OMG IDL Syntax and Semantics 3

This chapter describes OMG Interface Definition Language (IDL) semantics and gives
the syntax for OMG IDL grammatical constructs.

Contents

This chapter contains tHellowing sections.

Section Title Page
“Overview” 3-2
“Lexical Conventions” 3-3
“Preprocessing” 3-9
“OMG IDL Grammar” 3-10
“OMG IDL Specification” 3-14
“Inheritance” 3-16
“Constant Declaration” 3-18
“Type Declaration” 3-22
“Exception Declaration” 3-30
“Operation Declaration” 3-31
“Attribute Declaration” 3-33
“CORBA Module” 3-34
“CORBA Module” 3-34
“Differences from C++” 3-37
“Standard Exceptions” 3-37

CORBA V2.2 Febloag/ 3-1

3-2

3.1 Overview

The OMG Interface Dehition Language (IDL) is the language used to describe the
interfaces that client objects calhd objectmplementations provide. An interface
definition written in OMG IDL completely defines the interface and fully specifies
each operation’s parameters. An OMG IDL interface providesnflioemation needed
to develop clients that use the interface’s operations.

Clients are not written in OMG IDL, which is purely a descriptive lagg) but in
languages for which mappings from OMG IDL concepts have been defined. The
mapping of an OMG IDL concept to a client language construct wiledd on the
facilities available irthe client language. For ample, an OMG IDL exception might
be mapped to a structure in a language that has no notion of exception, or to an
exception in a language that does. The binding of OMG IDLcepts to several
programming languages is described in this manual.

OMG IDL obeys the same lexical rules as &zalthough new keywords are
introduced to suppodistributionconcepts. It also providdall support for standard
C++ preprocessing featuréBhe OMG IDL specification is expected to track relevant
changes to C++ introduced by the ANSI standardization effort.

The description of OMG IDL's lexical conventions is presented in “Lexical
Conventions” on page 3-3. A description of OMG IDL preprocessing is presented in
“Preprocessing” on page 3-9. The scope rules for identifiers in an OMG IDL
specification are described in “CORBA Module” on page 3-34.

The OMG IDLgrammar is a subset of the proposed ANSI C++ standard, with
additional constructs to support the operation invocation mechanism. OMG IDL is a
declarative languge. It supports C++ syntax for constant, type, anerafon
declarations; it does not includay algoithmic structures or variables. The grammar
is presented in “OMG IDL @mmar” on pag8-10.

OMG IDL-specific pragmas (those not defined for C++) may appear anywhere in a

specification; the textual location of these pragmas may be semantically constrained by

a particular implementation.

A source file containing interface specifications written in OMG IDL must have an
“.idl” extension. The file orb.idl contains OMG IDL type di@fionsand is available on
every ORB implementation.

1. Ellis, Margaret A. and Bjarne Stroustrife Annotated C++ Reference Manuadid-
ison-Wesley Publishing Company, Reading, Massachusetts, I8 0-201-51459-1

CORBAV2.2 February 1998

The description of OMG IDL grammar uses a syntax notation thsinidlar to
Extended Backus-Naur Format (EBNF). Table 3-1 lists the symbols useid fiormat
andtheir meaning.

Table 3-1 IDL EBNF

Symbol Meaning

= Is defined to be

| Alternatively

<text> Nonterminal

“text” Literal

* The preceding syntactic unit can be repeated zero or more times
+ The preceding syntactic unit can be repeated one or more times

{ The enclosed syntactic units are grouped as a single syntactic unit

1] The enclosed syntactic unit is optional—may occur zero or one time

3.2 Lexical Conventions

This sectioR presents the lexical conventions of OMG IDL. It defines tokens in an
OMG IDL specificationand describes commentdentifiers, kewvords, and
literals—integer, characteand floating point constants astting literals.

An OMG IDL specification logically consists of one or more files. A file is
conceptually translated in several phases.

The frst phase is preprocessing, which performs file inclusion and macro substitution.
Preprocessing is controlled byrelctives introduced by lines having # as tiretf

character other than white space. The result of preprocessing is a sequence of tokens.
Such a sequence of tokens, that is, a file after premiocgss called a translation unit.

OMG IDL uses the ISO Latin-1 (8859.1) character shis Tharacter set is divided
into alphabetic characters (letters), diggsaphic characters, the space (blank)
character andormatting characters. Tab82 shows the OMG IDL alphabetic
characters; upper- and lower-case equivalencies are paired.

Table 3-2 The 114 Alphabetic Characters (Letters)

Char. Description Char. Description

Aa Upper/Lower-case A Aa Upper/Lower-case A with grave accent

Bb Upper/Lower-case B Aa Upper/Lower-case A with acute accent

Cc Upper/Lower-case C Aa Upper/Lower-case A with circumflex accent
Dd Upper/Lower-case D A& Upper/Lower-case A with tilde

Ee Upper/Lower-case E Aa Upper/Lower-case A with diaeresis

Ff Upper/Lower-case F Ad Upper/Lower-case A with ring above

2. This section is an adaptationfie Annotated C++ Reference Manu@hapter 2; it
differs in the list of legal keywords and punctuation.

CORBAV2.2 Lexical Conventions February 1998 3-3

Table 3-2 The 114 Alphabetic Characters (Letter&}ontinued)

Char. Description Char. Description
Gg Upper/Lower-case G fExe Upper/Lower-case dipthong A with E
Hh Upper/Lower-case H Cc Upper/Lower-case C with cedilla
li Upper/Lower-case | Ee Upper/Lower-case E with grave accent
Jj Upper/Lower-case J Eé Upper/Lower-case E with acute accent
Kk Upper/Lower-case K Ee Upper/Lower-case E with circumflex accent
LI Upper/Lower-case L Eé Upper/Lower-case E with diaeresis
Mm Upper/Lower-case M I Upper/Lower-case | with grave accent
Nn Upper/Lower-case N fi Upper/Lower-case | with acute accent
Oo Upper/Lower-case O i Upper/Lower-case | with circumflex accent
Pp Upper/Lower-case P Ti Upper/Lower-case | with diaeresis
Qq Upper/Lower-case Q NA Upper/Lower-case N with tilde
Rr Upper/Lower-case R 0o Upper/Lower-case O with grave accent
Ss Upper/Lower-case S 06 Upper/Lower-case O with acute accent
Tt Upper/Lower-case T (o)) Upper/Lower-case O with circumflex accent
Uu Upper/Lower-case U (oh] Upper/Lower-case O with tilde
Vv Upper/Lower-case V 06 Upper/Lower-case O with diaeresis
Ww Upper/Lower-case W (%]} Upper/Lower-case O with oblique stroke
XX Upper/Lower-case X U] Upper/Lower-case U with grave accent
Yy Upper/Lower-case Y Ua Upper/Lower-case U with acute accent
Zz Upper/Lower-case Z Oa Upper/Lower-case U with circumflex accent
Uu Upper/Lower-case U with diaeresis
3 Lower-case German sharp S
y Lower-case Y with diaeresis

Table 3-3lists the decimal digit characters.

Table 3-3 Decimal Digits
0123456789

Table 3-4 shows the graphic characters.

Table 3-4 The 65 Graphic Characters

Char. Description Char. Description
! exclamation point i inverted exclamation mark
" double quote ¢ cent sign
number sign £ pound sign
$ dollar sign a currency sign
% percent sign ¥ yen sign
& ampersand broken bar
CORBAV2.2 February 1998

Table 3-4 The 65 Graphic Character&ontinued)

Char. Description Char. Description
’ apostrophe § section/paragraph sign
(left parenthesis diaeresis
) right parenthesis © copyright sign
* asterisk a feminine ordinal indicator
+ plus sign « left angle quotation mark
, comma - not sign
- hyphen, minus sign soft hyphen
period, full stop ® registered trade mark sign
/ solidus N macron
colon ° ring above, degree sign
; semicolon * plus-minus sign
< less-than sign 2 superscript two
= equals sign 8 superscript three
> greater-than sign ’ acute
? question mark 1] micro
@ commercial at T pilcrow
[left square bracket . middle dot
\ reverse solidus , cedilla
] right square bracket 1 superscript one
A circumflex ° masculine ordinal indicator
_ low line, underscore » right angle quotation mark
‘ grave vulgar fraction 1/4
{ left curly bracket vulgar fraction 1/2
| vertical line vulgar fraction 3/4
} right curly bracket inverted question mark

~ tilde

multiplication sign
division sign

The formatting characters aghown in Téle 3-5.

Table 3-5 The Formatting Characters

Description Abbreviation ISO 646 Octal Value
alert BEL 007
backspace BS 010
horizontal tab HT 011
newline NL, LF 012
vertical tab VT 013
form feed FF 014
carriage return CR 015

CORBAV2.2

Lexical Conventions

February 1998

3.2.1 Tokens

There are five kinds of tokeniglentifiers,keywords, literals, operators, and other
separators. Blanks, horiatal andvertical tabs, newlines, formfde, and comments
(collective, “white space”), as described below, are ignored except as they serve to
separate tokens. Some white space is required to separate otherwise adjacent
identifiers,keywords, ancdtonstants.

