
OMG IDL Syntax and Semantics 3
ives
This chapter describes OMG Interface Definition Language (IDL) semantics and g
the syntax for OMG IDL grammatical constructs.

Contents

This chapter contains the following sections.

Section Title Page

“Overview” 3-2

“Lexical Conventions” 3-3

“Preprocessing” 3-9

“OMG IDL Grammar” 3-10

“OMG IDL Specification” 3-14

“Inheritance” 3-16

“Constant Declaration” 3-18

“Type Declaration” 3-22

“Exception Declaration” 3-30

“Operation Declaration” 3-31

“Attribute Declaration” 3-33

“CORBA Module” 3-34

“CORBA Module” 3-34

“Differences from C++” 3-37

“Standard Exceptions” 3-37
 CORBA V2.2 February 1998 3-1

3

t

 in

 a

r

a
d by

3.1 Overview

The OMG Interface Definition Language (IDL) is the language used to describe the
interfaces that client objects call and object implementations provide. An interface
definition written in OMG IDL completely defines the interface and fully specifies
each operation’s parameters. An OMG IDL interface provides the information needed
to develop clients that use the interface’s operations.

Clients are not written in OMG IDL, which is purely a descriptive language, but in
languages for which mappings from OMG IDL concepts have been defined. The
mapping of an OMG IDL concept to a client language construct will depend on the
facilities available in the client language. For example, an OMG IDL exception might
be mapped to a structure in a language that has no notion of exception, or to an
exception in a language that does. The binding of OMG IDL concepts to several
programming languages is described in this manual.

OMG IDL obeys the same lexical rules as C++1, although new keywords are
introduced to support distribution concepts. It also provides full support for standard
C++ preprocessing features. The OMG IDL specification is expected to track relevan
changes to C++ introduced by the ANSI standardization effort.

The description of OMG IDL’s lexical conventions is presented in “Lexical
Conventions” on page 3-3. A description of OMG IDL preprocessing is presented
“Preprocessing” on page 3-9. The scope rules for identifiers in an OMG IDL
specification are described in “CORBA Module” on page 3-34.

The OMG IDL grammar is a subset of the proposed ANSI C++ standard, with
additional constructs to support the operation invocation mechanism. OMG IDL is
declarative language. It supports C++ syntax for constant, type, and operation
declarations; it does not include any algorithmic structures or variables. The gramma
is presented in “OMG IDL Grammar” on page3-10.

OMG IDL-specific pragmas (those not defined for C++) may appear anywhere in
specification; the textual location of these pragmas may be semantically constraine
a particular implementation.

A source file containing interface specifications written in OMG IDL must have an
“.idl” extension. The file orb.idl contains OMG IDL type definitions and is available on
every ORB implementation.

1. Ellis, Margaret A. and Bjarne Stroustrup, The Annotated C++ Reference Manual, Add-
ison-Wesley Publishing Company, Reading, Massachusetts, 1990, ISBN 0-201-51459-1
3-2 CORBA V2.2 February 1998

3

tion.

kens.
.

The description of OMG IDL grammar uses a syntax notation that is similar to
Extended Backus-Naur Format (EBNF). Table 3-1 lists the symbols used in this format
and their meaning.

3.2 Lexical Conventions

This section2 presents the lexical conventions of OMG IDL. It defines tokens in an
OMG IDL specification and describes comments, identifiers, keywords, and
literals—integer, character, and floating point constants and string literals.

An OMG IDL specification logically consists of one or more files. A file is
conceptually translated in several phases.

The first phase is preprocessing, which performs file inclusion and macro substitu
Preprocessing is controlled by directives introduced by lines having # as the first
character other than white space. The result of preprocessing is a sequence of to
Such a sequence of tokens, that is, a file after preprocessing, is called a translation unit

OMG IDL uses the ISO Latin-1 (8859.1) character set. This character set is divided
into alphabetic characters (letters), digits, graphic characters, the space (blank)
character and formatting characters. Table 3-2 shows the OMG IDL alphabetic
characters; upper- and lower-case equivalencies are paired.

Table 3-1 IDL EBNF

Symbol Meaning

::= Is defined to be

| Alternatively

<text> Nonterminal

“text” Literal

* The preceding syntactic unit can be repeated zero or more times

+ The preceding syntactic unit can be repeated one or more times

{} The enclosed syntactic units are grouped as a single syntactic unit

[] The enclosed syntactic unit is optional—may occur zero or one time

2. This section is an adaptation of The Annotated C++ Reference Manual, Chapter 2; it
differs in the list of legal keywords and punctuation.

Table 3-2 The 114 Alphabetic Characters (Letters)

Char. Description Char. Description

Aa Upper/Lower-case A Àà Upper/Lower-case A with grave accent

Bb Upper/Lower-case B Áá Upper/Lower-case A with acute accent

Cc Upper/Lower-case C Ââ Upper/Lower-case A with circumflex accent

Dd Upper/Lower-case D Ãã Upper/Lower-case A with tilde

Ee Upper/Lower-case E Ää Upper/Lower-case A with diaeresis

Ff Upper/Lower-case F Åå Upper/Lower-case A with ring above
CORBA V2.2 Lexical Conventions February 1998 3-3

3

Table 3-3 lists the decimal digit characters.

Table 3-4 shows the graphic characters.

Gg Upper/Lower-case G Ææ Upper/Lower-case dipthong A with E

Hh Upper/Lower-case H Çç Upper/Lower-case C with cedilla

Ii Upper/Lower-case I Èè Upper/Lower-case E with grave accent

Jj Upper/Lower-case J Éé Upper/Lower-case E with acute accent

Kk Upper/Lower-case K Êê Upper/Lower-case E with circumflex accent

Ll Upper/Lower-case L Ëë Upper/Lower-case E with diaeresis

Mm Upper/Lower-case M Ìì Upper/Lower-case I with grave accent

Nn Upper/Lower-case N Íí Upper/Lower-case I with acute accent

Oo Upper/Lower-case O Îî Upper/Lower-case I with circumflex accent

Pp Upper/Lower-case P Ïï Upper/Lower-case I with diaeresis

Qq Upper/Lower-case Q Ññ Upper/Lower-case N with tilde

Rr Upper/Lower-case R Òò Upper/Lower-case O with grave accent

Ss Upper/Lower-case S Óó Upper/Lower-case O with acute accent

Tt Upper/Lower-case T Ôô Upper/Lower-case O with circumflex accent

Uu Upper/Lower-case U Õõ Upper/Lower-case O with tilde

Vv Upper/Lower-case V Öö Upper/Lower-case O with diaeresis

Ww Upper/Lower-case W Øø Upper/Lower-case O with oblique stroke

Xx Upper/Lower-case X Ùù Upper/Lower-case U with grave accent

Yy Upper/Lower-case Y Úú Upper/Lower-case U with acute accent

Zz Upper/Lower-case Z Ûû Upper/Lower-case U with circumflex accent

Üü Upper/Lower-case U with diaeresis

 ß Lower-case German sharp S

 ÿ Lower-case Y with diaeresis

Table 3-3 Decimal Digits

0 1 2 3 4 5 6 7 8 9

Table 3-4 The 65 Graphic Characters

Char. Description Char. Description

! exclamation point ¡ inverted exclamation mark

" double quote ¢ cent sign

number sign £ pound sign

$ dollar sign ¤ currency sign

% percent sign ¥ yen sign

& ampersand broken bar

Table 3-2 The 114 Alphabetic Characters (Letters) (Continued)

Char. Description Char. Description
3-4 CORBA V2.2 February 1998

3

The formatting characters are shown in Table 3-5.

’ apostrophe § section/paragraph sign

(left parenthesis ¨ diaeresis

) right parenthesis © copyright sign

* asterisk ª feminine ordinal indicator

+ plus sign « left angle quotation mark

, comma ¬ not sign

- hyphen, minus sign soft hyphen

. period, full stop ® registered trade mark sign

/ solidus ¯ macron

: colon ° ring above, degree sign

; semicolon ± plus-minus sign

< less-than sign 2 superscript two

= equals sign 3 superscript three

> greater-than sign ´ acute

? question mark µ micro

@ commercial at ¶ pilcrow

[left square bracket • middle dot

\ reverse solidus ¸ cedilla

] right square bracket 1 superscript one

^ circumflex º masculine ordinal indicator

_ low line, underscore » right angle quotation mark

‘ grave vulgar fraction 1/4

{ left curly bracket vulgar fraction 1/2

| vertical line vulgar fraction 3/4

} right curly bracket ¿ inverted question mark

~ tilde × multiplication sign

÷ division sign

Table 3-5 The Formatting Characters

Description Abbreviation ISO 646 Octal Value

alert BEL 007

backspace BS 010

horizontal tab HT 011

newline NL, LF 012

vertical tab VT 013

form feed FF 014

carriage return CR 015

Table 3-4 The 65 Graphic Characters (Continued)

Char. Description Char. Description
CORBA V2.2 Lexical Conventions February 1998 3-5

3

to

e end

d,

”)
e

ge 3-3

d
3.2.1 Tokens

There are five kinds of tokens: identifiers, keywords, literals, operators, and other
separators. Blanks, horizontal and vertical tabs, newlines, formfeeds, and comments
(collective, “white space”), as described below, are ignored except as they serve
separate tokens. Some white space is required to separate otherwise adjacent
identifiers, keywords, and constants.

