
CORBA Overview 2
ures

The Common Object Request Broker Architecture (CORBA) is structured to allow
integration of a wide variety of object systems. The motivation for some of the feat
may not be apparent at first, but as we discuss the range of implementations, policies,
optimizations, and usages we expect to encompass, the value of the flexibility becomes
more clear.

Contents

This chapter contains the following sections.

Section Title Page

“Structure of an Object Request Broker” 2-2

“Example ORBs” 2-11

“Structure of a Client” 2-12

“Structure of an Object Implementation” 2-13

“Structure of an Object Adapter” 2-15

“CORBA Required Object Adapter” 2-17

“The Integration of Foreign Object Systems” 2-18
 CORBA V2.2 February 1998 2-1

2

e
 the

e

2.1 Structure of an Object Request Broker

Figure 2-1 on page 2-2 shows a request being sent by a client to an object
implementation. The Client is the entity that wishes to perform an operation on th
object and the Object Implementation is the code and data that actually implements
object.

Figure 2-1 A Request Being Sent Through the Object Request Broker

The ORB is responsible for all of the mechanisms required to find the object
implementation for the request, to prepare the object implementation to receive th
request, and to communicate the data making up the request. The interface the client
sees is completely independent of where the object is located, what programming
language it is implemented in, or any other aspect which is not reflected in the object’s
interface.

Figure 2-2 on page 2-3 shows the structure of an individual Object Request Broker
(ORB). The interfaces to the ORB are shown by striped boxes, and the arrows indicate
whether the ORB is called or performs an up-call across the interface.

Client Object Implementation

ORB

Request
2-2 CORBA V2.2 February 1998

2

e

G
n
s.

ects,
Figure 2-2 The Structure of Object Request Interfaces

To make a request, the Client can use the Dynamic Invocation interface (the sam
interface independent of the target object’s interface) or an OMG IDL stub (the specific
stub depending on the interface of the target object). The Client can also directly
interact with the ORB for some functions.

The Object Implementation receives a request as an up-call either through the OM
IDL generated skeleton or through a dynamic skeleton. The Object Implementatio
may call the Object Adapter and the ORB while processing a request or at other time

Definitions of the interfaces to objects can be defined in two ways. Interfaces can be
defined statically in an interface definition language, called the OMG Interface
Definition Language (OMG IDL). This language defines the types of objects according
to the operations that may be performed on them and the parameters to those
operations. Alternatively, or in addition, interfaces can be added to an Interface
Repository service; this service represents the components of an interface as obj
permitting run-time access to these components. In any ORB implementation, the
Interface Definition Language (which may be extended beyond its definition in this
document) and the Interface Repository have equivalent expressive power.

Client Object Impl ementation

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

A
A
A
A

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

Dynamic

Invocation

IDL
Stubs

ORB
Interface

Dynamic
Skeleton

Object
Adapter

ORB Core

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Interface identical for all ORB implementations

There may be multiple object adapters

There are stubs and a skeleton for each object type

ORB-dependent interface

Up-call interface

Normal call interface

Static IDL
Skeleton
CORBA V2.2 Structure of an Object Request Broker February 1998 2-3

2

ject

y

,
The client performs a request by having access to an Object Reference for an ob
and knowing the type of the object and the desired operation to be performed. The
client initiates the request by calling stub routines that are specific to the object or b
constructing the request dynamically (see Figure 2-3 on page 2-4).

Figure 2-3 A Client Using the Stub or Dynamic Invocation Interface

The dynamic and stub interface for invoking a request satisfy the same request
semantics, and the receiver of the message cannot tell how the request was invoked.

The ORB locates the appropriate implementation code, transmits parameters, and
transfers control to the Object Implementation through an IDL skeleton or a dynamic
skeleton (see Figure 2-4 on page 2-5). Skeletons are specific to the interface and the
object adapter. In performing the request, the object implementation may obtain some
services from the ORB through the Object Adapter. When the request is complete
control and output values are returned to the client.

