
 The DCE ESIOP 14
This chapter specifies an Environment Specific Inter-ORB Protocol (ESIOP) for the
OSF DCE environment, the DCE Common Inter-ORB Protocol (DCE-CIOP).

Contents

This chapter contains the following sections.

14.1 Goals of the DCE Common Inter-ORB Protocol

DCE CIOP was designed to meet the following goals:

• Support multi-vendor, mission-critical, enterprise-wide, ORB-based applications.

• Leverage services provided by DCE wherever appropriate.

• Allow efficient and straightforward implementation using public DCE APIs.

Section Title Page

“Goals of the DCE Common Inter-ORB Protocol” 14-1

“DCE Common Inter-ORB Protocol Overview” 14-2

“DCE-CIOP Message Transport” 14-5

“DCE-CIOP Message Formats” 14-11

“DCE-CIOP Object References” 14-16

“DCE-CIOP Object Location” 14-22

“OMG IDL for the DCE CIOP Module” 14-25

“References for this Chapter” 14-26
 CORBA V2.2 February 1998 14-1

14

rt,

his

ted

e

RBs
• Preserve ORB implementation freedom.

DCE CIOP achieves these goals by using DCE-RPC to provide message transpo
while leaving the ORB responsible for message formatting, data marshaling, and
operation dispatch.

14.2 DCE Common Inter-ORB Protocol Overview

The DCE Common Inter-ORB Protocol uses the wire format and RPC packet formats
defined by DCE-RPC to enable independently implemented ORBs to communicate. It
defines the message formats that are exchanged using DCE-RPC, and specifies how
information in object references is used to establish communication between client and
server processes.

The full OMG IDL for the DCE ESIOP specification is shown in Section 14.7, “OMG
IDL for the DCE CIOP Module,” on page 14-25. Fragments are used throughout t
chapter as necessary.

14.2.1 DCE-CIOP RPC

DCE-CIOP requires an RPC which is interoperable with the DCE connection-orien
and/or connectionless protocols as specified in the X/Open CAE Specification C309
and the OSF AES/Distributed Computing RPC Volume. Some of the features of the
DCE-RPC are as follows:

• Defines connection-oriented and connectionless protocols for establishing the
communication between a client and server.

• Supports multiple underlying transport protocols including TCP/IP.

• Supports multiple outstanding requests to multiple CORBA objects over the sam
connection.

• Supports fragmentation of messages. This provides for buffer management by O
of CORBA requests which contain a large amount of marshaled data.

All interactions between ORBs take the form of remote procedure calls on one of two
well-known DCE-RPC interfaces. Two DCE operations are provided in each interface:

• invoke - for invoking CORBA operation requests, and

• locate - for locating server processes.

Each DCE operation is a synchronous remote procedure call1,2, consisting of a request
message being transmitted from the client to the server, followed by a response
message being transmitted from the server to the client.

1. DCE maybe operation semantics cannot be used for CORBA oneway operations because
they are idempotent as opposed to at-most-once.

2. The deferred synchronous DII API can be implemented on top of synchronous RPCs by
using threads.
14-2 CORBA V2.2 February 1998

14

f the

rays
-
PC

x,
ders
 the
es
Using one of the DCE-RPC interfaces, the messages are transmitted as pipes of
uninterpreted bytes. By transmitting messages via DCE pipes, the following
characteristics are achieved:

• Large amounts of data can be transmitted efficiently.

• Buffering of complete messages is not required.

• Marshaling and demarshaling can take place concurrently with message
transmission.

• Encoding of messages and marshaling of data is completely under the control o
ORB.

• DCE client and server stubs can be used to implement DCE-CIOP.

Using the other DCE-RPC interface, the messages are transmitted as conformant ar
of uninterpreted bytes. This interface does not offer all the advantages of the pipe
based interface, but is provided to enable interoperability with ORBs using DCE-R
implementations that do not adequately support pipes.

14.2.2 DCE-CIOP Data Representation

DCE-CIOP messages represent OMG IDL types by using the CDR transfer synta
which is defined in “CDR Transfer Syntax” on page 13-4. DCE-CIOP message hea
and bodies are specified as OMG IDL types. These are encoded using CDR, and
resulting messages are passed between client and server processes via DCE-RPC pip
or conformant arrays.

NDR is the transfer syntax used by DCE-RPC for operations defined in DCE IDL.
CDR, used to represent messages defined in OMG IDL on top of DCE RPCs,
represents the OMG IDL primitive types identically to the NDR representation of
corresponding DCE IDL primitive types.

The corresponding OMG IDL and DCE IDL primitive types are shown in table
Table 14-1.

Table 14-1 Relationship between CDR and NDR primitive data types

OMG IDL type
DCE IDL type with NDR repr esentation
equivalent to CDR representation of OMG
IDL type

char byte

wchar byte, unsigned short, or unsigned long, depending on
transmission code set

octet byte

short short

unsigned short unsigned short
CORBA V2.2 DCE Common Inter-ORB Protocol Overview February 1998 14-3

14

ctets

DR

 and

The CDR representation of OMG IDL constructed types and pseudo-object types does
not correspond to the NDR representation of types describable in DCE IDL.

A wide string is encoded as a unidimensional conformant array of octets in DCE 1.1
NDR. This consists of an unsigned long of four octets, specifying the number of o
in the array, followed by that number of octets, with no null terminator.

The NDR representation of OMG IDL fixed-point type, fixed , will be proposed as an
addition to the set of DCE IDL types.

As new data types are added to OMG IDL, NDR can be used as a model for their C
representations.

14.2.3 DCE-CIOP Messages

The following request and response messages are exchanged between ORB clients
servers via the invoke and locate RPCs:

• Invoke Request identifies the target object and the operation and contains the
principal, the operation context, a ServiceContext, and the in and inout parameter
values.

long long

unsigned long unsigned long

long long hyper

unsigned long long unsigned hyper

float float1

double double2

long double long double3

boolean byte4

1. Restricted to IEEE format.

2. Restricted to IEEE format.

3. Restricted to IEEE format.

4. Values restricted to 0 and 1.

Table 14-1 Relationship between CDR and NDR primitive data types

OMG IDL type
DCE IDL type with NDR repr esentation
equivalent to CDR representation of OMG
IDL type
14-4 CORBA V2.2 February 1998

14

it

e.

ry

ther

 or
t

nt

voke

h

• Invoke Response indicates whether the operation succeeded, failed, or needs to be
reinvoked at another location, and returns a ServiceContext . If the operation
succeeded, the result and the out and inout parameter values are returned. If
failed, an exception is returned. If the object is at another location, new RPC
binding information is returned.

