The DCE ESIOP 14

This chapter sgcifies an Environment Specific BitORB Protocol (ESIOPfpr the
OSF DCE environment, the DCE Common Inter-ORB Protocol (EDXBEP).

Contents

This chapter contains tHellowing sections.

Section Title Page
“Goals of the DCE Common Inter-ORB Protocol” 14-1
“DCE Common Inter-ORB Protocol Overview” 14-2
“DCE-CIOP Messagdransport” 14-5
“DCE-CIOP Messagé&ormats” 14-11
“DCE-CIOP (hject References” 14-16
“DCE-CIOP (bject Location” 14-22
“OMG IDL for the DCE CIOP Module” 14-25
“References for thi€hapter” 14-26

14.1 Goals of the DCE Commbrier-ORB Protocol

DCE CIOP was designed toeet thefollowing goals:
® Support nulti-vendor, mission-critical, enterge-wide, ORB-based applications.
® Leverage services provided by DCE wherever appropriate.

* Allow efficient and straightforwarémplemenation using public DCE APIs.

CORBA V2.2 FeblieDg 14-1

14

®* Preserve ORB implementation freedom.

DCE CIOP achieves these goals by using DCE-RPC to provide message transport,
while leaving the ORB responsible for mességenatting, data marshaling, and
operation dispatch.

14.2 DCE Commointer-ORB Protocol Overview

14-2

The DCE @mmon Inter-ORB Protocol uses the wire format and RPC pécketats
defined by DCE-RPC to enabiedependently implemented ORBsdommunicate. It
defines the message formats that are angkd using DCE-RPC, aspecifies how
information in object references is used to establish communidagiwreen client and
server processes.

Thefull OMG IDL for the DCEESIOPspecification isshown in Section 14.7, “OMG
IDL for the DCE CIOP Module,” on page 14-25. Fragments are used throughout this
chapter as necessary.

14.2.1 DCE-CIOP RPC

DCE-CIOP requires an RPC which is interoperable with the DCE connection-oriented
and/or connectionless protocols as specified in the X/Q3eB Specification C309

and the OSRAES/Dstributed Computing RPC Volum&ome of the features of the
DCE-RPC are as follows:

® Defines connection-oriented and ceationless protocols for establishing the
communication between a client and server.

® Supportsmultiple underlying transport protocols including TCP/IP.

® Supportsnultiple oustanding requests to multiple CORBA objects over the same
conrection.

® Supports fragmentation of messages. This provides for buffer management by ORBs
of CORBA requests which contain a large amount of marshaled data.

All interactionsbetween ORBs take tiferm of remote pocedure calls omne of two
well-known DCE-RPGnterfaces. Two DCE operations geovided in each interface:

® invoke- for invoking CORBA operation requests, and

® |ocate- for locating server processes.

Each DCE peration is a sychronous remote procedurall*?, consisting of a request

message being transmitted from the client to the server, followed by a response
message being transmitted from the server to the client.

1. DCEmaybeoperation semantics cannot be used for CORBéwayoperations because
they are idempotent as opposed to at-most-once.

2. The deferred synchronous DIl API can be implemented on top of synchronous RPCs by
using threads.

CORBAV2.2 February 1998

14

Using one of the DCE-RP@terfaces, the messages are transmitted as pipes of
uninterpreted bytes. Biyansmiting messages via DCE pipes, the following
characteristics are achieved:

® Large amounts of data can artsmitted efficiently.
® Buffering of complete messages is not required.

® Marshaling and demarshaling can take place concurrently with message
transmission.

®* Encoding of messages and marshaling of data is completely under the control of the
ORB.

® DCE client and server stubs can be used fglement DCECIOP.

Using the other BE-RPC intefiace, the messages are transmitted as conformant arrays
of uninterpreted bytes. This interface does not offer all the advantages of the pipe-
based interface, but is provided to enable interoperability with ORBs using DCE-RPC
implementations that do not adequately support pipes.

14.2.2 DCE-CIOP Data Representation

DCE-CIOP messages represent OMG IDL types by using the CDR transfer syntax,
which is defined in “CDR Transfer Syntax” on page 13-4. DCE-CIOP message headers
and bodies are specified as OMG IDL types. These are encoded using CDR, and the
resulting messages are passed betwclient and server processes via DCE-RPC pipes
or conformant arrays.

NDR is the transfer syntax used by B&PC foroperations defined in DCE IDL.
CDR, used to represent messages defined in OMG IDL on top of DCE RPCs,
represents the OMG IDprimitive types identically tdhe NDR representation of
corresponding DCE IDlprimitive types.

The corresponding OMG IDL and DCE IDtrimitive types are shown in table
Table 14-1.

Table 14-1 Relationship between CDR and NDR primitive data types

DCE IDL type with NDR repr esentation

OMG IDL type equivalent to CDR representation of OMG
IDL type

char byte

wchar byte, unsigned short, or unsigned long, depending on
transmission code set

octet byte

short short

unsigned short unsigned short

CORBAV2.2 DCE Commimer-ORB Protocol Overview February 1998 14-3

14

14-4

Table 14-1 Relationship between CDR and NDR primitive data types

DCE IDL type with NDR repr esentation

OMG IDL type equivalent to CDR representation of OMG
IDL type

long long

unsigned long unsigned long

long long hyper

unsigned long long unsigned hyper

float float

double doublé

long double long doubfe

boolean byté

1. Restricted to IEEE format.
2. Restricted to IEEE format.
3. Restricted to IEEE format.

4. Valuesrestrictedto O and 1.

The CDRrepresentation of OMG IDL constructed typssd pseudo-object types does
not correspond to the NDR representation of types describable in DCE IDL.

A wide string is encoded as a unidimensional conformant arragtefs in DCEL.1
NDR. This consists of an unsigned long of four octets, specifying the number of octets
in the array, followed by that number of octets, with no null terminator.

The NDRrepresentation of OMG IDL fixed-point typfixed , will be proposed as an
addition to the set of DCE IDL types.

As newdata types are added to OMG IDL, NDR can be used as a model for their CDR
representations.

