
General Inter-ORB Protocol 13
 a
P

ol
This chapter specifies a General Inter-ORB Protocol (GIOP) for ORB interoperability,
which can be mapped onto any connection-oriented transport protocol that meets
minimal set of assumptions. This chapter also defines a specific mapping of the GIO
which runs directly over TCP/IP connections, called the Internet Inter-ORB Protoc
(IIOP). The IIOP must be supported by conforming networked ORB products
regardless of other aspects of their implementation. Such support does not require
using it internally; conforming ORBs may also provide bridges to this protocol.

Contents

This chapter contains the following sections.

Section Title Page

“Goals of the General Inter-ORB Protocol” 13-2

“GIOP Overview” 13-2

“CDR Transfer Syntax” 13-4

“GIOP Message Formats” 13-19

“GIOP Message Transport” 13-30

“Object Location” 13-32

“Internet Inter-ORB Protocol (IIOP)” 13-33

“OMG IDL” 13-37
 CORBA V2.2 February 1998 13-1

13

d

ld

s

tocol,

ed of

n-

o
13.1 Goals of the General Inter-ORB Protocol

The GIOP and IIOP support protocol-level ORB interoperability in a general, low-cost
manner. The following objectives were pursued vigorously in the GIOP design:

• Widest possible availability - The GIOP and IIOP are based on the most widely-
used and flexible communications transport mechanism available (TCP/IP), an
defines the minimum additional protocol layers necessary to transfer CORBA
requests between ORBs.

• Simplicity - The GIOP is intended to be as simple as possible, while meeting other
design goals. Simplicity is deemed the best approach to ensure a variety of
independent, compatible implementations.

• Scalability - The GIOP/IIOP protocol should support ORBs, and networks of
bridged ORBs, to the size of today’s Internet, and beyond.

• Low cost - Adding support for GIOP/IIOP to an existing or new ORB design shou
require small engineering investment. Moreover, the run-time costs required to
support IIOP in deployed ORBs should be minimal.

• Generality - While the IIOP is initially defined for TCP/IP, GIOP message format
are designed to be used with any transport layer that meets a minimal set of
assumptions; specifically, the GIOP is designed to be implemented on other
connection-oriented transport protocols.

• Architectural neutrality - The GIOP specification makes minimal assumptions
about the architecture of agents that will support it. The GIOP specification treats
ORBs as opaque entities with unknown architectures.

The approach a particular ORB takes to providing support for the GIOP/IIOP is
undefined. For example, an ORB could choose to use the IIOP as its internal pro
it could choose to externalize IIOP as much as possible by implementing it in a half-
bridge, or it could choose a strategy between these two extremes. All that is requir
a conforming ORB is that some entity or entities in, or associated with, the ORB be
able to send and receive IIOP messages.

13.2 GIOP Overview

The GIOP specification consists of the following elements:

• The Common Data Representation (CDR) definition. CDR is a transfer syntax
mapping OMG IDL data types into a bicanonical low-level representation for “o
the-wire” transfer between ORBs and Inter-ORB bridges (agents).

• GIOP Message Formats. GIOP messages are exchanged between agents to facilitate
object requests, locate object implementations, and manage communication
channels.

• GIOP Transport Assumptions. The GIOP specification describes general
assumptions made concerning any network transport layer that may be used t
transfer GIOP messages. The specification also describes how connections may be
managed, and constraints on GIOP message ordering.
13-2 CORBA V2.2 February 1998

13

P
cific
pings

nt
e

e byte

l

 are

tion
ases,
The IIOP specification adds the following element to the GIOP specification:

• Internet IOP Message Transport. The IIOP specification describes how agents open
TCP/IP connections and use them to transfer GIOP messages.

The IIOP is not a separate specification; it is a specialization, or mapping, of the GIO
to a specific transport (TCP/IP). The GIOP specification (without the transport-spe
IIOP element) may be considered as a separate conformance point for future map
to other transport layers.

The complete OMG IDL specifications for the GIOP and IIOP are shown in
Section 13.8, “OMG IDL,” on page 13-37. Fragments of the specification are used
throughout this chapter as necessary.

13.2.1 Common Data Representation (CDR)

CDR is a transfer syntax, mapping from data types defined in OMG IDL to a
bicanonical, low-level representation for transfer between agents. CDR has the
following features:

• Variable byte ordering - Machines with a common byte order may exchange
messages without byte swapping. When communicating machines have differe
byte order, the message originator determines the message byte order, and th
receiver is responsible for swapping bytes to match its native ordering. Each GIOP
message (and CDR encapsulation) contains a flag that indicates the appropriat
order.

• Aligned primitive types - Primitive OMG IDL data types are aligned on their natura
boundaries within GIOP messages, permitting data to be handled efficiently by
architectures that enforce data alignment in memory.

• Complete OMG IDL Mapping - CDR describes representations for all OMG IDL
data types, including transferable pseudo-objects such as TypeCodes. Where
necessary, CDR defines representations for data types whose representations
undefined or implementation-dependent in the CORBA Core specifications.

13.2.2 GIOP Message Overview

The GIOP specifies formats for messages that are exchanged between inter-operating
ORBs. GIOP message formats have the following features:

• Few, simple messages. With only seven message formats, the GIOP supports full
CORBA functionality between ORBs, with extended capabilities supporting object
location services, dynamic migration, and efficient management of communica
resources. GIOP semantics require no format or binding negotiations. In most c
clients can send requests to objects immediately upon opening a connection.

• Dynamic object location. Many ORBs’ architectures allow an object
implementation to be activated at different locations during its lifetime, and may
allow objects to migrate dynamically. GIOP messages provide support for object
location and migration, without requiring ORBs to implement such mechanisms
when unnecessary or inappropriate to an ORB’s architecture.
CORBA V2.2 GIOP Overview February 1998 13-3

13

rs
and

text

ort

t

eives

a

al.

r that
rk

tets

• Full CORBA support - GIOP messages directly support all functions and behavio
required by CORBA, including exception reporting, passing operation context,
remote object reference operations (such as CORBA::Obj ect::get_interface).

GIOP also supports passing service-specific context, such as the transaction con
defined by the Transaction Service (the Transaction Service is described in
CORBAservices: Common Object Service Specifications). This mechanism is designed
to support any service that requires service related context to be implicitly passed with
requests.

13.2.3 GIOP Message Transfer

The GIOP specification is designed to operate over any connection-oriented transp
protocol that meets a minimal set of assumptions (described in “GIOP Message
Transport” on page 13-30). GIOP uses underlying transport connections in the
following ways:

• Asymmetrical connection usage - The GIOP defines two distinct roles with respec
to connections, client and server. The client side of a connection originates the
connection, and sends object requests over the connection. The server side rec
requests and sends replies. The server side of a connection may not send object
requests. This restriction allows the GIOP specification to be much simpler and
avoids certain race conditions.

• Request multiplexing - If desirable, multiple clients within an ORB may share a
connection to send requests to a particular ORB or server. Each request uniquely
identifies its target object. Multiple independent requests for different objects, or
single object, may be sent on the same connection.

• Overlapping requests - In general, GIOP message ordering constraints are minim
GIOP is designed to allow overlapping asynchronous requests; it does not dictate
the relative ordering of requests or replies. Unique request/reply identifiers provide
proper correlation of related messages. Implementations are free to impose any
internal message ordering constraints required by their ORB architectures.

• Connection management - GIOP defines messages for request cancellation and
orderly connection shutdown. These features allow ORBs to reclaim and reuse idle
connection resources.

13.3 CDR Transfer Syntax

The Common Data Representation (CDR) transfer syntax is the format in which the
GIOP represents OMG IDL data types in an octet stream.

An octet stream is an abstract notion that typically corresponds to a memory buffe
is to be sent to another process or machine over some IPC mechanism or netwo
transport. For the purposes of this discussion, an octet stream is an arbitrarily long (but
finite) sequence of eight-bit values (octets) with a well-defined beginning. The oc
in the stream are numbered from 0 to n-1, where n is the size of the stream. The
numeric position of an octet in the stream is called its index. Octet indices are used to
calculate alignment boundaries, as described in “Alignment” on page 13-5.
13-4 CORBA V2.2 February 1998

13

il in

G IDL

o be

include
in

ctets,

 as

GIOP defines two distinct kinds of octet streams, messages and encapsulations.
Messages are the basic units of information exchange in GIOP, described in deta
“GIOP Message Formats” on page 13-19.