• Locate Request identifies the target object and the operation.

• Locate Response indicates whether the location is in the current process, is
elsewhere, or is unknown. If the object is at another location, new RPC binding
information is returned.

All message formats begin with a field that indicates the byte order used in the CDR
encoding of the remainder of the message. The CDR byte order of a message is
required to match the NDR byte order used by DCE-RPC to transmit the messag

14.2.4 Interoperable Object Reference (IOR)

For DCE-CIOP to be used to invoke operations on an object, the information necessa
to reference an object via DCE-CIOP must be included in an IOR. This information
can coexist with the information needed for other protocols such as IIOP. DCE-CIOP
information is stored in an IOR as a set of components in a profile identified by ei
TAG_INTERNET_IOP or TAG_MULTIPLE_COMPONENTS . Components are
defined for the following purposes:

• To identify a server process via a DCE string binding, which can be either fully
partially bound. This process may be a server process implementing the object, or i
may be an agent capable of locating the object implementation.

• To identify a server process via a name that can be resolved using a DCE
nameservice. Again, this process may implement the object or may be an age
capable of locating it.

• In the TAG_MULTIP LE_COMPONENTS profile, to identify the target object
when request messages are sent to the server. In the TAG_INTENET_IOP profile,
the object_key profile member is used instead.

• To enable a DCE-CIOP client to recognize objects that share an endpoint.

• To indicate whether a DCE-CIOP client should send a locate message or an in
message.

• To indicate if the pipe-based DCE-RPC interface is not available.

The IOR is created by the server ORB to provide the information necessary to
reference the CORBA object.

14.3 DCE-CIOP Message Transport

DCE-CIOP defines two DCE-RPC interfaces for the transport of messages between
client ORBs and server ORBs3. One interface uses pipes to convey the messages, wile
the other uses conformant arrays.
CORBA V2.2 DCE-CIOP Message Transport February 1998 14-5

14

and

is
 to

f
The pipe-based interface is the preferred interface, since it allows messages to be
transmitted without precomputing the message length. But not all DCE-RPC
implementations adequately support pipes, so this interface is optional. All client
server ORBs implementing DCE-CIOP must support the array-based interface4.

While server ORBs may provide both interfaces or just the array-based interface, it
up to the client ORB to decide which to use for an invocation. If a client ORB tries
use the pipe-based interface and receives a rpc_s_unknown_if error, it should fall
back to the array-based interface.

14.3.1 Pipe-based Interface

The dce_ciop_pipe interface is defined by the DCE IDL specification shown
below:

[/* DCE IDL */

uuid(d7d99f66-97ee-11cf-b1a0-0800090b5d3e),/* 2nd revision */

version(1.0)

]

interface dce_ciop_pipe

{

 typedef pipe byte message_type;

void invoke ([in] handle_t binding_handle,

 [in] message_type *request_message,

 [out] message_type *response_message);

void locate ([in] handle_t binding_handle,

 [in] message_type *request_message,

 [out] message_type *response_message);

}

ORBs can implement the dce_ciop_pipe interface by using DCE stubs generated
from this IDL specification, or by using lower-level APIs provided by a particular
DCE-RPC implementation.

3. Previous DCE-CIOP revisions used different DCE RPC interface UUIDs and had
incompatible message formats. These previous revisions are deprecated, but
implementations can continue to support them in conjunction with the current interface
UUIDs and message formats.

4. A future DCE-CIOP revision may eliminate the array-based interface and require support o
the pipe-based interface.
14-6 CORBA V2.2 February 1998

14

n.
ing

CE-
n”

.

the
ge

l

n is
This
The dce_ciop_pipe interface is identified by the UUID and version number show
To provide maximal performance, all server ORBs and location agents implement
DCE-CIOP should listen for and handle requests made to this interface. To maximize
the chances of interoperating with any DCE-CIOP client, servers should listen for
requests arriving via all available DCE protocol sequences.

Client ORBs can invoke OMG IDL operations over DCE-CIOP by performing DCE
RPCs on the dce_ciop_pipe interface. The dce_ciop_pipe interface is made up
of two DCE-RPC operations, invoke and locate . The first parameter of each of
these RPCs is a DCE binding handle, which identifies the server process on which to
perform the RPC. See “DCE-CIOP String Binding Component” on page 14-17, “D
CIOP Binding Name Component” on page 14-18, and “DCE-CIOP Object Locatio
on page 14-22 for discussion of how these binding handles are obtained. The
remaining parameters of the dce_ciop_pipe RPCs are pipes of uninterpreted bytes
These pipes are used to convey messages encoded using CDR. The
request_message input parameters send a request message from the client to
server, while the response_message output parameters return a response messa
from the server to the client.

Figure 14-1 illustrates the layering of DCE-CIOP messages on the DCE-RPC protoco
as NDR pipes:

Figure 14-1 Pipe-based interface protocol layering.

The DCE-RPC protocol data unit (PDU) bodies, after any appropriate authenticatio
performed, are concatenated by the DCE-RPC run-time to form an NDR stream.
stream is then interpreted as the NDR representation of a DCE IDL pipe.

PDU

Chunk Chunk Data Chunk ChunkChunk Data

PDU Body Auth

DCE-CIOP
Message

PDU PDU Body Auth

NDR Stream

DCE-RPC

DCE-CIOP DCE-CIOP Body
CORBA V2.2 DCE-CIOP Message Transport February 1998 14-7

14

hunk
s that

ess
s

sage”
A pipe is made up of chunks, where each chunk consists of a chunk length and c
data. The chunk length is an unsigned long indicating the number of pipe element
make up the chunk data. The pipe elements are DCE IDL bytes, which are
uninterpreted by NDR. A pipe is terminated by a chunk length of zero. The pipe
chunks are concatenated to form a DCE-CIOP message.

