CORBAOverview

The Common Object Request Broker Architecture (BARis structured to allow

integration of a wide variety of object systems. The motivation for some of the features

may not be apparent at first, but as we discuss the range of implenmes)tptidicies,
optimizations, and usages we expect to encompass, the value aoétiwsliftly becomes

more clear.

Contents

This chapter contains tHellowing sections.

Section Title Page
“Structure of an Object Request Broker” 2-2
“Example ORBs” 2-11
“Structure of a Client’ 2-12
“Structure of an Object Implementation” 2-13
“Structure of an Object Adapter” 2-15
“CORBA Required Object Adapter” 2-17
“The Integration of Foreign Object Systems” 2-18

CORBA V2.2 ebruary 1998

2-1

2.1 Structure of an Object Request Broker

Figure 2-1 on page 2-2 shows a request being sent by a client toeah obj
implementation. The Client is the entity that wishes to perform an operation on the
object and the Gject Implementation is the code and data that actually implements the
object.

Client) @bject Implementation

RESIES

ORB

Figure 2-1 A Request Being Sent Through the Object Request Broker

The ORB is respnsible for all of the mechanisms required to find the object
implementation for the request, to prepare the object implementation to receive the
request, and to communicate the data making up the rediesinerface the client
sees is completely independent of where the object is located prdgaamming
language it is implementad, or any other aspect which is not reflected in thgct's
interface.

Figure 2-2 on page 2-3 shows the structure of an individbf@dd Request Broker
(ORB). The interfaces to the ORB asleown bystriped oxes, and the arrows indicate
whether the ORB is called or performs an up-call across the interface.

2-2 CORBAV2.2 February 1998

Client Object Impl ementation

Z
Dynamic IDL ORB Static IDL | | Dynamic Object
Invocation Stubs Interface Skeleton Skeleton Adapter
ORB Core
AN Interface identical for all ORB implementations .
Up-call interface

w277 There may be multiple object adapters
There are stubs and a skeleton for each object type * Normal call interface
| ORB-dependentinterface

Figure 2-2 The Structure of Object Request Interfaces

To make a request, the Client can use the Dynamic Invocation interface (the same
interface independent of the target objentterface) or an OMG IDL stub (the specific
stub depending on the interface of the target obj@t®. dient can also directly
interact with the ORB for some functions.

The Objecimplementation receives a request as an up-call either through the OMG
IDL generated skeleton or through a dynamic skeleton. The Object Implementation
may call the Object Adapter and the ORB wiitecessing a request or at other times.

Definitions of the interfaces to objects can be definetivimm ways. Interfaces can be
defined statically in an interface definititenguage, called the OMG Interface

Definition Language (OMG IDL). This language aefs the types of objects according

to the operations that may be performed on them and the parameters to those
operations. Alternatively, or in addition, interfaczs be added to an Interface
Repository service; this service represents the components of an interface as objects,
permitting run-time access to thesemponents. In any ORB implementation, the
Interface DefinitionLanguage (which may be extended beyond itendief in this
document) and the Interface Repository have equivalent expressive power.

CORBA V2.2 Structure of an Object Request Broker February 1998 2-3

2-4

The clientperforms a request by having access to an Object Reference for an object
and knowing the type of the object and the desigeration to be performed. The

client initiates the request byalting stub routines that are specific to the object or by
constructing the request dynamically (see Figure 2-3 on page 2-4).

Client

Invocation

ORB Core

AN - Interface identical for all ORB implemen tations

There are stubs and a skeleton for each object type
| ORB-dependent interface

Figure 2-3 A Client Using the Stub or Dynamic Invocation Interface

The dynamic and stuibterface for invoking a request satisfy the same request
semanticsand thereceiver of the message cannot tell how the requastinvoked.

The ORB locateshe appropriate implementati@mode transmits parameters, and
transfers control to the Object Implemeitatthrough an IDL skeleton or a dynamic
skeleton (see Figure 2-4 on page 2-5). Skeletonspeific to the interfacand the
object adapter. In performing the request, the objeptementation may obtain some
services from the ORB through the Object Adapter. When the request is complete,
control and output values are returned todhent.

