The Interface Repository 8

Contents

This chapter contains tHellowing sections.

Section Title Page
“Overview” 8-1
“Scope of an Interface Repository” 8-2
“Implementation Ependencies” 8-4
“Basics” 8-6
“Interface Repository Interfaces” 8-9
“Repositorylds” 8-31
“TypeCodes” 8-35
“OMG IDL for Interface Repository” 8-44

8.1 Overview

The Interface Repository is tltemponent of the ORB that provides persistent storage
of interface dehitions—it manages and provides access to a collection of object
definitions speciéd in OMG IDL.

CORBA V2.2 ebruary 1998 8-1

An ORB providedistributed access to@llection of objects using the objects’
publicly defined interfaces specified in OMG IDIhe Inteface Repostory provides
for the storage, distribution, and management of a collection of related objects’
interface dehitions.

For an ORB to correctly process requests, it rhase access to thaefinitions of the
objects it is handling. Object deitions can be made available to an ORBoime of
two forms:

1. By incorporating the informatioprocedurally into stub routines (e.g., as ctiokt
maps C language subroutines icmmmunication protocols).

2. As objects accessed through the dyically accessible Interface Repository (i.e.,
as interface objects” accessed through OMG IDL-specified interfaces).

In particular, the ORB can use object definitions maintained in the InterfguesRay
to interpretand handle the values provided in a request to:

® Provide type-checking of request signatures (whether the regassssued
through the DIl or through a stub).

® Assist in checking the correctness of interface inheritance graphs.

® Assist in providing interoperability between different ORBplementaibns.

As the interface to the object ddfions maintained in an Intirce Repogory is
public, the information maintained in the Repository can also be used by clients and
services. For example, the Repository can be used to:

® Manage the installation ardistribution of interdce definitions.
® Provide components of a CASE environment (foaraple, an interfacbrowser).
® Provide interface information to langge bindings (such as a compiler).

®* Provide components of end-user environments (for example, a menu bar
constructor).

The complete OMG IDL specification for the Interface Repository is in Section 8.8,
“OMG IDL for Interface Repository,” on page 8-44; however, fragments of the
specification are used throughout this chapter as necessary.

8.2 Scope of an Interface Repository

Interface dehitions are maintained in the Interface Repository as a set of objects that
are accessible through a set of OMG IDL-specified interfadaitiehs. An interface
definition contains a description of the operations it supports, including the types of the
parameters, exceptions it may raise, and context information it may use.

In addition, the interface repository stores constahies, which might be used in
other interface definitions or might simply be defined for programmer convenience and
it stores typecodes, which are values that describe a type in struetanal

CORBAV2.2 February 1998

8

The Inteface Repo#ory uses modules as a way to grdoperfacesand to navigate
through those groups by name. Modules can contain constants, typedefs, exceptions,
interface definitions, and other modules. Modules may, for example, conesp the
organization of OMG IDL definitions. They may also be used to represent
organizations defined for administration or other purposes.

The Inteface Repo#tory is a set of objects that represent the information in it. There
are operations that operate on this apparent object structure. It is an implementation’s
choice whether these objects exist persistently or are cre&ted neferenced in an
operation on the repository. There are also operations that extract information in an
efficient form, obtaining a block of information that describes a whole interface or a
whole operation.

An ORB may have access to fiplle Interface Repositories. This may occur because

* two ORBs have diérent requirements for the implementation of the Interface
Repository,

® an object implementation (such as an OODB) prefers to provide its own type
information, or

® itis desired to havdifferent additional informadn stored in different regsitories.

The use of typecodes anepository identifiers is intended to allow different
repositories to keep theinformation consistent.

As shown in Figure 8-1 on page 8-4, the same inteffme s installed intwo
different repositories, one at SoftCo, Inc., which sells Doc objects, and one at
Customer, Inc., which buys Doc objects from SoftCo. SoftCo sets plositery id for
the Doc interface tven itdefines it. Customer might first install the interface in its
repository in a module where it could testedbefore exposing it for general use.
Because it has the sameository id,even though the Doc interface is stored in a
different repository and is nested in a different module, knhswvn to be thesame.

CORBAV2.2 Scope of aterface Repository February 1998 8-3

Meanwhile at SoftCo, someone working omew Doc nterface has given it a new
repository id 456, which allows the ORBsdistinguish it from the current product
Doc interhce.

SoftCo, Inc., Repository Customer, Inc., Repository

module softco {

interface Doc id 123 { module testfirst {
void print();
}; module softco {
}; interface Doc id 123 {
void print();
|3
module ne wrele ase { }
interface Doc id 456 {
void print(); }
h

h
Figure 8-1 Using Repository IDs to establish correspondence between repositories

Not all interfaces will be visible in all repositories. For example, Customer employees
cannot see the new release of the Doc interface.eMenvwidely usedhterfaces will
generally be visible in most repositories.

This Interface Repository specification defines operationsefivieving information
from the repository as well as creatingidigbns within it. There may be additional
ways toinsert informationnto the repository (for example, compiling OMG IDL
definitions, copying objects from one repository to another, etc.).

A critical use of the interface repository information is éonnecting ORBs together.
When an object is passed in a request from one ORB to another, it magdssary to
create a new object to represent the passed object in the receiving ORB. This may
require locating the interface information in an interface repository in the receiving
ORB. By getting the repository id from a repository in seading ORB, it is possible

to look up the interface in a repository in the receiving ORB. To succeed, the interface
for that object must be installed in both repositories with the same repository id.

8.3 Implementation Dependencies

An implementation of an Interfadeepostory requires some form of persistent object
store. Normally the kind of persistent object store used determines how interface
definitions are distributed and/or replicated tigbout a network domain. For
example, if an Interface Repository is implemenisthg a filing system to provide
object storage, there may be only a single copy of a set of interfeaiatained on a
single machine. Alternatively, if an OODB used to provide object storagaultiple
copies of interface dafitions may be maintained each of whichdstributed across
several machines to provide both higlaidability and load-balancing.

CORBAV2.2 February 1998

8

The kind of object store used mdgtermine the scope of interface definitions provided
by an implementation of the Interfa&epogory. For example, it may determine
whether each user has a local copy of a set of interfaces or if there égspnper
community of users. The object store may also determine whether or not all clients of
an interface set see exactly the same seahwfgiven point in time or whether latency

in distributing copies of the setwgis different users different views of the setay

point in time.

An implementation of the Interface Repository is alspendent on the security
mechanism in use. The security mechanissuélly operating in conjunction with the
object store) determines the natared gramlarity of access controls available to
constrain access to objects in the repository.

8.3.1 Managing Interface Repositories

InterfaceReposdtories contain the information necessary to allow programs to
determineand manipulate the tygaformation at run-timePrograms may attempt to
access the interface repository at any time by usingéheinterface operation on

the object reference. Onga&formation has ben installed in the repository, programs,
stubs, and objects may dependitbrupdates to the repository must be done with care
to avoid disrupting the environment. A variety of techniques are available to help do
So.

A coherent repository is one whose contents can be expressed ascNedition of

OMG IDL definitions. For example, all inherited interfaces exist, there are no duplicate
operation names or other name collisions, all parameters have knpes) and so

forth. As information isadded to the repository, it is possible that it may pass through
incoherent states. Media failures or communication errors might also cause it to appear
incoherent. In general, such problems cannot be completely eliminated.

Replication is one technique to increase the availability and performance of a shared
database. It is likely that the same interface information will be storeuliftiple
repositories in a computing environmebising regository IDs, the repositories can
establish the identity of the interfaces and other information across the repositories.

Multiple repositories might also hesed to insulate production environments from
development activity. Developers might be permitted ékewarbitrary updates to their
repositories, but administrators may contptlates to widely usemtpositories. Some
repository implementations might permaharing of information, for example, several
developers’ repositories may refer to parts of a shared repository. Other repository
implementations might instead copy the common informatiomnincase, theesult
should be a repositoradility that createshe impression of a single, coherent
repository.

The inerface repository itsefannot make all repositories have coheiefdrmation,
and it may be possible tenter information thatloes not make sense. The repository
will report errors that it detects (e.g., definitvgp atributes with the same name) but
might not report all errors, for example, addingadtibute to a base interface may or
may not detect a name conflict with a derived interf&@espitethese linitations, the

CORBAV2.2 mplementation Dependencies February 1998 8-5

8-6

8.4 Basics

expectation is that a combination of conventions, admatigé controls, and tools that
addinformation to the repository willvork to create a coherent view of the repository
information.

Transactions and concurrency control mechanisms defined by the Object Services may
be used by some repositoriebem updating the repository. Those services are
designed so that they can be used without changing the operations that update the
repository. For example, a repository that supports the Transaction Seouitok

inherit the Repository interface, which contains tipelate oprations, as well as the
Transaction interface, which contains the transaction management operations. (For
more information about Object Services, including the Transaat@hConcurrency
Control Services, refer t6ORBAservices: Common Object Service Sigations)

Often, rather than change the information, new versions will be created, allowing the
old version to continue to be valid. The nearsions will have distinct repository IDs
and becompletely different types as far as the repository and the ORBs are cathcern
The IR provides storag®r version identifiers for named types, but does not specify
any additional versioning mechanism or semantics.

This section introduces some basic ideas that are important to understanding the
InterfaceReposdtory. Topics addressed in ttsgction are:

® Names and IDs
®* Types and TypeCodes

® |nterface Objects

8.4.1 Names and Identifiers

Simple names are not necessarily unique within an Interface Repository; they are
alwaysrelative to an explicit or implicimodule. In this context, interface definitions
are considered explicit modules.

Scoped names uniqueigentify modules, interfaces, constant, typedefs, exceptions,
attributes, and operations in an Interface Repository.

Repository identifiers globally identify modules, interfaces, constants, typedefs,
exceptionsattributes,and operations. They can be used to synchradefiaitions
across multiple ORBand Repositories.

8.4.2 Types and TypeCodes

The Interface Rpository stores information about types that are not interfaces in a data
value called a Typeode.From the TypeCodealone it is possible to determine the
complete structure of a type. See “TypeCodes” on page 8-35 for nforenation on

the internal structure ofypeCodes.

CORBAV2.2 February 1998

8.4.3 Interface Objects

Each interface managed in &rterface Repository is maintained as a collection of
interface objects:

® Repository: the top-level module for the repository name space; it contains
constants, typedefs, exceptiongerface definitionsand modules.

