General IntefORB Protocol 13

This chapter specifies a GeneraleinrORB Protoco(GIOP)for ORB interoperability,
which can be mapped onto any connection-oriented transport protocol that meets a
minimal set of assumiains. This chapter also defines a specific mapping of the GIOP
which runs directly over TCP/IP connections, called the Internet Inter-ORB Protocol
(IIOP). The IlIOPmust be supported by conformingtworked ORB products
regardless of other aspects of their implementation. Support does not require

using it internally; conforming ORBs may also provide bridges to this protocol.

Contents

This chapter contains tHellowing sections.

Section Title Page
“Goals of the General Inter-ORB Protocol” 13-2
“GIOP Overview” 13-2
“CDR Transfer Syntax” 13-4
“GIOP Message Formats” 13-19
“GIOP Message Transport’ 13-30
“Object Location” 13-32
“Internet Inter-ORB Protocol (IIOP)” 13-33
“OMG IDL” 13-37

CORBA V2.2 Febitoas 13-1

13

13.1 Goals of the General Inter-ORBd®scol

The GIOP and IIOP suppaprotocol-level ORB interoperaiiiy in a general, low-cost
manner. The following objectives were pursued vigorously in the GIOP design:

13.2 GIOP Oerview

13-2

Widest possible availability The GIOP and lIORre based on the most widely-
used and flexible communications transport mechanism available (TCP/IP), and
defines theminimum additionabprotocol layers necessary to transfer CORBA
requests between ORBs.

Simplicity - The GIOP isintended to be as simple as possible, whiketing other
design goals. ®iplicity is deemed the best approach to ensure a variety of
independent, compatible implementations.

Scalability - The GIOP/IIOP protocol should support ORBs, and networks of
bridged ORBs, to the size of today’s Internet, and beyond.

Low cog - Adding support for GIOP/IIOP to an existing or new ORB design should
require small engineering investment. Moreover, thetime-costs required to
support lIOP in deployed ORBs should banimal.

Generality- While the IIOP ignitially defined for TCP/IP, GIOP message formats
are designed to be usedthvany transport layer that meets a nmai set of
assumptions; specifically, the GIOP is designed to be implemented on other
conrection-oriented tmsport protocols.

Architectural neutrality- The GIOP specification makesinimal assumptions
about thearchitecture of agents that will suppirtThe GIOP specification treats
ORBs as opaque étieés with unknownarchitectures.

The approach particular ORB takes to providing support for the GIOP/IIOP is
undefined. For example, an ORB could choose to use the IIOP as its internal protocol,
it could choose to externalize IIOP as much as possible by implementing iifr a h
bridge, or it could choose a strategy between these two extremes. All that is required of
a conforming ORB is that some entity or entities in, or associasité the ORB be

able to send antkeceive IIOP messages.

The GIOP spefication consists of the following elements:

The Common Data Representation (CDR)rddn. CDR is a transfer syntax
mapping OMG IDL data types into a bicanonical low-level representation for “on-
the-wire” transfer between ORBs ahier-ORB bridges (agents).

GIOP Message Format&IOP messages are exchanged between agentsli@taci
object requests, locate object implementati@m&gl manage communication
channels.

GIOP Transport Assumption$he GIOP specification describes general
assumptions made concerning any network transport layer that may be used to
transfer GIOP messages. The specification also describes howations may be
managed, and constraints on GIOP message ordering.

CORBAV2.2 February 1998

13

The 1lOP specification adds the following element to the GIOP Spation:

® Internet IOP Message Transpoithe IIOPspecification describdsow agents open
TCP/IP connections and use them to transfer GIOP messages.

The IIOP is not a separaspecification; it is a specialization, or mapping, of the GIOP

to a specific transport (TCP/IP). The GIOP specification (without the transport-specific
IIOP element) may be considered as a separate conformance point for future mappings
to other transport layers.

The complete OMG IDL specifications for the GIGIxd IIOP areshown in
Section 13.8, “OMG IDL,” on page 13-37. Fragments of gpecification are used
throughout this chapter as necessary.

13.2.1 Common Data Representation (CDR)

CDR is a transfer syntax, mapping from data types defined in OMG IDL to a
bicanonical, low-level representation for transfer between agents. CDR has the
following features:

® Variable byte ordering- Machines with a common byte order may exchange
messages without byte swapping. When communicating machines have different
byte order, the message originator determines the message byte order, and the
receiver is responsible fewapping bytes tmatch its native ordering.deh GIOP
message (and CDR encapsulation) contains a flag that indicates the appropriate byte
order.

® Aligned primitive types Primitive OMG IDL data types are aligned on their natural
boundaries within GIOP messages, permitting data to be handled efficiently by
architectures that enforce data alignment in memory.

® Complete OMG IDL Mapping CDR describes representations for all OMG IDL
data types, including transferable pseudo-objects such &CogesWhere
necessary, CDR defines representations for data types whose representations are
undefined or implementation-dependent in the CORBA Core specifications.

13.2.2 GIOP Message Overview

The GIOP spefies formats for messages that asechanged betweeanter-operating
ORBs. GIOP message formats have fthitowing features:

®* Few, simple message®ith only seven message formats, the GKnpportsfull
CORBA functionality beteen ORBs, with extended caplitfiés supporting object
location services, dynamic migration, and efficient management of communication
resources. GIOP semantics require no format or binding negotiations. In most cases,
clients can send requests to objects immediately upon opening a connection.

®* Dynamic object locationMany ORBs’ architectureallow an object
implementation to be awtted at different locations during tifetime, and may
allow objects to migrate dynamically. GIOP messages prasugeort for object
location and migration, without geliring ORBSs to implemenduch mechasims
when unnecessary or inappropriate to an ORB'’s architecture.

CORBAV2.2 GIOBverview February 1998 13-3

13

® Full CORBA support- GIOP messages directly support all functions and behaviors
required by CORBA, including exception reporting, passing operation context, and
remote object reference operations (suclC@RBA::Obj ect::get_interface).

GIOP also supports passing service-specific context, such as the transaction context
defined by the Transaction Service (the Transaction Service is described in
CORBAservices: Common Object Service Specificgtidiss mechanism is designed

to support any service that requires service related contextitopbeitly passed with
requests.

13.2.3 GIOP Message Transfer

The GIOP spefication isdesigned to operate over any connection-oriented transport
protocol that meets minimal set of assumptions (described inOB Message
Transport” on page 13-30). GIOP uses underlying transport connections in the
following ways:

® Asymmetrical connection usageThe GIOP defines two distinct roles with respect
to connections, client and server. The client side of a connection originates the
conrection,and sends object requests over the connection. The server side receives
requests and sends repli@he server side of a connection may not send object
requests. Thisestriction dbws the GIOP specification to be musimplerand
avoids certain race conditions.

®* Request multiplexing If desirable, multiple clients within an ORB may share a
conrection tosend requests to a particular ORB or serizach request uniquely
identifies its target objecMultiple independent requests for different objects, or a
single object, may be sent on the same connection.

® Overlapping requestsin general, GIOP message ordering constraints are minimal.
GIOP is designed to allow overlapping asynchronous requests; it dodtabe
the relativeordering of requests or replies. Uniquguest/reply identifiers provide
proper correlation ofelated messages. Implementations are free to impoge
internal message ordering constraints required by their ORB architectures.

® Connection management GIOP defines messages for request cancellation and
orderly connectiorshutdown. These features allow ORBs toasuland rese idle
conrectionresources.

13.3 CDR Transfefyntax

13-4

The Common Data &presentation (CDR) transfer syntax is the formatfich the
GIOP represents OMG IDL data types in an octet stream.

An octet stream is an abstract notion that typically corresponds to a memory buffer that
is to be sent to another process or machine over some IPC mechanism or network
transport. For the purposes of this discussion, an octet stream istaawrdybong (but

finite) sequence of eight-bit values (octets) with a well-defined beginning. The octets
in the stream are numbered fr@o n-1, wheren is the size of the stream. The

numeric position of an octet in the stream is calleéhidex Octet indices are used to
calculate alignmenbourdaries, as described in “Alignment” gage 13-5.

CORBAV2.2 February 1998

13

GIOP defines two distindtinds of octet streams, messag@sl encapsulations.
Messages are the basic units of information exchange in GIOP, described in detail in
“GIOP Message Formats” on page 13-19.

Encagsulations are octet streams into which OMG IDL data structures may be
marshaled independently, apart framy particular message context. Once a data
structure has been encapsulated, the octet stream can be represented as the OMG ID
opaque data typsequen ce<octet> , which can be marshaled subsenqtly into a

message or another encapsulation. Encapsuladibog complex constants (such as
TypeCodes) to be pre-marshaled; they also allow certain message components to be
handled without requirindull unmarshaling. Whemwer encapsulations are used in

CDR or the GIOP, they are clearly noted.