Invoke

The invoke RPC is used by a DCE-CIOP client process to attempt to invoke a
CORBA operation in the server process identified by the binding_handle
parameter. The request_message pipe transmits a DCE-CIOP invoke request
message, encoded using CDR, from the client to the server. See “DCE_CIOP Invoke
Request Message” on page 14-11 for a description of its format. The
response_message pipe transmits a DCE-CIOP invoke response message, also
encoded using CDR, from the server to the client. See “DCE-CIOP Invoke Response
Message” on page 14-12 for a description of the response format.

Locate

The locate RPC is used by a DCE-CIOP client process to query the server proc
identified by the binding_handle parameter for the location of the server proces
where requests should be sent. The request_message and response_message
parameters are used similarly to the parameters of the invoke RPC. See “DCE-CIOP
Locate Request Message” on page 14-14 and “DCE-CIOP Locate Response Mes
on page 14-15 for descriptions of their formats. Use of the locate RPC is described
in detail in “DCE-CIOP Object Location” on page 14-22.

14.3.2 Array-based Interface

The dce_ciop_array interface is defined by the DCE IDL specification shown
below:

[/* DCE IDL */

uuid(09f9ffb8-97ef-11cf-9c96-0800090b5d3e),/* 2nd revision */

version(1.0)

]

interface dce_ciop_array

{

 typedef struct {

 unsigned long length;

[size_is(length),ptr] byte *data;

 } message_type;

 void invoke ([in] handle_t binding_handle,

 [in] message_type *request_message,
14-8 CORBA V2.2 February 1998

14

 on
DR-
ge

 [out] message_type *response_message);

 void locate ([in] handle_t binding_handle,

 [in] message_type *request_message,

 [out] message_type *response_message);

}

ORBs can implement the dce_ciop_array interface, identified by the UUID and
version number shown, by using DCE stubs generated from this IDL specification, or
by using lower-level APIs provided by a particular DCE-RPC implementation.

All server ORBs and location agents implementing DCE-CIOP must listen for and
handle requests made to the dce_ciop_array interface, and to maximize
interoperability, should listen for requests arriving via all available DCE protocol
sequences.

Client ORBs can invoke OMG IDL operations over DCE-CIOP by performing
locate and invoke RPCs on the dce_ciop_array interface.

As with the dce_ciop_pipe interface, the first parameter of each
dce_ciop_array RPC is a DCE binding handle that identifies the server process
which to perform the RPC. The remaining parameters are structures containing C
encoded messages. The request_message input parameters send a request messa
from the client to the server, while the response_message output parameters return
a response message from the server to the client.

The message_type structure used to convey messages is made up of a length
member and a data member:

• length - This member indicates the number of bytes in the message.

• data - This member is a full pointer to the first byte of the conformant array
containing the message.
CORBA V2.2 DCE-CIOP Message Transport February 1998 14-9

14

 by
ich is
mber
The layering of DCE-CIOP messages on DCE-RPC using NDR arrays is illustrated in
Figure 14-2 below:

Figure 14-2 Array-based interface protocol layering.

The NDR stream, formed by concatenating the PDU bodies, is interpreted as the NDR
representation of the DCE IDL message_type structure. The length member is
encoded first, followed by the data member. The data member is a full pointer,
which is represented in NDR as a referent ID. In this case, this non-NULL pointer is
the first (and only) pointer to the referent, so the referent ID is 1 and it is followed
the representation of the referent. The referent is a conformant array of bytes, wh
represented in NDR as an unsigned long indicating the length, followed by that nu
of bytes. The bytes form the DCE-CIOP message.

Invoke

The invoke RPC is used by a DCE-CIOP client process to attempt to invoke a
CORBA operation in the server process identified by the binding_handle
parameter. The request_message input parameter contains a DCE-CIOP invoke
request message. The response_message output parameter returns a DCE-CIOP
invoke response message from the server to the client.

PDU PDU Body Auth

DCE-CIOP
Message

PDU PDU Body Auth

NDR Stream

DCE-RPC

DCE-CIOP DCE-CIOP Body

length ref ID length bytes
14-10 CORBA V2.2 February 1998

14

ess
s

port”

eader

der
Locate

The locate RPC is used by a DCE-CIOP client process to query the server proc
identified by the binding_handle parameter for the location of the server proces
where requests should be sent. The request_message and response_message
parameters are used similarly to the parameters of the invoke RPC.

14.4 DCE-CIOP Message Formats

The section defines the message formats used by DCE-CIOP. These message formats
are specified in OMG IDL, are encoded using CDR, and are transmitted over DCE-
RPC as either pipes or arrays of bytes as described in “DCE-CIOP Message Trans
on page 14-5.

14.4.1 DCE_CIOP Invoke Request Message

DCE-CIOP invoke request messages encode CORBA object requests, including
attribute accessor operations and CORBA::Object operations such as
get_interface and get_implementation . Invoke requests are passed from
client to server as the request_message parameter of an invoke RPC.

A DCE-CIOP invoke request message is made up of a header and a body. The h
has a fixed format, while the format of the body is determined by the operation’s IDL
definition.

Invoke Request Header

DCE-CIOP request headers have the following structure:

module DCE_CIOP { // IDL
struct InvokeRequestHeader {

boolean byte_order;
IOP::ServiceContextList service_context;
seque nce <oct et> obj ect_key;
string operation;
CORBA::Principal principal;

// in and inout parameters follow
};

};

The members have the following definitions:

• byte_order indicates the byte ordering used in the representation of the remain
of the message. A value of FALSE indicates big-endian byte ordering, and TRUE
indicates little-endian byte ordering.

• service_context contains any ORB service data that needs to be sent from the
client to the server.
CORBA V2.2 DCE-CIOP Message Formats February 1998 14-11

14

e

n that

• object_key contains opaque data used to identify the object that is the target of the
operation5. Its value is obtained from the object_key field of the
TAG_INTERNET_IOP profile or the TAG_COMPLET E_OBJECT_KEY
component of the TAG_MULTIPLE_COMPONENTS profile.