14.2.3 DCE-CIOP Messages

Thefollowing request and regmse messages are exchanged between ORB clients and
servers via thénvoke andlocate RPCs:

®* |nvoke Requestientifies the target objeeind the operation and contains the
principal, the operation context.ServiceContext, and the in and inout parameter
values.

CORBAV2.2 February 1998

14

* Invoke Responsadicates whether the operation sucaskdailed, or needs to be
reirvoked at another location, and returnSexviceContext . If the operation
succeeded, the result and the out and inout parameter values are returned. If it
failed, an exception is returned. If the object is at another locatew RPC
binding information is returned.

® | ocate Requestientifies the target object and the operation.

® lLocate Respongsadicates whether the location is in the current process, is
elsewhere, or isnknown. If the object is at anotherccktion, new RPC binding
information is returned.

All message formats begin withfigld thatindicates the byte order used in the CDR
encoding of the remainder of the messade CDR byte order of aessage is
required to match the NDR byte order used by DCE-RPC to transmit the message.

14.2.4 Interoperable Object Referent®R)

For DCE-CIOP to be used to invokperations on an object, the information necessary
to reference an object via EEBCIOPmust be included in an IOR. This information

can coexist with thenformationneeded for other protocols such as IIOP. DAOBHE
information is stored in an IOR as a set of components in a profile identified by either
TAG_INTERNET_IOP or TAG_MULTIPLE_COMPONENTS. Components are

defined for the following purposes:

® To identify a server process via a DCE string binding, which can be either fully or
partially bound. This process may be a seearcess implementing the object, or it
may be an agent capable ot#ting the object implementation.

®* To identify a server process via a name that can be resolved using a DCE
nameservice. Again, this process may implement the object or may be an agent
capable of locating it.

®* IntheTAG_MULTIPLE_COMPONENTS profile, to identify the target object
when request messages are sent to the server. TAGIANTENET_IOP profile,
theobject_key profie member is used instead.

®* To enable a DCE-CIOPlient to recognize objects that share an endpoint.

® To indicate whether a DCE-CIOP client should send a locate message or an invoke
message.

® To indicate if the pipe-based DCE-RPC interface is not available.

The IOR iscreated by the server ORB to provide the information necessary to
reference the CORBA object.

14.3 DCE-CIOP Message Transport

DCE-CIOP defines two DCE-RPi@terfaces for the transport of messages between
client ORBs and server ORB<ne interface uses pipes to convey the messagés, wh
the other uses conformant arrays.

CORBAV2.2 DE-CIOP Message Transport February 1998 14-5

14

14-6

The pipe-basethterface is the preferred interface, since it allows messages to be
transmitted without precomputing the message lerigtih.not all DCE-RPC
implementations adequately support pipes, so this interface is optional. All client and
server ORBs implementing DGEIOP must support the array-based interface

While server ORBs may provide baititerfaces or just the array-based interface, it is
up to the client ORB to decide which to use for an invocation. If a client ORB tries to
use the pipe-basedterface and receivesrac_s_unknown_if error, it shouldall

back to the array-based interface.

14.3.1 Pipe-based Interface

Thedce_ciop_pipe interface is defined by the DCE IDL spication shown
below:

[/* DCE IDL */
uuid(d7d99f66-97ee-11cf-b1a0-0800090b5d3e),/* 2nd revision */
version(1.0)
]
interface dce_ciop_pipe
{
typedef pipe byte message_type;
void invoke ([in] handle_t binding_handle,
[in] message_type *request_message,
[out] message_type *response_message);
void locate ([in] handle_t binding_handle,
[in] message_type *request_message,
[out] message_type *response_message);

}

ORBs can implement thdce_ciop_pipe interface by using DCE stulgenerated
from this IDL specification, or by using lower-level APIs provided by a particular
DCE-RPC implementation.

3. Previous DCE-CIOP revisions used different DCE RPC interface UUIDs and had
incompatible message foats. These previous revisions are deprecated, but
implementations can continue to supportthem in conjunction with the currentinterface
UUIDs and message formats.

4. A future DCE-CIOP revision may eliminate the array-based interface and require support of
the pipe-based interface.

CORBAV2.2 February 1998

14

DCE-CIOP
Message

NDR Stream

DCE-RPC

Thedce_ciop_pipe interface is identified by the UUID and version number shown.
To provide maximal performance, all server ORBs and location agents implementing
DCE-CIOP should listen for and handle requests made to this interfaceaximize

the chances of interoperatingtivany DCE-CIOFRclient, servers shoullisten for
requestsarriving via all available DCE protocol segnces.

Client ORBs can invoke OMG IDL operations over DCEOP by perfoming DCE

RPCs on thelce_ciop_pipe interface.Thedce_ciop_pipe interface is made up

of two DCE-RPC operationévoke andlocate . The frst parameter of each of
these PPCs is a DCE bhinding handlehwh identifies the server process on which to
perform the RPC. See “DCE-CIOP String Binding Component” on page 14-17, “DCE-
CIOP Binding Name Component” on page 14-18, and “DCE-CIOP Object Location”
on page 14-22 for discussion loéw these binding handles are obtained. The
remaining parameters of tidee_ciop_pipe = RPCs are pipes of uninterpreted bytes.
These pipes are used to convey messages encoded using CDR. The
request_message input parameters send a request message from the client to the
server, while theesponse_message output parameters return a response message
from the server to the client.

Figure 14-1 llustrates the layering of DCEIOP messages on the DCE-RPC protocol
as NDR pipes:

DCE-CIOP DCE-CIOP Body %
hunk Chunk Data Chunk Chunk Data Chunk %
PDU PDU Body Auth PDU PDU Body Auth

Figure 14-1 Pipe-based interface protocol layering.
The DCE-RPQorotocol data unit (PDU) bodies, after any appropriate authentication is

performed, are concatenated by the DCE-RPC run-time to form an NDR stream. This
stream is then interpreted as the NDR representation of a DCE IDL pipe.

CORBAV2.2 DE-CIOP Message Transport February 1998 14-7

14

14-8

A pipe is made up of chunks, where each chunk consists of a chunk length and chunk
data. The chunk length is an unsigned long indicating the number of pipe elements that
make up the chunk data. The pglements are DCE IDL bgs, which are

uninterpreted by NDR. A pipe termnated by a chink length of zeroThe pipe

chunks are concatenatedftom a DCE-CIOPmessage.