13.3.1 Primitive Types

Primitive data tpes are specified for both big-endian éitide-endian orderingsThe
message formats (see “GIOP Messageriads” onpage 13-19) include tags in

message headers that indicate the byte ordering in the message. Encapsulations includi
an initial fag that indicates the byte ordering within the encapsulation, described in
“Encapsulation” on page 13-12. The byte ordering of any encapsulation may be
different from the message or encapsulation within which it is nested. It is the
responsibility of the message recipient to translate byte ordering if necessary.

Primitive data tpes are encoded multiples of octets. Aroctet is an 8-bit value.

The transfer syntafor an IDL wide character depends on whethertthasmission
code set (TCS-W, which is determined via the process described in “Code Set
Conversion” on page 11-22) is byte-oriented or non-byte-oriented:

® Byte-oriented (e.g., SJIS). Each wide character is represented as one or more octets,
as defined by the selected TCS-W.

®* Non-byte-oriented (e.g., Unicode UTF-16). Each wide character is represented as
one or more codepoints. A codepoint is the sameCasléd-Character data
element,” or “CC data element” in ISO terminology. Each codepoint is encoded
using a fixed number of bits as determined by the selected TCS-W.

Alignment

In order to allowprimitive data to benoved into and out of octstreams \th
instructions specifically designed for thosengitive data tyes, in CDRall primitive
data types must be aligned on their natural boundareesttie alignment boundary of
a primitive datum is equal to the size of the datum in octets). payitive of sizen
octets must start at an octet stream index that is a multiplelofCDR,n is one of 1,
2,4, or8.

CORBAV2.2 CDRansfer Syntax February 1998 13-5

13

Where necessary, an alignment gap precedes the representatipriritise datum.

The value ofoctets in alignment gaps is undefined. A gap must be the minimum size
necessary to align the followingipnitive. Table 13-1 gives alignmebbundaies for
CDR/OMG-IDL primitive types.

Table 13-1Alignment requirements for OMG IDL primitive data types

TYPE OCTET ALIGNMENT

char 1

wchar 1, 2, or 4, depending on code set
octet 1

short 2

unsigned short 2

long 4

unsigned long 4

long long 8

unsigned long long 8

float 4

double 8

long double 8

boolean 1

enum 4

Alignment is defined above as being relative to the beginning of an octet siream.
first octet of the stream is octet indegro (0);any data type may be storsthrting at
this index. Such octedtreams begin at the start of an GIOP message header (see
“GIOP Message Header” on page 13-19) and at the beginning of an encapsulation,
even if the encapsulatiotself is nested in another encapsulation. (See
“Encapsulation” on page 13-12).

13-6 CORBAV2.2 February 1998

13

Integer Data Types

Figure 13-1 on page 13-7 illustrates the representations for OMG IDL integer data
types, including the following data types:

* short
* unsigned short
* long
* unsigned long
* long long
 unsigned long long
The igure illustrates bit ordering and siZéigned typesshort, long, andlong

long) are represented as two’s complement numbers; unsigned versions of these types
are represented as unsigned binary numbers.

Big-Endian Little-Endian
octet octet
short MSB 0 LSB| o
LSB| 1 MSB 1
MSB 0 LSB| o
long 1 1
2 2
LSB| 3 MSB 3
MSB 0 LSB| 0
1 1
2 2
long long 3 3
4 4
5 5
6 6
LSB| 7 MSB 7

Figure 13-1 Sizes and bit ordering in big-endian and little-endian encodings of OMG IDL
integer data types, both signed and unsigned.

CORBAV2.2 CDRansfer Syntax February 1998 13-7

13

Floating Point Data Types

Figure 13-2 on page 13-9 illustrates the representatidioating point numbers.

These eactly follow the IEEE standard formats ffipating point numbers selected

parts of which are abstracted here for explanatory purposes. The dstgyas three
different components for floating points numbers, the sign bit (s), the exponent (e) and
the fractional part (f) of the mantissa. The signhai$ values of O or 1, representing
positive and negative numbers, respectively.

For single-precision float values tlegponent is 8 bits long, comprising el and e2 in

the figure, where the 7 bits in el are most significant. The exponent is represented as
excess 127. The fractional mantissa (f1 - f3) is a 23-bit value f where 1.0 <=f< 2.0, f1
being most significant and f3 being least significant. The value of a normalized number
is described by:

_1signx 2(exponent— 127) % (1 + fraction)

For double-precision values the exponent is 11 bits long, comprising el and e2 in the
figure, where the 7 bits in el are most significant. €kgonent is represented as

excess 1023. The fractional mantissa (f1 - f7) is a 52-bit value m vitEre= m <

2.0, f1 beingmost significant and f7 beingast significant. The value of a normalized
number is described by:

_1sign % 2(exponent—1023) % (1 + fraction)

For double-exteded floating-point values the exponent istits long, comprising el
and e2 in the figure, where thebits in el are the most significafthe fractonal
mantissa (f1 throgh f14) is 112 bits long, with f1 being theost significant.The
value of along double is determined by:

sign % 2(exponent— 16383

-1 x (1 +fraction)

1. “IEEE Standard for Binary Floating-Point Arithmetic,” ANSI/IEEE Standard 754-1985,
Institute of Electrical and Electronics Engineers, August 1985.

13-8 CORBAV2.2 February 1998

13

Big-En dian Little-Endian
float s el 0 i3 0
e2 fl 1 f2 1
f2 2 e2 fl 2
3 3 S el 3
double s | el 0 f7 0
2 | fn 1 6 1
f2 2 5 2
f3 3 f4 3
f4 4 3 4
5 5 f2 5
f6 6 e2 f1 6
f7 7 s | el 7
long double S el 0 f14 0
e2 1 f13 1
fl 2 f12 5
f2 3 f11 3
f3 4 f10 4
f4 5 f9 5
f5 6 f8 6
f6 7 7 7
f7 8 f6 8
f8 9 f5 9
f9 10 f4 10
f10 11 f3 11
fl11 12 f2 12
f12 13 f1 13
f13 14 e2 14
f14 15 s | el 15

Figure 13-2 Sizes and bit ordering in big-endian and little-endian representations ofIDMG
single, double precien, and doublextended floating point numbers.

CORBAV2.2 CDRansfer Syntax February 1998 13-9

13

13-10

Octet

Octets are uninterpreted 8-bit values whose contents are guaranteed not to undergo an
conversion during transmission. For the purposes of describing possibtevalues in
this specification, octets may be considered as unsigned 8-bit integer values.

Boolean

Boolean values are encoded as single octets, where TRUE is the value 1, and FALSE
as 0.

Character Types

An IDL character is represented as a single octet; the code set usethémission of
character data (g., TCS-C) between particular client and server ORBsdstermined
via the process described ie@ion 11.7, “@de Set Conversion,” on page 11-22. Note
that multi-byte characters will require the use of an array of dB&r variables.

The transfer syntafor an IDL wide character depends on whethertthasmission
code set (TCS-W, which is determined via the process described in “Code Set
Conversion” on page 11-22) is byte-oriented or non-byte-oriented:

® Byte-oriented (e.g., SJIS). Each wide character is represented as one or more octets
as defined by the selected TCS-W.

* Non-byte-oriented (e.g., Unicode UTF-16). Each wide character is represented as
one or more codepoints. A codepoint is the sameCasldd-Character data
element,” or “CC data element” in ISO terminology. Each codepoint is encoded
using a fixed number of bits as determined by the selected TCS-W. The OSF
Characteand Code Set &jistry may be examined using the interfaces ppéhdix
10B on page 10-37 to determine the maximum length (max_bytes) of any character
codepoint. For example, if the TCS-W is ISO 10646 UCS-2 (Universatacker
Set containing 2 bytes), then wide characters are representedigised shorts .
For ISO 10646 UCS-4, they are representedrasggned longs .

13.3.2 OMG IDL Constructed Types

Constructed types are built from OMG IDL's data types usindifiesi defned by the
OMG IDL language.

Alignment

Constructed type have no alignmeastrictions begnd those ofheir primitive
components; the alignment of thoséngitive types is not intended to support use of
marshaling buffers as equivalent to the implementation of constructed data types within
any particular language environment. GIOP assumes that agiéinisually construct
structured data types by copyipgimitive databetween the marshaled buffer and the
appropriate in-memory data structure layout for the language mapping implementation
involved.

CORBAV2.2 February 1998

13

Struct

The components of structure are encoded their order of their declaration in the
structure. Each component is encoded as defined for its data type.