Client

AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA

Dynamic

Invocation

IDL
Stubs

ORB Core

AAAA
AAAA

AAA
AAA Interface identical for all ORB implemen tations

There are stubs and a skeleton for each object type

ORB-dependent interface

R
eq

u es t

R
equ

es t
2-4 CORBA V2.2 February 1998

2

n is

Figure 2-4 An Object Implementation Receiving a Request

The Object Implementation may choose which Object Adapter to use. This decisio
based on what kind of services the Object Implementation requires.

Figure 2-5 on page 2-6 shows how interface and implementation information is made
available to clients and object implementations. The interface is defined in OMG IDL
and/or in the Interface Repository; the definition is used to generate the client Stubs
and the object implementation Skeletons.

Object Implementation

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

AAAA
AAAA

Interface identical for all ORB implemen tations

There may be multiple object adapters

There are stubs and a skeleton for each object type

ORB-dependent interface

Up-call interface

Normal c all interface

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

A
A
A
A

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

AAAA
AAAA
AAAA
AAAA

ORB
Interface

Dynamic
Skeleton

Object
Adapter

ORB Core

Static IDL
Skeleton
CORBA V2.2 Structure of an Object Request Broker February 1998 2-5

2

in

nent,

ith
ices
s.

hich

bject

Figure 2-5 Interface and Implementation Repositories

The object implementation information is provided at installation time and is stored
the Implementation Repository for use during request delivery.

2.1.1 Object Request Broker

In the architecture, the ORB is not required to be implemented as a single compo
but rather it is defined by its interfaces. Any ORB implementation that provides the
appropriate interface is acceptable. The interface is organized into three categories:

1. Operations that are the same for all ORB implementations

2. Operations that are specific to particular types of objects

3. Operations that are specific to particular styles of object implementations

Different ORBs may make quite different implementation choices, and, together w
the IDL compilers, repositories, and various Object Adapters, provide a set of serv
to clients and implementations of objects that have different properties and qualitie

There may be multiple ORB implementations (also described as multiple ORBs) w
have different representations for object references and different means of performing
invocations. It may be possible for a client to simultaneously have access to two o

Client Object Implementation

IDL
Definitions

Interface
Repository

Stubs Skeletons

Implementation
Installation

Implementation
Repository
2-6 CORBA V2.2 February 1998

2

jects

ORB
s.

s

s
ient

age
ally
ts
ed
ject

vior
fects

,

s
references managed by different ORB implementations. When two ORBs are intended
to work together, those ORBs must be able to distinguish their object references. It is
not the responsibility of the client to do so.

The ORB Core is that part of the ORB that provides the basic representation of ob
and communication of requests. CORBA is designed to support different object
mechanisms, and it does so by structuring the ORB with components above the
Core, which provide interfaces that can mask the differences between ORB Core

2.1.2 Clients

A client of an object has access to an object reference for the object, and invoke
operations on the object. A client knows only the logical structure of the object
according to its interface and experiences the behavior of the object through
invocations. Although we will generally consider a client to be a program or proces
initiating requests on an object, it is important to recognize that something is a cl
relative to a particular object. For example, the implementation of one object may be a
client of other objects.

Clients generally see objects and ORB interfaces through the perspective of a langu
mapping, bringing the ORB right up to the programmer’s level. Clients are maxim
portable and should be able to work without source changes on any ORB that suppor
the desired language mapping with any object instance that implements the desir
interface. Clients have no knowledge of the implementation of the object, which ob
adapter is used by the implementation, or which ORB is used to access it.

2.1.3 Object Implementations

An object implementation provides the semantics of the object, usually by defining
data for the object instance and code for the object’s methods. Often the
implementation will use other objects or additional software to implement the beha
of the object. In some cases, the primary function of the object is to have side-ef
on other things that are not objects.

A variety of object implementations can be supported, including separate servers
libraries, a program per method, an encapsulated application, an object-oriented
database, etc. Through the use of additional object adapters, it is possible to support
virtually any style of object implementation.