®* ModuleDef: a logical grouping of interfaces; it contains constants, typedefs,
exceptions, interface daftions, andother modules.

* |nterfaceDef: an interface definition; it contailists of constants, types, exceptions,
operations, and tibutes.

* AttributeDef: the dehition of an attibute of the interface.

® OperationDef: the dafition of anoperation on the interface; it contailists of
parameters and exceptions raised by this operation.

* TypedefDef: base interface for daftions of named types that are nioterfaces.
® ConstantDef: the defition of anamed constant.

* ExceptionDef: the definition of an exception that can be raised by an operation.

The inerface specifications farach interface object lists thdrdtutes maintained by
that object (see “Interface Repository Interfaces” on page 8-9). Many of these
attributes correspond directly to OMG IBtatements. An implemeatton can choose
to maintain additionahttibutes to facilitate managing the Repository oreoord
additional (proprietary) information about arterface. Implementations that extend
the IR interfaces should do so by deriving naeterfaces, not by modifying the
standard interfaces.

The CORBAspecification defines a minimal set of operations for iaterfobjects.
Additional operations that an implementation of the Interface Repository may provide
could include operations that provide for the versioningnterfacesand for the

reverse compilation of specifications (i.e., the generation of a file containing an
object's OMG IDL specification).

8.4.4 Structure and Navigation of InterfaGdbjects

The deinitions in the Interfacdkepo#ory are structured as a set of objects. The
objects are structured the same way definitions are structured—some objects
(definitions) “contain” other objects.

The montainment relationships for the objects in the Interface Repositorsharen in
Figure 8-2 on page 8-8.

CORBAV2.2 &Bics February 1998 8-7

Repository Each interface repository is represented
by a global root repository object.

ConstantDef The repository object represents the constants,
TypedefDef typedefs, exceptions, interfaces and modules
ExceptionDef that are defined outside the scope of a module.
InterfaceDef
ModuleDef
ConstantDef The module object represents the constants,
TypedefDef typedefs, exceptions, interfaces, and other modules
ExceptionDef defined within the scope of the module.
ModuleDef
InterfaceDef
ConstantDef An interface object represents constants,
TypedefDef typedefs, exceptions, attributes, and operations
ExceptionDef defined within or inherited by the interface.
AttributeDef
OperationDef Operation objects reference

exception objects.

Figure 8-2 Interface Repository Object Containment

There are three ways to locateiaterface in the Interface Repository, by:
1. Obtaining arnterfaceDef object directly from the ORB.
2. Navpating though the module name space using a sequence of names.

3. Locating thdnterfaceDef object that corresponds to a particular répog
identifier.

Obtaining aninterfaceDef object directly is useful when an object is encountered
whose type was ndthown atcompile time. By using thget_interface()operation

on the object reference, it is possible to retrieve the Interface Repository information
about the object. That information could then be used to perform operations on the
object.

Navigating the module name space is useful when information abouticulaar
named interface is desired. Starting at the root module of the repository, it is possible
to obtain entries by name.

Locating thelnterfaceDef object by ID is useful when looking for an entry in one
repository that corresponds to another. A repository identifier must be globally unique.
By using the same identifier two repositories, it is possible to obtain the interface
identifier for an interface in one repository, and then obtain information about that
interface from another repository that may be closer or contain additional information
about the interface.

8-8 CORBAV2.2 February 1998

8.5 Interface Repository Interfaces

Several abstract interfaces are used as inéadaces for other objects in the IR.

A common set of operations ised to locate objects within theterface Repaository.
These operations are defined in the absirgetfacesRObject, Container , and
Contained described below. All IR objects inherit from tHeObject interface,

which provides an operation for identifying the actual type of the object. Objects that
are containers inherit navigation operations fromQbatainer interface. Objects that

are contained by other objects inherit navigation operations frof@ah&ained

interface.

The IDLType interface is inherited by all IR objects that represent IDL types,
including interfaces, typedefs, and anonymous types.TypedefDef interface is
inherited by all named non-intede types.

The IRObject, Contained , Container , IDLType, andTypedefDef interfaces are not
instantiable.

All string data in the Interface Repository aecoded as defined by the 1ISO 8859-1
coded characteset.

8.5.1 Supporting Type Definitions

Several types are used throughout the IR interfadaitiefis.

module CORBA {

typedef string Identifier;
typedef string Scop edName;
typedef string Repositoryld;

enum Defi nition Kind {
dk_no ne, dk_all,
dk_Attri bute, d k_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_T ypedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_St ring, dk _Sequ ence, dk_Array,
dk_R epository,
dk_Wstring, dk_Fixed

Identifier s are the simple names that identify modules, interfaces, constants, typedefs,
exceptionsattributes,and operations. They correspond exactly to OMG IDL

identifiers. Anldentifier is not necessarily unique within @mtire Interface

Repository; it is unique only within a particulRepository, ModuleDef,

InterfaceDef , or OperationDef .

A ScopedName is a hame made up of one or madentifier s separated by the
characters “::". They correspond to OMG IDL scoped names.

CORBAV2.2 nterface Repository Interfaces February 1998 8-9

An absoluteScopedName is one that begins with “::” and unambiguously identifies
a definition in aRepository . An absoluteScopedName in a Repository

corresponds to global namein an OMG IDL file. Arelative ScopedName does not
begin with “::” andmust be resolved relative to some context.

A Repositoryld is an identifierused to uniquely and globally identify a module,
interface, constant, typedef, exception, attribute or operatiofRefsgsitoryld s are
defined as strings, they can be mardted(e.g., copied and compared) using a
language binding’s string manipulation routines.

A Definitio nKind identifies the type of an IR object.

8.5.2 IRObject

The IRObject interface represents the most generic interface from which all other
InterfaceRepodiory interfaces are derivedyen the Repositorytgelf.

module CORBA {
interface IRObject {
/l read interface
readonly attribute DefinitionKind def_kind;

/l write interface
void destroy ();
|8
|8

Read Interface

The def _kind attrbute identifies the type of the definition.

Write Interface

The destroy operation causes the object to cease to exist. If the object is a
Container , destroy is applied to all its contents. If the object containditType
attribute for an anonymous type, thBLType is destroyed. If the object is currently
contained in some other object, it is removed. Invokiegtroy on aRepository or

on aPrimitiveDef is an error. Implementations may vary in their handling of
references to an object that is being de®dyyout the Repository should not be left in
an incoherenstate.

8-10 CORBAV2.2 February 1998

8.5.3 Contained

The Contained interface is inherited by all Interface Repository interfaces that are
contained by other IR objects. All objects within the InterfRepo#ory, except the
root object Repository) and dehitions of aronymous ArrayDef , StringDef , and
SequenceDef), and pimitive types are contained by other objects.

module CORBA {
typedef string VersionSpec;

interface Contained : IRObject {
/l read/write interface

attribute Repositoryld id;
attribute Identifier name;
attribute Versio nSpec version;

/l read interface

readonly attribute Container defined_in;
readonly attribute Sco pedName absolute_name;
readonly attribute Repository containing_repository;

struct Description {
Definitio nKind kind;
any value;

ki

Description describe ();

/[write interface

void move (
in Container new_container,
in Identifier new_name,
in VersionSpec new_version
);
|3

ki

Read Interface

An object that is contained by another object hagaattibute that identifies it
globally, and aname attribute that identifies itiniquely within the enclosing
Container object. It also has gersion attribute that distiguishes it from other
versioned objects \th the samename. IRs are not required to support simultaneous
containment of multiple versions of the sarmamed object. Supporting ntiple
versions most likely requires mechanismd policy not specified in thislocument.

CORBAV2.2 nterface Repository Interfaces February 1998 8-11

8-12

Contained objects also have @efined_in attribute that identifies th€ontainer
within which they are defined. Objects can be contained either because they are
defined within the containing object (for example, an interface is defined within a
module) or because they are inherited by thetaining object (for example, an
operation may be contained by an irdedf because thaterface inherits the operation
from another interface). If an object is contained through inheritancelefiveed_in
attribute identifies thénterfa ceDef from which the object is inherited.

The absolute_name attribute is arabsoluteScopedName that identifies a
Contained object uniquely withirits enclosingRepository . If this object's
defined_in attibute references Repository , theabsolute_name is formed by
concatenating the string “::” arttlis object'sname attribute. Otherwise, the
absolute_name is formed by concatenating tiabsolute_name attribute of the
object referenced by this objectiefined_in attribute, the string “::”, and this object’s
name attrbute.

The containing_repository attibute identifies theRepository that is eventually
reached by recursively following the objeafsfined_in attrbute.

Thedescribe operation returns a structure containing informa#ibout the interface.
The description structure associated with each interface is providiedv with the
interface’s definition. Th&ind of definition described by the structure returned is
provided with the returned structure. For example, ifdéscribe operation is
invoked on an &tibute object, th&ind field containsdk_Attri bute and thevalue
field contains arany, which contains théttributeDe scription structure.

Write Interface

Setting thed attributechanges the global identity of this defion. An error is
returned if an object with the specifi@tl attribute already exists within this object's
Repository .

Settingthename attribute changes the identity of this idéfon within its Container .
An error is returned if an object with the specifiemime attribute already egis within
this object'sContainer . Theabsolute_name attibute is also updated, along with
any other atibutes that reflecthe name of the object. If this object i€antainer ,
theabsolute_name attribute of any objects it contains are also updated.

The move operation atomically removes this object from its cur@mttainer , and
adds it to theContainer specified bynew_container , which must;

®* Be in the sam®&epository,

® Be capable of containing this object's type (see “Structure and Navigation of
Interface Objects” on page 8-7); and

® Not already contain an object withis object’'s name (unless multiple versions are
supported by the IR).

Thename attribute is chaged tonew_name , and theversion attribute is banged to
new_version .

CORBAV2.2 February 1998

The defined_in andabsolute_name attributes araipdated taeflect thenew
container andhame. If this object is also &ontainer , theabsolute_name
attributes of any objects it contains are also updated.