CORBAV2.2 February 1998

Object Implementation

Z

Object
Adapter

ORB Static IDL | | Dynamic
Interface Skeleton Skeleton

ORB Core

L1

Interface identical for all ORB implemen tations .

Up-call interface
There may be multiple object adapters
There are stubs and a skeleton for each object type ‘ Normal c all interface

ORB-dependent interface
Figure 2-4 An Object Implementation Receiving a Request

The (bject Implementation may choose which Object Adapter to use. This decision is
based on what kind of services the Objaeplementabn requires.

Figure 2-5 on page 2-6 shows hawerfaceand implementatioinformation is made

available to clients and object implementatiofise inerface is defined in OMG IDL
and/or in the InterfacReposiory; the deihition is used to generate the client Stubs
and the objectmplemenétion Skeletons.

CORBA V2.2 Structure of an Object Request Broker February 1998 2-5

2-6

IDL

Definitions Installation

Implementation

Interface
Repository

Implementation
Repository

Stubs Skeletons

Client) @bject Implementation

Figure 2-5 Interfaceand InplementatiorReposdiories

The objectimplementaibn information is provided at installation time and is stored in
the ImplementatiorRepostory for use during request delivery.

2.1.1 Object Request Broker

In the architecture, the ORB is not required to be implemented as a single component,
but rather it is defined by its interface®sy ORB implementation that provides the
appropriate interface is acceptabléne inerface is organized into three categories:

1. Operations that are the same for all ORB implementations
2. Operations that are specific to particular types of objects
3. Operations that are specific to particular styles of object implementations

Different ORBs may make quite different implementation choices, and, together with
the IDL compilers, repositories, and various Object Adapters, provide a set of services
to clientsandimplementations of objects that have different properties and qualities.

There may be multiple ORB implementations (also described as multiple ORBSs) which
have different representations for object references and different mepagariming
invocations. It may be possible for a client to simultaneously have access to two object

CORBAV2.2 February 1998

2

references managed bifferent ORB implementations. When two ORBs etended
to work together, those ORBs must be abléigiinguish their object references. It is
not the responsibility of the client to do so.

The ORB @re is that part of the ORB that provides the basic representation of objects
and communication of requests. CORBA is designed to support different object
mechanisms, and it does so by structuring the ORB with components above the ORB
Core, which provide interfaces that can mask the differences between ORB Cores.

2.1.2 Clients

A client of an object has access to an object reference for the object, and invokes
operations on the object. A client knows only the logical structure of the object
according to its interface and experiences the behavior of the object through
invocations. Although wevill generally consider a client to be a program or process
initiating requests on an object, it is important to recognize that something is a client
relative to a particular object. For example, the implementatianefobject may be a
client of other objects.

Clients generallysee objects and ORB interfaces through the perspective of a language
mapping, bringing the ORB right up to the programmer’s level. Clients are maximally
portable and should be able to workheut source changes on any ORB that supports
the desired language mapping with any object instance that implements the desired
interface. Clients have no knowledge of the implementation of the object, which object
adapter is used by the implementation, or which ORB is used to access it.

2.1.3 Object Implementations

An object implementatioprovides the semantics of the object, usually by defining
data for the object instwe and code for the object’s methods. Often the
implementation will use other objects or additional software to implement the behavior
of the object. In some cases, the primary function of the object is to have side-effects
on other things that are not objects.

A variety of object implementations can be supported, including separate servers,
libraries, a program per method, an encapsulated application, an object-oriented
database, etc. Through the use ddiional object adapters, it is possiblestapport
virtually any style of object implementation.

Generally, object implementations dot depend on the ORB or how the client invokes
the object. Object implementations may select interfaces to GipBrdienservices
by the choice of Object Adapter.