Invoke

Theinvoke RPC is used by a DCE-CIOP client process to attempt to invoke a
CORBA operation in the server process identified byhiineing_handle
parameterThe request_message pipe transmits a DCE-CIOPvioke request
message, encoded using CORM the client to the serve®ee “DCE_CIOP Invoke
Request Message” on page 14-11 for a description of its format. The
response_message pipe transmits a DCE-CIOP ioke response message, also
encoded using CDR, from the server to the client. See “BEEP Invoke Response
Message” on page 14-12 for a description of the respfums®t.

Locate

Thelocate RPC is used by a DCE-CIOP client process to query the server process
identified by thebinding_handle parameter for the location of the server process
where requests should be sent. Thguest_message andresponse_message
parameters are used similarly to the parameters ofitbke RPC. See “DCE-CIOP
Locate Request Message” on page 14-14 and “DCE-CIOP Locate Response Message”
on page 14-15 for descriptions of their formats. Use oldbate RPC is described

in detail in “DCE-CIOP Objeckocation” on page 14-22.

14.3.2 Array-based Interface

The dce_ciop_array interface is defined by the DCE IDL spgcation shown
below:

[¥ DCE IDL */
uuid(09f9ffb8-97ef-11cf-9c96-0800090b5d3e),/* 2nd revision */
version(1.0)
]
interface dce_ciop_array
{

typedef struct {

unsigned long length;
[size_is(length),ptr] byte *data;
} message_type;

void invoke ([in] handle_t binding_handle,
[in] message_type *request_message,

CORBAV2.2 February 1998

14

[out] message_type *response_message);

void locate ([in] handle_t binding_handle,
[in] message_type *request_message,
[out] message_type *response_message);

}

ORBs can implement thdce _ciop_array interface, identified by the UUID and
version number shown, by using DCE stubs generated from this IDlfispéon, or
by using lower-level APIs provided by a particular B&PC mplementation.

All server ORBs and lmation agents implementing DEGEOP mustlisten for and
handle requests made to tthee_ciop_array interface, and to mamiize
interoperability, shouldisten for requestsrriving via all available DCE protocol
sequences.

Client ORBs can invoke OMG IDL operations over DCEOP by perfoming
locate andinvoke RPCs on thelce_ciop_array interface.

As with thedce_ciop_pipe interface, the first parameter e&ch

dce_ciop_array RPC is a DCE binding handle that identifies the server process on
which to perform the RPC. The remaining parameters are structures containing CDR-
encoded messages. Titeguest_message input parameters send a request message
from the client to the server, while thesponse_message output parameters return

a response message from the server to the client.

The message_type structure used to convey messages is made upeofth
member and @ata member:

® length- This member indicates the number of bytes in the message.

® data- This member is a full pointer to thiest byte of the conformant array
containing the message.

CORBAV2.2 DE-CIOP Message Transport February 1998 14-9

14

DCE-CIOP

Message

NDR Stream

DCE-RPC

14-10

Thelayering of DCE-CIOP messages o€B-RPCusing NDR arrays is illustrated in
Figure 14-2 below:

DCE-CIOP DCE-CIOP Body
length |refID [length bytes
PDU PDU Body Auth PDU PDU Body Auth

Figure 14-2 Array-based interface protocol layering.

The NDR streanformed by concatenating the Piddies, is interpreted as the NDR
representation of the DCE IDinessage_type structure. Thdength member is
encoded firstfollowed by thedata member. Thelata member is a full pointer,

which is represented in NDR as a referent ID. In this casensimsNULL pointer is

the first(and only) pointer to the referent, so the referent ID is 1 and it is followed by
the representation of the referent. The referent is a conformant array of bytes, which is
represented in NDR as an unsigned long indicating the length, followed by that number
of bytes. The bytes form the DCE-CIOP message.

Invoke

Theinvoke RPC is used by a DCE-CIOP client process to attempt to invoke a
CORBA operation in the server process identified byhiinging_handle
parameterThe request_message input parameter contains &CB-CIOP invoke
request messag@&he response_message output parameter returns a DCE-CIOP
invoke response messafyjem the server to the client.

CORBAV2.2 February 1998

14

Locate

Thelocate RPC is used by a DCE-CIOP client process to query the server process
identified by thebinding_handle parameter for the location of the server process
where requests should be sent. Thguest_message andresponse_message
parameters are usedvdlarly to the parameters of thavoke RPC.

14.4 DCE-CIOP Message Formats

The section defines the message formaged by DCE-CIOP. Theseessage formats

are specified in OMG IDL, are ended using CDR, and ateansmitted over DCE-

RPC as either pipes or arrays of bytes as described in “DCE-CIOP Message Transport’
on page 14-5.

14.4.1 DCE_CIOP Iwoke Request Message

DCE-CIOP invoke request messages encode CORBA object requests, including
attribute accessor operations &D@RBA::Object operations such as
get_interface andget_implementation . Invoke requests are passed from
client to server as theequest_message parameter of amvoke RPC.

A DCE-CIOP invoke request message is made up of a header and a body. The headet
has a fixed format, while thieormat of thebody isdetermined by the operation’s IDL
definition.

Invoke Request Header

DCE-CIOP request headers have thiowing structure:

module DCE_CIOP { /I 1DL
struct InvokeRequestHeader {
boolean byte_order;
IOP::ServiceContextList service_context;
seque nce <oct et> obj ect_key;
string operation;
CORBA::Principal principal;

/I in and inout parameters follow
|3
|3

The nembers have the follawg definitions:

* byte order indicates the byte ordering used in the representation of the remainder
of the message. A value of FALSE indicates big-endian byte orderingl RId&
indicates little-endian byte ordering.

® service_context contains any ORB service data that needs to befmantthe
client to the server.

CORBAV2.2 DE-CIOP Message Formats February 1998 14-11

14

14-12

® object_key containsopaque data used toeidtify the object that is the target of the
operatioRi. Its value is obtained from thabject key field of the
TAG_INTERNET_IOP profile or theTAG_COMPLET E_OBJECT_KEY
component of thdAG_MULTIPLE_COMPONENTS profile.