If the input stream has been parsed into tokens up teea gharacter, the next token
is taken to be the longest string of characters that could possibltatma token.

3.2.2 Comments

The characters /* start a comment, which terminates with the characters */. These
comments do not nest. The characters // start a comment, which terminates at the end
of the line on which they occur. The comment characters /And,*/ have no special
meaning within a // comment and are tregtest like other characters.8ilarly, the
comment characters // and /* have no special meanitigrva /* comment. Comments

may contain alphabetic, digit, graphic, space, horizontal tab, vertical tab, form feed,
and newline characters.

3.2.3 ldentifiers

An identifier is an arbitraripffjong sequence of alphabetic, digit, and underscore (*_")
characters. The first character must be an alphabetic character. All characters are
significant.

Identifiers that differ only in case collidend yield acompilation error. An identifier
for a definition must be spelled consistently (with respect to dass)ghout a
specification.

When comparingwo identifiers to see if they collide:

« Upper- and lower-case letters are treated as the same letter. Table 3-2 on page 3-3
defines the equivalence mapping of upper- and lowerledtees.

» The comparison doesot take into account equivalences between digraphs and
pairs of letters (g., “ae” and “ae” are not considered e@l@nt) or equivalences
between accented and non-accenéttdrs (eg., “A” and “A” are not considered
equivalent).

 All characters are significant.

There is only one namespace for OMG IDEndifiers.Using the same identifier for a
constant and an interface, for example, produces a compilation error.

CORBAV2.2 February 1998

3.2.4 Keywords

The identifiers listed in Tabl8-6 are reserved for use as keywords and may not be
used otherwise

Table 3-6 Keywords

any double interface readonly unsigned
attribute enum long sequence union
boolean exception module short void
case FALSE Object string wchar
char fixed octet struct wstring
const float oneway switch

context in out TRUE

default inout raises typedef

Keywords obey the rules fadentifiers (see“Identifiers” opage 3-6) and must be
written exactly as shown in the abos. For example, boolean ” is correct;
“Boolean ” produces a compilation error. Thkeyword “Object” can be used as a
type specifier.

OMG IDL specificationause the characteshown in Table 3-7 as punctuation.

Table 3-7 Punctuation Characters
; { } : : = + - () < > [|
' " \ | N & * / % ~

In addition, the tokens listed in Table 3-8 are used by the preprocessor.

Table 3-8 Preprocessor Tokens

#Hoo| [&&
3.2.5 Literals
This section describes the followinitetals:
* Integer

» Character

* Floating-point
» String

» Fixed-point

Integer Lierals

An integer literal consisting of sequence of digits is taken to be decimal (base ten)
unless it begins with 0 (digit zero). A sequence of digits startitly Ovis taken to be
an octal integer (base eight). The digits 8 and 9 are not octal digits. A sequence of

CORBAV2.2 Lexical Conventions February 1998 3-7

3-8

digits preceded by Ox or OX is taken to be a hexadal integel(base sixteen). The
hexadecimal digits include a or A through f or Rhndecimal values ten through
fifteen, respectivelyFor example, the number twelve canvaetten 12, 014, or OXC.

Character Literals

A character literal is one or more characters enclosed in single quotes, as in 'X'.
Character literals havigpe char.

A character is an 8-bit quantity with a numerical vahetween 0 and 25@lecimal).

The value of a space, alphabedigit, or graphic character literal is themerical

value of the character as defined in the ISO Lat{8859.1) character set standard

(See Table 3-2 on page 3-3, Table 3-3 on page 3-4, and Table 3-4 on page 3-4). The
value of a null is 0. The value of a formatting character literal is the numerical value of
the character as defined in the ISO 646 standard (See Table 3-5 on pad&&-5).
meaning of all other characters is implementation-dependent.

Nongraphic characters must be represented using escape sequences as defined below
Table 3-9. Note that escape sequemmast be used to represent single quantd
backslash characters in character literals.

Table 3-9 Escape Sequences

Description Escape Sequence
newline \n
horizontal tab \t
vertical tab \v
backspace \b
carriage return \r
form feed \f
alert \a
backslash \
guestion mark \?
single quote \
double quote \"
octal number \ooo
hexadecimal \xhh
number

If the character following a backslash is ook of those specified, the behavior is
undefined. An escape sequence specifies a single character.

The escape \ooconsists of the backslash followed by one, two, or three octal digits
that are taken to specify the value of the desired chardtterescape \xhh consists of
the backslasHollowed by x followed byone or two hexagcimal digits that areaken

to specify the value of the desired character. A sequence of octal or hexalddigits

CORBAV2.2 February 1998

3

is terminated by the first character that is not an octal digit or a hexadecimal digit,
respectively. The value of a character constant is implementdipandent if it
exceeds that of the largest char.

Wide character and widgtring literals are specified exactly like character and string
literals. All character and stringtdrals, both wde and non-wide, may only be

specified (portably) using the characters found in the 8860-1 character set, that is
interface names, operation names, type names, etc., will continue to be limited to the
ISO 8859-1 characteset.

Floating-point Literals

A floating-point literal consists of an integer part, a decimal point, a fraction part, an e
or E, and an optionally signed integer exponent. ifegerand fraction parts both

consist of a sequence of decimal (base ten) digits. Either the integer part or the fraction
part (but not both) may be missing; either the decimal point or the letter e (or E) and
the exponent (but not both) may iméssing.

String Literals

A string literal is asequence of characters (as defined in “Character Literals” on page
3-8) surrounded by double quotes, as.id'.

Adjacent string literals are concatenated. Characters in concatenated strings are kept
distinct. For example,

II\XAlI IIBII

contains the two characters "\xA' and &8er concatenation (and not the single
hexadecimal character "\xAB').

The size of atring literal is the nulmer of character literals enclosed by the quotes,
after concatenation. The size of the literal is associated with the liteithin\&string,
the double quote charactémust be preceded by a \.

A string literal may not contain the character \0'.

Fixed-Point Literals

A fixed-point decimal literal consists of an integer part, a decimal point, a fraction part
and a d or D. The integer afrdiction parts both consist of a sequenceagfichal (base

10) digits. Either the integer part or the fraction part (but not both) may be missing; the
decimal point (but not the letter d (BY)) may be missing.

3.3 Preprocessing

OMG IDL preprocessing, which is based on ANSI C++ preprocessing, provides macro
substitution,conditional compilation, and sourciéefinclusion. In addition, directes
are provided to control line numbering in diagnostics and for symbolicggéim to

CORBAV2.2 Preprocessing February 1998 3-9

generate a diagnostic message with a given tskeuence, and to perform
implementation-dependent actions (#@agma directive). Certairpredefined names
are available. These féittes are conceptually handled by a preprocessor, which may
or may not actually be implemented as a separate process.

Lines beginning with # (also called ‘féctives”) communicate ith this preprocessor.
White space may appear before the #. These lines have syntax independem¢stf the

of OMG IDL; they may appear anywhere and have effects that last (independent of the
OMG IDL scoping rules) until the end of the translation ufiite &xtual location of

OMG IDL-specific pragmas may be semantically constrained.

A preprocessing déctive (oranyline) may be continued on the next line in a source
file by placing abackslash character (*\"), imrdetely before the newline at the end

of the line to be continued. The preprocessor effects the continuation by deleting the
backslash and the newline before the input sequence is divided into tokens. A
backslash character may not be the last character in a source file.

A preprocessing token is an OMG IDL token (see “Tokens” on page 3-6), a file name
as in a#include directive, or any single character other than white space that does not
match another preprocessing token.

The primary use of the preprocessingifdies is to include definitions from other
OMG IDL specificatins. Text in fles included with a#include directive is treated as
if it appeared in the including file. A complete description of the preprocessing
facilities may be found iThe Annotated C++ Reference Manu@he #pragma
directive that isused to include Repositorylds is described in Section 8.6,
“Repositorylds,” on page 8-32.