CORBA V2.2 Structure of an Object Request Broker February 1998 2-7

2.1.4 Object References

An Object Reference is thieformation needed to specify an object within an ORB.
Both clients and objedétmplementationdiave an opaque notion of object references
according to the language mapping, and thus are insulatiedthe actual
representation of them. Two ORB implementations méfedin their choice of Object
Reference representations.

The representation of an object reference handeddieat is only valid for the
lifetime of thatclient.

All ORBs must provide the sameniguage mapping to an object refereifgsually
referred to as an Object) for a particular programnamguage. Thigpermits a
program written in garticularlanguage to access object referencespetident of the
particular ORB.The language mappingay also provide additional ways to access
object references in a typeday for the convenience dtie programmer.

There is aistinguished object reference, guaranteed to be different &lbobject
references, that denotes no object.

2.1.5 OMG Interface Defition Language

The OMG Interface Dehition Language (OMG IDL)defines the types of objects by
specifying their interfaes. Aninterface consists of a set of named operatamsthe
parameters to those operations. Note #ithiough IDL provides the conceptual
frameworkfor describing the objects manipulated by the ORB, it is not necessary for
there to be IDL source code available for the ORB to work. As long as the equivalent
information is available in the form of stub routines or a run-time interface repository,
a particular ORB may be able to function correctly.

IDL is the means by which a particular object implementation tells its potential clients
what operations are availabded how they should be invokedo the IDL

definitions, it is possible to map CORBA objects into particular programming
languages or object systems.

2.1.6 Mapping of OMG IDL to Programming Languages

Different object-oriented or non-object-oriented programming languages may prefer to
access CORBA objects in different ways. For object-oriented languages, it may be
desirable to see CORBA objects as programminguage objects. Even for non-
object-oriented languages, it is a good idea to hide the exact ORB raptieseof the
object reference, method names, etc. A particular mapping of OMG IDL to a
programming language should be the same for all ORBementatios. Language
mapping includes definition of the language-specific data tgpdsprocedure

interfaces to access objects through the ORB. It includes the structure of the client stub
interface (not required for object-oriented languages), the dynamic invocation
interface, the implementation skeleton, the object adapters, and the direct ORB
interface.

CORBAV2.2 February 1998

2

A language mapping also defines the interaction between object invocations and the
threads of control in the client or implementation. The most common mappings
provide synchronousalls, in that the routine returmghenthe object operation
completes. Additional mappings may be provided to allow a call ioibated and
control returned to the program. In such cases, additional language-specific routines
must beprovided to synchronize the program’s threads of control with the object
invocation.

2.1.7 Client Stubs

For the mapping of a non—object-oriented language, there will be a pragrgm

interface to the stubs for each interface type. Generally, the stubs will present access to
the OMG IDL-defined oprations on ambject in a way that is easy for programmers to
predict once they amamiliar with OMG IDL andthe language mapping for the

particular programminganguage. The stubs make calls on the rest of the ORB using
interfaces that are private to, and presumably optimized for, the particular ORB Core.
If more than one ORB is available, there may be different stubs corresponding to the
different ORBs. In this case, it is necessary for the ORB and language mapping to
cooperate to associate the correct stubs with the particular object reference.

Object-oriented programmingriguages, such as C++ and &htalk, donot require
stub interfaces.

2.1.8 Dynamic Invocation Interface

An interface is also available that allows the dynamic construction of object
invocations, that is, rather thaalling a stub routine that is specific to a particular
operation on a particular object, a client may specify the object toviokdd, the

operation to be performed, and the set of parameters for the operation through a call or
sequence of calls. The client coahist sypply information about the operation to be
performed and the types of the parameters being passed (perhaps obtaining it from an
InterfaceRepostory or other run-time sourceJhe nature ofthe dynamic invocation
interface may vary substantially froome programming language mapping to another.

2.1.9 Implementatioskeleton

For aparticular laguage mapping, and possibly depending on the objeqitad there

will be an interéce to the methods that implement each type of objectintadace

will generally be an up-call interface, in that the object implementation writes routines
that conform to the interface and the ORB calls them through the skeleton.