® operation contains the name of the CORBA operation being invokée. case of
the operation name must match the case of the operation name specified in the
OMG IDL source for the interface being used.

Attribute accessorBave names d®llows:
« Attribute selector: operation name"isget_<attribute>"
« Attribute mutator: operation name isset_<atibute>"

CORBA:Object pseudo-operations have operation hamef®lémvs:
» get_interface - operation name is "_interface"
e get_implementation- operation name is "_implementation"
e is_a- operation nameis " is_a"
* non_existent- operation name is_hon_exstent"

® Principal contains a value identifying the requesting principal. No particular
meaning or semantics are associated with this value ptbigded to support the
BOA::get_principal operation.

Invoke Request Body

The invoke request bodyontains the following itemencoded irthis order:

® Allin and inoutparameters, in the order in which they are specified in the
operation’s OMG IDL definition, from left to right.

® An optional Context pseudo object, encoded as described in “Context” on
page 13-18 This item is only included if the operation’s OMG IDL idétfon
includes a context expression, and only includes context members as defined in that
expression.

14.4.2 DCE-CIOP Inoke Rsponse Message

Invoke response messages are retufrad servers to clients as the
response_message parameter of ainvoke RPC.

5. Previous revisions of DCE-CIOP included an endpoint_id member, obtained from an
optional TAG_ENDPOINT_ID component, as part of the object identity. The endpgint
if used, is nowcontained within the object key, and its position is specified by the optional
TAG_ENDPOINT_ID_POSITION component.

6. Previous revisions of DCE-CIOP encoded the Context in the InvokeRequestHeader. It has
been moved to the body for consistency with GIOP.

CORBAV2.2 February 1998

14

Like invoke request messages, an invoke response message is made up of a header ar
a body. The header has a fixiedmat, while the format of the body depds on the
operation’s OMG IDL definition and the outcome of the invocation.

Invoke Response Header

DCE-CIOP invoke response headers havefdliewing structure:

module DCE_CIOP { /I 1DL
enum In vokeRespon seStatus {
INVOKE_NO_EXCEPTION,
INVOKE_USER_EXCEPTION,
INVOKE_SYSTEM_EXCEPTION,
INVOKE_LOCATION_FORWARD,
INVOKE_TRY_AGAIN

ki

struct InvokeResponseHe ader {
boolean byte_order;
IOP::ServiceContextList service_context;
InvokeResponseSt atus status;

/l'if status = INV OKE_NO_EXCEPTION,
/l result then inouts and outs follow

/I if status = INV OKE_USER_EXCEPTION or
/I INVOKE_SYSTEM_EXCEPTION, an exception follows

/l'if status = INV OKE_LOCATION_FORWARD, an
/I |lOP::IOR follows

|
|

The members have the follawg definitions:

* byte order indicates the byte ordering used in the representation of the remainder
of the message. A value of FALSE indicates big-endian byte orderingl Rid&
indicates little-endian byte ordering.

® service_context contains any ORB service data that needs to befsantthe
client to the server.

® status indicates the completion status of the associated recuesstalso
determines the contents of the body.
Invoke Response Body

The contents othe invoke response body depends on the value cftdbas
member of the invoke response header, as well as the OMG |iMitibef of the
operation being invoked. Its format is one of the following:

CORBAV2.2 DE-CIOP Message Formats February 1998 14-13

14

14-14

® |f the status value iSINVOKE_NO_EXCEPTION, then the body antains the
operation result value (if any), followed by all inout and out parameters, in the order
in which they appear in the operation signature, from left to right.

® |f the status value iSINVOKE_USER_EXCEPTION or
INVOKE_SYSTEM_EXCEPTION, then the body antains the exceptioncoded
as in GIOP.

® |f the status value iSINVOKE_LOCATION_FORWARD, then the body contains
a new IOR containing 83AG_INTERNET_IOP or
TAG_MULTIPLE_COMPONENTS profile whose components can be used to
communicate with the object specified in thedke request messagéhis profile
must provide at least omeew DCE-CIOPbinding component. The client ORB is
responsible for resending the request to the server identified by thprofile.
This operatiorshould be transparent to the client program making the request. See
“DCE-CIOP ObjectLocation” on page 14-2for more details.

® |f the status value iSINVOKE_TRY_AGAIN, then the body is empty and the
client should reissue thievoke RPC, possibly after a short defay

14.4.3 DCE-CIOP Locate Request Message

Locate request messages may be fem a client to a server, as the
request_message parameter of éocate RPC, to determine thfellowing
regarding a specified object reference:

®* Whether the object reference is valid

®* Whether the current server is capable of directly receiving requests for the object
reference

® |f not capable, to solicit an address to which requests for the object reference should
be sent.

For details on the usage of tlogate RPC, see “DE-CIOP Object location” on
page 14-22.

Locate request messages contairxadiformat header, but rmody.

Locate Request Header

DCE-CIOP locate request headers have the followingdor

7. Previous revisions of DCE-CIOP returned a MultipleComponentProfile structure. An IOR
is now returned to allow either a TAG_INTERNET _IOP or a
TAG_MULTIPLE_COMPONENTS profile to be used.

8. An exponential back-off algorithm is recommended,not required.

CORBAV2.2 February 1998

14

module DCE_CIOP { /I''DL
struct LocateRequestHeader {
boolean byte_order;
seque nce <oct et> obj ect_key;
string operation;

/I no body follows
|3
|3

The members have the follawg definitions:

* byte order indicates the byte ordering used in the representation of the remainder
of the message. A value of FALSE indicates big-endian byte orderingl Rid&
indicates little-endian byte ordering.

® object_key containsopaque data used toedtify the object that is the target of the
operation. Its value is obtained from thieject key field of the
TAG_INTERNET_IOP profile or theTAG_COMPLET E_OBJECT_KEY
component of th@AG_MULTIPLE_COMPONENTS profile.

® operation contains the name of the CORBA operation being invoked. It is encoded
as in the invoke request header.

14.4.4 DCE-CIOP Locate Response Message

Locate response messages are Bent servers to clients as the
response_message parameter of docate RPC.They consist of a fixed-format
header, and a body whokematdepends on information in the header.