Encapsulations are octet streams into which OMG IDL data structures may be
marshaled independently, apart from any particular message context. Once a data
structure has been encapsulated, the octet stream can be represented as the OM
opaque data type sequen ce<octet> , which can be marshaled subsequently into a
message or another encapsulation. Encapsulations allow complex constants (such as
TypeCodes) to be pre-marshaled; they also allow certain message components t
handled without requiring full unmarshaling. Whenever encapsulations are used in
CDR or the GIOP, they are clearly noted.

13.3.1 Primitive Types

Primitive data types are specified for both big-endian and little-endian orderings. The
message formats (see “GIOP Message Formats” on page 13-19) include tags in
message headers that indicate the byte ordering in the message. Encapsulations
an initial flag that indicates the byte ordering within the encapsulation, described
“Encapsulation” on page 13-12. The byte ordering of any encapsulation may be
different from the message or encapsulation within which it is nested. It is the
responsibility of the message recipient to translate byte ordering if necessary.

Primitive data types are encoded in multiples of octets. An octet is an 8-bit value.

The transfer syntax for an IDL wide character depends on whether the transmission
code set (TCS-W, which is determined via the process described in “Code Set
Conversion” on page 11-22) is byte-oriented or non-byte-oriented:

• Byte-oriented (e.g., SJIS). Each wide character is represented as one or more o
as defined by the selected TCS-W.

• Non-byte-oriented (e.g., Unicode UTF-16). Each wide character is represented
one or more codepoints. A codepoint is the same as “Coded-Character data
element,” or “CC data element” in ISO terminology. Each codepoint is encoded
using a fixed number of bits as determined by the selected TCS-W.

Alignment

In order to allow primitive data to be moved into and out of octet streams with
instructions specifically designed for those primitive data types, in CDR all primitive
data types must be aligned on their natural boundaries (i.e., the alignment boundary of
a primitive datum is equal to the size of the datum in octets). Any primitive of size n
octets must start at an octet stream index that is a multiple of n. In CDR, n is one of 1,
2, 4, or 8.
CORBA V2.2 CDR Transfer Syntax February 1998 13-5

13

ize

n,
Where necessary, an alignment gap precedes the representation of a primitive datum.
The value of octets in alignment gaps is undefined. A gap must be the minimum s
necessary to align the following primitive. Table 13-1 gives alignment boundaries for
CDR/OMG-IDL primitive types.

Alignment is defined above as being relative to the beginning of an octet stream. The
first octet of the stream is octet index zero (0); any data type may be stored starting at
this index. Such octet streams begin at the start of an GIOP message header (see
“GIOP Message Header” on page 13-19) and at the beginning of an encapsulatio
even if the encapsulation itself is nested in another encapsulation. (See
“Encapsulation” on page 13-12).

Table 13-1Alignment requirements for OMG IDL primitive data types

TYPE OCTET ALIGNMENT

char 1

wchar 1, 2, or 4, depending on code set

octet 1

short 2

unsigned short 2

long 4

unsigned long 4

long long 8

unsigned long long 8

float 4

double 8

long double 8

boolean 1

enum 4
13-6 CORBA V2.2 February 1998

13

 types
Integer Data Types

Figure 13-1 on page 13-7 illustrates the representations for OMG IDL integer data
types, including the following data types:

• short

• unsigned short

• long

• unsigned long

• long long

• unsigned long long

The figure illustrates bit ordering and size. Signed types (short, long, and long
long) are represented as two’s complement numbers; unsigned versions of these
are represented as unsigned binary numbers.

Figure 13-1 Sizes and bit ordering in big-endian and little-endian encodings of OMG IDL
integer data types, both signed and unsigned.

0
1

0
1
2
3

0
1

0
1
2
3

MSB
LSB

MSB

LSB

LSB

LSB

MSB

MSB
short

long

octet octet

Big-Endian Little-Endian

long long

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

MSB

LSB

LSB

MSB
CORBA V2.2 CDR Transfer Syntax February 1998 13-7

13

 and

d as

0, f1
ber

 the

Floating Point Data Types

Figure 13-2 on page 13-9 illustrates the representation of floating point numbers.
These exactly follow the IEEE standard formats for floating point numbers1, selected
parts of which are abstracted here for explanatory purposes. The diagram shows three
different components for floating points numbers, the sign bit (s), the exponent (e)
the fractional part (f) of the mantissa. The sign bit has values of 0 or 1, representing
positive and negative numbers, respectively.

For single-precision float values the exponent is 8 bits long, comprising e1 and e2 in
the figure, where the 7 bits in e1 are most significant. The exponent is represente
excess 127. The fractional mantissa (f1 - f3) is a 23-bit value f where 1.0 <= f < 2.
being most significant and f3 being least significant. The value of a normalized num
is described by:

For double-precision values the exponent is 11 bits long, comprising e1 and e2 in
figure, where the 7 bits in e1 are most significant. The exponent is represented as
excess 1023. The fractional mantissa (f1 - f7) is a 52-bit value m where 1.0 <= m <
2.0, f1 being most significant and f7 being least significant. The value of a normalized
number is described by:

For double-extended floating-point values the exponent is 15 bits long, comprising e1
and e2 in the figure, where the 7 bits in e1 are the most significant. The fractional
mantissa (f1 through f14) is 112 bits long, with f1 being the most significant. The
value of a long double is determined by:

1. “IEEE Standard for Binary Floating-Point Arithmetic,” ANSI/IEEE Standard 754-1985,
Institute of Electrical and Electronics Engineers, August 1985.

1sign 2 exponent 127–()× 1 fraction+()×–

1sign 2 exponent 1023–()× 1 fraction+()×–

1sign 2 exponent 16383–()× 1 fraction+()×–
13-8 CORBA V2.2 February 1998

13
Figure 13-2 Sizes and bit ordering in big-endian and little-endian representations of OMG IDL
single, double precision, and double extended floating point numbers.

s
e2

e1
f1
f2
f3s

e2
e1
f1
f2
f3

s e1
e2 f1

f2
f3
f4
f5
f6
f7

0
1
2
3

0
1
2
3
4
5
6
7

0
1
2
3

0
1
2
3
4
5
6
7

Big-En dian Little-Endian

float

double s e1
e2 f1

f2
f3
f4
f5
f6
f7

s e1

e2

f1

f2

f3

f4

f5
f6

f7

f8

f9

f10

f11

f12

f13

f14 s e1

e2

f1

f2

f3

f4

f5

f6

f7

f8

f9

f10

f11

f12

f13

f140

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

long double
CORBA V2.2 CDR Transfer Syntax February 1998 13-9

13

o any

LSE

e

ctets,

 as

acter

ithin

ation
Octet

Octets are uninterpreted 8-bit values whose contents are guaranteed not to underg
conversion during transmission. For the purposes of describing possible octet values in
this specification, octets may be considered as unsigned 8-bit integer values.

Boolean

Boolean values are encoded as single octets, where TRUE is the value 1, and FA
as 0.

Character Types

An IDL character is represented as a single octet; the code set used for transmission of
character data (e.g., TCS-C) between a particular client and server ORBs is determined
via the process described in Section 11.7, “Code Set Conversion,” on page 11-22. Not
that multi-byte characters will require the use of an array of IDL char variables.

The transfer syntax for an IDL wide character depends on whether the transmission
code set (TCS-W, which is determined via the process described in “Code Set
Conversion” on page 11-22) is byte-oriented or non-byte-oriented:

• Byte-oriented (e.g., SJIS). Each wide character is represented as one or more o
as defined by the selected TCS-W.

• Non-byte-oriented (e.g., Unicode UTF-16). Each wide character is represented
one or more codepoints. A codepoint is the same as “Coded-Character data
element,” or “CC data element” in ISO terminology. Each codepoint is encoded
using a fixed number of bits as determined by the selected TCS-W. The OSF
Character and Code Set Registry may be examined using the interfaces in Appendix
10B on page 10-37 to determine the maximum length (max_bytes) of any char
codepoint. For example, if the TCS-W is ISO 10646 UCS-2 (Universal Character
Set containing 2 bytes), then wide characters are represented as unsigned shorts .
For ISO 10646 UCS-4, they are represented as unsigned longs .

13.3.2 OMG IDL Constructed Types

Constructed types are built from OMG IDL’s data types using facilities defined by the
OMG IDL language.

Alignment

Constructed type have no alignment restrictions beyond those of their primitive
components; the alignment of those primitive types is not intended to support use of
marshaling buffers as equivalent to the implementation of constructed data types w
any particular language environment. GIOP assumes that agents will usually construct
structured data types by copying primitive data between the marshaled buffer and the
appropriate in-memory data structure layout for the language mapping implement
involved.
13-10 CORBA V2.2 February 1998

13

s type

d, no

.

ce.

 enum

ight.

,
f

 f
Struct

The components of a structure are encoded in their order of their declaration in the
structure. Each component is encoded as defined for its data type.