The existence of a skeleton does not imply the existence of a corresponding client stub
(clients can also make requests via the dynamviodationinterface).

It is possible to write an object adapter tHaés not use skeletons to invoke
implementation methods. For example, it may be possible to create implementations
dynamically for languages such @malltalk.

CORBA V2.2 Structure of an Object Request Broker February 1998 2-9

2.1.10 Dynamic Sketlen Interface

An interface is availablerhich allows dypamichandling of object invocations. That is,
rather than being accessed through a skeleton that is specific to a particular operation,
an object’'s implementation is reached thgh aninterface that provides access to the
operation name and parameters in a manner analogous to the client side’s Dynamic
Invocation Interface. Purelstatic knowledge of thos@arameters may be used, or

dynamic knowledge (perhaps determined through an Interface Repository) may be also
used, todetermine the parameters.

The mplementation code must provide descriptions of all the operaticameters to

the ORB, and the ORB provides the values of any ipauameters for use in

performing the operation. The implementation code provides the valey afutput
parameters, or an exception, to the ORB after performing the operaiemature of

the dynamic skeleton interface may vary substantially from one programming language
mapping or object adapter to another, but will typically be an up-call interface.

Dynamic skeletons may bevioked both through client stubs and tingb the dynamic
invocation interface; either style of client request construction interface provides
identical results.

2.1.11 Object Adapters

An object adapter is therimary way that an olgict implementation accesses services
provided by the ORB. There are expected to be a few object adapters that will be
widely available, with interfaces that are appropriate for specific kinds of objects.
Services provided by the ORB through an Object Adapter often include: generation
and interpretation of objeceferences, method invocation, security of interactions,
object and implementation agdition and deactivation, mapping object references to
implementations, and registration of implementations.

The wide range of lgect granularities,ifetimes, policies, implement&in styles, and
other properties make it difficult for the ORBof@ to provide a single interface that is
convenient and dffient for all objects. Tus, through Object Adapters, it is possible
for the ORB to target particular groups of objaaplementaibns that have similar
requirements with interfaceailored tothem.

2.1.12 ORB Interface

The ORBInterface is the interface that goes directly to the ORB which is the same for
all ORBs and does not depend on the object&rface or object adaptBecause most

of the functionality of the ORB is provided through the object adapter, stubs, skeleton,
or dynamic invocation, there are only a feperations that are common across all
objects. These @pations are useful to both cliersisd mplementations of objects.

2-10 CORBAV2.2 February 1998

2.1.13 Interface Repository

The Interface Repository is a service tipabvides persistent objects that represent the
IDL information in a form available at run-tim&he InterfaceRepostory information
may be used by the ORB to perform requests. Moreover, usingftren@tion in the
InterfaceReposdiory, it is possible for a program to encounter an object whose
interfacewas not known whethe progranwas comged, yet, be able to determine
what operations are valid on the object and make an invocation on it.

In addition to its role in the functioning of the ORB, the Interface Repository is a
common place to store additional information associated with interfaces to ORB
objects. For example, debuggiingormation, libraries of stubs or skeletons, routines
that canformat orbrowseparticular kinds of objects, etc., might be associatihd the
InterfaceRepostory.

2.1.14 Implementation Repository

The Inplementation Repository contains information théves the ORB to locate
and activatemplementations of object<hough most of the information in the
Implementation Repository is specific to an ORB or operating environment, the
Implementation Repository is the conventional place for recordingistmtmation.
Ordinarily, installation of implementations and control of policies related to the
activationand execution of objedmplementations islone through perations on the
Implementation Repository.

In addition to its role in the functioning of the ORB, the Implementation Repository is
a common place to store additional information associatedimjttementaibns of

ORB objects. For example, debuggindoirmation, administrative controlesource
allocation, security, etc., might be associated with the ImplementationsReyy.

2.2 Example ORBs

There are a wideariety of ORB implementations possible within the Common ORB
Architecture. his section will illustrate some of the differesptions. Note that a
particular ORB might supporhultiple optionsand protocols for communication.