Locate Response Header

DCE-CIOP locate response headers haveddhewing format:

module DCE_CIOP { /I 1DL

enum LocateRes ponseSt atus {
LOCATE_UNKNOWN_OBJECT,
LOCATE_OBJE CT_HERE,
LOCATE_LOCATION_FORWARD,
LOCATE_TRY_AGAIN

|3

struct LocateResponseHeader {
boolean byte_order;
LocateRespons eStatus status;

/I if status = LOCA TE_LOCATION_FORWARD, an
/I 1OP::IOR follows

k
k

The nembers have the follawg definitions:

CORBAV2.2 DE-CIOP Message Formats February 1998 14-15

14

* byte_order indicates the byte ordering used in the representation of the remainder
of the message. A value of FALSE indicates big-endian byte orderingl RId&
indicates little-endian byte ordering.

® status indicates whether the object is valid and whether it is located in this server.
It determines the contents of the body.

Locate Response Body

The contents of the locate response body depends on the valuesiaittise member
of the locate response headés.format isone of thefollowing:

* |f thestatus value is LOCAE_UNKNOWN_OBJECTthen the object specified
in the corresponding locate request messagekeawn tothe serverThelocate
reply body is empty in this case.

® |f the status value is LOCAE_OBJECT HEREthen this server (the originator
of the locate response message) can directly receive requests foedHedp
object. The locate response body is also empty in this case.

® |f the status value is LOCAE_LOCATION_FORWARD,then the locate
response body contains a new IOR@ining aTAG_INTERNET_IOP or
TAG_MULT IPLE_COMPONENTS profile whose components can be used to
communicate with the object specified in the locate request message. This profile
must provide at least omew DCE-CIOPbinding component.

® |f the status value is LOCA_TRY_AGAIN, the locate response body is empty and
the client should reissue thecate RPC, possibly after a short defay

14.5 DCE-CIOP Object References

14-16

The information necessary to invoke operations on objects using DCE-CIOP is
encoded in an IOR in a pitef identified either byTAG_INTERNET _IOP or by
TAG_MULTIPLE_COMPONENTS . Theprofile_data for the

TAG_INTERNET_IOP profile is a CDR encapsulation of the

IIOP::Profi leBody_1_1 type, described in “llOP IOR Profiles” on page 13-34. The
profile_data for the TAG_MULTIPLE_COMPONENTS profile is a CDR
encapsulation of thMultiple ComponentProfile type, which is a sequence of

TaggedComp onent structures, described in “An Information Model for Object
References” on page 11-14.

DCE-CIOP defines a number of IOR components that can be included in either profile.
Each is ieentified by aunique tag, and the encoding asemantics of the associated
component_data are specified.

9. An exponential back-off algorithm is recommended,not required.

CORBAV2.2 February 1998

14

Either IOR profilecan catain components for other protocols in addition to DCE-

CIOP, and can contain components used by other kinds of ORB services. For example,
an ORB vendor can defints own privatecomponents within this pridé to support

the vendor's native protocol. Several of the components defined for DCE-CIOP may be
of use to other protocols as well. The following component descriptions will note
whether the component is intended solely f@ECIOP or can be used byher

protocols, whether the component is required or optional for DCE-CIOP, and whether
more than one instance of the component can be included in a profile.

A conforming implementéin of DCE-CIOP is only required to gerateand

recognize the components defined here. Unrecognized components should be preservet
but ignored. Implementations should also be prepared to encountiéepiténtified

by TAG_INTERNET_IOP or by TAG_MULTIPLE _COMPONENTS that do not

support DCE-CIOP.

14.5.1 DCE-CIOP String Binding Component

A DCE-CIOP string binding component, identified by
TAG_DCE_STRING_BINDING, contains a fully or partially dundstring binding. A
string binding provides the information necessary for DCE-RPC to establish
communication with a server process tbamn either service the client's requests itself,
or provide the lgation of anotheprocess that can. The DCE API routine
rpc_binding_from_string_binding can be used to convert aisg) binding to
the DCE binding handle required tommunicate Wwh a server as described in “DCE-
CIOP Message Transport” on page 14-5.

This component is intended to be used only by DCE-CIOReastonestring birding
or binding name component must be present for an IORetofsupport DCE-CIOP.

Multiple string birding components can be included in a profile to define endpoints for
different DCE protocols, or to identifyultiple servers or agents capable of servicing
the request.

The sting binding component is defined as follows:

module DCE_CIOP { \\ IDL
const IOP::C omponentld TAG_DCE_STRING_BINDING = 100;
|3
A TaggedComp onent structure is built for the string binding component by setting
the tag member tPAG_DCE_STRING_BINDING and setting theomponent_data

member to the value of a DCE string binding. The string is represented directly in the
sequence of octets, including tteeminating NUL, wihoutfurtherencoding.

The format of a stringinding is defined in Chapter 3 of the O8SES/Distibuted
Computing RPC Volumé&he DCE API function

rpc_binding_from_string_binding converts a string binding into a binding
handle that can be used by a client ORB as teegarameter to thimvoke and
locate RPCs.

A string binding catains:

CORBAV2.2 DE-CIOP Object References February 1998 14-17

14

® A protocol sequence
® A network address
® An optional endpoint

® An optional object UUID

DCE object UUIDs are used to identify server process endpoints, which can each
support any number of CORBA objects. DCE object UUIDs do motssarily
correspond to individual CORBA objects.

A partially baund string binding does not contain an endpoint. Since the-BEE
run-time uses an endpoint mapper to complete a partial bingivtgnultiple ORB
servers might be located on the same host, parbaliynd string bindings must otain
object UUIDs to distinguish differe@ndpoints at the same network address.

14.5.2 DCE-CIOP Binding Name Component

A DCE-CIOP binding name component is identified by
TAG_DCE_BINDING_NAME. It contains a hame that can be used with a DCE
nameservice such as CDS or GDS to obtain the binding handle neentedrtminicate
with a server process.

This component is intended for use only by BCIOP. Mutiple binding name
components can be included to identifiultiple servers or agents capable of handling

a request. At least one binding name or string binding component must be present for
a profile tosupport DCE-CIOP.