Union

Unions are encoded as the discriminant tag of the type specified in the union
declaration, followed by the representation of any selected member, encoded as it
indicates.

Array

Arrays are encoded as the array elements in sequence. As the array length is fixe
length values are encoded. Each element is encoded as defined for the type of the
array. In multidimensional arrays, the elements are ordered so the index of the first
dimension varies most slowly, and the index of the last dimension varies most quickly

Sequence

Sequences are encoded as an unsigned long value, followed by the elements of the
sequence. The initial unsigned long contains the number of elements in the sequen
The elements of the sequence are encoded as specified for their type.

Enum

Enum values are encoded as unsigned longs. The numeric values associated with
identifiers are determined by the order in which the identifiers appear in the enum
declaration. The first enum identifier has the numeric value zero (0). Successive enum
identifiers are take ascending numeric values, in order of declaration from left to r

Strings and Wide Strings

A string is encoded as an unsigned long indicating the length of the string in octets
followed by the string value in single- or multi-byte form represented as a sequence o
octets. Both the string length and contents include a terminating null.

A wide string is encoded as an unsigned long indicating the length of the string in
octets or unsigned integers (determined by the transfer syntax for wchar) followed by
the individual wide characters. Both the string length and contents include a
terminating null. The terminating null character for a wstring is also a wide character.

Fixed-Point Decimal Type

The IDL fixed type has no alignment restrictions, and is represented as shown in
Figure 13-3 on page 13-12. Each octet contains (up to) two decimal digits. If the fixed
type has an odd number of decimal digits, then the representation begins with theirst
CORBA V2.2 CDR Transfer Syntax February 1998 13-11

13

n,
for

pe

lation

 the
 (1),

t part

haled

te
(most significant) digit — d0 in the figure. Otherwise, this first half-octet is all zero,
and the first digit is in the second half-octet — d1 in the figure. The sign configuratio
in the last half-octet of the representation, is 0xD for negative numbers and 0xC
positive and zero values.

Figure 13-3 IDL Fixed Type Representation

13.3.3 Encapsulation

As described above, OMG IDL data types may be independently marshaled into
encapsulation octet streams. The octet stream is represented as the OMG IDL ty
sequence<o ctet>, which may be subsequently included in a GIOP message or
nested in another encapsulation.

The GIOP and IIOP explicitly use encapsulations in three places: TypeCodes (see
“TypeCode” on page 13-13), the IIOP protocol profile inside an IOR (see “Object
References” on page 13-18), and in service-specific context (see “Object Service
Context” on page 11-20). In addition, some ORBs may choose to use an encapsu
to hold Principal identification information (see “Principal” on page 13-18), the
object_key (see “IIOP IOR Profiles” on page 13-34), or in other places that a
sequence<o ctet> data type is in use.

When encapsulating OMG IDL data types, the first octet in the stream (index 0)
contains a boolean value indicating the byte ordering of the encapsulated data. If
value is FALSE (0), the encapsulated data is encoded in big-endian order; if TRUE
the data is encoded in little-endian order, exactly like the byte order flag in GIOP
message headers (see “GIOP Message Header” on page 13-19). This value is no
of the data being encapsulated, but is part of the octet stream holding the
encapsulation. Following the byte order flag, the data to be encapsulated is mars
into the buffer as defined by CDR encoding rules. Marshaled data are aligned relative
to the beginning of the octet stream (the first octet of which is occupied by the by
order flag).

Big and Little-Endian octet

0

1

2

= =

n

d0 d1

d2 d3

d4 d5

dm s

fixed

MSD

LSD

=

13-12 CORBA V2.2 February 1998

13

 the
 length
nt of

ata

r

eters.

r

When the encapsulation is encoded as type sequence<octet> for subsequent
marshaling, an unsigned long value containing the sequence length is prefixed to
octet stream, as prescribed for sequences (see “Sequence” on page 13-11). The
value is not part of the encapsulation’s octet stream, and does not affect alignme
data within the encapsulation.

Note that this guarantees a four octet alignment of the start of all encapsulated d
within GIOP messages and nested encapsulations.2

13.3.4 Pseudo-Object Types

CORBA defines some kinds of entities that are neither primitive types (integral or
floating point) nor constructed ones.

TypeCode

In general, TypeCodes are encoded as the TCKind enum value, potentially followed by
values that represent the TypeCode parameters. Unfortunately, TypeCodes cannot be
expressed simply in OMG IDL, since their definitions are recursive. The basic
TypeCode representations are given in Table 13-2. The enum value column this table
gives the TCKind enum value corresponding to the given TypeCode, and lists the
parameters associated with such a TypeCode. The rest of this section presents the
details of the encoding.

Basic TypeCode Encoding Framework

The encoding of a TypeCode is the TCKind enum value (encoded, like all enum
values, using four octets), followed by zero or more parameter values. The encodings
of the parameter lists fall into three general categories, and differ in order to conserve
space and to support efficient traversal of the binary representation:

• Typecodes with an empty parameter list are encoded simply as the corresponding
TCKind enum value.

• Typecodes with simple parameter lists are encoded as the TCKind enum value
followed by the parameter value(s), encoded as indicated in Table 13-2. A “simple”
parameter list has a fixed number of fixed length entries, or a single paramete
which is has its length encoded first. Currently, only the TCKind value tk_string
has such a parameter list.

• All other typecodes have complex parameter lists, which are encoded as the
TCKind enum value followed by a CDR encapsulation octet sequence (see
“Encapsulation” on page 13-12) containing the encapsulated, marshaled param
The order of these parameters is shown in the fourth column of Table 13-2.

2. Accordingly, in cases where encapsulated data holds data with natural alignment of greate
than four octets, some processors may need to copy the octet data before removing it from
the encapsulation. The GIOP protocol itself does not require encapsulation of such data.
CORBA V2.2 CDR Transfer Syntax February 1998 13-13

13

rder

in
The third column of Table 13-2 shows whether each parameter list is empty, simple, or
complex. Also, note that an internal indirection facility is needed to represent some
kinds of typecodes; this is explained in “Indirection: Recursive and Repeated
TypeCodes” on page 13-17. This indirection does not need to be exposed to application
programmers.

TypeCode Parameter Notation

TypeCode parameters are specified in the fourth column of Table13-2. The ordering
and meaning of parameters is a superset of those given in the Interface Repository
specification (Chapter 8); more information is needed by CDR’s representation in o
to provide the full semantics of TypeCodes as shown by the API.

• Each parameter is written in the form type (name), where type describes the
parameter’s type, and name describes the parameter’s meaning.

• The encoding of some parameter lists (specifically, tk_struct, t k_union,
tk_enum, tk_except) contain a counted sequence of tuples.

Such counted tuple sequences are written in the form count {parameters}, where
count is the number of tuples in the encoded form, and the parameters enclosed in
braces are available in each tuple instance. First the count, which is an unsigned
long , and then each parameter in each tuple (using the noted type), is encoded
the CDR representation of the typecode. Each tuple is encoded, first parameter
followed by second etc., before the next tuple is encoded (first, then second, etc.).

Note that the tuples identifying struct, exception, and enum members must be in the
order defined in the OMG IDL definition text. Also, that the types of discriminant
values in encoded tk_union TypeCodes are established by the second encoded
parameter (discriminant type), and cannot be specified except with reference to a
specific OMG IDL definition.3

Table 13-2 TypeCode enum values, parameter list types, and parameters

TCKind Integer Value Type Parameters

tk_null 0 empty – none –

tk_void 1 empty – none –

tk_short 2 empty – none –

tk_long 3 empty – none –

tk_longlong 23 empty -none-

tk_ushort 4 empty – none –

3. This means that, for example, two OMG IDL unions that are textually equivalent, except
that one uses a “char” discriminant, and the other uses a “long” one, would have different
size encoded TypeCodes.
13-14 CORBA V2.2 February 1998

13
tk_ulong 5 empty – none –

tk_ulonglong 24 empty -none-

tk_fixed 28 simple ushort(digits), short(scale)

tk_float 6 empty – none –

tk_double 7 empty – none –

tk_longdouble 25 empty -none-

tk_boolean 8 empty – none –

tk_char 9 empty – none –

tk_wchar 26 empty -none-

tk_octet 10 empty – none –

tk_any 11 empty – none –

tk_TypeCode 12 empty – none –

tk_Principal 13 empty – none –

tk_objref 14 complex string (repository ID),
string(name)

tk_struct 15 complex string (repository ID), string
(name), ulong (count) {string
(member name), TypeCode
(member type)}

tk_union 16 complex string (repository ID),
string(name), TypeCode (dis-
criminant type), long (default
used), ulong (count) {discrimi-

nant type1 (label value), string
(member name), TypeCode
(member type)}

tk_enum 17 complex string (repository ID), string
(name), ulong (count) {string
(member name)}

tk_string 18 simple ulong (max length2)

tk_wstring 27 simple ulong(max length or zero if
unbounded)

Table 13-2 TypeCode enum values, parameter list types, and parameters

TCKind Integer Value Type Parameters
CORBA V2.2 CDR Transfer Syntax February 1998 13-15

13

me

d in

ased
Encoded Identifiers and Names

The Repository ID parameters in tk_obj ref, tk_struct, tk_union, tk_enum,
tk_alias , and tk_except TypeCodes are Interface Repository RepositoryId
values, whose format is described in the specification of the Interface Repository.
RepositoryId values are required for tk_objref and tk_except TypeCodes; for other
TypeCodes they are optional and are encoded as empty strings if omitted.