3.4 OMG IDL Grammar

3-10

1)
)

®)
(4)

®)
(6)
(@)
(8)
9)

(10)

<definit ion>"*

<specification>

<definition> = <type_dcl>*“}"
| <const_dcl> "
| <except_dcl>*;"
| <interface>"*;"
| <module>"*;"
<module> := “module” <identi fier> “{" <definition> **}"
<interface> := <interfa ce_dcl>
| <forward_dcl>
<interface_dcl> := <interfa ce_header> “{" <interface_body> “}"
<forward_dcl> := “interface” <identifier>
<interface_header> := “interface” <identifier> [<inheri tance_spec>]
<interface _body> := <exp ort>"
<export> = <type_dcl>*“;"
| <const _dcl>*"
| <except dcl>*"
| <attr_dcl>*”
| <op_dcl>*}
<inheritance_spec> := “”<scoped_name>{ *“”<sc oped _name>}"

CORBAV2.2 February 1998

(11)

12)

(13)

(14)
(15)

(16)
17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

<scoped_name>

<const_dcl>

<const_type>

<const_exp>
<or_expr>

<xor_expr>
<and_expr>

<shift_expr>

<add_expr>

<mult_expr>

<unary_expr>

<unary_oper ator>

<primary_expr>

<literal>

<identif ier>
“" <identifier>
<scoped_ name> “:;" <identif ier>
“const” <const_type> <identifi er>"“="
<const_exp>
<integer_type>
<char_type>
<wide_char_type>
<boolean_type>
<floating_pt_type>
<string_type>
<wide_string_type>
<fixed_pt_const_type>
<scoped_ name>
<or_expr>
<X or_expr>
<or_expr> “|" <xor_expr>
<and_expr>
<xor_expr>“N" <and_expr>
<shift_expr>
<and_expr>“&” <shift_expr>
<add_expr>
<shift_expr> “>>" <add_expr>
<shift_expr> “<<” <add_expr>
< mult_expr>
<add_expr> “+"<mul t_expr>
<add_expr> “-"<m ult_expr>
<unary_expr>
<mult_expr>“*" <u nary_expr>
<mult_expr> “/" <un ary_expr>
<mult_expr>“%" <u nary_expr>
<u nary_operat or> <prima ry_expr>
<primary_expr>
wyn
<s coped_ name>
<literal>
“(" <const_exp>")"
<integer_literal>
<string_literal>
<wide_string_literal>
<character_literal>
<wide_character_literal>
<fixed_pt_literal>
<floating_pt_literal>
<boolean_literal>

CORBAV2.2 OMG ID&rammar February 1998 3-11

3-12

(25)

(26)
(27)

(28)
(29)

(30)

(1)

(32)

(33)

(34)
(39)

(36)
(37)
(38)

(39)
(40)
(41)
(42)

(43)
(44)

<boolean_| iteral>

<positive_int_const>
<type_dcl>

<type_declarator>
<type_spec>

<simpl e_type_spec>

<base_type_spec>

<template_type_spec>

<constr_type_spec>
<declarators>
<declarator>

<simple_declarator>
<complex_declarator>
<floatin g_pt_type>

<inte ger_type>
<signed_int>

<sig ned_sho rt_int>
<sig ned_long_int>

<sign ed_longlong_int>
<unsigned_int>

CORBAV2.2

“TRUE”
| “FALSE”

= <const_exp>
= “typedef” <type_dec larator>

| <struct_type>
| <union_type>
| <enum_type>
|

“native” <simple_declarator>
<type_spec> <declarators>

;= <simple_type spec>

<constr_type spec>

.= <base_type_spec>
<template_type spec>
<scoped_ name>

< floating_pt_type>
<integer_type>
<char_type>
<wide_char_type>
<boolean_type>
<octet_type>
<any_type>
<object_type>

<sequence_type>
<string_type>
<wide_string_type>
<fixed_pt_type>

<struct_type>
<union_type>
<enum_type>

== <declarator>{ *“” <declarator>} "
::= <simple_declarator>

| <complex_declarator>
<identif ier>
<array_declarator>
n= “float”

| “double”

| “long” “double”

= <signed_int>
| <unsigned_int>

= <sign ed_short_int>

| <signed_long_int>
| <signed_longlong_int>
= “short”

= “long”
= “long” “long”
;= <unsigned_short_int>

| <unsigned_long_int>

February 1998

(45) <unsig ned_sho rt_int>
(46) <unsig ned_long_int>
(47) <unsigned _longlong_int>

(48) <char_type>
(49) <wide_char_type>
(50) <boolean_type>
(51) <octet_type>
(52) <any_type>
(53) <object_type>
(54) <struct_type>
(55) <member _list>
(56) <member>
(57) <union_type>
(58) <switch_type_spec>
(59) <switch _body>
(60) <case>
(61) <case_label>
(62) <element_ spec>
(63) <enum_type>
(64) <enumerator>
(65) <sequence_type>
(66) <strin g_type>
(67) <wide_string_type>
(68) <array_declarator>
(69) <fixed_array_size>
(70) <attr_dcl>
(71) <except_dcl>
(72) <op_dcl>
(73) <op_attribute>

CORBAV2.2

= “unsigned
= “unsigned” “long” “long”

= “struct” <identif

OMG IDG&rammar

| <unsigned_longlong_int>
;= “unsigned” “short”
” ulongn

= “char”

== “wchar’

= “boolean”

= “octet”

= “any”

= “Object”

ier>“{" <member_list>“}”

== <member> *

= <type_spec> <declarators>*“;"

= “union” <identif ier>“switch” “("
<switch_type_spec> *“)"“{" <swi tch_body>
ot

= <integer_type>

| <char_type>

| <boolean_type>

| <enum_type>

| <scoped_ name>

n= <case> *

= <case_label> * <element_spec> “}"

= “case” <const_exp>*“."

| “default” “”

= <type_spec> <declarator>

= “enum”<identi fier>“{" <enumerator> {“,
<enumerator>} 5}

= <identif ier>

= “sequence” <" <si mple_ty pe_spec>
<positive_int_const> “>"

| “sequence” “<” <si mple_ty pe_spec> “>"

= “string” “<” <positive_int_const> “>”

| “string”

= “w string
| “wstring”

= <identif ier><fixed_array_size>
= “[" <positive_int_const>“]"

[“readonly”] “attribute”
<param_type_spec> <simple_declarator> {
“ <simple_declarat or>}*

“exception” <identifier> “{* <member>*“}”

i:= [<op_attribute>] <op_type_spec> <identi-

fier> <parameter_dc Is>[<raises_expr>] [
<context_expr>]

= “oneway”

<" <positive_int_¢ onst>“>"

+

February 1998 3-13

(74) <op_type_spec> = <param_typ e_spec>
| “void”
(75) <parameter_dcls> := “(" <param_dcl>{ “,” <param_dcl>} Duyr
¢
(76) <param_dcl> := <param_attribute> <param_type sp ec>
<simple_declarator>
77) <param_attribute> := “in”
| “out”
| “inout”
(78) <raises_expr> := “raises” “(" <scoped_name>{")
<scoped_ name> }7%)”
(79) <context_expr> := “context” “("<str ing_literal>{""
<string_literal>} %"
(80) <param_type_spec> := <b ase_type_spec>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>
| <scoped_ name>
(81) <fixed_pt_type> := “fixed” “<" <positive_int_const>
<integer_literal> “>"
(82) <fixed_pt _const_type> = “fixed”

3.5 OMG IDLSpecification

An OMG IDL specification consists of one or more type definiticm)stant
definitions, exception definitions, or module whétions. The syntax is:

<specification>::=<definition> *

<definit ion>::=<type_dcl> *;’
| <const_dcl> ;"
| <except_dcl>*;"
| <interface>*;”
|

<module>*;"

See “Constant Declaration” on page 3-18, “Typec@ration” on page 3-22nd
“Exception Declaration” on pad®30, respectively, for spditations of
<const_dcl> , <type_dcl>, and<except_dcl> .

3.5.1 Module Declaration

A module definition safies the following syntax:

<module>::="module” <identif ier>“{" <definition> **}"

The module construct is used to scope OMG IDL ideartifisee “CORBA Module” on
page 3-34 for details.

3-14 CORBAV2.2 February 1998

3.5.2 Interface Declaration

An interface definition satisfies tHfellowing syntax:

<interface> = <interfa ce_dcl>

| <forward_dcl>
<interfa ce_dcl> := <interfa ce_header> “{" <interface_body> “}"
<forward_dcl> = “interface” <identif ier>

<interfa ce_header>::= “int erface” <identifier> [<inheri tance_spec>]
<interfa ce_body> := <exp ort>"

<export> = < type_dcl>*"
| <const dcl>*“;”

| <except dcl>*"
| <attr_dcl>*"

| <op_dcl>*"

Interface Header

The interface header consists of two elements:
» The interface name. The name must be preceded by thenicinterface , and
consists of an identifier that names the irsteet

» An optional inheritance specification. The inheritance $pation is described in
the next section.

The<identifier> that names an interface defines a legal type naoeh & type name

may be use@dnywhere ar<identifier> is legal in the grammar, subject to semantic
constraints as described in the following sections. Since one can only hold references
to an object, the meaning of a parameter or structure member which is an interface
type is as aeferenceto an object supporting that interfaégach language binding
describes how the programmer must represent such interface references.