If the input stream has been parsed into tokens up to a given character, the next token
is taken to be the longest string of characters that could possibly constitute a token.

3.2.2 Comments

The characters /* start a comment, which terminates with the characters */. These
comments do not nest. The characters // start a comment, which terminates at th
of the line on which they occur. The comment characters //, /*, and */ have no special
meaning within a // comment and are treated just like other characters. Similarly, the
comment characters // and /* have no special meaning within a /* comment. Comments
may contain alphabetic, digit, graphic, space, horizontal tab, vertical tab, form fee
and newline characters.

3.2.3 Identifiers

An identifier is an arbitrarily long sequence of alphabetic, digit, and underscore (“_
characters. The first character must be an alphabetic character. All characters ar
significant.

Identifiers that differ only in case collide and yield a compilation error. An identifier
for a definition must be spelled consistently (with respect to case) throughout a
specification.

When comparing two identifiers to see if they collide:

• Upper- and lower-case letters are treated as the same letter. Table 3-2 on pa
defines the equivalence mapping of upper- and lower-case letters.

• The comparison does not take into account equivalences between digraphs an
pairs of letters (e.g., “æ” and “ae” are not considered equivalent) or equivalences
between accented and non-accented letters (e.g., “Á” and “A” are not considered
equivalent).

• All characters are significant.

There is only one namespace for OMG IDL identifiers. Using the same identifier for a
constant and an interface, for example, produces a compilation error.
3-6 CORBA V2.2 February 1998

3

)

of
3.2.4 Keywords

The identifiers listed in Table 3-6 are reserved for use as keywords and may not be
used otherwise.

Keywords obey the rules for identifiers (see“Identifiers” on page 3-6) and must be
written exactly as shown in the above list. For example, “boolean ” is correct;
“Boolean ” produces a compilation error. The keyword “Object ” can be used as a
type specifier.

OMG IDL specifications use the characters shown in Table 3-7 as punctuation.

In addition, the tokens listed in Table 3-8 are used by the preprocessor.

3.2.5 Literals

This section describes the following literals:

• Integer

• Character

• Floating-point

• String

• Fixed-point

Integer Literals

An integer literal consisting of a sequence of digits is taken to be decimal (base ten
unless it begins with 0 (digit zero). A sequence of digits starting with 0 is taken to be
an octal integer (base eight). The digits 8 and 9 are not octal digits. A sequence

Table 3-6 Keywords

any double interface readonly unsigned

attribute enum long sequence union

boolean exception module short void

case FALSE Object string wchar

char fixed octet struct wstring

const float oneway switch

context in out TRUE

default inout raises typedef

Table 3-7 Punctuation Characters

; { } : , = + - () < > []

' " \ | ^ & * / % ~

Table 3-8 Preprocessor Tokens

! || &&
CORBA V2.2 Lexical Conventions February 1998 3-7

3

 The
e of

elow in

ts

digits preceded by 0x or 0X is taken to be a hexadecimal integer (base sixteen). The
hexadecimal digits include a or A through f or F with decimal values ten through
fifteen, respectively. For example, the number twelve can be written 12, 014, or 0XC.

Character Literals

A character literal is one or more characters enclosed in single quotes, as in ’x’.
Character literals have type char.

A character is an 8-bit quantity with a numerical value between 0 and 255 (decimal).
The value of a space, alphabetic, digit, or graphic character literal is the numerical
value of the character as defined in the ISO Latin-1 (8859.1) character set standard
(See Table 3-2 on page 3-3, Table 3-3 on page 3-4, and Table 3-4 on page 3-4).
value of a null is 0. The value of a formatting character literal is the numerical valu
the character as defined in the ISO 646 standard (See Table 3-5 on page 3-5). The
meaning of all other characters is implementation-dependent.

Nongraphic characters must be represented using escape sequences as defined b
Table 3-9. Note that escape sequences must be used to represent single quote and
backslash characters in character literals.

If the character following a backslash is not one of those specified, the behavior is
undefined. An escape sequence specifies a single character.

The escape \ooo consists of the backslash followed by one, two, or three octal digi
that are taken to specify the value of the desired character. The escape \xhh consists of
the backslash followed by x followed by one or two hexadecimal digits that are taken
to specify the value of the desired character. A sequence of octal or hexadecimal digits

Table 3-9 Escape Sequences

Description Escape Sequence

newline \n

horizontal tab \t

vertical tab \v

backspace \b

carriage return \r

form feed \f

alert \a

backslash \\

question mark \?

single quote \'

double quote \"

octal number \ooo

hexadecimal
number

\xhh
3-8 CORBA V2.2 February 1998

3

,

 the

n e

ction
and

age

kept

,

part

; the

acro
is terminated by the first character that is not an octal digit or a hexadecimal digit
respectively. The value of a character constant is implementation dependent if it
exceeds that of the largest char.

Wide character and wide string literals are specified exactly like character and string
literals. All character and string literals, both wide and non-wide, may only be
specified (portably) using the characters found in the ISO 8859-1 character set, that is
interface names, operation names, type names, etc., will continue to be limited to
ISO 8859-1 character set.

Floating-point Literals

A floating-point literal consists of an integer part, a decimal point, a fraction part, a
or E, and an optionally signed integer exponent. The integer and fraction parts both
consist of a sequence of decimal (base ten) digits. Either the integer part or the fra
part (but not both) may be missing; either the decimal point or the letter e (or E)
the exponent (but not both) may be missing.

String Literals

A string literal is a sequence of characters (as defined in “Character Literals” on p
3-8) surrounded by double quotes, as in "...".

Adjacent string literals are concatenated. Characters in concatenated strings are
distinct. For example,

 "\xA" "B"

contains the two characters '\xA' and 'B' after concatenation (and not the single
hexadecimal character '\xAB').

The size of a string literal is the number of character literals enclosed by the quotes
after concatenation. The size of the literal is associated with the literal. Within a string,
the double quote character " must be preceded by a \.

A string literal may not contain the character '\0'.

Fixed-Point Literals

A fixed-point decimal literal consists of an integer part, a decimal point, a fraction
and a d or D. The integer and fraction parts both consist of a sequence of decimal (base
10) digits. Either the integer part or the fraction part (but not both) may be missing
decimal point (but not the letter d (or D)) may be missing.

3.3 Preprocessing

OMG IDL preprocessing, which is based on ANSI C++ preprocessing, provides m
substitution, conditional compilation, and source file inclusion. In addition, directives
are provided to control line numbering in diagnostics and for symbolic debugging, to
CORBA V2.2 Preprocessing February 1998 3-9

3

y

e
f the

e

 the

me
 not
generate a diagnostic message with a given token sequence, and to perform
implementation-dependent actions (the #pragma directive). Certain predefined names
are available. These facilities are conceptually handled by a preprocessor, which ma
or may not actually be implemented as a separate process.

Lines beginning with # (also called “directives”) communicate with this preprocessor.
White space may appear before the #. These lines have syntax independent of threst
of OMG IDL; they may appear anywhere and have effects that last (independent o
OMG IDL scoping rules) until the end of the translation unit. The textual location of
OMG IDL-specific pragmas may be semantically constrained.

A preprocessing directive (or any line) may be continued on the next line in a sourc
file by placing a backslash character (“\”), immediately before the newline at the end
of the line to be continued. The preprocessor effects the continuation by deleting
backslash and the newline before the input sequence is divided into tokens. A
backslash character may not be the last character in a source file.

A preprocessing token is an OMG IDL token (see “Tokens” on page 3-6), a file na
as in a #include directive, or any single character other than white space that does
match another preprocessing token.

The primary use of the preprocessing facilities is to include definitions from other
OMG IDL specifications. Text in files included with a #include directive is treated as
if it appeared in the including file. A complete description of the preprocessing
facilities may be found in The Annotated C++ Reference Manual. The #pragma
directive that is used to include RepositoryIds is described in Section 8.6,
“RepositoryIds,” on page 8-32.