Generally, object implementations do not depend on the ORB or how the client invoke
the object. Object implementations may select interfaces to ORB-dependent services
by the choice of Object Adapter.
CORBA V2.2 Structure of an Object Request Broker February 1998 2-7

2

 for
lent

ory,

nts

er to
e

t stub
2.1.4 Object References

An Object Reference is the information needed to specify an object within an ORB.
Both clients and object implementations have an opaque notion of object references
according to the language mapping, and thus are insulated from the actual
representation of them. Two ORB implementations may differ in their choice of Object
Reference representations.

The representation of an object reference handed to a client is only valid for the
lifetime of that client.

All ORBs must provide the same language mapping to an object reference (usually
referred to as an Object) for a particular programming language. This permits a
program written in a particular language to access object references independent of the
particular ORB. The language mapping may also provide additional ways to access
object references in a typed way for the convenience of the programmer.

There is a distinguished object reference, guaranteed to be different from all object
references, that denotes no object.

2.1.5 OMG Interface Definition Language

The OMG Interface Definition Language (OMG IDL) defines the types of objects by
specifying their interfaces. An interface consists of a set of named operations and the
parameters to those operations. Note that although IDL provides the conceptual
framework for describing the objects manipulated by the ORB, it is not necessary
there to be IDL source code available for the ORB to work. As long as the equiva
information is available in the form of stub routines or a run-time interface reposit
a particular ORB may be able to function correctly.

IDL is the means by which a particular object implementation tells its potential clie
what operations are available and how they should be invoked. From the IDL
definitions, it is possible to map CORBA objects into particular programming
languages or object systems.

2.1.6 Mapping of OMG IDL to Programming Languages

Different object-oriented or non-object-oriented programming languages may pref
access CORBA objects in different ways. For object-oriented languages, it may b
desirable to see CORBA objects as programming language objects. Even for non-
object-oriented languages, it is a good idea to hide the exact ORB representation of the
object reference, method names, etc. A particular mapping of OMG IDL to a
programming language should be the same for all ORB implementations. Language
mapping includes definition of the language-specific data types and procedure
interfaces to access objects through the ORB. It includes the structure of the clien
interface (not required for object-oriented languages), the dynamic invocation
interface, the implementation skeleton, the object adapters, and the direct ORB
interface.
2-8 CORBA V2.2 February 1998

2

the

nes

ess to
o

ing
ore.
 the
o

all or

m an

r.

nes

stub

ons
A language mapping also defines the interaction between object invocations and
threads of control in the client or implementation. The most common mappings
provide synchronous calls, in that the routine returns when the object operation
completes. Additional mappings may be provided to allow a call to be initiated and
control returned to the program. In such cases, additional language-specific routi
must be provided to synchronize the program’s threads of control with the object
invocation.

2.1.7 Client Stubs

For the mapping of a non–object–oriented language, there will be a programming
interface to the stubs for each interface type. Generally, the stubs will present acc
the OMG IDL-defined operations on an object in a way that is easy for programmers t
predict once they are familiar with OMG IDL and the language mapping for the
particular programming language. The stubs make calls on the rest of the ORB us
interfaces that are private to, and presumably optimized for, the particular ORB C
If more than one ORB is available, there may be different stubs corresponding to
different ORBs. In this case, it is necessary for the ORB and language mapping t
cooperate to associate the correct stubs with the particular object reference.

Object-oriented programming languages, such as C++ and Smalltalk, do not require
stub interfaces.

2.1.8 Dynamic Invocation Interface

An interface is also available that allows the dynamic construction of object
invocations, that is, rather than calling a stub routine that is specific to a particular
operation on a particular object, a client may specify the object to be invoked, the
operation to be performed, and the set of parameters for the operation through a c
sequence of calls. The client code must supply information about the operation to be
performed and the types of the parameters being passed (perhaps obtaining it fro
Interface Repository or other run-time source). The nature of the dynamic invocation
interface may vary substantially from one programming language mapping to anothe

2.1.9 Implementation Skeleton

For a particular language mapping, and possibly depending on the object adapter, there
will be an interface to the methods that implement each type of object. The interface
will generally be an up-call interface, in that the object implementation writes routi
that conform to the interface and the ORB calls them through the skeleton.