Inheritance Specification

The syntaxfor inheritance is as follows:
<inheritance_spec>::= “:" <scoped_name> {*,” <scoped_name>}*
<scoped_ name> ::= <identifier>

| “:" <identif ier>

| <scoped_name> “:\" <identifier>

Each<scoped n ame>in an<inheritance_spec> must denote a previously defined
interface. See “lheritance” onpage 3-16 for the description wfheritance.

CORBAV2.2 OMG ID&pecification February 1998 3-15

3.6

3-16

Inheritance

Interface Body

The

inerface body cotains the following kinds of declarations:

Constant declarations, which specify the constants thahtbdace exports;
constant declaration syntax is described in “Constant Declaratiopage 3-18.

Type declarations, which specify the typeiditibns thatthe interface exports;

type declaration syntax is described in “Type Declaration” on page 3-22.
Exception declarations, which specify the exception structures that the interface
expots; exception declaration syntax is described in “Exception Declaration” on
page 3-30.

Attribute declarations, which specify the associated attributes exported by the
interface; attribute declaration syntax is described in “Attribute Declaration” on
page 3-33.

Operation declarations, which specify the operations that the interface exports and
the format of each, including operation name, the type of data returned, the types
of all parameters of an operation, legal exceptions which may bmedtas a

result of an invocationand contextual information which mayfedt method

dispatch; operation declaration syntax is described in “Operation Declaration” on
page 3-31.

Empty interfaces are paitted (that is, those containing no declarations).

Some implementations may require interface-specific pragmas to precede the interface
body.

Forward Declaation

A forward declaration declares the name of an interface without defining it. This
permits the definition of interfaces that referetmch other. The syntax csists simply
of thekeyword interface followed by an<identifier> that names the interfac&he
actual definition must follow later in the specification.

Multiple forward declarations of the saritgerface name are legal.

An interfacecan bederived from another integfce, which is then calledkmse
interface of the derived interface. A dexdl interface, likall interfaces, may declare
newelements (constants, typedtributes,exceptions, and operations). In addition,
unless redefined in the deed interface, thelements of dase interface can be
referred to as if they were elements of thetiinterface. The name resolution
operator (“::") may beaused to refer to a base element explicitly; figsmits reference
to a name that has been redefined in thevddrinterface.

A derived interface may redefine any of the type, constant, and exception names which
have been iherited; the scope rules fsuch names are described in “CORBA
Module” on page 3-34.

CORBAV2.2 February 1998

3

An interface is called a direct base if it is mentioned in<tnberitance_spec> and
an indirect base if it is not a direct base but is a rde€ace of one of the interfaces
mentioned in theinherita nce_spec>.

An interface may be derived froemy number of base interfaces. Such useofe
than one direct base interface is often called multiple inheritarmeeader of
derivation is not significant.

An interface may not be specified as a direct basaface of a derived interface more
than once; it may be an indirect base interface more than once. Consitidiothiag
example:

interface A { ... }
interface B: A { ... }
interface C: A{ ...}
interface D: B, C{... }

The reationships between these interfaceshiewn in Figure on page 3-17hi§
“diamond” shape is legal.

A

D

Figure 3-1 Legal Multiple Inheritance Example

Reference to base interface elements must be unambiguous. Reference to a base
interface element is ambiguous if the expression used refers to a constant, type, or
exception in more than one base interfqtteis currently illegal to inherit from two
interfaces with the same operationadiribute name, or to redefine an operation or
attribute name in the dedd interface.) Anbiguitiescan be resolved byualifying a
name with its interface name (that is, usingsaoped_name>).

References to constants, types, and exceptions are bound to an interface when it is
defined (i.e., replaced with the equivalent globsdoped _n ame>s). This guarantees
that the syntax and semantics ofiarerface are not @nged when the interface is a
base interface for a deed interface. Consider the following example:

CORBAV2.2 Inheritance February 1998 3-17

constlong L =3;

interface A {
typedef float coord[L]):
void f (in coord s); // s has three floats

k

interface B {
const long L = 4;

|3
interface C: B, A {}// whatis f())s signature?

The early binding of constants, types, and exceptions at interfagetidef guarantees
that the signature of operatidrin interfaceC is

typedef float coord[3];
void f (in coord s);

which is identical to that in interfack. This rule also prevents redefinition of a
constant, type, or exception in the derivetbrface from affecting the operatioasd
attributes inherited from a base interface.

Interface inheritance causes all identifiers in the closure of the inheritance tree to be
imported into the current naming scope. A type name, constant name, enumeration
value name, or exception name from an enclosing scope can be redefined in the curren
scope. An attempt to use an ambiguous name withaalifigation is a compilation

error.

Operation names are used at run-timebbth the stub and dynamic interfaces. As a
result, all operations that might apply to a particular object maxs unique names.
This requirement prohibits redefining an operation name in seddrterface, as well
as inheritingtwo operations with theame name.

3.7 Constant Declaration

This section describes the syntax for constant declarations.

3.7.1 Syntax

The syntaxfor a constant declaration is:

<const_dcl> 1= “const” <const_type> <identifi er>*“="
<const_exp>

<const_type> = <integer_type>
| <char_type>

| <boolean_type>
| <floating_pt_type>

3-18 CORBAV2.2 February 1998

<const_exp>

<or_expr>

<xor_expr>

<and_expr>

<shift_expr>

<add_expr>

<mult_expr>

<unary_expr>

<unary_operator>

<primary_expr>

<literal>

<boolean_literal>

<positive_int_const>

<string_type>
<scoped_ name>

<or_expr>

<xor_expr>
<or_expr> “|" <xor_expr>

<and_expr>
<xor_expr>“" <and_expr>

<shift_expr>
<and_expr>“&” <shift_expr>

<add_expr>
<shift_expr> “>>" <add_expr>
<shift_expr> “<<” <add_expr>

< mult_expr>
<add_expr> “+" <mul t_expr>
<add_expr> “-"<m ult_expr>

<unary_expr>

<mult_expr>“*" <u nary_expr>
<mult_expr> “/" <un ary_expr>
<mult_expr>“%" <u nary_expr>

<unary_operat or><prima ry_expr>
<primary_expr>

uyn

<s coped_ name>
<literal>
H()! <COnSt_eXp> H)”

<integer_literal>
<string_literal>
<character_literal>
<floating_pt_literal>
<boolean_literal>

“TRUE”
“FALSE”

<const_exp>

CORBAV2.2 Constant Declaration February 1998

3-19

3.7.2 Semantics

The <scoped_ name> in the<const_type> production must be a previously defined
name of ar<integer_type> , <char_type>, <wide_ char_type> ,

<boolean_type> , <floating_pt_type> , <fixed_pt_const_type> , <strin g_type>,

or <wide_string_type> constant.

An infix operator can combine two integers, floats or fixeds, but not mixtures of these.
Infix operators are applicable only to integer, float axdditypes.

If the type of an integer constantlis\g or unsigned long , then each subexpression
of the associated constant expression is treated assigned long by default, or a
signedlong for negated literals or negative integer constants. It is an error if any
subexpression values exceed the precision of the assignedoygeof unsigned
long), or if a final expression value (of typesigned long) exceeds the precision of
the target typelgng).

If the type of an integer constantlamg long or unsigned long long , then each
subexpression of the associated constant expression is treatedrasgaed long

long by default, or a signelbng long for negated literals or negative integer
constants. It is an error if any subexpression values excegudbision of the
assigned typelgng long or unsigned long long), or if a final expression value (of
typeunsigned long long) exceeds the precision of the target tyload long).

If the type of &floating-point constant idouble , then each subexpression of the
associated constant expression is treateddmible. It is an error if any
subexpression value exceeds the precisiotiooble .

If the type of a floating-point constantleng double , then each subexpression of the
associated constant expression is treatedlasgadouble . It is an error if any
subexpression value exceeds the precisidorg double .

Fixed-point decimal constant expressions are evaluated as follows. A fixed-point literal
has the apparent numbertotal and fractional digits, except that leading and trailing
zeros are factored out, including non-significant zeros before the decimal point. For
example 0123.450d is considered to bixed<5,2> and3000.00 is fixed<1,-3>.

Prefix operators do not affect the precision; a prefis optional, and does not change

the result. The upper bounds on the number of digits and scale of the result of an infix
expressionfixed<d1,s1> op fixed<d2,s2> , areshown inthe following table:

Op Result: fixed<d,s>

+ fixed<max(d1-s1,d2-s2) + max(s1,s2) + 1, max(sl,s2)>
- fixed<max(d1l-s1,d2-s2) + max(sl,s2) + 1, max(sl,s2)>
* fixed<d1+d2, s1+s2>

/ fixed<(d1-s1+S2) +S juf, Sinf™

3-20 CORBAV2.2 February 1998

3

A quotient may have an arbitrary number of decimal places, denoted by a sggle of
The compitation proceeds pairwise, with the usual ruleddétrto-right association,
operator precedence, and parentheses. If an individualutatign between a pair of
fixed-pointliterals actuallygenerates more than 31 significant digits, then a 31-digit
result is retained as follows:

fixed<d,s> => fixed<31, 31-d+s>

Leading andrailing zeros are not considered significafihe omitted diits are
discarded; rounding is not performed. The result of the individual computation then
proceeds as onédral operand of the next pair of fixed-point literals to be computed.