3.4 OMG IDL Grammar
(1) <specification> ::= <definit ion> +

(2) <definition> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <interface> “;”
| <module> “;”

(3) <module> ::= “module” <identi fier> “{“ <definition> + “}”
(4) <interface> ::= <interfa ce_dcl>

| <forw ard_dcl>
(5) <inter face_dcl> ::= < interfa ce_header> “{” <interface_body> “}”
(6) <forward_dcl> ::= “interface” <identifier>
(7) <inter face_header> ::= “interface” <identifier> [<inheri tance_spec>]
(8) <interface _body> ::= <exp ort> *

(9) <export> ::= <type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <attr_dcl> “;”
| <op_dcl> “;”

(10) <inheri tance_spec> ::= “:” <scoped_name> { “,” <sc oped_name> } *
3-10 CORBA V2.2 February 1998

3

(11) <scoped_name> ::= <identif ier>
| “::” <identifier>
| <scoped_ name> “::” <identif ier>

(12) <const_dcl> ::= “const” <const_type> <identifi er> “=”
<const_exp>

(13) <const_type> ::= <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <floating_pt_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_const_type>
| <scoped_ name>

(14) <const_exp> ::= <or_expr>
(15) <or_expr> ::= <x or_expr>

| <or_expr> “|” <xor_expr>
(16) <xor_expr> ::= <and_expr>

| <xor_expr> “ ”̂ <and_expr>
(17) <and_expr> ::= <shift_expr>

| <and_expr> “&” <shift_expr>
(18) <shift_expr> ::= <add_expr>

| <shift_expr> “>>” <add_expr>
| <shift_expr> “<<” <add_expr>

(19) <add_expr> ::= < mult _expr>
| <add_expr> “+” <mul t_expr>
| <add_expr> “-” <m ult_expr>

(20) <mult_expr> ::= <unary_expr>
| <mult_expr> “*” <u nary_expr>
| <mult_expr> “/” <un ary_expr>
| <mult_expr> “%” <u nary_expr>

(21) <unary_expr> ::= <u nary_operat or> <prima ry_expr>
| <primary_expr>

(22) <un ary_oper ator> ::= “-”
| “+”
| “~”

(23) <primary_expr> ::= <s coped_ name>
| <literal>
| “(” <const_exp> “)”

(24) <literal> ::= <integer_literal>
| <string_literal>
| <wide_string_literal>
| <character_literal>
| <wide_character_literal>
| <fixed_pt_literal>
| <floating_pt_literal>
| <boolean_literal>
CORBA V2.2 OMG IDL Grammar February 1998 3-11

3

(25) <boolean_l iteral> ::= “TRUE”
| “FALSE”

(26) <positive_int_const> ::= <const_exp>
(27) <type_dcl> ::= “typedef” <type_dec larator>

| <struct_type>
| <union_type>
| <enum_type>
| “native” <simple_declarator>

(28) <type_declarator> ::= <type_spec> <declarators>
(29) <type_spec> ::= <simple_type_spec>

| <constr_type_spec>
(30) <simpl e_type_spec> ::= <base_type_spec>

| <template_type_spec>
| <scoped_ name>

(31) <base_type_spec> ::= < floating_pt_type>
| <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <octet_type>
| <any_type>
| <object_type>

(32) <templ ate_type_spec> ::= <sequence_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

(33) <constr_type_spec> ::= <struct_type>
| <union_type>
| <enum_type>

(34) <declarators> ::= <declarator> { “,” <declarator> } ∗

(35) <declarator> ::= <simple_declarator>
| <compl ex_dec larator>

(36) <simple_declarator> ::= <identif ier>
(37) <complex_declarator> ::= <array_declarator>
(38) <floatin g_pt_type> ::= “float”

| “double”
| “long” “double”

(39) <inte ger_type> ::= <signed_int>
| <unsigned_int>

(40) <signed_int> ::= <sign ed_short_int>
| <signed_long_int>
| <signed_longlong_int>

(41) <sig ned_sho rt_int> ::= “short”
(42) <sig ned_long_int> ::= “long”
(43) <sign ed_longlong_int> ::= “long” “long”
(44) <unsigned_int> ::= <unsigned_short_int>

| <unsigned_long_int>
3-12 CORBA V2.2 February 1998

3

| <unsigned_longlong_int>
(45) <unsig ned_sho rt_int> ::= “unsigned” “short”
(46) <unsig ned_long_int> ::= “unsigned” “long”
(47) <unsigned _longlong_int> ::= “unsigned” “long” “long”
(48) <char_type> ::= “char”
(49) <wide_char_type> ::= “wchar”
(50) <boolean_type> ::= “boolean”
(51) <octet_type> ::= “octet”
(52) <any_type> ::= “any”
(53) <object_type> ::= “Object”
(54) <struct_type> ::= “struct” <identif ier> “{” <member_list> “}”
(55) <member_list> ::= <member> +

(56) <member> ::= <type_spec> <declarators> “;”
(57) <union_type> ::= “union” <identif ier> “switch” “(”

<switch_type_spec> “)” “{” <swi tch_body>
“}”

(58) <switch_type_spec> ::= <integer_type>
| <char_type>
| <boolean_type>
| <enum_type>
| <scoped_ name>

(59) <switch _body> ::= <case> +

(60) <case> ::= <case_label> + <element_spec> “;”
(61) <case_label> ::= “case” <const_exp> “:”

| “default” “:”
(62) <element_ spec> ::= <type_spec> <declarator>
(63) <enum_type> ::= “enum” <identi fier> “{” <enumerator> { “,”

<enumerator> } ∗ “}”
(64) <enumerator> ::= <identif ier>
(65) <sequence_type> ::= “sequence” “<” <si mple_ty pe_spec> “,”

<positive_int_const> “>”
| “sequence” “<” <si mple_ty pe_spec> “>”

(66) <strin g_type> ::= “string” “<” <positive_int_const> “>”
| “string”

(67) <wide_string_type> ::= “w string” “<” <positive_int_c onst> “>”
| “wstring”

(68) <array_declarator> ::= <identif ier> <f ixed_array_size> +

(69) <fixed_ar ray_size> ::= “[” <positive_int_const> “]”
(70) <attr_dcl> ::= [“readonly”] “attribute”

<param_type_spec> <simple_declarator> {
“,” <simple_declarat or> }*

(71) <except_dcl> ::= “exception” <identifier> “{“ <member>* “}”
(72) <op_dcl> ::= [<op_attribute>] <op_type_spec> <identi-

fier> <parameter_dc ls> [<raises_expr>] [
<context_expr>]

(73) <op_attribute> ::= “oneway”
CORBA V2.2 OMG IDL Grammar February 1998 3-13

3

(74) <op_type_spec> ::= <param_typ e_spec>
| “void”

(75) <parameter_dcls> ::= “(” <param_dcl> { “,” <param_dcl> } ∗ “)”
| “(” “)”

(76) <param_dcl> ::= <param_attribute> <param_type_sp ec>
<simple_declarator>

(77) <param_attribute> ::= “in”
| “out”
| “inout”

(78) <raises_expr> ::= “raises” “(” <scoped_name> { “,”
<scoped_ name> } ∗ “)”

(79) <context_expr> ::= “context” “(” <str ing_lit eral> { “,”
<string_literal> } ∗ “)”

(80) <param_type_spec> ::= <b ase_type_spec>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>
| <scoped_ name>

(81) <fixed_pt_type> ::= “fixed” “<“ <positive_int_const> “,”
<integer_literal> “>”

(82) <fixed_pt_const_type> ::= “fixed”

3.5 OMG IDL Specification

An OMG IDL specification consists of one or more type definitions, constant
definitions, exception definitions, or module definitions. The syntax is:

<specification>::=<definition> +

<definit ion>::=<type_dcl> “;”
| <const_dcl> “;”
| <except_dcl> “;”
| <interface> “;”
| <module> “;”

See “Constant Declaration” on page 3-18, “Type Declaration” on page 3-22, and
“Exception Declaration” on page3-30, respectively, for specifications of
<const_dcl> , <type_dcl> , and <except_dcl> .

3.5.1 Module Declaration

A module definition satisfies the following syntax:

<module>::=“module” <identif ier> “{“ <definition> + “}”

The module construct is used to scope OMG IDL identifiers; see “CORBA Module” on
page 3-34 for details.
3-14 CORBA V2.2 February 1998

3

nces
ce

3.5.2 Interface Declaration

An interface definition satisfies the following syntax:

<interface> ::= <interfa ce_dcl>
| <forw ard_dcl>

<interfa ce_dcl> ::= < interfa ce_header> “{” <interface_body> “}”

<forw ard_dcl> ::= “interface” <identif ier>

<interfa ce_header>::= “int erface” <identifier> [<inheri tance_spec>]

<interfa ce_body> ::= <exp ort> *

<export> ::= < type_dcl> “;”
 | <const_dcl> “;”

 | <except_dcl> “;”
 | <attr_dcl> “;”
 | <op_dcl> “;”

Interface Header

The interface header consists of two elements:

• The interface name. The name must be preceded by the keyword interface , and
consists of an identifier that names the interface.

• An optional inheritance specification. The inheritance specification is described in
the next section.