2.2.1 Client- and Implementation-resident ORB

If there is a suitable communication mechanism present, an ORB c¢arpleenented
in routines resident in the clients aimiplementations. The stubs in the client either
use a location-transpareli®C meclanism or directly access aclation service to
establish communication with the implementationsd€ linked with the
implementation is responsible feetting up apropriate databases for use by clients.

CORBA V2.2 Example ORBs February 1998 2-11

2.2.2 Server-based ORB

To centralize the management of the ORB, all cliants$ implementations can
communicate with one or more servers whose job it is to route requests from clients to
implementations. The ORB could be a normal program as far asmtieslying

operating system is concerned, and normal IPC could be used to communicate with the
ORB.

2.2.3 System-based ORB

To enhance security, robustness, and performance, the ORB could be provided as a
basic service of the underlying operating system. Object references could be made
unforgeable, reducing the expense of authentication on each regeestise the
operating system coukhow thelocationand structure of clients anshplementations,

it would be possibldéor a variety of optimizations to be implemented, éxample,
avoiding marshallingvhen both are othe same machine.

2.2.4 Library-based ORB

For objects that are light-weight and whose implementations can be shared, the
implementation might actually be in a library. In this case, the stubs could be the actual
methods. This assumes that it is possible for a cliergrpm to get access to the data

for the objects and that the implementation trusts the atiento damage the data.

2.3 Structure of a Client

A client of an object has an object reference that refers to that object. An object
reference is a token that may be invoked or passed as a parameter to cati@mvon

a different object. Invocation of an object involves specifying the object to beddyok
the operation to be performed, and parameters to be given toehatiop or returned
from it.

The ORB managethe control transfer and data tréersto the object implementation
and back to the client. In the event that the ORB cannot complete the invocation, an
exception response is provided. Ordinarily, a client calls a routine in its program that
performs the invocation and returns when the operation is complete.

Clients access object-type-specific stubs as library routines in their program (see
Figure 2-6 on page 2-13). Thdient program thus sees routines callable in the normal
way in its programming language. All implementations will provide a language-
specific data type to use to refer to objects, oftenmayoe pointer. The client then
passes that object reference to the stub routingsttate an invocationThe stubs

2-12 CORBAV2.2 February 1998

have access to the object reference representatiomtzndct with the ORB to
perform the invocation. (See the C Language Mapping chapter for additional, general
information on langage mapping of object references.)

-

Client Program)

Language-dependent object references

ORB object references

Dynamic Invocation Stubs for Stubs for

Interface Interface A Interface B

-

J

Figure 2-6 The Stucture of a Typical Client

An alternative set of library code is available to perform invocations on objects, for
example when the objeatas notdefined at compile time. In that case, the client
program provides additional information to name the type of the object and the method
being invoked, and performs a sequence of calls to specify the paraaratargiate

the invocation.

Clients most commonly obtain object references by receiving them as output
parameters from invocations on other objects for which they have references. When a
client is also an implementation, it receives object references as input parameters on
invocations to objects it implements. An object reference can also be converted to a
string that can be stored in files or preserved or communicatedfbyedt means and
subseqently turned back into an object reference by the ORBpratuced the string.

2.4 Structure of an Object Implementation

An object implementatioprovides the actual state and behavior of an objdus.
objectimplemenation can be structured in a variety of ways. Besides defining the
methods for the operations themselves,raplémentation will usually define

CORBA V2.2 Structure of an Object Implementation February 1998 2-13

2-14

procedures foactivatingand deactiating objects and willise other objects or non-
object facilities to make the objestate persistent, to contratcess to the object, as
well as to implement the methods.

The object implementation (see Figure 2-7 on page 2-14) interdthstine ORB in a
variety of ways toestablish its identity, to create new objeetsd to obtain ORB-
dependent services. primarily does this via access to an Object Adapter, which
provides an interface to ORB services that is convenient for a particular style of object
implementation.