Unary ¢+ -) and binary {/ + -) operators are applicable in floating-poamtd fixed-
point expressions. Unarny (- ~) and binary{/ % + - << >> & | *) operators are
applicable in integer expressions.

The “~" unary ogrator indicates that tHat-complement of the expression tdeh it
is applied should be genated For the purposes of suchpessions, the values are 2’s
complement numbers. As such, the complement can be generated as follows:

Integer Constant Expression Type | Generated 2's Complement Numbers
long long -(value+1)

unsigned long unsigned long (2**32-1) - value

long long long long -(value+1)

unsigned dng long unsigned long (2**64-1) - value

The“%” binary operator yields the remainder from the division of the first expression
by the second. If the second operand of “%” is O,résalt isundefined; otherwise

(a/b)*b + a%b

is equal to a. If both operands are nonnegative, then the remainder is nonnegative; if
not, the sign of the remainder is implementation dependent.

The “<<”"binary operator indicates that the value of the lgftecand should behifted
left the number of bits specified by the right operand, withl Gdr the vacated bits.
The right operand must be ihe range 0 <= right operand < 64.

The “>>" binary operatomdicates that the value of the lefperand should be shifted
right the number of bits specified by the right operanith @ fill for the vacated bits.
The right operand must be ihe range 0 <= right operand < 64.

The “&” binary operator indicates that the logical, bitwise AND of the left and right
operands should be generated.

The “|” binary operator indicates that the logical, bitwise OR of thealadt right
operands should be generated.

CORBAV2.2 Constant Declaration February 1998 3-21

The “7” binary goerator indicates that the logical, bitwise EXCLUSIVE-OR of the left
and right operands should be generated.

<positive_int_const> must evaluate to a positive integer constant.

3.8 Type Declaration

OMG IDL provides constructs for naming data types; that is, it provides C language-
like declarations that associate an identifier with a type. OMG IDL usdgpadef
keyword to associate a name with a data type; a name is also associated with a data
type via thestruct , union, enum, andnative declarations; the syntax is:

<type_dcl> = “typedef” <type_declarator>
| <struct type>
| <union_type>
| <enum_type>
| “native” <simple_declarator>

<type_declarator> ::= <type_ spec> <declarators>

For type declarations, OMG IDL defines a set of type specifiers to represent typed
values. The syntax is dsllows:
<type_spec> e <simple_type_spec>

| <constr_type_spec>

= <base_type_spec>
| <template_type_ spec>
| <scoped_ name>

<simple_type_spec>

<base_type spec> n= < floating_pt_type>
| <integer_type>
| <char_type>
| <wide_char_type>
| <boolean_type>
| <octet_type>
| <any_type>

<template_type_spec>::=<sequence_type>
| <string_type>
| <wide_string_type>
| <fixed_pt_type>

<constr_type_spec> = <struct_type>
| <union_type>
| <enum_type>

<declarators>::=<declarator> { " <declarator>} "

<declarator> e <simple_declarator>

| <compl ex_declarator>
<simple_declarator> i= <identif ier>
<compl ex_declarator> e <array_declarator>

3-22 CORBAV2.2 February 1998

3

The <scoped_n ame> in <simple_type_spec> must be a previously defined type.

As seen above, OMG IDL type spéeit consist of scalar data types and type
constructors. OMG IDL type specifiers can be used in operation declarations to assign
data types to operation parameters. The next sections describe basic and constructed

type specifiers.

3.8.1 Basic Types

The syntaxfor the supported basic types is as follows:

<floating_pt_type> = “float”

| “double”

| “long” “double”
<integer_type>: = <signed_int>

| <unsigned_int>

<signed_int> ;= <signed_long_int
| <signed_short_int>
| <signed_longlong_int>

<signed_long_int> = ‘“long”
<signed_short_int> = “short”
<signed_longlong_int> := “long” “long”

;= <unsigned long_int>
| <unsigned_short_int>
| <unsigned_longlong_int>

<unsigned_int>

<unsigned_long_int> = “unsigned” “long”
<unsigned_short_int> = ‘“unsigned” “short”
<unsigned_longlong_int>::= *“unsigned” “long” “long”
<char_type> = “char”
<wide_char_type> = “wchar”
<boolean_type> = “boolean”
<octet_type> = ‘“octet”

<any_type> w= fany”

Each OMG IDL data type is mapped tmative data type via the appropriate laage
mapping. Conversion errors between OMG IDL data types and the native types to
which they are mapped can occur during the performance ofexatmm ivocation.
The invacation mechanism (client stulynamic invocation engine, and skeletons) may
signal an exception condition to the client if atempt is made to convert an illegal
value. The standard exceptions which are tgigealled in such situations are defined
in “Standard Exceptions” opage 3-37.

CORBAV2.2 Ty@eeclaration February 1998 3-23

3-24

Integer Types

OMG IDL integer types arshort, unsigned short, long, unsigned long, long
long andunsigned long long , representing integer values in the range indicated
below in Table 3-10.

Table 3-10Range of integer types

short 215 2151
long 281 2811
long long 268 263 .1
unsigned short 0.2%.1
unsigned long 0..2%-1
unsigned long long 0.2%4.1

Floating-Point Types

OMG IDL floating-point types arfloat, double andlong double . Thefloat type
represents IEEE single-precision floating point numbersdthuble type represents
IEEE dowble-precision floating point numbetfée long double data type represents
an IEEE double-extended floating-point number, which has an exponenteakatl5
bits in length and a signed fraction of at least 64 BigIEEE Standard for Binary
Floating-Point Arithmetic ANSI/IEEE Standard 754-198fgr a detailed specification.

Char Type

OMG IDL defines achar data type that is an 8-bit quantishich (1) encodes a
single-byte character fromny byte-oriented code set, or (2) when used in an array,
encodes anulti-byte character from a multi-byte code set. In otlverds, an
implementation is free to use any cazit internally for encoding character data,
though conversion to another form may be required for transmission.

The I1SO 8859-1 (Latinl)laracter set standard defines the meaning and representation
of all possible graphic charactarsed in OMG IDL (i.e., the space, alphabetic, digit
and graphic characters defined in Table 3-2 on page 3-3, Table 3-3 on page 3-4, and
Table 3-4 on page 3-4). The meaning and representation of the ndtéramating
characters (see Table 3-5 on page 3-5) is the numerical value of the character as
defined in the ASCII (ISO 646) standard. The meaning of all other characters is
implementation-dependent.

During transmission, characters may be converted to other appropriate forms as
required by a particular lgmage binding. Such conversions may change the
representation of a character but maintain the character’s meaning. For example, a
character may be converted to dmmim the appropriate representation in international
character sets.

CORBAV2.2 February 1998

Wide Char Type

OMG IDL defines awchar data type which encodes wide characters from any
character set. As with character datajraplemenation is free to use any codet
internally for encoding wide characters, though, again, conversion to another form may
be required for transmissioithe size ofwchar is implementation-dependent.

Boolean Type

The boolean data type is used to denote a data itemdhatonly take one of the
values TRUE and FALSE.

Octet Type

The octet type is an 8-bit quantity that is guaranteed notrtdargo any conversion
when transmitted by the communication system.

Any Type

The any type perrts the specification of values that carpress any OMG IDL type.

3.8.2 Constructed Types

The constructed typesre:
<constr_type_spec> = <struct_type>
| <union_type>
I

<enum_type>

Although the IDL syntaxallows the generation of recursive constructed type
specifications, the only recursigermitted for constructed pyes is through the use of
the sequence template type. For example, thalowing is legal:

struct foo {
long value;
seque nce<foo> chain;

}

See “Sequences” on page 3-27 details of thesequence template tpe.

Structures

The structure syntax is:

<struct_type> := “struct’ <identif ier>"“{" <member_list>*“}"
<member_list>::= <member> *

<member> = <type_spec> <declarators>*“;"

The <identifier> in <struct_type> defines a new legal type. Structure types may
also be named usingtgpedef declaration.

CORBAV2.2 Ty@eeclaration February 1998 3-25

3-26

Name scoping rules require that the member declaratorpantigular structure be
unique. The &lue of astruct is the value of all of its members.