The name parameters in tk_objref, tk_struct, tk_union, tk_enum, tk_alias, and
tk_except TypeCodes and the member name parameters in tk_struct, tk_union,
tk_enum and tk_except TypeCodes are not specified by (or significant in) GIOP.
Agents should not make assumptions about type equivalence based on these na
values; only the structural information (including Reposi toryId values, if provided) is
significant. If provided, the strings should be the simple, unscoped names supplie
the OMG IDL definition text. If omitted, they are encoded as empty strings.

Encoding the tk_union Default Case

In tk_union TypeCodes, the long default used value is used to indicate which tuple
in the sequence describes the union’s default case. If this value is less than zero,
then the union contains no default case. Otherwise, the value contains the zero b
index of the default case in the sequence of tuples describing union members.

tk_sequence 19 complex TypeCode (element type), ulong

(max length3)

tk_array 20 complex TypeCode (element type), ulong
(length)

tk_alias 21 complex string (repository ID), string
(name), TypeCode

tk_except 22 complex string (repository ID), string
(name), ulong (count) {string
(member name), TypeCode
(member type)}

– none – 0xffffffff s imple long (indirection4)

1. The type of union label values is determined by the second parameter, discriminant type.

2. For unbounded strings, this value is zero.

3. For unbounded sequences, this value is zero.

4. See “Indirection: Recursive and Repeated TypeCodes” on page 13-17.

Table 13-2 TypeCode enum values, parameter list types, and parameters

TCKind Integer Value Type Parameters
13-16 CORBA V2.2 February 1998

13

L;

e

e
TypeCodes for Multi-Dimensional Arrays

The tk_array TypeCode only describes a single dimension of any array. TypeCodes
for multi-dimensional arrays are constructed by nesting tk_array TypeCodes within
other tk_array TypeCodes, one per array dimension. The outermost (or top-level)
tk_array TypeCode describes the leftmost array index of the array as defined in ID
the innermost nested tk_array TypeCode describes the rightmost index.

Indirection: Recursive and Repeated TypeCodes

The typecode representation of OMG IDL data types that can indirectly contain
instances of themselves (e.g., struct foo {sequence <foo> bar;}) must also contain
an indirection. Such an indirection is also useful to reduce the size of encodings; for
example, unions with many cases sharing the same value.

CDR provides a constrained indirection to resolve this problem:

• The indirection applies only to TypeCodes nested within some “top level”
TypeCode. Indirected TypeCodes are not “freestanding,” but only exist inside som
other encoded TypeCode.

• Only the second (and subsequent) references to a given TypeCode in that scope may
use the indirection facility. The first reference to that TypeCode must be encoded
using the normal rules. In the case of a recursive TypeCode, this means that the first
instance will not have been fully encoded before a second one must be completely
encoded.

The indirection is a numeric octet offset within the scope of the “top level” TypeCode
and points to the TCKind value for the typecode. (Note that the byte order of the
TCKind value can be determined by its encoded value.) This indirection may well
cross encapsulation boundaries, but this is not problematic because of the first
constraint identified above. Because of the second constraint, the value of the offset
will always be negative.

The encoding of such an indirection is as a TypeCode with a “TCKind value” that has
the special value 232-1 (0xffffffff, all ones). Such typecodes have a single (simple)
parameter, which is the long offset (in units of octets) from the simple parameter.
(This means that an offset of negative four (-4) is illegal because it will be self-
indirecting.)

Any

Any values are encoded as a TypeCode (encoded as described above) followed by th
encoded value.
CORBA V2.2 CDR Transfer Syntax February 1998 13-17

13

r

y

 on
re is

ver

t.
Principal

Principal pseudo objects are encoded as sequ ence<octet> . In the absence of a
Security service specification, Principal values have no standard format or
interpretation, beyond (as described in the CORBA CORE) serving to identify callers
(and potential callers). This specification does not define any inter-ORB security
mechanisms, or prescribe any usage of Principal values.

By representing Principal values as sequen ce<octet> , GIOP guarantees that ORBs
may use domain-specific principal identification schemes; such values undergo no
translation or interpretation during transmission. This allows bridges to translate o
interpret these identifiers as needed when forwarding requests between different
security domains.

Context

Context pseudo objects are encoded as sequence< string> . The strings occur in pairs.
The first string in each pair is the context property name, and the second string in each
pair is the associated value.

Exception

Exceptions are encoded as a string followed by exception members, if any. The string
contains the RepositoryId for the exception, as defined in the Interface Repositor
chapter. Exception members (if any) are encoded in the same manner as a struct.

If an ORB receives a non-standard system exception that it does not support, the
exception shall be mapped to UNKNOWN.

13.3.5 Object References

Object references are encoded in OMG IDL (as described in “Object Addressing”
page 11-11). IOR profiles contain transport-specific addressing information, so the
no general-purpose IOR profile format defined for GIOP. Instead, this specification
describes the general information model for GIOP profiles and provides a specific
format for the IIOP (see “IIOP IOR Profiles” on page 13-34).

In general, GIOP profiles shall include at least these three elements:

• The version number of the transport-specific protocol specification that the ser
supports

• The address of an endpoint for the transport protocol being used

• An opaque datum (an object_key , in the form of an octet sequence) used
exclusively by the agent at the specified endpoint address to identify the objec
13-18 CORBA V2.2 February 1998

13

or the

r

 used
13.4 GIOP Message Formats

In describing GIOP messages, it is necessary to define client and server roles. F
purpose of this discussion, a client is the agent that opens a connection (see more
details in “Connection Management” on page 13-30) and originates requests. A serve
is an agent that accepts connections and receives requests.

GIOP message types are summarized in Table 13-3, which lists the message type
names, whether the message is originated by client, server, or both, and the value
to identify the message type in GIOP message headers.

13.4.1 GIOP Message Header

All GIOP messages begin with the following header, defined in OMG IDL:

module GIOP { // IDL extended for version 1.1

struct Version {
octet major;
octet minor;

};

#ifndef GIOP_1_1
// GIOP 1.0
enum MsgType_1_0 { // Renamed from MsgType
 Request, Reply, C ancelReq uest,

LocateRequest, LocateReply,
CloseC onnection, MessageError

};

Table 13-3 GIOP Message Types and originators

Message Type Originator Value GIOP Versions

Request Client 0 1.0, 1.1

Reply Server 1 1.0, 1.1

CancelRequest Client 2 1.0, 1.1

LocateRequest Client 3 1.0, 1.1

LocateReply Server 4 1.0, 1.1

CloseConnec-
tion

Server 5 1.0, 1.1

MessageError Both 6 1.0, 1.1

Fragment Both 7 1.1
CORBA V2.2 GIOP Message Formats February 1998 13-19

13

e.

 the

This
es”
#else
// GIOP 1.1
enum MsgType_1_1 {
 Request, Reply, C ancelReq uest,

LocateRequest, LocateReply,
CloseC onnection, MessageError,
Fragment // GIOP 1.1 addition

};
#endif

// GIOP 1.0
struct MessageH eader_1_0 { // Renamed from MessageHeader

 char magic [4];
Version GIOP_version;

 boolean byte_order;
octet message_type;

 unsigned long message_size;
};

// GIOP 1.1
struct MessageHeader_1_1 {

 char magic [4];
Version GIOP_version;

 octet flags; // GIOP 1.1 change
 octet message_type;
 unsigned long message_size;

};
};

The message header clearly identifies GIOP messages and their byte-ordering. The
header is independent of byte ordering except for the field encoding message siz

• magic identifies GIOP messages. The value of this member is always the four
(upper case) characters “GIOP,” encoded in ISO Latin-1 (8859.1).