• operation contains the name of the CORBA operation being invoked. The case of
the operation name must match the case of the operation name specified in th
OMG IDL source for the interface being used.

Attribute accessors have names as follows:

• Attribute selector: operation name is "_get_<attribute>"

• Attribute mutator: operation name is "_set_<attribute>"

CORBA::Object pseudo-operations have operation names as follows:
• get_interface - operation name is "_interface"
• get_implementation - operation name is "_implementation"
• is_a - operation name is "_is_a"
• non_existent - operation name is "_non_existent"

• Principal contains a value identifying the requesting principal. No particular
meaning or semantics are associated with this value. It is provided to support the
BOA::get_principal operation.

Invoke Request Body

The invoke request body contains the following items encoded in this order:

• All in and inout parameters, in the order in which they are specified in the
operation’s OMG IDL definition, from left to right.

• An optional Context pseudo object, encoded as described in “Context” on
page 13-186. This item is only included if the operation’s OMG IDL definition
includes a context expression, and only includes context members as defined i
expression.

14.4.2 DCE-CIOP Invoke Response Message

Invoke response messages are returned from servers to clients as the
response_message parameter of an invoke RPC.

5. Previous revisions of DCE-CIOP included an endpoint_id member, obtained from an
optional TAG_ENDPOINT_ID component, as part of the object identity. The endpoint ID,
if used, is now contained within the object key, and its position is specified by the optional
TAG_ENDPOINT_ID_POSITION component.

6. Previous revisions of DCE-CIOP encoded the Context in the InvokeRequestHeader. It has
been moved to the body for consistency with GIOP.
14-12 CORBA V2.2 February 1998

14

der and

der
Like invoke request messages, an invoke response message is made up of a hea
a body. The header has a fixed format, while the format of the body depends on the
operation’s OMG IDL definition and the outcome of the invocation.

Invoke Response Header

DCE-CIOP invoke response headers have the following structure:

module DCE_CIOP { // IDL
enum In vokeRespon seStatus {

INVOKE_NO_EXCEPTION,
INVOKE_USER_EXCEPTION,
INVOKE_SYSTEM_EXCEPTION,
INVOKE_LOCATION_FORWARD,
INVOKE_TRY_AGAIN

};

struct InvokeResponseHe ader {
boolean byte_order;
IOP::ServiceContextList service_context;
InvokeResponseSt atus status;

// if status = INV OKE_NO_EXCEPTION,
// result then inouts and outs follow

// if status = INV OKE_USER_EXCEPTION or
// INVOKE_SYSTEM_EXCEPTION, an exception follows

// if status = INV OKE_LOCATION_FORWARD, an
// IOP::IOR follows

};
};

The members have the following definitions:

• byte_order indicates the byte ordering used in the representation of the remain
of the message. A value of FALSE indicates big-endian byte ordering, and TRUE
indicates little-endian byte ordering.

• service_context contains any ORB service data that needs to be sent from the
client to the server.

• status indicates the completion status of the associated request, and also
determines the contents of the body.

Invoke Response Body

The contents of the invoke response body depends on the value of the status
member of the invoke response header, as well as the OMG IDL definition of the
operation being invoked. Its format is one of the following:
CORBA V2.2 DCE-CIOP Message Formats February 1998 14-13

14

rder

See

ect

ould
• If the status value is INVOKE_NO_EXCEPTION, then the body contains the
operation result value (if any), followed by all inout and out parameters, in the o
in which they appear in the operation signature, from left to right.

• If the status value is INVOKE_USER_EXCEPTION or
INVOKE_SYSTEM_EXCEPTION, then the body contains the exception, encoded
as in GIOP.

• If the status value is INVOKE_LOCATION_FORWARD , then the body contains
a new IOR containing a TAG_INTERNET_IOP or
TAG_MULT IPLE_COMPONENTS profile whose components can be used to
communicate with the object specified in the invoke request message7. This profile
must provide at least one new DCE-CIOP binding component. The client ORB is
responsible for resending the request to the server identified by the new profile.
This operation should be transparent to the client program making the request.
“DCE-CIOP Object Location” on page 14-22 for more details.

• If the status value is INVOKE_TRY_AGAIN , then the body is empty and the
client should reissue the invoke RPC, possibly after a short delay8.

14.4.3 DCE-CIOP Locate Request Message

Locate request messages may be sent from a client to a server, as the
request_message parameter of a locate RPC, to determine the following
regarding a specified object reference:

• Whether the object reference is valid

• Whether the current server is capable of directly receiving requests for the obj
reference

• If not capable, to solicit an address to which requests for the object reference sh
be sent.

For details on the usage of the locate RPC, see “DCE-CIOP Object Location” on
page 14-22.

Locate request messages contain a fixed-format header, but no body.

Locate Request Header

DCE-CIOP locate request headers have the following format:

7. Previous revisions of DCE-CIOP returned a MultipleComponentProfile structure. An IOR
is now returned to allow either a TAG_INTERNET_IOP or a
TAG_MULTIPLE_COMPONENTS profile to be used.

8. An exponential back-off algorithm is recommended, but not required.
14-14 CORBA V2.2 February 1998

14

der

ded
module DCE_CIOP { // IDL
struct LocateRequestHeader {

boolean byte_order;
seque nce <oct et> obj ect_key;
string operation;

// no body follows
};

};

The members have the following definitions:

• byte_order indicates the byte ordering used in the representation of the remain
of the message. A value of FALSE indicates big-endian byte ordering, and TRUE
indicates little-endian byte ordering.

• object_key contains opaque data used to identify the object that is the target of the
operation. Its value is obtained from the object_key field of the
TAG_INTERNET_IOP profile or the TAG_COMPLET E_OBJECT_KEY
component of the TAG_MULTIPLE_COMPONENTS profile.

• operation contains the name of the CORBA operation being invoked. It is enco
as in the invoke request header.