Discriminated Unions

The discriminatedunion syntax is:

<union_type> 5= “union” <identif ier> “switch” “("
<switch_type_spec>)"
“{” <switch_ body> "}

<integer_type>
<char_type>
<boolean_type>
<enum_type>
<scoped_ name>

<switch_type spec>

+

<switch_bhody> n= <case>
<case> n= <case_label> * <element_spec> *”
<case_label> n= “case” <const_exp>"“."
| “default” “”
<element_spec> = <type_spec> <declarator>

OMG IDL unions are a cross between thenon andswitch statements. IDL
unions must be discriminated; that is, timdon header must specify a typed tag field
that determines whichnion member to use for the current instance oéla The
<identif ier> following theunion keyworddefines a new legal type. Union types may
also be named usingtgpedef declaration.The <const_exp> in a<case_label>

must beconsistent with theswitch_type spec> . A default case can appear at most
once. The<scoped_n ame> in the<switch_type spec> production must be a
previously definednteger, char, boolean or enum type.

Case labels must match or @etomatically castable to the defined type of the
discriminator. The complete set of matching rulessm@wn in Table 3-11.

Table 3-11Case Label Matching
Discriminator Type Matched By

long any integer value in the value range of long

long long any integer value in the range of long long

short any integer value in the value range of short
unsigned long any integer value in the value range of unsigned long
unsigned long long any integer value in the range of unsigned long long
unsigned short any integer value in the value range of unsigned short
char char

wchar wchar

boolean TRUE or FALSE

enum any enumerator for the discriminator enum type

CORBAV2.2 February 1998

Name scoping rules require that the element declaratorpantigular union be

unique. If the<switch_type_spec> is an<enum_type>, the identifier for the
enumeration is in the scope of the union; as a resultydt be distinct from the
element declarators.

It is not required that all possible values of the union discriminator be listed in the
<switch_body> . The value of a union ithe value of the discriminator together with
one of thefollowing:
« If the discriminator valuavas expkitly listed in acase statement, thealue of
the element associated with tltatse statement;

« If a defaultcase label was spcified, thevalue of the element associated with the
defaultcase label;
* No additional value.

Access to the discriminat@nd the relate@élement is laguage-mapping dependent.

Enumerations

Enumerated types consist of ordetists of identifiers. The syntax is:

<enum_type> = “enum” <identi fier>“{” <enumerator> {*,
<enumerator>} Y}

<enumerator > 1= <identif ier>

A maximum of 22 identifiers may be specified in an enumerationswach, the

enumerated names must be mapped native data type capable of representing a
maximally-sized enumeratioifhe order in whichhe identifiers are named in the
specification of an enumeration defines the relative order of the identifiers. Any
language mapping which peitsitwo enumerators to be compared or defines
successor/predecessor functions on enumerators must conform to this ordering relation.
The <identifier> following theenum keyword defines a new legal type. Enumerated
types may also be named usintypedef declaration.

3.8.3 Template Types

The tenplate types are:

<template_type_spec> ::= <s equence_type>
[<string_type>
[<wide_string_type>
[<fixed_pt_type>

Sequences

OMG IDL defines the sequence typequence . A sequence is a one-dimensional
array with two characteristics:rmaximum size (Wich is fixed at compile time) and a
length (which is determined at run time).

CORBAV2.2 Ty@eeclaration February 1998 3-27

3-28

The syntax is:
<sequence_type> = “sequence” ‘<" <si mple_ty pe_spec> "/
<positive_int_const> “>"

| “sequence” “<” <si mple_ty pe_spec> “>"

The secongarameter in a sequence declaration indicatesntsdmum size of the
sequence. If a positive integer constant is specified for the maximum size, the sequence
is termed a bounded sequence. Prior to passing a bounded sequence as a function
argument (or as a field in a structure or union), the length of the sequence must be set
in a language-mapping dependent manner. After receiving a seqesuttefrom an
operation invocation, the length of the returned sequence will have been set; this value
may be obtained in a language-mapping dependent manner.

If no maximum size is specified, size of the sequence is unspecified (unbounded). Prior
to passing such a sequence as a function argument (dieds ia a structure or

union), the length of the sequence, the mmxn size of the sequee, and the address

of a buffer to hold the sequence must be set in a language-mapping dependent manner
After receiving such a sequence result from an operation invocation, the length of the
returned sequence will have besat; this value may be obtained in a language-

mapping dependent manner.

A sequence type may be used as the type parameter for another sequence type. For
example, the following:

typedef sequence< se quence<long> > Fred;

declares Fred to be of type “unbounded sequence of unbounded sequence of long”.
Note that for nested sequence declarations, white space must be usetdte sbe
two “>" tokens ending theleclaration so they are not parsed as a single “>>" token.

Strings

OMG IDL defines the string typstring consisting of all possible 8-bit quantities
except null. A string isimiar to a sequence of char. As with sequenceangftype,
prior to passing atring as a functiomrgument (or as a field in a structure or union),
the length of thestring must beset in a language-mapping dependent marnries.
syntax is:

<string_type> := “string” “<” <positive_int_const> “>"
| “string”

The argument to the strirdeclaration is the maximum size of the string. If a positive
integer maximum size is specified, the string is terméduamdedstring; if no
maximum size is spe@#fd, the string is termed an unboundsdng.

Stringsare singled out as a separate type because many languages have special built-ir
functions or standard library functions for string manipulation. A sepateteytype

may permit substantial optimizationtime handling of strings compared to what can be
done with sequences of general types.

CORBAV2.2 February 1998

Wide Char String Type

Thewstring data type represents a ntdrminated (note: a ide character null)
sequence ofvchar. Typewstring is analogous tetring , except that its element type
is wchar instead ofchar.

Fixed Type

The fixed data type represents a fixed-point decimal number of up to 31 significant
digits. The scale factor is normally a non-negative integer less than or equal to the total
number of digits (note that constants witfeefively negative scale, such as 10000, are
always pemitted.). However, some languages and environments may be able to
accommodate types that have a negative scale or a scale greater than the number of
digits.

3.8.4 Complex Declarator

Arrays

OMG IDL defines multidimensional, fixed-size arrays. &may includes explicit sizes
for each dimension.

The syntaxfor arrays is:

<array_declarator> :=<identif ier><fixed array_size> *
<fixed_array_size> := "["<positi ve_int_const> “T’

Thearray size (in each dimension) is fixed at compile time. When an array is passed as
a parameter in an operation invocation,eéiments of the array are transmitted.

The mplementation of array indices is language mapping spepdssing an array
index as a parameter may yield incorrect results.

3.8.5 Native Types

OMG IDL provides a declaration for use by object adapters to define an opaque type
whose representation is specified by the language mapping forbjeat adapter.

The syntax is:

<type_dcl>::="native" <simple_declarator>
<simple_declarator> ::= <identifier>

This declaration defines rrew type with thespecified name. A native typesemiar

to an IDL basic type.The possible values of a native type &aguage-mapping
dependent, as are the means fanstaucting thenand manipulating them. Any
interface that defines a native type requeash language mapping to define how the
native type is maped into that programming language.

CORBAV2.2 Ty@eeclaration February 1998 3-29

A native type may be used to define operation paramatetgesults. However, there
is no requirement that values of the typepeemitted in remote invocatis, either
directly or as a component of a construdigae. Any attempt teransmit a value of a
native type in a remote invocation megise the MARSHAL staratd exception.

It is recommended that native types be mapped to equivalent type names in each
programming language, subject to the normal mapping rules for type names in that
language. For example, in a hypothetical Object Adapter IDL module

module HypotheticalObjectAdapter {
native Servant;
interface HOA {
Object activate_object(in Servant x);
|3
|3
the IDL type Servant would map to HypotheticalObjectAdapter::Servant ingDe+

the actvate_object operation would map to theldaling C++ member function
sighature:

CORBA::Object_ptr activate_object(
HypotheticalObjectAdapter::Servant x);

The deinition of the C++ type HyptheticalObjectAdpter::Servant wuld be provided
as part of the C++ mapping for the HypotheticalObjectAdapter module.

Note —The native type declaration jsovided specifically for use in object adapter
interfaces, which require parameters whose values are concrete representations of
objectimplemenation instances. It is strongly recommended that it not be used in
service or application interd@s. Thenative type declaration allows objeadapters to
define new primitive tpes without requiringhanges to the OMG IDL language or to
OMG IDL com

3.9 Exception Declaration

Exceptiondeclarations permit the declaration of struct-like data structunéshvwnay
be returned to indicate that an exceptional condition has occurred during the
performance of a request. The syntax is as follows:

<except_dcl>: :="exception” <identifier> “{* <member>* “}"

Each exception is characterized by its OMG lidentifier, an exception type

identifier, andthe type of the associated return value (as specified byrnigmber>

in its declaration). If an exception is returned as the outcome to a request, then the
value of the exeption identifier is accessible tbe programmer foreterminingwhich
particular exception was raised.

If an exception is declared with members, a programmer will be able to access the
values of those members when an exception is raised. If no members are specified, no
additional information is accessiblehen an exception is raised.

3-30 CORBAV2.2 February 1998

A set of standard exceptions is defined corresiryg to standardun-time errors
which may occur during the execution of a request. These standaptiors are
documented in “Standard Esptions” onpage 3-37.