Union

Unions are encoded as tHiscriminant tag of the type specified in theion
declaration, followed by the representation of any selected member, encoded as its type
indicates.

Array

Arrays are encoded as the array elements in sequence. As the array length is fixed, no
length values are encoded. Eadbment isencoded as defined for the type of the

array. In multidnensional arrays, the elements are ordered so the index dfsthe f
dimension varies most slowly, and the index of ldet dimension varies most quickly.

Sequence

Sequences are encoded as an unsigned long value, followed ddgritents of the
sequence. Thmitial unsigned long contains the number of elements in the sequence.
The elements of theequence are encodedsaecified for their type.

Enum

Enum values are encoded as unsigned longs. The numeric values associated with enun
identifiers are determined by the order in which the identifiers appear in the enum
declaration. Theirfst enum identifier has theumeric value zero (0). Successive enum
identifiers are take ascending numeric values, in order of declaration from left to right.

Strings and Wide Strings

A string is encoded as amsigned long indicating the length of the string in octets,
followed by the string value in single- or multi-byte fornpmesented as a sequence of
octets. Both the string length and contents include a terminating null.

A wide string is encoded as amsigned long indicating the length of the string in
octets or unsignethtegers (determined by the transfer syntaxwohar) followed by
the individual vide characters. Both the string length and contents include a
terminating null. The terminating null character fowstring is also a wide clracter.

Fixed-Point Decimal Type

The IDL fixed type has no alignmemeéstrictions,and is represented akown in
Figure 13-3 on page 13-12. Each octet contains (up topaeonal digits. If thdixed
type has an odd number of decimal digits, then the representation begins witktthe f

CORBAV2.2 CDRansfer Syntax February 1998 13-11

13

13-12

(most significant) digit — dO in the figure. Otherwise, thist half-octet is allzero,

and the ifst digit is in thesecond half-octet — d1 in the figure. The sign configuration,
in the last half-octet of the representation, is OxD for negative numbers and 0xC for
positive and zero values.

Big and Little-Endian octet

fixed
MSD do di 0
d2 d3 1
d4 ds5 2
LSD dm S n

Figure 13-3 IDL Fixed Type Representation

13.3.3 Encapsulation

As described above, OMG IDL data types may be independently marshaled into
encapsulation octet streams. The octet stream is represented as the OMG IDL type
sequence<o ctet>, which may be subsequtly included in a GIOP message or
nested in another encapsulation.

The GIOP and IIORexplicitly use encapsulations in three placBgpeCodegsee
“TypeCode” on page 13-13), the lIQitotocol profile inside an IOR (see “Object
References” on page 13-18), and in service-specific context (see “Object Service
Context” on page 11-20). In addition, some ORBs may choose to use an encapsulation
to holdPrincipal identification information (see “Principal” on page 13-18), the
object_key (see “llIOP IOR Pralfes” on page 13-34), or in other places that a
sequence<o ctet> data type is in use.

When encapsulating OMG IDL data types, thstfoctet in the stream (index 0)

contains a boolean value indicating the byte ordering of the encapsulated data. If the
value is FALSE (0), the encapsulated data is encoded in big-endian order; if TRUE (1),
the data is encoded irttle-endian order, exactly like the byte order flag ilO®

message headers (see “GIOP Message Header” on page 13-19). This value is not part
of the data being encapsulated, but is part of the octet stream holding the
encapsulation. Following the byte order flag, the data to be encapsulated is marshaled
into the buffer as defined by CDR encoding rules. Marshaled data are algjatne

to the beginning of the octet stream (the first octet of which is occupied by the byte
order flag).

CORBAV2.2 February 1998

13

When the encapsulation is encoded as sgmuence<octet> for subsequent

marshaling, an unsigned long value containing the sequence length is prefixed to the
octet stream, as prescribed for sequences (see “Sequence” on page 13-11). The lengtl
value is not part of the encapsulation’s octet stream, and does not affect alignment of
data within the encapsulation.

Note that this guarantees a four octet alignment of the start of all encapsulated data
within GIOP messages and nested encapsulations.

13.3.4 Pseudo-Object Types

CORBA defines some kinds of entities that are neigirénitive types(integral or
floating point) nor constructed ones.

TypeCode

In general, TypeCodes are encoded ag@kKind enum value, potentially followed by
values that represent the B@odeparameters. UnfortunatelyypeCodes camot be
expressed simply in OMG IDL, since their ohitions are recursive. The basic
TypeCoderepresentations are given in Table 13FRe enum value column this table
gives theTCKind enum value corresponding to the giveypdCode, antists the
parameters associated with such @é@ode. Theest of this section presents the
details of theencoding.

Basic TypeCodé&ncoding Framework

The encoding of a TypeCodettse TCKind enum value (encoded, likal enum
values, using four octets), followed by zero or more parameter vdlbhesencodings
of the parametelists fall into three general categorieand differ in order to conserve
space and to supporffiefent traversal of the binary representation:

* Typecodes with aemptyparameterlist are encoded simply as the corresponding
TCKind enum value.

* Typecodes wittsimple parametelists are encoded as tHeCKind enum value
followed by the parameter value(s),ceded as indicated in Table 13-2. A “simple”
parameter list has a fixed number of fixed length entries, or a single parameter
which is hasts lengthencodedifst. Currently, only thef CKind valuetk string
has such agrameter list.

® All other typecodes haveomplex parameteiidts which are encoded as the
TCKind enum value followed by a CDBncapsulation octet sequence (see
“Encapsulation” on page 13-12) containing the encapsulated, marshaled parameters.
The order of these parametersi®wn inthe fourth column of Table 13-2.

2. Accordingly, in cases where encapsulated data holds data with natural alignment of greater
than four octets, some processors may need to copy the octet data before removing it from
the encapsulation. The GIOP protocol itself does not require encapsulation of such data.

CORBAV2.2 CDRansfer Syntax February 1998 13-13

13

Thethird column of Table 13-8hows whether eagtarameter list iempty simple or
complex Also, note that an internal indirection fityi is needed to represent some
kinds of typecodes; this is explained in “Indirection: Resiveand Repeated
TypeCodes” on page 13-17. This indirection does not need to be expaggalitation
programmers.

TypeCode ParamterNotation

TypeCode pameters are specified in the fourth column of Tal3e2. Theordering

and meaning of parameters is a superset of those given inténfeaceRepostory
specification (Chapter 8); more information is needed by CDR’s representation in order
to provide the full semantics of pgCodes as shown by the API.

® Each parameter is written in the fotgpe (name)wheretypedescribes the
parameter’s tge, andhamedescribes the parameter's meaning.

* The encoding of some paramelists (specificallytk_struct, t k_union,
tk_enum, tk_except) contain a counted sequence of tuples.

Such counted tuple sequences are written irfdira count {paraneters}, where
countis the number of tuples in the encoded form, andplrametersenclosed in
braces are available in each tuple instanaest Ehecount which is anunsigned

long , and then eacparameterin each tuple (using the noted type), is encoded in
the CDR representation of the typecode. Each tuple is encodgdyarameter
followed by second etc., before the next tuple is encddiest, then second, etc.).

Note that the tuples identifying struct, exception, and enum memhesbe in the
order defined in the OMG IDL digfition text. Also, thathe types of discriminant
values in encodetk_union TypeCodesre established by the second encoded
parameterdiscriminant typg and cannot be specified except with reference to a
specific OMG IDL definition®

Table 13-2 TypeCode enum values, parameter lgtes, andarameters

TCKind Integer Value Type Paranees
tk_null 0 empty —none —
tk_void 1 empty —none —
tk_short 2 empty —none —
tk_long 3 empty —none —
tk_longlong 23 empty -none-
tk_ushort 4 empty —none —

3. This means that, for example, two OMG IDL unions thatexteally equivalent, except
that one uses a “char” discriminaahd the other uses a “long” one, would have different
size encoded TypeCodes.