The <identifier> that names an interface defines a legal type name. Such a type name
may be used anywhere an <identifier> is legal in the grammar, subject to semantic
constraints as described in the following sections. Since one can only hold refere
to an object, the meaning of a parameter or structure member which is an interfa
type is as a reference to an object supporting that interface. Each language binding
describes how the programmer must represent such interface references.

Inheritance Specification

The syntax for inheritance is as follows:

<inheritance_spec>::= “:” <scoped_name> {“,” <scoped_name>}*
<scoped_ name> ::= <identifier>

| “::” <identif ier>
| <scoped_name> “::” <identifier>

Each <scoped_n ame> in an <inheritance_spec> must denote a previously defined
interface. See “Inheritance” on page 3-16 for the description of inheritance.
CORBA V2.2 OMG IDL Specification February 1998 3-15

3

ace
on

e
n

 and
ypes

” on

rface

hich
Interface Body

The interface body contains the following kinds of declarations:

• Constant declarations, which specify the constants that the interface exports;
constant declaration syntax is described in “Constant Declaration” on page 3-18.

• Type declarations, which specify the type definitions that the interface exports;
type declaration syntax is described in “Type Declaration” on page 3-22.

• Exception declarations, which specify the exception structures that the interf
exports; exception declaration syntax is described in “Exception Declaration”
page 3-30.

• Attribute declarations, which specify the associated attributes exported by th
interface; attribute declaration syntax is described in “Attribute Declaration” o
page 3-33.

• Operation declarations, which specify the operations that the interface exports
the format of each, including operation name, the type of data returned, the t
of all parameters of an operation, legal exceptions which may be returned as a
result of an invocation, and contextual information which may affect method
dispatch; operation declaration syntax is described in “Operation Declaration
page 3-31.

Empty interfaces are permitted (that is, those containing no declarations).

Some implementations may require interface-specific pragmas to precede the inte
body.

Forward Declaration

A forward declaration declares the name of an interface without defining it. This
permits the definition of interfaces that refer to each other. The syntax consists simply
of the keyword interface followed by an <identifier> that names the interface. The
actual definition must follow later in the specification.

Multiple forward declarations of the same interface name are legal.

3.6 Inheritance

An interface can be derived from another interface, which is then called a base
interface of the derived interface. A derived interface, like all interfaces, may declare
new elements (constants, types, attributes, exceptions, and operations). In addition,
unless redefined in the derived interface, the elements of a base interface can be
referred to as if they were elements of the derived interface. The name resolution
operator (“::”) may be used to refer to a base element explicitly; this permits reference
to a name that has been redefined in the derived interface.

A derived interface may redefine any of the type, constant, and exception names w
have been inherited; the scope rules for such names are described in “CORBA
Module” on page 3-34.
3-16 CORBA V2.2 February 1998

3

e
or

t is
An interface is called a direct base if it is mentioned in the <inheritance_spec> and
an indirect base if it is not a direct base but is a base interface of one of the interfaces
mentioned in the <inherita nce_spec> .

An interface may be derived from any number of base interfaces. Such use of more
than one direct base interface is often called multiple inheritance. The order of
derivation is not significant.

An interface may not be specified as a direct base interface of a derived interface more
than once; it may be an indirect base interface more than once. Consider the following
example:

interface A { ... }
interface B: A { ... }
interface C: A { ... }
interface D: B, C { ... }

The relationships between these interfaces is shown in Figure on page 3-17. This
“diamond” shape is legal.

Figure 3-1 Legal Multiple Inheritance Example

Reference to base interface elements must be unambiguous. Reference to a bas
interface element is ambiguous if the expression used refers to a constant, type,
exception in more than one base interface. (It is currently illegal to inherit from two
interfaces with the same operation or attribute name, or to redefine an operation or
attribute name in the derived interface.) Ambiguities can be resolved by qualifying a
name with its interface name (that is, using a <scoped_name>).

References to constants, types, and exceptions are bound to an interface when i
defined (i.e., replaced with the equivalent global <scoped_n ame>s). This guarantees
that the syntax and semantics of an interface are not changed when the interface is a
base interface for a derived interface. Consider the following example:

A

B C

D

CORBA V2.2 Inheritance February 1998 3-17

3

 be
on
urrent

const long L = 3;

interface A {
typedef float coord[L]):
void f (in coord s); // s has three floats

};

interface B {
const long L = 4;

};

interface C: B, A {}// what is f()’s signature?

The early binding of constants, types, and exceptions at interface definition guarantees
that the signature of operation f in interface C is

typedef float coord[3];
void f (in coord s);

which is identical to that in interface A. This rule also prevents redefinition of a
constant, type, or exception in the derived interface from affecting the operations and
attributes inherited from a base interface.

Interface inheritance causes all identifiers in the closure of the inheritance tree to
imported into the current naming scope. A type name, constant name, enumerati
value name, or exception name from an enclosing scope can be redefined in the c
scope. An attempt to use an ambiguous name without qualification is a compilation
error.

Operation names are used at run-time by both the stub and dynamic interfaces. As a
result, all operations that might apply to a particular object must have unique names.
This requirement prohibits redefining an operation name in a derived interface, as well
as inheriting two operations with the same name.

3.7 Constant Declaration

This section describes the syntax for constant declarations.

3.7.1 Syntax

The syntax for a constant declaration is:

<const_dcl> ::= “const” <const_type> <identifi er> “=”
 <const_exp>

<const_type> ::= <integer_type>
| <char_type>
| <boolean_type>
| <floating_pt_type>
3-18 CORBA V2.2 February 1998

3

| <string_type>
| <scoped_ name>

<const_exp> ::= <or_expr>

<or_expr> ::= <xor_expr>
| <or_expr> “|” <xor_expr>

<xor_expr> ::= <and_expr>
| <xor_expr> “ ”̂ <and_expr>

<and_expr> ::= <shift_expr>
| <and_expr> “&” <shift_expr>

<shift_expr> ::= <add_expr>
| <shift_expr> “>>” <add_expr>
| <shift_expr> “<<” <add_expr>

<add_expr> ::= < mult _expr>
| <add_expr> “+” <mul t_expr>
| <add_expr> “-” <m ult_expr>

<mult _expr> ::= <unary_expr>
| <mult_expr> “*” <u nary_expr>
| <mult_expr> “/” <un ary_expr>
| <mult_expr> “%” <u nary_expr>

<unary_expr> ::= <unary_operat or> <prima ry_expr>
| <primary_expr>

<unary_operator> ::= “-”
| “+”
| “~”

<primary_expr> ::= <s coped_ name>
| <literal>
| “(” <const_exp> “)”

<literal> ::= <integer_literal>
| <string_literal>
| <character_literal>
| <floating_pt_literal>
| <boolean_literal>

<boolean_literal> ::= “TRUE”
| “FALSE”

<positive_int_const> ::= <const_exp>
CORBA V2.2 Constant Declaration February 1998 3-19

3

se.

teral

or

 infix
3.7.2 Semantics

The <scoped_ name> in the <const_type> production must be a previously defined
name of an <integer_type> , <char_type> , <wide_ char_type> ,
<boolean_type> , <floating_pt_type> , <fixed_pt_const_type> , <strin g_type>,

or <wide_string_type> constant.

An infix operator can combine two integers, floats or fixeds, but not mixtures of the
Infix operators are applicable only to integer, float and fixed types.

If the type of an integer constant is long or unsigned long , then each subexpression
of the associated constant expression is treated as an unsigned long by default, or a
signed long for negated literals or negative integer constants. It is an error if any
subexpression values exceed the precision of the assigned type (long or unsigned
long), or if a final expression value (of type unsigned long) exceeds the precision of
the target type (long).

If the type of an integer constant is long long or unsigned long long , then each
subexpression of the associated constant expression is treated as an unsigned long
long by default, or a signed long long for negated literals or negative integer
constants. It is an error if any subexpression values exceed the precision of the
assigned type (long long or unsigned long long), or if a final expression value (of
type unsigned long long) exceeds the precision of the target type (long long).

If the type of a floating-point constant is double , then each subexpression of the
associated constant expression is treated as a double. It is an error if any
subexpression value exceeds the precision of double .

If the type of a floating-point constant is long double , then each subexpression of the
associated constant expression is treated as a long double . It is an error if any
subexpression value exceeds the precision of long double .