The existence of a skeleton does not imply the existence of a corresponding client
(clients can also make requests via the dynamic invocation interface).

It is possible to write an object adapter that does not use skeletons to invoke
implementation methods. For example, it may be possible to create implementati
dynamically for languages such as Smalltalk.
CORBA V2.2 Structure of an Object Request Broker February 1998 2-9

2

ation,

mic

 also

age

s

n

 for

ton,
2.1.10 Dynamic Skeleton Interface

An interface is available which allows dynamic handling of object invocations. That is,
rather than being accessed through a skeleton that is specific to a particular oper
an object’s implementation is reached through an interface that provides access to the
operation name and parameters in a manner analogous to the client side’s Dyna
Invocation Interface. Purely static knowledge of those parameters may be used, or
dynamic knowledge (perhaps determined through an Interface Repository) may be
used, to determine the parameters.

The implementation code must provide descriptions of all the operation parameters to
the ORB, and the ORB provides the values of any input parameters for use in
performing the operation. The implementation code provides the values of any output
parameters, or an exception, to the ORB after performing the operation. The nature of
the dynamic skeleton interface may vary substantially from one programming langu
mapping or object adapter to another, but will typically be an up-call interface.

Dynamic skeletons may be invoked both through client stubs and through the dynamic
invocation interface; either style of client request construction interface provides
identical results.

2.1.11 Object Adapters

An object adapter is the primary way that an object implementation accesses service
provided by the ORB. There are expected to be a few object adapters that will be
widely available, with interfaces that are appropriate for specific kinds of objects.
Services provided by the ORB through an Object Adapter often include: generatio
and interpretation of object references, method invocation, security of interactions,
object and implementation activation and deactivation, mapping object references to
implementations, and registration of implementations.

The wide range of object granularities, lifetimes, policies, implementation styles, and
other properties make it difficult for the ORB Core to provide a single interface that is
convenient and efficient for all objects. Thus, through Object Adapters, it is possible
for the ORB to target particular groups of object implementations that have similar
requirements with interfaces tailored to them.

2.1.12 ORB Interface

The ORB Interface is the interface that goes directly to the ORB which is the same
all ORBs and does not depend on the object’s interface or object adapter. Because most
of the functionality of the ORB is provided through the object adapter, stubs, skele
or dynamic invocation, there are only a few operations that are common across all
objects. These operations are useful to both clients and implementations of objects.
2-10 CORBA V2.2 February 1998

2

e

 is

B
2.1.13 Interface Repository

The Interface Repository is a service that provides persistent objects that represent th
IDL information in a form available at run-time. The Interface Repository information
may be used by the ORB to perform requests. Moreover, using the information in the
Interface Repository, it is possible for a program to encounter an object whose
interface was not known when the program was compiled, yet, be able to determine
what operations are valid on the object and make an invocation on it.

In addition to its role in the functioning of the ORB, the Interface Repository is a
common place to store additional information associated with interfaces to ORB
objects. For example, debugging information, libraries of stubs or skeletons, routines
that can format or browse particular kinds of objects, etc., might be associated with the
Interface Repository.

2.1.14 Implementation Repository

The Implementation Repository contains information that allows the ORB to locate
and activate implementations of objects. Although most of the information in the
Implementation Repository is specific to an ORB or operating environment, the
Implementation Repository is the conventional place for recording such information.
Ordinarily, installation of implementations and control of policies related to the
activation and execution of object implementations is done through operations on the
Implementation Repository.

In addition to its role in the functioning of the ORB, the Implementation Repository
a common place to store additional information associated with implementations of
ORB objects. For example, debugging information, administrative control, resource
allocation, security, etc., might be associated with the Implementation Repository.

2.2 Example ORBs

There are a wide variety of ORB implementations possible within the Common OR
Architecture. This section will illustrate some of the different options. Note that a
particular ORB might support multiple options and protocols for communication.