13-14 CORBAV2.2 February 1998

13

Table 13-2 TypeCode enum values, parameter ligies, ancdharameters

TCKind Integer Value Type Paranees

tk_ulong 5 empty —none —

tk_ulonglong 24 empty -none-

tk_fixed 28 simple ushort(digitsghort(scale)

tk_float 6 empty —none —

tk_double 7 empty —none —

tk_longdouble 25 empty -none-

tk_boolean 8 empty —none —

tk_char 9 empty —none —

tk_wchar 26 empty -none-

tk_octet 10 empty —hnone —

tk_any 11 empty —none —

tk_TypeCode 12 empty —hone —

tk_Principal 13 empty —hnone —

tk_objref 14 complex | string (repository 1D),
string(name)

tk_struct 15 complex | string (repository ID), string
(name), ulong (count) {string
(member name), TypeCode
(member type)}

tk_union 16 complex | string (repository 1D),
string(hame), ¥peCodedis-
criminant type), long (default
used), ulong (count)iscrimi-
nant typé (label value), string
(member name), TypeCode
(member type)}

tk_enum 17 complex | string (repository ID), string
(name), ulong (count) {string
(member name)}

tk_Stl’ing 18 Simp|e u|ong (max |engﬁ

tk_wstring 27 simple ubng(max length or zero if
unbounded)

CORBAV2.2 CDRansfer Syntax February 1998 13-15

13

13-16

Table 13-2 TypeCode enum values, parameter ligies, ancdharameters

TCKind Integer Value Type Paranees
tk_sequence 19 complex| TypeCode @hnent type)ulong
(max lengtR)
tk_array 20 complex| TypeCode @hnent type)ulong
(Ilength)
tk_alias 21 complex | string (repository ID), string

(name), TpeCode

tk_except 22 complex | string (repository ID), string
(name), ulong (count) {string
(member name), TypeCode
(member type)}

- none — Ox(fffffff simple | |ong (indirectiof)

1. The type of union label values is determined by the second parameter, discriminant type.
2. Forunbounded strings, this value is zero.
3. Forunbounded sequences, this value is zero.

4. See “Indirection: Recursive and Repeated TypeCodes” on page 13-17

Encoded Identifiers and Names

The Repogory ID parameters itk_obj ref, tk_struct, tk_union, tk_enum,

tk_alias , andtk_except TypeCodesre Interface Repositofigepositoryld

values, whose format is described in the specification of the Interface Repository.
Repositoryld values are required flair objref andtk_except TypeCodes; for other
TypeCodeghey are optional and are encoded as empty stringsiifemin

The name parameters itk_objref, tk_struct, tk_union, tk_enum, tk_alias, and
tk_except TypeCodes anthe member name parameters irk_struct, tk_union,

tk_enum andtk _except TypeCodesare not specified by (or significant in) GIOP.
Agents should not make assumptions about type equivalence based on these name
values; only the structural information (includiRgpositoryld values, if provided) is
significant. If provided, the strings should be the simple, unscoped names supplied in
the OMG IDL definition text. Ifomitted,they are encoded as empstyings.

Encoding thetk_union DefaultCase

In tk_union TypeCodesthe longdefault used value is used to indicate which tuple

in the sequence describes the unialgfault case. If this value is less than zero,

then the union contains no default case. Otherwise, the value contains the zero based
index of the default case in the sequence of tuples describing union members.

CORBAV2.2 February 1998

13

TypeCodes for Multi-Dimenginal Arrays

Thetk_array TypeCode only d&cribes a single dimension afiy array. TpeCodes

for multi-dimensionalarrays are constructed by nestikgarray TypeCodes whin
othertk_array TypeCodes, one parray dimensionThe outermost (or top-level)
tk_array TypeCodedescribes the leftmost array index of the array as defined in IDL;
the innermost nestad_array TypeCodedescribes the rightmost index.

Indirection: Recursive and Repeated TypeCodes

The typecodaepresentation of OMG IDL data types that can indirectly contain
instances of themselves (e.gtruct foo {sequence <foo> bar;}) must also contain
an indirection. Such aimdirection is also useful to reduce the sizeentodings; for
example, unions with many cases sharing the same value.

CDR provides a constrained indirection to resolve piniblem:

®* The indirection applies only toypeCodes nested thin some “top level”
TypeCodelndirected f/peCodesare not “freestanding,” but only exist inside some
other encoded PeCode.

® Only the second (and subsequent) references teea ypeCode ithat scope may
use the indirection falify. The firstreference to that T\gCodemust be enoded
using the normal rules. In the case of a recursiyeTyde, this means that thiest
instance will not have been fully encoded before a secondnasebe completely
encoded.

The indrection is a numeric octet offset within the scope of the “top leveleTyple
and points to the TCKind value for the typecode. (Note that the byte order of the
TCKind value can beletermined by itencoded value.) Thisdirection may well
cross encapsulatiodmourdaries, but this is not problematic because of ittss f
constraint identified above. Because of #sond constraint, the value of the offset
will always be negative.

The encoding of such andirection is as a TyeCode with a “TChknd value” that has
the special value®21 (Oxffffffff, all ones). Such typecodes have a singlen(de)
parameter, which is theng offset (in units of octets) from the simple parameter.
(This means that an offset of negative four (-4jjlégal because it will beself-
indirecting.)

Any

Any values are encoded as gp€Code(encoded as described above) followed by the
encoded value.

CORBAV2.2 CDRansfer Syntax February 1998 13-17

13

13-18

Principal

Principal pseudo objects are encodedsaqu ence<octet> . In the absence of a
Security service specificatioRrincipal values have no standafarmat or
interpretation, beyond (as described in the CORBA CORE) serving to idealiéys
(and potenal callers). This specificationags not define any inter-ORB security
mechanisms, or prescribe any usag®whcipal values.

By representing Principal values ssquen ce<octet>, GIOP guarantees that ORBs
may use dmain-specific principal identification schemeasich values undergo no
translation or interpretation during transmission. This allows bridges to translate or
interpret these identifiers as el when forwarding requests between different
security domains.

Context

Context pseudo objects are encodedexpience< string> . The strings occur in pairs.
The frst string in each pair is the context property naamg the second string in each
pair is the associated value.

Exception

Exceptions are encoded as a stifiofpwed by exception members, if any. The string
contains the Repositoryld for the exception, as defined in the Interface Repository
chapter. Exception membe(i§ any) are encoded in the same manner as a struct.

If an ORB receives a non-standard system exception that it does not support, the
exception shall be mapped tiINKNOWN.

13.3.5 Object References

Object references are encoded in OMG IDL (as described in “Object Addressing” on
page 11-11). IOR profiles contain transport-specific addressing information, so there is
no general-purpose IOR pilef format defined for GIOP. Instead, this sifieaition
describes the general information model for GIOP profiles and provides a specific
format for thellOP (see “lIOP IOR Pralies” on page 13-34).

In general, GIOP profiles shall include at least these thie®ments:

®* The version number of the transport-specific protocol specification that the server
supports

®* The address of an endpoint for the transport protocol being used

®* An opague datum (aobject_key , in the form of an octet sequence) used
exclusively by the agent at the specified endpoint address to identify the object.

CORBAV2.2 February 1998

13

13.4 GIOP Message Formats

In describing GIOP messages, itis necessary to define client and server roles. For the
purpose of this discussion, a client is the agentdpahs a connection (see more

details in “Connection Management” on page 13-8@J originates requests. A server

is an agent that accepts connections and receives requests.

GIOP message types are summarized in Table 13-3, wikishthe message type
names, whether the message is originated by client, server, or both, and the value usec
to identify the message type in GIOP message headers.

Table 13-3 GIOP Message Types and originators

Message Type @ginator Value GIOP Versions

Request Client 0 1.0,1.1

Reply Server 1 1.0, 1.1
CancelRequest Client 2 1.0,1.1
LocateRequest Client 3 1.0,1.1
LocateReply Server 4 1.0,1.1
CloseConnec- Server 5 10,11

tion

MessageError Both 6 1.0,1.1
Fragment Both 7 1.1

13.4.1 GIOP Message Header

All GIOP messages begin with the following header, defined in OMG IDL:

module GIOP {// IDL extended for version 1.1

struct Version {

octet major;
octet minor;
|3
#ifndef GIOP_1 1
/I GIOP 1.0

enum MsgType_1 0 {// Renamed from MsgType
Request, Reply, C ancelReq uest,

LocateRequest, LocateReply,

CloseC onnection, MessageError

h

CORBA V2.2 GIOMessage Formats

February 1998 13-19

13

13-20

k

#else

/I GIOP 1.1

enum MsgType_1 1{
Request, Reply, C ancelReq uest,
LocateRequest, LocateReply,
CloseC onnection, MessagekError,

Fragment /I GIOP 1.1 addition
|3
#endif
/I GIOP 1.0
struct MessageH eader_1_0 {// Renamed from MessageHeader
char magic [4];
Version GIOP_version;
boolean byte order;
octet message_type;
unsigned long message_size;
|3
/I GIOP 1.1
struct MessageHeader_1 1 {
char magic [4];
Version GIOP_version;
octet flags; /I GIOP 1.1 change
octet message_type;
unsigned long message_size;
|3

The nessage headetearly identifies GIOP messageasd their byte-ordering. The
header is independent of byte ordering except for the field encoding message size.

magic identifies GIOP messages. The value of this membaiwmiays the four
(upper case) characters “GIOP,” encoded in ISO Latin-1 (8859.1).