The binding name component is idetd by the following OMG IDL:

module DCE_CIOP { /I \DL
const IOP::C omponentld TAG_DCE_BINDING_NAME = 101;

struct BindingNameComponent {
unsigned long entry_name_syntax;
string entry_name;
string object_uuid;
|3
|3
A TaggedComp onent structure is built for the binding name componentsbitng

the tag member tdAG_DCE_BINDING_NAME and settinghe component_data
member to a CDR encapsulation ofBindingNameComponent structure.

BindingNameComponent

TheBindingNameComponent structure contains the information necessary to query
a DCE nameservice such as CDS. A client ORB can usenting hame_syntax,
entry_name, andobject_uuid members of th&indingName structure with the
rpc_ns_binding_import_* orrpc_ns_binding_lookup_* families of DCE

14-18 CORBAV2.2 February 1998

14

API routines to obtain binding handles to communicate with a server. If the
object_uuid member is an empty string, a nil object UUID should be passed to
these DCE API routines.

14.5.3 DCE-CIOP No Pipes Component

The optional component identified bPAG_DCE_NO_PIPES indicates to an ORB
client that the server does not supportdbe ciop_pipe = DCE-RPC in¢rface. It is
only a hint, and can be safely ignored. As described in “DCE-CIOP Message
Transport” on page 14-5, the client mfsli back to the array-based interface if the
pipe-based interface is not available in the server.

module DCE_CIOP {
const IOP::C omponentld TAG_DCE_NO_PIPES =102;

|

A TaggedComp onent structure with aag member ofTAG_DCE_NO_PIPES
must have an emptyomponent_data member.

This component is intended for use only by BCIOP, and a prdé should not
contain more than one componerithwthis tag.

14.5.4 Complete Object Key Component

An IOR profile supporting DE-CIOPmust include an object key that identifies the
object the IOR represents. The object key is an opaque sequence of octets used as th
object_key member in invoke and locate request message headers. In a
TAG_INTERNET _IOP profile, theobject_key member of the

IIOP::Profi leBody 1 1 structure is used. In BAG_MULTIPLE_COMPONENTS

profile supporting DCE-CIOP, a singleTAG_COMPLETE_OBJECT_KEY

component must be included to identify the object.

The TAG_COMPLETE_OBJECT_KEY component is available for use al
protocols that use thBAG_MULTIPLE _COMPONENTS profile. By sharing this
component, protocols can avoid duplicating object idemmityrmation. This
component should never be included imAG _INTERNET _IOP profile.

module IOP { /I 'DL
const Compon entld TAG_COMPLETE_OBJEC T_KEY =5;
|3

The sequence afctets comprising theomponent_data of this component is not
interpreted by the client process. itsmat onlyneeds to be understood by the server
process and any location agent that it uses.

10.Previous DCE-CIOP revisions used a different component.

CORBAV2.2 DE-CIOP Object References February 1998 14-19

14

14.5.5 Endpoint ID Position Component

An optional endpoint ID position component can be included in IOR profiles to enable
client ORBs to minimize resource ligation and to avoidedundant locate messages.

It can be used by other protocols as well as by DCE-CIOP. No more than one endpoint
ID posiion component can be included irpeofile.

module IOP { /I 1DL
const Compon entld TAG_ENDPOINT_ID_POSITION = 6;

struct EndpointldPositionC omponent {
unsigned short begin;

unsigned short end;

|3

|3

An endpoint ID position component, identified B%G_ENDPOINT_ID_POSITION,
indicates the portion of the profile’s object key that identifies the endpoint at which
operations on an object can beaked. Thecomponent_data is a CDR
encapsulation of aBndpointldPositionC omponent structure.Thebegin member

of this structure specifies the index in the objexy of the irst octet of the endpoint
ID. Theend member specifies the index of the last octet ofetidpoint ID. An index
value of zero specifies the first octet of the object key. The valeadimust be
greater than the value bkgin, but less than the total number of octets in the object
key. The endpoint ID is made up of the octets located betweentthesedices
inclusively.

The endpoint ID should be unique withtime domain of interoperability. A binary or
stringified UUID is recommended.

If multiple objects have the samneadmint ID, they can be messaged to atilagle
endpoint, avoiding the need to locate each objetividually. DCE-CIOP clientxan

use a single binding handle to invoke requests on all of the objects with a common
endpoint ID. See “Use of the Location Policy and the Endpoint ID” on page 14-24.

14.5.6 Location Policy Component

An optional location policy component can be included in IOR profiles to specify
when a DCE-CIORIlient ORB should perform lacate RPC before attempting to
perform aninvoke RPC. No more than one location policy component should be
included in a profileand it can be used by other protocols that have location
algorithms similar to DCE-CIOP.

14-20 CORBAV2.2 February 1998

14

module IOP { /I IDL
const Compon entld TAG_LOCATI ON_POLICY =12;

/I IDL does not support octet constants
#define LOCATE_NEVER =0

#define LOCATE_OBJECT =1
#define LOCATE_OPERATION = 2
#define LOCATE_ALWAYS =3

|3
A TaggedComp onent structure for a location policy component is built by setting
the tag member tdAG_LOCATION_POLICY and setting theomponent_data

member to a sequencertaining a single octet, vase value i OCATE_NEVER,
LOCATE_OBJECT, LOCATE_OPERATION , or LOCATE_ALWAYS .

If a location policy component is not present in a profile, the client should assume a
location policy ofLOCATE_OBJECT .

A client should interpret the location policy fdlows:

« LOCATE_NEVER - Perform only thenvoke RPC. Nolocate RPC is
necessary.

» LOCATE_OBJECT - Perform docate RPC once per object. Troperation
member of the locate request message will be ignored.

e« LOCATE_OPERATION - Perform a separatecate RPC for eachdistinct
operation on the object. This polican be used when &fent methods of an
object are located in different processes.

* LOCATE_ALWAYS - Perform a separatecate RPC for each invocation on
the object. This policxan be used to support server-per-method activation.