Object Implementation

~

Methods for
Interface A

© Object data

Skeleton for
Interface A

Dynamic Object adapter
Skeleton routines

/

Figure 2-7 The Stucture of a Typical Object Implementatio

Because of the range of possible objegtlementations, it is difficult to be definitive
about how an object implementation is structured. See the chapters on the Portable
Object Adapter.

When an inveation occurs, the ORB Core, object adapter, and skeletongarthat a

call is made to the appropriate method of the implementation. A parameter to that
method specifies the object being invoked, which the method can use to locate the data
for the object. Additional parameters are supplied according to the skeletoitiatef

When the method is complete, it returns, causing output parameters or exception
results to be transmittelshck to the client.

CORBAV2.2 February 1998

2

When a new object isreated, the ORB may be notified so that it knows where to find
theimplemenation for that object. Usually, tHenplementaibn also registers itself as
implementing objects of a particular interég and specifies how start up the
implementation if it is not already running.

Most object implementains provide their behavior usifgcilities in addition to the

ORB and ®ject adapter. For example, atigh the Portable ject Adapter provides
some persistent data associated with an object (its OID or Object ID), that relatively
small amount of data is typically used as an identifier for the actual object data stored
in a storage service of the object implementatiehsosing. Vith this structure, it is

not only possible for different object implementations to use the same storage service,
it is also possible for objects to choose the service that is most appropriate for them.

2.5 Structure of an Object Adapter

An object adapter (see Figure 2-8 on page 2-16) is the primary means for an object
implementation to access ORB services such as object referereratim An object
adapter exports a public interface to the object implementatittha private interface

to the skeleton. It is built on a private ORB-dependetarface.

Object adapters are responsible for the following functions:
» Generation and interpretation of object references
* Method invocation
» Security of interactions
» Object and implementatioactivation and deactivation
» Mapping object references to the corresponding object implementations
* Registration of implementations

These functions are performed using the ORB Core andditiamal components
necessary. Often, an object adapter will maintain its state to acemplish its tasks.
It may be possible for a particular object adapter to delewaeor more ofts
responsibilities to the @e upon which it is aestructed.

CORBA V2.2 Structure of an Object Adapter February 1998 2-15

2-16

o

~

Object Implementation

Interface A Interface B
Methods Methods

/

Dynamic Interface A Interface B Obiect
Skeleton Skeleton jec
Skeleton Adapter
Interface
ORB Core

Figure 2-8 The Stucture of a Typical Object Adapte

As shown in Figure 2-8 on page 2-16, the Object Adaptenpdicitly involved in
invocation of the methods, although the direct interface is through the skeletons. For
example, the Object Adapter may be involvedadativating the implementation or
authenticating the request.

The Object Adapter diefes most of the services from the ORB that the Object
Implementation can depend on. Different ORBs will provide different levels of service
and different operating environments may provide some propeértj@iitly and

require others to be added by the Object Adapter. For examplesatmison for

Object Implementations to want to store certain values in the object refererszesyor
identification of the object on anviacation. If the ObjecAdapter allows the
implementation to specify such values whemea object ixcreated, it may be able to
store them in the object reference for those ORBs that permit it. If the ORB Core does
not provide this feature, the Object Adapter would record the value in its own storage
and provide it to thémplementation on amvocation. With Object Adapters, it is
possible for an Object Implementationhtave access to a service whether or not it is
implemented in the ORB Core—if the ORB Core provides it, the adapter simply
provides an interface to it; if not, the adapter mgilement it ortop of the ORB

Core. Every instance of a particular adapter must provide the same interface and
service for all the ORBs it is implemented on.

It is also not necessary for all Object Adapterprovide the same interface or
functionality. Some Object Implementations have special requirements, for example, an
object-oriented database system may wish to implicitly registenany thousands of
objects without doing individual calls to the Object Adapter. In such a case, itwould be

CORBAV2.2 February 1998

2

impractical and unnecessary for thgext adapter to maintainy per-objecstate. By
using an object adapter interface that is tuned towards such phjEetmentatios, it
is possible to take advantage of particular ORB Core details to provide the most
effective access to the ORB.