8.5.4 Container

The Container interface isused toform a containmenhierarchy in the Interface
Repository. AContainer can contain any number of objectsrived from the
Contained interface. AllContainer s, except folRepository , are also derivettom
Contained .

module CORBA {
typedef sequence <Contained> ContainedSeq;

interface Container : IRObject {
/l read interface

Contained lookup (in Sc opedN ame search_name);

ContainedSeq contents (

in Definit ionKind limit_type,
in boolean exclude_inherited
);
ContainedSeq lookup_name (
in Identifier search_name,
in long levels_to_search,
in Definit ionKind limit_type,
in boolean exclude_inherited
);
struct Description {
Contained contained_obj ect;
Definitio nKind kind;
any value;
|3

typedef sequence<D escription> DescriptionSeq;

Description Seq describe_contents (

in Definit ionKind limit_type,
in boolean exclude_inher ited,
in long max_returned_objs

)i

/[write interface

CORBAV2.2 nterface Repository Interfaces February 1998 8-13

ModuleDef create_module (

in Repositoryld id,
in Identifier name,
in VersionSpec version

);

ConstantDef create_constant (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in any value

);

StructDef create_struct (

in Repositoryld id,

in Identifier name,

in VersionSpec version,

in StructMemberSeq members

);

UnionDef create_union (

in Repositoryld id,

in Identifier name,

in VersionSpec version,

in IDLType discriminator_type,

in UnionMemberSeq members

);

EnumDef create_enum (

in Repositoryld id,

in Identifier name,

in VersionSpec version,

in EnumMemberSeq members

);

AliasDef create_alias (

in Repositoryld id,

in Identifier name,

in VersionSpec version,

in IDLType original_type

);

InterfaceDef create_interface (

in Repositoryld id,

in Identifier name,

in VersionSpec version,

in Inter faceDefSeq base_interfaces

);

8-14 CORBAV2.2 February 1998

ExceptionDef create_exception(

in Repositoryld id,
in Identifier name,

in VersionSpec ver sion,

in StructMemberSeq members

)i

Read Interface

The lookup operation locates a deition relative to this cominer given a scoped

name using OMG IDL’s name scoping rules. An absolute scoped name (beginning with

“") locates the definition relative to thenclosingRepository . If no object is found,
a nil object reference is returned.

The contents operation returns thiést of objects directly contained by or inherited
into the objectThe operation is used to navigate through the hierarchy of objects.
Starting with the Repsitory object, a clientses this operation test all of the objects

contained by the Repository, all of the objects contained by the modules within the

Repository,and then all of thénterfaces within a specific moduland so on.

limit_type

exclude_inherited

search_name

levels_to_search

If limit_type is set todk_all , objects of all interface
types are returned. For example, if this is an
InterfaceDef , the attribute, operation, and exception
objects are all returned. limit_type is setto a
specific interface, only objects of that interface type
are returned. For example, only attribute objects are
returned iflimit_type is set todk_Attri bute.

If set to TRUE jnherited objects (if there are any) are
not returned. If set to FALSE, all contained
objects—whether contained due td@mitance or
because they were defined within the object—are
returned.

The lookup_name operation is used to locate an
object by name within a particular object or within
the objects contained by that object.

Specified which name is to be searched for.

Controls whether the lookup is constrained to the
object the operation iswoked on or whether it

should search through objects contained by the object
as well. Settindevels_to_search to -1 searches the
current object and all contained objects. Setting
levels_to_search to 1 searches only the current
object.

CORBAV2.2 nterface Repository Interfaces February 1998 8-15

8-16

limit_type If limit_type is set todk_all , objects of all interface
types are returned (e.g., attributesei@giions,and
exceptions are all returned). lifnit_type is setto a
specific interface, only objects of that interface type
are returned. For example, only attribute objects are
returned iflimit_type is set todk_Attri bute.

exclude_inherited If set to TRUE jnherited objects (if there are any) are
not returned. If set to FALSE, all contained objects
(whether contained due tohiaritance or bcause they
were defined within the object) are returned.
The describe_contents operation combines the
contentsoperation and thdescribe operation. For
each object returned by tlentents operation, the
description of the object is returned (i.e., the object’s
describe operation isnvoked and theesults
returned).

max_returned_objs Limits the number of objects thaan be returned in
an invocation of the call to the number provided.
Setting the parameter to -1 means return all contained
objects.

Write Interface

The Container interface provides operations to crelteduleDef s, ConstantDef s,
StructDef s, UnionDef s, EnumDef s, AliasDef s, andinterfac eDefs as contained
objects. Thalefined_in attribute of a definition created widmy of these operations
is initialized to identify theContainer on which the operation is invoked, and the
containing_repository attribute isinitialized to itsRepository .

The create_<type> operations all tak&l andname parameters which are used to
initialize the identity of the created digfion. An error is returned if an object with the
specifiedid already exists within this objectRepository , or, assuming multiple
versions are not supported, if an object with the specifeade already exists within
this Container .

The create_module operation returns aew emptyModuleDef . Definitions can be
added usingContainer::create_<type> operations on theew malule, or by using
the Contained::move operation.

Thecreate_constant operation returns aew ConstantDef with the specifiedype
andvalue .

The create_struct operation returns aew StructDef with the specifiednembers .
The type member of thé&tructMember structures is ignored, and should st to
TC_void . See “StructDef” on page 8-20 for more information.

CORBAV2.2 February 1998

The create_union operation returns a neldnionDef with the specified
discriminator_type andmembers . Thetype member of théJnionMember
structures is ignored, and should be sef@o void . See “UnionDef” on page 8-21 for
more information.

The create_enum operation returns aew EnumbDef with the specifiednembers .
See “EnumDef” on page 8-Zar more information.

The create_alias operation returns a nediasDef with the specified
original_type .

Thecreate_interface operation returns mew emptyinterfaceDef with the specified
base_interfaces . Type, exception, and constat#finitions can be dded using
Container::.create_<type> operations on the neimterfaceDef . OperationDefs
can be added usirigterfaceDef:: create_operation andAttributeDefs can be
added usingnterface:.create_attribute . Definitionscan also be added using the
Contained::move operation.

The create_exception operation returns aew ExceptionDef with the specified
members. Théype member of th&tructMember structures is ignored, and should
be set tolC_void .

8.5.5 IDLType

The IDLType interface is an abstract interface inherited by all IR objects that represent
OMG IDL types. It provides access to thgpeCode describing the typeand is used
in defining other interfaces wherever ihtfons of IDL types must beeferenced.

module CORBA {
interface IDLType : IRObject {
readonly attribute T ypeCode type;
|3
|3

Thetype attibute describes the type defined by an objectvddifrom IDLType.

8.5.6 Repository

Repository is an interface that provides global access to the Interface Repository. The
Repository object can contain constants, typedefs, exceptioterfaces.and

modules. As it inherits fronContainer , it can be used to look up any definition
(whether globallydefined or defined within a module or interface) eithenasne or

by id.

There may be more than one Interface Repository in a particular ORB environment
(although some ORBsight require that definitions they use be registered with a
particular repository)Each ORB environmentill provide a means for obtaining
object references to the Repositories availatithin the environment.

CORBAV2.2 nterface Repository Interfaces February 1998 8-17

8-18

module CORBA {
interface Reposi tory : Container {
/l read interface

Contained lookup_id (in Repositoryld search_id);
PrimitiveDef get_primitive (in PrimitiveKind kind);

/I write interface

StringDef create_string (in unsig ned long b ound);
WstringDef create_wst ring(in unsigned long bound);

SequenceDef create_sequence (
in unsigned long bound,
in IDLType element_type

)i

ArrayDef create_array (
in unsigned long length,
in IDLType element_type

)i

FixedDef create_fixed(
in unsigned short digits,
in short scale

h
h

Read Interface

The lookup_id operation is used to ¢kup an olgct in aRepository given its
Repositoryld . If the Repository does not contain a definition fgsearch_id , a nil
object reference is returned.

Theget_primitive operation returns a reference t®dmitiveDef with the specified
kind attribute. AllPrimitiveDef s are immutable and owned by tRepository.

Write Intefface

The threecreate_<type> operations create new objects defining anonymous types. As
these interfaces are not dexil from Contained , it is the caller’s responsibility to
invokedestroy on the returned object if it is not successfully used in creating a
definition that is derived fronr€ontained . Each anonymous type ddfion must be

used in defining exctly one other object.

The create_string operation returns a neftrin gDef with the specifiecdbound ,
which must be non-zero. Thget_primitive operation is used for unbounded strings.

CORBAV2.2 February 1998

8

Thecreate_wstring operation returns a newstrin gDef with the sgcified bound ,
which must be non-zero. Thget_primitive operation is used for unbounded strings.

The create _sequence operation returns a nesequenceDef with the sgcified
bound andelement type .

The create_array operation returns a nedrrayDef with the specifiedength and
element_type .

The create_fixed operation returns a nelixedDef with the specified number of
digits and scale. The number of digiaist be from 1 to 31, inclusive.

8.5.7 ModuleDef

A ModuleDef can contain constants, typedefs, epiions, interfaes, and other
module objects.

module CORBA {
interface ModuleDef : Container, Contained {

>

struct ModuleDescr iption {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
\ersio nSpec version;
|3
|3

The inheriteddescribe operation for aModuleDef object returns a
ModuleDescription

8.5.8 ConstantDef Interface

A ConstantDef object defines a named constant.

module CORBA {
interface ConstantDef : Contained {
readonly attribute T ypeCode type;
attribute IDLType type_def;

attribute any value;

|3
struct ConstantDescription {

Identifier name;

Repositoryld id;

Repositoryld defined_in;

Versio nSpec version;

TypeC ode type;

any value;

CORBAV2.2 nterface Repository Interfaces February 1998 8-19

8-20

h
h
Read Interface

The type attibute specifies th@ypeCode describing the type of the constant. The
type of a constant must be one of the simple types (long, short, float, char, string, octet,
etc.). Thetype def attribute identifieghe deinition of the type of the constant.

Thevalue attributecontains the value of the constant, not the computation of the value
(e.g., the fact that was defined as “1+2.

The describe operation for &ConstantDef object returns &onstantDescription

Write Interface
Setting thetype_def attribute also updates tiype attribute.

Whensetting thevalue attrbute, theTypeCode of the supplied anynust be equal to
TypedefDefinterface

TypedefDef is an abstract interfaagsed as a baseterface for all named non-object
types (structures, unions, enumeraticarg] alises). TheTypedefDef interface is not
inherited by the d@fition objects for pimitive or anonymous types.

module CORBA {
interface TypedefDef: Co ntained, IDLType {
|3
struct TypeD escription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
Versio nSpec version;
TypeC ode type;
|3
|3

The inheriteddescribe operation for interfaces deed from TypedefDef returns a
TypeD escription .