• GIOP_version contains the version number of the GIOP protocol being used in
message. The version number applies to the transport-independent elements of this
specification (i.e., the CDR and message formats) which constitute the GIOP.
is not equivalent to the IIOP version number (as described in “Object Referenc
on page 13-18) though it has the same structure. The major GIOP version number
of this specification is one (1); the minor versions are zero (0) and one (1).

• byte_order (in GIOP 1.0 only) indicates the byte ordering used in subsequent
elements of the message (including message_size). A value of FALSE (0)
indicates big-endian byte ordering, and TRUE (1) indicates little-endian byte
ordering.
13-20 CORBA V2.2 February 1998

13

se

der.

e use.
• flags (in GIOP 1.1) is an 8 bit octet. The least significant ibt indicates the byte
ordering used in subsequent elements of the message (including message_size).
A value of FALSE (0) indicates big-endian byte ordering, and TRUE (1) indicates
little-endian byte ordering.

The second least significant bit indicates whether or not more framents follow. A
value of FALSE (0) indicates this message is the last fragment, and TRUE (1)
indicates more fragment follows this message.

The most significant 6 bits are reserved. All these 6 bits must have value 0 for
GIOP version 1.1.

• message_type indicates the type of the message, according to Table 13-3; the
correspond to enum values of type MsgType .

• message_size contains the number of octets in the message following the
message header, encoded using the byte order specified in the byte order bit (the
least significant bit) in the flags field (or using the bute_order field in GIOP 1.0). It
refers to the size of the message body, not including the 12 byte message hea
This count includes any alignment gaps. The use of a message size of 0 with a
Request, LocateRequest, Reply, or LocateReply message is reserved for futur

Request Message

Request messages encode CORBA object invocations, including attribute accessor
operations, and CORBA::Object operations get_interface and
get_implementation . Requests flow from client to server.

Request messages have three elements, encoded in this order:

• A GIOP message header

• A Request Header

• The Request Body
CORBA V2.2 GIOP Message Formats February 1998 13-21

13

e

lues

ply
).

a
Request Header

The request header is specified as follows:

module GIOP { // IDL extended for version 1.1

// GIOP 1.0
struct RequestHeader_1_0 { // Renamed from RequestHeader

 IOP::ServiceContextList service_context;
unsigned long request_id;

 boolean response_expected;
 seque nce <octet> object_key;
 string operation;
 Principal requesting_principal;
 };

// GIOP 1.1
struct RequestHeader_1_1 {

 IOP::ServiceContextList service_context;
unsigned long request_id;

 boolean response_expected;
 octet reserved[3]; // Added in GIOP 1.1
 seque nce <octet> object_key;
 string operation;
 Principal requesting_principal;
 };
};

The members have the following definitions:

• service_context contains ORB service data being passed from the client to th
server, encoded as described in “Object Service Context” on page 11-20.

• request_id is used to associate reply messages with request messages (including
LocateRequest messages). The client (requester) is responsible for generating va
so that ambiguity is eliminated; specifically, a client must not re-use request_id
values during a connection if: (a) the previous request containing that ID is still
pending, or (b) if the previous request containing that ID was canceled and no re
was received. (See the semantics of the “CancelRequest Message” on page 13-26

• response_expected is set to TRUE if a reply message is expected for this
request. If the operation is not defined as oneway, and the request is not invoked vi
the DII with the INV_NO_RESPONSE flag set, the response_expected flag
must be set to TRUE.

If the operation is defined as oneway, or the request is invoked via the DII with the
INV_NO_RESPONSE flag set, the response_expected flag may be set to TRUE
or FALSE. Asking for a reply gives the client ORB an opportunity to receive
LOCATION_FORWARD responses and replies that might indicate system
exceptions. When this flag is set to TRUE for a oneway operation, receipt of a reply
does not imply that the operation has necessarily completed.
13-22 CORBA V2.2 February 1998

13

name

uest

n that
• reserved is always set to 0 in GIOP 1.1. These three octets are reserved for future
use.

• object_key identifies the object which is the target of the invocation. It is the
object_key field from the transport-specific GIOP profile (e.g., from the
encapsulated IIOP profile of the IOR for the target object). This value is only
meaningful to the server and is not interpreted or modified by the client.

• operation is the IDL identifier naming, within the context of the interface (not a
fully qualified scoped name), the operation being invoked. In the case of attribute
accessors, the names are _get_<attribute> and _set_<attribute> . The
case of the operation or attribute name must match the case of the operation
specified in the OMG IDL source for the interface being used.

In the case of CORBA::Object operations that are defined in the CORBA Core
(“Object Reference Operations” on page 4-4) and that correspond to GIOP req
messages, the operation names are _interface , _implementation 4, _is_a
and _not_existent .

• requesting_principal contains a value identifying the requesting principal. It is
provided to support the BOA::get_principal operation.

Request Body

The request body includes the following items encoded in this order:

• All in and inout parameters, in the order in which they are specified in the
operation’s OMG IDL definition, from left to right.

• An optional Context pseudo object, encoded as described in “Context” on
page 13-18. This item is only included if the operation’s OMG IDL definition
includes a context expression, and only includes context members as defined i
expression.

For example, the request body for the following OMG IDL operation

double example (in short m, out string str, inout Principal p);

would be equivalent to this structure:

struct example_body {
short m; // leftmost in or inout parameter
Principal p; // ... to the rightmost

};

4. Since CORBA::Object::get_implementation is a null interface, clients must narrow the
object reference they get to some ORB-specific kind of ImplementationDef.
CORBA V2.2 GIOP Message Formats February 1998 13-23

13

ponse

 may

he

e
13.4.2 Reply Message

Reply messages are sent in response to Request messages if and only if the res
expected flag in the request is set to TRUE. Replies include inout and out parameters,
operation results, and may include exception values. In addition, Reply messages
provide object location information. Replies flow from server to client.

Reply messages have three elements, encoded in this order:

• A GIOP message header

• A ReplyHeader structure

• The reply body

Reply Header

The reply header is defined as follows:

module GIOP { // IDL
enum ReplyStatusType {

 NO_EXCEPTION,
 USER_EXCEPTION,
 SYSTEM_EXCEPTION,
 LOCATION_FORWARD
 };

struct ReplyHeader {
IOP::ServiceContextList service_context;

 unsigned long request_id;
 ReplyStatusType reply_status;
 };
};

The members have the following definitions:

• service_context contains ORB service data being passed from the server to t
client, encoded as described in “GIOP Message Transfer” on page 13-4.

• request_id is used to associate replies with requests. It contains the same
request_id value as the corresponding request.

• reply_status indicates the completion status of the associated request, and also
determines part of the reply body contents. If no exception occurred and the
operation completed successfully, the value is NO_EXCEPTION and the body
contains return values. Otherwise the body contains an exception, or else directs th
client to reissue the request to an object at some other location.
13-24 CORBA V2.2 February 1998

13

es

3-18.

.

Reply Body

The reply body format is controlled by the value of reply_status. There are three typ
of reply body:

1 If the reply_status value is NO_EXCEPTION, the body is encoded as if it were a
structure holding first any operation return value, then any inout and out
parameters in the order in which they appear in the operation’s OMG IDL
definition, from left to right. (That structure could be empty.)

2 If the reply_status value is USER_EXCEPTION or SYSTEM_EXCEPTION,
then the body contains the exception that was raised by the operation, encoded as
described in “Exception” on page 13-18. (Only the user defined exceptions listed in
the operation’s OMG IDL definition may be raised.)

When a GIOP Reply message contains a `reply_status' value of
SYSTEM_EXCEPTION, the body of the Reply message conforms to the following
structure:

module GIOP { // IDL
 struct SystemExceptionReplyBody {

string exception_id;
 unsigned long minor_code_value;

unsigned long completion_status;
 };

};

The high order 20 bits of minor_code_value contain a 20-bit “vendor minor
codeset ID”(VMCID); the low order 12 bits contain a minor code. A vendor (or
group of vendors) wishing to define a specific set of system exception minor codes
should obtain a unique VMCID from the OMG, and then define up to 4096 minor
codes for each system exception. Any vendor may use the special VMCID of zero
(0) without previous reservation, but minor code assignments in this codeset may
conflict with other vendor's assignments, and use of the zero VMCID is officially
deprecated.

3 If the reply_status value is LOCATION_FORWARD , then the body contains an
object reference (IOR) encoded as described in “Object References” on page 1
The client ORB is responsible for re-sending the original request to that (different)
object. This resending is transparent to the client program making the request
CORBA V2.2 GIOP Message Formats February 1998 13-25

13

ified

 only.
For example, the reply body for a successful response (the value of reply_status is
NO_EXCEPTION) to the Request example shown on page 13-23 would be equivalent
to the following structure:

struct example_reply {
double return_value; // return value
string str; // leftmost inout or out param eter
Principal p; // ... to the rightmost

};

Note that the object_key field in any specific GIOP profile is server-relative, not
absolute. Specifically, when a new object reference is received in a
LOCATION_FORWARD Reply or in a LocateReply message, the object_key field
embedded in the new object reference’s GIOP profile may not have the same value as
the object_key in the GIOP profile of the original object reference. For details on
location forwarding, see “Object Location” on page 13-32.