GIOP_version contains the version number of the GIOP protocol being used in the
message. The version number agpko the transport-ilpendent elements tiis
specification (i.e., the CDR and message formats) which constitute the GIOP. This
is not equivalent to the IIOP version number (as described in “Object References”
on page 13-18) though it has the same strucilite. major GIOP versionumber

of this specification ione(1); the minor versions are zero @d one (1).

byte_order (in GIOP 1.0 only) indicates the byte ordering used in subsequent
elements of the message (includingssage_size). A value of FALSE (0)
indicates big-endian byte ordering, and TRUE (1) indicates little-endian byte
ordering.

CORBAV2.2 February 1998

13

* flags (in GIOP 1.1) is an 8 bit octet. The least significant ibt indicates the byte
ordering used in subsequent elements of the message (inclndBgnge_size).
A value of FALSE (0) indicates big-endian byte ordering, aRWE (1) indicates
little-endian byte ordering.

The secondeast significant bit indicates whether or not more framents follow. A
value of FALSE (0) indicates this message isl#st fragmentand TRUE (1)
indicates more fragment follows this message.

The most significant 6 bits are reserved. All these 6 bits st value 0 for
GIOP versionl.1.

® message_type indicates the type of the message, according to Table 13-3; these
correspond to enum values of tyjgsgType .

® message_size contains the number of octets in the message following the
message header, encoded using the byte spdmified in the byte order bit (the
least significant bit) in thélags field (or using théute_order field in GIOP 1.0). It
refers to the size of the message body, not including the 12 byte message header.
This count includes any alignment gap$ie use of anessage size of 0 with a
Request, LocateRequest, Reply, or LocateReply message is reserved for future use

Request Message

Request messages encode CORBA object invocations, inclattiibyite accessor
operations, an€CORBA::Object operationgyet interface and
get_implementation . Requests flow from client to server.

Request messages have three elementfided inthis order:
®* A GIOP message header

®* A Request Header

®* The Request Body

CORBA V2.2 GIOMessage Formats February 1998 13-21

13

13-22

Request Header

The request header is specified falows:

module GIOP { /I IDL extended for version 1.1

/I GIOP 1.0

struct RequestHeader_1_0 { // Renamed from RequestHeader
IOP::ServiceContextList service_context;
unsigned long request_id;
boolean response_expected;
seque nce <octet> object_key;
string operation;
Principal requesting_principal,

|3

/I GIOP 1.1

struct RequestHeader_1_1 {
IOP::ServiceContextList service_context;
unsigned long request_id;
boolean response_expected;
octet reserved[3]; // Added in GIOP 1.1
seque nce <octet> object_key;
string operation;
Principal requesting_principal,

|3

|3

The members have the follawg definitions:

service_context contains ORB service data being passed from the client to the
server, encoded as described in “Object Service Context” on page 11-20.

request_id is used to associate reply messagéh vequest messages (including
LocateRequeshessages). The client (requester) is responsible for generating values
so that ambiguity is eliminated; specifically, a client must not re-use request_id
values during a connection (&) the previous request containing that ID i st
pending, or(b) if the previous request containing that ID was canceled and no reply
wasreceived. (See the semantics of the ri€@Request Message” on page 13-26).

response_expected is set to TRUE if a reply message is expected for this
request. If the operation is not definedoagway, and the request is not invoked via
the DIl with the INV_NO_RESPONSHIlag set, thaesponse_expected flag

must be set tdRUE.

If the operation is defined as oneway, or the request is invoked via theitDlthe
INV_NO_RESPONSE flag set, tlhesponse_expected flag may be setto TRUE
or FALSE. Asking for a reply gives the client ORB an opportunity to receive
LOCATION_FORWARD responses and replies thaght indicate system
exceptions. When this flag is set to TRUE farrewayoperation, receipt of a reply
does noimply thatthe operatiorhas necessarily completed.

CORBAV2.2 February 1998

13

® reserved is always setto 0 in GIOP 1.1. These three octetseagerved for future
use.

® object_key identifies the object which is the target of thedoation. It is the
object_key field from the transport-specific GIOP profile (e.g., from the
encapsulated 1IOP piité of the IOR for the target object). This value is only
meaningful to the server and is not interpretednodified by the client.

® operation is the IDL identifier naming, within the context of the intexd (not a
fully qualified scoped name), the egationbeing invoked. In the case ofratute
accessors, the names amget <attribute> and_set_<attribute> . The
case of the operation or attribute name must match the case of the operation name
specified in the OMG IDL source for the interfaoeing used.

In the case o€CORBA::Object operations that are defined in the CORBA Core
(“Object Reference Operations” on page 4-4) and that correspond to GIOP request
messages, the operation names_ameerface , _implementation 4, is_a
and_not_existent

® requesting_principal contains a value identifying the requesting principal. It is
provided to support thBOA::get_principal operation.

Request Body

The request body includes tHellowing itemsencoded irthis order:

® All in andinout parameters, in the order in which they are specified in the
operation’s OMG IDL definition, from left to right.

®* An optionalContext pseudo object, encoded as described in “Context” on
page 13-18. Thigem isonly included if the opration’s OMG IDL definition
includes a context expression, and only includes context members as defined in that
expression.

For example, the request body for the following OMG IDleigtion

double example (in short m, out string str, inout Principal p);

would be equivalent to this structure:

struct example_body {
short m; /I leftmost in or inout parameter
Principal p; /I ... to the rightmost

I

4. Since CORBA::Object::get_implementation is a null interface, clients must nzweow
object reference they get to some ORB-specific kind of ImplementationDef.

CORBA V2.2 GIOMessage Formats February 1998 13-23

13

13.4.2 Reply Message

Reply messages are sent in response to Request messages if and only if the response
expected flag in the request is set to TRUE. Replies include amslibutparameters,
operation results, and may include exception values. In addition, Reply messages may
provide object location information. Replies flow from server to client.

Replymessages have three elements, encoded in this order:
®* A GIOP message header
®* A ReplyHeader structure

® The reply body

Reply Header

Thereply header is defined é&sllows:

module GIOP { /I 1DL
enum ReplyStatusType {
NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION,
LOCATION_FORWARD

|3

struct ReplyHeader {

IOP::ServiceContextList service_context;
unsigned long request_id;
ReplyStatusType reply_status;

|3

%
The nembers have the follawg definitions:

® service_context contains ORB service data being passed from the server to the
client, encoded as described in “GIOP Message Transfer” on page 13-4.

® request_id is used to associate replies with requests. It contains the same
request_id value as the corresponding request.

®* reply_status indicates the completion status of the associated recqarasialso
determines part of the repbody contents. If no exception occurred and the
operation completed successfully, the valuBl@®@ EXCEPTION and the body
contains return values. Otherwise the bodgtams an exception, or else directs the
client to reissue the request to an object at some other location.

13-24 CORBAV2.2 February 1998

13

Reply Body

Thereply body format is controlled the value of reply_status. There are three types
of reply body:

1 Ifthereply_status value iSNO_EXCEPTION, the body is encoded as if it were a
structure holdingifst any operation return value, then angut andout
parameters in the order in which they appear in the operation’s OMG IDL
definition, from left to right. (That structure could be empty.)

2 |If thereply_status value iSUSER_EXCEPTION or SYSTEM_EXCEPTION,
then the body contains the exception thas raised byhe operationencoded as
described in “Exception” on page 13-18. (Only the user defined excepititetsin
the operation’s OMG IDL definition may be raised.)

When a GIOP Reply message ains a ‘reply_status' value of
SYSTEM_EXCEPTIONthe body of the Reply message conforms tofthlewing
structure;

module GIOP { /I 1DL
struct SystemExceptionReplyBody {
string exception_id;
unsigned long minor_code_value;
unsigned long completion_status;
|3
|3

The high order 20 bits ahinor_code_value contain a 20-bit “vendor minor
codeset ID"YMCID); the low order 12 bits contain a minoode. A vendor (or
group of vendors) wishing to define a sffiecset of system exception minor codes
should obtain a uniquéMCID from the MG, andthen define up t@096 minor
codes for each system eation. Anyvendor may use the specdMCID of zero

(0) without previous reservation, but minor caalsignments in thisodeset may
conflict with other vendor's assignments, and use of the \Z®IGID is officially
deprecated.

3 If thereply_status value iSLOCATION_FORWARD , then the body contains an
object reference (IOR) encoded as described in “Object References” on page 13-18.
The client ORB is responsible for re-sending the original request tddiffatent)
object. This resending is transparent to the client program making the request.