3.10 Operation Declaration

Operation declarations in OMG IDL are similar to C function declarations. The syntax
is:

<op_dcl> := [<op_attribute>] <op_type spec> <identifier>
<parameter_dcls>

[<raises_expr>] [<context_expr>]
<op_type_spec>::=<param_type_spec>

| “void”

An operation declaration consists of:
» An optional operatiomttribute that specifies which invocation semantics the
communication system should providdenthe operation is invoked. Operation
attributes are described in “Operation Attribute” on p8ge#l.

» The type of the operation’s return result; the type magrbetype which can be
defined in OMG IDL. Operations that do not return a result must specifyottie
type.

* An identifier that names the operation in the scope of the interface in which it is
defined.

» A parametetist thatspecifies zero or more parameter declarations for the
operation. Parameter declaration is described in “Retearbeclarations” on page
3-32.

» An optional raises expression which indicatdsch exceptions may baised as
a result of an invocation of this operation. Raises expressions are described in
“Raises Expressions” on page 3-32.

* An optional context expression which indicates which elements of the request
context may be consulted by the method that implementeglemtion. Context
expressions are described in “Context Expressions” on page 3-33.

Some implementations and/or laragge mappings may requir@earation-specific
pragmas to immediatelgrecede the affected operation declaration.

3.10.1 Operation Attribute

The operatiorattribute specifies which invocation semantics the communication
service must provide for invocations of a particular operation. An ope iatiisute is
optional. The syntax for its specification is as follows:

<op_attribute>::="oneway”

When a client invokes an operation with threeway attribute, the invocation
semantics are best-effort, which does not guaraseéecry of the call; best-effort
implies that the operation will bevioked at most once. An operatiotithvthe oneway

CORBAV2.2 Operation Declaration February 1998 3-31

attribute must not contaiany outputparameterandmust specify aoid return type.
An operation defined with theneway attrbute may not include a raises expression;
invocation of such an operation, however, may raise a standard exception.

If an <op_attribute> is not specified, the inwation semantics is at-most-once if an
exception is raised; the semantics are exactly-once if the operation invocation returns
successfully.

3.10.2 Parameter Declarations

Parameter declarations in OMG IDL operation declarations have the following syntax:

<parameter_dcls>::= “(" <param_dcl>{“” <par am_dcl>}"")”
I G
<param_dcl>::=<param_attribute> <param_type_spec> <simple_declarator>
<param_attribute>::="in"
| “out”
| “inout”
<param_type_spec>::=<base_type_spec>
| <string_type>
| <scoped_ name>

A parameter declaration musave a dectional attribute that informs the
communication service in both the client and the server of the direction in which the
parameter is to be passed. The directi@atalbutes are:

 in - the parameter is passed from client to server.
* out - the parameter is passed from server to client.
 inout - the parameter is passed in both directions.

It is expected that an implementation witht attempt to modify ain parameterThe
ability to even atempt to do so is language-mapping specific; the effestiofi an
action is undefed.

If an exception is raised as a result of an invocation, the values of the returranesult
anyout andinout parameters are undefined.

When an unboundestring or sequence is passed as dnout parameter, the
returned value cannot be longer than the input value.

3.10.3 Raises Expressions

A raises expression specifieshich exceptions may be raised aseault of an
invocation of the operation. The syntax ftw specification is as follows:

O wyn

<raises_expr>::="raises” “(” <scoped_name> {“,” <scope d_name>}

The <scoped_n ame>s in theraises expression must be previously defined
exceptions.

3-32 CORBAV2.2 February 1998

3

In addition to any operation-specific excepti@pecified in theaises expression,

there are a standard set of exceptions that may bellsig by the ORBThese

standard exceptions are described in “Standard Exceptions” on page 3-37. However,
standard exceptions mawpt be listed in aaises expression.

The absence of mises expression on an operation implies that there are no
operation-specific exceptis. Invocations of such an operation are still liable to
receive one of the standard exceptions.

3.10.4 Context Expressions

A context expression specifies which elements of the client’s context may affect the
performance of a request by the object. The syntax for its specification is as follows:

<context_expr>::=“context” “(” <string_literal> { “,” <string_literal> } Dy

The run-time system guarantees to make the value (if any) associatedasfth
<string_literal> in the client's context available to the object implementation when
the request is delivered. The ORB and/or object is free to use information in this
request contexduring request resolution and performance.

The absence of a caxt expression indicates that there is no request context
associated with requests for this operation.

Eachstring_literal is an arbitrarilylong sequence of alphabetic, digit, period (“.”),
underscore (*_"), and asterisk (“*") characters. The first character of the string must be

an alphabetic character. An asterisk may only be used as the last character of the string
Some implementations may use the period characteartition the name space.

The medanism by which a client associates values with the context identifiers is
described in the Dynamic Invocation Interfadtepter.

3.11 Attribute Declaration

An interface can have attributes as well as operatiorsjas attributes are defined as
part of an interface. An atinite definition is logically equivalent to declaring a pair of
accessor functions; one tonieve the value of the attribute ande to set the value of
the attibute.

The syntaxfor attribute declaration is:

<attr_dcl> ::=[“readonly”] “attribute” <param_type_sp ec>
<simple_declarator>
{",” <simple_declarator> }*

The optionalreadonly keywordindicates that there is only a single accessor
function—the retrieve value function. Consider thddiwling example:

CORBAV2.2 Attribute Declaration February 1998 3-33

interface foo {

enum material_t {rubber, glass};
struct position_t {

float x, y;

¥

attribute float radius;
attribute material_t material,
readonly attribute position_t position;

k

The attibute declarations are equivalent to the following pseudo-fpation
fragment:

float _get_radius ();

void _set _radius (infloatr);
material t _get material ();

void _set_mater ial (in material_t m);
position_t _get position ();

The actual accessor function names are language-mapping specific. The C, C++, and
Smalltalk mappings are described in separate chapters. tfibatatname is subject to
OMG IDL's name scoping rules; the accessor function names are guarantéed

collide with any legal operation names specifiable in OMG IDL.

Attribute operations return errors by means of standard exceptions.

Attributes are inherited. Aattribute namecannotbe redefined to be a differentpty.
See “CORBA Module” on page 3-34 for mardormation on redefinitiorconstraints
and the handling acimbiguity.

3.12 CORBA Module

In order to prevent names defined in ®®RBAspecification fromclashing with
names in programming languages and other software sysitémames defined in
CORBAare treated as if they were defined within a module named CORBA. In an
OMG IDL specification, however, OMG IDkeywords such as Object must not be
preceded by a “CORBA::" prefix. Othémterface namesuch as TypeCodare not
OMG IDL keywords, so they must be referred to by tHally scoped names (e.g.,
CORBA:: TypeCodewithin an OMG IDL specitation.

3-34 CORBAV2.2 February 1998

3.13 Names and Scoping

An entire OMG IDL file forms anaming scope. In addition, the following kinds of
definitions form nested scopes:

e module

* interface

* structure

e union

» operation
e exception

Identifiers for the following kinds of defitions are scoped:
* types
* constants
* enumeration values
e exceptions
* interfaces
* attributes
* operations

An identifier can only be defined once in a scope. Howeidemtifierscan be
redefined in nested scopes. An identifier declaring a module is considered to be
defined by its firsbccurrence in a scope. Subsequent occurrences of a module
declaration within the same scop®pen the module allowing additional definitions to
be added to it.

Due to possible restrictions imposed by future language bindings, OMG IDL identifiers
are case insensitive; that is, two identifiers thffer only in the case of their

characters are considered redefinition®é another. Howeveall references to a
definition must use the same case as the defining occurrence. (This allows natural
mappings to case-sensitive languages.)

Type names defined in a scope are availablenfionédiate use within that scope. In
particular, see “Constructed Types” page 3-25 on cycles in type dsfions.

A name can be used in an unqualified forithi a particularscope; it will be

resolved by successively searching farther out in enclosing scopes. Once an unqualified
name is used in a scope, it cannotrédefined (ie., if one has used a name defined in

an enclosing scope in the current scope, one cannot then redefine a version of the name
in the current scope). Suckdefinitions yield a compilation error.

A qualified name (one of thierm <scoped-name>::<identifier>) is resolved hgfi
resolving the qualifier <scoped-name> to a scope S, anddbating the definition of
<identifier> within S. The identifier must be directly defined in S or (if S is an
interface) inherited into S. The <identifier> is not searched for in enclosimgsco

When a qualified name begins with “::", the resolution process starts with the file
scope and locates subsequemidfiers in the qualified name by the rule described in
the previous paragraph.

CORBAV2.2 Names and Scoping February 1998 3-35

Every OMG IDL definition in a file has a global name within that file. The global
name for a ddfition is constructed as follows.