Fixed-point decimal constant expressions are evaluated as follows. A fixed-point li
has the apparent number of total and fractional digits, except that leading and trailing
zeros are factored out, including non-significant zeros before the decimal point. F
example, 0123.450d is considered to be fixed<5,2> and 3000.00 is fixed<1,-3> .
Prefix operators do not affect the precision; a prefix + is optional, and does not change
the result. The upper bounds on the number of digits and scale of the result of an
expression, fixed<d1,s1> op fixed<d2,s2> , are shown in the following table:

Op Result: fixed<d,s>

+ fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

- fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(s1,s2)>

* fixed<d1+d2, s1+s2>

/ fixed<(d1-s1+s2) + s inf , s inf>
3-20 CORBA V2.2 February 1998

3

t

n
d.

ion

e; if

t
A quotient may have an arbitrary number of decimal places, denoted by a scale ofs inf.
The computation proceeds pairwise, with the usual rules for left-to-right association,
operator precedence, and parentheses. If an individual computation between a pair of
fixed-point literals actually generates more than 31 significant digits, then a 31-digi
result is retained as follows:

fixed<d,s> => fixed<31, 31-d+s>

Leading and trailing zeros are not considered significant. The omitted digits are
discarded; rounding is not performed. The result of the individual computation the
proceeds as one literal operand of the next pair of fixed-point literals to be compute

Unary (+ -) and binary (* / + -) operators are applicable in floating-point and fixed-
point expressions. Unary (+ - ~) and binary (* / % + - << >> & | ^) operators are
applicable in integer expressions.

The “~” unary operator indicates that the bit-complement of the expression to which it
is applied should be generated. For the purposes of such expressions, the values are 2’s
complement numbers. As such, the complement can be generated as follows:

The “%” binary operator yields the remainder from the division of the first express
by the second. If the second operand of “%” is 0, the result is undefined; otherwise

 (a/b)*b + a%b

is equal to a. If both operands are nonnegative, then the remainder is nonnegativ
not, the sign of the remainder is implementation dependent.

The “<<”binary operator indicates that the value of the left operand should be shifted
left the number of bits specified by the right operand, with 0 fill for the vacated bits.
The right operand must be in the range 0 <= right operand < 64.

The “>>” binary operator indicates that the value of the left operand should be shifted
right the number of bits specified by the right operand, with 0 fill for the vacated bits.
The right operand must be in the range 0 <= right operand < 64.

The “&” binary operator indicates that the logical, bitwise AND of the left and righ
operands should be generated.

The “|” binary operator indicates that the logical, bitwise OR of the left and right
operands should be generated.

Integer Constant Expression Type Generated 2’s Complement Numbers

long long -(value+1)

unsigned long unsigned long (2**32-1) - value

long long long long -(value+1)

unsigned long long unsigned long (2**64-1) - value
CORBA V2.2 Constant Declaration February 1998 3-21

3

ft

ge-

data

d
The “^” binary operator indicates that the logical, bitwise EXCLUSIVE-OR of the le
and right operands should be generated.

<positive_int_const> must evaluate to a positive integer constant.

3.8 Type Declaration

OMG IDL provides constructs for naming data types; that is, it provides C langua
like declarations that associate an identifier with a type. OMG IDL uses the typedef
keyword to associate a name with a data type; a name is also associated with a
type via the struct , union , enum , and native declarations; the syntax is:

<type_dcl> ::= “typedef” <type_declarator>
| <struct_type>
| <union_type>
| <enum_type>
I “native” <simple_declarator>

<type_declarator> ::= <type_spec> <declarators>

For type declarations, OMG IDL defines a set of type specifiers to represent type
values. The syntax is as follows:
<type_spec> ::= <simple_type_spec>

| <constr_type_spec>

<simple_type_spec> ::= <base_type_spec>
| <template_type_spec>
| <scoped_ name>

<base_type_spec> ::= < floating_pt_type>
| <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <octet_type>
| <any_type>

<template_type_spec>::=<sequence_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

<constr_type_spec> ::= <struct_type>
| <union_type>
| <enum_type>

<declarators>::=<declarator> { “,” <declarator> } ∗

<declarator> ::= <simple_declarator>
| <compl ex_dec larator>

<simple_declarator> ::= <identif ier>

<compl ex_dec larator> ::= <array_declarator>
3-22 CORBA V2.2 February 1998

3

sign
cted

y

The <scoped_n ame> in <simple_type_spec> must be a previously defined type.

As seen above, OMG IDL type specifiers consist of scalar data types and type
constructors. OMG IDL type specifiers can be used in operation declarations to as
data types to operation parameters. The next sections describe basic and constru
type specifiers.

3.8.1 Basic Types

The syntax for the supported basic types is as follows:
<floating_pt_type> ::= “float”

| “double”
| “long” “double”

<integer_type>: := <signed_int>
| <unsigned_int>

<signed_int> ::= <signed_long_int
| <signed_short_int>
| <signed_longlong_int>

<signed_long_int> ::= “long”

<signed_short_int> ::= “short”

<signed_longlong_int> ::= “long” “long”

<unsigned_int> ::= <unsigned_long_int>
| <unsigned_short_int>
| <unsigned_longlong_int>

<unsigned_long_int> ::= “unsigned” “long”

<unsigned_short_int> ::= “unsigned” “short”

<unsigned_longlong_int>::= “unsigned” “long” “long”

<char_type> ::= “char”

<wide_char_type> ::= “wchar”

<boolean_type> ::= “boolean”

<octet_type> ::= “octet”

<any_type> ::= “any”

Each OMG IDL data type is mapped to a native data type via the appropriate language
mapping. Conversion errors between OMG IDL data types and the native types to
which they are mapped can occur during the performance of an operation invocation.
The invocation mechanism (client stub, dynamic invocation engine, and skeletons) ma
signal an exception condition to the client if an attempt is made to convert an illegal
value. The standard exceptions which are to be signalled in such situations are defined
in “Standard Exceptions” on page 3-37.
CORBA V2.2 Type Declaration February 1998 3-23

3

,

tion

 and

 a
al
Integer Types

OMG IDL integer types are short , unsigned short , long , unsigned long , long
long and unsigned long long , representing integer values in the range indicated
below in Table 3-10.

Floating-Point Types

OMG IDL floating-point types are float , double and long double . The float type
represents IEEE single-precision floating point numbers; the double type represents
IEEE double-precision floating point numbers.The long double data type represents
an IEEE double-extended floating-point number, which has an exponent of at least 15
bits in length and a signed fraction of at least 64 bits. See IEEE Standard for Binary
Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985, for a detailed specification.

Char Type

OMG IDL defines a char data type that is an 8-bit quantity which (1) encodes a
single-byte character from any byte-oriented code set, or (2) when used in an array
encodes a multi-byte character from a multi-byte code set. In other words, an
implementation is free to use any code set internally for encoding character data,
though conversion to another form may be required for transmission.

The ISO 8859-1 (Latin1) character set standard defines the meaning and representa
of all possible graphic characters used in OMG IDL (i.e., the space, alphabetic, digit
and graphic characters defined in Table 3-2 on page 3-3, Table 3-3 on page 3-4,
Table 3-4 on page 3-4). The meaning and representation of the null and formatting
characters (see Table 3-5 on page 3-5) is the numerical value of the character as
defined in the ASCII (ISO 646) standard. The meaning of all other characters is
implementation-dependent.

During transmission, characters may be converted to other appropriate forms as
required by a particular language binding. Such conversions may change the
representation of a character but maintain the character’s meaning. For example,
character may be converted to and from the appropriate representation in internation
character sets.

Table 3-10Range of integer types

short -215 .. 215 - 1

long -231 .. 231 - 1

long long -263 .. 263 - 1

unsigned short 0 .. 216 - 1

unsigned long 0 .. 232 - 1

unsigned long long 0 .. 264 - 1
3-24 CORBA V2.2 February 1998

3

 may

Wide Char Type

OMG IDL defines a wchar data type which encodes wide characters from any
character set. As with character data, an implementation is free to use any code set
internally for encoding wide characters, though, again, conversion to another form
be required for transmission. The size of wchar is implementation-dependent.

Boolean Type

The boolean data type is used to denote a data item that can only take one of the
values TRUE and FALSE.

Octet Type

The octet type is an 8-bit quantity that is guaranteed not to undergo any conversion
when transmitted by the communication system.

Any Type

The any type permits the specification of values that can express any OMG IDL type.

3.8.2 Constructed Types

The constructed types are:
<constr_type_spec> ::= <struct_type>

 | <union_type>
 | <enum_type>

Although the IDL syntax allows the generation of recursive constructed type
specifications, the only recursion permitted for constructed types is through the use of
the sequence template type. For example, the following is legal:

struct foo {
long value;
seque nce<foo> chain;

}

See “Sequences” on page 3-27 for details of the sequence template type.

Structures

The structure syntax is:
<struct_type> ::= “struct” <identif ier> “{” <member_list> “}”

<member_list> ::= <member> +

<member> ::= <type_spec> <declarators> “;”

The <identifier> in <struct_type> defines a new legal type. Structure types may
also be named using a typedef declaration.
CORBA V2.2 Type Declaration February 1998 3-25

3

y

t
Name scoping rules require that the member declarators in a particular structure be
unique. The value of a struct is the value of all of its members.