8.5.9 StructDef

A StructDef represents an OMG IDL structure definitioncéin catain structs,
unions, and enums.

module CORBA {
struct StructMember {
Identifier name;

TypeCode type;

CORBAV2.2 February 1998

IDLType type_def;
|3

typedef sequence <StructMember> StructMemberSeq;

interface StructDef : TypedefDef, Container{
attribute StructMemberSeq members;

h
h
Read Interface

The members attributecontains a description of each structure member. It can
contain structs, unions, and enums.

The inheritedtype attrbute is atk_struct TypeCode describing the structure.

Write Interface

Setting themembers attrbute also updates thgpe attribute. Whersettingthe
members attrbute, thetype member of theStructMember structure is ignored and
should be set tdC_void .

8.5.10 UnionDef

A UnionDef represents an OMG IDL union definition. It can contain structs, unions,

and enums.
module CORBA {
struct UnionMember {
Identifier name;
any label;
TypeCode type;
IDLType type_def;
|3

typedef sequence <UnionMember> UnionMemberSeq;

interface UnionDef : TypedefDef, Container {
readonly attribute T ypeCode discriminator_type;
attribute IDLType discriminator_type_def;
attribute UnionMemberSeq members;
|3
|3

Read Interface

The discriminator_type anddiscrimi nator_type_def attributes describe and
identify the union’s discriminator type.

CORBAV2.2 nterface Repository Interfaces February 1998 8-21

The members attributecontains a description of each unim@mber.Thelabel of
eachUnionMemberDescription is a distinct value of thdiscrimi nator_type .
Adjacent members can have the sarame. Members with the santeame must also
have the samgpe. A label with typeoctet and value 0 indicates the default union
member.

The inheritedtype attrbute is atk_union TypeCode describing the union.

Write Interface

Setting thediscriminator_type_def attribute alsaupdates thaliscriminator_type
attribute and setting thaiscrimi nator_type_def ormembers attrbute also updates
thetype attribute.

When setting thenembers attribute, theype member of th&JnionMember
structure is ignored and should be seT@ void .

8.5.11 EnumDef

An EnumDef represents an OMG IDL enumerationid#ion.

module CORBA {
typedef sequence <Id entifier> E numMemberSeq,;

interface EnumDef : T ypedefDef {
attribute EnumMemberSeq members;

h
h
Read Interface

The members attributecontains a distinct name for each possible value of the
enumeration.

The inheritedtype attrbute is atk_enum TypeCode describing the enumeration.

Write Intefface

Setting themembers attrbute also updates thgpe attribute.

8.5.12 AliasDef

An AliasDef represents an OMG IDL typedef that aliases anothénitief.

module CORBA {
interface AliasDef : TypedefDef {
attribute IDLType original_type_def;
|3
|3

8-22 CORBAV2.2 February 1998

Read Interface
The original_type_def attribute identifies théype being aliased.

The inheritedtype attrbute is atk_alias TypeCode describing the alias.

Write Interface

Setting theoriginal_typ e_def attibute also updates thgpe attribute.

8.5.13 PrimitiveDef

A PrimitiveDef represents one of the OMG IDL itive types. As pritive types
are unnamed, this interface is not derived fifiypedefDef or Contained .

module CORBA {
enum PrimitiveKind {
pk_null, pk_void, pk_short, pk_long,p k_ushort, pk_ulong,
pk_float, pk_double, pk_boolean, pk_char, pk_octet,
pk_any, pk_Typ eCode, pk_Principal, pk_string, pk_obj ref,
pk_longlong, pk_ulonglong, pk_longdouble, pk_wchar, pk_w string
b

interface PrimitiveDef: IDLType {

readonly attribute PrimitiveKind kind;

|3
|3
The kind attibute indicates which primitive type therimitiveDef represents. There
are noPrimitiveDef s with kindpk_null . A PrimitiveDef with kind pk_string

represents an unbounded stringPAmitiveDef with kind pk_objref represents the
IDL type Object.

The inheritedtype attrbute describes thgrimitive type.

All PrimitiveDef s are owned by the Repitory. References to them are obtained
usingRepository::get_primitive

8.5.14 StringDef

A StringDef represents an IDL boundetring type. Thaunbounded string type is
represented asRrimitiveDef . As string types are anonymous, this interface is not
derved fom TypedefDef or Contained .

module CORBA {
interface Str ingDef : IDLType {
attribute unsigned long bound;
|3
|3

CORBAV2.2 nterface Repository Interfaces February 1998 8-23

The bound attribute specifies the maximum number of characters in the sindg
mustnot be zero.

The inheritedtype attrbute is atk_string TypeCode describing the string.

8.5.15 WstringDef

A WstringDef represents an IDL wide string. The unbounded gidiag type is
represented asRrimitiveDef . As widestringtypes are anonymous, this interface is
not derived fromTypedefDef or Contained.

module CORBA {
interface WstringDef : IDLType {
attribute unsigned long bound;
|3
|3
The bound attibute specifies the maximum number of wide characters in a wide

string, and must not be zero.

The inheritedtype attrbute is atk_wstring Typ eCode describing the wide string.

8.5.16 FiedDef

A FixedDef represents an IDL fixed point type.

module CORBA {
interface FixedDef : IDLType {
attribute unsigned sh ort digits;
attribute short scale;
|3
|3

The digits attrbute specifies the total number of decimal digits in the nunamet,
must be from 1 t@1, inclusive. Thescale attrbute specifies thegsiion of the
decimal point.

The inheritedtype attrbute is atk_fixed T ypeCode , which describes a fixed-point
decimal number.

8.5.17 SequaeceDef

A SequenceDef represents an IDL sequence type. As sequence types are anonymous,
this interface is not deréd fom TypedefDef or Contained .

module CORBA {
interface Seque nceDef : IDLType {
attribute unsigned long bound;
readonly attribute T ypeCode element _type;
attribute IDLType element_type_def;

8-24 CORBAV2.2 February 1998

h
h
Read Interface

The bound attribute specifies the maximum number of elements in theeseg. A
bound of zero indicates annbounded sequence.

The type ofthe elements is described blement_type and identified by
element_type_def .

The inheritedtype attrbute is atk_sequence TypeCode describing the sequence.

Write Interface
Setting theelement_type _def attribute alsaupdates thelement type attribute.

Setting thebound or element_type_def attibute also updates thgpe attribute.

8.5.18 ArrayDef

An ArrayDef represents an IDL array type. As array types are anonymous, this
interface is not dered fromTypedefDef or Contained .

module CORBA {
interface ArrayDef : IDLType {
attribute unsigned long length;
readonly attribute T ypeCode element _type;
attribute IDLType element_type_def;
|3
|3

Read Interface

Thelength attribute specifies the number elements in the array.

The type ofthe elements is described blement_type and identified by
element_type def . Since amrrayDef only represents a single dimension of an
array, multi-dimensional IDL arrays are represented by muliplayDef objects, one
per array dimension. Thelement_type_def attibute of theArrayDef representing
the leftmost index othe array, as defined in IDL, will refer to therayDef
representing the next index to the right, and soTtw.innermostArrayDef represents
the rightmost index and the element type ofindti-dimensional OMG IDL array.

The inheritedtype attrbute is atk_array TypeCode describing the array.

Write Interface

Setting theelement_type_def attribute alsaupdates thelement type attribute.

CORBAV2.2 nterface Repository Interfaces February 1998 8-25

Setting thebound or element_type_def attibute also updates thgpe attribute.

8.5.19 ExceptionDef

An ExceptionDef represents an exception definitioncéin contain structs, unions,
and enums.

module CORBA {
interface ExceptionDef : Contained, Contai ner {
readonly attribute T ypeCode type;
attribute StructMemberSeq members;

|3

struct ExceptionD escription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
Versio nSpec version;
TypeC ode type;

|3

>

Read Interface
The type attibute is atk_except TypeCode describing the exception.
The nembersattribute describesany exception members.

The describe operation for &xceptionDef object returns an
ExceptionD escription .

Write Interface

Setting themembers attrbute also updates thgpe attribute. Whersettingthe
members attrbute, thetype member of theéStructMember structure is ignored and
should be set tdC_void .

8.5.20 AttributeDef

An AttributeDef represents the information that definesastibute of an interface.

module CORBA {
enum AttributeMode {AT TR_NORMAL, ATTR_READONLY},

interface AttributeDef : Contained {
readonly attribute T ypeCode type;
attribute IDLType type_def;
attribute AttributeMode mode;

8-26 CORBAV2.2 February 1998

struct AttributeDescription {

Identifier name;
Repositoryld id;
Repositoryld defined_in;
Versio nSpec version;
TypeC ode type;

AttributeMode mode;
h
h
Read Interface

The type attibute provides th@ypeCode describing the type of thisttibute. The
type_def attrbute identifies the object defining the type of tatribute.

The mode attrbute specifies read only or read/write access forattibute.

Write Interface

Setting thetype_def attribute also updates tiype attribute.

8.5.21 OperationDef

An OperationDef represents the informatiareeded to define an operation of an
interface.

module CORBA {
enum OperationMode { OP_NORMAL, OP_ONEWAY},

enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};
struct ParameterDescription {

Identifier name;
TypeC ode type;
IDLType type_def;

ParameterMode mode;
h

typedef sequence <ParameterDe scription> ParDescr iptio nSeq;

typedef Identif ier C ontextldentif ier;
typedef sequence <Cont extldentifier> ContextldSeq;

typedef sequence <ExceptionDef> ExceptionDefSeq;
typedef sequence <ExceptionD escription> ExcDescriptionSeq;

interface OperationDef : Contained {

readonly attribute T ypeCode result;
attribute IDLType result_def;
attribute ParDescriptionSeq params;
attribute OperationMode mode;

CORBAV2.2 nterface Repository Interfaces February 1998 8-27

8-28

attribute ContextldSeq contexts;
attribute ExceptionDefSeq exceptions;
|3
struct OperationD escription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
Versio nSpec version;
TypeC ode result;
OperationMode mode;
ContextldSeq contexts;

ParDescriptionSeq parameters;
ExcD escriptionSeq exceptions;

h
h

Read Interface

Theresult attribute is alypeCode describing the type of the value returned by the
operation. Theesult_def attrbute identifies the definition of the returned type.