13.4.3 CancelRequest Message

CancelRequest messages may be sent from clients to servers. CancelRequest
messages notify a server that the client is no longer expecting a reply for a spec
pending Request or LocateRequest message.

CancelRequest messages have two elements, encoded in this order:

• A GIOP message header

• A CancelRequestHeader

Cancel Request Header

The cancel request header is defined as follows:

module GIOP { // IDL
struct CancelRequestHeader {

 unsigned long request_id;
 };
};

The request_id member identifies the Request or LocateRequest message to
which the cancel applies. This value is the same as the request_id value specified in
the original Request or LocateRequest message.

When a client issues a cancel request message, it serves in an advisory capacity
The server is not required to acknowledge the cancellation, and may subsequently send
the corresponding reply. The client should have no expectation about whether a reply
(including an exceptional one) arrives.
13-26 CORBA V2.2 February 1998

13

e
uld

ges

age”

 the
13.4.4 LocateRequest Message

LocateRequest messages may be sent from a client to a server to determine the
following regarding a specified object reference: (a) whether the object reference is
valid, (b) whether the current server is capable of directly receiving requests for th
object reference, and if not, (c) to what address requests for the object reference sho
be sent.

Note that this information is also provided through the Request message, but that
some clients might prefer not to support retransmission of potentially large messa
that might be implied by a LOCATION_FORWARD status in a Reply message. That
is, client use of this represents a potential optimization.

LocateRequest messages have two elements, encoded in this order:

• A GIOP message header

• A LocateRequestHeader

LocateRequest Header.

The LocateRequest header is defined as follows:

module GIOP { // IDL
struct LocateRequestHeader {

 unsigned long request_id;
 seque nce <octet> object_key;

};
};

The members are defined as follows:

• request_id is used to associate LocateReply messages with LocateRequest ones.
The client (requester) is responsible for generating values; see “Request Mess
on page 13-21 for the applicable rules.

• object_key identifies the object being located. In an IIOP context, this value is
obtained from the object_key field from the encapsulated IIOP::ProfileBody in
the IIOP profile of the IOR for the target object. When GIOP is mapped to other
transports, their IOR profiles must also contain an appropriate corresponding value.
This value is only meaningful to the server and is not interpreted or modified by
client.

See “Object Location” on page 13-32 for details on the use of LocateRequest.
CORBA V2.2 GIOP Message Formats February 1998 13-27

13

 the

t
13.4.5 LocateReply Message

LocateReply messages are sent from servers to clients in response to
LocateRequest messages.

A LocateReply message has three elements, encoded in this order:

• A GIOP message header

• A LocateReplyHeader

• The locate reply body

Locate Reply Header

The locate reply header is defined as follows:

module GIOP { // IDL
 enum LocateStatusType {

UNKNOWN_OBJECT,
 OBJECT_HERE,
 OBJECT_FORWARD
 };

struct LocateReplyHeader {
 unsigned long request_id;
 LocateStatusType locate_status;
 };
};

The members have the following definitions:

• request_id - is used to associate replies with requests. This member contains
same request_id value as the corresponding LocateRequest message.

• locate_status - the value of this member is used to determine whether a
LocateReply body exists. Values are:

• UNKNOWN_OBJECT - the object specified in the corresponding
LocateRequest message is unknown to the server; no body exists.

• OBJE CT_HERE - this server (the originator of the LocateReply message) can
directly receive requests for the specified object; no body exists.

• OBJECT_FORWARD - a LocateReply body exists.

LocateReply Body

The body is empty unless the LocateStatus value is OBJECT_FORWARD , in
which case the body contains an object reference (IOR) that may be used as the targe
for requests to the object specified in the LocateRequest message.
13-28 CORBA V2.2 February 1998

13

er
plies

s

ing

 that

ader
n

 the
ge
f the

gment

 the
will
13.4.6 CloseConnection Message

CloseConnection messages are sent only by servers. They inform clients that the
server intends to close the connection and must not be expected to provide furth
responses. Moreover, clients know that any requests for which they are awaiting re
will never be processed, and may safely be reissued (on another connection).

The CloseConnection message consists only of the GIOP message header,
identifying the message type.

For details on the usage of CloseConnect ion messages, see “Connection
Management” on page 13-30.

13.4.7 MessageError Message

The MessageError message is sent in response to any GIOP message whose version
number or message type is unknown to the recipient, or any message is received whose
header is not properly formed (e.g., has the wrong magic value). Error handling i
context-specific.

The MessageError message consists only of the GIOP message header, identify
the message type.

13.4.8 Fragment Message

This message is added in GIOP 1.1.

The Fragment message is sent following a previous request or response message
has the more fragments bit set to TRUE in the flags field.

All of the GIOP messages begin with a GIOP header. One of the fields of this he
is the message_size field, a 32-bit unsigned number giving the number of bytes i
the message following the header. Unfortunately, when actually constructing a GIOP
Request or Reply message, it is sometimes impractical or undesirable to ascertain
total size of the message at the stage of message construction where the messa
header has to be written. GIOP 1.1 provides an alternative indication of the size o
message, for use in those cases.

A Request or Reply message can be broken into multiple fragments. The first
fragment is a regular message (e.g., Request or Reply) with the more fragments bit
in the flags field set to TRUE. This initial fragment can be followed by one or more
messages using the fragment messages. The last fragment shall have the more fra
bit in the flag field set to FALSE.

A CancelRequest message may be sent by the client before the final fragment of
message being sent. In this case, the server should assume no more fragments
follow.

A primitive data type of 8 bytes or smaller should never be broken across two
fragments.
CORBA V2.2 GIOP Message Formats February 1998 13-29

13

pe

s. If
 a

to

).

nly

d in
13.5 GIOP Message Transport

The GIOP is designed to be implementable on a wide range of transport protocols. The
GIOP definition makes the following assumptions regarding transport behavior:

• The transport is connection-oriented. GIOP uses connections to define the sco
and extent of request IDs.

• The transport is reliable. Specifically, the transport guarantees that bytes are
delivered in the order they are sent, at most once, and that some positive
acknowledgment of delivery is available.

• The transport can be viewed as a byte stream. No arbitrary message size limitations,
fragmentation, or alignments are enforced.

• The transport provides some reasonable notification of disorderly connection los
the peer process aborts, the peer host crashes, or network connectivity is lost,
connection owner should receive some notification of this condition.

• The transport’s model for initiating connections can be mapped onto the general
connection model of TCP/IP. Specifically, an agent (described herein as a server)
publishes a known network address in an IOR, which is used by the client when
initiating a connection.

The server does not actively initiate connections, but is prepared to accept requests
connect (i.e., it listens for connections in TCP/IP terms). Another agent that knows the
address (called a client) can attempt to initiate connections by sending connect requests
to the address. The listening server may accept the request, forming a new, unique
connection with the client, or it may reject the request (e.g., due to lack of resources
Once a connection is open, either side may close the connection. (See “Connection
Management” on page 13-30 for semantic issues related to connection closure.) A
candidate transport might not directly support this specific connection model; it is o
necessary that the transport’s model can be mapped onto this view.

13.5.1 Connection Management

For the purposes of this discussion, the roles client and server are defined as follows:

• A client initiates the connection, presumably using addressing information foun
an object reference (IOR) for an object to which it intends to send requests.

• A server accepts connections, but does not initiate them.

These terms only denote roles with respect to a connection. They do not have any
implications for ORB or application architectures.

Connections are not symmetrical. Only clients can send Request, LocateRequest, and
CancelRequest messages over a connection. Only a server can send Reply, LocateReply
and CloseConnection messages over a connection. Either client or server can send
MessageError messages.

Only GIOP messages are sent over GIOP connections.
13-30 CORBA V2.2 February 1998

13

e

t.

r may
r

e

 a new

rly

 for
ided.
Request IDs must unambiguously associate replies with requests within the scope and
lifetime of a connection. Request IDs may be re-used if there is no possibility that th
previous request using the ID may still have a pending reply. Note that cancellation
does not guarantee no reply will be sent. It is the responsibility of the client to generate
and assign request IDs. Request IDs must be unique among both Request and
LocateRequest messages.