CORBA V2.2 GIOMessage Formats February 1998 13-25

13

For example, the reply bodgr a successful response (the valueeply status is
NO_EXCEPTION) to the Request exampéown on page 13-23 would be egulént
to the following structure:

struct example_reply {

double return_value; /I return value
string str; /I leftmost inout or out param eter
Principal p; Il ... to the rightmost

h

Note that theobject_key field in any spedic GIOP profile is server-relate, not
absolute. Specifically, hen a new object referencereceved in a
LOCATION_FORWARD Reply or in a LocateReply message, dhect_key field
embedded in the new object reference’s GIOP profile mayane the same value as
the object_key in the GIOP profile of the original object reface. Fordetails on
location forwarding, see “Object Location” gage 13-32.

13.4.3 CancelRequest Message

CancelRequest messages may be sent from clients to ser@ancelRequest
messages notify a server that the client is no longer expecting a reply for a specified
pendingRequest or LocateRequest message.

CancelRequest messages have tvadements, encoded this order:
®* A GIOP message header

® A CancelRequestHeader

Cancel Request Header

The cancel request header is defined as follows:

module GIOP { /I 1DL
struct CancelRequestHeader {
unsigned long request_id;
|3

%

Therequest_id member identifies th®equest or LocateRequest message to
which the cancel applies. This value is the same agetheest id value specified in
the original Request or LocateRequest message.

When a client issues a cancel request message, it serves in an advisory capacity only.
The server is not required to acknowledge the céato®, and may subsequtly send

the corresponding reply. The client should have mmeetationabout whether a reply
(including an exceptional one) arrives.

13-26 CORBAV2.2 February 1998

13

13.4.4 LocateRequest Message

LocateRequest messages may be sent from a client to a server to determine the
following regarding a specified object referen¢a; whether the object reference is
valid, (b) whether the current server is capable of directly receiving requests for the
object reference, and if ndt;) to what address requests for the object reference should
be sent.

Note that this information is also provided through Remuest message, but that

some clients might prefer not to support retransmission of potentially large messages
that might be implied by BROCATION_FORWARD status in &Reply message. That

is, client use of this represents a potentiatimizaton.

LocateRequest messages have twaelementsencoded irthis order:
®* A GIOP message header

®* A LocateRequestHeader

LocateRequest Header.

The LocateRequest header is defined as follows:

module GIOP { /I 1DL
struct LocateRequestHeader {
unsigned long request_id;
seque nce <octet> object_key;
|3
%

The members are defined as follows:

® request_id is used to associateocateReplymessages withocateRequesines.
The client (requester) is responsible for generating values; see “Request Message”
on page 13-21 for the applicable rules.

® object_key identifies the object being located. In B@P contextthis value is
obtained from thebject key field from the encapsulatdtOP::ProfileBody in
the 1IOP profile of the IOR for the target objeddthen GIOP is mapped to other
transports, their IOR profiles must also contain an appropriate congisyy value.
This value is only meaningful to the server and is not interpreted or modified by the
client.

See “Object Location” on page 13-32 fdetails on the use afocateRequest.

CORBA V2.2 GIOMessage Formats February 1998 13-27

13

13.4.5 LocateReply Message

LocateReply messages are sent from servers to clients in response to
LocateRequest messages.

A LocateReply message has three elements, encoded in this order:
®* A GIOP message header

®* A LocateReplyHeader

®* The locate reply body

Locate Reply Header

The locate reply header defined as follows:

module GIOP { /I 1DL
enum LocateStatusType {
UNKNOWN_OBJECT,
OBJECT_HERE,
OBJECT_FORWARD

|3
struct LocateReplyHeader {
unsigned long request_id;
LocateStatusType locate_status;
|3

%
The members have the follawg definitions:

® request_id - is used to associate replies with requests. This member contains the
same request_id value as the correspondihgcateRequesnessage.

® |ocate status - the value of this member is used to determine whether a
LocateReply body exsts. Values are:
« UNKNOWN_OBJECT - the object specified in the corresponding
LocateRequest message is unknown to the server; odyexists.
 OBJECT_HERE - this server (the originator of tHecateReply message) can
directly receive requests for the specified objectpady exists.
*» OBJECT_FORWARD - alocateReply body exists.

LocateReply Body

The body is empty unlesbe LocateStatus value iSOBJECT_FORWARD, in
which case the body contains an object reference (lB&)may be used as the target
for requests to the object specified in the LocateRequest message.

13-28 CORBAV2.2 February 1998

13

13.4.6 CloseConnection Message

CloseConnection messages are sent only by servers. Tihiyrm clients that the

server intends to close the connection and must not be expected to provide further
responses. Moreover, clients know that any requests for which they are awaiting replies
will never be processed, and may safely be reissued (on another connection).

The CloseConnection message consists only of the GIOP message header,
identifying the message type.

For details on the usage GfoseConnect ion messages, see “Connection
Management” on page 13-30.

13.4.7 MessageError Message

The MessageError message is sent in response to any GIOP message wWirsgm
number or message type is unknown to the recipient, or any messageviededsise
header is not properly formed (e.g., has the wrong magic value). Error handling is
context-specific.

The MessageError message consists only of the GIOP message header, identifying
the message type.

13.4.8 Fragment Message
This message is added in GIOP 1.1.

The Fragment message is sent following a previous request or response message that
has the more fragments bit set to TRUE infthgs field.

All of the GIOP messages begin with a GIOP header. One of the fields of this header
is themessage_size field, a 32-bit unsigned number giving the number of bytes in
the message following the header. Unfortunatetyen actuallyconstructing a GIOP
Request or Reply message, it is sometimes impractical or undesirable to ascertain the
total size of the message at the stage of message construction where the message
header has to be written. GIOP 1.1 provides an alternative indication of the size of the
message, for use in those cases.

A Request or Reply message can be broken imultiple fragments. The first

fragment is a regular message (eRequest or Reply) with the more fragments bit

in theflags field set toTRUE. This initial fragment can béollowed by one or more
messages using the fragment messages. The last fragment shall have the more fragmer
bit in the flag field set to FALSE.

A CancelRequest message may be sent by the client before the final fragment of the
message being sent. In this case, the server should assume no more fragments will
follow.

A primitive data type of 8 bytes @mallershould never be broken across two
fragments.

CORBA V2.2 GIOMessage Formats February 1998 13-29

13

13.5 GIOP Message Transport

13-30

The GIOP is designed to bmplementable on a wide range of transport protoddis.
GIOP definitionmakes the following assumptions regarding transport behavior:

® The transport is connection-oriented. GIOP uses connections to define the scope
and extent of request IDs.

®* The transport is reliable. Specifically, the transport guarantees that bytes are
delivered in the order they are sent, at most once, and that some positive
acknowedgment of delivery is available.

®* The transport can be viewed as a byte stream. No arbitrary messageisetahs,
fragmentation, or alignments are enforced.

® The transport provides some reasonable notification of disorderly connection loss. If
the peer process aborts, the peer host crashes, or network connectivity is lost, a
conrectionowner should receive sonmetification of this condition.

® The transport's model fdnitiating connections can be mapped onto theegal
conrection model of TCP/IP. Specifically, @yent (described herein as a server)
publishes &nown networkaddress in an IOR, which is used by dlient when
initiating a connection.

The server does ndctively initiate cannections, but is prepared to accept requests to
connect (i.e., itistensfor connections in TCP/IP terms). Another agent kmawsthe
address (called a client) can attempt to initiate connectiossnjingconnectrequests

to the address. The listening server naageptthe request, forming a new, unigue
connection with the client, or it magjectthe request (e.g., due to lack of resources).
Once a connection is open, either side rolmgethe connection. (See “Connection
Management” on page 13-30 feemantic issues related to connection closure.) A
candidate transport might not directly support this specific connection model; it is only
necessary that the transport's model can be mapped ontoethis

13.5.1 Connection Management

For the purposes of this discussion, the roles client and server are defioddves

® A client initiates the connection, presumably using addressing information found in
an object refemece (IOR)for an object to which it intends to send requests.

® A server accepts connections, but does noitiei them.

These terms only denote roles with respect to aection. They do not have any
implications for ORB or application architectures.

Connections are not symmetricalnl clients can senRequestLocateRequesand
CancelRequeshessages over a caution. Qnly a server can seri@eply, LocateReply
andCloseConnectiomessages over a caggtion. Either client or seer can send
MessageErromessages.

Only GIOP messages are sent over GIOP connections.

CORBAV2.2 February 1998

13

Request IDsnust unambiguously associate replies with requests within tEesand
lifetime of aconnection.Request IDsnay be re-used if there is no possibility that the
previous request using the ID msiyll have apending reply. Note that cancellation
does not guarantee no repi§ll be sent. It is the responsibility of the client to geate
and assign request IDs. Request st be unigue among borequestand
LocateRequegnessages.