14.4.4 DCE-CIOP Locate Response Message

Locate response messages are sent from servers to clients as the
response_message parameter of a locate RPC. They consist of a fixed-format
header, and a body whose format depends on information in the header.

Locate Response Header

DCE-CIOP locate response headers have the following format:

module DCE_CIOP { // IDL
enum LocateRes ponseSt atus {

LOCATE_UNKNOWN_OBJECT,
LOCATE_OBJE CT_HERE,
LOCATE_LOCATION_FORWARD,
LOCATE_TRY_AGAIN

};
struct LocateResponseHeader {

boolean byte_order;
LocateRespons eStatus status;

// if status = LOCA TE_LOCATION_FORWARD, an
// IOP::IOR follows

};
};

The members have the following definitions:
CORBA V2.2 DCE-CIOP Message Formats February 1998 14-15

14

der

ver.

file

d

ofile.
• byte_order indicates the byte ordering used in the representation of the remain
of the message. A value of FALSE indicates big-endian byte ordering, and TRUE
indicates little-endian byte ordering.

• status indicates whether the object is valid and whether it is located in this ser
It determines the contents of the body.

Locate Response Body

The contents of the locate response body depends on the value of the status member
of the locate response header. Its format is one of the following:

• If the status value is LOCATE_UNKNOWN_OBJECT, then the object specified
in the corresponding locate request message is unknown to the server. The locate
reply body is empty in this case.

• If the status value is LOCATE_OBJECT_HERE, then this server (the originator
of the locate response message) can directly receive requests for the specified
object. The locate response body is also empty in this case.

• If the status value is LOCATE_LOCATION_FORWARD, then the locate
response body contains a new IOR containing a TAG_INTERNET_IOP or
TAG_MULT IPLE_COMPONENTS profile whose components can be used to
communicate with the object specified in the locate request message. This pro
must provide at least one new DCE-CIOP binding component.

• If the status value is LOCATE_TRY_AGAIN, the locate response body is empty an
the client should reissue the locate RPC, possibly after a short delay9.

14.5 DCE-CIOP Object References

The information necessary to invoke operations on objects using DCE-CIOP is
encoded in an IOR in a profile identified either by TAG_INTERNET_IOP or by
TAG_MULTIPLE_COMPONENTS . The profile_data for the
TAG_INTERNET_IOP profile is a CDR encapsulation of the
IIOP::Profi leBody_1_1 type, described in “IIOP IOR Profiles” on page 13-34. The
profile_data for the TAG_MULTIPLE_COMPONENTS profile is a CDR
encapsulation of the Multiple ComponentProfile type, which is a sequence of

TaggedComp onent structures, described in “An Information Model for Object
References” on page 11-14.

DCE-CIOP defines a number of IOR components that can be included in either pr
Each is identified by a unique tag, and the encoding and semantics of the associated
component_data are specified.

9. An exponential back-off algorithm is recommended, but not required.
14-16 CORBA V2.2 February 1998

14

mple,

y be

ther

served

f,

-

for
g

g

 the
Either IOR profile can contain components for other protocols in addition to DCE-
CIOP, and can contain components used by other kinds of ORB services. For exa
an ORB vendor can define its own private components within this profile to support
the vendor’s native protocol. Several of the components defined for DCE-CIOP ma
of use to other protocols as well. The following component descriptions will note
whether the component is intended solely for DCE-CIOP or can be used by other
protocols, whether the component is required or optional for DCE-CIOP, and whe
more than one instance of the component can be included in a profile.

A conforming implementation of DCE-CIOP is only required to generate and
recognize the components defined here. Unrecognized components should be pre
but ignored. Implementations should also be prepared to encounter profiles identified
by TAG_INTERNET_IOP or by TAG_MULTIPLE _COMPONENTS that do not
support DCE-CIOP.

14.5.1 DCE-CIOP String Binding Component

A DCE-CIOP string binding component, identified by
TAG_DCE_STRING_BINDING , contains a fully or partially bound string binding. A
string binding provides the information necessary for DCE-RPC to establish
communication with a server process that can either service the client’s requests itsel
or provide the location of another process that can. The DCE API routine
rpc_binding_from_string_binding can be used to convert a string binding to
the DCE binding handle required to communicate with a server as described in “DCE
CIOP Message Transport” on page 14-5.

This component is intended to be used only by DCE-CIOP. At least one string binding
or binding name component must be present for an IOR profile to support DCE-CIOP.

Multiple string binding components can be included in a profile to define endpoints
different DCE protocols, or to identify multiple servers or agents capable of servicin
the request.

The string binding component is defined as follows:

module DCE_CIOP { \\ IDL
const IOP::C omponentId TAG_DCE_STRING_BINDING = 100;

};

A TaggedComp onent structure is built for the string binding component by settin
the tag member to TAG_DCE_STRING_BINDING and setting the component_data
member to the value of a DCE string binding. The string is represented directly in
sequence of octets, including the terminating NUL, without further encoding.

The format of a string binding is defined in Chapter 3 of the OSF AES/Distributed
Computing RPC Volume. The DCE API function
rpc_binding_from_string_binding converts a string binding into a binding
handle that can be used by a client ORB as the first parameter to the invoke and
locate RPCs.

A string binding contains:
CORBA V2.2 DCE-CIOP Object References February 1998 14-17

14

g
nt for

ry
• A protocol sequence

• A network address

• An optional endpoint

• An optional object UUID

DCE object UUIDs are used to identify server process endpoints, which can each
support any number of CORBA objects. DCE object UUIDs do not necessarily
correspond to individual CORBA objects.

A partially bound string binding does not contain an endpoint. Since the DCE-RPC
run-time uses an endpoint mapper to complete a partial binding, and multiple ORB
servers might be located on the same host, partially bound string bindings must contain
object UUIDs to distinguish different endpoints at the same network address.

14.5.2 DCE-CIOP Binding Name Component

A DCE-CIOP binding name component is identified by
TAG_DCE_BINDING_NAME . It contains a name that can be used with a DCE
nameservice such as CDS or GDS to obtain the binding handle needed to communicate
with a server process.

This component is intended for use only by DCE-CIOP. Multiple binding name
components can be included to identify multiple servers or agents capable of handlin
a request. At least one binding name or string binding component must be prese
a profile to support DCE-CIOP.