2.2.1 Client- and Implementation-resident ORB

If there is a suitable communication mechanism present, an ORB can be implemented
in routines resident in the clients and implementations. The stubs in the client either
use a location-transparent IPC mechanism or directly access a location service to
establish communication with the implementations. Code linked with the
implementation is responsible for setting up appropriate databases for use by clients.
CORBA V2.2 Example ORBs February 1998 2-11

2

ts to

th the

s a
e

ctual

 an
hat

al
2.2.2 Server-based ORB

To centralize the management of the ORB, all clients and implementations can
communicate with one or more servers whose job it is to route requests from clien
implementations. The ORB could be a normal program as far as the underlying
operating system is concerned, and normal IPC could be used to communicate wi
ORB.

2.2.3 System-based ORB

To enhance security, robustness, and performance, the ORB could be provided a
basic service of the underlying operating system. Object references could be mad
unforgeable, reducing the expense of authentication on each request. Because the
operating system could know the location and structure of clients and implementations,
it would be possible for a variety of optimizations to be implemented, for example,
avoiding marshalling when both are on the same machine.

2.2.4 Library-based ORB

For objects that are light-weight and whose implementations can be shared, the
implementation might actually be in a library. In this case, the stubs could be the a
methods. This assumes that it is possible for a client program to get access to the data
for the objects and that the implementation trusts the client not to damage the data.

2.3 Structure of a Client

A client of an object has an object reference that refers to that object. An object
reference is a token that may be invoked or passed as a parameter to an invocation on
a different object. Invocation of an object involves specifying the object to be invoked,
the operation to be performed, and parameters to be given to the operation or returned
from it.

The ORB manages the control transfer and data transfer to the object implementation
and back to the client. In the event that the ORB cannot complete the invocation,
exception response is provided. Ordinarily, a client calls a routine in its program t
performs the invocation and returns when the operation is complete.

Clients access object-type-specific stubs as library routines in their program (see
Figure 2-6 on page 2-13). The client program thus sees routines callable in the norm
way in its programming language. All implementations will provide a language-
specific data type to use to refer to objects, often an opaque pointer. The client then
passes that object reference to the stub routines to initiate an invocation. The stubs
2-12 CORBA V2.2 February 1998

2

eral

r

thod

en a
 on

o a
have access to the object reference representation and interact with the ORB to
perform the invocation. (See the C Language Mapping chapter for additional, gen
information on language mapping of object references.)

Figure 2-6 The Structure of a Typical Client

An alternative set of library code is available to perform invocations on objects, fo
example when the object was not defined at compile time. In that case, the client
program provides additional information to name the type of the object and the me
being invoked, and performs a sequence of calls to specify the parameters and initiate
the invocation.

Clients most commonly obtain object references by receiving them as output
parameters from invocations on other objects for which they have references. Wh
client is also an implementation, it receives object references as input parameters
invocations to objects it implements. An object reference can also be converted t
string that can be stored in files or preserved or communicated by different means and
subsequently turned back into an object reference by the ORB that produced the string.

2.4 Structure of an Object Implementation

An object implementation provides the actual state and behavior of an object. The
object implementation can be structured in a variety of ways. Besides defining the
methods for the operations themselves, an implementation will usually define

Client Program
Language-dependent object references

ORB object references

Dynamic Invocation
Interface

Stubs for
Interface A

Stubs for
Interface B
CORBA V2.2 Structure of an Object Implementation February 1998 2-13

2

bject

ble

t
 data

procedures for activating and deactivating objects and will use other objects or non-
object facilities to make the object state persistent, to control access to the object, as
well as to implement the methods.

The object implementation (see Figure 2-7 on page 2-14) interacts with the ORB in a
variety of ways to establish its identity, to create new objects, and to obtain ORB-
dependent services. It primarily does this via access to an Object Adapter, which
provides an interface to ORB services that is convenient for a particular style of o
implementation.