The params attibute describes the parameters of the operation. It isweseq of
ParameterDescr iption structures. The order of tliRarameterDescription s in the
sequence is significant. Tmame member of each structure provides the parameter
name. Thaype member is aypeCode describing the type of the parameter. The
type_def member identifies the definition of the type of the param@étez.mode
member indicates whether the parameter is an in, out, or inout parameter.

The operation’smode is either oneway (i.e., no output is returned) or normal.

The contexts attribute specifies the list of context identifiers that apply to the
operation.

The exceptions attribute specifies the list of exception types that can be raised by the
operation.

The inheriteddescribe operation for arDperatio nDef object returns an
OperationD escription .

The inheriteddescribe_contents operation provides a complete description of this
operation, including a description edch parameter defined for this operation.
Write Interfface

Setting theresult_def attrbute also updates thesult attrbute.

Themode attrbute can only be set ©OP_ONEWAY if the result isTC_void and all
elements oparams have amode of PARAM_IN.

CORBAV2.2 February 1998

8.5.22 InterfaceDef

An InterfaceDef object represents an interfaceidiibn. It can contain constants,
typedefs, exceptiws, operations, andtebutes.

module CORBA {
interface InterfaceDef;
typedef sequence <InterfaceDef> InterfaceDefSeq;
typedef sequence <Reposi toryld> R epositoryldSeq;
typedef sequence <OperationD escription> OpDescript ionSeq;
typedef sequence <AttributeDescription> AttrDescript ionSeq;

interface InterfaceDef : Container, Contained, IDLType {
/I read/write interface

attribute InterfaceDefSeq base_interfaces;
I/l read interface
boolean is_a (in Repositoryld interface_id);

struct FullinterfaceDescription {

Identifier name;
Repositoryld id;

Repositoryld defined_in;
Versio nSpec version;
OpDescriptionSeq operations;
AttrDescriptionSeq attributes;
RepositoryldSeq base_interfaces;
TypeCode type;

|3
Fullinterface Description describe_interface();
/I write interface

AttributeDef create_attribute (

in Repositoryld id,

in Identifier name,
in VersionSpec version,
in IDLType type,
in AttributeMode mode

)

OperationDef create_operation (

in Repositoryld id,

in Identifier name,
in VersionSpec version,
in IDLType result,
in Operati onMode mode,

in ParDescriptionSeq params,

CORBAV2.2 nterface Repository Interfaces February 1998 8-29

in Exception DefSeq exceptions,

in ContextldSeq contexts
);
|3
struct InterfaceDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
Versio nSpec version;

RepositoryldSeq base_interfaces;
|3

Read Interface

The base_interfaces attribute lists all the interfaces from which this interface
inherits. Thes_a operation returns TRUE if the interface on which it i©ked either
is identical to or inherits, directly or indirectly, from the interface identified by its
interface_id parameter. Otherwise it returns FALSE.

The describe_interface operation returns BRullinter faceDescription describing
the interface, including its operatioand atributes.

The inheriteddescribe operation for annterfac eDef returns an
InterfaceDescription

The inheritedcontents operation returns thiést of constants, typedefs, and
exceptions defined in this InterfaceDef and the list tftattesand operations either
defined or inherited in this InterfaceDef. If terclude _inherited parameter is set to
TRUE, onlyattibutes and operations defined within this interface are returned. If the
exclude_inherited parameter is set to FALSE, all ditites and ogrations are
returned.

Write Interface

Setting thebase_interfaces attribute returns an error if theame attrbute of any
object contained by thimterfaceDef conflicts with thename attribute of any object
contained by any of the specified basterfaceDefs.

The create_attribute operation returns a nedttributeDef contained in the
InterfaceDef on which it is invoked. Thal, name, version, type_def , andmode
attributes are set as specififithe type attribute is also set. Thidefined _in attribute
is initialized to identifythe containingnterfaceDef . An error is returned if an object
with the specifiedd already exists within this objectRepository , or if an object
with the specifiechame already exists within thikterfa ceDef.

The create_operation operation returns a ne@perationDef contained in the
InterfaceDef on which it is invoked. Th&l, name, version , result_def , mode,
params , exceptions , andcontexts attributes are set as specified. Thsult
attribute is also set. Thiefined_in attribute is initialized tadentify the containing

8-30 CORBAV2.2 February 1998

8

8.6 Repositorylds

InterfaceDef . An error is returned if an object with the specifieédalready exists
within this object’sRepository , or if an object with the sgrifiedname already exists
within this InterfaceDef .

Repositorylds are values that can be usedegiablish the identity of information in
the repository. ARepositoryld is represented as a string, allowing programs to store,
copy, and compare them without regard to the structure of the value. It does teot mat
what format is sed for anyparticularRepositoryld . However, conventions are used
to manage the name space created by these IDs.

Repositoryld s may be associated with OMG IDL definitions in a varietyvajs.
Installation tools might generate them, they might be defined with pragmas in OMG
IDL source, or they might be supplied with the package tms@lled.

The format of the id is a short format name followed bgadon (“:") followed by
characters according to the format. This specification defines three foomats:
derved fom OMG IDL namespne that uses DCE UUIDs, and another intended for
short-term usesuch as in a development environment.

8.6.1 OMG IDL Format

The OMG IDL fomat for Repositorylds primarily uses OMG IDL scoped names to
distinguishbetweendefinitions. It also includes an optional unique prefix, and major
and minor version numbers.

The Repositoryld consists of three components, separated by colons, (“:")
The frst component is théormatname, “IDL.”

The second component is a list of identifiers, separated bghdfacters. These
identifiers are arbitrarily longequences of alpbatic, digit, underscore (“_"hyphen

(“-"), andperiod (“.”) characters. Typically, the first identifier isuaique prefix, and
the rest are the OMG IDL Identifiers that make up thgpedoname of thdefinition.

The third component is made up of major amdor version humbers, in decimal
format, separated by a “.”. When twinterfaceshaveRepositoryld s differing only in
minor version number it can be assumed that the definition with the higher version
number is upwardly compatible with (i.e., can be treatedeaged from) theone with
the lower minor version number.

8.6.2 DCE UUID Format

DCE UUID formatRepositoryld s start with the characters “DCEahd are followed
by the printable form of the UUID, a colon, and a decimal minor version number, for
example: “DCE:700dc518-0110-11ce-ac®0090b5d3e:1".

CORBAV2.2 dpositorylds February 1998 8-31

8.6.3 LOCAL Format

LocalformatRepositoryld s start with the characters “LOCAL:” and dmdlowed by

an arbitrarystring. Lacal formatIDs are not intended for useltside a particular
repository, and thus do not need to conform to any particular convention. Local IDs
that are just consecutivetegers might beised within a development environment to
have a very cheap way to manufacture the IDs while avoidindictsmivith well-

known interfaces.

8.6.4 Pragma Directivefor Repositoryld

Three pragmalirectives (id, prefix, and version), are specified to accommodate
arbitraryRepositoryld formats and stilsupport the OMG IDLRepositoryld format
with minimal annotationThe pragma directives can hesed with the OMG IDL, DCE
UUID, and LOCAL formats. An IDLcompiler must either interpret these annotations
as specified, or ignore them completely.

The ID Pragma

An OMG IDL pragma of the format

#pragma ID <name> “<id>"

associates an arbitraRepositoryld string with a specific OMG IDL name. The
<name> can be a fully opartially scoped name or a simple identifier, interpreted
according to the usual OMG IDL name lookuyes relative to the spe within which
the pragma is contained.

The Prefix Pragma

An OMG IDL pragma of the format:

#pragma prefix “<string>"

sets the current prefix used in generating OMG IDL forRepiositoryld s. The
specified prefix applies tRepositoryld s generated after the pragma until &émal of
the current scope is reached or another prefix pragmacisuntered.

For example, th&®epositoryld for theinitial version of interfacérinter defined on
moduleOffice by an organization known as “SoftCo” might be
“IDL:SoftCo/Office/Printer:1.0".

This format makes it convenient to generate and manage a set of IDs for a collection of
OMG IDL definitions. The person creating tdefinitions sets a prefix (“SoftCo”), and
the IDL compiler or other tool can synthesize all the needed IDs.

BecauseRrepositoryld s may be used in manyffiirentcomputing environments and
ORBs, as well as over a long period of time, care must be taken in choosing them.
Prefixes that are distincsuch as trademarked names, domain names, UUIDs, and so
forth, are preferable tgeneric names such as “document.”

8-32 CORBAV2.2 February 1998

The Version Pragma

An OMG IDL pragma of the format:

#pragma version <name> <major>.<minor>

provides the version specification used in generating an OMGfdbrhat
Repositoryld for a specific OMG IDL name. Thename> can be a fully opartially
scoped name or a simpldentifier, interpreted according to theual OMG IDL name
lookup rules relative to the scope within which the pragma is containedriajer>
and<minor> components are decimal unsigned shorts.

If no version pragma is supplied for a definition, verslod is assumed.

Generation o©OMG IDL - Fomat IDs

A definition is globally identified by an OMG IDL - form#&epositoryld if no ID
pragma is encountered fitr

The ID string can be generated by starting with string “IDL:”. Then, if any prefix
pragma applies, it is appendddilowed by a “/” character. Next, the components of
the scoped name of the definitiowrjative tothe scope in which any prefix that applies
was encounteredire appended, separated by “/’ characters. Finally, a “:” and the
version specification areppended.

For example, the following OMG IDL:

module M1 {
typedeflong T1;
typedef long T2;
#pragma ID T2 “DCE:d62207a2-011e-11ce-88b4-0800090b5d3e:3”

|

#pragma prefix “P1”

module M2 {
module M3 {
#pragma prefix “P2”
typedef long T3;
|3
typedef long T4;
#pragma version T4 2.4

k

CORBAV2.2 dpositorylds February 1998 8-33

specifies types with the following scoped names Bagositoryld s:
M1:T1 IDL:M1/T1:1.0
M1::T2 DCE:d62207a2-011e-11ce-88b4-0800090b5d3e:3
M2:M3::T3 IDL:P2/T3:1.0
M2::T4 IDL:P1/M2/T4:2.4

For this scheme to provideliable global identity, the prefixes used must be unique.
Two non-colliding options are suggested: Internet domain names and DUES.UU

Furthermore, in a distributed world heredifferent entitiesndependently evolve
types, a convention must be followed to avoid the sReyositoryld being used for
two different types. Only theentity that created the prefhas authority to creatgew
IDs by simply incrementing theersion number. Other entities muste a new prefix,
even if they are only making a minor change tceaisting type.