Discriminated Unions

The discriminated union syntax is:
<union_type> ::= “union” <identif ier> “switch” “(”

 <switch_type_spec> “)”
“{” <switch_ body> “}”

<switch_type_spec> ::= <integer_type>
| <char_type>
| <boolean_type>
| <enum_type>
| <scoped_ name>

<switch_body> ::= <case> +

<case> ::= <case_label> + <element_spec> “;”

<case_label> ::= “case” <const_exp> “:”
| “default” “:”

<element_spec> ::= <type_spec> <declarator>

OMG IDL unions are a cross between the C union and switch statements. IDL
unions must be discriminated; that is, the union header must specify a typed tag field
that determines which union member to use for the current instance of a call. The
<identif ier> following the union keyword defines a new legal type. Union types ma
also be named using a typedef declaration. The <const_exp> in a <case_label>

must be consistent with the <switch_type_spec> . A default case can appear at mos
once. The <scoped_n ame> in the <switch_type_spec> production must be a
previously defined integer , char , boolean or enum type.

Case labels must match or be automatically castable to the defined type of the
discriminator. The complete set of matching rules are shown in Table 3-11.

Table 3-11Case Label Matching

Discriminator Type Matched By

long any integer value in the value range of long

long long any integer value in the range of long long

short any integer value in the value range of short

unsigned long any integer value in the value range of unsigned long

unsigned long long any integer value in the range of unsigned long long

unsigned short any integer value in the value range of unsigned short

char char

wchar wchar

boolean TRUE or FALSE

enum any enumerator for the discriminator enum type
3-26 CORBA V2.2 February 1998

3

e

lation.
d

Name scoping rules require that the element declarators in a particular union be
unique. If the <switch_type_spec> is an <enum_type> , the identifier for the
enumeration is in the scope of the union; as a result, it must be distinct from the
element declarators.

It is not required that all possible values of the union discriminator be listed in the
<switch_body> . The value of a union is the value of the discriminator together with
one of the following:

• If the discriminator value was explicitly listed in a case statement, the value of
the element associated with that case statement;

• If a default case label was specified, the value of the element associated with th
default case label;

• No additional value.

Access to the discriminator and the related element is language-mapping dependent.

Enumerations

Enumerated types consist of ordered lists of identifiers. The syntax is:
<enum_type> ::= “enum” <identi fier> “{” <enumerator> { “,”

<enumerator> } ∗ “}”

<enumerator > ::= <identif ier>

A maximum of 232 identifiers may be specified in an enumeration; as such, the
enumerated names must be mapped to a native data type capable of representing a
maximally-sized enumeration. The order in which the identifiers are named in the
specification of an enumeration defines the relative order of the identifiers. Any
language mapping which permits two enumerators to be compared or defines
successor/predecessor functions on enumerators must conform to this ordering re
The <identifier> following the enum keyword defines a new legal type. Enumerate
types may also be named using a typedef declaration.

3.8.3 Template Types

The template types are:
<template_type_spec> : := <s equence_type>

| <string_type>
| <wide_string_type>
| <fixed_pt_type>

Sequences

OMG IDL defines the sequence type sequence . A sequence is a one-dimensional
array with two characteristics: a maximum size (which is fixed at compile time) and a
length (which is determined at run time).
CORBA V2.2 Type Declaration February 1998 3-27

3

uence
ion
e set

value

 Prior

anner.
f the

 For

g”.

.

,

e

built-in

e
The syntax is:
<sequence_type> ::= “sequence” “<” <si mple_ty pe_spec> “,”
<positive_int_const> “>”

 | “sequence” “<” <si mple_ty pe_spec> “>”

The second parameter in a sequence declaration indicates the maximum size of the
sequence. If a positive integer constant is specified for the maximum size, the seq
is termed a bounded sequence. Prior to passing a bounded sequence as a funct
argument (or as a field in a structure or union), the length of the sequence must b
in a language-mapping dependent manner. After receiving a sequence result from an
operation invocation, the length of the returned sequence will have been set; this
may be obtained in a language-mapping dependent manner.

If no maximum size is specified, size of the sequence is unspecified (unbounded).
to passing such a sequence as a function argument (or as a field in a structure or
union), the length of the sequence, the maximum size of the sequence, and the address
of a buffer to hold the sequence must be set in a language-mapping dependent m
After receiving such a sequence result from an operation invocation, the length o
returned sequence will have been set; this value may be obtained in a language-
mapping dependent manner.

A sequence type may be used as the type parameter for another sequence type.
example, the following:

 typedef sequence< se quence< long> > Fred;

declares Fred to be of type “unbounded sequence of unbounded sequence of lon
Note that for nested sequence declarations, white space must be used to separate the
two “>” tokens ending the declaration so they are not parsed as a single “>>” token

Strings

OMG IDL defines the string type string consisting of all possible 8-bit quantities
except null. A string is similar to a sequence of char. As with sequences of any type,
prior to passing a string as a function argument (or as a field in a structure or union)
the length of the string must be set in a language-mapping dependent manner. The
syntax is:

<string_type> ::= “string” “<” <positive_int_const> “>”
| “string”

The argument to the string declaration is the maximum size of the string. If a positiv
integer maximum size is specified, the string is termed a bounded string; if no
maximum size is specified, the string is termed an unbounded string.

Strings are singled out as a separate type because many languages have special
functions or standard library functions for string manipulation. A separate string type
may permit substantial optimization in the handling of strings compared to what can b
done with sequences of general types.
3-28 CORBA V2.2 February 1998

3

nt
 total
re

er of

d as

type

Wide Char String Type

The wstring data type represents a null-terminated (note: a wide character null)
sequence of wchar . Type wstring is analogous to string , except that its element type
is wchar instead of char .

Fixed Type

The fixed data type represents a fixed-point decimal number of up to 31 significa
digits. The scale factor is normally a non-negative integer less than or equal to the
number of digits (note that constants with effectively negative scale, such as 10000, a
always permitted.). However, some languages and environments may be able to
accommodate types that have a negative scale or a scale greater than the numb
digits.

3.8.4 Complex Declarator

Arrays

OMG IDL defines multidimensional, fixed-size arrays. An array includes explicit sizes
for each dimension.

The syntax for arrays is:

<array_declarator> ::=<identif ier> <f ixed_array_size> +

<fixed_array_size> ::= “[” <positi ve_int_const> “]”

The array size (in each dimension) is fixed at compile time. When an array is passe
a parameter in an operation invocation, all elements of the array are transmitted.

The implementation of array indices is language mapping specific; passing an array
index as a parameter may yield incorrect results.

3.8.5 Native Types

OMG IDL provides a declaration for use by object adapters to define an opaque
whose representation is specified by the language mapping for that object adapter.

The syntax is:

<type_dcl> ::= "native" <simple_dec larator>
<simple_declarator> ::= <identifier>

This declaration defines a new type with the specified name. A native type is similar
to an IDL basic type. The possible values of a native type are language-mapping
dependent, as are the means for constructing them and manipulating them. Any
interface that defines a native type requires each language mapping to define how the
native type is mapped into that programming language.
CORBA V2.2 Type Declaration February 1998 3-29

3

at

of

he

e
d, no
A native type may be used to define operation parameters and results. However, there
is no requirement that values of the type be permitted in remote invocations, either
directly or as a component of a constructed type. Any attempt to transmit a value of a
native type in a remote invocation may raise the MARSHAL standard exception.

It is recommended that native types be mapped to equivalent type names in each
programming language, subject to the normal mapping rules for type names in th
language. For example, in a hypothetical Object Adapter IDL module

module HypotheticalObjectAdapter {
native Servant;
interface HOA {

Object activate_object(in Servant x);
};

};

the IDL type Servant would map to HypotheticalObjectAdapter::Servant in C++ and
the activate_object operation would map to the following C++ member function
signature:

CORBA::Object_ptr activate_object(
HypotheticalObjectAdapter::Servant x);

The definition of the C++ type HypotheticalObjectAdapter::Servant would be provided
as part of the C++ mapping for the HypotheticalObjectAdapter module.

Note – The native type declaration is provided specifically for use in object adapter
interfaces, which require parameters whose values are concrete representations
object implementation instances. It is strongly recommended that it not be used in
service or application interfaces. The native type declaration allows object adapters to
define new primitive types without requiring changes to the OMG IDL language or to
OMG IDL com

3.9 Exception Declaration

Exception declarations permit the declaration of struct-like data structures which may
be returned to indicate that an exceptional condition has occurred during the
performance of a request. The syntax is as follows:

<except_dcl>: :=“exception” <identifier> “{“ <member>* “}”

Each exception is characterized by its OMG IDL identifier, an exception type
identifier, and the type of the associated return value (as specified by the <member>
in its declaration). If an exception is returned as the outcome to a request, then t
value of the exception identifier is accessible to the programmer for determining which
particular exception was raised.

If an exception is declared with members, a programmer will be able to access th
values of those members when an exception is raised. If no members are specifie
additional information is accessible when an exception is raised.
3-30 CORBA V2.2 February 1998

3

tax

it is

 in

t
A set of standard exceptions is defined corresponding to standard run-time errors
which may occur during the execution of a request. These standard exceptions are
documented in “Standard Exceptions” on page 3-37.

