef is defined using the IS TYPEDEF clause on a standard data entry. It
identifies it as a typedef and will have no storage associated with it. It is later used in
conjunction with the TYPE clause to identify a user defined data type. The following
is an example of this syntax.

* (defines a typedef)
01 my-message-area-type IS TYPEDEF.

 02 ws-length USAGE pic 9(4) comp.
 02 ws-text USAGE pic x(40).

.....

* (Using types in storage definitions)
01 ws-message1 TYPE my-msg-area-type.
01 ws-message2 TYPE my-msg-area-type.

.....

* (Manipulate data as required)
PROCEDURE DIVISION.
.....

move 12 TO ws-length IN ws-message1.
move msg1 TO ws-text IN ws-message1.

.....

Using COBOL COPY files instead of Typedefs

Because COBOL typedefs are an optional part of this language mapping, an alternative
to the functionality provided by them is part of this COBOL language mapping. Wh
it is recognized that support for COBOL Typedefs is very desirable, it must also be
recognized that such support is not yet available from some of the older COBOL
compilers deployed on some platforms. It is highly recommended that, if at all
possible, COBOL Typedefs should be used because no other alternative offers the
flexibility.
CORBA V2.2 Extensions to COBOL 85 February 1998 22-51

22

les

s.

pe,

For compilers that do not support COBOL Typedefs, libraries of COBOL COPY fi
will be used instead. Each library will contain a set of COPY files for each interface,
and each individual COPY file will act as a type template for defined IDL data type
When used in conjunction with the COPY REPLACING syntax, the COPY files may
be used to create specific instances of types.

How do libraries of COBOL COPY files containing IDL data type templates work?

For basic types, such as long, a COPY file called long will be supplied as part of a
CORBA library and its contents would resemble the following:

long-type usage (local long type).

The user would use the above long copy file to create instances of the basic long ty
as follows:

WORKING STORAGE section.
...

01 COPY LONG IN CORBA
REPLACING long-type WITH ws-long-1.

01 COPY LONG IN CORBA
REPLACING long-type WITH ws-long-2.

...

Each specific IDL file will result in a library of COPY files for all the types specified
within the interface file.

For example, the following IDL:

// IDL
interface Example {

struct {
long a_long_value;
float a_float_value;

} struct_1;
...
struct {

struct_1 a_struct_1_value;
long another_long;

} struct_2;
};

Would result in COPY files called struct-1 and struct-2 being created in a library
called Example.

The following illustrates the contents of the struct-1 copy file:

struct-1-type.
05 COPY long IN corba

REPLACING long-type WITH a-long-value.
22-52 CORBA V2.2 February 1998

22

in a
This
05 COPY float IN corba
REPLACING float-type WITH a-float-value.

One problem with COPY file templates is that it is not possible to embed a struct
template within another struct because of level number resolution problems. With
user application, it will only be possible to create level 01 instances of structures.
is resolved by generating the actual definitions all the way down to basic types within
each generated COPY file. From the above IDL, the following example of struct_2
illustrates this:

struct-2-type
05 struct-1-value.

07 COPY long IN corba
REPLACING long-type WITH a-long-value.

07 COPY float IN corba
REPLACING float-type WITH a-float-value.

05 COPY long IN corba
REPLACING long-type WITH another-long.

22.27 References

COBOL 85ANSI X3.23-1985 / ISO 1989-1985
CORBA V2.2 References February 1998 22-53

22
22-54 CORBA V2.2 February 1998

	Mapping of OMG IDL to Cobol
	22.1 Overview
	22.2 Mapping of IDL to COBOL
	22.2.1 Mapping of IDL Identifiers to COBOL

	22.3 Scoped Names
	22.4 Memory Management
	22.5 Mapping for Interfaces
	22.5.1 Object References
	22.5.2 Object References as Arguments
	22.5.3 Inheritance and Interface Names

	22.6 Mapping for Attributes
	22.7 Mapping for Constants
	22.8 Mapping for Basic Data Types
	22.8.1 Boolean
	22.8.2 enum
	22.8.3 any

	22.9 Mapping for Fixed Types
	22.10 Mapping for Struct Types
	22.11 Mapping for Union Types
	22.12 Mapping for Sequence Types
	22.12.1 Bounded Sequence
	22.12.2 Unbounded Sequence
	22.12.3 Sequence Element Accessor Functions
	22.12.4 Nested Sequences
	22.12.5 Sequence parameter passing considerations

	22.13 Mapping for Strings
	22.13.1 How string is mapped to COBOL
	22.13.2 How wstring is mapped to COBOL
	22.13.3 string / wstring argument passing considerations

	22.14 Mapping for Arrays
	22.15 Mapping for Exception Types
	22.16 Argument Conventions
	22.16.1 Implicit Arguments to Operations
	22.16.2 Argument passing Considerations
	22.16.3 Summary of Argument/Result Passing

	22.17 Memory Management
	22.17.1 Summary of Parameter Storage Responsibilities

	22.18 Handling Exceptions
	22.18.1 Passing Exception details back to the caller
	22.18.2 Exception Handling Functions
	22.18.3 Example of how to handle the CORBA-Exception parameter

	22.19 Pseudo Objects
	22.19.1 Mapping Pseudo Objects to COBOL
	22.19.2 Pseudo-Object mapping example

	22.21 Mapping of the Dynamic Skeleton Interface to COBOL
	22.21.1 Mapping of the ServerRequest to COBOL
	22.21.2 Mapping of Dynamic Implementation Routine to COBOL

	22.22 ORB Initialization Operations
	22.23 Operations for Obtaining Initial Object References
	22.24 ORB Supplied Functions for Mapping
	22.24.1 Memory Management routines

	22.25 Accessor Functions
	22.25.1 CORBA-sequence-element-get and CORBA-sequence-element-set
	22.25.2 CORBA-string-get and CORBA-string-set
	22.25.3 CORBA-wstring-get & CORBA-wstring-set

	22.26 Extensions to COBOL 85
	22.26.1 Untyped Pointers and Pointer manipulation
	22.26.2 Pointer Manipulation
	22.26.3 Floating point
	22.26.4 Constants
	22.26.5 Typedefs

	22.27 References