Connection Closure

Connections can be closed in two ways: orderly shutdown, or abortive disconnec
Orderly shutdown is initiated by servers reliably sending a CloseConnection
message, or by clients just closing down a connection. Orderly shutdown may be
initiated by the client at any time. If there are pending requests when a client shuts
down a connection, the server should consider all such requests canceled. A serve
not initiate shutdown if it has begun processing any requests for which it has not eithe
received a CancelRequest or sent a corresponding reply.

If a client receives an CloseConnection message from the server, it should assum
that any outstanding messages (i.e., without replies) were received after the server sent
the CloseConnection message, were not processed, and may be safely resent on
connection.

After reliably issuing a CloseConnection message, the server may close the
connection. Some transport protocols (not including TCP) do not provide an “orde
disconnect” capability, guaranteeing reliable delivery of the last message sent. When
GIOP is used with such protocols, an additional handshake needs to be provided to
guarantee that both ends of the connection understand the disposition of any
outstanding GIOP requests.

If a client detects connection closure without receiving a CloseConnect ion message,
it should assume an abortive disconnect has occurred, and treat the condition as an
error. Specifically, it should report COMM_FAILURE exceptions for all pending
requests on the connection, with completion_status values set to
COMPLETED_MAYBE.

Multiplexing Connections

A client, if it chooses, may send requests to multiple target objects over the same
connection, provided that the connection’s server side is capable of responding to
requests for the objects. It is the responsibility of the client to optimize resource usage
by re-using connections, if it wishes. If not, the client may open a new connection
each active object supported by the server, although this behavior should be avo
CORBA V2.2 GIOP Message Transport February 1998 13-31

13

 a

res

be
ocess
nt

stead
either

s
13.5.2 Message Ordering

Only the client (connection originator) may send Request, LocateRe quest, and
CancelRequest messages. Connections are not fully symmetrical.

Clients may have multiple pending requests. A client need not wait for a reply from
previous request before sending another request.

Servers may reply to pending requests in any order. Reply messages are not required
to be in the same order as the corresponding Requests .

The ordering restrictions regarding connection closure mentioned in Connection
Management, above, are also noted here. Servers may only issue CloseConn ection
messages when Reply messages have been sent in response to all received Request
messages that require replies.

13.6 Object Location

The GIOP is defined to support object migration and location services without
dictating the existence of specific ORB architectures or features. The protocol featu
are based on the following observations:

A given transport address does not necessarily correspond to any specific ORB
architectural component (such as an object adapter, object server process, Inter-ORB
bridge, and so forth). It merely implies the existence of some agent with which a
connection may be opened, and to which requests may be sent.

The “agent” (owner of the server side of a connection) may have one of the following
roles with respect to a particular object reference:

• The agent may be able to accept object requests directly for the object and return
replies. The agent may or may not own the actual object implementation; it may
an Inter-ORB bridge that transforms the request and passes it on to another pr
or ORB. From GIOP’s perspective, it is only important that requests can be se
directly to the agent.

• The agent may not be able to accept direct requests for any objects, but acts in
as a location service. Any Request messages sent to the agent would result in
exceptions or replies with LOCATION_FORWARD status, providing new addresse
to which requests may be sent. Such agents would also respond to LocateRequest
messages with appropriate LocateReply messages.

• The agent may directly respond to some requests (for certain objects) and provide
forwarding locations for other objects.

• The agent may directly respond to requests for a particular object at one point in
time, and provide a forwarding location at a later time (perhaps during the same
connection).
13-32 CORBA V2.2 February 1998

13

 an

ed
ly) be

-

tion

both
 and
Agents are not required to implement location forwarding mechanisms. An agent can
be implemented with the policy that a connection either supports direct access to
object, or returns exceptions. Such an ORB (or inter-ORB bridge) always return
LocateReply messages with either OBJECT_HERE or UNKNOWN_OBJECT
status, and never OBJECT_FORWARD status.

Clients must, however, be able to accept and process Reply messages with
LOCATION_FORWARD status, since any ORB may choose to implement a location
service. Whether a client chooses to send LocationRequest messages is at the
discretion of the client. For example, if the client routinely expected to see
LOCATION_FORWARD replies when using the address in an object reference, it
might always send LocateRequest messages to objects for which it has no record
forwarding address. If a client sends LocateRequest messages, it should (obvious
prepared to accept LocateReply messages.

A client shall not make any assumptions about the longevity of object addresses
returned by location forwarding mechanisms. Once a connection based on location
forwarding information is closed, a client can attempt to reuse the forwarding
information it has, but, if that fails, it shall restart the location process using the
original address specified in the initial object reference.

Even after performing successful invocations using an address, a client should be
prepared to be forwarded. The only object address that a client should expect to
continue working reliably is the one in the initial object reference. If an invocation
using that address returns UNKNOWN_OBJECT, the object should be deemed non
existent.

In general, the implementation of location forwarding mechanisms is at the discre
of ORBs, available to be used for optimization and to support flexible object location
and migration behaviors.

13.7 Internet Inter-ORB Protocol (IIOP)

The baseline transport specified for GIOP is TCP/IP5. Specific APIs for libraries
supporting TCP/IP may vary, so this discussion is limited to an abstract view of
TCP/IP and management of its connections. The mapping of GIOP message transfer to
TCP/IP connections is called the Internet Inter-ORB Protocol (IIOP).

IIOP 1.0 is based on GIOP 1.0.

IIOP 1.1 can be based on either GIOP 1.0 or GIOP 1.1. An IIOP 1.1 client can either
support both GIP 1.0 and 1.1, or GIOP 1.1 only. An IIOP 1.1 server must support
GIOP 1.0 and GIOP 1.1. An IIOP 1.1 server must be able to receive both GIOP 1.0
GIOP 1.1 requests and reply using the same GIOP revision as invoked.

5. Postel, J., “Transmission Control Protocol – DARPA Internet Program Protocol Specifica-
tion,” RFC-793, Information Sciences Institute, September 1981
CORBA V2.2 Internet Inter-ORB Protocol (IIOP) February 1998 13-33

13

jects

ented
ests.

ld
d

on.

ata on

ume.

ding

are
13.7.1 TCP/IP Connection Usage

Agents that are capable of accepting object requests or providing locations for ob
(i.e., servers) publish TCP/IP addresses in IORs, as described in “IIOP IOR Profiles”
on page 13-34. A TCP/IP address consists of an IP host address, typically repres
by a host name, and a TCP port number. Servers must listen for connection requ

A client needing an object’s services must initiate a connection with the address
specified in the IOR, with a connect request.

The listening server may accept or reject the connection. In general, servers shou
accept connection requests if possible, but ORBs are free to establish any desire
policy for connection acceptance (e.g., to enforce fairness or optimize resource usage).

Once a connection is accepted, the client may send Request, LocateRequest , or
CancelRequest messages by writing to the TCP/IP socket it owns for the connecti
The server may send Reply, LocateReply , and CloseConnection messages by
writing to its TCP/IP connection.

After sending (or receiving) a CloseCo nnection message, both client or server must
close the TCP/IP connection.

Given TCP/IP’s flow control mechanism, it is possible to create deadlock situations
between clients and servers if both sides of a connection send large amounts of d
a connection (or two different connections between the same processes) and do not
read incoming data. Both processes may block on write operations, and never res
It is the responsibility of both clients and servers to avoid creating deadlock by rea
incoming messages and avoiding blocking when writing messages, by providing
separate threads for reading and writing, or any other workable approach. ORBs
free to adopt any desired implementation strategy, but should provide robust behavior.

13.7.2 IIOP IOR Profiles

IIOP profiles, identifying individual objects accessible through the Internet Inter_ORB
Protocol, have the following form:

module IIOP { // IDL extended for version 1.1
struct Version {

 octet major;
 octet minor;
 };

struct ProfileBody_1_0 { // renamed from Profile Body
 Version iiop_version;

string host;
 unsigned short port;
 seque nce <octet> object_key;
 };

 struct ProfileBody_1_1 {
 Version iiop_version;
13-34 CORBA V2.2 February 1998

13

n

is

 then
fined

ess
r
on or

of 1,
string host;
 unsigned short port;
 seque nce <octet> object_key;

// Added in 1.1
 seque nce <IOP::TaggedC omponent> components;
 };
};

IIOP Profile version number:

• Indicates the IIOP protocol version.

• Major number can stay the same if the new changes are backward compatible.

• Clients with lower minor version can attempt to invoke objects with higher minor
version number by using only the information defined in the lower minor versio
protocol (ignore the extra information).

Profiles supporting only IIOP version 1.0 use the ProfileBody_1_0 structure, while
those supporting IIOP version 1.1 use the ProfileBody_1_1 structure. An instance of
one of these structure types is marshaled into an encapsulation octet stream. Th
encapsulation (a sequence <octet>) becomes the profile_data member of the
IOP::TaggedProfile structure representing the IIOP profile in an IOR, and the tag
has the value TAG_INTERNET_IOP (as defined earlier).