Connection Closure

Connections can be closed in two ways: orderly shutdown, or abortive disconnect.
Orderly shutdown is itiated by servers reliably sendingCdoseConnection

message, or by clients just closing down ar@xtion. Orderly shutdown may be

initiated by the client aany time. If there are pending requests whetiemt shuts

down a connection, the server should consider all such requests canceled. A server may
not initiateshutdown if it has begun pressingany requests for which it has not either
receved aCancelRequedtr sent a corresponding reply.

If a client receives afloseConnection message from the server, it should assume

that any outstanding messages (i.e., without repkesgreceved after the server sent

the CloseConnection message, were not processed, and may be safely resent on a ne
connection.

After reliably issuing &CloseConnection message, the server may close the
connection. Some transport protocols (not including TCP) do not provide an “orderly
disconnect” capability, guaranteeing reliable iy of the last message sewthen

GIOP is used with such protocols, asd@ionalhandshake needs to be provided to
guarantee that both ends of the connection understand tlusiddsp of any

outstanding GIOP requests.

If a client detects connection closure without receivirg@seConnect ion message,
it should assume an abortive disconnect has occurredreatdhe condition as an
error. Specifically, it shald report COMM_FAILURE exceptions for all pending
requests on the comntion, with completion_status values set to
COMPLETED_MAYBE.

Multiplexing Connections

A client, if it chooses, may send requestsnioltiple targetobjects over the same
connection, provided that the connection’s server side is capable of responding to
requests for the objects. It is the responsibility of the client to optirag®irce usage

by re-using connections, if it wishes. If not, the client may open a new connection for
each active object supported by the server, although this behavior should be avoided.

CORBA V2.2 GlOMessage Transport February 1998 13-31

13

13.5.2 Message Ordering

Only the client (connection originator) may seRelquest, LocateRe quest, and
CancelRequest messages. Connections are not fully syetrical.

Clients may havenultiple pending requests. A client need not wait for a reply from a
previous request before sending another request.

Servers may reply to pending requests in any oRlgply messages are not required
to be in the same order as the corresponBieguests .

The orderingestrictions regardingonnection closure mentioned in Connection
Management, above, are also noted here. Servers may onhCies@€onn ection
messages wheReply messages have been sent in response to all redeaaebst
messages that require replies.

13.6 Object Location

13-32

The GIOP is defined to support objecignation and location services without
dictating the existece of specific ORB architectures or features. The protocol features
are based on the following observations:

A given transport address does notessarily correspnd to anyspecific ORB
architectural component (such as an obgatpter, object server process, Inter-ORB
bridge, and so forth). It merely implies the existence of some agent with which a
connection may be opened, and to which requests may be sent.

The “agent” (owner of the server side of a ceation) mayhave one of the following
roles with respect to a particular object reference:

® The agent may be able to accept object requitststly for the objecaind return
replies. The agemhay or may not own the actual object implementation; it may be
an Inter-ORB bridge that transforms the request and passes it on to another process
or ORB. From GIOP’s perspective, it is only important that requests can be sent
directly to the agent.

® The agent may not be able to accept direct requests for any objects, but acts insteac
as a location service. Any Request messages sent to the agent would result in either
exceptions or replies with LOCATION_FORWAR®Ratus, providing new addresses
to which requests may be sent. Such agents would also respbadateRequest
messages with appropriate LocateReply messages.

®* The agent maylirectly respond to some requests (for certain objeats) provide
forwarding locations for other objects.

®* The agent maylirectly respond to requests forparticular object abne point in
time, and provide a forwarding location atader time(perhaps during the same
conrection).

CORBAV2.2 February 1998

13

Agents are not required tmplement locatiorforwarding mechanisms. An agent can

be implemented with the policy that a connection either supports direct access to an
object, or returns exceptionsu& an ORB (ointer-ORB bridge)always return
LocateReply messages wigither OBJECT HEREor UNKNOWN_OBIJECT

status, and nevédBJECT FORWARDstatus.

Clients must, however, be able to accept and prdéegdy messages with
LOCATION_FORWARDstatus, since any ORB may choose tplEement a location
service. Whether a client chooses to send LocationRequest messages is at the
discretion of the client. For example, if the client routinetpected to see
LOCATION_FORWARDreplies when using the address in an object reference, it

might always send LocateRequest messages to objects for which it has no recorded
forwarding address. If a client sends LocateRequest messages, it should (obviously) be
prepared to accept LocateReply messages.

A client shall not make any assumptions about the longevity of object addresses
returned by location forwarding mechanisms. Once a connection basechtinro
forwarding information is closed, a client can attempt to reuse the forwarding
information it has, but, if thdils, it shall restarthe location process using the
original address specified in thetial object reference.

Even afer performing successful invocations using an address, a client should be
prepared to be forwarded. The only object address thégrat should expect to
continue working reliably is the one in thetial object reference. If an invocation
using that address returbkNKNOWN_OBJECT the object should be deemed non-
existent.

In general, the implementation of location forwarding mechanisms is at the discretion
of ORBs, available to be used foptimizaton and to suppofflexible object location
and migration behaviors.

13.7 Internet Inter-ORB Protoc@liOP)

The baseline transport specified fol@P is TCP/IP°. Specific APIs for libraries
supporting TCP/IP may vary, so this discussionnstéid to an abstract view of
TCP/IP and management of its connectidrte mapping of GIOPnessage transfer to
TCP/IP connections is called the Interneetr®RB Protocol (IIOP).

IIOP 1.0 is based on GIOP 1.0.

[IOP 1.1 can be based @ither GIOP1.0 or GIOP 1.1. An IIOP 1.8&lient can either
support both GIP 1.0 and 1.1, or GIOP 1.1 only. An IIOP 1.1 server must support both
GIOP 1.0 and GIOP 1.1. An IIOP 1.1 server must be able to receive both GIOP 1.0 and
GIOP 1.1 requests and reply using the same GEYRion as imoked.

5. Postel, J., “Transmission Control Protocol — DARPA Internet Program Protocol Specifica-
tion,” RFC-793, Information Sciences Institute, September 1981

CORBAV2.2 InternetInter-ORB Protocol (110OP) February 1998 13-33

13

13-34

13.7.1 TCP/IP Connection Usage

Agents that are capable of accepting object requests or providing locations for objects
(i.e., servers) publish TCP/IP addresses in IORs, as described in “llOP IGR<rof

on page 13-34. A TCP/IP address consists of an IP host address, typically represented
by a host name, and a TCP port number. Servers must listen for connection requests.

A client needing an object’s services mirgtiate a connection with the address
specified in the IOR, with a connect request.

The Istening server may accept or reject the connection. In general, servers should
accept connection requests if possible, but ORBs are free to establish any desired
policy for connection acceptance (e.g., to enforce fairnesptonize resource usage).

Once a connection is accepted, the client may Bmuliest, LocateRequest , or
CancelRequest messages by writing to the TCP/IP socket it owns for the connection.
The server may seneply, LocateReply , andCloseConnection messages by
writing to its TCP/IP connection.

After sending (or receiving) @loseCo nnection message, botblient or server must
close the TCP/IP connection.

Given TCP/IP’s flow control mdwanism, it is possible to create deadlock situations
between clients and servers if both sides of a connection send large amounts of data or
a connection (or two different connectiomstween the same processes) and do not

read incoming data. Both processes may block on write operations, and never resume.
It is the responsibility of both clients and servers to avoid creating deadlock by reading
incoming messages and avoiding blockinlgew writing messages, by providing

separate threads for reading and writing, or any other workable approach. ORBs are
free to adopt any desirethplementation strategy, butahid provide robust behavior.

13.7.2 1IOP IOR Profiles

IIOP profiles, identifying individual objects accessible through the Internet I6RB
Protocol, have théllowing form:

module I11OP { /I IDL extended for version 1.1
struct Version {
octet major;
octet minor;
|3
struct ProfileBody_1 0{ / renamed from Profile = Body
Version iiop_version;
string host;
unsigned short port;
seque nce <octet> object_key;
|3
struct ProfileBody_1_1{

Version iiop_version;

CORBAV2.2 February 1998

13

string host;
unsigned short port;
seque nce <octet> object_key;

/l Added in 1.1
seque nce <IOP::TaggedC omponent> components;

IIOP Profile version number:

Indicates the IIOP protocol version.
Major number can stay the same if thew changesrebackward compdile.

Clients with lower minor version can attempt twoke objects with higheninor
version number by using only the information defined in the lower minor version
protocol (ignore the extra information).