Prefix pragmas can be used to preserve the existing IDs when a module or other
container is renamed or moved.

module M4 {
#pragma prefix “P1/M2”
module M3 {
#pragma prefix “P2”
typedef long T3;
|3
typedef long T4;
#pragma version T4 2.4
|3

This OMG IDL declares types with the same globaintities as those declared in
module M2 above.

8.6.5 For More Information

Section 8.8, “OMG IDLfor Interface Repository,” on page 8-4hows the OMG IDL
specification of thdR, including the #pragmédirective. “Preprocessing” on page 3-9
contains additional, general information on the pragma diecti

8.6.6 RepositorylDs for OMGpecified Types

Interoperability between implementations of official OMgecifications, including but
not limited to CORBA, CORBAservices, and CORB&i(lities, depends on
unambiguous specification &eposito ryld s for all IDL-defined types in such
specifications. Unlespragma directives establishinRepositoryld s for all
definitions are present in an IDL definition iefhlly published by the OMG, the
following directive is implicitlypresent at filescope preceding all such definitions:

8-34 CORBAV2.2 February 1998

#pragma prefix “omg.org”

For example, if an existing official specification included the IDL fragment:

module CORBA {// non-normative example IDL
interface Nothing {
void do_nothing();
b
b

the Repositoryld of the interface would be

“IDL:omg.org/CORBA/Nothing: 1.0".

Revisions to OMG specifications must also ensure that theititafs associated with
existing Repositoryld s are not changed. pragma version or pragma id
directive should be included with any revised IDL definition to specify a distinct
identity for the revised type. If the revised definition is compatible with the previous
definition, such as when a new operation is added tex&ting interface, only the
minor version should be incremented.

A revision of the previous example might look something like:

module CORBA {// revised non-nor mative example IDL
interface Nothing {
void do_nothing();
void do_something();
|3
#pragma version Nothing 1.1

¥
for which theRepositoryld of the interface would be

“IDL:omg.org/CORBA/Nothing: 1.1".

If an implementabn must extend an OMG-specified interface, interoperability
requires it to derive aewinterface from the standard inteck, rather than modify the
standard défition.

8.7 TypeCodes

TypeCode s are values that represent invocation argument types ittt types.
They can be obtaingdom the Interface Repository or from IDL compilers.

TypeCode s have a nhumber of uses. They are used in the dynamic invocation interface
to indicate the types of the actual argumenteyare used by an Interface Repository

to represent the type specifications that are part of many OMG IDL declarations.
Finally, they are crucial to the semantics of #mg type.

CORBAV2.2 Tegodes February 1998 8-35

TypeCode s are themselves values that can be passed asatiomwarguments. To
allow different ORB implement&ins to hide extra information ifiypeCode s, the
representation ofypeCode s will be opaque (like lnject references). However, we
will assume that the representatiorsisch thafTypeCode “literals” can be placed in
C include files.

Abstractly, TypeCode s consist of a “kindfield, and aset of parameters appropriate
for that kind. For example, tHEypeCode describing OMG IDL typdong has kind
tk_long and no parameter¥he TypeCode describing OMG IDL type
sequence<boolean,10> has kindtk_sequence and twoparametersiO and
boolean .

8.7.1 The TypeCode Interface

The PIDLinterface forTypeCodes is as follows:

module CORBA {
enum TCKind {
tk_null, tk_void,
tk_short, tk_long, tk_ushort, tk_ulong,
tk_float, tk_double, tk_boolean, tk_char,
tk_octet, tk_any, tk_TypeCode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_string,
tk_sequence, tk_array, tk_alias, tk_except,
tk_longlong, tk_ulonglong, tk_longdouble,
tk_wechar, tk_wstring, tk_fixed

interface TypeCode {
exception Bounds {};
exception BadKind {};

I/ for all TypeCode kinds

boolean equal (in TypeCode tc);

TCKind kind ();

[l for tk_objref, tk_struct, tk_union, tk_enum, tk_alias, and
tk_except

Repositoryld id () raises (BadKind);

I for tk_objref, tk_struct, tk_union, tk_enum, tk_alias, and
tk_except
Identifier name () raiseg(BadKind);

I for tk_struct, tk_union, tk_enum, and tk_except

unsigned long member_count () raises (Badkid);

Identifier member_name (in unsigned long indexjaises
(BadKind, Bounds);

8-36 CORBAV2.2 February 1998

I for tk_struct, tk_union, and tk_except
TypeCode member_type (in unsigned long indexgises
(BadKind, Bounds);

/[for tk_union

any member_label (in unsigned long index) raises
(BadKind, Bounds);

TypeCode discriminator_type () raises (BadKind);

long default_index () misegBadKind);

I for tk_string, tk_sequence, and tk_array
unsigned long length () raises (BadKid);

[/l for tk_sequence, tk_array, and tk_alias
TypeCode content_vype () raises (Badind);

I for tk_fixed
unsigned short fixed_digits(raises(BadKind);
short fixed_scale(raises(BadKind);

// deprecated interface
long param_count ();
any parameter (in long index) raises (Bounds);
%
%

With theabove operations, anfypeCode can be decomposed into its constituent
parts. TheBadKind exception is raised if an operation is not appropriate for the
TypeCode kind it invoked.

The equal operation can be invoked on afiypeCode . EqualTypeCode s are
interchangeable, and give identicakults whenypeCode operations are applied to
them.

The kind operation can be invoked on afiypeCode . Its result determines what
other operations can be invoked on TiypeCode .

Theid operation can be invoked on object reference, structure, usmoammeration,
alias, and exceptiofypeCode s. It returns th&epositoryld globally identifying the
type. Object reference and exceptibypeCode s always have Repositoryld .
Structure, union, enumeration, anéhalTypeCode s obtained from the Interface
Repository or th@©ORB::create_operation_list operation als@lways have a
Repositoryld . Otherwise, théd operationcan return an empty string.

CORBAV2.2 Tegodes February 1998 8-37

The name operation can also be invoked on object reference, structure, union,
enumeration, alias, and exceptidypeCode s. It returns the simple name identifying
the type vithin its enclosing scope. Since names are local Repository, the name
returned from d@ypeCode may not match the name of the type in any particular
Repository , and may even be an empty string.

The member_count andmember_name operationsan be invoked on structure,
union, and enumeratiofypeCode s. Member_count returns the number of members
constituting the typeMember_name returns the simple name of the member
identified byindex . Since names are local tdR&pository , the name returned from a
TypeCode may not match the nhame of the member in antiqudar Repository , and
may even be an empty string.

The member_type operation can be invoked on structure and uiiigmeCode s. It
returns theTypeCode describing the type of the member identifie difogex .

The member_label , discriminator_type , anddefault_index operationsan only

be invoked on uniofypeCode s. Member_label returns the label of the union
member identified byndex . For the defaultnember, the label is the zero octet. The
discriminator_type operation returns the type of all non-default member labels. The
default_index operation returns the index of the default member, or -1 if there is no
default member.

The member_name , member_type , andmember_label operations raisBounds
if the index parameter is greater than or equal to the number of members constituting
the type.

The content_type operationcan be invoked on sequence, array, alas
TypeCode s. For sequences and arrays, it returns the element type. For aliases, it
returns the original type.

An arrayTypeCode only describes a single dimension of an OMG IDL array. Multi-
dimensional arrays are represented by nesiympCode s, one per dimension. The
outermostk_array Typecode describes the leftmost array index of the array as
defined in IDL. Itscontent_type describes the next index. The innermost nested
tk_array TypeCode describes the rightmost indexd the array element type.

Thelength operation can be invoked on string, wide string, sequence, and array
TypeCode s. For strings and sequences, it returns the bouitld,zeéro indicating an
unbounded string or sequence. For arrays, it returns the numekenwnts in the
array. For widestrings, it returns the bound, or zero for unbounded widags.

8-38 CORBAV2.2 February 1998

8

The deprecatedaram_count andparameter operations provide access to those
parameters thavere present in previous versions@DRBA Some information
available via otheffypeCode operations is not visible via thgarameter operation.
The meaning othe indexed parameters for eatypeCode kind arelisted in

Table 8-1, along with the information that is not visible via pfheameter operation.

Table 8-1 Legal TypeCode Kinds and Parameters

KIND PARAMETER LIST NOT VISIBLE

tk_null *NONE*

tk_void *NONE*

tk_short *NONE*

tk_long *NONE*

tk_longlong *NONE*

tk_ushort *NONE*

tk_ulong *NONE*

tk_ulonglong *NONE*

tk_float *NONE*

tk_double *NONE*

tk_longdouble *NONE*

tx_fixed {digits_integer, scale_integer}

tk_boolean *NONE*

tk_char *NONE*

tk_wchar *NONE*

tk_octet *NONE*

tk_any *NONE*

tk_TypeCode *NONE*

tk_Principal *NONE*

tk_objref {interface-id } interface name

tk_struct { struct-name, member-name, TypeCode, ... (repeat pairs) } Repositoryld

tk_union { union-name, discriminator-TypeCode, label-value, member- Repositoryld
name, TypeCode, ... (repeat triples) }

tk_enum { enum-name, enumerator-name, ... } Repositoryld

tk_string { maxlen-integer }

tk_wstring {maxlen-integer}

tk_sequence { TypeCode, maxlen-integer }

tk_array { TypeCode, length-integer }

tk_alias { alias-name, TypeCode } Repositoryid

tk_except { except-name, member-name, TypeCode, ... (repeat pairs) } Repositoryld

Thetk_fixed TypeCode has 2 parameters: a non-zero integer specifying the precision
of the fixed-point number in decimal digitand an integer giving the position of the

decimal point (scale).

CORBAV2.2 Tegodes February 1998

8-39

8-40

The tk_objref TypeCode represents an interface type. Its parameter is the
Repositoryld of that interface.