3.10 Operation Declaration

Operation declarations in OMG IDL are similar to C function declarations. The syn
is:

<op_dcl> ::= [<op_attribute>] <op_type_spec> <identifier>
<parameter_dcls>

[<raises_expr>] [<context_expr>]
<op_type_spec>::=<param_type_spec>

| “void”

An operation declaration consists of:

• An optional operation attribute that specifies which invocation semantics the
communication system should provide when the operation is invoked. Operation
attributes are described in “Operation Attribute” on page 3-31.

• The type of the operation’s return result; the type may be any type which can be
defined in OMG IDL. Operations that do not return a result must specify the void
type.

• An identifier that names the operation in the scope of the interface in which
defined.

• A parameter list that specifies zero or more parameter declarations for the
operation. Parameter declaration is described in “Parameter Declarations” on page
3-32.

• An optional raises expression which indicates which exceptions may be raised as
a result of an invocation of this operation. Raises expressions are described
“Raises Expressions” on page 3-32.

• An optional context expression which indicates which elements of the reques
context may be consulted by the method that implements the operation. Context
expressions are described in “Context Expressions” on page 3-33.

Some implementations and/or language mappings may require operation-specific
pragmas to immediately precede the affected operation declaration.

3.10.1 Operation Attribute

The operation attribute specifies which invocation semantics the communication
service must provide for invocations of a particular operation. An operation attribute is
optional. The syntax for its specification is as follows:

<op_attribute>::=“oneway”

When a client invokes an operation with the oneway attribute, the invocation
semantics are best-effort, which does not guarantee delivery of the call; best-effort
implies that the operation will be invoked at most once. An operation with the oneway
CORBA V2.2 Operation Declaration February 1998 3-31

3

;

urns

tax:

the

lt
attribute must not contain any output parameters and must specify a void return type.
An operation defined with the oneway attribute may not include a raises expression
invocation of such an operation, however, may raise a standard exception.

If an <op_attribute> is not specified, the invocation semantics is at-most-once if an
exception is raised; the semantics are exactly-once if the operation invocation ret
successfully.

3.10.2 Parameter Declarations

Parameter declarations in OMG IDL operation declarations have the following syn

<parameter_dcls>::= “(” <param_dcl> { “,” <par am_dcl> } ∗ “)”
| “(” “)”

<param_dcl>::=<param_attribute> <param_type_spec> <simple_declarator>
<param_attribute>::=“in”

| “out”
| “inout”

<param_type_spec>::=<base_type_spec>
| <string_type>
| <scoped_ name>

A parameter declaration must have a directional attribute that informs the
communication service in both the client and the server of the direction in which
parameter is to be passed. The directional attributes are:

• in - the parameter is passed from client to server.

• out - the parameter is passed from server to client.

• inout - the parameter is passed in both directions.

It is expected that an implementation will not attempt to modify an in parameter. The
ability to even attempt to do so is language-mapping specific; the effect of such an
action is undefined.

If an exception is raised as a result of an invocation, the values of the return resuand
any out and inout parameters are undefined.

When an unbounded string or sequence is passed as an inout parameter, the
returned value cannot be longer than the input value.

3.10.3 Raises Expressions

A raises expression specifies which exceptions may be raised as a result of an
invocation of the operation. The syntax for its specification is as follows:

<raises_expr>::=“raises” “(” <scoped_name> { “,” <scope d_name> } ∗ “)”

The <scoped_n ame>s in the raises expression must be previously defined
exceptions.
3-32 CORBA V2.2 February 1998

3

ver,

the
ws:

n

t be
string.

f
In addition to any operation-specific exceptions specified in the raises expression,
there are a standard set of exceptions that may be signalled by the ORB. These
standard exceptions are described in “Standard Exceptions” on page 3-37. Howe
standard exceptions may not be listed in a raises expression.

The absence of a raises expression on an operation implies that there are no
operation-specific exceptions. Invocations of such an operation are still liable to
receive one of the standard exceptions.

3.10.4 Context Expressions

A context expression specifies which elements of the client’s context may affect
performance of a request by the object. The syntax for its specification is as follo

<context_expr>::=“context” “(” <string_literal> { “,” <string_literal> } ∗ “)”

The run-time system guarantees to make the value (if any) associated with each
<string_literal> in the client’s context available to the object implementation whe
the request is delivered. The ORB and/or object is free to use information in this
request context during request resolution and performance.

The absence of a context expression indicates that there is no request context
associated with requests for this operation.

Each string_literal is an arbitrarily long sequence of alphabetic, digit, period (“.”),
underscore (“_”), and asterisk (“*”) characters. The first character of the string mus
an alphabetic character. An asterisk may only be used as the last character of the
Some implementations may use the period character to partition the name space.

The mechanism by which a client associates values with the context identifiers is
described in the Dynamic Invocation Interface chapter.

3.11 Attribute Declaration

An interface can have attributes as well as operations; as such, attributes are defined as
part of an interface. An attribute definition is logically equivalent to declaring a pair o
accessor functions; one to retrieve the value of the attribute and one to set the value of
the attribute.

The syntax for attribute declaration is:

<attr_dcl> ::=[“readonly”] “attribute” <param_type_sp ec>
<simple_declarator>

{ “,” <simple_declarator> }*

The optional readonly keyword indicates that there is only a single accessor
function—the retrieve value function. Consider the following example:
CORBA V2.2 Attribute Declaration February 1998 3-33

3

 and

interface foo {
enum material_t {rubber, glass};
struct position_t {
float x, y;
};

attribute float radius;
attribute material_t material;
readonly attri bute position_t position;

• • •
};

The attribute declarations are equivalent to the following pseudo-specification
fragment:

• • •
float _get_radius ();
void _set_radius (in float r);
material_t _get_material ();
void _set_mater ial (in material_t m);
position_t _get_posi tion ();
• • •

The actual accessor function names are language-mapping specific. The C, C++,
Smalltalk mappings are described in separate chapters. The attribute name is subject to
OMG IDL’s name scoping rules; the accessor function names are guaranteed not to
collide with any legal operation names specifiable in OMG IDL.

Attribute operations return errors by means of standard exceptions.

Attributes are inherited. An attribute name cannot be redefined to be a different type.
See “CORBA Module” on page 3-34 for more information on redefinition constraints
and the handling of ambiguity.

3.12 CORBA Module

In order to prevent names defined in the CORBA specification from clashing with
names in programming languages and other software systems, all names defined in
CORBA are treated as if they were defined within a module named CORBA. In an
OMG IDL specification, however, OMG IDL keywords such as Object must not be
preceded by a “CORBA::” prefix. Other interface names such as TypeCode are not
OMG IDL keywords, so they must be referred to by their fully scoped names (e.g.,
CORBA::TypeCode) within an OMG IDL specification.
3-34 CORBA V2.2 February 1998

3

iers

l

alified
n
 name

in
3.13 Names and Scoping

An entire OMG IDL file forms a naming scope. In addition, the following kinds of
definitions form nested scopes:

• module

• interface

• structure

• union

• operation

• exception

Identifiers for the following kinds of definitions are scoped:

• types

• constants

• enumeration values

• exceptions

• interfaces

• attributes

• operations

An identifier can only be defined once in a scope. However, identifiers can be
redefined in nested scopes. An identifier declaring a module is considered to be
defined by its first occurrence in a scope. Subsequent occurrences of a module
declaration within the same scope reopen the module allowing additional definitions to
be added to it.

Due to possible restrictions imposed by future language bindings, OMG IDL identif
are case insensitive; that is, two identifiers that differ only in the case of their
characters are considered redefinitions of one another. However, all references to a
definition must use the same case as the defining occurrence. (This allows natura
mappings to case-sensitive languages.)

Type names defined in a scope are available for immediate use within that scope. In
particular, see “Constructed Types” on page 3-25 on cycles in type definitions.

A name can be used in an unqualified form within a particular scope; it will be
resolved by successively searching farther out in enclosing scopes. Once an unqu
name is used in a scope, it cannot be redefined (i.e., if one has used a name defined i
an enclosing scope in the current scope, one cannot then redefine a version of the
in the current scope). Such redefinitions yield a compilation error.

A qualified name (one of the form <scoped-name>::<identifier>) is resolved by first
resolving the qualifier <scoped-name> to a scope S, and then locating the definition of
<identifier> within S. The identifier must be directly defined in S or (if S is an
interface) inherited into S. The <identifier> is not searched for in enclosing scopes.

When a qualified name begins with “::”, the resolution process starts with the file
scope and locates subsequent identifiers in the qualified name by the rule described
the previous paragraph.
CORBA V2.2 Names and Scoping February 1998 3-35

3

nt
n
r
d.

lly the

o the

:

Every OMG IDL definition in a file has a global name within that file. The global
name for a definition is constructed as follows.