Figure 2-7 The Structure of a Typical Object Implementation

Because of the range of possible object implementations, it is difficult to be definitive
about how an object implementation is structured. See the chapters on the Porta
Object Adapter.

When an invocation occurs, the ORB Core, object adapter, and skeleton arrange that a
call is made to the appropriate method of the implementation. A parameter to tha
method specifies the object being invoked, which the method can use to locate the
for the object. Additional parameters are supplied according to the skeleton definition.
When the method is complete, it returns, causing output parameters or exception
results to be transmitted back to the client.

Object Implementation

ORB object references

Methods for
Interface A

Library Ro utines

Object data

Skeleton for

Interface A
Object adapter

routines

U
p

-c
al

l t
o

M
et

ho
d

Dynamic

Skeleton

br
2-14 CORBA V2.2 February 1998

2

nd

ely
tored

rvice,
em.

ect
When a new object is created, the ORB may be notified so that it knows where to fi
the implementation for that object. Usually, the implementation also registers itself as
implementing objects of a particular interface, and specifies how to start up the
implementation if it is not already running.

Most object implementations provide their behavior using facilities in addition to the
ORB and object adapter. For example, although the Portable Object Adapter provides
some persistent data associated with an object (its OID or Object ID), that relativ
small amount of data is typically used as an identifier for the actual object data s
in a storage service of the object implementation’s choosing. With this structure, it is
not only possible for different object implementations to use the same storage se
it is also possible for objects to choose the service that is most appropriate for th

2.5 Structure of an Object Adapter

An object adapter (see Figure 2-8 on page 2-16) is the primary means for an obj
implementation to access ORB services such as object reference generation. An object
adapter exports a public interface to the object implementation, and a private interface
to the skeleton. It is built on a private ORB-dependent interface.

Object adapters are responsible for the following functions:

• Generation and interpretation of object references

• Method invocation

• Security of interactions

• Object and implementation activation and deactivation

• Mapping object references to the corresponding object implementations

• Registration of implementations

These functions are performed using the ORB Core and any additional components
necessary. Often, an object adapter will maintain its own state to accomplish its tasks.
It may be possible for a particular object adapter to delegate one or more of its
responsibilities to the Core upon which it is constructed.
CORBA V2.2 Structure of an Object Adapter February 1998 2-15

2

For

ice

does
rage

is

e, an

d be

Figure 2-8 The Structure of a Typical Object Adapter

As shown in Figure 2-8 on page 2-16, the Object Adapter is implicitly involved in
invocation of the methods, although the direct interface is through the skeletons.
example, the Object Adapter may be involved in activating the implementation or
authenticating the request.

The Object Adapter defines most of the services from the ORB that the Object
Implementation can depend on. Different ORBs will provide different levels of serv
and different operating environments may provide some properties implicitly and
require others to be added by the Object Adapter. For example, it is common for
Object Implementations to want to store certain values in the object reference foreasy
identification of the object on an invocation. If the Object Adapter allows the
implementation to specify such values when a new object is created, it may be able to
store them in the object reference for those ORBs that permit it. If the ORB Core
not provide this feature, the Object Adapter would record the value in its own sto
and provide it to the implementation on an invocation. With Object Adapters, it is
possible for an Object Implementation to have access to a service whether or not it
implemented in the ORB Core—if the ORB Core provides it, the adapter simply
provides an interface to it; if not, the adapter must implement it on top of the ORB
Core. Every instance of a particular adapter must provide the same interface and
service for all the ORBs it is implemented on.

It is also not necessary for all Object Adapters to provide the same interface or
functionality. Some Object Implementations have special requirements, for exampl
object-oriented database system may wish to implicitly register its many thousands of
objects without doing individual calls to the Object Adapter. In such a case, it woul

Object Implementation

ORB Core

Interface A
Methods

Interface B
Methods

Object
Adapter
Interface

Dynamic
Skeleton

Interface A
Skeleton

Interface B
Skeleton
2-16 CORBA V2.2 February 1998

2

ject
s

to be
t

.
impractical and unnecessary for the object adapter to maintain any per-object state. By
using an object adapter interface that is tuned towards such object implementations, it
is possible to take advantage of particular ORB Core details to provide the most
effective access to the ORB.