The binding name component is defined by the following OMG IDL:

module DCE_CIOP { // IDL
const IOP::C omponentId TAG_DCE_BINDING_NAME = 101;

struct BindingNameComponent {
unsigned long entry_name_syntax;
string entry_name;
string object_uuid;

};
};

A TaggedComp onent structure is built for the binding name component by setting
the tag member to TAG_DCE_BINDING_NAME and setting the component_data
member to a CDR encapsulation of a BindingNameComponent structure.

BindingNameComponent

The BindingNameComponent structure contains the information necessary to que
a DCE nameservice such as CDS. A client ORB can use the entry_name_syntax,
entry_name, and object_uuid members of the BindingName structure with the
rpc_ns_binding_import_* or rpc_ns_binding_lookup_* families of DCE
14-18 CORBA V2.2 February 1998

14

 as the

r
API routines to obtain binding handles to communicate with a server. If the
object_uuid member is an empty string, a nil object UUID should be passed to
these DCE API routines.

14.5.3 DCE-CIOP No Pipes Component

The optional component identified by TAG_DCE_NO_PIPES indicates to an ORB
client that the server does not support the dce_ciop_pipe DCE-RPC interface. It is
only a hint, and can be safely ignored. As described in “DCE-CIOP Message
Transport” on page 14-5, the client must fall back to the array-based interface if the
pipe-based interface is not available in the server.

module DCE_CIOP {
const IOP::C omponentId TAG_DCE_NO_PIPES = 102;

};

A TaggedComp onent structure with a tag member of TAG_DCE_NO_PIPES
must have an empty component_data member.

This component is intended for use only by DCE-CIOP, and a profile should not
contain more than one component with this tag.

14.5.4 Complete Object Key Component

An IOR profile supporting DCE-CIOP must include an object key that identifies the
object the IOR represents. The object key is an opaque sequence of octets used
object_key member in invoke and locate request message headers. In a
TAG_INTERNET_IOP profile, the object_key member of the
IIOP::Profi leBody_1_1 structure is used. In a TAG_MULTIP LE_COMPONENTS
profile supporting DCE-CIOP10, a single TAG_COMPLETE_OBJECT_KEY
component must be included to identify the object.

The TAG_COMPLETE_OBJECT_KEY component is available for use by all
protocols that use the TAG_MULTIPLE _COMPONENTS profile. By sharing this
component, protocols can avoid duplicating object identity information. This
component should never be included in a TAG_INTERNET_IOP profile.

module IOP { // IDL
const Compon entId TAG_COMPLETE_OBJEC T_KEY = 5;
};

The sequence of octets comprising the component_data of this component is not
interpreted by the client process. Its format only needs to be understood by the serve
process and any location agent that it uses.

10.Previous DCE-CIOP revisions used a different component.
CORBA V2.2 DCE-CIOP Object References February 1998 14-19

14

ble
.
point

h

ct

n
.

14.5.5 Endpoint ID Position Component

An optional endpoint ID position component can be included in IOR profiles to ena
client ORBs to minimize resource utilization and to avoid redundant locate messages
It can be used by other protocols as well as by DCE-CIOP. No more than one end
ID position component can be included in a profile.

module IOP { // IDL
const Compon entId TAG_ENDPOINT_ID_POSITION = 6;

struct EndpointIdPositionC omponent {
unsigned short begin;
unsigned short end;
};
};

An endpoint ID position component, identified by TAG_ENDPOINT_ID_POSITION ,
indicates the portion of the profile’s object key that identifies the endpoint at whic
operations on an object can be invoked. The component_data is a CDR
encapsulation of an EndpointIdPositionC omponent structure. The begin member
of this structure specifies the index in the object key of the first octet of the endpoint
ID. The end member specifies the index of the last octet of the endpoint ID. An index
value of zero specifies the first octet of the object key. The value of end must be
greater than the value of begin , but less than the total number of octets in the obje
key. The endpoint ID is made up of the octets located between these two indices
inclusively.

The endpoint ID should be unique within the domain of interoperability. A binary or
stringified UUID is recommended.

If multiple objects have the same endpoint ID, they can be messaged to at a single
endpoint, avoiding the need to locate each object individually. DCE-CIOP clients can
use a single binding handle to invoke requests on all of the objects with a commo
endpoint ID. See “Use of the Location Policy and the Endpoint ID” on page 14-24

14.5.6 Location Policy Component

An optional location policy component can be included in IOR profiles to specify
when a DCE-CIOP client ORB should perform a locate RPC before attempting to
perform an invoke RPC. No more than one location policy component should be
included in a profile, and it can be used by other protocols that have location
algorithms similar to DCE-CIOP.
14-20 CORBA V2.2 February 1998

14

 a

module IOP { // IDL
const Compon entId TAG_LOCATI ON_POLICY = 12;

// IDL does not support octet constants
#define LOCATE_NEVER = 0
#define LOCATE_OBJECT = 1
#define LOCATE_OPERATION = 2
#define LOCATE_ALWAYS = 3

};

A TaggedComp onent structure for a location policy component is built by setting
the tag member to TAG_LOCATION_POLICY and setting the component_data
member to a sequence containing a single octet, whose value is LOCATE_NEVER ,
LOCATE_OBJECT, LOCATE_OPERATION , or LOCATE_ALWAYS .

If a location policy component is not present in a profile, the client should assume
location policy of LOCATE_OBJECT .

A client should interpret the location policy as follows:

• LOCATE_NEVER - Perform only the invoke RPC. No locate RPC is
necessary.

• LOCATE_OBJECT - Perform a locate RPC once per object. The operation
member of the locate request message will be ignored.

• LOCATE_OPERATION - Perform a separate locate RPC for each distinct
operation on the object. This policy can be used when different methods of an
object are located in different processes.

• LOCATE_ALWAYS - Perform a separate locate RPC for each invocation on
the object. This policy can be used to support server-per-method activation.