Profiles supporting only 1IOP versichO use thé’rofileBody 1 0 structure, while
those supporting IOP version 1.1 use BrefileBody 1 1 structure. An instance of
one of these structure types is marshaled into an encapsulation octet stream. This
encapsulation (8equence <octet>) becomes therofile_data member of the
IOP::TaggedProfile structure representing the IIg#Pofile in an IOR,and the tag

has the valudAG_INTERNET_IOP (as defined earlier).

If the major revision number is 1, and the minor revision humber is greater than 0, then
the length of the encapsulated profile may exceed the total size of components defined
in this specification for profiles with minor revision number 0. ORBs ski@port only
revision 1.0 IIOP profiles must ignoemy data in the prdé that occurs after the
object_key. If the revision of the profile is 1.0, there shall be no extra data in the
profile, i.e., the length of the encapsulated profile nagsee with the total size of
components defined for version 1.0.

The members oflOP::Profi leBodyl 0 andlOP::Profi leBodyl 1 are defined as
follows:

ilop_version describes the version of IIOP that the agent at the specified address
is prepared to receive. When an agentegates [IOP profiles specifying a particular
version, it must be able to accept messages complying with the specified version or
any previous minor version (i.e., any a@far version number). The major version
number of this specification is 1; the minor version is 1. Compliant ORBs must
generate version 1.1 profiles, and must accept any profile with a major version of 1,
regardless of the minor version number. If the minor version number is 0, the
encapsulation is fully described by tReofileBody 1_0 structure. If the minor
version number is 1, the encapsulatiofiuldy described by thérofileBody 1 1
structure. If the minor version number is greater than 1, then the length of the
encapsulated profile may exceed the total size of components defined in this
specification for profiles with minor version number 1. ORBs thgiport only

version 1.1 [IOPprofiles must ignore, but preserve, any data in the profile that
occurs after theomponents member.

CORBAV2.2 InternetInter-ORB Protocol (110OP) February 1998 13-35

13

13-36

Note —This value is not equivalent to the GIOP version number specified in GIOP
message headers. Transport-specific elements of the IIOP specification may change
indepenantly from the GIOP specification.

® host identifies the Internet host to which GIOP messages for the specified object
may be sent. In order to promote a very large (Internet-wide) scope for the object
reference, this will typically be the fully qualified domain name of the host, rather
than an unqualifiedor partially qualified) name. However, per Internet standards,
the host string may also contain a host address expressed in standard “dotted
decimal” form (e.g.;'192.231.79.52").

® port contains the TCP/IP port number (at the specified host) where the target agent
is listening for conectionrequests. The agent must be ready to process IIOP
messages on connections accepted at this port.

® object_key is an opaque value supplied by the agent producing the IOR. This
value will be used in request messages to identify the object to which the request is

directed. An agent that generates an object key value must be able to map the value

unambiguously onto the corresponding object wiarting requests internally.

® compon ents is a sequence dfaggedComponent , which contains additional
information that may besed in making invocations on the object described by this
profile. TaggedComp onent s that apply to IIOP 1.1 are described below in section
13.7.3. Other components may be included to support enhanced versions of IIOP, to
support ORB services such as secusdtyd to support other GIOPs, ESIOPs, and
proprietary protocols. If an implementation puts a non-standard component in an
IOR, it cannot be assured that any or all non-standard componengmwadin in the
IOR.

The relationshigetween the [IOP protocekrsionand component support

conformance requirements is as follows:

» Each IIOP version specifies a set of standard compomedtthe conformance
rules for that version. These rules specify which components are mandatory
presence, which are optional presence, and which can be dropped. A conformant
implementation has to conform to these rubesd is not required to oform to
more than these rules.

* New components can be added, but they do not become part of the versions
conformance rules.

* When there is a need toespfy conformance rules which include the new
components, there will be a need to createw [IOPversion.

Note that host addresses are restricted in this versid@Bfto be Class A, B, or C
Internet addresses. That is, Class D (rudst) addresses are not alkmv Such
addresses are reserved for use in future versions of IIOP.

Also note that athis time no “wellknown” port numbehas been allocated; therefore,
individual agents will need to assign previousiyused ports as part of their
installation proedures. IIOP supportaultiple suchagents per host.

CORBAV2.2 February 1998

13

13.7.3 lIOP IOR Profile Components

The following components are part of the IIOP 1.hfoomarce. All these compants

are optional presence in the IIOP pleond cannot be dropped from an IIOP 1.1 IOR.

* TAG_ORB_TYPE
* TAG_CODE_SETS

* TAG_SEC_NAME

* TAG_ASSOCIATION_OPTIONS
* TAG_GENERIC_SEC_MECH

13.8 OMG IDL

This section contains the OMG IDL for the GIOP and 1IOP modules.

13.8.1 GIOP Module
module GIOP { /I IDL extended for version 1.1

struct Version {

octet major;
octet minor;
|3
#ifndef GIOP_1_1
/I GIOP 1.0

enum MsgType_1 0O{ // rename from MsgType
Request, Reply, C ancelReq uest,
LocateRequest, LocateReply,
CloseC onnection, MessageError

h

#else

/I GIOP 1.1

enum MsgType_1 1{
Request, Reply, C ancelReq uest,
LocateRequest, LocateReply,
CloseC onnection, MessagekError,

Fragment /I GIOP 1.1 addition

|3

#endif

/I GIOP 1.0

struct MessageH eader_1 0 {// Renamed from MessageHeader
char magic [4];
Version GIOP_version;
boolean byte order;
octet message_type;

CORBAV2.2 OM®BL February 1998 13-37

13

13-38

unsigned long message_size;
|3
/I GIOP 1.1
struct MessageHeader_1 1 {
char magic [4];
Version GIOP_version;
octet flags; /I GIOP 1.1 change
octet message_type;
unsigned long message_size;
|3
}/1 GIOP 1.0
struct RequestHeader _1 0{
IOP::ServiceContextList service_context;
unsigned long request_id;
boolean response_expected;
seque nce <octet> object_key;
string operation;
Principal requesting_principal,
|3
/I GIOP 1.1
struct RequestHeader_1_1 {
IOP::ServiceContextList service_context;
unsigned long request_id;
boolean response_expected;
octet reserved[3]; // Added in GIOP 1.1
seque nce <octet> object_key;
string operation;
Principal requesting_principal,
|3

enum ReplyStatusType {
NO_EXCEPTION,
USER_EXCEPTION,
SYSTEM_EXCEPTION,
LOCATION_FORWARD

|3
struct ReplyHeader {
IOP::ServiceContextList service_context;
unsigned long request_id;
ReplyStatusType reply_status;
|3
struct CancelRequestHeader {
unsigned long request_id;
|3
struct LocateRequestHeader {
unsigned long request_id;
CORBAV2.2 February 1998

13

k

seque nce <octet>

enum LocateStatusType {

k

UNKNOWN_OBJECT,
OBJECT_HERE,
OBJECT_FORWARD

struct LocateReplyHeader {

k

unsigned long
LocateStatusType

13.8.2 1IOP Module

module I11OP {

/I IDL extended for

struct Version {

|

octet
octet

major;
minor;

struct ProfileBody 1 0{ // renamed from Profile

|

Version iiop_version;
string host;
unsigned short port;

seque nce <octet> object_key;

struct ProfileBody 1 1

CORBAV2.2

Version iiop_version;
string host;
unsigned short port;

seque nce <octet> object_key;

object_key;

request_id;
locate_status;

version 1.1

Body

seque nce <IOP::TaggedC omponent> components;

OM®BL February 1998

13-39

13

13-40 CORBAV2.2 February 1998

	General Inter-ORB Protocol
	13.1 Goals of the General Inter-ORB Protocol
	13.2 GIOP Overview
	13.2.1 Common Data Representation (CDR)
	13.2.2 GIOP Message Overview
	13.2.3 GIOP Message Transfer

	13.3 CDR Transfer Syntax
	13.3.1 Primitive Types
	13.3.2 OMG IDL Constructed Types
	13.3.3 Encapsulation
	13.3.4 Pseudo-Object Types
	13.3.5 Object References

	13.4 GIOP Message Formats
	13.4.1 GIOP Message Header
	13.4.2 Reply Message
	13.4.3 CancelRequest Message
	13.4.4 LocateRequest Message
	13.4.5 LocateReply Message
	13.4.6 CloseConnection Message
	13.4.7 MessageError Message
	13.4.8 Fragment Message

	13.5 GIOP Message Transport
	13.5.1 Connection Management
	13.5.2 Message Ordering

	13.6 Object Location
	13.7 Internet Inter-ORB Protocol (IIOP)
	13.7.1 TCP/IP Connection Usage
	13.7.2 IIOP IOR Profiles
	13.7.3 IIOP IOR Profile Components

	13.8 OMG IDL
	13.8.1 GIOP Module
	13.8.2 IIOP Module