The locationpolicy is a hint that enables a client to avoid unnecedsaaie RPCs
and to avoidnvoke RPCs that returiNVOKE_LOCATION_FORWARD status. It
is not needed to provide correct semantics, and can be igrwend wherthis hint is
utilized, aninvoke RPC might result in alNVOKE_LOCATION_FORWARD
response. See “DCE-CIOP Objeatdation” on page 14-22 for modetails.

A client does not need implement all location policies to make use of this hint. A
location policy with a higher valuean be substituted fame with a lower value. For
instance, a client might treaOCATE_OPERATION asLOCATE_ALWAYS to avoid
having to keep track of bindirigformation for each operation on an object.

When combined with an endpoint ID component, a location policy of
LOCATE_OBJECT indicates that the client should perfornoeate RPC for the
first object with a particulaendpoint ID, and then jugterform aninvoke RPC for
other objects with the same endpoint ID. When a location polieD6GfATE_NEVER

is combined with an endpoint ID component, oimyoke RPCs need be performed.
The LOCATE_ALWAYS andLOCATE_OPERATION policies should not be
combined with an endpoint ID component in a peof

CORBAV2.2 DE-CIOP Object References February 1998 14-21

14

14.6 DCE-CIOP Object Location

14-22

This section describes how DCE-CIOP client ORBs locate the server ORBs that can
perform operations on an object via theoke RPC.

14.6.1 Location Mechanism Overview

DCE-CIOP is defined to support object migration and location services without
dictating the existece of specific ORB architectures or features. The protocol features
are based on the following observations:

® A given transport address does not necessarily correspond to arficSp&s
architectural component (such as an object adapter, server process, ORB process,
locator, etc.). It merely implies the existence of some agent to which requests may
be sent.

®* The "agent" (receiver of an RPC) may have one of the following roles with respect
to a particular object reference:

» The agent may be able to accept object requests directly for the object and return
replies. The agent may or may not own the actual object implementation; it may
be a gateway that transforms the request and passes it on to another process or
ORB. From DCE-CIOP’s @rspectie, it is only impotant that invoke request
messages can be selitectly to the agent.

» The agent may not be able to accept direct requests for any objects, but acts
instead as a location servideny invokerequest messages sent to the agent
would result in either exceptions or replies with
INVOKE_LOCATION_FORWARD status, providingrew addresses to which
requests may be sent. Such agents would also respond to locate request message
with appropriate locate response messages.

» The agent may directly respd to some requests (foertain objects) and provide
forwarding locations for other objects.

» The agent may directly respd to regests for a particular object abe point in
time, and provide a forwarding location at a lateret

® Server ORBs are not required to implement location forwarding mechanisms. An
ORB can be implemented with the policy that servers either sugjpect access to
an object, or return exceptions. Such a server ORB would always return locate
response messages with eith€#dCATE_OBJE CT_HERE or
LOCATE_UNKNOWN_OBJECT status, and never
LOCATE_LOCATION_FORWARD status. It would also never return invoke
response messages WIVOKE_LOCATION_FORWARD status.

® Client ORBs must, however, be able to accept and process invoke response
messages WittNVOKE_LOCATION_FORWARD statussince any server ORB
may choose tamplement a location service. Whether a client ORB choosssrtd
locate request messages is at the discretion of the client.

® Client ORBs that send locate request messages can use the location policy
component found in DE-CIOP IORprofiles to decide whether tgend a locate
request message before sending an invoke request message. See “Location Policy
Component” on page 14-20. This hint can be safely ignored by a client ORB.

CORBAV2.2 February 1998

14

® A client should not make any assumptions about the longevity of addresses returned
by location forwarding mechanisms. If a binding handle based aatidm
forwarding information isused successfully, but then fails, subsequent attempts to
send requests to the same object showd aiith the original address specified in
the object reference.

In general, the use of dationforwarding mechanisms is at the discretion of B3R
available to be used faptimization and to support flexible object locatiand
migration behaviors.

14.6.2 Activation

Activation of ORB servers is transparent to ORB clients using -OCGEP. Unhless an
IOR refers to a transient object, the agent addressed by the IOR profile should either be
permanently acte, or should bactivated on demand by DCE’s endpoint mapper.

The current DCE endpoint mapper, rpcd, does not provide activation. In ORB server
environments using rpcd, the agent addressed by an IOR must not only be capable of
locating the object, it must also be able to activate it if necessary. A future DCE
endpoint mapper may provide automatativation, but client ORB implementations do

not need to be aware of thdsstinction.

14.6.3 Basic Location Algorithm

ORB clients can use thellowing algorithm to locatehe server capable of handling
theinvoke RPC for a particular operation:

1. Pick a prdfe with TAG_INTERNET_IOP or TAG_MULTIPLE _COMPONENTS
from the IOR. Make this theriginal profile and thecurrent profile. If no profiles
with either tagare available, operations cannot be invoked using DCE-CIOP with
this IOR.

2. Get a binding handle to try from tleerrent profile. See “DCE-CIOP String
Binding Component” on page 14-17 and “BLIOP Bnding Name Component”
on page 14-18. If no binding handles can bgaded, the server cannot be located
using thecurrent profile, so go to step 1.

3. Perform either éocate orinvoke RPC using th@bject keyfrom thecurrent
profile.

« If the RPCfails, go to step 2 to try a d&frent binding handle.

* If the RPC returnéNVOKE_TRY_AGAIN or LOCATE_TRY_AGAIN, try the
same RPC again, possibly after a delay.

* If the RPC returns eithdNVOKE_LOCATION_FORWARD or
LOCATE_LOCATION_FORWARD , make the new IOR profileeturned in the
response message body therent profile and go to step 2.

* If the RPC returne OCATE_UNKNOWN_OBJECT , and theoriginal profile
was used, the object no longer exists.

» Otherwise, the server has been successfully located.

CORBAV2.2 DE-CIOP Object Location February 1998 14-23

14

14-24

Any invoke RPC might returirNVOKE_LOCATION_FORWARD , in which case
the client ORB should make the returrnambfile the current profile, and re-enter the
location algorithm at step 2.

If an RPC on a binding handfeils after ithas been used successfully, the client ORB
shouldstart over at step 1.