The location policy is a hint that enables a client to avoid unnecessary locate RPCs
and to avoid invoke RPCs that return INVOKE_LOCATION_FORWARD status. It
is not needed to provide correct semantics, and can be ignored. Even when this hint is
utilized, an invoke RPC might result in an INVOKE_LOCATION_FORWARD
response. See “DCE-CIOP Object Location” on page 14-22 for more details.

A client does not need to implement all location policies to make use of this hint. A
location policy with a higher value can be substituted for one with a lower value. For
instance, a client might treat LOCATE_OPERATION as LOCATE_ALWAYS to avoid
having to keep track of binding information for each operation on an object.

When combined with an endpoint ID component, a location policy of
LOCATE_OBJECT indicates that the client should perform a locate RPC for the
first object with a particular endpoint ID, and then just perform an invoke RPC for
other objects with the same endpoint ID. When a location policy of LOCATE_NEVER
is combined with an endpoint ID component, only invoke RPCs need be performed.
The LOCATE_ALWAYS and LOCATE_OPERATION policies should not be
combined with an endpoint ID component in a profile.
CORBA V2.2 DCE-CIOP Object References February 1998 14-21

14

can

res

ess,
may

ect

eturn
ay

s or

s

ssages

n

olicy
14.6 DCE-CIOP Object Location

This section describes how DCE-CIOP client ORBs locate the server ORBs that
perform operations on an object via the invoke RPC.

14.6.1 Location Mechanism Overview

DCE-CIOP is defined to support object migration and location services without
dictating the existence of specific ORB architectures or features. The protocol featu
are based on the following observations:

• A given transport address does not necessarily correspond to any specific ORB
architectural component (such as an object adapter, server process, ORB proc
locator, etc.). It merely implies the existence of some agent to which requests
be sent.

• The "agent" (receiver of an RPC) may have one of the following roles with resp
to a particular object reference:

• The agent may be able to accept object requests directly for the object and r
replies. The agent may or may not own the actual object implementation; it m
be a gateway that transforms the request and passes it on to another proces
ORB. From DCE-CIOP’s perspective, it is only important that invoke request
messages can be sent directly to the agent.

• The agent may not be able to accept direct requests for any objects, but act
instead as a location service. Any invoke request messages sent to the agent
would result in either exceptions or replies with
INVOKE_LOCATION_FORWARD status, providing new addresses to which
requests may be sent. Such agents would also respond to locate request me
with appropriate locate response messages.

• The agent may directly respond to some requests (for certain objects) and provide
forwarding locations for other objects.

• The agent may directly respond to requests for a particular object at one point in
time, and provide a forwarding location at a later time.

• Server ORBs are not required to implement location forwarding mechanisms. A
ORB can be implemented with the policy that servers either support direct access to
an object, or return exceptions. Such a server ORB would always return locate
response messages with either LOCATE_OBJE CT_HERE or
LOCATE_UNKNOW N_OBJECT status, and never
LOCATE_LOCATION_FORWARD status. It would also never return invoke
response messages with INVOKE_LOCATION_FORWARD status.

• Client ORBs must, however, be able to accept and process invoke response
messages with INVOKE_LOCATION_FORWARD status, since any server ORB
may choose to implement a location service. Whether a client ORB chooses to send
locate request messages is at the discretion of the client.

• Client ORBs that send locate request messages can use the location policy
component found in DCE-CIOP IOR profiles to decide whether to send a locate
request message before sending an invoke request message. See “Location P
Component” on page 14-20. This hint can be safely ignored by a client ORB.
14-22 CORBA V2.2 February 1998

14

rned

 to

er be

er
le of

ith

• A client should not make any assumptions about the longevity of addresses retu
by location forwarding mechanisms. If a binding handle based on location
forwarding information is used successfully, but then fails, subsequent attempts
send requests to the same object should start with the original address specified in
the object reference.

In general, the use of location forwarding mechanisms is at the discretion of ORBs,
available to be used for optimization and to support flexible object location and
migration behaviors.

14.6.2 Activation

Activation of ORB servers is transparent to ORB clients using DCE-CIOP. Unless an
IOR refers to a transient object, the agent addressed by the IOR profile should eith
permanently active, or should be activated on demand by DCE’s endpoint mapper.

The current DCE endpoint mapper, rpcd, does not provide activation. In ORB serv
environments using rpcd, the agent addressed by an IOR must not only be capab
locating the object, it must also be able to activate it if necessary. A future DCE
endpoint mapper may provide automatic activation, but client ORB implementations do
not need to be aware of this distinction.

14.6.3 Basic Location Algorithm

ORB clients can use the following algorithm to locate the server capable of handling
the invoke RPC for a particular operation:

1. Pick a profile with TAG_INTERNET_IOP or TAG_MULTIPLE _COMPONENTS
from the IOR. Make this the original profile and the current profile. If no profiles
with either tag are available, operations cannot be invoked using DCE-CIOP w
this IOR.

2. Get a binding handle to try from the current profile. See “DCE-CIOP String
Binding Component” on page 14-17 and “DCE-CIOP Binding Name Component”
on page 14-18. If no binding handles can be obtained, the server cannot be located
using the current profile, so go to step 1.

3. Perform either a locate or invoke RPC using the object key from the current
profile.

• If the RPC fails, go to step 2 to try a different binding handle.

• If the RPC returns INVOKE_TRY_AGAIN or LOCATE_TRY_AGAIN, try the
same RPC again, possibly after a delay.

• If the RPC returns either INVOKE_LOCATION_FORWARD or
LOCATE_LOCATION_FORWARD , make the new IOR profile returned in the
response message body the current profile and go to step 2.

• If the RPC returns LOCATE_UNKNOWN_OBJECT , and the original profile
was used, the object no longer exists.

• Otherwise, the server has been successfully located.
CORBA V2.2 DCE-CIOP Object Location February 1998 14-23

14

B

ID

 an
ject.

with
Any invoke RPC might return INVOKE_LOCATION_FORWARD , in which case
the client ORB should make the returned profile the current profile, and re-enter the
location algorithm at step 2.

If an RPC on a binding handle fails after it has been used successfully, the client OR
should start over at step 1.