2.6 CORBA Required Object Adapter

There are a variety of possible object adapters. However, since the object adapter
interface is something that object implementations depend on, it is desirable that there
be as few as practical. Most object adapters are designed to cover a range of ob
implementations, so only when an implementation requires radically different service
or interfaces should a new object adapter be considered. In this section, we briefly
describe the object adapter defined in this specification.

2.6.1 Portable Object Adapter

This specification defines a Portable Object Adapter that can be used for most ORB
objects with conventional implementations. (See the Portable Object Adapter chapter
for more information.) The intent of the POA, as its name suggests, is to provide an
Object Adapter that can be used with multiple ORBs with a minimum of rewriting
needed to deal with different vendors’ implementations.

This specification allows several ways of using servers but it does not deal with the
administrative issues of starting server programs. Once started, however, there can be a
servant started and ended for a single method call, a separate servant for each object, or
a shared servant for all instances of the object type. It allows for groups of objects
associated by means of being registered with different instances of the POA objecand
allows implementations to specify their own activation techniques. If the
implementation is not active when an invocation is performed, the POA will start one
The POA is specified in IDL, so its mapping to languages is largely automatic,
following the language mapping rules. (The primary task left for a language mapping
is the definition of the Servant type.)
CORBA V2.2 CORBA Required Object Adapter February 1998 2-17

2

ge

 be
y may

ear to

ject
 in
2.7 The Integration of Foreign Object Systems

The Common ORB Architecture is designed to allow interoperation with a wide ran
of object systems (see Figure 2-9 on page 2-18). Because there are many existing
object systems, a common desire will be to allow the objects in those systems to
accessible via the ORB. For those object systems that are ORBs themselves, the
be connected to other ORBs through the mechanisms described throughout this
manual.

Figure 2-9 Different Ways to Integrate Foreign Object Systems

For object systems that simply want to map their objects into ORB objects and receive
invocations through the ORB, one approach is to have those object systems app
be implementations of the corresponding ORB objects. The object system would
register its objects with the ORB and handle incoming requests, and could act like a
client and perform outgoing requests.

In some cases, it will be impractical for another object system to act like a POA ob
implementation. An object adapter could be designed for objects that are created
conjunction with the ORB and that are primarily invoked through the ORB. Another
object system may wish to create objects without consulting the ORB, and might
expect most invocations to occur within itself rather than through the ORB. In such a
case, a more appropriate object adapter might allow objects to be implicitly registered
when they are passed through the ORB.

ORB Core

Gateway

Object system as
another ORB

interoperating via a
gateway

Portable Object
Adapter

Special-purpose
Adapter

Object system as
a POA object

implementation

Object system as
an impleme ntation

with a special-purpose
object adapter
2-18 CORBA V2.2 February 1998

	CORBA Overview
	2.1 Structure of an Object Request Broker
	2.1.1 Object Request Broker
	2.1.2 Clients
	2.1.3 Object Implementations
	2.1.4 Object References
	2.1.5 OMG Interface Definition Language
	2.1.6 Mapping of OMG IDL to Programming Languages
	2.1.7 Client Stubs
	2.1.8 Dynamic Invocation Interface
	2.1.9 Implementation Skeleton
	2.1.10 Dynamic Skeleton Interface
	2.1.11 Object Adapters
	2.1.12 ORB Interface
	2.1.13 Interface Repository
	2.1.14 Implementation Repository

	2.2 Example ORBs
	2.2.1 Client- and Implementation-resident ORB
	2.2.2 Server-based ORB
	2.2.3 System-based ORB
	2.2.4 Library-based ORB

	2.3 Structure of a Client
	2.4 Structure of an Object Implementation
	2.5 Structure of an Object Adapter
	2.6 CORBA Required Object Adapter
	2.6.1 Portable Object Adapter

	2.7 The Integration of Foreign Object Systems