14.6.4 Use of the Location Policy and the Endpoint ID

The algorithm dove will allow a client ORB to successfully locate a server ORB, if
possible, so that operations can be invoked using-OCGP. But umecessary

locate RPCs may be performed, amdoke RPCs may be performed when

locate RPCs would be more efficient. The optional location policy and endpoint 1D
position componentsan be used by the client ORB, if present in the [®&ile, to
optimize this algorithm.

Current Location Policy

The client ORB can decide whether to perforfocate RPC or arinvoke RPC in
step 3 based on the location policy of tugrentIOR profile. If thecurrentprofile has
aTAG_LOCATION_POLICY component with a value &fOCATE_NEVER, the

client should perform amvoke RPC. Otherwise, it should performacate RPC.

Original Location Policy

The client ORB can use tHecation policy of theoriginal IOR profile as follows to
determine whether it is necessary to perform tlwation algorithm for a particular
invocation:

® |LOCATE_OBJECT or LOCATE_NEVER A binding handle previously used
successfully to invoke an operation on an object can be reusatl éqrerations on
the same objecfThe client only needs tperform the location algorithmnae per
object.

®* LOCATE_OPERATION A binding handle previously used successfully to invoke an
operation on an object can be reused for that same operation on the same object.
The client only needs to perform the location algoritimee per operation.

®* LOCATE_ALWAYS Binding handles should not be reused. Tlent needs to
perform the location algorithm once per invocation.

Original Enchoint ID

If a component wth TAG_ENDPOINT_ID_POSITION is present in theriginal IOR
profile, the client ORB can reuse a binding handle that was successfully used to
perform an operation on another object with the same endpoint ID. Theartignt
needs to perform the location algorithm once per endpoint.

An endpoint ID position component should never be combined in the same profile with
a location policy ol.OCATE_OPERATION or LOCATE_ALWAYS .

CORBAV2.2 February 1998

14

14.7 OMG IDL forthe DCE CIOP Module

This section shows the DCE_CIOP module and DCIEP addions to the IOP

module.

module DCE_CIOP {
struct InvokeRequestHeader {

ki

boolean byte_order;
IOP::ServiceContextList service_context;
seque nce <oct et> object_key;

string operation;

CORBA::Principal principal;

/l in and inout parameters follow

enum In vokeRespon seStatus {

ki

stru

%

INVOKE_NO_EXCEPTION,
INVOKE_USER_EXCEPTION,
INVOKE_SYSTEM_EXCEPTION,
INVOKE_LOCATION_FORWARD,
INVOKE_TRY_AGAIN

ct InvokeResponseHe ader {

boolean byte_order;
IOP::ServiceContextList service_context;
InvokeResponseSt atus status;

/l'if status = INV OKE_NO_EXCEPTION,
/l result then inouts and outs follow

/l'if status = INV OKE_USER_EXCEPTION or
/I INVOKE_SYSTEM_EXCEPTION, an exception follows

/I if status = INV OKE_LOCATION_FORWARD, an
/I 1OP::IOR follows

struct LocateRequestHeader {

%

boolean byte_order;
seque nce <oct et> obj ect_key;
string operation;

/I no body follows

enum LocateRes ponseSt atus {
LOCATE_UNKNOWN_OBJECT,
LOCATE_OBJE CT_HERE,
LOCATE_LOCATION_FORWARD,
LOCATE_TRY_AGAIN

CORBA

V2.2 OMG IDL for the DCE Cl®ddule February 1998

14-25

14

|3

struct LocateResponseHeader {
boolean byte_order;
LocateRespons eStatus status;

/I if status = LOCA TE_LOCATION_FORWARD, an
/I 1OP::IOR follows

|3
const IOP::C omponentld TAG_DCE_STRING_BINDING = 100;
const IOP::C omponentld TAG_DCE_BINDING_NAME = 101;

struct BindingNameComponent {
unsigned long entry_name_syntax;
string entry_name;

string object_uuid;

k

const IOP::C omponentld TAG_DCE_NO_PIPES =102;
|3

module IOP {
const Compon entld TAG_COMPLETE_OBJEC T_KEY =5;

const Compon entld TAG_ENDPOINT_ID_POSITION = 6;

struct EndpointldPositionC omponent {
unsigned short begin;
unsigned short end;

|3
const Compon entld TAG_LOCATI ON_POLICY =12;

/I IDL does not support octet constants
#define LOCATE_NEVER 0

#define LOCATE_OBJECT 1

#define LOCATE_OPERATION 2
#define LOCATE_ALWAYS 3

k

14.8 References for this Chapter

14-26

AES/Distributed Computing RP@Nme P T R Prentice Hall, Englewood Gf New
Jersey, 1994

CAE Specification 809 X/Open DCE: Reote Procedure CallX/Open Company
Limited, Realing, UK

CORBAV2.2 February 1998

	The DCE ESIOP
	14.1 Goals of the DCE Common Inter-ORB Protocol
	14.2 DCE Common Inter-ORB Protocol Overview
	14.2.1 DCE-CIOP RPC
	14.2.2 DCE-CIOP Data Representation
	14.2.3 DCE-CIOP Messages
	14.2.4 Interoperable Object Reference (IOR)

	14.3 DCE-CIOP Message Transport
	14.3.1 Pipe-based Interface
	14.3.2 Array-based Interface

	14.4 DCE-CIOP Message Formats
	14.4.1 DCE_CIOP Invoke Request Message
	14.4.2 DCE-CIOP Invoke Response Message
	14.4.3 DCE-CIOP Locate Request Message
	14.4.4 DCE-CIOP Locate Response Message

	14.5 DCE-CIOP Object References
	14.5.1 DCE-CIOP String Binding Component
	14.5.2 DCE-CIOP Binding Name Component
	14.5.3 DCE-CIOP No Pipes Component
	14.5.4 Complete Object Key Component
	14.5.5 Endpoint ID Position Component
	14.5.6 Location Policy Component

	14.6 DCE-CIOP Object Location
	14.6.1 Location Mechanism Overview
	14.6.2 Activation
	14.6.3 Basic Location Algorithm
	14.6.4 Use of the Location Policy and the Endpoint ID

	14.7 OMG IDL for the DCE CIOP Module
	14.8 References for this Chapter