A structure with N members results irtkastruct TypeCode with 2N+1 parameters:
first, the simple name of the struct; the rest are member names alternating with the
corresponding membdiypeCode . Member names are represented as strings.

A union with N members results intla_union TypeCode with 3N+2parameters: the
simple name of the union, the discriminalgpeCode followed by a label value,
member name, and membBmpeCode for each of the N members. The label values
are all values of the data type designated by the discrimimgp®Code , with one
exception. The default membé@f present) is marked with a labehlue consisting of
the Ooctet. Recall that the operation “parameter(tc,i)” returnsaay, and that anys
themselves carry @ypeCode that can distinguish an octet fraany of thelegal

switch types.

Thetk_enum TypeCode has the simple name of the enum followed by the
enumerator names as parameters. Enumerator names are represented as strings.

Thetk_string TypeCode has one parameter: an integer giving the maximum string
length. A maximum of 0 denotes anbounded string.

The tk_wstring TypeCode has oneparameter, an integer specifying the maximum
length. A length of zero indicates an unbounded wide string.

The tk_sequence TypeCode has 2 parameters:ypeCode for the sequence
elementsand an integer giving th@maximum sequence. Again, 0 denotetounded.

Thetk array TypeCode has 2 parameters:ypeCode for the array elements, and
an integer giving the array length. Arrays are never unbounded.

Thetk_alias TypeCode has 2 parameters: the name of the alias followed by the
TypeCode of the type being aliased.

Thetk _except TypeCode has the samfrmat as theak struct TypeCode, except
that exceptions with no members are allowed.

8.7.2 TypeCode Constants

If “typedef ... FOO; " is an IDL type declaration, the IDL compiler w(iif asked)
produce a declaration ofTypeCode constant named TC_FOO for the C language
mapping. In the case of an unnamed, bounded string typedirsetly in an operation

or attibute declaration, @ypeCode constant named TC_string, where n is the
bound of the tsing is produced. (For example, “string<4> op1();” produces the
constant “TC_string_4".) These constants can be used with the dynamic invocation
interface, and any other routines that reqdiypeCode s.

The IDL compiler will generate fixed-point decim&ypeCode s on request, much as
it does for bounded strings. Where an unnamed fixed type of thefifaadxd,s> is
used directly in an operation or attribute declaratioly@eCode constant named
“TC_fixed_d_s 7" is generated. For examplefiged type with 10 decimal digitand

CORBAV2.2 February 1998

8

a scale factor of 4ixed<10,4>, produces the constantC_fixed_10_4 .” The sign
of a negative scale factor is represented by the letter “n;” thus the ID lfixgoe4 -
6> would produce TC_fixed_ 4 n6 .”

The predefinedTypeCode constants, named according to the C language mapping,
are:

TC_null

TC_void

TC_short

TC_long

TC_longlong

TC_ushort

TC_ulong

TC_ulonglong

TC_float

TC_double

TC_longdouble

TC_boolean

TC_char

TC_wchar

TC_octet

TC_any

TC_TypeCode

TC_Principal

TC_Object = tk_objref { Object }

TC_string= tk_string { 0 } // ubounded
TC_wstring =tk_wstring{0} /I unbounded
TC_CORBA_NamedValue= tk_struct.{ }
TC_CORBA _InterfaceDescription= tk_struct { ... }
TC_CORBA_OperationDescription= tk_struct.{}
TC_CORBA_AttributeDescription= tk_struct { ... }
TC_CORBA_ParameterDescription=tk_struct { ... }
TC_CORBA_ModuleDescription= tk_struct { ... }
TC_CORBA_ConstantDescription= tk_struct.{}
TC_CORBA_ExceptionDgcription= tk_struct {.. }
TC_CORBA_TypeDescription= tk_struct { ... }
TC_CORBA_InterfaceDef_Fullinterfaced3cription= tk_struct {.. }

The exact form forTypeCode constants is language mapping, aoggibly
implementation, specific.
8.7.3 Creating TypeCodes

When creating type digition objects in an Interface Repository, types are specified in
terms of object references, and thgeCode s describing them are generated
automatically.

CORBAV2.2 Tegodes February 1998 8-41

In some situations, such as bridges lEswORBsTypeCode s need to be constructed
outside of any InterfacReposdiory. This can be done using operations onQifRB
pseudo-bject.

module CORBA {
interface ORB {
/I other operations ...

TypeCode create_struct tc (
in Repositoryld id,
in Identifier name,
in StructMemberSeq members

)i

TypeCode create_union_tc (

in Repositoryld id,
in Identifier name,
in TypeCode discriminator_type,

in UnionMemberSeq members

)i

TypeCode create_enum_tc (
in Repositoryld id,
in Identifier name,
in EnumMemberSeq members

)i

TypeC ode create_alias_tc (

in Repositoryld id,
in Identifier name,
in TypeCode origi nal_type

)i

TypeCode create_exception_tc (
in Repositoryld id,
in Identifier name,
in StructMemberSeq members

)i

TypeCode create_interface_tc (
in Repositoryld id,
in Identifier name

)i

TypeCode create_string_tc (
in unsigned long bound

)i

8-42 CORBAV2.2 February 1998

TypeC ode create_w strin g_tc (
in unsigned long bound

)i

TypeC ode create_fixed_tc (
in unsigned short digits,
in short scale

)i

TypeCode create_sequence_tc (
in unsigned long bound,
in TypeCode element _type

)i

TypeCode create_recursive_sequence_tc (
in unsigned long bound,
in unsigned long offset

)i

TypeCode create_array_tc (
in unsigned long length,
in TypeCode element _type

Most of these operations asamilar to corresponding IR operations for creating type
definitions. TypeCode s are used here insteadlDL Type object references to refer to
other types. In th&tructMember andUnionMember structures, only thgype is
used, and théype_def should be set to nil.

The create_recursive_se quence_tc operation is used to creafgpeCode s
describing recursive sequences. The result of this operation is useusiructing
other types, with theffset parameter determining which enclosifigpeCode
describes the elements of this sequence. For instance, to congiypeCGode for the
following OMG IDL structure, the offset usedhen creatingts sequencdype Code
would be one:

struct foo {
long value;
seque nce <foo> chain;

>

Operations to create pritive TypeCode s are not needed, sin€gpeCode constants
for these are available.

CORBAV2.2 Tegodes February 1998 8-43

8.8 OMG IDL forinterface Repository

This section contains the complete OMG IDL specification for the Interface
Repository.

#pragma prefix “omg.org”

module CORBA {

typedef string Identi fier;
typedef string Sco pedN ame;
typedef string Repositoryld;

enum Defi nition Kind {
dk_no ne, dk_all,
dk_Attri bute, d k_Constant, dk_Exception, dk_Interface,
dk_Module, dk_Operation, dk_T ypedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum,
dk_Primitive, dk_St ring, dk _Sequence, dk_Array,
dk_R epository,
dk_Wstring, dk_Fixed
|3

interface IRObject {
/l read interface
readonly attribute Defi nition Kind def_kind;
/I write interface
void destroy ();

typedef string VersionSpec;
interface Contained;
interface Repository;
interface Container,;

interface Contained : IRObject {
/I read/write interface

attribute Repositoryld id;

attribute Identifier name;

attribute Versio nSpec version;

/l read interface

readonly attribute Container defined_in;
readonly attribute S copedName absolute_name;

readonly attribute R epository containing_repository;

struct Description {

8-44 CORBAV2.2 February 1998

DefinitionKind kind;
any value;

|3
Description describe ();
/I write interface

void move (
in Container new_container,
in Identifier new_name,
in VersionSpec new_version
);
h

interface ModuleDef;

interface ConstantDef;

interface IDLT ype;

interface StructDef;

interface Unio nDef;

interface E numDef;

interface AliasDef;

interface Inter faceDef;

typedef sequence < InterfaceDef> Inter faceDefSeq;

typedef sequence <Contained> ContainedSeq;
struct StructMember {
Identifier name;
TypeC ode type;
IDLType type_def;
h
typedef sequence <StructMember> StructMemberSeq;
struct UnionMember {
Identifier name;
any label;
TypeC ode type;
IDLType type_def;
¥
typedef sequence <UnionMember> UnionMemberSeq;

typedef sequence < ldentifier> Enum MemberSeq;

interface Container : IRObject {
/l read interface

Contained lookup (in ScopedName search_name);

ContainedSeq contents (

CORBA V2.2 OMG IDL fonterface Repository February 1998 8-45

8-46

in DefinitionKind lim it_type,
in boolean exclude_inherited

);

ContainedSeq lookup_name (
in Identifier sear ch_name,
in long levels_to_sear ch,
in DefinitionKind lim it_type,
in boolean exclude_inherited

);

struct Description {
Contained contained_object;
Definit ionKind kind;
any value;

|3
typedef sequence<D escription> DescriptionSeq;

Description Seq describe_contents (
in DefinitionKind lim it_type,
in boolean exclude_inherited,
in long max_returned_obijs

);

/[write interface

ModuleDef create_module (
in Repositoryld id,
in Identifier name,
in VersionSpec version

);

ConstantDef create_constant (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType type,
in any value

);

StructDef create_struct (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in StructMemberSeq members

);

UnionDef create_union (
in Repositoryld id,

CORBAV2.2 February 1998

in Identifier name,

in VersionSpec version,

in IDLType discriminator_type,
in UnionMemberSeq members

);

EnumDef create_enum (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in EnumMemberSeq members

);

AliasDef create_alias (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in IDLType original_type
);

InterfaceDef create_interface (
in Repositoryld id,
in Identifier name,
in VersionSpec version,
in Interfac eDefSeq base_interfaces

);

ExceptionDef create_exception(
in Repositoryld id,
in Identifier name,
in VersionSpec ver sion,
in StructMemberSeq members

interface IDLType : IRObject {
readonly attribute Ty peCode type;

>

interface Primitive Def;
interface Strin gDef;
interface S equence Def;
interface Ar rayDef;

enum PrimitiveKind {
pk_null, pk_void, pk_short, pk_long, p k_ushort, pk_ulong,
pk_float, pk_double, pk_boolean, pk_char, pk_octet,
pk_any, pk_Typ eCode, pk_Principal, pk_string, pk_obj ref,