Prior to starting to scan a file containing an OMG IDL specification, the name of the
current root is initially empty (“”) and the name of the current scope is initially empty
(“”). Whenever a module keyword is encountered, the string “::” and the associated
identifier are appended to the name of the current root; upon detection of the
termination of the module , the trailing “::” and identifier are deleted from the name of
the current root. Whenever an interface , struct , union , or exception keyword is
encountered, the string “::” and the associated identifier are appended to the name of
the current scope; upon detection of the termination of the interface , struct , union ,
or exception , the trailing “::” and identifier are deleted from the name of the curre
scope. Additionally, a new, unnamed, scope is entered when the parameters of a
operation declaration are processed; this allows the parameter names to duplicate othe
identifiers; when parameter processing has completed, the unnamed scope is exite

The global name of an OMG IDL definition is the concatenation of the current root,
the current scope, a “::”, and the <identifier>, which is the local name for that
definition.

Note that the global name in an OMG IDL files corresponds to an absolute
ScopedName in the Interface Repository. (See “Supporting Type Definitions” on
page 8-9).

Inheritance produces shadow copies of the inherited identifiers; that is, it introduces
names into the derived interface, but these names are considered to be semantica
same as the original definition. Two shadow copies of the same original (as results
from the diamond shape in Figure 3-1 on page 3-17) introduce a single name int
derived interface and don’t conflict with each other.

Inheritance introduces multiple global OMG IDL names for the inherited identifiers.
Consider the following example:

interface A {
exception E {
long L;
};
void f() raises(E);
};

interface B: A {
void g() raises(E);
};

In this example, the exception is known by the global names ::A::E and ::B::E .

Ambiguity can arise in specifications due to the nested naming scopes. For example

interface A {
typedef string<128> string_t;
};
3-36 CORBA V2.2 February 1998

3

hat

n.

lared

tion

 to

es to
interface B {
typedef string<256> string_t;
};

interface C: A, B {
attribute string_t Ti tle;/* AMBI GUOUS!!! */
};

The attribute declaration in C is ambiguous, since the compiler does not know which
string_t is desired. Ambiguous declarations yield compilation errors.

3.14 Differences from C++

The OMG IDL grammar, while attempting to conform to the C++ syntax, is somew
more restrictive. The current restrictions are as follows:

• A function return type is mandatory.

• A name must be supplied with each formal parameter to an operation declaratio

• A parameter list consisting of the single token void is not permitted as a synonym
for an empty parameter list.

• Tags are required for structures, discriminated unions, and enumerations.

• Integer types cannot be defined as simply int or unsigned; they must be dec
explicitly as short or long .

• char cannot be qualified by signed or unsigned keywords.

3.15 Standard Exceptions

This section presents the standard exceptions defined for the ORB. These excep
identifiers may be returned as a result of any operation invocation, regardless of the
interface specification. Standard exceptions may not be listed in raises expressions.

In order to bound the complexity in handling the standard exceptions, the set of
standard exceptions should be kept to a tractable size. This constraint forces the
definition of equivalence classes of exceptions rather than enumerating many similar
exceptions. For example, an operation invocation can fail at many different points due
to the inability to allocate dynamic memory. Rather than enumerate several different
exceptions corresponding to the different ways that memory allocation failure causes
the exception (during marshalling, unmarshalling, in the client, in the object
implementation, allocating network packets, ...), a single exception corresponding
dynamic memory allocation failure is defined. Each standard exception includes a
minor code to designate the subcategory of the exception; the assignment of valu
the minor codes is left to each ORB implementation.
CORBA V2.2 Differences from C++ February 1998 3-37

3

ystem
ion
ay
Each standard exception also includes a completion_status code which takes one of
the values {COMPLETED_YES, COMPLETED_NO, COMPLETED_MAYBE}.
These have the following meanings:

3.15.1 Standard Exceptions Definitions

The standard exceptions are defined below. Clients must be prepared to handle s
exceptions that are not on this list, both because future versions of this specificat
may define additional standard exceptions, and because ORB implementations m
raise non-standard system exceptions.

#define ex_body {unsigned long minor; completion_status completed;}

enum completion_status {COMPL ETED_YES, COMPLETED_NO,
COMPLETED_MAY BE};
enum exception_type {NO_EXCEPTION, USER_EXCE PTION,
SYSTEM_EXCEPTION};
exception UNKNOWN ex_body; // the unknown exception
exception BAD_PARAM ex_body; // an in valid parameter was

// passed
exception NO_MEMORY ex_body; // dynamic memory allocation

// failure
exception IMP_LIMIT ex_body; // violated implementat ion limit
exception COMM_FAILURE ex_body; // communication failure
exception INV_OBJREF ex_body; // in valid object r eference
exception NO_PERMISSION ex_body; // no permission for attempted op.
exception INTERNAL ex_body; // ORB internal error
exception MARSHAL ex_body; // er ror marshalling param/result
exception INITIALIZE ex_body; // ORB initialization failure
exception NO_IMPLEMENT ex_body; // operation implementation
 // unavailable
exception BA D_TYPECODE ex_body; // bad typecode
exception BA D_OPERATION ex_body; // in valid operation
exception NO_RESOURCES ex_body; // insufficient resources for req.
exception NO_RESPONSE ex_body; // response to req. not yet

// available
exception PERSIST_STORE ex_body; // per sistent storage failure
exception BA D_INV_ORDER ex_body; // routine invocations out of order

COMPLETED_YES The object implementation has completed
processing prior to the exception being raised.

COMPLETED_NO The object implementation was never initiated
prior to the exception being raised.

COMPLETED_MAYBE The status of implementation completion is
indeterminate.
3-38 CORBA V2.2 February 1998

3

ed

old
rn

ull

ause

d
exception TRAN SIENT ex_body; // transient failure - reissue
// request

exception FREE_MEM ex_body; // cannot free memory
exception INV_IDENT ex_body; // in valid identifier syntax
exception INV_FLAG ex_body; // in valid flag was specified
exception INT F_REPOS ex_body; // er ror accessing interface

// repository
exception BAD_CON TEXT ex_body; // er ror processing cont ext object
exception OBJ_ ADAPTER ex_body; // failure detected by object

// adapter
exception DATA_ CONVERSION ex_body; // data conversion error
exception OBJECT_NO T_EXIST ex_body; // non-existent object, delete

// reference
exception TRAN SACTION_REQUIRED ex_body; // transact ion required
exception TRANSACTION_ROLLEDBACK ex_body; // transact ion rolled

// back
exception INVALID _TRANSACTION ex_body; // in valid transaction

3.15.2 Object Non-Existence

The OBJECT_NOT_EXIST exception is raised whenever an invocation on a delet
object was performed. It is an authoritative “hard” fault report. Anyone receiving it is
allowed (even expected) to delete all copies of this object reference and to perform
other appropriate “final recovery” style procedures.

Bridges forward this exception to clients, also destroying any records they may h
(for example, proxy objects used in reference translation). The clients could in tu
purge any of their own data structures.

3.5.3 Transaction Exceptions

The TRANSACTION_REQUIRED exception indicates that the request carried a n
transaction context, but an active transaction is required.

The TRANSACTION_ROLLE DBACK exception indicates that the transaction
associated with the request has already been rolled back or marked to roll back. Thus,
the requested operation either could not be performed or was not performed bec
further computation on behalf of the transaction would be fruitless.

The INVALID_TRANSACTION indicates that the request carried an invalid
transaction context. For example, this exception could be raised if an error occurre
when trying to register a resource.
CORBA V2.2 Standard Exceptions February 1998 3-39

3

3-40 CORBA V2.2 February 1998

	OMG IDL Syntax and Semantics
	3.1 Overview
	3.2 Lexical Conventions
	3.2.1 Tokens
	3.2.2 Comments
	3.2.3 Identifiers
	3.2.4 Keywords
	3.2.5 Literals

	3.3 Preprocessing
	3.4 OMG IDL Grammar
	3.5 OMG IDL Specification
	3.5.1 Module Declaration
	3.5.2 Interface Declaration

	3.6 Inheritance
	3.7 Constant Declaration
	3.7.1 Syntax
	3.7.2 Semantics

	3.8 Type Declaration
	3.8.1 Basic Types
	3.8.2 Constructed Types
	3.8.3 Template Types
	3.8.4 Complex Declarator
	3.8.5 Native Types

	3.9 Exception Declaration
	3.10 Operation Declaration
	3.10.1 Operation Attribute
	3.10.2 Parameter Declarations
	3.10.3 Raises Expressions
	3.10.4 Context Expressions

	3.11 Attribute Declaration
	3.12 CORBA Module
	3.13 Names and Scoping
	3.14 Differences from C++
	3.15 Standard Exceptions
	3.15.1 Standard Exceptions Definitions
	3.15.2 Object Non-Existence
	3.5.3 Transaction Exceptions