2.6 CORBA Required Object Adapter

There are aariety of possible object adaptersowkver, since the object agter

interface is something that object implementatidepend on, it is desirable that there
be as few as practical. Most object adapters are designed to cover a range of object
implementations, so only when @amplementation requires radically different services
or interfaces should mew dject adapter be considered. In this section, we briefly
describe the object adapter defined in this specification.

2.6.1 Portable Object Adapter

This spedication defines a Portabl®bject Adapter that can be used for most ORB
objects with conventional implementations. (See the Portable Object Adhpister
for more information.) The intent of theOR, as its namsuggests, is to provide an
Object Adapter that can be used wittultiple ORBs with a minimum of rewing
needed to deal with different vemid’ implementations.

This specification allows several ways of using servers but it does not deal with the
administrative issues of starting server programmeeGstarted, howevetherecan be a
servant startednd ended for arggle mehodcall, aseparate servant feach object, or

a shared servant for all instances of the object type. It allows for groups of objects to be
associated by means of being registered with different instances of the POAaoldject
allows implementations to specify thewn actiation techniques. If the

implementation is noactive when an inveation is performed, the POA will start one.

The POA isspecified in IDL, so its mapping tanguages is largely automatic,

following the language mapping rules. (Themary task left for a langage mapping

is the definition of the Servant type.)

CORBAV2.2 CORBRequired Object Adapter February 1998 2-17

2.7 Thentegration of Foreign Object Systems

The Gommon ORB Architecture is designed to allow interoperation with a wide range

of object systems (see Figure 2-9 on page 2-B8rause there are manyisting

object systems, a common desire will be to allow the objects in those systems to be
accessible via the ORB. For those object systems that are ORBs themselves, they may
be connected to other ORBs through the mechanisms described throtinghout

manual.
Object system as Object system as
~aPOA object an impleme ntation
implementation ith a special-purpose
object adapter
Portable Object Special-purpose
Adapter Adapter
Object system as
ORB Core another ORB
interoperating via a
atewa
Gateway - i

Figure 2-9 Different Ways to Integrate Foreign Object Systems

For object systems that simply want to map their objects into ORB objecte@aide
invocations through the ORB, one approach is to have those object systems appear to
be implementations of the corresmling ORB objects. The object system would

register its objects with the OR&hd handle incoming requests, and could act like a
client and peorm outgoing requests.

In some cases, it will be impractical for another object system to act like a POA object
implementation. An object adapter could be designed for objects that are created in
conjunction with the ORB and that ardrparily invoked through the ORB. Another
object system may wish to create objects without consulting the ORB, and might
expect most invocations to occur within itself rather thanuthinothe ORB. In such a
case, a more appropriate object adapter might allow objectsitaptieitly registered

when they are passed through the ORB.

2-18 CORBAV2.2 February 1998

	CORBA Overview
	2.1 Structure of an Object Request Broker
	2.1.1 Object Request Broker
	2.1.2 Clients
	2.1.3 Object Implementations
	2.1.4 Object References
	2.1.5 OMG Interface Definition Language
	2.1.6 Mapping of OMG IDL to Programming Languages
	2.1.7 Client Stubs
	2.1.8 Dynamic Invocation Interface
	2.1.9 Implementation Skeleton
	2.1.10 Dynamic Skeleton Interface
	2.1.11 Object Adapters
	2.1.12 ORB Interface
	2.1.13 Interface Repository
	2.1.14 Implementation Repository

	2.2 Example ORBs
	2.2.1 Client- and Implementation-resident ORB
	2.2.2 Server-based ORB
	2.2.3 System-based ORB
	2.2.4 Library-based ORB

	2.3 Structure of a Client
	2.4 Structure of an Object Implementation
	2.5 Structure of an Object Adapter
	2.6 CORBA Required Object Adapter
	2.6.1 Portable Object Adapter

	2.7 The Integration of Foreign Object Systems