CORBA V2.2 OMG IDL fonterface Repository February 1998

8-47

8-48

pk_longlong, pk_ulonglong, pk_longdouble, pk_wchar, pk_w
|3

interface Repository : Container {
/l read interface

Contained lookup_id (in Repositoryld search_id);
PrimitiveDef get_primitive (in PrimitiveKind kind);

/I write interface

StringDef create_string (in unsig ned long b ound);
WstringDef create_wst ring (in unsigned long bound);
SequenceDef create_sequence (

in unsigned long bound,
in IDLType element_type

)

ArrayDef create_array (
in unsigned long length,
in IDLType element_type

);
|3
FixedDef create_fixed (
in unsigned short digits,
in short scale
);
|3

interface ModuleDef : Container, Contained {

k

struct ModuleDescript ion {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
Versio nSpec version;

interface ConstantDef : Contained {
readonly attribute Ty peCode type;
attribute IDLType type_def;
attribute any value;

k

struct C onstantDe scription {

CORBAV2.2 February 1998

string

Identifier name;
Repositoryld id;
Repositoryld defined_in;
Versio nSpec version;
TypeC ode type;

any value;

interface TypedefDef : Contained, IDLType {
|3

struct Ty peDescr iption {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
Versio nSpec version;
TypeC ode type;

interface StructDef : T ypedefDef, C ontainer {
attribute StructMemberSeq members;

k

interface UnionDef : T ypedefDef, C ontainer {
readonly attribute Ty peCode di scriminator_type;
attribute IDLType discriminator_type_def;
attribute UnionMemberSeq members;

k

interface EnumDef : TypedefDef {
attribute EnumMemberSeq members;

k

interface AliasDef : TypedefDef {
attribute IDLType original_type_def;

>

interface Primitive Def: IDLType {
readonly attri bute PrimitiveKind kind;

>

interface StringDef : IDLType {
attribute unsigned long bound;

CORBA V2.2 OMG IDL fonterface Repository February 1998

8-49

k

interface WstringDef : IDLType {
attribute unsigned long bound;

k

interface FixedDef : IDLType {
attribute unsigned sh ort digits;
attribute short scale;

k

interface S equence Def: IDLType {
attribute unsigned long bound;
readonly attribute Ty peCode el ement_type;
attribute IDLType element_type_def;

k

interface Ar rayDef : IDLType {
attribute unsigned long length;
readonly attribute Ty peCode el ement_type;
attribute IDLType element_type_def;

k

interface ExceptionDef : Contained, Container {
readonly attribute Ty peCode type;
attribute StructMemberSeq members;
|3
struct Exceptio nDescription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
Versio nSpec version;
TypeC ode type;
|3
enum AttributeMode {ATTR _NORMAL, AT TR_READONLY};

interface Attri buteDef : Co ntained {
readonly attribute Ty peCode type;
attribute IDLType type_def;
attribute AttributeMode mode;

k

struct Attri buteD escription {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
Versio nSpec version;

8-50 CORBAV2.2 February 1998

TypeC ode type;
AttributeMode mode;

k

enum OperationMode {OP _NORMAL, OP_ONEWAY};

enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};
struct ParameterDescription {

Identifier name;

TypeC ode type;

IDLType type_def;

ParameterMode mode;
¥

typedef sequence <ParameterDescription> ParDescriptionSeq;

typedef ldentifier Contextldentifier;
typedef sequence <Contextldentif ier> ContextldSeq;

typedef sequence <ExceptionDef> Exceptio nDefSeq;
typedef sequence <Exceptio nDescription> Ex cDescriptionSeq;

interface OperationDef : Contained {
readonly attribute Ty peCode result;
attribute IDLType result_def;
attribute ParDescriptionSeq params;
attribute OperationMode mode;
attribute ContextldSeq contexts;
attribute ExceptionDefSeq exceptions;

>

struct Operatio nDescr iption {
Identifier name;
Repositoryld id;
Repositoryld defined_in;
Versio nSpec version;
TypeC ode result;
OperationMode mode;
ContextldSeq contexts;
ParDescriptionSeq paramet ers;
ExcD escriptionSeq exc eptions;

typedef sequence <Repositoryld> RepositoryldSeq;
typedef sequence < Operatio nDescr iption> OpDescr iption Seq;
typedef sequence <AttributeD escription> AttrDescri ptionSeq;

interface Inter faceDef : Container, Cont ained, IDLType {
/I read/write interface

CORBA V2.2 OMG IDL fonterface Repository February 1998 8-51

8-52

k

attribute InterfaceDefSeq base_interfaces;

/l read interface

boolean is_a (in Repositoryld interface_id);

struct FullinterfaceDescription {
Identifier name;

Repositoryld id;

Repositoryld defined_in;
VersionSpec version;
OpDescriptionSeq operations;
AttrDescr iptio nSeq attributes;
RepositoryldSeq base_interfaces;
TypeCode type;

k

Fullinterface Description describe_interface();

/[write interface

AttributeDef create_attribute (
in Reposi toryld id,

in Identifier name,

in VersionSpec version,

in IDLType type,

in AttributeMode mode

)

OperationDef create_operation (
in Reposi toryld id,

in Identifier name,

in VersionSpec version,

in IDLType result,

in OperationMode mode,

in ParDescriptionSeq params,

in ExceptionDefSeq ex ceptions,
in ContextldSeq contexts

)

struct InterfaceDescription {

Identifier name;

Repositoryld id;

Repositoryld defined_in;

Versio nSpec version;
RepositoryldSeq base_interfaces;

enum TCKind {

CORBAV2.2

February 1998

tk_null, tk_void,

tk_short, tk_long, tk_ushort, tk_ulong,

tk_float, tk_double, tk boolean, tk_char,

tk_octet, tk_any, tk_TypeC ode, tk_Principal, tk_objref,
tk_struct, tk_union, tk_enum, tk_st ring,

tk_sequen ce, tk_array, tk_alias, t k_except
tk_longlong, tk_ulonglong, tk_longdouble,

tk_wchar, tk_wstring, tk_fixed

k

interface Typ eCode {// PIDL
exception B ounds {};
exception BadKind {};

/I for all T ypeC ode kinds
boolean equal (in T ypeC ode tc);
TCKind kind ();

I for tk_obijref, tk_st ruct, tk_union, tk_enum, tk_al ias, and tk_except
Repositoryld id () raises (BadKind);

I for tk_obijref, tk_st ruct, tk_union, tk_enum, tk_al ias, and tk_except
Identifier name () raises (BadKind);

/I for tk_struct, tk _union, tk_enum, and tk_except

unsigned long member_count () raises (BadKind);

Identifier member_name (in unsig ned long index) raises (BadKind,
Bounds);

/I for tk_struct, tk _union, and tk_except
TypeC ode member_type (in unsigned long index) raises (BadKind,
Bounds);

/l for tk_union

any member_label (inunsig ned long index) raises (BadKind, Bounds);
TypeC ode discriminator_type () raises (BadKind);

long default_index () raises (BadKind);

/I for tk_string, tk _sequen ce, and tk_array
unsigned long length () raises (BadKind);

/I for tk_sequence, tk_array, and tk_alias
TypeC ode content_type () raises (BadKind);

/I for tk_fixed
unsigned short fixed_digi ts() raises (BadKind);
short fixed_scal e() raises (BadKind);

/I deprecated interface

long param_count ();
any param eter (in long index) raises (B ounds);

CORBA V2.2 OMG IDL fonterface Repository February 1998 8-53

k

interface ORB {
/I other operations ...

TypeC ode create_struct_tc (
in Repositoryld id,
in Identifier name,
in StructMemberSeq members

);

TypeC ode create_union_tc (
in Repositoryld id,
in Identifier name,
in TypeCode di scriminator_type,
in UnionMemberSeq members

);

TypeC ode create_enum_tc (
in Repositoryld id,
in Identifier name,
in EnumMemberSeq members

);

TypeC ode create_alias_tc (
in Repositoryld id,
in Identifier name,
in TypeCode or iginal_type

);

TypeC ode create_exception_tc (
in Repositoryld id,
in Identifier name,
in StructMemberSeq members

);

TypeC ode create_interface_tc (
in Repositoryld id,
in Identifier name

);

TypeC ode create_string_tc (
in unsigned longb ound

);

TypeC ode create_w strin g_tc (
in unsigned longb ound

);

TypeC ode create_fixed_tc (
in unsigned short digits,

8-54 CORBAV2.2 February 1998

in short scale

);

TypeC ode create_sequence_tc (
in unsigned longb ound,
in TypeCode element type

);

TypeC ode create_recursive_sequence_tc (
in unsigned longb ound,
in unsigned long offset

);

TypeC ode create_array_tc (
in unsigned long length,
in TypeCode element_type

);

CORBA V2.2 OMG IDL fonterface Repository

February 1998

8-55

8-56 CORBAV2.2 February 1998

	The Interface Repository
	8.1 Overview
	8.2 Scope of an Interface Repository
	8.3 Implementation Dependencies
	8.3.1 Managing Interface Repositories

	8.4 Basics
	8.4.1 Names and Identifiers
	8.4.2 Types and TypeCodes
	8.4.3 Interface Objects
	8.4.4 Structure and Navigation of Interface Objects

	8.5 Interface Repository Interfaces
	8.5.1 Supporting Type Definitions
	8.5.2 IRObject
	8.5.3 Contained
	8.5.4 Container
	8.5.5 IDLType
	8.5.6 Repository
	8.5.7 ModuleDef
	8.5.8 ConstantDef Interface
	8.5.9 StructDef
	8.5.10 UnionDef
	8.5.11 EnumDef
	8.5.12 AliasDef
	8.5.13 PrimitiveDef
	8.5.14 StringDef
	8.5.15 WstringDef
	8.5.16 FixedDef
	8.5.17 SequenceDef
	8.5.18 ArrayDef
	8.5.19 ExceptionDef
	8.5.20 AttributeDef
	8.5.21 OperationDef
	8.5.22 InterfaceDef

	8.6 RepositoryIds
	8.6.1 OMG IDL Format
	8.6.2 DCE UUID Format
	8.6.3 LOCAL Format
	8.6.4 Pragma Directives for RepositoryId
	8.6.5 For More Information
	8.6.6 RepositoryIDs for OMG-Specified Types

	8.7 TypeCodes
	8.7.1 The TypeCode Interface
	8.7.2 TypeCode Constants
	8.7.3 Creating TypeCodes

	8.8 OMG IDL for Interface Repository