14.6.4 Use of the Location Policy and the Endpoint ID

The algorithm above will allow a client ORB to successfully locate a server ORB, if
possible, so that operations can be invoked using DCE-CIOP. But unnecessary
locate RPCs may be performed, and invoke RPCs may be performed when
locate RPCs would be more efficient. The optional location policy and endpoint
position components can be used by the client ORB, if present in the IOR profile, to
optimize this algorithm.

Current Location Policy

The client ORB can decide whether to perform a locate RPC or an invoke RPC in
step 3 based on the location policy of the current IOR profile. If the current profile has
a TAG_LOCATION_POLICY component with a value of LOCATE_NEVER , the
client should perform an invoke RPC. Otherwise, it should perform a locate RPC.

Original Location Policy

The client ORB can use the location policy of the original IOR profile as follows to
determine whether it is necessary to perform the location algorithm for a particular
invocation:

• LOCATE_OBJECT or LOCATE_NEVER A binding handle previously used
successfully to invoke an operation on an object can be reused for all operations on
the same object. The client only needs to perform the location algorithm once per
object.

• LOCATE_OPERATION A binding handle previously used successfully to invoke
operation on an object can be reused for that same operation on the same ob
The client only needs to perform the location algorithm once per operation.

• LOCATE_ALWAYS Binding handles should not be reused. The client needs to
perform the location algorithm once per invocation.

Original Endpoint ID

If a component with TAG_ENDPOINT_ID_POSITION is present in the original IOR
profile, the client ORB can reuse a binding handle that was successfully used to
perform an operation on another object with the same endpoint ID. The client only
needs to perform the location algorithm once per endpoint.

An endpoint ID position component should never be combined in the same profile
a location policy of LOCATE_OPERATION or LOCATE_ALWAYS .
14-24 CORBA V2.2 February 1998

14
14.7 OMG IDL for the DCE CIOP Module

This section shows the DCE_CIOP module and DCE_CIOP additions to the IOP
module.

module DCE_CIOP {
struct InvokeRequestHeader {

boolean byte_order;
IOP::ServiceContextList service_context;
seque nce <oct et> obj ect_key;
string operation;
CORBA::Principal principal;

// in and inout parameters follow
};

enum In vokeRespon seStatus {
INVOKE_NO_EXCEPTION,
INVOKE_USER_EXCEPTION,
INVOKE_SYSTEM_EXCEPTION,
INVOKE_LOCATION_FORWARD,
INVOKE_TRY_AGAIN

};
struct InvokeResponseHe ader {

boolean byte_order;
IOP::ServiceContextList service_context;
InvokeResponseSt atus status;

// if status = INV OKE_NO_EXCEPTION,
// result then inouts and outs follow

// if status = INV OKE_USER_EXCEPTION or
// INVOKE_SYSTEM_EXCEPTION, an exception follows

// if status = INV OKE_LOCATION_FORWARD, an
// IOP::IOR follows

};
struct LocateRequestHeader {

boolean byte_order;
seque nce <oct et> obj ect_key;
string operation;

// no body follows
};

enum LocateRes ponseSt atus {
LOCATE_UNKNOWN_OBJECT,
LOCATE_OBJE CT_HERE,
LOCATE_LOCATION_FORWARD,
LOCATE_TRY_AGAIN
CORBA V2.2 OMG IDL for the DCE CIOP Module February 1998 14-25

14
};
struct LocateResponseHeader {
boolean byte_order;
LocateRespons eStatus status;

// if status = LOCA TE_LOCATION_FORWARD, an
// IOP::IOR follows
};

const IOP::C omponentId TAG_DCE_STRING_BINDING = 100;

const IOP::C omponentId TAG_DCE_BINDING_NAME = 101;

struct BindingNameComponent {
unsigned long entry_name_syntax;
string entry_name;
string object_uuid;
};

const IOP::C omponentId TAG_DCE_NO_PIPES = 102;
};

module IOP {
const Compon entId TAG_COMPLETE_OBJEC T_KEY = 5;

const Compon entId TAG_ENDPOINT_ID_POSITION = 6;

struct EndpointIdPositionC omponent {
unsigned short begin;
unsigned short end;
};

const Compon entId TAG_LOCATI ON_POLICY = 12;

// IDL does not support octet constants
#define LOCATE_NEVER 0
#define LOCATE_OBJECT 1
#define LOCATE_OPERATION 2
#define LOCATE_ALWAYS 3
};

14.8 References for this Chapter

AES/Distributed Computing RPC Volume, P T R Prentice Hall, Englewood Cliffs, New
Jersey, 1994

CAE Specification C309 X/Open DCE: Remote Procedure Call, X/Open Company
Limited, Reading, UK
14-26 CORBA V2.2 February 1998

	The DCE ESIOP
	14.1 Goals of the DCE Common Inter-ORB Protocol
	14.2 DCE Common Inter-ORB Protocol Overview
	14.2.1 DCE-CIOP RPC
	14.2.2 DCE-CIOP Data Representation
	14.2.3 DCE-CIOP Messages
	14.2.4 Interoperable Object Reference (IOR)

	14.3 DCE-CIOP Message Transport
	14.3.1 Pipe-based Interface
	14.3.2 Array-based Interface

	14.4 DCE-CIOP Message Formats
	14.4.1 DCE_CIOP Invoke Request Message
	14.4.2 DCE-CIOP Invoke Response Message
	14.4.3 DCE-CIOP Locate Request Message
	14.4.4 DCE-CIOP Locate Response Message

	14.5 DCE-CIOP Object References
	14.5.1 DCE-CIOP String Binding Component
	14.5.2 DCE-CIOP Binding Name Component
	14.5.3 DCE-CIOP No Pipes Component
	14.5.4 Complete Object Key Component
	14.5.5 Endpoint ID Position Component
	14.5.6 Location Policy Component

	14.6 DCE-CIOP Object Location
	14.6.1 Location Mechanism Overview
	14.6.2 Activation
	14.6.3 Basic Location Algorithm
	14.6.4 Use of the Location Policy and the Endpoint ID

	14.7 OMG IDL for the DCE CIOP Module
	14.8 References for this Chapter