If the major revision number is 1, and the minor revision number is greater than 0,
the length of the encapsulated profile may exceed the total size of components de
in this specification for profiles with minor revision number 0. ORBs that support only
revision 1.0 IIOP profiles must ignore any data in the profile that occurs after the
object_key. If the revision of the profile is 1.0, there shall be no extra data in the
profile, i.e., the length of the encapsulated profile must agree with the total size of
components defined for version 1.0.

The members of IIOP::Profi leBody1_0 and IOP::Profi leBody1_1 are defined as
follows:

• iiop_version describes the version of IIOP that the agent at the specified addr
is prepared to receive. When an agent generates IIOP profiles specifying a particula
version, it must be able to accept messages complying with the specified versi
any previous minor version (i.e., any smaller version number). The major version
number of this specification is 1; the minor version is 1. Compliant ORBs must
generate version 1.1 profiles, and must accept any profile with a major version
regardless of the minor version number. If the minor version number is 0, the
encapsulation is fully described by the ProfileBody_1_0 structure. If the minor
version number is 1, the encapsulation is fully described by the ProfileBody_1_1
structure. If the minor version number is greater than 1, then the length of the
encapsulated profile may exceed the total size of components defined in this
specification for profiles with minor version number 1. ORBs that support only
version 1.1 IIOP profiles must ignore, but preserve, any data in the profile that
occurs after the components member.
CORBA V2.2 Internet Inter-ORB Protocol (IIOP) February 1998 13-35

13

ge

ect
ject
er
,

gent

est is
 value

is
n
P, to

an

mant

,
Note – This value is not equivalent to the GIOP version number specified in GIOP
message headers. Transport-specific elements of the IIOP specification may chan
independently from the GIOP specification.

• host identifies the Internet host to which GIOP messages for the specified obj
may be sent. In order to promote a very large (Internet-wide) scope for the ob
reference, this will typically be the fully qualified domain name of the host, rath
than an unqualified (or partially qualified) name. However, per Internet standards
the host string may also contain a host address expressed in standard “dotted
decimal” form (e.g., “192.231.79.52”).

• port contains the TCP/IP port number (at the specified host) where the target a
is listening for connection requests. The agent must be ready to process IIOP
messages on connections accepted at this port.

• object_key is an opaque value supplied by the agent producing the IOR. This
value will be used in request messages to identify the object to which the requ
directed. An agent that generates an object key value must be able to map the
unambiguously onto the corresponding object when routing requests internally.

• compon ents is a sequence of TaggedComponent , which contains additional
information that may be used in making invocations on the object described by th
profile. TaggedComp onent s that apply to IIOP 1.1 are described below in sectio
13.7.3. Other components may be included to support enhanced versions of IIO
support ORB services such as security, and to support other GIOPs, ESIOPs, and
proprietary protocols. If an implementation puts a non-standard component in
IOR, it cannot be assured that any or all non-standard component will remain in the
IOR.

The relationship between the IIOP protocol version and component support
conformance requirements is as follows:

• Each IIOP version specifies a set of standard components and the conformance
rules for that version. These rules specify which components are mandatory
presence, which are optional presence, and which can be dropped. A confor
implementation has to conform to these rules, and is not required to conform to
more than these rules.

• New components can be added, but they do not become part of the versions
conformance rules.

• When there is a need to specify conformance rules which include the new
components, there will be a need to create a new IIOP version.

Note that host addresses are restricted in this version of IIOP to be Class A, B, or C
Internet addresses. That is, Class D (multi-cast) addresses are not allowed. Such
addresses are reserved for use in future versions of IIOP.

Also note that at this time no “well known” port number has been allocated; therefore
individual agents will need to assign previously unused ports as part of their
installation procedures. IIOP supports multiple such agents per host.
13-36 CORBA V2.2 February 1998

13

.

13.7.3 IIOP IOR Profile Components

The following components are part of the IIOP 1.1 conformance. All these components
are optional presence in the IIOP profile and cannot be dropped from an IIOP 1.1 IOR

• TAG_ORB_TYPE

• TAG_CODE_SETS

• TAG_SEC_NAME

• TAG_ASSOCIATION_OPTIONS

• TAG_GENERIC_SEC_MECH

13.8 OMG IDL

This section contains the OMG IDL for the GIOP and IIOP modules.

13.8.1 GIOP Module

module GIOP { // IDL extended for version 1.1

struct Version {
octet major;
octet minor;

};

#ifndef GIOP_1_1
// GIOP 1.0
enum MsgType_1_0{ // rename from MsgType
 Request, Reply, C ancelReq uest,

LocateRequest, LocateReply,
CloseC onnection, MessageError

};

#else
// GIOP 1.1
enum MsgType_1_1{
 Request, Reply, C ancelReq uest,

LocateRequest, LocateReply,
CloseC onnection, MessageError,
Fragment // GIOP 1.1 addition

};
#endif

// GIOP 1.0
struct MessageH eader_1_0 { // Renamed from MessageHeader

 char magic [4];
Version GIOP_version;
boolean byte_order;
octet message_type;
CORBA V2.2 OMG IDL February 1998 13-37

13
 unsigned long message_size;
};

// GIOP 1.1
struct MessageHeader_1_1 {

 char magic [4];
Version GIOP_version;

 octet flags; // GIOP 1.1 change
 octet message_type;
 unsigned long message_size;

};

};// GIOP 1.0
struct RequestHeader _1_0 {

 IOP::ServiceContextList service_context;
unsigned long request_id;

 boolean response_expected;
 seque nce <octet> object_key;
 string operation;
 Principal requesting_principal;
 };

// GIOP 1.1
struct RequestHeader_1_1 {

 IOP::ServiceContextList service_context;
unsigned long request_id;

 boolean response_expected;
 octet reserved[3]; // Added in GIOP 1.1
 seque nce <octet> object_key;
 string operation;
 Principal requesting_principal;
 };

enum ReplyStatusType {
 NO_EXCEPTION,

USER_EXCEPTION,
 SYSTEM_EXCEPTION,

 LOCATION_FORWARD
 };

struct ReplyHeader {
IOP::ServiceContextList service_context;

 unsigned long request_id;
 ReplyStatusType reply_status;
 };

struct CancelRequestHeader {
 unsigned long request_id;
 };

struct LocateRequestHeader {
 unsigned long request_id;
13-38 CORBA V2.2 February 1998

13
 seque nce <octet> object_key;
};
enum LocateStatusType {

 UNKNOWN_OBJECT,
 OBJECT_HERE,
 OBJECT_FORWARD
 };

struct LocateReplyHeader {
 unsigned long request_id;
 LocateStatusType locate_status;
 };
};

13.8.2 IIOP Module

module IIOP { // IDL extended for version 1.1

struct Version {
 octet major;
 octet minor;
 };

struct ProfileBody_1_0 { // renamed from Profile Body
 Version iiop_version;

string host;
 unsigned short port;
 seque nce <octet> object_key;
 };
struct ProfileBody_1_1 {
 Version iiop_version;

string host;
 unsigned short port;
 seque nce <octet> object_key;
 seque nce <IOP::TaggedC omponent> components;
 };
};
CORBA V2.2 OMG IDL February 1998 13-39

13
13-40 CORBA V2.2 February 1998

	General Inter-ORB Protocol
	13.1 Goals of the General Inter-ORB Protocol
	13.2 GIOP Overview
	13.2.1 Common Data Representation (CDR)
	13.2.2 GIOP Message Overview
	13.2.3 GIOP Message Transfer

	13.3 CDR Transfer Syntax
	13.3.1 Primitive Types
	13.3.2 OMG IDL Constructed Types
	13.3.3 Encapsulation
	13.3.4 Pseudo-Object Types
	13.3.5 Object References

	13.4 GIOP Message Formats
	13.4.1 GIOP Message Header
	13.4.2 Reply Message
	13.4.3 CancelRequest Message
	13.4.4 LocateRequest Message
	13.4.5 LocateReply Message
	13.4.6 CloseConnection Message
	13.4.7 MessageError Message
	13.4.8 Fragment Message

	13.5 GIOP Message Transport
	13.5.1 Connection Management
	13.5.2 Message Ordering

	13.6 Object Location
	13.7 Internet Inter-ORB Protocol (IIOP)
	13.7.1 TCP/IP Connection Usage
	13.7.2 IIOP IOR Profiles
	13.7.3 IIOP IOR Profile Components

	13.8 OMG IDL
	13.8.1 GIOP Module
	13.8.2 IIOP Module