Prior to starting tscan aife containing an OMG IDL specification, the name of the
current root ignitially empty (") and the name of the current scop@isally empty
(“"). Whenever amodule keyword is encountered, tis¢ring “::” and the associated
identifier are appnded to the name of the current root; upon detection of the
termination of thenodule , the trailing “::” and icentifier are deleted from the name of
the current root. Whenever amerface , struct , union , or exception keyword is
encountered, the strifg” and the associated idefiir are appended to the name of
the current scope; upatetection of the termination of theterface , struct , union ,

or exception , the trailing “::” and identifier are deleted from the name of the current
scope. Additionally, a new, unnamed, scope is entered when the parameters of an
operation declaration are processed; this allows #narpeter names to duplicate other
identifiers;when parameter processing has completed, the unnamed scope is exited.

The global name of an OMG IDdefinition is the concatenation of the current root,
the current scope, a “::”, and the <identifier>, which is the local name for that
definition.

Note that the global name in an OMG IDL files corrasp®to an absolute
ScopedName in the Interface Repository. (Seeuigpoting Type Deifhitions” on
page 8-9).

Inheritance produces shadow copies of the inheritedtifiers; that is, it introduces

names into the derived interface, but these names are considered to be semantically the
same as the original deition. Two shadow copies of theame original (as results

from the diamond shape in Figure 3-1 on page 3-17) introduce a single name into the
derved interface and don't cdidt with each other.

Inheritance introduces multiple global OMG IDL names for itifeerited identifiers.
Consider the following example:

interface A {
exception E {
long L;

|8
void f() raises(E);

interface B: A {
void g() raises(E);
|

In this example, the exceptionkaown bythe global namesA::E and:B:E.

Ambiguity can arise in specificatiorttie to the nested naming scopes. For example:
interface A {

typedef string<128> string_t;
b

3-36 CORBAV2.2 February 1998

interface B {
typedef string<256> string_t;

k

interface C: A, B {
attribute string_t Ti tle;/* AMBI GUOUS!I! */

k

The attibute declaration in C is ambiguous, since the compiler doeknowt which
string_t is desired. Ambiguous declarations yield compilation errors.

3.14 Differences from C++

The OMG IDL grammar, while attempting to conform to the C++ syntax, is somewhat
more resictive. Thecurrent restrictions are as follows:

* A function return type is mandatory.
« A name must be supplied with eafciimal parameter to an operation declaration.

» A parameter list consisting of the single tokeid is not permitted as a synonym
for an empty parametéist.

» Tags are required for structures, discriminated unions, and enumerations.

Integer types cannot be defined as simply int or unsigned; they must be declared
explicitly asshort orlong .

» char cannot be qualified bgigned or unsigned keywords.

3.15 Standard Exaptions

This section presents the standard exceptions defined for the ORB. These exception
identifiers may be returned as a resulaaf ogeration nvocation, regardless of the
interface specification. Stdard exceptions may not be listedritises expressions.

In order to bound the complexity in handling the standard exceptions, the set of
standard exceptions should be kept to a tractable size. This constraint forces the
definition of equivalence classes of exceptions rather than enumeratingsimalay
exceptions. For example, an operation invocation adraf many different points due

to the inability to allocate dynamic memomRather than enumerate several different
exceptions corresponding to the different ways that memory allodaiiore causes

the exception (during marshalling, unmarshalling, in the client, in the object
implementation, allocating network packets, ...), a single exception corresponding to
dynamic memory allocation failure is dedih. Each standard exception includes a
minor code to designate the subcategory of the exception; the assignment of values to
the minor codes is left to each ORBplementaibn.

CORBAV2.2 Differences from C++ February 1998 3-37

Each standard exception also include®mpletion_status code which takes one of
the values {COMPLETED_YES, GOPLETED_NO, COMPLETED_MAYBE}.
These have thiollowing meanings:

COMPLETED_YES The object implementation has completed
processing prior to the exception being raised.

COMPLETED_NO The object implementation was nevigitiated
prior to the exception being raised.

COMPLETED_MAYBE The satus of implementation completion is
indeterminate.

3.15.1 Standard Exceptions Definitions

The standard exceptions are defined below. Clients must be prepared to handle system
exceptions that are not on this list, both because future versions of this specification
may define additional standard exceptions, and because ORB implementations may
raise non-standard system exceptions.

#define ex_body {unsigned long minor; completion_status completed;}

enum completion_status {COMPL ETED_YES, COMPLETED_NO,
COMPLETED_MAY BE};

enum exception_type {NO_EXCEPTION, USER_EXCE PTION,
SYSTEM_EXCEPTION};

exception UNKNOWN ex_body; // the unknown exception
exception BAD_PARAM ex_body; //anin valid parameter was

/I passed
exception NO_MEMORY ex_body; // dynamic memory allocation

/I failure
exception IMP_LIMIT ex_body; // violated implementat ion limit
exception COMM_FAILURE ex_body; // communication failure
exception INV_OBJREF ex_body; //in valid object r eference
exception NO_PERMISSION ex_body; // nopermission for attempted op.
exception INTERNAL ex_body; // ORB internal error
exception MARSHAL ex_body; //er rormarshalling param/result
exception INITIALIZE ex_body; //ORB initialization failure

exception NO_IMPLEMENT ex_body; // operation implementation
/I unavailable
exception BA D_TYPECODE ex body; // bad typecode
exception BA D_OPERATION ex_body; //in valid operation
exception NO_RESOURCES ex_body; // insufficient resources forreq.
exception NO_RESPONSE ex_body; // response toreg. not yet
[/l available
exception PERSIST_STORE ex_body; // per sistent storage failure
exception BA D_INV_ORDER ex_body; // routine invocations out of order

3-38 CORBAV2.2 February 1998

exception TRAN SIENT ex_body; /I transient failure - reissue
Il request

exception FREE_MEM ex_body; // cannot free memory

exception INV_IDENT ex_body; //in valid identifier syntax

exception INV_FLAG ex_body; //in valid flag was specified

exception INT F_REPOS ex_body; /I er ror accessing interface

/I repository
exception BAD_CON TEXT ex_body; // er ror processing cont ext object
exception OBJ_ ADAPTER ex_body; // failure detected by object

/I adapter
exception DATA_ CONVERSION ex_body; // data conversion error
exception OBJECT_NO T_EXIST ex_body; // non-existent object, delete

/I reference
exception TRAN SACTION_REQUIRED ex_body; //transact ion required
exception TRANSACTION_ROLLEDBACK ex_body; // transact ion rolled
/I back

exception INVALID _TRANSACTION ex_body; // in valid transaction

3.15.2 Object Non-Existence

The OBJECT_NOT_EXIST exception is raised whenever an invocation on a deleted
object was performed. It is an authoritative “hard” fault reportygaereceiving it is
allowed (even expected) to delete all copies of this object refeesmcéo perform

other appropriate “final recovery” style procedures.

Bridges forward this exception to clients, also destroying any records they may hold
(for example, proxy objects used in reference translation). The clients could in turn
purge any otheir own data structures.

3.5.3 Transaction Exceptions

The TRANSACTION_REQUIRED exception indicates that the request carried a null
transaction context, but attive transaction isequired.

The TRANSACTION_ROLLE DBACK exception indicates that the transaction
associated with the request has already been rolled back or maridicbick. Thus,

the requested operation either could not be performed or was not performed because
further computation otbehalf of the transaction would be fruitless.

The INVALID_TRANSACTION indicates that the request carried an invalid
transaction contextFor example, this exception could be raised if an error occurred
when trying to register a resource.

CORBAV2.2 Standard Exceptions February 1998 3-39

3-40 CORBAV2.2 February 1998

	OMG IDL Syntax and Semantics
	3.1 Overview
	3.2 Lexical Conventions
	3.2.1 Tokens
	3.2.2 Comments
	3.2.3 Identifiers
	3.2.4 Keywords
	3.2.5 Literals

	3.3 Preprocessing
	3.4 OMG IDL Grammar
	3.5 OMG IDL Specification
	3.5.1 Module Declaration
	3.5.2 Interface Declaration

	3.6 Inheritance
	3.7 Constant Declaration
	3.7.1 Syntax
	3.7.2 Semantics

	3.8 Type Declaration
	3.8.1 Basic Types
	3.8.2 Constructed Types
	3.8.3 Template Types
	3.8.4 Complex Declarator
	3.8.5 Native Types

	3.9 Exception Declaration
	3.10 Operation Declaration
	3.10.1 Operation Attribute
	3.10.2 Parameter Declarations
	3.10.3 Raises Expressions
	3.10.4 Context Expressions

	3.11 Attribute Declaration
	3.12 CORBA Module
	3.13 Names and Scoping
	3.14 Differences from C++
	3.15 Standard Exceptions
	3.15.1 Standard Exceptions Definitions
	3.15.2 Object Non-Existence
	3.5.3 Transaction Exceptions

